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1. Introduction

Photosynthesis has been of scientific interest since the mid eighteenth century (J. 

Priestly). Since then several Nobel Prizes have been given in photosynthesis-related 

research, from H. Fischer in 1930 (porphyrins and leaf pigments), M. Calvin (and his 

student A. Benson, CO2-assimilation in photosynthesis) in 1961, and R. Marcus for his 

contribution to the theory of electron transfer reactions in photosynthesis in 1992. 

Photosynthesis supports the bulk of life on Earth and thereby underpins the biomass and 

biodiversity of the planet. Approximately 45 % of the photosynthesis each year occurs 

in aquatic environments (Falkowski 1994, Field et al. 1998). The Arctic region 

contributes considerably to the global primary production. The annual production of the 

Barents Sea is estimated to ~90 g C m–2 (Sakshaug 2004). In comparison the average for 

the world oceans is ~140 g C m–2 y–1 (Field et al. 1998). Irradiance and temperature are 

important variables controlling the rates of photosynthesis. This also pertains for 

respiration, which can be considered the opposite process. In temperate and arctic seas 

(including coastal shallow waters) both variables show marked seasonal and diurnal 

variation (Papers 1 & 4, Cahoon 1999, Glud et al. 2002, Sakshaug 2004). 

Primary production is typically measured as O2-evolution or 14C-assimilation, but can 

also be estimated using variable fluorescence as a proxy (Marra 2002). The techniques, 

however, measure different physiological processes with potentially different response 

to environmental variables such as light and temperature (Paper 3, Geider & Osborne 

1992, Morris & Kromkamp 2003). Accurate estimation of the marine primary 

production is important on both local and global scale because primary production is a 

‘cornerstone’ in marine food webs and in the ecosystem carbon budget. Primary 

production will inevitably be affected by climate change which is likely to alter sea 

temperature and irradiance (cloudiness and ice cover). Possible changes are suspected to 

be amplified in the Arctic (Sakshaug 2004, Holland et al. 2006). 
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My thesis focuses on the flux of photons, i.e. irradiance1 originating from the Sun, as it 

‘travels’ down the water column, being absorbed by microalgae fuelling photosynthesis 

(Fig. 1.1). Each of the sections in this thesis presents an introduction to the subject in 

question, followed by a brief presentation of the relevant underlying theory, concluding 

with a review of my most important findings. The theory part is meant to review the 

underlying theories on which the papers are based, and to provide assistance in 

interpreting the results. 

1 Irradiance (denoted E, mol photons m–2 s–1) is the flux of radiant energy on a (small) surface, divided 

by the area of the surface, per time unit.  



- 5 -

2. Scope of my thesis

The aim of my thesis is to elucidate the different pathways of light in the marine 

environment, from underwater irradiance to the absorption of photons in microalgae2.

The pathway is followed through light harvesting and the subsequent electron transfer, 

to the fuelling of the photosynthetic process (Fig. 1.1, Papers 1, 2 & 3). In addition, the 

effect of temperature on photosynthesis and respiration in pelagic and benthic 

microalgae has been investigated (Papers 3 & 4). A novel approach to estimate the light 

absorption in Photosystem II (PSII) is evaluated in combination with Pulse Amplitude 

Modulated (PAM) fluorescence measurements, to calculate the rate of photosynthetic 

oxygen production (Paper 2). The approach was evaluated against measured rates of 

oxygen production and 14C-assimilation, as a function of temperature (Papers 2 & 3). 

Paper 1 is an in situ study of water column processes in the Marginal Ice zone (MIZ) of 

the Barents Sea, Paper 2 & 3 are laboratory studies on culture-grown phytoplankton 

species, and Paper 4 is a comparison study of intact temperate and arctic diatom-

dominated benthic communities from shallow-water sites. 

The aims of the papers were:  

1) to analyse the significance of spectral composition of irradiance in relation to the 

concentration and vertical distribution of chl a, dissolved oxygen and 

phytoplankton productivity in the water column. Spectral attenuation is related 

to optical depth and discussed in a photo-physiological context, including the 

concentration and composition of phytoplankton pigments and productivity 

2) to determine the absolute rates of photosynthetic O2 production from variable 

fluorescence (PAM) measurements by testing three bio-optical approaches to 

2 Throughout the thesis, the term ‘microalgae’ is used referring to both pelagic and benthic microalgae. 

‘Phytoplankton’ or ‘microphytobenthos’ are used referring to pelagic or benthic microalgae, specifically. 
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estimate the light absorption in PSII, against measured O2 production rates. A

spectral-related approach using PSII-specific light absorption is recommended. 

3) to investigate the relationship between temperature and photosynthetic 

parameters derived from measurements of 1) O2-production by O2-microsensors, 

2) calculated rates of O2-production based on variable fluorescence combined 

with bio-optical determined PSII absorption, and 3) measured rates of 14C-

assimilation. The temperature influence on photosynthetic parameters is 

discussed in a physiological context. 

4) to evaluate possible differences in the temperature adaptation strategy between 

arctic and temperate benthic microalgae-dominated communities, during short-

term temperature incubation studies. The study includes rate measurements of 

the sediment community respiration, gross photosynthesis and net 

photosynthesis as determined from O2 microsensor measurements in intact 

sediments.
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3. Light regime in water columns and sediments 

Sunlight is essential to primary producers being the energy source driving 

photosynthesis (Falkowski & Raven 1997). Light available for photosynthesis is 

referred to as photosynthetically active radiation (PAR) and includes radiation at 

wavelengths from 400 to 700 nm (Kirk 1994). The underwater light regime ultimately 

determines the vertical distribution, abundance and photosynthetic activity of 

phototrophic microalgae in the water column (phytoplankton) and in the benthic 

sediments (microphytobenthos) beneath. The Arctic light regime offers extreme 

seasonal variation, from midnight sun to winter darkness. Moreover, phytoplankton in 

the water column are subject to a strong vertical light gradient, which is amplified in the 

MIZ by the sea ice cover. The focus on light regime in the present thesis begins 

immediately beneath the sea surface. The variables that affect the light regime above the 

sea surface will, thus, not be treated further than mentioning that day length, zenith sun 

angle, cloud cover, albedo (i.e. the reflection of light) and ice cover in the Arctic and 

Antarctic, are major key variables (Sakshaug et al. 1989, Sakshaug & Slagstad 1992, 

Kirk 1994). 

3.1. Downwelling irradiance and attenuation 

Downwelling irradiance3, Ed (in this work termed E, since only downwelling irradiance 

is considered), in a water column diminishes in an approximately exponential manner 

with depth (Kirk 1994). This can be described as

0
dK z

zE E e       (3.1) 

where Ez and E0 are the values of downwelling irradiance at depth z m and just below 

the surface, respectively, and Kd (m–1) is the vertical diffuse attenuation coefficient for 

downwelling irradiance.  

3 Downwelling irradiance (Ed) is defined as the flux of photons received by a flat collector with a cosine 

response, facing upwards (Kirk 1994). 
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The attenuation of light in water is wavelength specific, having the highest attenuation 

in the long-waved red spectrum, subsequently decreasing with wavelength. Pure 

seawater is transparent mainly to blue light (clearest at 475 nm), followed by green 

light, and is nearly opaque to red light and UVB (Paper 1, Kirk 1994). With focus on 

Kd, the spectral attenuation for downwelling irradiance can be rewritten from equation 

3.1 as 

0( ) ( )
( )

ln / z
d

E E
K

z
    (3.2) 

where E0(λ), Ez(λ) and Kd(λ) have a spectral distribution. Light is attenuated in the water 

column as a consequence of both absorption and scattering. The attenuation coefficient 

Kd( ) is thus related to the absorption and scattering by water molecules, chromophoric 

dissolved organic matter (cDOM), particulate organic and inorganic material, and the 

living plankton themselves (Sathyendranath et al. 2000). In clear oceanic water masses, 

Kd( ) is mainly influenced by the absorption and scattering of phytoplankton, by the sea 

water itself, and in some cases by marine cDOM (Case I waters), while terrigenous 

cDOM and suspended matter additionally influence the optical properties in coastal 

water masses and fjords (Case II waters, Jerlov 1976, Sathyendranath et al. 2000). 

In the strictest sense, Kd( ) (as an apparent4 optical property) is dependent on the angular 

distribution of the light field and lacks the additive quality of  inherent3 optical 

properties. Nonetheless, Kd( ) is often considered to be a ‘quasi-inherent’ optical 

property and treated as such, and is therefore commonly considered  independent of the 

solar zenith angle (Smith & Baker 1978, Kirk 1994, Sosik in press), which is the case in 

this work (Paper 1).

In oceanic waters, typical Kd values for PAR, Kd(PAR), are in the range of 0.03 to 0.10 m–

1 measured during low chl a concentrations (<0.1 mg m–3), e.g. in the Sargasso Sea 

4 The optical properties that govern the underwater irradiance regime are divided into so-called ‘inherent’ 

and ‘apparent’ properties. The former is independent of the solar zenith angle and includes properties of 

absorption and attenuation. The latter is dependent on solar angle, and includes backscatter and 

reflectance (Mobley 1994, Light and Water). 
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column, a given optical depth will correspond to a much shallower physical depth than 

in a chl a-poor water column. 

Profiles of chl a, dissolved oxygen and primary production showed large natural 

variations in the Barents Sea. Yet the variables showed a trend of aligning by forming 

profiles with comparable curvatures when plotted as a function of optical depth for 

PAR, (PAR), instead of physical depth. If plotted as a function of the attenuation at 490 

nm, (490) (blue light), uniformity in the curvature became increasingly clear (Paper 1, 

Behrenfeld & Falkowski 1997). Conclusion, optical depth proved to be valuable in the 

attempt to describe the dynamics of chl a, dissolved oxygen and primary production in 

the water column of the MIZ in the Barents Sea (Paper 1).

3.3. Spectral irradiance versus PAR: the relationship to primary production 

Paper 1 shows that the accumulated5 chl a concentration in the water column during 

bloom conditions in the Barents Sea is correlated with the optical depth, (PAR).

Furthermore, I found that when the optical depth was calculated from a single 

wavelength at 490 nm, the coefficient of determination (r2) increased from 0.41 to 0.50 

(entire data set, Fig 3.2). Focusing on only the chl a-rich peak-bloom stations with [chl 

a] >9 mg m–3, the correlation between accumulated chl a and optical depth was close to 

100 % (r2 = 0.99, insert in Fig 3.2). This shows that chl a, representing the 

phytoplankton biomass, correlates to the total light absorption down to an optical depth 

of ~9, corresponding to ~0.01 % of the surface irradiance at 490 nm (Paper 1). These

results are consistent with findings in the North Water Polynya, where chl a and 

particulate organic carbon (POC) were the components that most influenced Kd( ),

accounting for 36 to 83 % of the variance in light attenuation (Vasseur et al. 2003). 

5 The accumulated chl a concentration (mg m–2) was calculated from accumulating (summarising) 

trapezoidal integrated volumetric values for each measuring interval from the surface and down through 

the water column. 
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Fig. 3.2. Optical depth as a function of the accumulated chl a concentration down through the water 

column, calculated for a) PAR, (PAR), and b) 490 nm, (490) , for 12 stations visited during summer months 

2003-5 in the Barents Sea. The insert in b) shows data collected exclusively during chl a-rich, >9 mg m–3
,

peak-bloom conditions (stations XIV and XVI). Lines are linear regressions and the coefficient of 

determination (r2) is given.  

It is important to note that chl a is a biomass estimate and is therefore not directly 

correlated to rates of production. Hence, I analysed the relationship between 

downwelling irradiance and the chl a-normalised primary production rates. The results 

showed that the primary production was strongly related to optical depth, and hence the 

water column light regime. I concluded that the chl a-normalised primary production 

was closer related to the irradiance at 490 nm (blue light) than to PAR (Paper 1). The

conclusion was supported when all data of chl a-normalised production rates were 

plotted as a function of downwelling irradiance for PAR, Ez(PAR), and at 490 nm, Ez(490),

respectively (Fig. 3.3). The compiled data showed that 66 % (r2 = 0.66) of the variance 
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in the normalised production could be explained by PAR (Fig 3.3a), while 81 % (r2 = 

0.81) could be explained from the downwelling irradiance at 490 nm (Fig 3.3b). 

A strong correlation between the irradiance at 490 nm and primary production is 

consistent with the average absorption spectrum for the identified dominating 

phytoplankton groups (Paper 1, Johnsen & Sakshaug in press) and illustrate that the 

phytoplankton community of the MIZ respond spectrally equivalent to temperate and 

tropical phytoplankton ecosystems (Bouman et al. 2000, Bricaud et al. 2004). In

conclusion, by fitting chl a-normalised production rates to downwelling irradiance at 

490 nm, instead of PAR, improved the correlation ~15 % (Paper 1). It follows, as 

mentioned in 3.1, that shading of the water column by phytoplankton is considerably 

more pronounced in blue light than for PAR. This is of relevance for modelling the 1 % 

irradiance depth and critical depth (see Paper 1 for details).
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Fig. 3.3. Chl a-normalised primary production rates plotted as a function of available irradiance as a) 

PAR and b) at 490 nm in per cent of the immediate sub-surface irradiance. Data are compiled from 12 

stations visited during summer months 2003-5 in the Barents Sea. Lines are linear regressions and the 

coefficient of determination (r2) is given. Regression lines are forced through origo.
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4. Light absorption in microalgae and Photosystem II (PSII) 

This section includes a presentation of the absorption properties of microalgae and their 

light-harvesting and photo-protective pigments. The presentation includes the 

absorption properties of PSII and an evaluation of three bio-optical approaches to 

quantify the PSII-specific light absorption in microalgae. 

4.1 Light absorption in microalgae 

The rate of light absorption sets an upper limit for algal productivity, i.e. photosynthetic 

activity. The photosynthetic unit is composed of PSII, PSI and their respective light-

harvesting complexes (LHC II and I, Green et al. 2003). The different pigments in LHC 

II and I, both chlorophylls and carotenoids (see section 4.2), have different absorption 

properties, and the bulk properties reflects a composite spectrum of the summed 

contributions from all absorbing molecules presented, i.e. *a ( ) . The absorption 

properties of single-isolated pigments is generally well described and understood and 

can be used to identify and model microalgae absorption under both laboratory and field 

conditions (Johnsen et al. 1994a, Jeffrey et al. 1997a, Jeffrey et al. 1997b).

As mentioned earlier, light absorption in a water column is characterised as an inherent 

optical property, and as such holds properties of being additive. This means that, for a 

water sample containing a mixture of constituents, the absorption and scattering 

coefficients of the various constituents are independent. Thus, the total coefficient can 

be determined by summation. The total absorption, at(λ) can then be calculated from the 

summarised absorption by sea water, aw(λ), phytoplankton aϕ(λ), cDOM, acDOM(λ), and 

non-algal particles, anap(λ) (Prieur & Sathyendranath 1981). The non-algal particles 

essentially include virus, heterotrophic bacteria and other heterotrophs, as well as debris 

from these organisms. In the open ocean, far from terrestrial influence, phytoplankton 

are generally the principle agents responsible for the optical properties of a water 

column (Morel & Prieur 1977, Morel 2006). 
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In the present study I measured absorption in laboratory-grown monocultures of 

phytoplankton to obtain the in vivo chl a-specific absorption coefficient, *a ( )  (m2 (mg 

chl a)–1). The in vivo absorption coefficient yields information about total absorption of 

photosynthetic and photo-protective pigments and reflects the photo-acclimation status 

of the algae (Paper 2 & 3, Johnsen & Sakshaug 1993). 

4.2. Light harvesting and photo-protective pigments 

The three main pigment classes that determine the bio-optical properties of algae are the 

chlorophylls (chl’s), the carotenoids and the phycobiliproteins (Johnsen et al. 1994b, 

Jeffrey et al. 1997b). The two major functions of microalgae pigments are light 

harvesting and photo-protection (Scheer 2003).

The chl’s and phycobiliproteins are involved mainly in light harvesting. The carotenoids 

play an import role both in light harvesting and in photo protection for degrading 

potentially damaging excess excitation energy to (mostly) harmless heat (Scheer 2003). 

The major light-harvesting carotenoids are fucoxanthin and the 19’-acyloxy-

fucoxanthins, along with peridinin (specific for some dinophytes) and prasinoxanthin 

(specific for some Prasinophytes) (Sathyendranath et al. 1987, e.g. Johnsen et al. 1994b, 

Jeffrey et al. 1997b).

The major in vivo absorption signature caused by the chlorophylls (chl a, b and c) is in 

the blue (400 – 500 nm) and in the red (580 – 700 nm) regions of the PAR spectra. The 

major light-harvesting carotenoids absorb in vivo mainly at 450 – 550 nm (Johnsen & 

Sakshaug in press, and references herein). Figure 4.1 illustrates the absorption of 

individual pigments and the effect of the photoprotective carotenoid diadinoxanthin in 

high and low light adapted cells of Prorocentrum minimum. The general absorption 

maxima for light-harvesting and photo-protective carotenoids at 490 nm motivated the 

choice of 490 nm when relating primary production to a single wavelength (section 3.3, 

Paper 1, see also Fig. 4.2 and Paper 2) (Johnsen et al. 1994a, Johnsen et al. 1994b). 
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The composition and ratio of pigments and carotenoids can be used as chemotaxonomic 

markers for microalgae identification, and to elucidate the photo-acclimation status of 

algal cells (Johnsen et al. 1994b, Jeffrey et al. 1997b). This can be studied with HPLC 

(High Performance Liquid Chromatography) techniques, and important pigment-group 

markers can be used to differentiate between major phytoplankton groups since 

chlorophyll c3 and 19´-acyl-oxy-fucoxanthins are major pigment markers for 

Haptophytes, chl b and prasinoxanthin for prasinoxanthin-containing Prasinophytes, 

while a high fucoxanthin to chl a ratio (w:w) indicates the presence of diatoms (Paper 1, 

Jeffrey et al. 1997a). As mentioned above, the different chl’s and carotenoids have 

absorption maxima at different wavelengths and thus Kd (in Case I waters with low 

cDOM) will reflect the concentration and composition of phytoplankton pigment groups 

(Bricaud et al. 1988, Bricaud et al. 1998). 

Fig. 4.1. Fractional unpacked absorption (obtained from a pigment model) of individual pigments and the 

effect of the photoprotective carotenoid diadinoxanthin in (A) high light- and (B) low light-adapted cells 

of Prorocentrum minimum. 1: total pigments; 2: photosynthetic pigments (total pigments minus 

diadinoxanthin); 3: chl a; 4: chl c2; 5: peridinin; 6: diadinoxanthin (From Johnsen et al 1994a, MEPS 

114:245-258, with permission). 

4.3. Absorption in Photosystem II 

During photosynthesis ~20 % of the absorbed light is utilised in the photochemical 

process, while ~75 - 77 % is lost as heat (thermal decay), and 3 - 5 % is emitted as chl a

fluorescence of which about 95 % arises from PSII (Owens 1991, Kirk 1994). 
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Fluorescence emission intensity (at a fixed wavelength) is dependent on the wavelength 

of the excitation light. By measuring fluorescence emission at 730 nm against a 

wavelength-specific excitation light, a fluorescence excitation spectrum6 can be 

obtained (Blankenship 2002). The shape of the fluorescence excitation spectrum 

resembles that of the corresponding action spectrum for oxygen, as well as arises from 

PSII, and thus represents the fraction of light received by PSII (Haxo 1985, Neori et al. 

1988). The distribution of light absorption between PSII and PSI is pigment-group 

specific; this is also the case for the fluorescence excitation spectrum caused by the cell 

composition of chl’s and carotenoids (Johnsen & Sakshaug in press). 

From a theoretical viewpoint, Johnsen et al. (1997) suggested that the PSII-specific light 

absorption for photosynthesis can be calculated by scaling the in vivo fluorescence 

excitation spectrum to the in vivo absorption spectrum, *a ( ) , by the ‘no-overshoot’ 

procedure (Fig 4.2, Paper 2). By matching the fluorescence spectra to *a ( )  between 

540 and 650 nm, assuming a 100 % energy conversion efficiency, the obtained 

spectrum equals the PSII absorption spectrum, *
PSIIF ( )  (Johnsen et al. 1997). In contrast 

to *a ( ) , the *
PSIIF ( ) does not include the signatures from photo-protective carotenoids 

and PSI (Johnsen & Sakshaug 1993, in press). 

                                                

6 A plot of the intensity of fluorescence emission at a fixed wavelength versus the wavelength of 

excitation is called a fluorescence excitation spectrum (Haxo 1985). 
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Fig. 4.2. In vivo absorption (thick line) and PSII-scaled fluorescence excitation (thin line) spectra for the 

dinoflagellate P. minimum (upper panel), the haptophyte P. parvum (middle panel) and the diatom P.

tricornutum (lower panel). The fluorescence excitation spectrum was scaled to the absorption spectrum 

by the ‘no-overshoot’ procedure, to estimate the light absorption by PSII. The difference spectra (dotted 

line) were obtained by subtracting the excitation from the absorption spectra and hence denote the light 

absorption by PSI and photoprotective pigments. 

The amount of photons absorbed by PSII, 
*
PSIIa , was computed by spectrally 

weighting *
PSIIF ( ) against the incubator light source according to eq. 4.1, as illustrated in 

Fig. 4.3 
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    (4.1) 

where E( ) is the spectral irradiance of the incubator light source and E(PAR) is the 

integrated irradiance from 400 to 700 nm (Paper 2 & 3). 
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Fig. 4.3. An illustration of the calculation of the light absorption by PSII, 
*
PSIIa . The in vivo fluorescence 

excitation spectrum was scaled to match the in vivo absorption spectrum by the ‘no-overshoot’ procedure 

(as in Fig. 4.2). The light absorption by PSII equals the shaded area, which is obtained by spectrally 

weighting (eq. 4.1) the scaled excitation spectrum against the spectral irradiance of the incubator light 

source (E(PAR) = 2 mol photons m–2 s–1). Data are from Papers 2 & 3. 

Most studies dealing with PSII absorption for measurements of photosynthesis assume 

that the light absorption by PSII and PSI, respectively, is divided equally giving a ratio 

of 0.5 (e.g. Schreiber et al. 1986, Kolber & Falkowski 1993, Gilbert et al. 2000). 

However, this imposes an error as the distribution of chl a between PSII and PSI has a 
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ratio >0.5 in most microalgae7. The distribution of chl a between PSII and PSI is 

pigment-group specific and related to the light-harvesting complex and the distribution 

of chl a and pigments within the cell (Johnsen & Sakshaug in press). Chromophytes, the 

algae class I worked with, has an average PSII to PSI ratio of 0.72, as recently found by 

Johnsen & Sakshaug (in press). This is in agreement with the PSII to PSI ratio of 0.75 to 

0.82 reported in Paper 2.

In Paper 2, we tested the ‘no-overshoot’ approach to calculate the fraction of light 

received by PSII in absolute units. To evaluate the practical implications of this 

theoretical approach, the outcome was tested along with two other commonly applied 

bio-optical approaches for estimating light absorption in PSII (Paper 2, Kromkamp & 

Forster 2003, Johnsen & Sakshaug in press). The results were then applied in 

combination with measurements of the quantum yield for PSII to obtain rates of 

photosynthetic O2 production from PAM measurements. 

4.4. Evaluating three bio-optical approaches to estimate the light absorption in 

PSII

In Paper 2, we tested three bio-optical approaches to estimate the fraction of light 

absorbed by PSII. These estimates were to be used in combination with the operational 

quantum yield for PSII, derived from PAM measurements, to calculate rates of O2

production. The three approaches were: 1) the factor 0.5 which implies that absorbed 

light is equally distributed among PSI and PSII, 2) the fraction of chl a in PSII, 

determined as the ratio between the red-peak ratios between PSII-scaled fluorescence 

excitation and the corresponding absorption spectrum (Fig. 4.3) and 3) the measure of 

light absorbed by PSII, determined from the scaling of fluorescence excitation spectra to 

absorption spectra by the ‘no-overshoot’ procedure (Fig. 4.2). By calculating 

photosynthesis vs. irradiance (P vs. E, see box 5.1) parameters using the three 

approaches, we compared the results against simultaneously measured rates of oxygen 

7 Cyanobacteria, however not microalgae, represent an important group of phototrophs with the major 

part of chl a associated with PSI, giving a ratio between PSII and PSI of ~0.12 (Johnsen & Sakshaug 

1996). 
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production. Generally, approach 1) underestimated while approach 2) overestimated the 

gross O2 production rate. In conclusion, approach 3 gave the best approximation to 

estimate quanta absorbed by PSII. Hence, we recommend approach 3) for estimation of 

gross O2 production rates based on PAM fluorescence measurements (Paper 2).
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5. Photosynthesis and respiration 

This section includes a brief presentation of the fundamental theories in photosynthesis 

and respiration underlying my initial interest for studying these processes by applying 

different methodological approaches. The introduction is meant to provide essential 

information on the subject and to assist the understanding of the papers included in this 

thesis. The most important findings from the comparison of variable fluorescence 

measurements and O2 production measurements for studying photosynthesis are 

presented towards the end of the section. Section 6 reviews the achieved results 

concerning temperature effects on photosynthesis and respiration. 

5.1. Photosynthesis 

Photosynthesis is the process of capturing radiation energy from the sun and 

transforming it into chemically bound energy (Fig. 1.1). The processes of 

photosynthesis are responsible for the energy supply in the formation of organic carbon 

compounds and for the metabolism in primary producers. The overall oxygenic8

photosynthetic process can be represented as (Falkowski & Raven 1997): 

2 2 2 2 22 ( )sunlightH O CO CH O H O O    (5.1) 

The photosynthesis process within the chloroplasts can be divided into two parts: the 

‘light reactions’ and the ‘dark reactions’. 

The light reactions can be described by the formula: 

2 22 4 4LHP ChlaH O Light H e O    (5.2) 

and is the process in which light energy, via chl a, is used to withdraw hydrogen from 

water to generate electrons, and liberate oxygen. In this process, chl a fluorescence is 

emitted when the excited electrons decay to the ground state. The reactions drive the 

ATPase and take place in the thylakoid membranes. 

8 The photosynthetic process can, additionally to oxygenic, be carried out during anoxic condition by 

exchanging the oxygen in eq. 5.1 by e.g. an atom of sulphur to run anoxic photosynthesis. Most 

photosynthetic bacteria, with exception of cyanobacteria and prochlorophytes, are obligate anaerobes. In 

the present thesis, the term photosynthesis will address only the oxygenic process. 
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5.2. Respiration 

The reverse reaction of photosynthesis is oxidative respiration9. This process is the 

breaking of the high-energy bonds of carbohydrates in an oxidative reaction, supplying 

energy for metabolism. Both phototrophic and heterotrophic organisms carry out 

respiration. Whereas photosynthesis proceeds only during periods with sufficient 

irradiation, respiration is carried out during both light and dark conditions (Raven & 

Beardall 1981, Hall & Rao 1999). 

The respiration rate in phototrophs can be divided into two parts: 1) ‘dark respiration’ 

which is the metabolic respiration of a cell, phototroph or heterotroph, independent of 

the electron transport of photosynthesis. Dark respiration is thus, in principle, 

independent of photosynthetic activity. However, even uncoupled from photosynthetic 

activity it might be enhanced by the rate of photosynthesis, as a response to a generally 

enhanced metabolism (Markager et al. 1992, Epping & Jørgensen 1996). 

Experimentally, dark respiration is very difficult to isolate from the photorespiration 

under illumination (Raven & Beardall 1981). 2) ‘Photorespiration’ is the 'extra' 

oxidative respiration, in addition to dark respiration, and is closely linked to 

photosynthetic activity. Photorespiration is divided into two reactions, the Mehler10

reaction and the oxygenase reaction of RuBPc (ribulose 1,5-bisphosphate carboxylase) 

(Raven & Beardall 1981, Falkowski & Raven 1997). 

5.3. Measuring photosynthesis: three methodological approaches 

As seen from the theory above, photosynthesis can be estimated from the variable 

fluorescence kinetics of PSII, from the rate of O2 production and from the rate of 14C-

assimilation (Paper 3). Each of these methods has its advantages and disadvantages and 

9 As with photosynthesis, respiration can also be anoxic. In anoxic respiration, organic molecules are 

oxidised by an electron accepter other than O2, e.g. nitrate or sulphate. In this thesis, the term respiration 

refers to the oxygenic process only.  
10 The Mehler reaction, also called pseudocyclic electron transport, involves an electron transport 

sequence where the O2 produced at PSII is reduced again at PSI. Consequently, there is no net production 

of O2. The process leads to formation of ATP, but not NADPH2.
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have all been applied to access the ecosystem primary production in various 

environments. The techniques, however, measure different products of the 

photosynthetic pathway and reflect different physiological processes with potentially 

different responses to environmental variables, such as temperature (Paper 2 & 3, 

Geider & Osborne 1992, Geel et al. 1997, Morris & Kromkamp 2003). 

Below is a brief presentation of the three measuring techniques, ordered downstream 

according to the electron flux of the photosynthetic pathway. In the following section, 

the outcome of the three techniques will be compared. 

Variable fluorescence measurements 

Variable fluorescence from PSII can be measured by e.g. Pulse Amplitude Modulated 

(PAM) fluorometry and can be used to estimate the operational quantum yield11 of PSII, 

ΦPSII (Schreiber et al. 1986). The electron transfer rate (ETR, from PS II to PS I) can be 

quantified from ΦPSII times the absorbed quanta in PSII, as a proxy for the gross 

photosynthetic rate (Paper 2 & 3, Genty et al. 1989, Kroon et al. 1993). The electrons 

generated in PSII are closely coupled to the O2-evolution, and subsequently follow 

several pathways, among those the reduction of CO2 via NADP(H) production 

(Falkowski & Raven 1997). The PAM technique is fast and non-invasive and can thus 

yield measurements of photosynthesis with a high temporal and spatial resolution. 

In this study, the operational quantum yield of PSII, ΦPSII, was calculated from steady-

state fluorescence before (Fs) and after exposing the sample to a saturating light pulse 

(Fm´), during actinic illumination by the PAM technique (Eq. 5.4, Genty et al. 1989). 

11 The quantum yield is defined as the ratio of moles of product to the moles of photons absorbed in a 

photochemical reaction (Falkowski & Raven 1997). Thus, the operational quantum yield of PSII, ΦPSII, is 

mol electrons generated in PSII to mol photons absorbed. Likewise, is the quantum yield for O2, ΦO2, mol 

O2 produced to mol photons absorbed. The inverse of the quantum yield (1/Φ) is called the ‘quantum 

requirement’, i.e. mol photons absorbed per mol product formed. Because of an inevitable energy loss in 

the photochemical reactions, the quantum yield is always <1, while the quantum requirement is >1. 
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The maximum quantum yield, ΦPSII_max, was calculated in a similar way on dark 

acclimated (~15 min) cells. See Papers 2 & 3 for a detailed methodological description. 

m s
PSII m '

m

F '- FF/F '=
F

    (5.4) 

In combination with knowledge of the chl a-specific light absorption in PSII (section 

4.3), measurements of ΦPSII can be used to estimate the photosynthetic rate of gross O2

production, PPSII, as from eq. 5.5 (Kroon et al. 1993); 
*
PSIIPSII PSIIP  = E a     (5.5) 

where Γ is the stoichiometric ratio of oxygen evolved per electron generated at PSII. 

Usually, according to theory of the standard Z-scheme of photosynthesis, Γ is assumed 

to equal 0.25 O2 electrons–1 (for PSII, Kroon et al. 1993, Gilbert et al. 2000). However, 

a lower ratio is usually found when studied empirically (Paper 2 & 3, Kromkamp et al. 

2001, Longstaff et al. 2002). For simplicity, I initially assumed Γ to be 0.25 in the 

present study (see section 6.1 and Paper 3 for a discussion on the divergence between 

the theoretical and empirical ratio). 

Dissolved oxygen measurements  

Measuring the rate of photosynthesis in phytoplankton using concentration changes of 

dissolved O2 was first proposed by Gaarder & Gran (1927), who invented the light-dark 

bottle technique. They calculated the concentration of dissolved O2 using the Winkler 

titration technique (Strickland & Parsons 1968). With the development of the O2-

electrode, measurements of dissolved O2 have become faster and possible to apply 

during incubation experiments. The fast responding and signal-stable Clark type O2-

microelectrode (Revsbech 1989) has been widely applied in aquatic science, and allows 

for continuous measurements of net O2-production in the light, and O2-respiration in the 

dark (for a review see Glud et al. 2000).  

In oxygenic photosynthesis, the term ‘gross photosynthesis’ refers to the rate of oxygen 

evolution equivalent to the photochemically generated electron flux produced from the 

oxidation of water, excluding any respiratory losses (Sakshaug et al. 1997). ‘Net 

photosynthesis’ in the present work is defined as the net evolution of oxygen following 
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all respiratory losses within the investigated system (i.e. both autotrophic and 

heterotrophic respiratory oxygen consumption). 

All measurements of O2 production and consumption rates in this study were performed 

using Clark-type O2 microelectrodes (Revsbech 1989) with a fast response (90 % 

response in <10 s for net production/consumption and <0.5 s for gross production 

measurements), small tip size (external diameter <1 mm) and low stirring sensitivity (<3 

%).

Photosynthetic gross O2 production can be measured in benthic sediments by the 

light/dark shift method (Paper 4, Revsbech & Jørgensen 1983, Glud et al. 1992). 

However, because of a much lower biomass per volume, this method has not yet been 

successfully applied on water samples. In sea water, gross O2 production can be 

measured by spiking the water samples with 18O-labelled water and measuring the 

amount of 18O-labelled O2 produced photosynthetically (Bender et al. 1987). 

Alternatively, gross production can be estimated from correcting the net O2 production 

rates for respiration. The 18O-labelling method unequivocally measures gross primary 

production (i.e. there are no respiratory losses of the labelled O2), while the latter 

method will lead to gross production being underestimated if respiration in the light is 

significantly different from respiration in the dark. In the present study, gross O2

production was measured by the light/dark shift technique in sediments (Pgross, Paper 4) 

and estimated from the net production and dark respiration rates in the studied 

phytoplankton cultures (PO2, Paper 2 & 3). Net O2 production was measured from 

concentration profiles (Pn, Paper 4) and from net changes of the O2 concentration over 

time in phytoplankton samples (Paper 2 & 3). 

14C-assimilation measurements 

The 14C technique was developed by Steemann-Nielsen (1952) and has probably been 

the most widely used method in aquatic science for estimating primary production, 

because of its high sensitivity allowing measurements on low biomass. The method 

quantifies the rate of 14C-assimilation and hence the conversion of inorganic C into cell 

biomass. It reflects an activity intermediate to net and gross photosynthesis, dependent 
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on the incubation time (Lewis & Smith 1983, Falkowski & Raven 1997, MacIntyre et 

al. 2002). For 1 hour incubations, the technique is, for convenience, commonly assumed 

to indicate gross rates (P14C). This method, however, is labour-intensive and the 

quantum yield of carbon fixation varies according to the intermediate steps in 

photosynthesis, environmental variables and growth phase of the cells (Paper 3, Kroon 

et al. 1993). As a consequence, models of primary production based on the 14C method 

can be inaccurate (Prézelin et al. 1991, Schofield et al. 1993, Kroon et al. 1993). 

5.4. Comparing PSII fluorescence and oxygen production 

Photosynthetic O2-production, ΦPSII and/or 14C-assimilation have been compared in a 

number of studies of macroalgae, microphytobenthos, and marine phytoplankton (e.g. 

Geel et al. 1997, Barranguet & Kromkamp 2000, Longstaff et al. 2002). Although the 

investigations have been conducted under a variety of experimental conditions, a 

preponderance of the studies on microalgae find a linear relationship between O2-

evolution and ΦPSII under moderate irradiance, sometimes with deviation at very low or 

very high irradiance conditions (e.g. Schreiber et al. 1995, Flameling & Kromkamp 

1998). Different explanations for the deviation have been proposed: spectral difference 

in PAR sources, changes in O2-consumption in the light, cyclic electron transport 

around PSII and Mehler-type reactions, see Flameling and Kromkamp (1998) for an 

overview.

In my studies at moderate irradiances below the photoinhibited levels, the relationship 

between rates of measured (PO2) and calculated O2 production (PPSII, from PAM and 

PSII absorption, eq. 5.5) showed approximately linear responses (r2 = 0.7–0.97, Fig. 5.2, 

Paper 2). As seen from Fig. 5.2, the linear response of PPSII versus PO2 showed species-

specific slope coefficients for the three microalgae species investigated. Where the 

diatom (P. tricornutum) tended to show a slope coefficient close to unity, PPSII tended to 

underestimate the O2 production, compared to PO2, for the dinoflagellate (P. minimum)

and overestimate PPSII for the haptophyte (P. parvum). The divergence in the slope 

coefficient was presumably caused by a lower quantum yield for O2, ΦO2, and hence a 

stoichiometric ratio lower than the 0.25 theoretically assumed for the calculation of PPSII
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(eq. 5.4) of oxygen evolved per electron generated at PSII. A careful discussion of this 

subject is found in Paper 2 & 3. 
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Fig. 5.2. Rates of O2 production calculated from ΦPSII in combination with 
*
PSIIa , PPSII, as a function of 

measured O2 production, PO2, for P. minimum, P. parvum and P. tricornutum. The dashed line represents 

x = y (Paper 2). 

The PAM and the O2-microelectrode techniques have their limitations and strengths in 

terms of sensitivity and noise. In low lights (E < Ek), the electron transfer rate (ETR) is 

relatively robust and thus the estimation of  from the PAM technique. Conversely, the 

microelectrode technique is working near the detection limit, thus yielding a low 
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accuracy for . In high light (E > Ek), the accuracy of the results from the PAM and the 

O2-microsensor technique, respectively, are the opposite of that for low light (E < Ek). 

As the ratio of PSII to E decreases with increasing irradiance the accuracy becomes 

weak. In contrast, the signal-to-noise ratio of the O2-microsensor increases with 

increasing irradiance, yielding more reliable results under high light conditions. 
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6. Temperature effects on photosynthesis and respiration 

The present thesis contains two distinctly different approaches to studying temperature 

effects on processes of photosynthesis and respiration. Paper 3 is a study on laboratory-

grown monocultures of pelagic phytoplankton, and Paper 4 is a study on intact diatom-

dominated benthic communities, sampled at shallow water. However, both papers are 

based on physiological response studies in microalgae, and the associated heterotrophic 

community, imposed by short-term (minutes to hours) temperature experiments. 

Laboratory-grown cultures of phytoplankton allow for detailed investigations of 

temperature-imposed responses on light-saturated and light-limited rates of 

photosynthesis (P vs. E relationship), where intact sediment samples with 

microphytobenthos allow for ecological relevant, intact-community temperature-

response studies. This section contains a review of the achieved results on temperature 

effects on light-saturated and light-limited photosynthesis, followed by an introduction 

to the results of the benthic community study. Section 6.4 summarises the ecosystem 

implications of the obtained results. 

6.1. Temperature effects on light-saturated photosynthesis 

Calculated and measured O2-production rates along with 14C-assimilation rates showed 

overall the same relative response to a short-term temperature change for all the three 

phytoplankton species studied (Paper 3). The maximum photosynthetic rate, PC
max

12,

increased with temperature, resulting in an average Q10 of 2.1 ± 0.2 (mean ± S.E.). The 

Q10 values showed only small variance between methods and species. This 

demonstrated that ΦPSII from intact algae cells responded similarly to the rate of O2-

evolution and 14C-assimilation, to a short-term temperature change. This is consistent 

with the hypothesis that the overall rate-limiting reaction for light-saturated 

photosynthesis is carbon fixation rather than electron transport, as suggested by Sukenik 

et al. (1987). For the present data, this implies that ΦPSII as well as the O2-production

12 The ’C’ on PC
max denotes that the parameter was normalised to the particulate organic carbon (POC) 

content of the sample investigated. Likewise, ‘*’ denotes normalisation to the chl a content. 
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may be limited by carbon-fixing enzyme activity, i.e. the Rubisco-complex. In addition, 

the data suggest that rates of ΦPSII and O2-production driven by the light reactions were 

not different from rates of 14C-fixation, driven by the dark reaction, as a function of 

short-term temperature changes (Paper 3). Conclusively, the PAM technique, analogous 

Box 6.1 : Temperature and Q10 (temperature coefficient) 

Temperature in an important environment variable for understanding the physiological ecology 
of microalgae in nature, as it affect key biological processes, including photosynthesis, 
enzymatic activity and respiration (Davison 1991). 

Calculation of Q10

Temperature-imposed activity changes are often quantified by the so-called ‘Q10 factor’, 
describing the relative rate of increase for a temperature increase of 10 °C. The temperature 
response of a given process can be calculated from the apparent activation energy (Ea, kJ·mol–

1) and Q10 then from Ea. Ea can be calculated from the initial linear slope of an Arrhenius plot 
where ln(k) is plotted as a function of temperature (R·T)–1, according to Raven and Geider 
(1988) as: 

1ln( ) ln( ) ( )ak A E RT

where k is the rate of the reaction, A is the Arrhenius constant, R is the gas constant (8.3144 J–

1·mol–1) and T is the absolute temperature (K). 

Q10 is then calculated for a given temperature interval of interest as (Berry & Bjorkman 1980): 
1

10 exp 10 ( 10)Q Ea RT T

All Q10 values in the present study are calculated from Arrhenius plots, according to the above 
equation. In the literature, Q10 is sometimes alternatively calculated from a more simple 
equation, which is strictly exponential, as: 

2 110 /( )
10 2 1/ t tQ r r

where t1 and t2 are the lower and upper temperatures of the range of consideration, and r1 and r2

are the metabolic rates corresponding to t1 and t2, respectively (Davis & McIntire 1983). 

Acclimation versus adaptation 
Temperature acclimation usually describes phenotypic changes in a community as a response 
to short-term temperature change, whereas temperature adaptation involves genetic differences 
in metabolism between communities from different thermal environments (Berry & Bjorkman 
1980, Davison 1991)
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to O2-production and 14C-assimilation measurements, can be applied to study relative 

temperature responses of light-saturated photosynthesis.

Overall, the absolute rates of calculated O2-production, PPSII (based on ΦPSII, Eq. 5.5), 

showed a species-specific correlation to and overestimated the measured O2-production

rates of ~1 to 3 times, for light-saturated photosynthesis (Fig. 6.1). As I have shown, 
*
PSIIa  is a good measure for the light absorption in PSII (section 4.3 & 4.4, Papers 2 & 

3). Hence, I suggest that the off-set of the ΦPSII based measurements (PPSII) is caused by 

a lower quantum yield for O2-production than the theoretical maximum, and thus the 

amount of O2 evolved per electron generated in PSII (Γ) is lower than the commonly 

assumed 0.25 (Paper 3, e.g. Kroon et al. 1993, Suggett et al. 2004). The lower quantum 

yield for O2-production can possibly be ascribed to irradiance induced cyclic electron 

transport around PSII, Mehler reactions (Flameling & Kromkamp 1998, Longstaff et 

al. 2002), and to the difference between the rates of metabolic respiration (‘dark’ 

respiration) during light and dark conditions, respectively (section 5.2). The off-set of 

the ΦPSII based measurements seemed to be insensitive to temperature (Paper 3). 
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Fig. 6.1. Effect of temperature on the absolute values for the maximum photosynthetic rate (PC
max). The 

photosynthetic parameters were calculated from rates of measured O2-production (PC
O2, filled circles), 

ΦPSII (PC
PSII, eq. 5.5, open diamonds), and 14C-assimilation (PC

14C, grey triangles). The three pelagic algae 

species were grown at 15 °C and 80 μmol photons m–2 s–1 (Paper 3). 
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6.2 Temperature effects on light-limited photosynthesis 

The relative and absolute values of αC showed an analogous response to a short-term 

temperature change and showed itself to be insensitive to (P. minimum), or possibly 

slightly decreasing (P. parvum and P. tricornutum), with increasing temperature 

resulting in average Q10 of 1.0 ± 0.2 (mean ± S.E.). Based on a statistical test of 

covariance (ANCOVA) I concluded that the temperature response for the three methods 

was the same for all three species (Fig 6.2, Paper 3). The absolute values of αC

demonstrated an off-set of αC
PSII compared to αC

O2 and αC
14C which was constant for 

the entire temperature range, arguing for a linear temperature-insensitive relationship 

between rates obtained from the three methods, in the light limited part of the P vs. E 

curve. The off-set in the light-limited region was similar to the off-set of PPSII in the 

light-saturated region (Fig. 6.1) and hence I concluded that the off-set was general for 

the ΦPSII based O2-production rates (PC
PSII), for the entire irradiance range (Paper 3).

The possible decrease of αC with temperature for P. tricornutum is explained by an 

apparent decrease of the chl a to C ratio, as αC (carbon-specific) is often correlated to 

this ratio because light absorption is correlated with chl a (MacIntyre et al. 2002). 
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6.3 Temperature effects on intact benthic microphyte communities 

Studies at subtidal and intertidal sites have shown that temperature can exert tight 

control on benthic photosynthetic rates, and can lead to seasonal temperature 

acclimation and/or change in the microphyte community composition (e.g. Grant 1986, 

Barranguet et al. 1998). In Paper 4, I studied the short-term temperature effects on 

respiration and photosynthesis in intact diatom-dominated benthic communities 

collected at two temperate and one high-arctic subtidal sites, to resolve a potential 

adaptation strategy (Fig. 6.3). Areal rates of both total (TOE) and diffusive (DOE) O2

exchange were determined from O2-microsensor measurements in darkness and at 140 

μmol photons m–2 s–1. In darkness, the O2 consumption increased exponentially with 

increasing temperature for both TOE and DOE with Q10 ranging between 1.7 and 3.3. 

Overall, Q10 was not correlated to the in situ water temperature or geographical position. 

Accordingly, no difference in the temperature acclimation or adaptation strategy of the 

microbial community was observed (see Paper 4 for details). Gross photosynthetic rates 

increased with temperature yielding Q10 in the range of 2.2 to 2.6. However, no 

temperature adaptation was observed between the sites. The present study shows that 

increasing temperature stimulates the heterotrophic activity more than gross 

photosynthesis does. Consequently, the typically mixed benthic community of 

heterotrophic and phototrophic microbes gradually turns heterotrophic with increasing 

temperature. In conclusion, no difference in the temperature acclimation response 

between the sites was observed, suggesting that the temperature adaptation strategy for 

the benthic microbial communities was similar for the arctic and the temperate 

communities.
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Fig. 6.3. Areal rates of total oxygen exchange as a function of temperature, measured from whole core 

incubations in darkness (dark columns) and at 140 μmol photons m–2 s–1 (open columns) in (a) Denmark, 

(b) Norway and (c) Svalbard. Negative values indicate net O2 consumption and positive values net O2

production (Paper 4). 

6.4. Phototrophic versus heterotrophic temperature responses (ecosystem 

implications) 

The results of Paper 3 demonstrate that PC
max increased and αC was more or less 

insensitive to increasing temperature for all the three investigated species, consistent 

with most eukaryote algae (Davison 1991). Generally, the light-limited photosynthesis, 

represented by αC, is a function of photochemical light reactions (not enzyme-

dependent), whereas the light-saturated part, represented by PC
max, is limited by enzyme 

activity associated with the carbon metabolism of the dark reactions (Paper 3, Davison 

1991, Sakshaug et al. 1997). Intact community responses to temperature, as in benthic 

microphyte communities, are confounded by both light-saturated and light-limited 

processes, as the irradiance regime within the sediment is distributed gradiently, and is 

further complicated by the simultaneous impact on physical, chemical and biological 

controls (Paper 4, Epping & Jørgensen 1996, Fenchel & Glud 2000). Based on the 

laboratory results showing that the light-limited part of photosynthesis is temperature 

insensitive (Paper 3), it is presumed that the temperature response of the intact benthic 

microphyte communities (quantified from Q10) is controlled by the light-saturated 

temperature response. Thus the light-saturated temperature response on photosynthesis 

is responsible for the temperature response of the net community in the sediments 
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(Paper 4). This is consistent with the obtained Q10 values, see Papers 3 and 4 for 

details.

A dataset extracted from Paper 3, allowed isolation of the effect of temperature on rates 

of net O2 production, measured on the laboratory-grown culture of Prorocentrum

minimum, at five irradiances and in darkness (Fig. 6.4). The data shows that the net O2

production rate as a function of temperature decreases with decreasing irradiance in a 

manner so that the temperature of maximum production (not to be confused with the 

temperature optimum) decreases. This phenomenon illustrates the balance between the 

phototrophic versus the heterotrophic temperature response, and leads me to conclude 

that the heterotrophic activity increased more than the gross O2 production, with 

increasing temperature, in laboratory-grown culture. In conclusion, the phytoplankton 

and the intact microphytobenthic community responded similarly, demonstrating a 

gradual transition from a phototrophic to a heterotrophic dominated community with 

increasing temperature. This has implications for the carbon cycling in both pelagic 

and benthic microalgae-dominated communities that experience seasonal and diel 

temperature fluctuations. 

Similar observations have previously been reported for intertidal sediments (Davis & 

McIntire 1983) and in temperate planktonic communities (Lefevre et al. 1994, Robinson 

2000). The observations have generally been explained by a stronger and more rapid 

physiological acclimation of heterotrophic compared to phototrophic activity, to 

temperature changes. I therefore suggest that the stronger heterotrophic temperature 

response as observed in my studies is a general rather than exceptional phenomenon.
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Fig. 6.4. Effects of temperature on rates of the net O2 production (which is the sum of the gross O2

production and the respiration) in a laboratory-grown culture of P. minimum. Each of the six panels 

represents different irradiances, from 430 mol m–2 s–1 (upper left) to darkness (lower right) (based on the 

dataset of Paper 3). 
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7. Conclusions 

• Profiles of chl a, dissolved oxygen and primary production showed large natural 

variations in the Barents Sea. Yet the profiles correlated closely to optical depth, 

i.e. a certain irradiance regime defined from the attenuation coefficient. The chl 

a-normalised primary production correlate stronger to the light regime in the 

blue-green region, at 490 nm, than to PAR, improving the correlation between 

irradiance and primary production by ~15 %. Hence, I suggest using 490 nm 

instead of PAR when relating phytoplankton production to a single wavelength 

band.

• An accurate estimation of light absorption in PSII is essential for calculating 

rates of photosynthetic O2 production from the operational quantum yield in 

PSII, ΦPSII, derived from PAM measurements. Three bio-optical approaches to 

estimate the fraction of light absorbed by PSII were tested. The best estimate 

was obtained from a spectrally weighted approach based on the PSII-scaled 

fluorescence excitation spectrum, by the so-called ‘no-overshoot’ procedure. 

The approach was evaluated by comparing calculated rates of photosynthetic O2

production based on ΦPSII and the PSII absorption, against simultaneously 

measured rates of O2 production. This approach is hence recommended for 

estimation of gross O2 production rates from PAM fluorescence recordings. 

• Both calculated and measured O2-production rates along with 14C-assimilation 

rates showed the same relative response to a short-term temperature change, (for 

the three studied microalgae species.) This implies that the PAM technique 

analogous to O2-production and 14C-assimilation measurements can be applied 

to study relative temperature responses of photosynthesis versus irradiance 

relationships. Absolute rates of calculated O2-production based on ΦPSII showed 

a species-specific correlation and overestimated the measured O2-production

rates of ~1 to 3 times during both light-limited (αC) and light-saturated (PC
max)

photosynthesis. The off-set of the ΦPSII based measurements was due to a lower 
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quantum yield for O2-production than the theoretical maximum and seemed to 

be insensitive to temperature. In conclusion, the PAM technique can be used to 

study temperature responses of photosynthesis in microalgae when attention is 

paid to the absorption properties in PSII. 

• No difference in the temperature acclimation response was observed between the 

investigated arctic and temperate diatom-dominated benthic communities. This 

was observed from similar Q10 values, arguing for a similar temperature 

adaptation strategy between the sites. Overall, temperature stimulated the 

heterotrophic activity more than the gross photosynthesis, gradually turning the 

benthic communities heterotrophic with increasing temperature. 
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8. Some thoughts on photosynthesis and algorithms of primary 

production

Bio-optical models developed for the estimation of marine primary production P, and 

often used with remotely sensed ocean colour data (often determined as g C m–3 s–1),

can be written on the general form (e.g. Platt & Sathyendranath 1988, Claustre et al. 

2005)
*

CP PAR chla a      (8.1) 

where *a  is the chl a-specific absorption coefficient and ΦC is the quantum yield for 

carbon fixation. Equation 8.1 is in units of moles, which by multiplying with a factor of 

12 can be converted into grams of carbon. The estimation of PAR and [chla] is 

generally not an issue, and these variables can be estimated with a good accuracy, even 

at a global scale from remotely sensed data or models. Estimation of the product of *a

and C  is in general considered more challenging (e.g. Claustre et al. 2005). Statistical 

relationships that relate *a C  to [chl a] have been described, however, these only 

reproduce average trends and remain limited in accounting for natural variability (e.g. 

Bricaud et al. 1995). 

Three major findings in the thesis have inspired me to propose some improvements to 

eq. 8.1, with the aim of estimating P from natural ecosystems. First, Paper 1 

demonstrates that from a simple approach exchanging PAR with the irradiance at 490 

nm the correlation of irradiance to measured primary production can be improved by 

~15 % (Fig. 3.3 and section 3.3). Secondly, Paper 2 shows that replacing *a  with the 

PSII-specific absorption coefficient, *
PSIIF , gives a more accurate estimate of the light 

absorption for oxygenic photosynthesis (origin in PSII), as it corrects for absorption by 

photo-protective carotenoids (and PSI). Thirdly, Paper 3 quantifies the (maximum) 

quantum yield of O2 production based on the light absorption in PSII, PSII
O2 . Using 

PSII
O2  instead of C  is in principle not better, however, by applying the bio-optical 

approach for quantification of the PSII absorption (Paper 2) it is possible to quantify 
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PSII
O2  with a better accuracy than usually applied for C . Consequently, incorporating 

these improvements into equation 8.1, it can be rewritten as 
*

2 490 PSII 2
PSII

O OP kE chla F     (8.2) 

where k is a factor correcting the irradiance at 490 nm to the 400 - 700 nm waveband. 

The outcome of eq. 8.2 is an estimate of the photosynthetic (gross) O2 production in 

units of mole, and summaries the finding in this thesis synthesised in a single equation. 

This approached offers improvement to the mentioned uncertainties included in eq. 8.1. 

As PSII
O2  in this study is based on culture-grown phytoplankton it is not necessarily 

representative under in situ conditions. Obviously, there exists a challenge in obtaining 

accurate and reliable measurements of PSII
O2  (and similar bio-optical parameters) 

under natural conditions in phytoplankton and microphytobenthic communities. This 

task is still recognised as a major challenge (Behrenfeld & Falkowski 1997, Claustre et 

al. 2005).

Conclusively, to improve models for marine primary production, not least for the Arctic 

region, further field investigations are required. From simultaneously measurements of 

photophysiological parameters (P vs. E curves), phytoplankton absorption and 

taxonomic composition (e.g. HPLC) knowledge of the in situ variability of the bio-

optical parameters (e.g. the quantum yield for photosynthesis) can be obtained (Claustre 

et al. 2005, Johnsen & Sakshaug in press). Such studies would be extremely valuable 

for future improvement of primary production estimates: perhaps especially in the 

Arctic with present climate change scenarios predicting a decreasing ice cover and thus 

increased light availability in the water column (Holland et al. 2006). 
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Abstract

Surface incident irradiance and spectral downwelling irradiance (Ez(λ)) were measured 

to obtain the spectral attenuation coefficients (Kd(λ)) and optical depth ( (λ)) at twelve 

stations in the Marginal Ice Zone (MIZ) of the Barents Sea, as part of the Norwegian 

CABANERA programme. The stations were sorted according to their bloom stage; 

early, peak and late, based on multidisciplinary data analysis. Profiles of the 

concentration of chl a, dissolved oxygen and primary production (PP) exhibited large 

variations yet were visually clustered similarly as a function of (PAR), showing close 

correlations. As a function of (490), the chl a-normalised production (PP*) profiles 

clustered largely above the 10 % Ez(490) depth, and the shape of the profiles became 

more uniform. The optical depth for PAR, (PAR), was correlated to the chl a

concentration at an r2 of 0.41, whereas (490) yielded an improved correlation of 0.50. 

The relationship between downwelling irradiance and PP* showed the highest 

coefficient of determination in the blue-green region, Ez(490) (r2 = 0.81) compared to 

PAR (r2 = 0.66) and green-orange Ez(585) (r2 = 0.59). As phytoplankton related more 

closely to blue-green irradiance (490 nm) than to PAR and green-orange (585 nm), we 

therefore suggest using 490 nm when relating phytoplankton production to a single 

wavelength. Photosynthetic pigment analyses (HPLC) showed that diatoms were 

predominant during peak phases of blooms whereas smaller cells of Haptophytes (e.g. 

Phaeocystis sp.) and chl b-containing algae (e.g. Chlorophytes and Prasinophytes) 

dominated during early- and late bloom stages. The presented results emphasise the 

importance of a spectral approach when relating phytoplankton chl a and primary 

production to underwater irradiance. This has implications for improving of primary 

productivity models and application of remote sensing techniques in the Barents Sea. 

Key Words: Spectral attenuation, PAR, Photosynthetic pigments, Marine phytoplankton, 

Primary production, Barents Sea, Marginal Ice Zone 
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1. Introduction 

The Barents Sea is the westernmost of the Siberian shelf seas and a transition sea 

between the Arctic Ocean and the Nordic seas. It boundaries to the north and west by 

steep continental slopes and its average depth is 230 m (Loeng, 1991). The Barents Sea 

is partly ice covered, primarily by seasonal ice, with a maximal extension in March-

April depending on the inflow and temperature of Atlantic water masses (Vinje and 

Kvambekk, 1991). The latter impose large annual variations, which affect the heat flux 

into the Barents Sea and causing large variations in the ice cover. The northern and the 

southern parts of the Barents Sea are divided by the Polar Front, separating the Arctic 

waters of the north from the Atlantic waters from the south. Close to, and north of the 

Polar Front, which is most distinct in the western parts at 75 - 76° N, the spring bloom 

starts in early May induced by the thermally created stratification in the upper 20 - 30 m 

by the melting of ice (Sakshaug and Slagstad, 1992). As the ice melts, and the ice edge 

retreats northward, the phytoplankton bloom is triggered in the upper nutrient-rich layer 

as it becomes gradually more exposed to light. As a result, the intensity of the primary 

productivity is closely related to ice-edge region, the Marginal Ice Zone (MIZ), and 

limited by the availability of light (Sakshaug, 1997). The intensive fluctuating physical 

conditions and horizontal gradients within the MIZ causes pronounced variations in the 

phytoplankton abundance, pigment concentration, species composition and evidently 

the primary productivity of the pelagic Barents Sea ecosystem. 

The vertical diffuse attenuation coefficient (Kd) of light in a water column is related to 

the absorption and scattering by phytoplankton, coloured dissolved organic matter 

(cDOM), and suspended matter (Sathyendranath et al., 2000). In clear oceanic water 

masses, Kd is mainly influenced by the absorption and scattering of phytoplankton, by 

sea water itself and in some cases by marine cDOM (Case I waters), while terrigenous 

cDOM and suspended matter additionally influence the optical properties in coastal 

waters masses and fjords (Case II waters, Jerlov, 1976; Sathyendranath et al., 2000). 

The ‘optical depth’ in a water column is defined as the vertical diffuse attenuation 

coefficient, spectral or PAR, multiplied by physical depth (Morel, 1988). The optical 
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depth differs from the physical depth and is independent of this. Thus, a given optical 

depth will correspond to different physical depths, in waters of different optical 

properties, yet to the same overall diminution of irradiance (Kirk, 1994). Thus in chl a-

rich water column, a given optical depth will correspond to a much shallower physical 

depth than in a chl a-poor water column. Phytoplankton biomass (e.g. chl a) and 

productivity are related to optical depth, and can be calculated for PAR or with a 

spectral resolution. 

Pure seawater is transparent mainly to blue light (clearest at 475 nm), followed by green 

light, and is nearly opaque to red light and UVB (Kirk, 1994). The clearest pre-bloom 

arctic waters have a vertical attenuation coefficient (Kd) of 0.07 m–1 implying that 1% of 

the surface light reaches a depth of 66 m and 0.1 % of the surface light reaches > 130 m 

(Dalløkken et al., 1995). Algae, in contrasts to pure seawater, absorb mainly blue to 

blue-green and red light while being virtually transparent in the green-orange 

wavelength band. Thus, when a phytoplankton bloom develops, the 1 % light 

penetration depth decreases more rapidly for blue light than for green-orange light, 

turning the water greenish. Self-shading by phytoplankton in the water column is 

therefore considerably more pronounced than apparent from the commonly measured 

PAR depth (Bricaud and Morel, 1986; Nelson et al., 1993; Sakshaug, 2004). The 1 % 

irradiance depth (PAR) often is used as an approximation for the euphotic zone 

(Falkowski and Raven, 1997). However, considering the spectral properties of 

absorption and of the water itself, this is a rough estimate. 

Phytoplankton pigments, chlorophylls (chl’s) and carotenoids, can be used as 

chemotaxonomic markers and to elucidate photo-physiological functionality through 

knowledge about the ratio between light-harvesting pigments and photo-protective 

carotenoids (Jeffrey et al., 1997b; Johnsen et al., 1994). The qualitative and quantitative 

abundance of phytoplankton pigments can be studies by HPLC (High Performance 

Liquid Chromatography) techniques. Important pigment-group markers can be used to 

differentiate between major phytoplankton groups; as chlorophyll c3 and 19´-acyl-oxy-

fucoxanthins are major pigment markers for Haptophytes, chl b and prasinoxanthin for 

prasinoxanthin-containing Prasinophytes, while a high fucoxanthin to chl a ratio (w:w) 
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indicate the presence of diatoms (Jeffrey et al., 1997a). Different chl’s and carotenoids 

have absorption maxima at different wavelengths and thus will Kd, in Case I waters with 

low cDOM, content reflect the concentration and composition of phytoplankton 

pigment groups (Bricaud et al., 1988; Bricaud et al., 1998). 

The aim of the present paper was to evaluate the relationship between the concentration 

and vertical distribution of chl a, dissolved oxygen and primary production to the 

irradiance field in the water column. Moreover, we wanted to analyse the significance 

of a spectral resolution compared to PAR of the relationship between irradiance field 

and the phytoplankton productivity in the water column. The analyses are based on in

situ data from 12 stations in the MIZ of the northern Barents Sea, sampled during the 

Norwegian research program ‘CABANERA’ (Wassmann, this issue). The spectral 

attenuation is related to optical depth and discussed in a photo-physiological context, 

including the concentration and composition of phytoplankton pigments and 

productivity. The present study is relevant for our understanding of the dynamics of the 

primary producers in the Barents Sea as the productivity by phytoplankton is little 

related to the day of the year or the physical depths, but instead to the light field as 

determined by latitude and ice cover and the optical properties, as attenuation and 

scattering, in the water column. 
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2. Materials and Methods 

2.1. Study area 

Sampling was conducted in the Marginal Ice Zone (MIZ) of the northern Barents Sea 

and across the shelf break into the Polar Ocean during three cruises with research vessel 

R/V Jan Mayen (University of Tromsø, Norway). The field data in this study were 

collected as part of the Norwegian research program ‘CABANERA’. A total of twelve 

pelagic stations, of which eleven were partly ice covered, were visited in July 2003 and 

2004, and May 2005, respectively. Stations were chosen to represent different bloom-

development stages within the MIZ. The stations were sampled in numerical order and 

numbered by their Roman numbers (Fig. 1). Bloom-development stage, sampling date 

and position, and ice cover are given in Table 1. 

2.2. Sampling 

In situ profiles of conductivity, temperature, depth (CTD) and chlorophyll a

fluorescence were measured using a Sea-Bird CTD (SBE9 system, Sea-Bird Electronic, 

US) equipped with a Seapoint fluorometer (Chlorophyll Fluorometer, Seapoint Sensors, 

US). Water was collected from 12 fixed depths (1, 5, 10, 20, 30, 40, 50, 60, 90, 120, 150 

and 200 m) and one additional depth in the chl a-max layer (defined from the 

fluorescence profile) if not covered by one of the fixed depths. Water samples for 

dissolved oxygen measurements and for nutrients were collected using Niskin bottles (5 

L, model 1010C), mounted on the CTD rack, from the first cast. Sea water for other 

analyses was subsequently sampled using Go-Flow bottles (20 and 30 L, General 

Oceanics) and Niskin bottles (5 L), from the eight upper depths and the four lower 

depths, respectively. 

Water samples for pigment composition analysis (HPLC) were collected at the depth of 

1 m “surface” and at chl a-max. The in situ fluorescence-determined chl a-max layer 

and the in vitro measured chl a-max layer mismatched at some stations and, thus, did 

the samples for pigment composition analysis from chl a-max not always match the 

depth of the chl a-peak. Volumes of 1000 - 3000 mL, depending on the chl a
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concentration, were filtered onto Whatman GF/F glass fibre filters <15 h after sampling 

(stored in the dark at 2 oC in 15 L plastic containers until filtered). Two to four 

replicates were filtered when possible. Filters were frozen immediately at –20 oC and 

subsequently transported and stored in liquid nitrogen (–196 oC) or in a bio-freezer (–80 
oC) until analysed in the laboratory at Trondhjem Biological Station (Trondheim, 

Norway) within three months from sampling. 

2.3. Pigment analysis

Pigment composition analysis was performed using a Hewlett-Packard HPLC 1100 

Series system, equipped with a quaternary pump system and diode array detector. 

Pigments were separated is a Waters Symmetry C8 column (150 × 4.6 mm, 3.5 m

particle size) using the method described by Zapata et al. (2000), as modified by 

Rodriguez et al. (2006). The frozen filters with algae were extracted, in Teflon-lined 

screw-capped tubes, in 1.5 mL of methanol overnight at –20 °C. The extract was re-

filtered (Millipore 0.2 m) to remove debris, and 154 L of the final extract was 

injected in to the HPLC system, using an automatic injection system. Chlorophylls and 

carotenoids were quantified by their absorbance at 440 nm and identified by a diode 

array detector (λ = 350-750 nm, 1.3 nm spectral resolution). Calibration of the HPLC 

system was performed using standards for chl a from Sigma (C6144, Aldrich, UK) and 

custom isolated standards for carotenoids and chl c, made using a preparative column 

on the same HPLC instrument (Rodriguez et al., 2006, K. Andresen unpub.). 

Identification of pigments and specific extinction coefficients for quantification 

followed procedures recommended by Jeffrey et al. (1997a).

2.4. Measurements of nutrients, chl a, dissolved oxygen and primary production 

Sea water samples for nitrate and phosphate analyses were drained directly from the 

Niskin bottles and subsequently frozen and stored for later analysis. The nutrients were 

analysed on a Scalar Autoanalyser (Scan Plussystem, Netherlands) by the National 

Environmental Research Institute in Roskilde, Denmark (Kivimäe, Pers. Comm.). Chl a

was measured from sea water samples filtered on GF/F filters, extracted overnight in 

pure methanol. The concentrations of chl a and phaeophytin were determined before 
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and after acidification (Holm-Hansen et al., 1965) using a calibrated fluorometer 

(Turner Designs) by (Hodal and Kristiansen, this issue). 

Sea water for dissolved oxygen concentration measurements were cautiously drained 

directly from the Niskin bottles into 125 mL dark glass bottles (Winkler type), which 

were closed immediately with a gas-tight lid. The oxygen concentration was measured 

on-board within an hour using an O2-microelectrode (Clark type, Unisense, Denmark) 

calibrated against an atmosphere-saturated and an oxygen-depleted sample. The samples 

and the calibration solutions were temperature-stabilised prior to measurements, in a 

water bath at 1 oC for 20 min, due to the temperature sensitivity of the oxygen sensor. 

The oxygen sensor was connected to a picoammeter (Unisense) and the output was read 

from a flatbed recorder (Kipp & Zonen, The Netherlands).The atmospheric saturation of 

oxygen in each sample was calculated as a function of temperature and salinity 

according to Li and Gregory (1974). 

Primary production rates were obtained from 24 h in situ incubations using the 14C-

incorporation technique (Steemann-Nielsen, 1952) by Hodal and Kristiansen (this issue). 

Water from the eight upper depth and for chl a-max were enriched with 14C-labeled 

bicarbonate and incubated at the respective depths in light and dark bottles. 

Subsequently, the water samples were filtered after which the filters were frozen for 

later analysis on a scintillation counter ashore.

2.5. Irradiance measurements 

Surface incident irradiance and repeated downward irradiance profiles were measured 

with a spectral resolution of 1 nm, from 380 to 800 nm, using an underwater 

spectroradiometer (RAMSES 101, TRIOS, Germany). Profiles were conducted 

lowering the instrument ‘by hand’, and irradiance was measured with a vertical 

resolution of 1 m in the upper 10 m, and 5 to 10 m below the 10 m depth (depending on 

the attenuation) down to <0.1 % incident irradiance depth (max 90 m). Profiles were 

preferably measured from nearby ice flows in order to representative in situ conditions

(and avoid shading by the ship) at approximately solar noon and midnight at each 

station. Data were collected on a PC and the instrument pack was power-supplied from 

a 12V car battery, through a 12-200 V converter, when running on ice flows. 
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2.6. Calculations 

The vertical attenuation of light, which is a consequence of both absorption and 

scattering of light, is spectrally dependent. The vertical attenuation coefficient for a 

specific wavelength (Kd( ), m–1) for downwelling irradiance was calculated as Eq. 1 

(Kirk, 1994) 

0( ) ( )
( )

ln / z
d

E E
K

z
 (1) 

where E0( ) and Ez( ) are the values of downwelling irradiance at a specific wavelength 

just below the surface, and at z m depth, respectively. The spectral-specific optical 

depth, ( ), was then calculated for the same wavelength, from Eq. 2 (Kirk, 1994; Morel, 

1988)

( )dK z     (2) 

In the present study we have calculated Kd( ) and ( ) for 490 and 585 nm to represent 

the blue-green and green-orange wavelength bands, respectively. The spectrally-

averaged (4-700 nm) attenuation coefficient, Kd (PAR), was calculated using Eq.1, 

replacing E0( ) and Ez( ) with downwelling PAR just below the surface, E0(PAR), and at z 

m depth, Ez(PAR), respectively. Similarly, the spectrally-averaged optical depth, (PAR),

was calculated from Eq. 2, replacing Kd( ) with Kd(PAR). E0(PAR) and Ez(PAR) were 

calculated by integrating the spectral irradiance data from 400 to 700 nm. As a 

consequence of the logarithmic relationship in Eq. 1, the 1% attenuation depth for a 

certain water column will correspond to an optical depth of 2.3 (Eq. 2). Similarly, did 

the 0.1% attenuation depth corresponds to an optical depth of 4.6. 
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3. Results

3.1. Position and bloom-development stage of sampling stations 

The twelve sampling stations were geographically positioned in different regions of the 

Northern Barents Sea (Fig. 1) and were divided into northern shelf-break stations (VII 

and XIV), interior stations (II, III, X, XI, XIII) and southern MIZ stations (I, IV, XVI, 

XVII, XVIII) (Sundfjord et al., this issue). The northern and the interior stations were 

located north of the Polar Front, where the southernmost stations were at the Polar Front. 

The hydrographical characteristics and the prevalence of water masses differed 

markedly between stations. The northernmost stations were strongly influenced by 

Arctic Water (temperature <–1oC and salinity between 34.4 and 34.7 (Pfirman et al.,

1994)) and the southernmost by Atlantic Water (temperature >3oC and salinity >34.95 

(Carmack, 1990)), with the two water masses mixed intensively in the interior 

(Sundfjord et al., this issue). Station XIII and XVIII were strongly influenced by tidal 

and wind-driven mixing, respectively (Sundfjord et al., this issue). Station XVIII was 

the only station which was not covered by sea ice during sampling, and the station was 

exposed to storm conditions immediately prior to sampling. 

The sampling stations were grouped into three bloom-development stages; early, peak 

and late bloom, as none of the stations represented pre- or post-bloom situations (Table 

1). The grouping of the stations were achieved from multidisciplinary data analysis; 

including profiles of CTD data, nutrients (Kivimäe et al., submitted to J. Mar. Res.), 

dissolved oxygen (this study), chl a and 14C-assimilation (Hodal and Kristiansen, this 

issue), and vertical transport of particulate organic matter (POM) (Reigstad, this issue). 

The optical properties of the water column were not considered when stations were 

grouped and can therefore be related independently to the development stage of the 

bloom at each station. 

3.2. Pigment composition

The phytoplankton pigment composition in the water column was analysed at each 

station. Ratios of light-harvesting carotenoids (LHC), chl’s, photo-protective 

carotenoids (PPC) and degraded pigments (deg.pig.) to chl a were calculated to 
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elucidate the pigment signature and physiological state of phytoplankton cells at 

different bloom stages (Table 2). Replicate samples from 1 m and chl a-max, 

respectively, were pooled for each station. 

The overall dominating light-harvesting carotenoid was fucoxanthin (fuco), which was 

found at all stations at ratios to chl a of 10 to 54 % (w:w, Table 2). Fucoxanthin is a 

major chemotaxonomic marker for Chromophytes (with exception of Cryptophytes and 

Dinophytes). Peridinin and cis-peridinin (a degradation product of peridinin) specific 

marker for Dinophytes, were found only at the early-bloom stations XVII and IV, with 

ratios of 7 and 4 %, respectively. At the early- and late-bloom stations, a relatively high 

ratio to chl a was observed of 19’-butanoyl-oxy-fucoxanthin (19’But, 1-5 %) and 19’-

hexanoyl-oxy-fucoxanthin (19’Hex, 1-12 %). This co-varied with a high chl c3 to chl a

ratio (4-9 %) indicating the presence of Haptophytes (e.g. Phaeocystis sp.). These 

group-specific pigments are relatively stable chemotaxonomic markers and show little 

variance (< 25 %) as a function of photo-acclimation status (Rodriguez et al., 2006). 

The peak-bloom stations showed the highest ratios of fucoxanthin to chl a (23-54 %) 

and relatively low ratios of other group-specific markers to chl a, indicating a 

dominance of diatoms. Station XVI, for example, showed to be diatom dominated (~ 90 

% of biomass) indicated by a high fuco:chl a ratio (54 %), chl c1+2:chl a ratio (26 %), 

low chl c3:chl a ratio (3.5 %) and absence of other group-specific pigment markers 

(Table 2). 

The ratio of the pooled PPC, the sum of diadinoxanthin (diadino) and diatoxanthin 

(diato) to chl a, was higher for the surface samples (5-25 %) than for the chl a-max 

samples (12-16 %, Table 3), indicating a ample light regime in the surface waters at all 

the stations.  

Chl b was present at most stations with ratios to chl a of 1-20 %, indicating the presence 

of Chlorophytes, Euglenophytes and/or Prasinophytes. The highest ratios tented to be 

associated with the early- and late-bloom stations (and the peak-bloom station X) and 

support the importance of chl b-containing phytoplankton during these bloom 

conditions (Egeland et al., 1995, Table 2 and 3). The co-existence of chl b with 

prasinoxanthin (prasino) at station XVIII emphasise the presence of prasinoxanthin-
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containing Prasinophytes. The apparent high ratio of chl b to chl a at station X was 

found in the surface waters and associated with a low chl a concentration (0.3 mg m–3),

and was consequently linked to a low signal to noise ratio (data not shown).

3.3. Downwelling irradiance and spectral attenuation 

Vertical profiles of Ez(PAR), in per cent of the immediate sub-surface irradiance, E0(PAR),

is a function of the total attenuation of light in the water column, and is shown for all 

early-, peak- and late bloom stations (Fig 2a-c).  Absolute values of incident irradiance, 

EPAR ( mol photons m–2 s–1), E0(PAR) and the 10 % and 1 % attenuation depths (the depth 

at which Ez(PAR) equalled 1 % and 10 % of E0(PAR)) are given in Table 4. The shape of 

the Ez(PAR) profiles and the 1% attenuation depth for each station illustrate the overall 

optical properties for the three bloom-development stages. 

The early-bloom stations were characterised by a deep PAR penetration, as clearly 

observed from the deep 1 % attenuation depth (especially at station VII, Fig 2a). In 

contrast, the peak-bloom stations were characterised by shallower attenuation depths, 

especially at station XIV and XVI (Fig 2b), resulting from strong light attenuation due 

to high pigment concentrations. The late-bloom stations showed a deeper PAR 

penetration than the peak-bloom stations and hence a deeper 1% depth, which 

corresponded to lower pigment concentrations, as typically during late-bloom 

conditions.

Station VII, XVI and I were selected to represent each of the bloom-development stages 

as examples for the early- peak- and late-bloom stage conditions, respectively, and 

profiles of the downwelling irradiance at 490 nm, 585 nm and PAR are shown (Fig 3a-

c). The early-bloom station VII was characterised by “clear blue waters” as seen from 

the deep penetration of blue light (490 nm) and a relatively shallower penetration of 

green-orange light (585 nm). The attenuation of green-orange light by the water itself is 

stronger than for blue light, and the deep blue-light penetration observed at this station 

is characteristic for waters containing <1 mg chl a per m3 (Morel, 1988). The peak-

bloom station XVI was characterised by greenish water as seen from similar attenuation 

of 490 nm, 585 nm and PAR, as the high algae biomass ([chl a] >10 mg m–3) effectively 

absorbed the light at 490 nm (primarily by fuco, Johnsen et al., 1992). The irradiance at 
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585 nm, however, was only weakly attenuated compared to the clear waters of the early 

bloom demonstrating a neglectable  phytoplankton absorption at 585 nm, even though 

chl c3 absorb efficiently at this wavelength band (Johnsen et al., 1992). At the late-

bloom station I, the water (again) turned blue, showing a deeper light penetration at 490 

than at 585 nm, and a 1 % attenuation depth at 490 nm >70 m. The chl a concentration 

of station I was <1 mg m–3 (Fig 3c). 

Spectral attenuation coefficients, Kd( ), at 490 nm, 585 nm and PAR, as a function of 

depth, are shown for station VII, XVI, and I (Fig 4a-c). The attenuation coefficient was 

up to 6 times higher at the peak-bloom station (XVI) than for the early- and late-bloom 

stations (VII and I), mainly due to a strong light absorption by phytoplankton pigments, 

leading to a shallow light penetration depth. This observation was emphasised by the 

higher attenuation at 490 nm than at 585 nm (and PAR) for the peak-bloom station and 

opposite for the early- and late-bloom stations, respectively. For station XVI the 490 

and 585 nm irradiance were attenuated beyond the sensitivity of the spectroradiometer 

(<0.0001 mol photons m–2 s–1 wavelength–1) at >20 m depth. The relationship between 

the optical and the physical depth at 490 nm, 585 nm and PAR is shown for station VII, 

XVI and I as examples (Fig 4d-e).  

3.4. Optical versus physical depth

Vertical profiles of chl a concentration, concentration of dissolved oxygen and primary 

production rate were related to physical depth, optical depth for PAR and for 490nm, 

and analysed according to bloom development stage (Fig. 5-7). At the early-bloom 

stations the chl a concentration was <3.4 mg m–3 and associated with the upper surface 

waters showing chl a-max depths shallower than 10 m, as typical for early bloom 

conditions. Station VII, representing the earliest registered stage of a bloom, showed a 

chl a-max of only 0.9 mg m–3 at 1 m depth (Fig. 5a). The peak-bloom station chl a-max 

was related to depth between 10 and 30 m, with values of 3.0 to 12.8 mg chl a m–3 (Fig 

5b). At the peak-bloom stations the chl a concentration was diminished in the surface 

waters as compared to the chl a-max, except at station XIV and XVI where the chl a

concentration was high (>9 mg m–3) from the surface down to the chl a-max and further 

below to 30m (fig. 5b). Station XIV and XVI represented the two bloom stations with 
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highest chl a concentration. At the only true late-bloom station (I) chl a showed a deep 

maximum at 37 m and was absent (<0.1 mg m–3) at the surface (<10 m, Fig 5c). 

The vertical distribution of chl a as a function of the optical depth, (PAR), showed that 

the chl a-max correlated to an optical depth between the 10 % and 1 % attenuation 

depth (equal to (PAR) between 2.3 and 4.6), at most of the stations (Fig 5d-f). Two 

exceptions were found at station XIV and XVI, where the chl a concentration showed 

no clear correlation with (PAR). This was caused by the high Kd(PAR) and shallow light 

penetration depth observed at these two stations. Then the chl a distribution was 

analysed as a function of (490nm) the maximum chl a concentration (and shape of the 

profiles) largely moved ‘up-ward’ and correlated closely to the 10 % depth (where the 

irradiance at 490 nm equalled 10 % of the immediate sub-surface irradiance at 490 nm, 

Fig 5g-i). 

The distribution of dissolved oxygen in a water column reflects the net result of 

biological activity and physical transport mechanisms as advection (mixing) and 

molecular diffusion. In a stratified water column, the biological activity will govern the 

distribution of dissolved oxygen, as advection is minimal and the importance of 

molecular diffusion is restricted to a mm scale. The net biological activity is thus the 

result of biological oxygen consumption (respiration) and production (photosynthesis) 

rates.

The in situ distribution of oxygen at the visited stations varied from 87 to 122 % of the 

atmospheric oxygen saturation (Fig. 6). The oxygen distribution was by large sub-

saturated (<100 % saturation) throughout the water column at the early-bloom stations 

(Fig. 6a), and super-saturated (>100 %) in the upper waters of the peak-bloom stations 

(Fig. 6b). At the peak-bloom stations the oxygen distribution showed distinct profiles 

with maximum levels in the upper 20 m and sub-saturated oxygen levels below 30 to 50 

m (Fig. 6b). At the late-bloom station I, the oxygen level was weakly super-saturated in 

the upper ~40 meters and sub-saturated below, suggesting that the oxygen consumption 

rate exceeded the production rate (resulting in a net consumption) at this station, which 

led to the reduction of the oxygen peak as observed predominate at the peak-bloom 

stations (Fig. 6c). The vertical oxygen distributions as a function of (PAR) tended to 

show peak values that correlated at the 10 % irradiance depth, again, with exception for 
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station XIV and XVI and the mixed station XVIII (Fig. 6d-f). As a function of (490nm)

the oxygen profiles ‘compressed’ to a shallower optical depth and the oxygen level 

tented to be at equilibrium (~100 % atmospheric saturation) at the 10 % attenuation 

depth, for both the peak- and late-bloom stations (Fig. 6g-i). 

The primary production was associated with the surface waters (<20 m) at the early-

bloom stations overall descending deeper and deeper in the water column, as the bloom 

stage developed, towards the deep (30-40 m) primary production observed at the late-

bloom station (Fig. 7a-c). Re-analysed, as a function of optical depth, revealed that the 

primary production were related to the region in the water column with an irradiance 

regime between 10 and 1 % of E0(PAR) and above 10 % of E0(490), most pronounced at the 

deep-production stations (I, III and X, Fig. 7d-i). These results indicate that the primary 

production is related not to the depth in metres but to optical depth. A more detailed 

description of the primary production rates and the chl a distribution can be found in 

(Hodal and Kristiansen, this issue). 

Chl a-normalised primary production rates illustrate the light-dependent production as 

the implication of the chl a concentration is neutralised (Fig 8). Consequently, the 

profiles illustrate the light-harvesting characteristics and capacity of the phytoplankton 

community, reflecting the light availability for photosynthesis throughout the water 

column. The chl a-normalised production ranged from ~9 to 30 mg C (mg chl a)–1 d–1 in 

the surface and decreased rapidly approaching zero between 10 and 50 meters (Fig 8a-c). 

The shape of the normalised primary production profiles was generally alike for the 

different stations, but reach zero at different depths. When the profiles were analysed as 

function of (PAR) the profiles were more tightly clustered (than as a function of physical 

depth) and decreased to values below 0.5 mg C (mg chl a)–1 d–1 near the 1% depth, with 

a few exceptions (Fig. 8d-f). As a function of (490nm), the profiles clustered even closer 

with the majority of stations reaching a chl a-normalised production rate below 2 mg C 

(mg chl a)–1 d–1 at the 10% depth and below 0.5 mg C (mg chl a)–1 d–1 above the 1% 

depth (Fig 8g-i). The exceptions will be discussed (in section 4.3).
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4. Discussion 

In the Marginal Ice Zone of the Barents Sea, phytoplankton blooms are triggered by the 

melting of sea ice, creating stratification, which leaves phytoplankton suddenly exposed 

to strong light (Sakshaug and Slagstad, 1992). The intensive fluctuating physical 

conditions and horizontal gradients within the MIZ causes pronounced variations in the 

phytoplankton abundance, pigment concentration, species composition and evidently 

the primary productivity. In the Barents Sea, Kd( ) and ( ) are mainly influenced by the 

absorption and scattering of phytoplankton and by sea water itself, as we assumed 

marine cDOM concentrations to be low (Sathyendranath et al., 2000; Vasseur et al.,

2003) and terrigenous cDOM to be neglectable, even though cDOM is little studied in 

the Arctic (Sakshaug, 2004). 

4.1. Pigment concentration and composition 

The chl a concentration profiles generally reflected the bloom stage of the 

phytoplankton community (Fig 5). The chl a varied from low concentrations at the 

early-bloom station VII, to high concentrations at the chl a-dense bloom station XVI. 

The station representing the latest stage of a bloom, station I, showed a deep, low chl a

concentration with maximum at 37 m (the deepest observed of all stations). The water-

column integrated chl a concentration ranged from 12 to 588 mg chl a m–2 as the 

integrated values at the earliest to the peak bloom stations, VII and XVI, respectively, 

was almost 50 fold (Hodal and Kristiansen, this issue). 

The peak-bloom stations were generally dominated by diatoms, as identified from the 

fuco to chl a ratios of 23 to 54 % and low abundance of other major pigment markers 

for phytoplankton (Table 2 and 3); such as for Haptophytes (19’But, 19’Hex, chl c3), 

Dinophytes (peridinin, chl c2) and prasinoxanthin-containing Prasinophytes 

(prasinoxanthin, chl b). A general diatom dominance at the peak-bloom stations were 

supported by Hodal and Kristiansen (this issue); they found larger cells (>10 m) to 

account for 50 to 97 % of the chl a concentration and responsible for 35 to 100 % of the 
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primary production. A diatom dominance is commonly observed during peak bloom 

conditions in the Barents Sea (von Quillfeldt, 2000). 

Isolation of chl b from the peak bloom stations and absence of prasino, 19’Hex and 

19’But (except at station III), lead us to conclude that the chl b originated from 

Chlorophytes (Jeffrey et al., 1997a), presumable abundant at most of the peak bloom 

stations (Table 2). An exception among the mostly diatom-dominated peak-bloom 

stations, were indicated at station X were Hodal and Kristiansen (this issue) found a 

large fraction of small-celled (<10 m) phytoplankton, accounting for 52-61 % of the 

chl a biomass and 71-91 % of the production, atypical for the peak bloom stations. This 

observation concurred with the highest ratio of chl b that we isolated from the peak-

bloom stations (Table 2), and suggests an importance of a picophytoplankton 

community (cells <3 m). Picophytoplankton are not distinguishable in light 

microscopes and are often overlooked in classical studies of algae composition. Thus, 

we know little about their contribution to the primary production and importance for the 

ecosystem in the Barents Sea (Not et al., 2005), though they have been reported to be 

numerous occasionally (Throndsen and Kristiansen, 1991). A resent study indicates that 

Prasinophytes can be a major component in truly Arctic waters while Haptophytes are 

prominent in more Atlantic waters (Not et al., 2005). These observations support our 

findings. HPLC signature studies of distinct phytoplankton pigment marker may be of 

great taxonomic and ecological significance for future studies of picophytoplankton and 

their importance for the primary production in the Barents Sea.

The pigment signature for the early- and late-bloom stations suggested larger 

phytoplankton diversity than at the peak-bloom stations and an increased importance by 

small-cell phytoplankton groups during early and late bloom conditions seemed likely. 

This, we concluded from high ratios of chl c3:chl a and the coherence of 19’But, 19’Hex 

and chl c3 proposing the presence of Haptophytes especially in the surface waters at the 

early-bloom stations and at chl a-max at the late-bloom stations (Table 2 and 3). The 

presence of prasinoxanthin in combination with chl b in the samples from chl a-max 

argues for a significance of prasinoxanthin-containing Prasinophytes during early- and 

late-bloom conditions. A higher ratio of PPC to chl a in the surface samples than at chl 
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a-max demonstrated a ample light regime in the surface waters (Moline, 1998), 

pronounced at the peak- and late-bloom stations (Table 3). At late bloom scenarios, high 

PPC ratios are typically observed in relation to nutrient starvation and correlated within 

our data of a high abundance of degraded pigments during late bloom (Table 2 and 3). 

The major phytoplankton pigment groups have absorption maximum at different 

wavelength (Johnsen et al., 1994). This implies that the spectral attenuation is 

dependent on both the composition and the concentration of phytoplankton pigments. 

4.2. Chl a and dissolved oxygen as a function of optical versus physical depth 

Profiles of chl a concentration and the dissolved oxygen concentration showed a natural 

large variability when plotted as a function of depth in metres, during both early-, peak- 

and late-bloom conditions (Fig. 5-6a-c). However, the variables showed a trend of 

aligning in comparable curvatures when plotted as a function of optical depth calculated 

for PAR, (PAR), instead of physical depth (Fig 5-6d-f). When data were plotted as a 

function of optical depth, calculated from the attenuation at 490 nm ( (490)) uniformity in 

the shape of the profiles became increasingly clear (Fig 5-7g-i). 

Station XIV and XVI were apparently divagating to the above described uniformity in 

shape as a function of optical depth, which was observed as a deep chl a distribution 

exceeding the light penetration depth (Fig. 5e+h). This was observed from a high chl a

concentration (>9 mg m–3) at optical depths below 8. This phenomenon can be 

explained as chl a biomass being ‘build up‘ during an earlier stage of the bloom holding 

lower chl a concentration and deeper light penetration (e.g. as at station XVII). As the 

biomass and the chl a concentration has increased in the well-illuminated surface waters, 

absorption and inter- and intra cellular shading by the phytoplankton in the water 

column has become increasingly pronounced (Mitchell and Kiefer, 1988; Sakshaug and 

Slagstad, 1991), causing the irradiance to decrease to less than 0.1 % of E0 at 20 m 

depth (Fig. 2b). Thus did the chl a distribution at station XIV and XVI not correlate 

directly with optical depth (Fig 5e+h). A chl a accumulation in the surface layer of the 

MIZ is a typical event during the few weeks of ice melting, particularly in the strongly 

stratified waters north of the Polar Front (Wassmann, 2002). 
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Analysing the accumulated chl a concentration down through the water column at all 

the stations, as a function of optical depth showed that PAR explained 41 % (r2 = 0.41, 

Fig 9a) of the variance in the total chl a distribution. As a function of (490) the 

correlation improved to 50 % (r2 = 0.50, Fig 9b). The accumulated data showed, that 

during early- and late-bloom conditions, characterised by a low chl a concentration and 

deep light penetration, kd(λ) of water itself is more important than kd(λ) of phytoplankton. 

Such conditions resulted in data points ‘below’ the regression line of Fig 9. Contrary, 

the relationship between the accumulated chl a concentration and (490) exclusively for 

the chl a-rich stations XIV and XVI, [chl a] >9 mg m–3, showed a near 100 % 

correlation (r2 = 0.99, inlet in Fig. 9b). This showed that chl a, representing the 

phytoplankton biomass, correlated to the total light absorption down to an optical depth 

of ~9, corresponding to ~0.01 % of the surface irradiance at 490 nm (Fig. 3). The 

optical depth at 585 nm only explained 9 % of the total variance in the accumulated chl 

a concentration (Fig.9c). These results are consistent with findings in the North Water 

Polynya by Vasseur et al. (2003). They found chl a and particulate organic carbon 

(POC) to be the most influencing components on Kd( ) and to account for 36 to 83 % of 

the variance in light attenuation (Vasseur et al., 2003). 

The concentration and distribution of dissolved oxygen supported the ordering of the 

stations into the particular development stages, reflecting sub saturated concentration at 

the early-bloom stations and super saturation in the light exposed surface waters at the 

peak-bloom station (Fig. 6). The fact, that the oxygen profiles correlated closely to the 

light attenuation, especially at 490 nm, implies that the oxygen production by 

phytoplankton is easily recognised in the water column. The oxygen concentration 

reflects the net result of the oxygen production and the oxygen consumption within a 

water column. Accordingly, do oxygen profiles store information of the community 

production (Pomeroy, 1997). As for chl a, the close correlation between the dissolved 

oxygen profile and the optical depth divagated at station XIV and XVI (Fig. 6e+h). The 

explanation is parallel to that for chl a, as the ‘build up’ of chl a by an efficient 

photosynthetic activity, as well ‘builded up’ a super saturation of oxygen, which at time 

of sampling were below the 1 % attenuation depth. We suspect, however, that this must 
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have happened recently as the dissolved oxygen concentration, at sampling, still was 

super saturated. 

4.3. Primary production as a function of optical versus physical depth 

The two main controlling factors for primary production in a water column are the light 

regime and the nutrients (Sakshaug, 1997). At sufficient surface irradiance, nutrients 

become limited in the surface waters and are depleted with increasing photosynthetic 

activity, as during bloom conditions (Falkowski and Raven, 1997; Sakshaug et al.,

1994). Our data are in agreement with such a scenario, as the biomass (as chl a) and the 

primary production descended as a function of physical depth (Fig. 7), leaving the 

surface waters relative clear to light penetration (Fig. 2), in accordance with Kirk (1994) 

and Sakshaug and Slagstad (1991). As a result, did the phytoplankton decent in the 

water column but remained positioned in water masses of similar optical properties, 

resulting in uniform profiles when plotted as a function of optical depth (Fig. 7+8). 

The chl a normalised primary production (Fig. 8) showed a strong correlation when 

rates were plotted as a function of (PAR) and an even more uniform profile shapes as a 

function of (490 ). As seen from Fig. 8d-f, the majority of the normalised production 

decreased and approached zero near the 1 % attenuation depth as a function of (PAR). As 

a function of (490) the profiles clustered even closer and approached zero higher up in 

the water column near the 10 % depth. These results illustrated that the primary 

production was strongly related to optical depth and the water column light regime. 

Based on these findings we concluded, that the chl a normalised primary production 

related stronger to the blue irradiance regime, at 490nm, than to PAR (Fig. 8g-i). The 

conclusion was supported when all data of chl a-normalised production rates were 

plotted as a function of the Ez(PAR) and Ez(490), respectively (Fig. 10). The compiled data 

showed that 66% (r2 = 0.66) of the variance in the normalised production could be 

explained by PAR (Fig. 10a), while 81 % (r2 = 0.81) could be explained from the 

downwelling irradiance at 490 nm (Fig. 10b). A strong correlation between the 

irradiance at 490 nm and primary production is consistent with the average absorption 

spectrum for the identified dominating phytoplankton groups (Johnsen et al., 1992) and 

illustrate that the phytoplankton community of the MIZ respond spectrally equivalent to 
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temperate and tropical phytoplankton ecosystems (Bouman et al., 2000; Bricaud et al.,

2004). The irradiance at 585nm (green-orange light) showed a coefficient of 

determination (r2) to normalised primary production of 0.59 and verified at weak 

importance of green-orange light for photosynthesis (Fig. 10c). Additionally to PAR, 

490 nm and 585nm we tested the relationship between 440 nm and the normalised 

production. The data showed a weaker relationship than for 490 nm, giving an r2 = 0.77 

for the relationship between Ez(440) and the normalised primary production (data not 

shown).

An apparent exception to the trend of uniformity for the profile shape was observed at 

station XIV (Fig. 8) where the chl a normalised production was higher below the 10 and 

1% attenuation depth, than at the remaining stations. This optical deeper production 

lead to a >3 times higher integrated primary production at station XIV (1475 mg C m–2

d–1) than for instance at station XVI (405 mg C m–2 d–1, Hodal and Kristiansen, this 

issue), having a similar chl a concentration and distribution, as well as light attenuation 

properties (Fig. 2b and 5). The high production efficiency observed at station XIV could 

have several explanations. First, the phytoplankton community at station XIV could be 

stronger low-light acclimated than compared to station XVI, resulting in increased 

photosynthetic efficiency per chl a (Behrenfeld and Falkowski, 1997; Johnsen and 

Sakshaug, 1996) caused by a higher quantum yield for C-fixation (Hancke et al.,

submitted). Secondly, the nutrient concentrations were markedly higher at station XIV 

(>0.8 mol NO3/kg at 0 to 20 m) compared to station XVI (<<0.1 mol/kg at 0 to 20 m) 

stimulating a higher and longer-lasting primary production. This kept the phytoplankton 

cells at an exponential growth phase at station XIV compared to a more stationary-

phase at station XVI. The higher nutrient input at station XIV was primary imposed by 

vertical mixing, constrained by the hydrodynamic conditions of the continental slope 

zone, were the station was located (Fig. 1, Sundfjord et al., this issue). Thirdly, a 

difference in the species composition of the dominating diatoms were observed between 

the two stations, from microscope analyses (T. Ratkova, pers. comm.), even through the 

composition of the major phytoplankton pigments did not differ, as observed from 

pigment analyses (Table 3). At station XIV typically early bloom species as Bacterosira 

spp. (typical in Atlantic waters) seemed to be dominating, while more typical late bloom 
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species as Thalassiosira spp. and Chaetoceros spp. seemed to dominate at station XVI 

(Reigstad, this issue, and T. Ratkova pers. comm.). 

4.4 Conclusions 

In the present study we have evaluated the downwelling irradiance and the spectral 

attenuation coefficients in relation to concentration and vertical distribution of chl a,

dissolved oxygen and primary production. Concentration profiles of these variables 

showed large natural variations but clustered into similar shapes as a function of (PAR),

showing close correlations. As a function of (490) the correlation became more clear and 

the shape of the profiles more uniform (Fig. 5-8). The optical depth for PAR, (PAR),

explained 41 % (r2 = 0.41, Fig 9a) of the variance in the accumulated chl a

concentration down through the water column, while (490) improved this correlation to 

50 % (r2 = 0.50, Fig 9b). The downwelling irradiance and the chl a-normalised primary 

production showed a closer relationship in the blue region, at 490 nm, than for PAR, as 

the normalised production as a function of Ez(490) gave an r2 = 0.81 and of Ez(PAR) gave r2

= 0.66 (Fig. 10). Based on these findings we concluded that phytoplankton related 

stronger to blue-green irradiance at 490 nm than to PAR and 585 nm, and we hence 

suggest using 490 nm instead of PAR when relating phytoplankton production to a 

single wavelength band, in agreement with Kyewalyanga et al. (1992). This will 

according to our data, improve the correlation to measured primary production of ~15 % 

(Fig 10). Our results reflect that phytoplankton essentially absorb blue light in natural 

water columns. It follows that inter- and intra cellular shading by phytoplankton is 

much stronger in blue light than in PAR and green light, of relevance for calculating the 

critical depth. Diatoms seemed to be predominant during peak bloom whereas smaller 

cells of Haptophytes (e.g. Phaeocystis sp.) and chl b-containing algae (e.g. 

Chlorophytes and Prasinophytes) seemed dominating during early- and late bloom. The 

present study is relevant for our understanding of the dynamics of the primary 

production in the Barents Sea. Improved understanding of the spectral attenuation and 

phytoplankton composition during bloom stages in the MIZ is important for 

advancement of primary productivity models and application of remote sensing 

techniques in the Barents Sea. 
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Fig. 1: Map of the study area including the sampling stations, visited in order during 

2003 (station I, II, III and IV), 2004 (VII, IX/X, XI and XIII) and 2005 (XIV, XVI, 

XVII and XVIII). Technical data on the stations are given in Table 1.
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Fig. 5: Chl a concentration profiles for the early- (left column), peak- (middle column) 

and late-bloom (right column) stations plotted as function of physical depth (m, upper 

panel), optical depth (PAR, middle panel) and optical depth calculated at 490 nm (lower 

panel). The two mixed stations (XIII and XVIII) are included in the late-bloom panels. 
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ABSTRACT 

Light absorption by phytoplankton is both species-specific and affected by photo-

acclimational status. To estimate oxygenic photosynthesis from Pulse-Amplitude-

Modulated (PAM and Fast repetition rate, FRR) fluorescence, the amount of quanta 

absorbed by PSII needs to be quantified. We present here three different bio-optical 

approaches to estimate the fraction of light absorbed by PSII: 1) the factor 0.5 which 

implies that absorbed light is equally distributed among PSI and PSII, 2) the fraction of 

chl a in PSII determined as the ratio between the scaled red-peak fluorescence 

excitation and the red absorption peak and 3) the measure of light absorbed by PSII, 

determined from the scaling of the fluorescence excitation spectra to the absorption 

spectra by the ‘no-overshoot’ procedure. Three marine phytoplankton species were used 

as test organisms: Prorocentrum minimum (Pavillard) Schiller (Dinophyceae), 

Prymnesium parvum cf. patelliferum Green et al. (Coccolithophyceae in Haptophyceae), 

and Phaeodactylum tricornutum Bohlin (Bacillariophyceae). Photosynthesis vs.

irradiance (P vs. E) parameters calculated using the three approaches were compared 

with P vs. E parameters obtained from simultaneously measured rates of oxygen 

production. Generally, approach 1) underestimated while approach 2) overestimated the 

gross O2 production rate calculated from PAM fluorescence. Approach 3, in principle 

the best approach to estimate quanta absorbed by PSII, also was superior according data. 

We, hence, recommend approach 3) for estimation of gross O2 production rates based 

on PAM fluorescence measurements. 

Key words: Bio-optics, chl a fluorescence, PAM, photosynthetic oxygen production, 

PSII-scaled fluorescence excitation 

Abbreviations: AQPSII - Absorbed quanta by PSII, E – Irradiance, ETR - Electron 

transfer rate, rETR - Relative electron transfer rate, RC - Reaction centres in PSI or PSII, 

LHC - Light harvesting complexes associated with PSI and PSII, P – Photosynthesis, 

PAM – Pulse Amplitude Modulated fluorescence, QA - Quinone A, QR – Quantum 

requirement,  
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INTRODUCTION

In the past decades, there has been a growing worldwide demand for efficient measuring 

and monitoring of primary production of phytoplankton. Traditionally, photosynthesis 

in aquatic systems is measured as carbon fixation using the 14C method (Steemann-

Nielsen 1952). This method, however, is labour-intensive; besides, the quantum yield of 

carbon fixation varies according to changes in the rate constants for the intermediate 

steps in photosynthesis, variability in environmental conditions and the growth phase of 

the cells (Kroon et al. 1993). As a consequence, models of primary production based on 

the 14C method are inaccurate (Prézelin et al. 1991, Falkowski and Woodhead 1992, 

Schofield et al. 1993, Kroon et al. 1993).

Pulse Amplitude Modulated (PAM) fluorescence in combination with bio-optical 

measurements offers a technique to estimate gross photosynthetic oxygen production 

rate. The technique which is based on in vivo variable fluorescence, estimates the 

photochemical efficiency of PSII (Schreiber et al. 1986); it is fast and non-invasive, and 

provides information of chl a fluorescence kinetics (Govindjee 1995). The quantum 

yield of charge separation in PSII (ΦPSII), which can be calculated (Genty et al. 1989), 

depends on the red-ox state of the first stable electron acceptor in PSII (QA). When all 

the QA are oxidised in dark-acclimated cells, the reaction centres (RC) are open, 

photochemistry can proceed, and fluorescence emission is low. When all QA are 

reduced under actinic light, the RCs are closed and photosynthesis is saturated. The 

energy that hits a closed RC is dissipated as heat and fluorescence emission (Owens 

1991).

Using the PAM technique, dark-acclimated cells are excited with a red probe light that 

is not sufficient enough to induce photosynthesis, ensuring that the detected 

fluorescence is derived only from the light-harvesting antenna pigments. The initial 

fluorescence (F0) can only be measured in dark-acclimated cells, which possess the 

maximum fraction of open RCs. To determine the maximum fluorescence (Fm), a 

saturation pulse of white light is applied to the dark-acclimated cells in order to close all 

RCs in PSII. The pulse induces a primary stable charge separation of the first electron 

(e-) acceptor of PSII (QA). Measured under actinic light, the initial and maximum 
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fluorescence are denoted F0’ and Fm’, respectively. Kroon et al. (1993) modelled the 

oxygen production rate (PPSII) by quantifying the relationship between light absorbed by 

PSII (AQPSII), the quantum yield of charge separation in PSII (ΦPSII), and the 

stoichiometric ratio of oxygen evolved per electron generated in PSII ( ). To estimate 

AQPSII, bio-optical measurements are required. The in vivo chl a-specific absorption 

coefficient ( *a ( ) , m2(mg Chl a)–1) (Morel et al. 1987) yields information on total 

absorption of photosynthetic and photo-protective pigments and reflects the photo-

acclimation status of the phytoplankton (Johnsen and Sakshaug 1993). The in vivo

fluorescence excitation spectrum represents the fraction of light received by PSII (Haxo 

1985, Neori et al. 1988). If scaled to *a ( ) by the ‘no-overshoot’ procedure described by 

Johnsen et al. (1997), assuming 100 % conversion efficiency at the wavelength of 

maximum fluorescence the scaled fluorescence excitation spectrum, *
PSIIF ( ) , m2(mg Chl 

a)–1 is obtained. In contrast to *a ( ) , the *
PSIIF ( ) does not include the signatures from 

photo-protective carotenoids and PSI (Johnsen and Sakshaug 1993, Johnsen et al. 

1997).By spectral weighting, the fraction of absorbed light received by LHCII and 

transferred to PSII, can be calculated (
*
PSIIa , Fig 1, Johnsen and Sakshaug submitted). 

Usually, the PAM technique is used to determine photosynthetic variables on a relative 

scale, such as the quantum yield of charge separation (ΦPSII) or the rate of PSII electron 

transport (rETR). These variables can be used to determine, on a relative scale, the 

production of algae in aquatic systems. Investigations as to how and if the relative 

fluorescence measurements provided by PAM (or the Fast Repetition Rate Fluorometer, 

FRRF) can be related to photosynthetic oxygen production (PPSII) have been attempted 

by Kolber and Falkowski 1993, Schreiber et al. 1995, Gilbert et al. 2000, Kromkamp et 

al. 2001, Longstaff et al. 2002 but, to our knowledge, no attempt has been made to 

differentiate between absorption of light by PSII and PSI and their respective LHCs to 

obtain PPSII. So far it has been assumed that PSII and PSI absorb light in equal 

proportions irrespective of the species in question (Schreiber et al. 1986, Kolber and 

Falkowski 1993, Gilbert et al. 2000, Kromkamp and Forster 2003). 
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This paper focuses on methods for determining photosynthetic oxygen production rate 

based on in vivo variable fluorescence. We have tested three different approaches to 

estimate the fraction of light absorbed by PSII to find out if the PAM-based technique 

can be used in combination with bio-optics to determine photosynthetic parameters in 

terms of oxygen production. The results are derived from experiments during which the 

oxygen evolution and the in vivo fluorescence measurements were conducted 

simultaneously in the PAM cuvette. 
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MATERIALS AND METHODS

Algal cultures 

Unialgal cultures originating from the culture collection of Trondhjem Biological 

Station, Prorocentrum minimum (Pavillard) Schiller (Dinophyceae), Prymnesium

parvum cf. patelliferum Green et al. (Coccolithophyceae in Haptophyceae), and 

Phaeodactylum tricornutum Bohlin (Bacillariophyceae) were grown in semi-continuous 

cultures in 5-L flasks with f/2 medium (Guillard and Ryther 1962), pre-filtered (0.2 μm 

sterile filters pasteurised at 80°C in 3h), and enriched with silicate (P. tricornutum only), 

were grown at 15 ± 1oC, salinity of 33, and constantly bubbled with filtered air. The 

illumination was continuous “white” fluorescent light (Philips TLD 36W/96) providing 

80 μmol ·m–2·s–1. The growth rate and the chl a concentration were maintained in a 

semi-constant state by diluting the cultures once per day, corresponding to a specific 

growth rate at 0.2 μ·d–1 for P. minimum and P. parvum, and 0.7-0.8 μ·d–1 for P.

tricornutum, both prior to and during the experiments. The stock cultures were enriched 

with 1 g NaHCO3 L–1 to avoid depletion of inorganic carbon. 

While growing, the physiological state of the cultures was monitored daily by 

measuring the ratio of in vivo chl a fluorescence before and after addition of DCMU 

(3(3,4 dichlorophenyl)–1, 1-dimethylurea, 50 μM final concentration) in a Turner 

Designs fluorometer. A ratio of DCMU-fluorescence to fluorescence of >2.5 indicates a 

healthy state of the culture (Sakshaug and Holm-Hansen 1977). In our study the ratio 

generally ranged from 2.7-3.5. 

Experimental set-up 

PAM fluorescence measurements and oxygen evolution rate were made simultaneously 

in a temperature-controlled plastic cuvette (Fig. 2). Prior to incubations, a sub-sample of 

100 mL was placed in a temperature-controlled water bath at 10 or 20°C for 30 min, 

keeping the irradiance. Subsequently, 2.7 mL of the sample was inserted into the cuvette, 

which was sealed with no headspace of air, using a lid housing a Peltier cell in which 

the temperature was kept constant (± 0.2°C, Walz, Germany, US-T/S). The algae were 
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kept suspended inside the cuvette by a slowly circulating water flow driven by the 

cooling of the Peltier cell and heating of the incubator light. 

Sub-samples were kept in the dark for 15 min prior to generating photosynthesis vs.

irradiance (P vs. E) curves. Both P vs. E data for oxygen production and PAM 

fluorescence were measured during 10 min incubations followed by step-wise 

increasing of the irradiance, from (1-500 μmol photons·m–2·s–1). The incubator light 

source was a slide projector equipped with a halogen lamp, and the light passed an IR 

filter (cut off at 695 nm) in front of the PAM detector, and slide frames with different 

layers of spectrally neutral mosquito netting. 

Irradiance measurements 

The growth irradiance was measured inside the culture flasks filled with sterile 

seawater, using a scalar (4 ) irradiance sensor (Biospherical Instruments QSL–100, San 

Diego, USA). The incubation irradiance (PAR) was measured inside the (PAM cuvette) 

incubation chamber, using a cosine-corrected (2 ) light collector on the DIVING-PAM 

(Walz, Effeltrich, Germany). The spectral distribution of the incubation light was 

measured using a RAMSES spectroradiometer (TRIOS, Germany) from 400-850 nm 

with 1 nm resolution. The irradiance and the spectral distribution of the incubation light 

were used for calculating light absorbed by PSII.

PAM measurements 

Fluorescence was measured using a PAM–101 fluorometer with a 102 and 103 module 

(Walz, Effeltrich, Germany, Schreiber et al. 1986) equipped with a photomultiplier 

detector (PMT, Walz, Germany, PM–101/N, Fig. 2). A red light-emitting diode (655 nm 

peak, <0.15 μmol photons·m–2·s–1, at 1.6 kHz) was used as probe light at an intensity 

too low to induce significant variable fluorescence. In the following we used the 

nomenclature of van Kooten and Snel (1990). The minimum fluorescence (Fo) and the 

maximum fluorescence (Fm) was measured at the end of the dark acclimation period (15 

min), when approximately all reaction centres (RCs) were closed. Fm was measured 

during exposure to a saturating light pulse from a halogen lamp (0.6 s at >5000 μmol 
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photons·m–2·s–1, Scott, Germany, KL1500 electronic) which illuminated the sample via 

an optical fibre. The maximum quantum yield of PSII charge separation (ΦPSII_max) in 

the dark-acclimated cells was calculated as 

m 0
PSII_max v m

m

F - F= F /F =
F

    (1)

Under actinic illumination, the operational quantum yield of PSII (ΦPSII) was calculated 

from the steady-state fluorescence (F0´) and the maximum fluorescence after a 

saturation pulse (Fm´) at each incubation irradiance (Genty et al. 1989): 
' '

' m 0
PSII m '

m

F - FF/F =
F

    (2)

O2 measurements 

Net O2 production rate was measured as the O2 concentration change during incubation 

for each irradiance by a Clark-type O2-microsensor (Revsbech 1989) inserted through a 

tight-fitting miniature pipe in the wall of the incubation cuvette (Fig. 2). The sensor had 

an external tip diameter of ~100 μm, stirring sensitivity of <1.5%, and a 90% response 

time of <4 s. Prior to the measurements, the electrode was calibrated by a 2-point 

calibration both in anoxic and air-saturated seawater at the specific temperature (Glud et 

al. 2000). The sensor current was measured using a picoammeter (PA 2000, Unisense, 

Denmark) connected to a strip-chart recorder (Kipp and Zonen, Netherlands) and a PC. 

The dark respiration rate was measured during the last 10 min of the dark period prior to 

the light incubations. The photosynthetic O2 production rate (PO2) was calculated by 

adding the dark respiration rate to the net O2 production rate. 

Bio-optical measurements 

In order to calculate oxygen evolution per biomass and time on basis of measurements 

of ΦPSII, it is necessary to estimate the light absorbed by PSII in absolute units. Such a 

calculation requires knowledge of the in vivo chl a-specific absorption coefficient 

( *a ( ) ) and the PSII-scaled in vivo fluorescence excitation spectrum ( *
PSIIF ( ) ; Johnsen 

et al. 1997). We obtained *a ( )  and *
PSIIF ( )  (Fig. 1) by measuring the optical density 

(OD(λ)) of phytoplankton cells collected on glass fibre filters (Whatman GF/F) in a 
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dual-beam spectrophotometer (Hitachi 150-20), using a clean filter wetted with filtered 

sea water as reference (Yentsch 1962, Mitchell and Kiefer 1988). Three replicate 

spectra were measured from 350 to 800 nm at 1 nm increments, and the average OD 

from 750-800 nm was subtracted from the whole spectrum to correct for light scattering 

(Mitchell and Kiefer 1988). OD of the filter with algae (ODfilt) was converted to OD in 

suspension (ODsusp) using a second-order polynomial expression (β-correction, Eq. 3, 

Mitchell 1990). 

2
susp filt filtOD ( )=m1  OD ( ) + m2  [OD ( )] (3)

The parameters ‘m1’ and ‘m2’ has been determined on laboratory cultures: m1 = 0.508 

and m2 = 0.134 for P. parvum (Chauton et al. 2004) and m1 = 0.221 and m2 = 0.577 for 

P. minimum and for P. tricornutum values for Skeletonema costatum were used; m1 = 

0.407 and m2 = 0.602 (R. Sandvik unpublished data) because of their similar 

pigmentation and size, the parameters for S. costatum were used for P. tricornutum.

Absorption (a, m–1) was calculated from ODsusp according to Eq. 4:  

suspa = 2.3  OD ( )  (S/V)     (4) 

S is the clearance rate of GF/F filter (mm2) and V, the volume (mL) of the filtered 

sample (Mitchell and Kiefer 1988).  

The chl a concentration was measured on extracts from the filters that were used for in

vivo light absorption, using a spectrophotometer (Hitachi 150-20). Immediately after the 

in vivo light absorption measurement, the filters were extracted in pre-cooled 100% 

methanol (4˚C, 5 mL) for 3 h in glass centrifuge tubes. The tubes were placed in the 

dark at 4°C and stirred for 10 sec in a Vortex-mixer after 0, 1.5 and 3 h. The extracts 

were re-filtered (0.2 μm polycarbonate filter) before measuring OD from 350 to 800 nm. 

The chl a concentration (mg·m–3) was calculated using the extinction coefficient for chl 

a in methanol at 665 nm, 74.5 L·g–1·cm–1 (MacKinney, 1941). 

The chl a-specific absorption coefficient ( *a ( ) , m2(mg chl a)–1) was determined by 

normalising the absorption spectrum (m–1) to the chl a concentration (mg·m–3, Fig. 1).
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In vivo fluorescence excitation spectra were measured using a spectrofluorometer 

(Hitachi F-3000).  An infrared-transmitting glass filter (Schott RG 695 IR) was placed 

in front of the photomultiplier to prevent direct and scattered light from the light-source 

and cells. Prior to the measurements, a time scan was recorded with DCMU-treated 

cells (50 μM final concentration) during 1.5 min (scan time for a full spectrum) 

avoiding non-variable chl a fluorescence signal (Johnsen and Sakshaug 1993). The in 

vivo chl a fluorescence excitation spectra were recorded with excitation wavelengths 

from 400 to 700 nm (5 nm bandwidth), and emission was monitored at 730 nm (5 nm 

bandwidth, Neori et al. 1988). The data were recorded at 1 nm resolution. All 

fluorescence excitation measurements were quantum corrected using the dye Basic Blue 

3 (Kopf and Heinze 1984, Sakshaug et al. 1991). 

Scaling of the fluorescence excitation spectra followed the ‘no-overshoot’ procedure 

(Johnsen et al. 1997, Johnsen and Sakshaug submitted) by matching the fluorescence 

spectra to the corresponding absorption spectra at selected wavelengths, yielding a PSII-

scaled fluorescence excitation spectrum, *
PSIIF ( ). The matchpoint preventing 

‘overshoot’ was ~550 nm for P. minimum and P. parvum, except that for P. minimum at

20oC it was ~650 nm (Fig. 3). P. tricornutum exhibited matchpoints in the red band, 

675-685 nm (Fig. 3). The ‘no-overshoot’ procedure yields an upper limit for the number 

of quanta absorbed by PSII (Johnsen and Sakshaug submitted). 

Particulate organic carbon 

Particulate organic carbon (POC) was measured on filtered subsamples (Whatman 

GF/F, baked) and analysed after treatment of the samples with fuming hydrochloric acid 

(Carlo Erba Elemental Analyzer Model Na).   

Calculation of the oxygen production rate, PPSII

Oxygen production rate (PPSII) can be calculated as 

PSII PSII PSIIP  = E AQ      (5) 
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ΦPSII is the quantum yield of charge separations in PSII (mol e-·mol photon–1, Genty et 

al. 1989) and E is the irradiance (μmol photons·m–2·s–1), which multiplied by ΦPSII

yields the relative electron transfer rate (rETR).  is the stoichiometric ratio of oxygen 

evolved per electron generated at PSII. According to the standard Z-scheme of 

photosynthesis, four stable charge separations are needed in each PSI and PSII to 

release one O2 molecule. , accordingly, is 0.25 O2·(e-)–1 (Kroon et al. 1993, Gilbert et 

al. 2000). Empirically, a quantum requirement (QR) higher than eight photons has been 

observed, caused by different sinks for photosynthetic electron transport; e.g. Mehler-

type reactions and photorespiration (Kromkamp et al. 2001; Longstaff et al. 2002). For 

simplicity, we assumed  = 0.25. AQPSII represents quanta absorbed by PSII (m2(mg chl 

a)–1.

With the aim to quantify the O2 production rate from PAM fluorescence in absolute 

units, we tested three different approaches for estimating AQPSII.

1) AQPSII = 0.5 · 
*

a . The commonly used correction factor 0.5 implies that 

absorbed light is equally distributed among PSI and PSII. (Schreiber et al.1986, 

Kolber and Falkowski 1993, Kroon et al. 1993, Gilbert et al. 2000, Morris and 

Kromkamp 2003) 

2) AQPSII = FII · 
*

a : FII is the fraction of chl a in PSII determined from the ratio 

between the scaled (‘no-overshoot’) red-peak fluorescence excitation and the red 

absorption peak ( *
PSIIa (red) / *a (red)) (Johnsen et al. 1997, Fig. 1 and 3). 

3) AQPSII =
*
PSIIa : This factor represents light absorbed by PSII, determined from 

the scaling of the fluorescence excitation to the absorption spectra by the ‘no-

overshoot’ procedure (Johnsen et al. 1997, Fig. 1 and 3).

 Both *a ( )  and *
PSIIF ( )  were spectrally weighted from 400 to 700 nm (Eq. 6) 
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700

400

X( )  E( ) d
X =

E(PAR)
   (6)

X  is the spectrally weighted chl a-specific absorption coefficient (
*

a ) or the spectrally 

weighted PSII-absorption (
*
PSIIa ),  X is *a ( )  or *

PSIIF ( ) , and E( ) is the incubation 

irradiance. 

Curve fitting 

The P vs. E curves were fitted to data using a non-linear least squares procedure 

(SigmaPlot 9.0, SYSTAT Sotfware inc. US) using the equation by Webb et al. (1974, 

Eq. 7). The photosynthetic parameters; the maximum photosynthetic rate (Pmax) and the 

maximum light utilisation coefficient ( ) were calculated for each curve. The light 

saturation parameter (Ek) was calculated as Pmax/ . Notation of the photosynthetic 

parameters follows Sakshaug et al. (1997), Table 1. 

max
max

-   EP = P 1 - exp
P

   (7) 

RESULTS

The total amount of absorbed light ( *a ) ranged from 0.0068 to 0.0164 m2(mg chl a)–1, P.

parvum exhibiting the highest and P. minimum, the lowest absorption coefficients 

(Table 2).  

The fraction of chl a in PSII (FII) ranged from 70 - 98% (Table 2). For P. tricornutum,

FII was 97% and 98% for the 10oC and 20oC incubations, respectively. P. minimum 

exhibited the lowest coefficients, 80% and 70% for 10ºC and 20ºC, respectively. The 

fraction of light absorbed by PSII (
*
PSIIa ) ranged from 0.0054-0.0132 m2(mg chl a)–1

with P. parvum and P. minimum exhibiting the highest and lowest fractions, 

respectively (Table 2). 
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P vs. E curves for the O2 production rate, measured with O2-microsensors (PO2) and 

calculated from the operational quantum yield of PSII (ΦPSII) in combination with the 

three bio-optical approaches (PPSII), showed the typical P vs. E shape with a nearly 

linear initial slope ( ) and increasing saturation (Pmax) with increasing irradiance. None 

of the curves showed a decrease in P at high irradiances; thus, photo-inhibition was not 

observed.

PAM-derived photosynthetic parameters were compared to parameters derived from 

direct O2 measurements (Fig. 4). The photosynthetic parameters derived from PAM 

measurements are gross O2 production, since it measures the relative electron transport 

rate in PSII and are not influenced by O2 respiration. From the O2-microsensor 

technique, net O2 production was measured. By adding the O2 respiration in the dark, 

gross O2 production was estimated. However, this underestimates the gross O2

production due to an enhanced O2 respiration under illumination compared to the dark 

respiration (Canfield and DesMarais 1993, Glud et al. 1992, Ludden et al. 1985). 

Consequently, rates of PPSII (based on PAM fluorescence) should theoretically be higher 

than PO2 rates (measured by O2-microsensors). 

The maximum production rate for PO2 (PO2_max) was ~2 times higher (1.5 – 2.4) in 

cultures incubated at 20°C than at 10°C (Fig. 4, Table 3), as expected according to a Q10

of ~2 normally observed for phytoplankton (Davison 1991, Hancke et al. submitted).  

For PPSII, the maximum O2 production rate (PPSII_max) was normally highest when based 

on FII·
*

a  (approach 2), followed by 
*
PSIIa  (approach 3), and lowest when based on 

0.5·
*

a   (approach 1, Fig. 4, Table 3). Overall, PPSII exhibited the same trend as PO2,

except for P. minimum at 20°C which yielded PPSII_max ~2 times lower than PO2_max, and 

for P. parvum 20ºC where PPSII_max were ~2 times higher. For the other incubations the 

range of values for PPSII_max was in the same area as the value of PO2_max (Fig. 4, Table 

3).
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The light saturation parameter (Ek) showed a pattern opposite of that for Pmax, implying 

that Ek was higher when calculated on basis of PPSII than on basis of PO2 for P. minimum

and P. tricornutum, and lower for P. parvum (Fig. 4, Table 3). 

To find the best linear fit between calculated and measured maximum oxygen 

production,  PPSII_max, estimates based on three bio-optical approaches were plotted as a 

function of PO2_max (Fig. 5a). Approach 1, 2 and 3 gave slope coefficients of 0.6 (R2 = 

0.50), 1.2 (R2 = 0.51) and 1.0 (R2 = 0.51), respectively. Approach 3 (
*
PSIIa ) resulted in 

the slope coefficient closest to unity, implying that 
*
PSIIa  provides the best fit for PPSII_max

to PO2_max.

The relationship between the maximum light utilisation coefficient ( ) for PO2 and 

calculated values of  was tested by plotting  for PO2 against  for PPSII, again using the 

three bio-optical approaches (Fig. 5b). The linear regressions exhibited slopes of 0.12 

(R2 = 0.22), 0.26 (R2 = 0.27) and 0.19 (R2 = 0.23) for the three approaches, respectively 

(Fig. 5b), indicating a weak relationship. 

Since PO2_max and PPSII_max calculated from 
*
PSIIa  matched well, we analysed the 

relationship between PO2 and PPSII, using 
*
PSIIa , for the entire irradiance range for the 

three species in question (Fig. 6). The relationship between PO2 and PPSII was adequately 

described by a linear regression (R2 = 0.7-0.97). The slope differed between the species 

and in two cases, with the incubation temperature. P. minimum incubated at 10°C 

exhibited a slope of 0.86 (R2 = 0.94) and at 20°C, 0.59 (R2 = 0.92) (Fig. 6a), indicating 

that PO2 is closely related to PPSII estimates derived on basis of the 
*
PSIIa ; moreover, that 

the two are linearly related. The slopes for P. parvum were 1.23 (R2 = 0.70) and 2.5 (R2

= 0.87) for 10 and 20°C, respectively, suggesting that PPSII overestimates PO2 by a factor 

of 1.2 at 10ºC and 2.5 at 20ºC (Fig. 6b). The slopes for PO2 against PPSII of P.

tricornutum were 1.3 at 10ºC (R2 = 0.89) and 1.0 at 20ºC (R2 = 0.97); thus, not 

significantly different from unity (Fig. 6c). Consequently, the relationship between PO2
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and PPSII did not differ between the two incubation temperatures, predicting a linear 

relationship near unity for the entire P vs. E curve. 
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DISCUSSION 

We have tested three bio-optical approaches to determine the fraction of light absorbed 

by PSII. In combination with PAM fluorescence, they were subsequently evaluated 

against measured rates of oxygen production. This made it possible to improve the 

quality of estimates for the O2 production rate in absolute units from PAM based 

fluorescence. Johnsen and Sakshaug (submitted) suggested that 
*
PSIIa  is the most 

accurate and direct measure of light absorbed by PSII, whereas FII only corrects for light 

absorbed by PSII and not the photoprotective carotenoids. FII therefore overestimates 

the light absorbed by PSII and consequently, the O2 production rate. In addition, 

presupposing that light is equally absorbed by PSII and PSI, underestimates the 

absorption by PSII and the O2 production rate; in chromophytes by ~20%. 

The fraction of chl a in PSII calculated from of FII (Table 2) was high compared to 

approach 1. High compared to those suggested by Johnsen and Sakshaug (submitted), 

our FII might be associated with our high ODfilt readings in the 550-600 nm bands, 

where OD otherwise is typically low. In the same context, uncoupling of LHC from 

PSII will enhance state II-I transitions (Mullineuax and Allen 1988, Kroon et al. 1993) 

which may cause high FII values. 

Representing total absorbed by PSII, FII·
*

a  can yield too high values for PPSII. On the 

other hand, 0.5·
*

a  usually underestimates PO2 because the PSII:PSI ratio is higher for 

nearly all chromophyte phytoplankton; Johnsen and Sakshaug (submitted) suggest an 

average FII  of  0.72 for this group. In principle, 
*
PSIIa  yields the most accurate estimate 

for light absorbed by PSII because it corrects for absorption by photoprotective 

carotenoids and PSI (Johnsen et al. 1997) and is therefore most suitable for calculating 

PPSII on basis of PAM data. 

The PAM and the O2-microsensor techniques have their limitations and strengths in 

terms of sensitivity and noise. In weak light (E < Ek), ΦPSII is relatively high compared 
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to E, yielding a robust measure of the relative electron transfer rate (rETR), thus, the 

estimation of  based on the PAM technique is reliable. Conversely, the microsensor 

technique is working near the detection limit, in weak light and with a low signal to 

noise ratio; thus, yielding low accuracy for .

During light-saturated photosynthesis (E > Ek), the accuracy of the results from PAM 

and O2-microsensor techniques, respectively, are opposite that for estimates of . Pmax

based on PAM yields a small PSII : E ratio because PSII  decreases with increasing E, 

causing low accuracy of rETR at high irradiance. In contrast, the signal to noise ratio of 

the O2-microsensor increases with increasing irradiance, turning the method more 

reliable in the light-saturated part of the P vs. E curve. 

The operational quantum yield of oxygen production (ΦO2) can be calculated (Flameling 

and Kromkamp 1998): 

O2

PSII
O2 *

P

115 E a
    (8)

115 is a correction factor providing uniform dimensions and O2P , the chl a specific 

oxygen production at each irradiance. Comparing ΦPSII from PAM measurements and 

ΦO2 from O2 measurements show a positive correlation at high irradiance independent 

of species or temperature (Fig. 7). The exception is data at low light measured with O2

electrodes. As described, the signal to noise ratio at weak light is low, yielding uncertain 

data. The 4:1 line in Fig. 7 indicates the relationship between ΦPSII and ΦO2, which 

illustrates the assumption of four photons in PSII yielding one oxygen molecule; thus, 

= 0.25. For P. minimum, however, the ratio <4:1, indicates a quantum requirement (QR) 

lower than 4 to produce one oxygen molecule. In contrast, P. parvum exhibited QR 

>4:1. The ΦPSII : ΦO2 ratio for P.  tricornutum fits the 4:1 relationship well. Both 

Kromkamp et al. (2001) and Longstaff et al. (2002) observed QR different from 4. The 

difference in QR in our material might cause the divergence between PO2 and PPSII for P.

minimum and P. parvum (P vs. E curves in Fig. 4 and Fig. 6).
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Because our data in principle were conducted simultaneously in the same experimental 

set-up, they can be used to calculate the maximum quantum yield PSII
O2_ max  (Hancke et 

al. submitted) from the initial slope of the P vs. E curve based on the O2 measurements 

( ) and the fraction of light absorbed by PSII (
*
PSIIa ): 

PSII O2
O2_ max *

PSII

*
P

115a
    (9)

115 is a correction factor ensuring uniform dimensions. On basis of PSII
O2_ max , we can 

in turn calculate the minimum quantum requirement (QR), which is the inverse of 
PSII

O2_ max ;

PSII
O2_ max

1QR       (10)

Because of the questionable reliability of PSII
O2_ max  and QR, they are not used in the 

calculations of PPSII.

From our tests, 
*
PSIIa  (approach 3) seems to provide the best input variable for 

calculating the oxygen production rate from PAM measurements. This implies that 
*
PSIIa

is the most relevant for light absorbed by PSII. The other two approaches overestimate 

(FII·
*

a , approach 2) or underestimate (0.5·
*

a , approach 1) the measured oxygen 

production, respectively.

Our results support the theory-based conclusions of Johnsen and Sakshaug (submitted). 

We, hence, recommend 
*
PSIIa  to estimate gross oxygen production from PAM 

fluorescence measurements. 
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Fig. 1. Schematic drawing of the steps involved in the bio-optical determination of the fraction of 

light absorbed by PSII according to Johnsen and Sakshaug 1996; Johnsen et al. 1997. The 

incubation light source is given in PAR, 400-700 nm. FII and 
*
PSIIa  are evaluated as new input 

parameters to estimate light absorbed by PSII using PAM to estimate oxygenic photosynthesis. 

EEE
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Fig. 2. A schematic drawing of the experimental set-up. A: Fiber optics to lead incubator light 

and flash light through a short pass filter (SP 695 nm) to the sample in the cuvette. B: Probe light, 

a red light emitting diode (LED, <0.15 μmol photons·m–2·s–1, 655 nm, 1.6 kHz and 100 kHz) with 

an excitation filter (SP 695 nm). C: Photomultiplier detector (PMT, Walz, Germany, PM–101/N) 

with emission filter (LP 695 nm). D: O2-microsensor inserted through a tight-fitting miniature 

pipe in the wall of the incubation cuvette. E: A Peltier cell in which the temperature was kept 

constant (± 0.2°C, Walz, Germany, US-T/S). The algae were kept suspended inside the cuvette 

by a slowly circulating water flow driven by the cooling of the Peltier cell and heating from the 

incubator light. 
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Fig. 3. In vivo POC-specific absorption coefficients, *a ( ) (thick black line), the PSII-scaled 

fluorescence excitation spectra, *
PSIIF ( ) (thin black line) and the corresponding difference spectra, 

( *a ( )- *
PSIIF ( ), dotted black line) for P. minimum (A-B), P. parvum (C-D) and P. tricornutum

(E-F), at 10°C (left column) and 20°C (right column). The difference spectra denote the non-

fluorescent fraction indicating absorption of PSI and photoprotective pigments (diadinoxanthin 

and diatoxanthin). 



33

0 100 200 300 400 500 600

μ m
ol

 O
2(

m
g 

PO
C

)-1
h-1

0

1

2

3

4

5

6
O2 production
a*PSII

0.5 . a*φ

FII
. a*φ

0 100 200 300 400 500 600

μm
ol

 O
2(

m
g 

PO
C

)-1
h-1

0

1

2

3

4

5

6

Irradiance (μmol photons m-2s-1)

0 100 200 300 400 500 600

μ m
ol

 O
2(

m
g 

P
O

C
)-1

h-1

0

2

4

6

8

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

Irradiance (μmol photons m-2s-1)

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

0 100 200 300 400 500 600
0

1

2

3

4

5

6

(   )

(   )

A B

C D

E F

Fig. 4. Photosynthesis vs. irradiance curves calculated from PAM fluorescence measurements 

(PPSII) based on three bio-optical approaches for estimation of light absorbed by PSII, AQPSII:

0.5·
*

a  (approach 1), FII·
*

a  (approach 2) and 
*
PSIIa  (approach 3) and simultaneously measured 

photosynthetic O2 evolution (PO2) for P. minimum (A-B), P. parvum (C-D) and P. tricornutum

(E-F), at 10°C (left column) and 20°C (right column). Parenthesis in Fig. 4D denotes outliers. 

Note different y-axes. 
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*
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= y. 



35

0 2 4 6 8

P P
SI

I (
μ m

ol
 O

2(
m

g 
P

O
C

)-1
h-

1

0

2

4

6

8
10oC
20oC
1:1 

0 2 4 6 8 10 12 14 16

P P
SI

I (
μ m

ol
 O

2(
m

g 
PO

C
)-1

h-
1

0

2

4

6

8

10

12

14

16

PO2 (μmol O2(mg POC)-1h-1

0 2 4 6 8 10

P P
SI

I (
μ m

ol
 O

2(
m

g 
PO

C
)-1

h-
1

0

2

4

6

8

10

A

B

C

Fig. 6. PPSII based on 
*
PSIIa  as function of PO2 incubated at 10 and 20 °C, for A) P. minimum, B) P.

parvum and C) P. tricornutum. The dashed line represents x = y. 



36

0.0

0.2

0.4

0.6

0.8

1.0
10oC
20oC
4:1

Φ
P

S
II

0.0

0.2

0.4

0.6

0.8

1.0

PSIIΦO2

0.0 0.1 0.2 0.3 0.4

Φ
P

S
II

0.0

0.2

0.4

0.6

0.8

1.0

Theoretical maximum
0.25

Theoretical maximum
0.25

Theoretical maximum
0.25

A

B

C

Φ
P

S
II

Fig. 7. ΦPSII as a function of PSIIΦO2 incubated at 10 and 20°C, for A) P. minimum, B) P. parvum

and C) P. tricornutum. The dashed line represents the theoretical 4:1 relationship between ΦPSII

and PSIIΦO2 indicating a maximum quantum yield of oxygen at 0.25. 



Paper 3 

Hancke K, Hancke TB, Olsen LM, Johnsen G, Glud RN (submitted) 

Temperature effects on microalgae photosynthesis-light responses 

measured by O2-production, Pulse Amplitude Modulated (PAM) 

fluorescence and 14C-assimilation.  

Journal of Phycology





1

TEMPERATURE EFFECTS ON MICROALGAE 

PHOTOSYNTHESIS-LIGHT RESPONSES MEASURED BY O2-

PRODUCTION, PULSE AMPLITUDE MODULATED (PAM) 

FLUORESCENCE AND 14C-ASSIMILATION1

Kasper Hancke1, Torunn B. Hancke, Lasse M. Olsen, Geir Johnsen

Department of Biology, Norwegian University of Science and Technology, N-7491 

Trondheim, Norway 

and

Ronnie N. Glud 

Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, DK-

3000 Helsingør, Denmark 

Running title: Photosynthesis versus temperature 

1 Author for correspondence: email kasper.hancke@bio.ntnu.no, phone: 

+4773591580, fax: +4773591597 



2



3

ABSTRACT 

Short-term temperature effects on photosynthesis were investigated by measuring 

O2-production, Photosystem II (PSII) fluorescence kinetics and 14C-incorporation

rates in monocultures of the marine phytoplankton species Prorocentrum minimum 

(Dinophyceae), Prymnesium parvum (Coccolithophyceae), and Phaeodactylum 

tricornutum (Bacillariophyceae), grown at 15°C and 80 μmol photons⋅m–2·s–1.

Photosynthesis versus irradiance curves were measured at seven temperatures (0 to 

30oC) by all three approaches. The maximum photosynthetic rate (PC
max) was 

strongly stimulated by temperature, reached an optimum for P. minimum only (20 - 

25°C), and showed a similar relative temperature response for the three applied 

methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilisation coefficient 

(αC) was insensitive or decreased slightly with increasing temperature. Absolute 

rates of O2-production were calculated from PAM based fluorescence measurements 

in combination with bio-optical determination of absorbed quanta in PSII. The 

relationship between PAM based O2-production and measured O2-production and 
14C-assimilation showed a species-specific correlation with 1.2 to 3.3 times higher 

absolute values of PC
max and αC, when calculated from PAM data for P. parvum and 

P. tricornutum but equivalent for P. minimum. The off-set seemed to be temperature 

insensitive and could be explained by a lower quantum yield for O2-production than 

the theoretical maximum (due to Mehler-type reactions). Conclusively, the PAM 

technique can be used to study temperature responses of photosynthesis in 

microalgae when paying attention to the absorption properties in PSII. 

Key index words: 14C-assimilation, O2-production, microalgae, PAM-fluorescence, 

phi-max, photosynthetic parameters, quantum yield, temperature 

Abbreviations: ETR, electron transport rate; PAM, pulse amplitude modulated 

fluorescence; P-E, photosynthesis-irradiance; POC, particular organic carbon; PQ, 

photosynthetic quotient; Q10, temperature coefficient; See also Table 1.  
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INTRODUCTION

Pelagic photosynthesis can be estimated by measuring O2-evolution, Photosystem II 

(PSII) fluorescence kinetics or 14C-assimilation. Each of the methods has their 

advantages and disadvantages and have all been applied to assess the ecosystem 

primary production in various environments. The techniques, however, measure 

different products of the photosynthetic pathway and reflect different physiological 

processes with potential different responses to environmental variables like 

temperature or salinity (Geider and Osborne 1992, Geel et al. 1997, Morris and 

Kromkamp 2003). 

O2-evolution measurements using O2-electrodes allows for net O2-production

measurements in light and O2-respiration in the dark (Glud et al. 2000). Gross O2-

production can then be estimated as the net production added the respiration 

(assuming constant respiration in light and dark). As such the approach quantifies the 

O2-production rate from the water-splitting complex in PSII. PSII fluorescence can 

be measured by Pulse Amplitude Modulated (PAM) fluorometry and can be used to 

measure the operational quantum yield of PSII (ΦPSII, Schreiber et al. 1986). From 

multiplying ΦPSII with the quanta absorbed in PSII the electron transfer rate in PSII 

can be calculated (Genty et al. 1989). The electron transfer rate (ETR) is a proxy for 

the gross photosynthetic rate (Kroon et al. 1993). The electrons generated in PSII are 

closely coupled to the O2-evolution , but follows several pathways, among those 

reduction of CO2 via NAD(P)H production (Falkowski and Raven 1997). 14C-

assimilation rate measurements quantifies the amount of DIC (dissolved inorganic 

carbon) converted into cell biomass and reflect an activity intermediate to net and 

gross photosynthesis, dependent on the incubation time (Falkowski and Raven 1997). 

For 1 hour incubations the technique is for convenience commonly assumed to 

indicate gross rates. 

Photosynthetic O2-production, ΦPSII and/or 14C-assimilation have been compared in a 

number of studies of vascular plants (e.g. Demmig and Bjorkman 1987, Seaton and 
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Walker 1990), macroalgae (e.g. Hanelt and Nultsch 1995, Longstaff et al. 2002), 

microphytobenthos (Hartig et al. 1998, Barranguet and Kromkamp 2000, Glud et al. 

2002a) and marine phytoplankton (Falkowski et al. 1986, Kroon et al. 1993, Geel et 

al. 1997, Flameling and Kromkamp 1998, Rysgaard et al. 2001, Morris and 

Kromkamp 2003). Although the investigations have been conducted under a variety 

of experimental conditions, an overweight of the studies on microalgae find a linear 

relationship between O2-evolution and ΦPSII under moderate irradiance (e.g. 

Falkowski et al. 1986, Genty et al. 1989, Geel et al. 1997), sometimes with deviation 

at very low (Schreiber et al. 1995, Flameling and Kromkamp 1998, Masojidek et al. 

2001) or very high irradiance conditions (Falkowski et al. 1986, Flameling and 

Kromkamp 1998). Different explanations for the deviation have been proposed; 

spectral difference in PAR sources, changes in O2-consumption in the light, cyclic 

electron transport around PSII and Mehler-type reactions, see Flameling and 

Kromkamp (1998) for an overview. The relationship between O2-production and 

ΦPSII is far from universal and apparently there exist inter-species variance in the 

shape of the relationship and of the slope-coefficient (Barranguet and Kromkamp 

2000, Masojidek et al. 2001). Additionally, it must be expected that environmental 

variables, such as temperature, can affect established relations for a given species. 

Even so, detailed comparison studies accounting for environmental variables, such as 

temperature, are still very limited (Barranguet and Kromkamp 2000, Morris and 

Kromkamp 2003). If fluorescence measurements are to be applied successfully for 

quantifying photosynthetic production, more careful and detailed studies of the 

temperature effect on the relationship between O2-evolution, ΦPSII and 14C-

assimilation are required (e.g. Schofield et al. 1998, Kuhl et al. 2001, Glud et al. 

2002b, Morris and Kromkamp 2003) 

The aim of the present study was to investigate the relationship between temperature 

and photosynthetic parameters derived from measurements of O2-production, ΦPSII

and 14C-assimilation, using three culture-grown phytoplankton species; 

Prorocentrum minimum (Pavillard) Schiller (Dinophyceae), Prymnesium parvum cf. 

patelliferum Green (Coccolithophyceae in Haptophyceae), and Phaeodactylum 
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tricornutum Bohlin (Bacillariophyceae), selected to represent typical species of 

Scandinavian waters. Photosynthetic activity was quantified from 1) measured rates 

of O2-production by O2-microsensors (PC
O2, μmol O2·(mg POC)–1·h–1), 2) calculated 

rates of O2-production based on ΦPSII in combination with bio-optical determination 

of quanta absorbed in PSII (PC
PSII, μmol O2·(mg POC)–1·h–1), and 3) measured rates 

of 14C-assimilation (PC
14C, μmol 14C·(mg POC)–1·h–1). The temperature influence on 

photosynthetic parameters is discussed in a physiological context. 
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MATERIALS AND METHODS 

Algal cultures 

Unialgal cultures of Prorocentrum minimum (strain 79A, Oslofjord, isolated by 

K.Tangen, culture at TBS), Prymnesium parvum (isolated in Ryfylke, S- Norway, 

culture from University of Oslo), and Phaeodactylum tricornutum (unknown origin, 

TBS culture collection) were grown in semi-continuous cultures in f/2 medium 

(Guillard and Ryther 1962), pre-filtered (0.2 μm sterile filters, and pasteurised at 

80°C in 3h) and enriched with silicate (P. tricornutum only). All cultures were sub 

sampled from the culture collection of Trondhjem Biological Station, and grown at 

15 ± 1oC, 33 ppt salinity seawater, and constantly bubbled with filtered air. The 

illumination was continuous “white” fluorescent light (Philips TL 40W/55 tubes) 

providing 80 μmol photons·m–2·s–1 as measured by means of a QSL-100 quantum 

sensor (Biospherical Instruments, USA) placed inside the culture flasks. The growth 

rate and the chlorophyll a (chl a) concentration were maintained semi constant by 

diluting the cultures once per day corresponding to a specific growth rate of 0.2 μ·d–1

for P. minimum and P. parvum, and 0.7 - 0.8 μ·d–1 for P. tricornutum both prior to 

and during the time of the experiments. The cultures were enriched with 1 g NaHCO3

L–1 to avoid depletion of inorganic carbon due to photosynthesis. 

While growing, the physiological state of the cultures were monitored daily by 

measuring the ratio of in vivo chl a fluorescence before and after addition of DCMU 

(3(3,4 dichlorophenyl)-1, 1-dimethylurea, 50 μM final concentration) in a Turner 

Designs fluorometer. DCMU blocks the electron transport in PSII and result in a 

maximal fluorescence. The ratio of fluorescence measured after and before the 

addition of DCMU >2.5 indicates a healthy state of the cell (Sakshaug and Holm-

Hansen 1977). In our study the ratio generally ranged from 2.7 to 3.5. 

Experimental conditions 

Cultures were sub sampled every morning, in order to perform parallel 

measurements of photosynthesis versus irradiance (P-E curves) from O2-evolution,

PAM and 14C-assimilation measurements. The sub samples were placed in a water 
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bath set at one of the seven experimental temperatures (0, 5, 10, 15, 20, 25 and 30°C) 

and the experiment started after the respective temperatures had stabilised within the 

sample (<30 min). Incident irradiance was maintained. Subsequently, the sample was 

simultaneously introduced to each of the experimental setups.  

O2-evolution and 14C-assimilation rates were measured in parallel after placing 

samples in a photosynthetron (Lewis and Smith 1983) in the dark and at 10 levels of 

irradiance from 3 to 570 μmol photons·m–2·s–1 (PAR), determined by the QSL-100 

quantum sensor. The photosynthetron was placed in a temperature controlled 

laboratory at the respective temperature. The samples were illuminated from below 

with an adjustable xenon light source (Osram 250W) while a water-flow-through 

system prevented radiation heat. Correct temperature was ensured by continuous (1 s 

frequency) temperature measurements using small water-proof data loggers (TidbiT, 

Onset Computer Cooperation) installed in dummy samples.  

Triplicate samples were incubated in 20 mL polyethylene scintillation vials for 1 h. 

Vials for O2 evolution measurements were filled completely and closed with a lid 

mounted with a miniature pipe (i.d. = 0.8 mm, length = 5 mm). The miniature pipe 

excluded head space of air, avoided potential pressure to accumulate from 

photosynthetic O2-production and allowed for insertion of an O2-microsensor. 2 mL 

of sample was incubated for carbon assimilation measurements. 

O2-microsensor measurements 

All oxygen measurements were carried out using Clark-type O2-microelectrodes with 

a guard cathode (Revsbech 1989), having an external tip diameter of ~100 μm, 

stirring sensitivity of <1.5%, and a 90% response time of <4 s. The electrodes were 

calibrated using anoxic and air-saturated solutions at the specific temperature setting, 

as oxygen electrode signals are sensitive to temperature (Gundersen et al. 1998, Glud 

et al. 2000). The sensor current was measured using a picoammeter (Unisense, 

Denmark) connected to a strip-chart recorder (Kipp & Zonen, The Netherlands) and 

a PC (Revsbech and Jørgensen 1986). The gross O2-production rate (PC
O2) was 

estimated by adding the dark respiration to the net O2-evolution rate (both measured 

at each temperature), determined from the O2-concentration change corrected for 
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incubation time. All samples were mixed gently with a Pasteur pipette introduced 

through the miniature pipe prior to measuring, ensuring a homogeneous O2-

concentration within the vial. In several cases the concentration of O2 was monitored 

continuously during incubation, by an electrode installed in a randomly selected 

sample, confirming linear O2-evolution.

PAM measurements 

Fluorescence was measured using a PAM-101 fluorometer with a 102 and 103 

module (Walz, Effeltrich, Germany) (Schreiber et al. 1986) equipped with a 

photomultiplier detector (PMT, Walz, Germany, PM-101/N). A red light-emitting 

diode (655 nm peak, <0.15 μmol photons·m–2·s–1, at 1.6 kHz) was used as probe light 

at an intensity too low to induce variable fluorescence. In the following we used the 

nomenclature of van Kooten and Snel (1990). The minimum fluorescence (Fo) and 

the maximum fluorescence (Fm) was measured at the end of a dark acclimation 

period (15 min), when approximately all reaction centres were closed. Fm was 

measured during a saturating light pulse from a halogen lamp (0.6 s, at >5000 μmol 

photons·m–2·s–1, Scott, Germany, KL1500 electronic) exposed to the sample via an 

optical fibre. The maximum quantum yield of PSII charge separation (ΦPSII_max) in 

the dark acclimated cells was calculated as: 

m 0
PSII_max v m

m

F - F= F /F =
F

    (1)

Under actinic illumination, the operational quantum yield of PSII (ΦPSII) was 

calculated from the steady-state fluorescence (Fs) and the maximum fluorescence 

after a saturation pulse (Fm´) at each incubation irradiance (Genty et al. 1989): 

m s
PSII m '

m

F '- FF/F '=
F

    (2) 

The incubation light was provided by a slide projector equipped with a halogen lamp 

and slide frames with different layers of neutral filters. After Fo and Fm were 

measured, the samples were exposed for 5 min at each of the irradiances (1 - 500 

μmol photons·m–2·s–1), before measuring Fs and Fm´. The incubation irradiance (E, 

PAR) was measured inside the incubation chamber using a cosine-corrected (2 )
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light collector of the DIVING-PAM (Walz, Effeltrich, Germany). The spectral 

distribution of the incubation light was measured using a RAMSES 

spectroradiometer (TRIOS, Germany) from 400 to 700 nm (E( ), 1 nm resolution). 

The irradiance and the spectral distribution of the incubation light were used for 

further calculations of the amount of light absorbed by PSII. A Peltier cell (US-T/S 

Walz) kept the temperature constant (± 0.2°C) during incubations. 

Bio-optics

To calculate O2-evolution per biomass and time from ΦPSII, the light absorbed by 

PSII were quantified in absolute units from the in vivo chl a-specific absorption 

coefficient, *a ( ) , (m2·(chl a)–1), and the PSII-scaled in vivo fluorescence excitation 

spectrum *
PSIIF ( )  (m2·(chl a)–1). The optical density (OD) was measured on glass 

fibre filters according to Yentsch (1962) and Mitchell and Kiefer (1988), and 

converted to OD in suspension (Mitchell 1990). Absorption was calculated according 

to Mitchell and Kiefer (1988) and normalised to chl a to give *a ( ) . In vivo

fluorescence excitation spectra were measured according to Neori et al. (1988) and 

Johnsen and Sakshaug (1993) and quantum corrected using the dye Basic Blue 3 

(Kopf and Heinze 1984). *
PSIIF ( ) was obtained from scaling the fluorescence 

excitation spectrum to the corresponding *a ( )  using the ‘no-overshoot’ procedure 

by matching the two spectra at wavelengths between 540 and 650 (Bidigare et al. 

1989, Johnsen et al. 1997). The light absorption in PSII (
*
PSIIa , m2·(chl a)–1) was 

obtained by spectrally weighting *
PSIIF ( ) against the incubator light source according 

to Eq. 3 

700
*
PSII

* 400
PSII

F ( )  E( ) d
a =

E(PAR)
    (3) 

where E( ) is the spectral irradiance of the incubator light source and E(PAR) is the 

integrated irradiance from 400 to 700 nm. The applied bio-optical procedure above is 

described in details in Hancke et al. (Rate of O2 production derived from PAM 
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fluorescence: Testing three bio-optical approaches against measured O2 production 

rate, submitted to J. Phycology, hereafter referred to as Hancke et al. submitted). 

Definitions of bio-optical parameters used are given in Table 1. 

Calculation of O2-evolution from PAM measurements in combination with bio-optics 

ETR is equal to the product of ΦPSII and the amount of quanta absorbed by PSII 

(
*
PSIIa ). By knowing the stoichiometric ratio of oxygen evolved per electron 

generated in PSII the rate of O2 evolution (PC
PSII) can be quantified (Kroon et al. 

1993). Instead of calculating ETR we directly calculated the O2-production rate in 

absolute units (PC
PSII, μmol O2·(mg POC)–1·h–1), from Eq. 4. (See Hancke et al. 

(submitted) for a discussion on different approaches for quantifying the amount of 

quanta absorbed by PSII)

*
PSIIPSII PSIIP  = E a     (4)

where Γ is the stoichiometric ratio of oxygen evolved per electron generated at PSII. 

According to the standard Z-scheme of photosynthesis, four stable charge separations 

take place in both PSI and PSII, to evolve one O2 molecule, i.e. 8 electrons to yield 

one molecule of oxygen. Γ will according to this assumption be 0.25 O2 electrons–1

(Kroon et al. 1993, Gilbert et al. 2000). Empirically, a higher number than 8 

electrons have been found which may be due to alternative electron “loss”, e.g. 

Mehler-type reactions (Kromkamp et al. 2001, Longstaff et al. 2002, Hancke et al. 

submitted). For simplicity, we assumed Γ to be 0.25 in the present study. 

Most papers that use PAM-estimated ΦPSII to calculate O2 evolution rates assume 

that that absorbed irradiance is distributed between PSII and PSI with a ratio of 0.5 

(Gilbert et al. 2000). This is a rough estimate and the ratio is higher for most 

phytoplankton classes with the consequence of underestimating the O2 evolution 

from PSII (Johnsen and Sakshaug, Bio-optical characteristics of PSII and PSI in 33 

species (13 pigment groups) of marine phytoplankton, and the relevance for PAM 

and FRR fluorometry, submitted to J. Phycology, hereafter refereed to as Johnsen 
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and Sakshaug submitted). In the present paper we have applied a bio-optical 

procedure to measure the PSII-specific absorption directly. 

Photosynthetic O2-production rates obtained in the photosynthetron and in the PAM 

cuvette was compared in a pilot-study by measuring P-E curves of O2-evolution in 

both experimental setups. An O2-microsensor was inserted directly in the PAM 

cuvette (Hancke et al. submitted), and measured rates were compared to the O2-

production rates measured in the photosynthetron. The P-E curves calculated from 

the two experimental set-ups shown equivalent shapes and similar rates and had an 

average difference and a standard deviation for PC
max and αC of 2.2 ± 21.3 % and 

22.7 ± 23.8 %, respectively. Simultaneous measurements of ΦPSII verified 

reproducible photosynthetic responses between the pilot-study and the present study. 

14Carbon assimilation 

Carbon assimilation rate (PC
14C) was calculated from Eq. 5 (Geider and Osborne 

1992)

orgC
14C 2

tot

dpm 1P = f
dpm

TCO
dt

   (5) 

where f is the isotope discrimination factor assumed to be 1.06, dpmorg is the 14C

activity in organic matter (disintegrations per minute), dpmtot is the total 14C activity 

added to the sample, [TCO2] is the total inorganic carbon concentration and dt is the 

incubation time.  

After incubation, the samples were acidified with HCl to pH between 1.5 and 2 and 

left overnight in a fume hood without caps to remove all inorganic C (Geider and 

Osborne 1992). Samples were back-titrated with NaOH to pH ~8 before scintillation 

cocktail (Ultima Gold) was added and the activity was measured in a scintillation 

counter (Packard Tri-Carb 1900). [TCO2] was estimated from measured pH and total 

alkalinity (AT). AT was calculated after titration with HCl (Wedborg et al. 1999) and 

total inorganic carbon from (Andersson et al. 1999). The dark-incubated uptake was 

generally <20% (<10% at temperature >15°C) of the light-incubated uptake and was 
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subtracted in the rate calculations. We observed no temperature influence on the 

dark-incubated 14C-uptake. 

Curve fit regression and calculations of Q10

The P-E curves were fitted from Eq. 6 (Webb et al. 1974), as no tendency of 

reduction of P at irradiance >Ek (photoinhibition) was observed for the applied range 

of irradiance (0 - 566 μmol photons·m–2·s–1).

   C C
max

max

P  = P 1 exp
C

C

E
P

   (6) 

The maximum photosynthetic rate (PC
max; μmol O2 or 14C·(mg POC)–1·h–1), the 

maximum light utilisation coefficient (αC; μmol O2 or 14C·(mg POC)–1·h–1·(μmol 

photons·m–2·s–1)–1), and the light saturation index (Ek =  PC
max/αC; μmol photons·m–

1·s–1) were calculated from fit of the P-E curves. All curve fitting was carried out 

using ordinary least-squares criterion in SigmaPlot 9.0 (SYSTAT Software Inc. 

USA, 2002).  

For αC or PC
max (response variables) the relationship with temperature and the 

covariance with method was analyzes using the statistical tool ANCOVA, with 

method as the test factor. Calculations were computed using S-Plus 6.2 (Insightful 

Corporation, US). 

The temperature response of PC
max was quantified by calculating the apparent 

activation energy (Ea, kJ·mol–1) and the corresponding Q10 from each method and 

species. Ea was calculated as the slope of the data between 5 to 20oC in an Arrhenius 

plot (Eq. 7), where ln(k) was plotted as a function of temperature (R·T)–1, according 

to Raven and Geider (1988) as: 

ln( ) ln( ) aEk A
R T

    (7) 

where k is the rate of the reaction, A is the Arrhenius constant, R is the gas constant 

(8.3144 J–1·mol–1) and T is the absolute temperature (K). Q10 was calculated from Eq. 

8, for the temperature interval of 10°C to 20°C (Isaksen and Jørgensen 1996). 
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10
10exp

( 10)
EaQ

R T T
    (8) 

The maximum quantum yield for O2 production (PSIIΦO2_max; mol O2·(mol quanta)–1)

was calculated from the PSII-specific light absorption (
*
PSIIa ) and was calculated for 

each temperature as: 
*

PSII
O2_max *

PSII

=
115 a     (9) 

where 115 is a constant required to obtain consistent dimensions. 
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RESULTS

P-E data 

P-E curves were fitted to POC normalised production rates derived from O2-

microsensor measurements (PC
O2, μmol O2·(mg POC)–1·h–1), quantum yield of charge 

separation in PSII (ΦPSII) by PAM fluorescence (PC
PSII, μmol O2·(mg POC)–1·h–1) and 

14C-assimilation (PC
14C, μmol 14C·(mg POC)–1·h–1) at temperatures from 0 to 30°C, at 

5°C interval. P-E curves at 5 and 20°C are shown for P. minimum, P. parvum, and P.

tricornutum (Fig. 1). O2-microsensor and 14C-assimilation rates were measured in 

triplicates and error bars are shown (Fig. 1a-c, g-i). Evident for all three species and 

three methods, the maximum production rates were clearly higher (2.2 - 6.0 times) at 

20°C than at 5°C. We observed no sign of photoinhibition for the applied irradiance 

range (0 - 566 μmol photons·m–2·s–1). The relationship between temperature and the 

photosynthetic parameters, calculated from O2 evolution, ΦPSII and 14C-assimilation, 

was first investigated for relative values (excluding the significance of the light 

absorption) normalised at 5°C, being the lowest temperature with minimal scatter 

(Fig. 2), then for absolute values (calculated by the use of 
*
PSIIa , Fig. 3). 

Temperature effects on relative P-E parameters 

The relative response of the maximum photosynthetic rate (PC
max) increased  2.5 to 

6.0 times relative to the rate at 5°C, with increasing temperature, for all of the three 

investigated algal species, and varied overall little between species and method (Fig. 

2a-c). PC
max showed a temperature optimum at 20 - 25°C for P. minimum followed 

by a decrease (Fig. 2a), whereas no clear sign of a temperature optimum was 

observed for P. parvum or P. tricornutum within the investigated temperature range 

(Fig. 2b+c). The relative values for PC
14C _max increased more with temperature than 

PC
O2_max indicating a slightly stronger temperature response for 14C-assimilation than 

for O2-production, most apparent for P. minimum. The relative response of PC
PSII _max

with increasing temperature laid in-between PC
14C _max and PC

O2_max for P. parvum,

and showed slightly lower temperature responses for P. minimum and P.

tricornutum.
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The temperature response on PC
max was quantified by the Q10 factor (Table 2) 

calculated from Arrhenius plots (not shown). The average Q10 was 2.1 ± 0.2 (mean ±

S.E.) and Q10 showed only small variance between methods and species, with an 

exception of PC
14C _max for P. minimum. Apparently, Q10 for PC

14C _max were higher 

than for PC
O2_max and PC

PSII _max, supporting the observation of a stronger temperature 

response for C-assimilation than for the two other methods. 

Temperature had no, or only little, effect on relative values of αC showing similar 

temperature responses for each of the three species and an average Q10 of 1.0 ± 0.2 

(mean ± S.E.). Q10 values of 0.9 for P. parvum and P. tricornutum indicated a slight 

decrease of αC for this species. No difference was observed between the three 

methods as function of temperature for any of the species, arguing for an equivalent 

temperature response on photosynthetic O2-production, ΦPSII and 14C-assimilation in 

the light limited part of the photosynthesis versus irradiance curve.  

Relative values of Ek showed a strong temperature response (Fig. 2g-i) and increased 

2.6 to 6.5 times (relative to the rate at 5 °C). As αC generally was insensitive to 

temperature the temperature response of Ek mirrored PC
max. Similarly, as αC did not 

differ between methods the temperature response of Ek tended to be stronger for 14C-

assimilation than for O2 and ΦPSII based production rates. 

Temperature effects on absolute values of P-E parameters 

Increased temperature significantly increased the absolute values of PC
max for the 

three investigated species (Fig. 3a-c), in accordance with the relative response, but 

varied more between species and in some cases between methods. The absolute 

values of PC
max supported the observation of a temperature optimum for P. minimum

at 20 - 25°C and no temperature optimum for P. parvum and P. tricornutum within 

the investigated temperature range. The absolute values of PC
max were overall lowest 

for P. minimum (Fig. 3a) and highest for P. tricornutum (Fig. 3c). PC
max for the latter 

decreased slightly at 30°C giving a weak indication of a temperature optimum at 

25°C for PC
O2_max and PC

14C _max. As PC
max are carbon-specific, the rates do correlate 
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directly to maximum growth rates and reflect the productivity of the studied species 

(MacIntyre et al. 2002). 

Between methods, the absolute values showed some inter-species variation of PC
max

as a function of temperature. The method used had a significant effect on PC
max for 

all the three species (p < 0.05), however, the interaction between temperature and 

method (temperature × method) was significant for P. parvum only, as PC
PSII _max

showed 1.8 to 2.9 times higher absolute values than for the two other methods as 

function of temperature (p << 0.05, Fig. 3b). The response of PC
O2_max and PC

14C_max

was not significantly different. The temperature × method interaction was non-

significant for P. minimum (p = 0.43, Fig. 3a) nor for P. tricornutum (p = 0.07, Fig. 

3c) emphasizing that there was no difference of PC
max between the three 

methodological approaches. Despite the statistical insignificance, PC
PSII _max for P.

tricornutum (seemed to) show slightly higher absolute values than PC
O2_max and 

PC
14C_max (p-values are shown in Table 3). 

The temperature effect on absolute values of αC was non-significant (P. minimum,

Fig. 3d) or slightly decreasing with increasing temperature (P. parvum and P.

tricornutum, Fig. 3e-f). The slight decrease of αC was observed as αC
O2 (P. parvum)

and αC
O2 and αC

PSII (P. tricornutum) decreased marginally. The additional values of 

αC did not change with increasing temperature (p-values are shown in Table 3). The 

temperature × method interaction was non-significant for all of the species 

demonstrating no difference between the slopes for the three methods applied. 

Consequently, was the temperature response on the three methods the same. The 

method, however, had a significant effect on αC resulting in significantly higher 

absolute values of αC
PSII compared to αC

O2 and αC
14C, for all of the three species. This 

off-set was especially clear for P. parvum as αC
PSII was 1.7 to 3.3 times higher than 

αC
O2 and αC

14C (Fig. 3e). The two latter were not significantly different. For P.

tricornutum αC
PSII was 1.1 to 1.7 times higher than values for αC

O2 and αC
14C (Fig. 

3f). Two outliers of α for P. tricornutum (αC
O2 at 0°C, and αC

14C at 15°C) have been 

eliminated from the data set due to unrealistic values caused by high scatter at low 

irradiances. 



18

As αC was constant or slightly decreasing with increasing temperature, the light 

saturation index (Ek) vaguely increased or mirrored the PC
max temperature response 

(Fig. 3g-i). Ek for P. minimum increased linearly to a temperature optimum at 20 to 

25°C followed by a subsequent decrease. For P. parvum and P. tricornutum, Ek

increased continuously with increasing temperature for all of the three methods. The 

relative higher values of αC
PSII and PC

PSII _max compared to the two other methods, for 

P. parvum and P. tricornutum, counteracted each other resulting in very similar 

values of Ek for the three methods, as a function of temperature. 

Temperature effects on the maximum quantum yield 

The temperature effects on the maximum quantum yield (Φmax) seemed to be 

neglectable (P. minimum) or lead to a minor decrease with increasing temperature (P.

parvum and P. tricornutum) (Fig. 4). ΦPSII_max were in the range of 0.6 to 0.75 and 

lowest for P. minimum. PSIIΦO2_max was lowest for P. parvum (0.06 to 0.13), but 

within the same range for P. minimum and P. tricornutum (0.08 to 0.15), 

respectively. The lower PSIIΦO2_max lead to a higher minimum quantum requirement 

(QR, the inverse of the maximum quantum yield; 1/Φmax) for P. parvum than for the 

two other species; 0.8 to 2.7 times higher than for P. minimum (1.9 ± 0.7 times, mean 

± S.D.) and 1.7 to 3.1 times higher than for P. tricornutum (2.2 ± 0.5 times, mean ± 

S.D.). The QR for P. minimum and P. tricornutum was similar. 

The calculated PSIIΦ14C_max was lower than PSIIΦO2_max for P. minimum, however, 

slightly higher for the two other species, in contradiction to established theory. We 

have no obvious explanation for this other than it is likely that αC
14C was 

overestimated because of few measuring points and high scatter within the light 

limited part of the P-E curve, which would lead to an overestimation of Φ14C_max.

Data for Φ14C_max are not shown. 
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DISCUSSION 

The relationship between P-E parameters calculated from rates of O2-production,

ΦPSII and 14C-assimilation was investigated as a function of short-term changes in 

temperature. The results demonstrated that PC
max increased and αC was more or less 

insensitive to increasing temperature for all of the three species, as typical for most 

eukaryote algae (Davison 1991). Generally, this is not surprising as αC represents 

light-limited photosynthesis and, as such, primarily is a function of photochemical 

light reactions (not enzyme dependent) and PC
max describes the light-saturated 

processes of photosynthesis and appears to be limited by enzyme activity associated 

with the carbon metabolism of the dark reactions (assuming excess nutrients) 

(Davison 1991, Sakshaug et al. 1997). 

Temperature effects on PC
max

The relative values for PC
14C _max tended to increase more with temperature than 

PC
O2_max indicating a slightly stronger temperature response for 14C-assimilation than 

for O2-production, most apparent for P. minimum (Fig. 2). This observation was 

supported by the Q10 values (Table 2). Theoretically, this was expected as PC
14C

expresses gross carbon uptake rates excluding respiratory activity (Sakshaug et al. 

1997) whereas PC
O2 probably underestimated the gross O2-production rate, due to an 

enhanced O2-consumption in the light compared to the dark, which PC
O2 did not 

account for. Enhanced O2 consumption in the light is well documented for in marine 

microalgae, as both intercellular (photorespiration and mitochondrial activity) and 

extracellular (e.g. bacterial metabolism) O2-consumption is stimulated by 

photosynthesis (Weger et al. 1989, Lewitus and Kana 1995, Xue et al. 1996). All the 

above processes are stimulated by temperature and hence will the discrepancy 

between the dark and the light O2-consumption rate increase with increasing 

temperature (Davison 1991, Morris and Kromkamp 2003). This can explain the 

relatively stronger temperature response for PC
14C _max than for PC

O2_max, which will 

be further enhanced if the temperature response (Q10) on the O2-consumption 
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processes exceeds the response of photosynthesis, as found for benthic microphytes 

(Hancke and Glud 2004). 

 The potential for photorespiration increase with increasing temperature, as the 

affinity of Rubisco for O2 is reduced relatively to the affinity for CO2 with increase 

temperature (Berry and Raison 1981). However, the importance of photorespiration 

in microalgae might be suppressed by the occurrence of a CO2 concentrating 

mechanism (Lewitus and Kana 1995). 

Although the maximum photosynthetic rate is related only to the number of 

photosynthetic units (n) and the minimum turnover time for electrons (τ); Pmax = n·τ–

1 (Dubinsky et al. 1986), the rate-limiting step of the photosynthetic pathway has 

been widely debated (Sakshaug et al. 1997). The relative temperature response of 

PC
PSII _max followed the temperature response of the two other techniques. This 

demonstrated that ΦPSII from intact algae cells responded similarly to the rate of O2-

evolution and 14C-assimilation, to a short-term temperature change. This is consistent 

with the hypothesis that the overall rate-limiting reaction for light-saturated 

photosynthesis is carbon fixation rather than electron transport, as suggested by 

Sukenik et al. (1987). For our data, this implies that ΦPSII as well as the O2-

production must be limited by carbon-fixing enzymes, i.e. the Rubisco-complex, and 

stress that ΦPSII and O2-production rates were not separated from the 14C-fixation

rate, as a function of short-term temperature changes. This is consistent with the 

observation of a linear relationship between PB (chl a normalised rates of PC
O2) and 

ETR as function of temperature, for temperatures between 10 and 30°C (Morris and 

Kromkamp 2003). However, their data deviated from linearity at the extremes of the 

investigated temperature range (5 and 35°C). 

For absolute values of the maximum photosynthetic rate, the relationship between 

rates of O2-production and 14C-assimilation is known as the photosynthetic quotient, 

PQ (Laws 1991). Calculating PQ as the ratio between PC
O2_max and PC

14C _max resulted 

in values between 1.2 and 3.6 (average for all data = 1.8 ± 0.7), which is consistent 

with a general PQ of ~1.4 (Laws 1991, Sakshaug et al. 1997). As mention above, 
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PC
O2_max might be an underestimate of the gross O2-production rate. However, PC

14C 

_max may underestimate the gross carbon uptake, as 15 min incubations have shown 

to result in higher carbon uptake rates than 60 min incubations, which are used in the 

present study (Lewis and Smith 1983, MacIntyre et al. 2002). PQ tended to decrease 

with increasing temperature for all of the three species (with a slope coefficient of –

0.03 to –0.05 (~ Q10 of 0.81 to 0.90), data not shown) and showed thus to be 

temperature sensitive. This could be explained by a more pronounced increase of 

PC
14C _max compared to PC

O2_max as seen from the Q10 (Table 2). An alternative 

explanation for the decrease of PQ with temperature, to a light enhanced O2

consumption, is a potential electron cost for N uptake with increasing temperature 

(Laws 1991). 

In this paper we quantified the PSII electron flow and calculated the absolute rate of 

O2-production in PSII (μmol O2·(mg POC)–1·h–1) by combining ΦPSII (from PAM 

measurements) with the bio-optically determined quanta absorbed in PSII, 
*
PSIIa

(Genty et al. 1989, Johnsen et al.,  Hancke et al. submitted). The aim was to compare 

absolute rates of calculated O2-production from PSII with measured rates of O2-

production and 14C-assimilation, where most studies relate only to relative rates of 

PSII efficiency, e.g. relative ETR, due to the challenge of measuring the light 

absorption in PSII. The results demonstrated a species-specific correlation between 

the three methods with PC
PSII showing higher absolute values of PC

max and αC than 

those determined from measured O2-production (PC
O2) and 14C-asssimilation (PC

14C)

in most cases (Fig. 3). 

The absolute values of PC
PSII showed a species specific off-set compared to PC

O2 and 

PC
14C, what might origin in the assumption of Γ = 0.25 (Eq. 5) proving it wrong. 

Assuming that ΦPSII is accurately measured by the PAM technique, which is 

reasonable (Hancke et al. submitted), the divergence between measured O2-

production and calculated O2-production (from PSII fluorescence) can only be 

caused by two parameters; the absorption properties (
*
PSIIa ) or the amount of O2

evolved per electron generated in PSII (Γ). As we believe that 
*
PSIIa  is a good 
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measure of the PSII absorption (Falkowski and Raven 1997, Johnsen et al. 1997, 

Johnsen and Sakshaug submitted) we suggest that the electrons needed per O2

evolved is the major source for the difference between measured and calculated rates 

of O2-production. (See Johnsen and Sakshaug (submitted) for a discussion on the 

absorption by non-photosynthetic versus photosynthetic efficient pigments and the 

relation to PSII and light-harvesting complexes). 

The calculated PSIIΦO2_max for P. parvum was in the range of 0.06 to 0.13 (Fig. 4) 

corresponding to a QR of 8.0 to 17.3 mol photons·(mol O2 produced)–1. This is 1.1 to 

2.5 times higher than the theoretical minimum (see below) and was on average 1.9 

and 2.2 times higher than the QR for P. minimum and P. tricornutum, respectively. 

For the two latter species the QR was in the range of 5.7 to 10.4 and 5.1 to 9.4, 

respectively. As ΦPSII_max did not differ markedly between the three species, the 

higher PSIIΦO2_max for P. parvum (of 1.1 to 2.5 times) is likely the explanation for the 

off-set of PC
PSII compared to PC

O2 and PC
14C for this species. The off-set was 

apparently temperature insensitive, which is consistent with the above explanation 

and is further supported by the equivalent Q10 values of the three methods. 

The theoretical maximum quantum yield for O2 when calculated from total 

absorption (
*

a , not the PSII-specific absorption) is 0.125 O2 electron–1 (equivalent to 

a QR = 8 electrons O2
–1). To correct for light absorption by PSI and photo-protective 

pigments we based the quantum yield calculation on the light absorption in PSII 

(
*
PSIIa ) only. Consequently, the theoretical maximum quantum yield must be between 

0.125 and 0.25, and we propose that it can be calculated from Eq. 10:
*

2_ max *
PSII

a0.125
a

PSII
Otheoretical    (10) 

Applying this equation on our data gave theoretical maximum quantum yields for O2

in the range of 0.155 - 0.165, 0.141 - 0.157 and 0.151 - 0.170 mol O2·(mol photons)–1

for P. minimum, P. parvum and P. tricornutum, respectively (Fig. 4, small open 

circles). The theoretical maximum quantum yield for O2 was temperature insensitive, 
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as
*
PSIIa  (Table 4). The average of the corresponding theoretical minimum QR was 

then 6.3 ± 0.2, 6.8 ± 0.2 and 6.3 ± 0.3 for the three species, respectively. 

Values for the QR for O2-production well higher than the theoretical minimum have 

commonly been published (Myers 1980, e.g. Gilbert et al. 2000). For freshwater 

phytoplankton Gilbert et al. (1996) found that absolute electron transport rates 

obtained from PSII fluorescence tends to overestimate primary production rates of 
14C-fixation. They ascribe the discrepancy to the package effect of pigments in 

phytoplankton cells and to a non-carbon related electron flow, e.g. nitrogen fixation, 

photorespiration and the Mehler reaction. They assumed a PSII:PSI ratio of 0.5 but 

corrected the absorbance spectra for non-photosynthetic pigments according to 

Schofield et al. (1997). 

Dividing ΦPSII_max with PSIIΦO2_max yield the exact amount of electrons generated in 

PSII needed to produce one O2 molecule. However, since ΦPSII_max and PSIIΦO2_max

were measured in two different experimental set-ups, our data do not support such a 

calculation. However, as ΦPSII_max differed only little the result would follow the 

trend of PSIIΦO2_max. The higher QR for P. parvum than for P. minimum and P.

tricornutum would influence both PC
max and αC. The temperature effect on Φmax is 

discussed below. 

The lower quantum yield for O2-production than the theoretical maximum can be 

caused by several pathways of electron ’loss’ leading to the off-set between PC
PSII

and PC
O2, e.g. cyclic electron transport is PSII, pseudo cyclic transport in the Mehler 

reaction, and light dependent mitochondrial respiration (Flameling and Kromkamp 

1998, Longstaff et al. 2002). Our data do not offer a separation between these 

processes but it seems likely that cyclic electron transport around PSII or a Mehler-

type of reaction (where the O2 produced at PSII is reduced again at PSI) could 

contribute to the off-set. 

Nutrient-enriched treatments have shown to lower the quantum requirement from ~ 8 

to 5 (mol electrons absorbed per mol O2) in experiments with the marine macroalga 
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Ulva lactuca (Chlorophyta, Davison 1991). In our experiments, all of the cultures 

were grown in f/2 medium and hence we assumed that the nutrients were not limited 

and that no reduction of the quantum yield was caused by this reason. 

Temperature acclimation of light-harvesting properties in form of pigment 

complexes involves adjustment in both number and ratio of several photosynthetic 

pigments (Johnsen and Sakshaug submitted). However, it is unlikely that the light-

harvesting properties changed in our short-term temperature incubations, as all the 

cultures were grown at a constant temperature (15°C) and irradiance regime (80 

μmol photons·m–2·s–1). Besides, either 
*

a  or 
*
PSIIa  showed any correlation with 

temperature nor did the relationship between them. Additionally, 
*
PSIIa  exclude the 

absorption by PSI and photo-protective pigments (Johnsen et al. 1997, Hancke et al. 

submitted) hence a potential acclimation changing the absorption properties of these 

components would not influence the rate of PC
PSII.

Temperature effects on αC and Ek

The relative and absolute values of αC showed an analogous response to a short-term 

temperature change and demonstrated to be insensitive (P. minimum) or slightly 

decreasing (P. parvum and P. tricornutum) with increasing temperature. This was 

tested using a statistical test of covariance (Table 3). As the slope of αC as a function 

of temperature were similar for the three methods and the interaction of temperature 

× method was non-significant (p = 0.5 – 0.96) we concluded that the temperature 

response for the three methods was the same, for all three species. This is visually 

evident as seen from the plot of the relative values, as normalised at 5 oC (Fig. 2d-f). 

The absolute values of αC demonstrated an off-set of αC
PSII compared to αC

O2 and 

αC
14C which was constant for the entire temperature range, arguing for a linear 

temperature-insensitive relationship between rates obtained from the three methods, 

in the light limited part of the P-E curve. The off-set of αC
PSII was similar to the off-

set of PC
PSII_max and we hence conclude that the off-set was general for the ΦPSII

based O2-production rates (PC
PSII), for the entire irradiance range. 
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A linear off-set of PC
PSII compared to PC

O2 argues for a linear relation between the 

PSII electron transport and the measured O2-production, however, our experimental 

setup did not support a direct comparison, as PC
PSII and PC

O2 were measured at 

different irradiance levels (but within the same range). However, in a previous study 

we found a linear relationship between PC
PSII and PC

O2 (as well for ΦPSII and PSIIΦO2)

for the same species when measured simultaneously in the same incubation chamber, 

under equivalent growth conditions (Geel et al. 1997). 

A linear relation between PC
PSII and PC

O2 aligns with Geel et al. (1986) who also 

found a linear relation between PSII electron transport rates and O2-production rates 

at light-limited conditions in several marine phytoplankton species including P.

tricornutum. The relation between electron transport rate (ETR) and photosynthetic 

oxygen evolution has been investigated in a range of studies. Although the 

investigations were conducted under a variety of experimental conditions, an 

overweight of these studies describe a linear relationship between O2-production and 

ΦPSII under moderate irradiances (e.g. Genty et al. 1989, Schreiber et al. 1995, Geel 

et al. 1997). Non-linear or curvilinear correlations is described at high irradiance 

conditions (Falkowski et al. 1986, Flameling and Kromkamp 1998, Masojidek et al. 

2001), with an excess of electron transport compared to O2-production, or at very 

low irradiance presumably due to light-enhanced dark respiration (Kroon et al. 

1993). A close coupling between the quantum yield for O2-production and of charge 

separation in PSII, but not between the quantum yield for O2-production and 14C-

fixation has also been reported (MacIntyre et al. 2002). For the deviations, 

explanations such as spectral difference in PAR source, changes in O2-consumption 

in the light, cyclic electron transport around PSII and Mehler-type reactions have 

been proposed. 

The slight decrease of αC with temperature for P. tricornutum could be explained by 

an apparent decrease of the chl a to C ratio, as αC (carbon-specific) often is 

correlated with the chl a to C ratio, since light absorption is correlated with chl a . 
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The chl a to C ratio for P. minimum and P. parvum was constant across the 

temperature range (except for a drop at 30°C for P. parvum, Table 5).  

A mathematical consequence of the similar off-set of PC
PSII compared to PC

O2 and 

PC
14C, for both PC

max and αC, resulted in similar values for Ek for the three methods. 

Hence, did Ek for the three applied methods respond in parallel across the entire 

range of temperature, and we conclude that temperature responses on Ek can be 

studied quantitatively by the PAM technique, applying the present procedure to 

calculate O2-production rates from ΦPSII. This is in contrast to Gilbert et al. (2000), 

who found that ΦPSII based O2-production rates most often overestimated the 

measured O2-production rates during light saturation, while the rates were similar 

during light-limited photosynthesis. This led Gilbert et al. (2000) to conclude that 

fluorescence-based Ek often showed a shift to higher irradiances compared to that of 

O2 based P-E curves, for the green alga Chlorella vulgaris.

Conclusions

• Both calculated and measured O2-production rates along with 14C-

assimilation rates showed the same relative response to a short-term 

temperature change, for the three studied microalgae species. This implies 

that the PAM technique analogous to O2-production and 14C-assimilation 

measurements can be applied to study relative temperature responses of 

photosynthesis versus irradiance relations. 

• Absolute rates of calculated O2-production based on ΦPSII showed a species-

specific correlation and overestimated the measured O2-production rates of 

~1 to 3 times during both light-limited (αC) and light-saturated (PC
max)

photosynthesis. The off-set of the ΦPSII based measurements were due to a 

lower quantum yield for O2-production than the theoretical maximum and 

seemed to be insensitive to temperature. The lower quantum yield for O2-

production can possibly be ascribed to irradiance induced Mehler-type 

reactions.
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• The maximum quantum yield for both PSII and O2-production decreased with 

increasing temperature, the latter considerable stronger than the first. 

• ΦPSII obtained with the PAM technique in combination with bio-optical 

determined light absorption in PSII can be used as a valuable tool for 

studying temperature dependence of photo-physiological processes in 

combination with O2 and 14C studies. 
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Fig. 1. Photosynthesis versus irradiance (P-E) curves measured by a-c) O2-microsensors 

(PC
O2), d-f) calculated from ΦPSII (based on PAM measurements) in combination with 

bio-optical measurements (PC
PSII) and g-i) measured 14C-assimilation (PC

14C), at 5°C 

(filled symbols) and 20°C (open symbols), respectively. The study was conducted on 

three unialgal cultures of P. minimum (left column), P. parvum (middle column) and P.

tricornutum (right column). Units for PC
O2 and PC

PSII are in μmol O2·(mg POC) –1·h–1

and for PC
14C in μmol 14C·(mg POC)–1·h–1.
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Fig. 2. Relative effect of temperature on the maximum photosynthetic rate (PC
max, upper 

panel), the maximum light utilization coefficient (αC, middle panel), and the light 

saturation index (Ek, lower panel) for P. minimum (left), P. parvum (middle) and P.

tricornutum (right). The photosynthetic parameters were calculated from rates of 

measured O2-production (PC
O2, filled circles), ΦPSII (PC

PSII, open diamonds), and 14C-

assimilation (PC
14C, grey triangles). All parameters were normalised to 1.0 at 5 °C. All 

cultures were grown at 15°C and 80 μmol photons·m–2·s–1.
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Fig. 3. Effect of temperature on the absolute values for the maximum photosynthetic 

rate (PC
max, upper panel), the maximum light utilization coefficient (αC, middle), and the 

light saturation index (Ek, lower panel) for P. minimum (left), P. parvum (middle) and 

P. tricornutum (right). Calculation of photosynthetic parameters and growth conditions 

as in Fig. 2. 
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tricornutum. PSIIΦO2_max was calculated based on the light absorption in PSII (
*
PSIIa ) and 

similar was the theoretical maximum quantum yield for O2 production (small open 

circles), which was calculated for each temperature (Eq. 9, details in text). 
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INTRODUCTION

Temperature and irradiance are important environ-
mental controls on photosynthesis and respiration in
marine sediments (e.g. Hartwig 1978, Rasmussen et al.
1983, Grant 1986, MacIntyre & Cullen 1995). In shal-
low waters, both variables change on a seasonal and a
diel basis superimposed by tidal and weather-driven
variations, all having an impact on the benthic micro-

bial activity (Grant 1986, Cahoon 1999, Glud et al.
2002). Studies at subtidal and intertidal sites have
shown that temperature can exert tight control on ben-
thic photosynthetic rates, and can lead to seasonal
acclimation and/or change in the microphytobenthic
community composition (Rasmussen et al. 1983, Grant
1986, Blanchard et al. 1996, Barranguet et al. 1998).
Temperature acclimation usually describes phenotypic
changes in a community as a response to short-term

© Inter-Research 2004 · www.int-res.com*Email: kasper.hancke@bio.ntnu.no

Temperature effects on respiration and
photosynthesis in three diatom-dominated 

benthic communities

Kasper Hancke1, 2,*, Ronnie N. Glud1

1Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark

2Present address: Trondhjem Biological Station, Norwegian University of Science and Technology, 7491 Trondheim, Norway

ABSTRACT: Short-term temperature effects on respiration and photosynthesis were investigated in
intact diatom-dominated benthic communities, collected at 2 temperate and 1 high-arctic subtidal
sites. Areal rates of total (TOE) and diffusive (DOE) O2 exchange were determined from O2-microsen-
sor measurements in intact sediment cores in the temperature range from 0 to 24°C in darkness and
at 140 μmol photons m–2 s–1. In darkness, the O2 consumption increased exponentially with increas-
ing temperature for both TOE and DOE, and no optimum temperature was observed within the
applied temperature range. Q10 was calculated from the linear slope in Arrhenius plots and ranged
between 1.7 and 3.3 at the respective sites. The volume-specific rate (Rdark,vol) solely representing the
biological temperature response was somewhat stronger, with Q10 values of 2.6 to 5.2. The Q10 values
were overall not correlated to the in situ water temperature or geographical position. Accordingly, no
difference in the temperature acclimation or adaptation strategy of the microbial community was
observed. Slurred oxic sediment samples showed a Q10 of 1.7 and were, hence, lower than estimates
based on intact sediment core measurements. This can be ascribed to changes in physical and biolog-
ical controls during resuspension. Gross photosynthesis was measured with the light-dark shift
method at the 2 temperate sites. Both areal (Pgross) and volumetric (Pgross,vol) rates increased with tem-
perature to an optimum temperature at 12 and 15°C, with a Q10 for Pgross of 2.2 and 2.6 for the 2 sites,
respectively. The gross photosynthesis response could be categorised as psychrotrophic for both sites
and no temperature adaptation was observed between the 2 sites. Our measurements document that
temperature stimulates heterotrophic activity more than gross photosynthesis, and that the benthic
communities gradually become heterotrophic with increasing temperature. This has implications for
C-cycling in shallow water communities experiencing seasonal and diel temperature fluctuations.
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temperature change, whereas temperature adaptation
involves genetic differences in metabolism between
communities from different thermal environments
(Berry & Bjorkman 1980, Davison 1991). Temperature
adaptation in microorganisms has typically been stud-
ied in cultures or in sediment slurries placed in
benches at well-defined temperatures (Blanchard et al.
1996, Isaksen & Jørgensen 1996, Thamdrup & Flei-
scher 1998). Based on data for minimum, optimum and
maximum temperatures of the activity, the organisms
are divided into groups, such as psychrophile, meso-
phile and thermophile, that tolerate low, medium and
high temperatures, respectively (Davison 1991).

Temperature-changed activity is often quantified by
the so-called Q10 factor (the relative rate of increase at
a temperature increase of 10°C). Such studies have
shown an insignificant difference in temperature
adaptation of aerobic respiration between arctic and
temperate communities (Thamdrup & Fleischer 1998).
In contrast, lower Q10 values have been reported for
benthic sulphate reduction in Antarctic sediments
compared to measurements performed at temperate
latitudes (Isaksen & Jørgensen 1996). However, most
benthic temperature studies have been performed on
highly manipulated samples or inferred from seasonal
rates at in situ temperature, which may be confounded
by changes in other environmental controls. To our
knowledge, only 2 detailed temperature studies on

intact benthic communities exist, both performed in
hyper-saline mat systems (Epping & Kühl 2000,
Wieland & Kühl 2000). No detailed studies have been
performed on subtidal microphytic communities.

Studying the temperature response of intact benthic
microbial communities is complicated by the simulta-
neous impact on physical and chemical controls, and
by the fact that benthic microbial communities host a
complex phototrophic and heterotrophic diversity
(Revsbech et al. 1981, Epping & Jørgensen 1996,
Fenchel & Glud 2000). Temperature studies of aerobic
activity based on traditional bell jar approaches can
easily be misinterpreted, as they do not account for
changes in O2 penetration depth (Epping & Jørgensen
1996). Further, it is to be expected that data from slurry
samples can be biased due to changes in the benthic
community structure and in the environmental con-
trols. Application of O2 microsensors allows a detailed
and unconfounded evaluation of the biological temper-
ature effects on both photosynthesis and respiration
with a high spatial resolution (Revsbech & Jørgensen
1986, Glud et al. 2000).

The aim of the present study was to evaluate possi-
ble differences in the temperature adaptation strategy
between arctic and temperate benthic microphyte
communities, during short-term temperature varia-
tions. The study includes rate measurements of sedi-
ment community respiration, gross photosynthesis and
net photosynthesis as determined from O2 microsensor
measurements in intact sediments, sampled at 3 dif-
ferent sites.

MATERIALS AND METHODS

Study site and conditions. Sediment samples were
collected from a temperate site (Nivå Bay, Denmark), a
northern-temperate site (Trondheimsfjord, Norway)
and a high-arctic site (Adventfjord, Svalbard, Norway)
(Fig. 1). The 3 sites were located in the subtidal zone
(water depth <4 m, Table 1) and characterised by fine-
grained sandy sediments, without onsite-growing
macroalgae or vascular plants. Median grain size was
not determined but microscopic investigations sug-
gested that the mean grain size was around 200 to
500 μm at all the investigated sites. All sites were
located in partly protected semi-enclosed bays, and
the benthic microphytes were apparent as a golden-
brownish colouring of the sediment surface. Micro-
scopic analyses of fresh and Lugol-fixed samples veri-
fied that the benthic microphytes were dominated by
the pennate diatom genera Nitzschia and Navicula.
Few specimens of Fragilaria, Surirella and Amphora
were observed. There was no apparent difference in
the genera present at the different sites.
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Fig. 1. Map including the sampling sites, Nivå Bay, Denmark,
the Trondheimsfjord, Norway, and the Adventfjord, Sval-

bard, Norway
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Sediment porosity (φ) was determined by core slicing
and subsequent drying, but resulted in underesti-
mated values due to an unavoidable loss of water in
the relatively sandy sediment (data not shown). There-
fore, porosity was instead estimated from the ratio
between the O2 concentration gradient measured
immediately above and below the sediment surface
(Glud et al. 1995, Epping & Jørgensen 1996). In addi-
tion, porosity was estimated from resistivity measure-
ments according to Klinkenberg (1951) and Ullman &
Aller (1982). The average porosity applying these
2 approaches amounted to 0.60 ± 0.11 (n = 19). No sig-
nificant difference in porosity was observed between
the investigated sites and the same value was there-
fore used for all calculations.

All samples were collected during the winter months
and consequently the temperature at the time of sam-
pling was close to the minimum of the annual range
(Table 1). Irradiance and salinity during the sampling
periods are shown in Table 1. Incident irradiance and
temperature at the sediment surface were measured
using small-submerged data loggers (HOBO, Onset
Computer Cooperation), intercalibrated to a cosine-
corrected quantum sensor (LiCor LI-190SA connected
to a LiCor LI-1000 data logger). The chlorophyll a
(chl a) concentration of the surficial sediment (0 to
1 cm) was determined from at least 4 sediment cores at
each site. Samples were initially frozen at –80°C and
subsequently extracted in 96% ethanol for 24 h. The
chl a concentration was determined spectrophotomet-
rically (Parsons & Strickland 1963) using the extinction
coefficient suggested by Wintermans & DeMots (1965)
(Table 1).

Sampling and experimental set-up. Samples were
collected by hand in Nivå Bay, by SCUBA divers in the
Trondheimsfjord, and by a ‘kayak’-like home-made
sampler in the Adventfjord. During sampling in the
Adventfjord 40 to 50 cm of sea ice covered the fjord

and holes were drilled prior to sampling. All samples
were collected directly in Plexiglas core liners (inner
diameter = 52 mm; length ≈ 150 mm). Intact, undis-
turbed sediment cores with clear overlying water and
without larger stones were selected. For each site, 6 to
12 cores were sampled, placed in an insulated box and
transported within a couple of hours and with mini-
mum disturbance to the laboratory. In the laboratory,
cores were placed in bottom water from the sampling
site kept at in situ temperature. The cores were
exposed to a 12:12 h light:dark cycle (140:0 μmol pho-
tons m–2 s–1, respectively) by a halogen lamp (Schott
KL 1500). Even though the daylight period was longer
at the more northern sites, irradiance at the 3 sites was
comparable as a consequence of lower zenith angle of
the sun at higher latitude. Data from the Trondheims-
fjord were based on 3 individual sampling sessions,
whereas data from Nivå Bay and the Adventfjord were
based on a single set of samples from each site.

To enable temperature manipulation of the sediment
cores, a microcosm was constructed (Fig. 2). By combi-
nating a heating plate and a cooling coil, water tem-
perature in the microcosms was changed in steps of 3 ±
0.2°C. A halogen lamp equipped with an optical fiber
served as light source (Schott KL 1500) and incident
irradiance was measured at the sediment surface using
a cosine-corrected quantum sensor (LiCor LI-190SA).
A stable water flow above the sediment surface was
secured using an internal rotating magnet, which
caused a diffusive boundary layer (DBL) of 300 to
500 μm at the measuring spots. Flushing by an air
pump kept the water of the microcosm at atmospheric
oxygen saturation at all times.

Microsensor measurements. All oxygen measure-
ments were carried out using Clark-type O2 micro-
electrodes with a guard cathode (Revsbech 1989). Total
oxygen exchange (TOE) rates were measured using
electrodes with external tip diameters of ~1000 μm,
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Parameter/site Nivå Bay Trondheimsfjord Adventfjord
(Denmark) (Norway) (Svalbard, Norway)

Time of sampling February 2001 March 2002 May 2000d

Temperature (°C)a 2.5 ± 1.3 (0–30) 4.2 ± 0.7 (0–18) –1.6 ± 0.2 (–1.8–7.0)
Irradiance (μmol photons m–2 s–1)b 68 ± 46 (380) 35 ± 20 (83) 46 ± 35 (195)
Salinity (‰)c 18 ± 7 29 ± 3 34 ± 0.4
Water depth (m) 0.4 ± 0.2 3.0 ± 1.5 1.3 ± 0.6
Chlorophyll a (mg m–2) 22.9 ± 6.5 (n = 4) 23.8 ± 5.6 (n = 10) 2.7 ± 0.7 (n = 4)
aIn situ temperature at day of sampling, annual temperature range shown in parentheses
bAverage incident irradiance (during light hours) measured on sediment surface at day of sampling; maximum measured
irradiance at month of sampling shown in parentheses

cMeasured across a 30 d interval
dSampled beneath 40 to 50 cm of sea ice cover

Table 1. Time of sampling, geographical position, and in situ water temperature, irradiance, salinity, water depth, and chloro-
phyll a concentration for the 3 investigated sites. n: number of samples
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stirring sensitivity of <3%, and a 90% response time of
<40 s (Glud et al. 2000). Gross photosynthesis and
microprofiles were measured using electrodes with ex-
ternal tip diameters <15 μm, stirring sensitivity <1%
and a 90% response time <0.5 s. All electrodes were
calibrated at the individual temperature settings by a 2-
point calibration performed in both anoxic and air-
saturated samples (Glud et al. 2000). This is essential
because the Clark-type microelectrode responds to the
partial pressure of O2, thus the signal is sensitive to am-
bient temperature (Gundersen et al. 1998). The sensors
were positioned either manually or by motor-driven
micromanipulators. The sensor current was measured
using a picoammeter (Unisense) connected to a strip
chart recorder and a PC using the software ‘Profix’
(Unisense) (Revsbech & Jørgensen 1986).

Total oxygen exchange measurements. TOE rates
were calculated from the change in the O2 concentra-
tion of the overlying water, accounting for the enclosed
water volume (Fig. 2a). Net O2 consumption by the
benthic community was apparent from a decrease in
the O2 concentration, while net production was seen as
an increase in O2 concentration. Oxygen microprofiles
were measured in the same set-up after removal of the
transparent lid and ensuring 100% air saturation of the
overlying water phase (Fig. 2b).

Each core was incubated in darkness and at 140 μmol
photons m–2 s–1 at each temperature. After changing
the irradiance, cores were pre-incubated for 45 min
prior to any measurements to ensure quasi steady state

(this was confirmed by repeated microsensor measure-
ments). To study impacts of temperatures, the ambient
temperature was increased stepwise by 3°C. All cores
were initially incubated at the lowest temperature.
After a temperature change, the cores were pre-
incubated for 60 min to obtain quasi steady state. At
each temperature level, the measuring period lasted
for approximately 3 h. Consequently, all cores experi-
enced the same ‘temperature history’.

The time required to ensure quasi steady state was
determined by repeated microprofiling (every 5 to
10 min). Further, preliminary investigations confirmed
that the order of temperature change had no effect on
the community response in the interval from –1 to
18°C. However, after exposure to temperatures >18°C,
the community rates were not always re-established
when temperatures were subsequently lowered (data
not shown).

Diffusive oxygen exchange (DOE) measurements.
DOE rate was estimated from the diffusive flux of O2

between the sediment and the water (Jup) as calculated
from steady-state O2 concentration profiles (Figs. 2b &
3). Jup was determined from the linear concentration
gradient within the DBL, using Fick’s first law of
diffusion (Eq. 1 in Fig. 3a) (Jørgensen & Revsbech
1985, Crank 1989). Symbols and abbreviations used
throughout the paper are listed in Table 2.

Oxygen profiles across the benthic interface were
obtained with a vertical resolution of 50 to 100 μm. The
thickness of the oxic zone (O2-pd) was directly deter-
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Fig. 2. Microcosms in which samples were installed prior to and during measurements. Sample temperature was controlled by a
cooling coil and a heating plate connected to a digital temperature sensor. Two Teflon-coated magnets were installed and driven
by a magnetic stirrer in the heating plate (65 to 70 rpm). The upper magnet (20 mm length) was mounted inside the core liner,
30 mm above the sediment surface, by a thin metal wire. The lower magnet provided stirring of the water in the microcosm,
together with the air bubbling. (a) Close-up of the upper sediment core closed by a transparent lid mounted with an O2 micro-
electrode and stirring magnet. (b) Close-up of the upper sediment core open to the surrounding water, with a positioned O2

microelectrode for measuring O2 microprofiles
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mined from the measured profiles accounting for the
observed thickness of DBL. The sediment dark respira-
tion (Rdark) was estimated as the flux of O2 into the sed-
iment (–Jup) from the overlying water (Eq. 1 in Fig. 3a).
The average specific sediment respiration (Rdark,vol),
defined as the integrated average volumetric respira-
tion of the oxic zone, was calculated by dividing Rdark

with O2-pd (Eq. 2 in Fig. 3a).
Net photosynthesis (Pn) in light equalled the flux of O2

out of the sediment (Jup) towards the overlying water
(Eq. 6 in Fig. 3b). The specific net photosynthesis of the
production zone (Pn,vol) was calculated as the total flux of
O2 out of the production zone, i.e. the sum of the flux to
the overlying water (Jup) and the downward flux to the
non-production zone (Jdown) (Eq. 7 in
Fig. 3b) divided by the thickness of the
production zone (Eq. 8 in Fig. 3b) (Glud
et al. 1992, Kühl et al. 1996). Jdown was
determined from the turning tangent to
the O2 profile at the boundary between
the production and the non-production
zones. The production zone was defined
as the upper oxic zone delimited down-
ward by the horizon of the compensation
point, i.e. where the gross O2 production
equalled the O2 consumption at incident
surface irradiance of 140 μmol photons
m–2 s–1 (Fig. 3b). The production zone is
not identical to the photic sediment zone;
however, in the present study the actual
production zone is in focus. The light
attenuation within the investigated
sediments was not determined but sup-
posed similar to the light attenuation
measured by Kühl & Jørgensen (1994) in
similar coastal sandy sediments. The
non-production zone was defined as the
oxic zone beneath the production zone.

In addition to Rdark and Rdark,vol, the
specific respiration of the separated
production and non-production zones
was calculated. The specific dark res-
piration rate of the production zone
(Rdark,vol,prod) was calculated as the O2

flux into the production zone (–Jup)
minus the O2 flux down to the non-
production zone (Jdown), accounting for
the thickness of the production zone
(Eq. 4 in Fig. 3a). Consequently, the
dark respiration rate of the non-pro-
duction zone (Rdark,vol,nprod) was calcu-
lated as the downward flux to the
non-production zone (Jdown) account-
ing for the thickness of the oxic non-
production zone (Eq. 5 in Fig. 3a). The

oxygen profiles were measured at spots with high
microphytic biomass in order to study the tempera-
ture response of respiration and photosynthesis. For
this reason, the measured DOE rates were not always
representative for the entire core area.

For O2 flux calculation in the sediment, the effective
diffusion coefficient of O2 (Ds) was derived from the
molecular diffusion coefficient of O2 (Do) and the sedi-
ment porosity (φ), according to Ullmann & Aller (1982)
(Eq. 9). The Do was from Broecker & Peng (1974) and
corrected for temperature and salinity as described by
Li & Gregory (1974).

Ds =  φ · Do (9)
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Abbreviation Definition

DBL Diffusive boundary layer 

TOE Total oxygen exchange 
(whole core consumption/production rates)

DOE Diffusive oxygen exchange 
(diffusive consumption/production rates)

C(z) Oxygen concentration at depth z (nmol cm–3)

Do Molecular diffusion coefficient of oxygen in water (cm2 s–1)

Ds Effective diffusion coefficient of oxygen in sediment 
(cm2 s–1)

depthprod Thickness of production zone

depthnprod Thickness of non-production zone

Ea Apparent activation energy (kJ mol–1)

Jdown Flux of O2 from the production zone to the non-production
zone (nmol O2 cm–2 s–1)

Jup, –Jup Flux of O2 across the DBL (nmol O2 cm–2 s–1)

Rdark (DOE) Areal sediment respiration in darkness (nmol O2 cm–2 s–1)

Rdark,vol Specific sediment respiration in darkness (nmol O2 cm–3 s–1)

Rdark,vol,prod Specific respiration of the production zonea in darkness
(nmol O2 cm–3 s–1)

Rdark,vol,nprod Specific respiration of the non-production zoneb in darkness
(nmol O2 cm–3 s–1)

Pn (DOE) Areal net photosynthesis of the sediment in light 
(nmol O2 cm–2 s–1)

Pn,vol Specific net photosynthesis of the production zone
(nmol O2 cm–3 s–1)

Pgross Areal gross photosynthesis of the production zone 
(nmol O2 cm–2 s–1)

Pgross,vol Volumetric gross photosynthesis (nmol O2 cm–3 s–1)

P(z) Volumetric gross photosynthesis at depth z
(nmol O2 cm–3 s–1)

O2-pd Oxygen penetration depth in the sediment

aThe production zone was defined as the upper 1.0 to 1.2 mm of the sediment
having a net O2 production in light

bThe non-production zone was defined as the oxic zone immediately
beneath the production zone. The oxic zone was defined as the upper sedi-
ment zone with a [O2] > 1 nmol O2 cm–3

Table 2. Definition of abbreviations
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Steady-state oxygen profiles were confirmed in each
experiment by comparing 2 or more profiles measured
within a time interval of 5 to 20 min.

Gross photosynthesis. Gross photosynthesis at depth
z, P(z), was measured by the light-dark shift method.
This approach estimates the gross O2 production from
the initial decrease of O2 after a sudden eclipse of 
light (Revsbech & Jørgensen 1983, Glud et al. 1992).
The O2 concentration was recorded continuously for
4 s during a light-dark shift. Repetitive measurements
at 5 min intervals were performed at the same position.
A photoelectrical cell connected to the flatbed recorder
was used to obtain the exact timing for the onset of
darkness.

Two practical approaches were applied to obtain the
gross photosynthetic rate as a function of temperature.
In Approach 1, we depth-integrated the gross photo-
synthesis of the entire production zone (Pgross). In this
approach, an electrode sensor tip was placed at the
very surface of the sediment and then moved down-

ward in steps of 100 μm. P(z) was measured at each
depth, using the light-dark shift method, until the mea-
sured rates approached zero at the bottom of the pro-
duction zone. Temperature was kept constant until a
complete vertical gross photosynthesis profile was
obtained (Glud et al. 1992, Kühl et al. 1996).

Approach 2 did not include profiling, and gross
photosynthesis was solely obtained at the depth of the
maximum activity within the production zone (Pgross,vol).
In this approach, the microsensor tip was carefully
placed at the given position, and subsequently tem-
perature was changed <6°C h–1 while performing
light-dark shifts every 10 to 20 min. Pgross rates were
calculated using Fick’s second law of diffusion simpli-
fied according to Revsbech et al. (1986):

(10)

The gross O2 production P(z) equals the initial linear
decrease of the O2 concentration C(z,t) at a specific

P z
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Fig. 3. Eqs. (1) to (8) for calculat-
ing diffusive O2 consumption
and production rates from
steady-state O2 concentration
profiles in (a) darkness and (b)
light, respectively. See Table 2
for definition of abbreviations.
For calculations performed in
the DBL, Do was applied, but for
calculations in the sediment, Do

was replaced by Ds (see text).
The DBL and the production
and the non-production zones
of the sediment are shown in
each panel. All flux measure-
ments were performed under
steady-state conditions and cal-
culations were based on Fick’s
1st law of diffusion. Inspired by 

Kühl et al. (1996)
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depth (z) over time (t). For a more detailed discussion of
the technique and the required assumptions, see Glud
et al. (1992).

Slurry experiments. Apart from the measurements
in intact benthic communities, slurry experiments on
re-suspended samples from the Trondheimsfjord were
performed in darkness. The oxic, production and non-
production zones of the sediment were incubated in
parallel by resuspending sediment samples (equiva-
lent to ~100 g dry matter l–1) in seawater from the sam-
pling site. The boundaries of the production and the
oxic zones were determined from O2 microprofiles
measured prior to core slicing. Before suspension of
the sediments, fauna visual to the naked eye was care-
fully removed from the slurries. The sediment slurries
were placed in the thermo-regulated water bath
(Fig. 2) and air-flushed for 30 min prior to the experi-
ment to ensure air-saturation and oxidation of reduced
inorganic substances. All slurries were stirred with a
magnetic stirrer in the time period prior to and during
the measurements. Any potential O2 consumption by
bacteria in the added seawater was assumed minor
and ignored (Thamdrup et al. 1998). Oxygen consump-
tion was measured after closing the samples, avoiding
bubbles and placing a microelectrode in the chamber
lid. The O2 consumption was measured continuously
for each incubation and was in all cases linear. The
temperature was kept constant during each incuba-
tion, and the incubations were performed at tempera-
ture steps between 0 and 48°C. Each incubation period
was adjusted to ensure a total O2 concentration change
of 10 to 30%.

Arrhenius plot and Q10 calculations. The effect of
temperature on respiration rates, net photosynthetic
and gross photosynthetic rates was quantified by calcu-
lating the apparent activation energy (Ea, in kJ mol–1)
and the corresponding Q10 value for each type of data
set. Ea was calculated as the slope of the available data
point from the initial linear part of an Arrhenius plot
(temperature < optimum), where ln(k) was plotted as a
function of temperature (RT )–1, according to Raven &
Geider (1988) and Isaksen & Jørgensen (1996) as:

ln(k) = ln(A) + [–Ea(RT)–1] (11)

where k is the rate of the reaction, A is the Arrhenius
constant, R is the gas constant (8.3144 J K–1 mol–1) and
T is the absolute temperature (K). Ea is not the chemi-
cal activation energy but the overall temperature
response of respiration or photosynthesis within the
entire sediment community. The Q10 value was calcu-
lated from Eq. (12), where Ea quantifies the increase of
the reaction rate. In all cases, a temperature interval
from 0 to 10°C was used in the calculation of Q10. Stan-
dard errors (SE) were obtained for Ea based on the
linear regressions (p = 0.05).

Q10 = exp{Ea · 10[RT (T + 10)]–1} (12)

Measured rates of respiration, as well as gross and
net photosynthesis, were compared between sites. A
statistical analysis of covariance (ANCOVA) was per-
formed to test for insignificance of the Q10 values be-
tween sites, as the rate × site interaction computed by
S-PLUS 6.2. ANCOVA assumes statistically indepen-
dent values. The experimental design of the present
study, however, does not offer completely independent
data due to the repeated measurements on the incu-
bated cores. We, however, judged that this had little
effect on the obtained statistical results and we found
no superior statistical model to fit the present study.

RESULTS

Total O2 exchange rates

TOE rates were measured in darkness and at
140 μmol photons m–2 s–1 as a function of temperature
(Fig. 4). The negative TOE rates in darkness reflect
sediment O2 consumption (influx of O2), whereas the
positive TOE rates in light reflect net O2 production
(efflux of O2). In darkness, the O2 consumption in-
creased exponentially with increasing temperature at
all the investigated sites. No optimum temperature
was observed between –1 and 21°C. To compare the
temperature response between sites, Q10(0–10°C) values
were calculated from the apparent Ea based on the lin-
ear slope of the Arrhenius plots (Fig. 4d). The calcu-
lated Q10 values for the dark-incubated cores were 3.3,
2.4 and 2.4 for Nivå Bay, the Trondheimsfjord, and the
Adventfjord, respectively. Ea ± SE and Q10 values are
presented in Table 3.

In light, the TOE rates increased gradually with
increasing temperature to a maximum at temperatures
between 6 and 12°C, followed by a decrease (Fig. 4).
The Q10 values for TOE in light were 1.7, 2.4 and 1.5 for
Nivå Bay, the Trondheimsfjord, and the Adventfjord,
respectively (Fig. 4e, Table 3).

For TOE in the dark, no significant difference of the
Q10 was observed between the Trondheimsfjord and
the Adventfjord (p > 0.05); however, a significant dif-
ference (p = 0.01) between the 3 sites was observed, as
Ea for Nivå Bay was higher than for the 2 other sites.
For TOE in light, there was no significant difference of
the Q10 between the 3 sites (p = 0.59). In all cases,
increasing temperature stimulated heterotrophic
activity more than photosynthesis, gradually shifting
the otherwise net autotrophic sediment community
towards a greater predominance of heterotrophic
activity. Temperature effects on total oxygen exchange
rates, however, essentially represent a ‘black box’
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approach confounded by changes in the O2 penetra-
tion depth, DBL thickness, diffusion coefficients, etc.,
and yields limited information on the actual microbial
temperature response. This, however, can be derived
from micro-profile measurements.

Diffusive O2 exchange rates in darkness

With increasing temperature, the O2 solubility de-
creases while the molecular diffusion coefficient in-
creases. In order to extract the biological response of the
intact community, detailed microsensor measurements
at the different experimental settings are required.
Steady-state O2 microprofiles were measured at temper-
atures from –1 to 21°C, and the corresponding DOE rates
were calculated. In darkness, DOE rates increased expo-
nentially with increasing temperature while the O2-pd
decreased (Fig. 5). The Q10(0–10°C) values for DOE in dark-
ness were 2.2, 1.7 and 2.4 for Nivå Bay, Trondheimsfjord

and Adventfjord, respectively (Ea ± SE and Q10 are pre-
sented in Fig. 5d & Table 3), and were not significantly
different between the 3 sites (p = 0.19). The Q10 values in
darkness, at the selected spots that were dominated by
phototrophs, tended to be lower than for the TOE, which
integrates the response of the entire sediment area. This
supports the observation of lower Q10 values for the au-
totrophic activity compared to the heterotrophic activity.
Q10 for O2-pd were 0.42, 0.64 and 0.73 for Nivå Bay, the
Trondheimsfjord and the Adventfjord, respectively (Fig.
5e, Table 3). The decrease in O2-pd with decreasing tem-
perature led to a lower volume of oxic sediment. The
specific respiration rates (Rdark,vol) (for method see Fig. 3)
were thereby strongly stimulated by increasing temper-
ature, with Q10 values of 5.2, 2.6 and 3.2 for Nivå Bay, the
Trondheimsfjord and the Adventfjord, respectively (Ea ±
SE and Q10 are presented in Fig. 5f & Table 3). However,
the Q10 for Nivå Bay was slightly higher than for the 2
other sites; the difference was not significant (p = 0.06).
The biological temperature response for the community
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was, hence, significantly stronger than was obtained
from simple flux measurements.

Production and non-production zone respiration

The oxic zone of the sediment was divided into an
upper production zone and a lower non-production
zone, to some extent reflecting the natural zonation of
microbes (Fig. 3) (e.g. MacIntyre & Cullen 1995,
Epping & Jørgensen 1996). Based on measured O2 pro-
files in darkness, specific consumption rates were cal-
culated for each zone, as Rdark,vol,prod and Rdark,vol,nprod,
respectively. The O2 consumption rates were overall
higher (1 to 6 times) for the production zone than for
the non-production zone (Fig. 6). However, the Q10

values tended to be higher for the non-production than
for the production zone, the exception being the
Adventfjord, which exhibited very low microphytic
biomass (Table 4). The higher Q10 response in Nivå
Bay and the Trondheimsfjord for non-production zone
respiration supports the previous observation of
heterotrophs being more sensitive to temperature
changes compared to the autotroph organisms.

Gross photosynthesis

Due to the relatively low biomass of microphytes at
the Adventfjord (Table 1), it was not possible to make
robust gross photosynthetic measurements at that
location. Depth-integrated rates of gross photosynthe-
sis (Pgross) (Approach 1, see ‘Materials and methods’)
were determined as a function of temperature only for
the Trondheimsfjord, whereas point measurements
(Pgross,vol) (Approach 2) were carried out in both Nivå
Bay and the Trondheimsfjord.

Pgross rates were obtained from integrating vertical
profiles of gross photosynthesis across the production
zone, for each temperature (Fig. 7). The shape of the
profiles was similar during changing temperature,
demonstrating a constant activity distribution with
depth and, hence, no vertical shift in the photosyn-
thetic activity was observed. The Pgross rate showed a
linear response with increasing temperature from 0°C
to the optimum temperature (Topt) at 12°C, with a Q10

value of 3.1 (Fig. 8d, Table 3). The Pgross,vol rate, based
on point measurements, showed a response similar to
Pgross obtained both in the Trondheimsfjord and in Nivå
Bay. For the Trondheimsfjord, Topt was 12°C and Q10

for Pgross,vol was 2.6 (Fig. 8b,d, Q10 and Ea in Table 3).
For Nivå Bay, Topt was 15°C and Q10 2.2 (Fig. 8a,c, Q10

and Ea in Table 3). Conclusively, the point measure-
ments confirmed the same trend as the depth-inte-
grated approach.

Diffusive O2 exchange rates in light

The net photosynthetic rate integrates the gross O2

production (production zone) and the O2 consumption
(in light) of the entire oxic zone. Net photosynthetic
rates (Pn) were calculated from O2 microprofiles in light
(140 μmol m–2 s–1) (Fig. 9a–c). The light-induced
response was highest in Nivå Bay and lowest in the
Adventfjord, reflecting the microphytic biomass at the
respective sites. Generally, the O2 concentration and
the O2-pd of the benthic community decreased with
increasing temperature. Calculated rates of Pn

increased continuously with temperature from 0°C to
Topt, at all sites (Fig. 9d). Rates for Nivå Bay and the
Trondheimsfjord showed a subsequent decrease above
Topt, which was 12°C for the Trondheimsfjord and the
Adventfjord and 15°C for Nivå Bay. Calculated Q10 val-
ues for Pn, derived from the Arrhenius plot, were 1.4,
2.2 and 1.6 for Nivå Bay, the Trondheimsfjord and the
Adventfjord, respectively (Ea in Fig. 9d, including Q10

in Table 3), and were not significantly different (p =
0.47). The Adventfjord showed lower absolute rates
than for the 2 other sites. No rates were obtained for
the Adventfjord at temperatures >12°C.
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Nivå Bay Trondheimsfjord Adventfjord

Darkness
TOE 3.3 (n = 6) 2.4 (n = 15) 2.4 (n = 5)

75.9 ± 6.6 55.6 ± 4.5 55.2 ± 5.2

DOE (Rdark) 2.2 (n = 6) 1.7 (n = 12) 2.4 (n = 5)
50.0 ± 10 33.5 ± 6.2 56.0 ± 12

O2-pd 0.42 (n = 6) 0.64 (n = 12) 0.73 (n = 5)
–55.9 ± 3.4 –27.1 ± 4.9 –20.0 ± 7.3

Rdark,vol 5.2 (n = 6) 2.6 (n = 12) 3.2 (n = 5)
105 ± 13 61.8 ± 10 75.0 ± 17

Slurry – 1.7 (n = 7) –
respiration 35.7 ± 9.3

Light
TOE 1.7 (n = 3) 2.4 (n = 7) 1.5 (n = 2)

35.6 ± 49 56.1 ± 7.5 26.5

DOE (Pn) 1.4 (n = 3) 2.2 (n = 4) 1.6 (n = 5)
23.5 ± 7.3 50.2 ± 11 31.1 ± 13

O2-pd 0.78 (n = 4) 0.82 (n = 4) 0.78 (n = 5)
–16.0 ± 12 –12.4 ± 3.3 –15.7 ± 6.4

Pn,vol 1.5 (n = 3) 2.1 (n = 4) 1.6 (n = 5)
24.6 ± 2.2 46.3 ± 11 30.4 ± 6.8

Pgross – 3.1 (n = 4) –
73.6 ± 11

Pgross,vol 2.2 (n = 10) 2.6 (n = 13) –
50.9 ± 7.0 62.5 ± 11

Table 3. Q10 values (upper values) of respiration, net production
and gross photosynthesis, calculated from the activation ener-
gies (Ea) (lower values) from Figs. 4, 5, 8 & 9. Ea ± SE (kJ mol–1) is
given below the Q10, n is number of regression points



Aquat Microb Ecol 37: 265–281, 2004

O2-pd decreased with increasing temperature for
all 3 sites (Fig. 9e), and calculated values of Q10 were
0.78, 0.82 and 0.78 in Nivå Bay, the Trondheimsfjord
and the Adventfjord, respectively (Table 3). Conclu-
sively, O2-pd in the light showed a similar tempera-
ture response as in darkness but with Q10 values
closer to 1.0.

The specific net photosynthesis (Pn,vol) integrates the
sum of the gross O2 production and the O2 consump-
tion (in light) in the production zone. The Pn,vol rates
generally showed the same trend as Pn but with higher
rates (Fig. 9f). The Q10 of Pn,vol was 1.5, 2.1 and 1.6 for
Nivå Bay, the Trondheimsfjord and the Adventfjord,
respectively (Table 3), and there was no significant dif-
ference between the sites (p = 0.34). The Pn,vol data
indicate that the temperature response of the produc-
tion zone was similar to the entire oxic zone of the
sediment exposed to light.
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Fig. 5. Steady-state O2 microprofiles in intact sediment cores in darkness at various temperatures (–1 to 24°C) from (a) Nivå Bay,
(b) the Trondheimsfjord and (c) the Adventfjord. Arrhenius plots of (d) diffusive O2 consumption (Rdark) calculated from the slope
of the profile in DBL, (e) the oxygen penetration depth and (f) the specific respiration as a function of temperature are shown. 
Activation energies (Ea ± SE; kJ mol–1) are included (d–f), labelled N (Nivå Bay), T (Trondheimsfjord) and A (Adventfjord). 

Corresponding Q10 values are shown in Table 3

Nivå Bay Trondheimsfjord Adventfjord

Intact sediment core respiration
Prod. zone 3.5 (n = 6) 2.2 (n = 12) 3.5 (n = 5)

80.5 ± 19 49.5 ± 11 81.4 ± 20

Non-prod. zone 6.1 (n = 6) 2.4 (n = 12) 2.1 (n = 5)
116 ± 8.9 56.1 ± 11 46.6 ± 13

Slurred sample respiration
Prod. zone – 1.9 (n = 6) –

42.0 ± 10

Non-prod. zone – 1.6 (n = 5) –
31.0 ± 9.4

Table 4. Q10 values (upper values) of the production and non-
production zone-specific respiration based on the activation
energies (Ea) (lower values) calculated from intact sediment
cores and slurry samples in darkness (Figs. 6 & 10). Ea ± SE
(kJ mol–1) is given below the Q10, n is number of regression

points
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Slurry experiments

For the Trondheimsfjord, the oxygen consumption in
darkness was additionally measured in sediment slurries
from the oxic, production and non-production zones
(Fig. 10). The experiment was performed partly to eluci-
date to what extent resuspension affects the biological
response and to allow for comparison with previous stud-
ies of temperature effects on O2 consumption rates,
which mainly have been conducted on slurred samples.
Oxygen consumption of the entire oxic zone increased
with temperature from 0°C to Topt at 21°C followed by a
decrease, and Q10 was 1.7 ± 0.5 (Fig. 10, Table 3). Oxy-
gen consumption of the separated production and non-
production zones showed similarly increasing rates with
increasing temperature towards Topt at 24 and 39°C,
respectively (Fig. 10a). For both sediment zones, a clear
decrease in the consumption rate was observed at tem-
peratures higher than Topt. Q10(6–16°C) for the initial O2

consumption increase (6 to 18°C) was 1.9 and 1.6 for the
production and non-production zones, respectively
(Fig. 10b, Table 4). Q10 of the sediment slurries showed a
generally weaker temperature response than the Rdark,vol

rates for intact sediment cores. The higher Topt for the
non-production than for the production zone indicates a
higher temperature optimum for the heterotrophic com-
munity than for the phototrophic-dominated part of the
sediment, presumably due to the overall vertical zona-
tion of phototrophs and heterotrophs. The Q10 value,
however, was not significantly different for the 2 zones.

DISCUSSION

Heterotrophic temperature response

Despite differences in water temperature and geo-
graphical position, the Q10 for the short-term tempera-
ture response of the dark respiration showed no signif-
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icant difference (p > 0.05) between the 3 sites. This was
true for both TOE and DOE rates, with one exception
for TOE in Nivå Bay showing a higher Q10 than for the
2 other sites (p < 0.05); we have no good explanation
for this exception. In general, we conclude that the
temperature acclimation response was similar for the 3
investigated sites. The lack of any distinct latitude
related temperature adaptation strategy could be due
to the relatively moderate temperature difference
between the investigated sites during sampling. In
fact, the seasonal temperature amplitude at each site
was larger than the temperature difference between
the sites at the time of sampling (Table 1). Moreover,
the diel temperature amplitude for the 2 temperate
sites, in summer, exceeded the temperature difference
between the 3 sites at sampling (in winter), with Nivå
Bay demonstrating a diel temperature amplitude of up
to 10°C during summer (data not shown). It can be
speculated that a seasonal temperature acclimation at
each site could be more pronounced than any latitude
related response.

A comparative study on short-term temperature
effects of aerobic respiration in slurred coastal sedi-
ments also concluded that Arctic and temperate sedi-
ments had similar Q10 values (Thamdrup & Fleischer
1998). However, a seasonal temperature acclimation
was observed for the temperate site, with Q10(0–10°C) of
2.0 and 3.0 for winter (1 to 3°C) and summer (13 to
15°C), respectively (Thamdrup et al. 1998). The sea-
sonal Q10 response was ascribed to a physiological
acclimation or a change in the genotypic composition
of the aerobic community. These findings contrast
conclusions of sulphate reduction measurements,
obtained in intact sediment incubations, having
Q10(2–12ºC) of 1.5 and 3.0 to 3.9 for Antarctic and tem-
perate sediments, respectively (Isaksen & Jørgensen
1996). However, Ea in the range of 40 to 75 kJ mol–1

(corresponding to a Q10(0–10°C) of 1.8 to 3.2) for
sulphate reduction have been published from the
permanently cold areas around Svalbard (Sagemann
et al. 1998), also pointing to a non-consistent latitude
dependence of Q10 on sulphate reduction rates.
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Q10 for the area based dark heterotrophic response
varied from 1.7 to 3.3. Published Q10 values of areal
O2 consumption rates from comparable experiments
range between 2.0 and 3.0 for subtidal and intertidal
sites (Duff & Teal 1965, Davis & McIntire 1983). A
broader range of Q10 values are published derived
from correlations between seasonal rates and water
temperatures and from manipulated samples (e.g.
Grant 1986, Therkildsen & Lomstein 1993). The latter
findings are, however, not directly comparable to our
short-term incubations.

Q10 for TOE tended to be higher than for DOE. As
previously mentioned, this supports a stronger temper-
ature response for the heterotrophs compared to the
phototrophs in the dark, as DOE is measured at spots
with high biomass of phototrophs, compared to TOE
integrating the entire core surface. TOE data poten-
tially include the infauna response, which can lead to a
relatively higher Q10 due to infaunal respiration. Q10

for fauna respiration is typically published to be ~2.5

and it cannot be excluded that it affected the Q10 based
on the TOE rates (Caron et al. 1990).

The Q10 values for the specific rate (Rdark,vol) were
higher than the area based values (2.6 to 5.2, Table 3).
As previously described, the Rdark,vol is corrected for the
O2-pd and solely represents the microbial response,
where the temperature effects on the areal rates are
biased by the decreasing thickness of the oxic zone,
with increasing temperature. In the literature, there
are only very few measurements of benthic volume-
specific temperature responses from similar settings
and these were not performed on intact communities
but on slurred samples. Our measurements show that
the temperature response in slurred sediments is lower
than in undisturbed sediment cores, with a Q10 of 1.7
(Ea = 35.7 ± 9.3) versus 2.6 (Ea = 61.8 ± 10), respectively
(Table 3). The lower temperature response following
resuspension must be ascribed to a radical change in
the community structure and the micro-environmental
controls of the community. Our data show that Q10
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Fig. 9. Steady-state O2 microprofiles in intact sediment cores at 140 μmol photons m–2 s–1 at various temperatures (–1 to 24°C)
from (a) Nivå Bay, (b) the Trondheimsfjord and (c) the Adventfjord. Arrhenius plots of (d) diffusive oxygen exchange (DOE)
equivalent to the areal net photosynthesis (Pn), (e) the oxygen penetration depth and (f) the specific net photosynthesis of the
production zone (Pn,vol) as a function of temperature are shown. Activation energies (Ea ± SE; kJ mol–1) are included, labelled 

N (Nivå Bay), T (Trondheimsfjord) and A (Adventfjord) (d–f). Corresponding Q10 values are shown in Table 3
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values from sediment O2 consumption studies, esti-
mated from areal rates and slurred samples, generally
underestimate the temperature response of intact sed-
iment microbial communities.

Phototrophic temperature response

The temperature response of the gross photosynthe-
sis from the 2 investigated sites was very similar
(Table 3). At both sites, Pgross and Pgross,vol increased
almost linearly until reaching Topt of 12 to 15°C, where-
after it gradually decreased. The curve expresses a
classical metabolic temperature response, thus the fol-
lowing criteria for cardinal temperatures were used for
categorisation: for psychrophiles, Tmin < 0°C, Topt ≤
15°C and Tmax ≤ 20°C; for psychrotrophs, Tmin ≤ 0°C,
Topt ≤ 25°C and Tmax ≤ 35°C; and for mesophiles, Topt is

~25 to 40°C and Tmax ≈ 35 to 45°C (Isaksen & Jørgensen
1996). Even though cardinal temperature ranges tradi-
tionally refer to thermal classes of growth, with
narrower limits and lower optimums, they have also
been used to describe metabolic activity (Isaksen &
Jørgensen 1996, Thamdrup & Fleischer 1998). This
generally accepted scheme categorises the gross
photosynthetic response for both Nivå Bay and the
Trondheimsfjord as psychrotrophic. Studies from the
Danish and Dutch Wadden Seas, applying other tech-
niques, have shown lower-end mesophile temperature
responses of gross photosynthesis, with Topt of 15 to
30°C (Colijn & van Buurt 1975, Rasmussen et al. 1983,
Blanchard et al. 1996).

In the literature, Q10 values of benthic photosynthe-
sis have been based on a variety of different laboratory
and in situ techniques, which grossly hamper any
direct comparison. The majority of published Q10 val-
ues, however, are within the range of 1.5 to 2.5 (e.g.
Colijn & van Buurt 1975, Davis & McIntire 1983, Grant
1986), with a few outliers representing air-exposed
intertidal sediments (Rasmussen et al. 1983). In gen-
eral, a Q10 of ~2 for the gross photosynthetic rate is
commonly accepted (Davison 1991). Our data are at
the high end (2.2 to 3.1) of any comparable studies;
however, all previous measurements were performed
by 14C incubation techniques, which are known to
poorly represent the in situ rates (e.g. Revsbech et al.
1981). To our knowledge, no previous studies have
compared the benthic temperature response of gross
photosynthesis at different geographic settings.

Several intertidal studies have shown diatom migra-
tion on both diel and seasonal scales, and suggested
temperature and light to be controlling factors (e.g.
Barranguet et al. 1998, Saburova & Polikarpov 2003).
However, migration of diatoms (or physical mixing) can
occur without any measurable effect on the overall
photosynthetic activity of the benthic community (Blan-
chard & Gall 1994). In the present study, the benthic ac-
tivity distribution was unaffected by changes in temper-
ature and the conclusions on activity changes were thus
not confounded by any vertical migration. We can, how-
ever, not exclude the possibility that migration took place
but had no effect on the overall activity distribution.

Heterotroph versus phototroph temperature response

The present study shows that increasing temperature
stimulates the heterotrophic activity more than gross
photosynthesis. Consequently, the typically mixed ben-
thic community of heterotrophic and phototrophic mi-
crobes gradually turns heterotrophic at increasing tem-
perature. A gradual transition from a phototrophic- to a
heterotrophic-dominated community with increasing
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temperature has previously been reported for intertidal
sediments, with Q10 values of 2.05 and 2.70 for gross
photosynthesis and respiration, respectively (Davis &
McIntire 1983). The authors hypothesize that a high Q10

can be seen as a response to high water-temperature
variability and, hence, the authors ascribe the higher
Q10 for the respiration to a more efficient acclimation of
heterotrophic compared to phototrophic organisms.
Similar observations have been made in temperate
planktonic communities (Lefèvre et al. 1994, Robinson
2000) and for Antarctic macroalgae (Wiencke et al.
1993). The observations have generally been explained
by a stronger and more rapid physiological acclimation
of heterotrophic metabolism compared to photosyn-
thesis during short-term temperature variations. In the
present study, however, the diel temperature variability
was low at the time of sampling and the data do not
support the idea of a more rapid acclimation of hetero-
trophic metabolism. The stronger heterotrophic tem-
perature response, as observed in this study, seems to
be a general phenomenon rather than being excep-
tional. This was supported by Robinson (2000) with
data from a pelagic study carried out in the relatively
temperature-stable Aegean Sea.

A comparable detailed microsensor study on temper-
ature responses of a cyanobacterial mats in Solar Lake
(Egypt) (in situ temperatures of 25 to 45°C) has been per-
formed. The study indicated a relatively low temperature
response of the O2 consumption in the dark (1.3) com-
pared to the gross photosynthesis (3.1) (Wieland & Kühl
2000). The authors ascribed the low Q10 for respiration to
a limitation of the O2 transport across the DBL at such
high temperatures (>40°C). However, the Q10 values
were calculated from areal rates and, hence, they do not
represent the true microbial response. In accordance
with our observations, the authors also concluded that at
a moderate irradiance (as for the present study), temper-
ature clearly increased the percentage of O2 which was
consumed within the cyanobacterial mat. Thus, elevated
temperature increased the light requirement for a net
phototrophic community and, hence, at constant irradi-
ance, the mat turned into a net heterotroph community
at increasing temperature. Recalculating the data from
Wieland & Kühl (2000), correcting the areal rates for the
O2-pd, led to a Q10(25–35°C) for the volume-specific O2 con-
sumption of 2.7. This 2-fold higher Q10 for the specific
rate is in agreement with our study and supports that Q10

values estimated from areal rates underestimate the mi-
crobial community temperature response.

All Q10 values in the present study of O2 consumption
were calculated from dark consumption rates. In light,
phototrophic as well as heterotrophic organisms con-
sume O2, and besides the metabolic respiration, ele-
vated O2 consumption can be caused by photorespira-
tion and the turn-over of excreted photosynthate by

heterotrophic organisms. Several studies have docu-
mented a higher (10 to 30%) O2 consumption in light
compared to that in the dark, due to photorespiration
and associated processes (Glud et al. 1992, 1999,
Epping & Jørgensen 1996, Wieland & Kühl 2000). The
present study does not allow for detailed calculation of
O2 consumption in light, nor was it possible to calculate
the Q10 for the O2 consumption in light from the data of
Wieland & Kühl (2000).

In general, substrate limitation is not considered rate
limiting in coastal shallow water sediments, as a net
flux of nutrients and DOC from the sediment to the wa-
ter column is typical (Dalsgaard 2003). However, due to
the tight spatial and temporal coupling between pro-
duction and consumption of organic matter (e.g.
Epping & Jørgensen 1996) and the light-dependent ex-
cretion of photosynthates by microphytes, it is possible
that improved substrate availability will fuel an in-
creased respiration in light. No sign of rate-suppressing
substrate limitation was observed in the present study.

In conclusion, no difference in the temperature accli-
mation response between the sites was observed, sug-
gesting that the temperature adaptation strategic for
the benthic microbial community was the same for the
arctic and the temperate community. The biological
temperature response for the sediment O2 consump-
tion, as derived from the volume-specific O2 consump-
tion rate (Rdark,vol) showed higher Q10 values than de-
rived from areal flux measurements. Thus, Q10

calculated from areal rates of sediment O2 consump-
tion will underestimate the Q10 for the microbial tem-
perature response. Similarly, we suggest that slurred
sediment samples for estimation of metabolic activity
and responses to changes of environmental factors, i.e.
temperature or irradiance, will underestimate the re-
sponse due to significantly altered microenvironments.
The present study shows that increasing temperature
stimulates heterotrophic activity more than gross
photosynthesis, and consequently, the sediment grad-
ually turns heterotrophic with increasing temperature.
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Doctoral theses in Biology 

Norwegian University of Science and Technology 

Department of Biology 

Year Name Degree Title
 1974 Tor-Henning Iversen Dr. philos 

Botany 
The roles of statholiths, auxin transport, and auxin 
metabolism in root gravitropism 

 1978 Tore Slagsvold Dr. philos. 
Zoology 

Breeding events of birds in relation to spring temperature 
and environmental phenology. 

 1978 Egil Sakshaug Dr.philos 
Botany 

"The influence of environmental factors on the chemical 
composition of cultivated and natural populations of 
marine phytoplankton" 

 1980 Arnfinn Langeland Dr. philos. 
Zoology 

Interaction between fish and zooplankton populations 
and their effects on the material utilization in a 
freshwater lake. 

 1980 Helge Reinertsen Dr. philos 
Botany 

The effect of lake fertilization on the dynamics and 
stability of a limnetic ecosystem with special reference to 
the phytoplankton 

 1982 Gunn Mari Olsen Dr. scient 
Botany 

Gravitropism in roots of Pisum sativum and Arabidopsis 
thaliana

 1982 Dag Dolmen Dr. philos. 
Zoology 

Life aspects of two sympartic species of newts (Triturus, 
Amphibia) in Norway, with special emphasis on their 
ecological niche segregation. 

 1984 Eivin Røskaft Dr. philos. 
Zoology 

Sociobiological studies of the rook Corvus frugilegus.

 1984 Anne Margrethe 
Cameron 

Dr. scient 
Botany 

Effects of alcohol inhalation on levels of circulating 
testosterone, follicle stimulating hormone and luteinzing 
hormone in male mature rats 

 1984 Asbjørn Magne Nilsen Dr. scient 
Botany 

Alveolar macrophages from expectorates – Biological 
monitoring of workers exosed to occupational air 
pollution. An evaluation of the AM-test 

 1985 Jarle Mork Dr. philos. 
Zoology 

Biochemical genetic studies in fish. 

 1985 John Solem Dr. philos. 
Zoology 

Taxonomy, distribution and ecology of caddisflies 
(Trichoptera) in the Dovrefjell mountains. 

 1985 Randi E. Reinertsen Dr. philos. 
Zoology 

Energy strategies in the cold: Metabolic and 
thermoregulatory adaptations in small northern birds. 

 1986 Bernt-Erik Sæther Dr. philos. 
Zoology 

Ecological and evolutionary basis for variation in 
reproductive traits of some vertebrates: A comparative 
approach. 

 1986 Torleif Holthe Dr. philos. 
Zoology 

Evolution, systematics, nomenclature, and zoogeography 
in the polychaete orders Oweniimorpha and 
Terebellomorpha, with special reference to the Arctic 
and Scandinavian fauna. 

 1987 Helene Lampe Dr. scient. 
Zoology 

The function of bird song in mate attraction and 
territorial defence, and the importance of song 
repertoires. 



 1987 Olav Hogstad Dr. philos. 
Zoology 

Winter survival strategies of the Willow tit Parus 
montanus.

 1987 Jarle Inge Holten Dr. philos 
Bothany 

Autecological investigations along a coust-inland 
transect at Nord-Møre, Central Norway 

 1987 Rita Kumar Dr. scient 
Botany 

Somaclonal variation in plants regenerated from cell 
cultures of Nicotiana sanderae and Chrysanthemum 
morifolium

 1987 Bjørn Åge Tømmerås Dr. scient. 
Zoology 

Olfaction in bark beetle communities: Interspecific 
interactions in regulation of colonization density, 
predator - prey relationship and host attraction. 

 1988 Hans Christian 
Pedersen 

Dr. philos. 
Zoology 

Reproductive behaviour in willow ptarmigan with 
special emphasis on territoriality and parental care. 

 1988 Tor G. Heggberget Dr. philos. 
Zoology 

Reproduction in Atlantic Salmon (Salmo salar): Aspects 
of spawning, incubation, early life history and population 
structure. 

 1988 Marianne V. Nielsen Dr. scient. 
Zoology 

The effects of selected environmental factors on carbon 
allocation/growth of larval and juvenile mussels (Mytilus
edulis).

 1988 Ole Kristian Berg Dr. scient. 
Zoology 

The formation of landlocked Atlantic salmon (Salmo 
salar L.). 

 1989 John W. Jensen Dr. philos. 
Zoology 

Crustacean plankton and fish during the first decade of 
the manmade Nesjø reservoir, with special emphasis on 
the effects of gill nets and salmonid growth. 

 1989 Helga J. Vivås Dr. scient. 
Zoology 

Theoretical models of activity pattern and optimal 
foraging: Predictions for the Moose Alces alces.

 1989 Reidar Andersen Dr. scient. 
Zoology 

Interactions between a generalist herbivore, the moose 
Alces alces, and its winter food resources: a study of 
behavioural variation. 

 1989 Kurt Ingar Draget Dr. scient 
Botany 

Alginate gel media for plant tissue culture, 

 1990 Bengt Finstad Dr. scient. 
Zoology 

Osmotic and ionic regulation in Atlantic salmon, 
rainbow trout and Arctic charr: Effect of temperature, 
salinity and season. 

 1990 Hege Johannesen Dr. scient. 
Zoology 

Respiration and temperature regulation in birds with 
special emphasis on the oxygen extraction by the lung. 

 1990 Åse Krøkje Dr. scient 
Botany 

The mutagenic load from air pollution at two work-
places with PAH-exposure measured with Ames 
Salmonella/microsome test 

 1990 Arne Johan Jensen Dr. philos. 
Zoology 

Effects of water temperature on early life history, 
juvenile growth and prespawning migrations of Atlantic 
salmion (Salmo salar) and brown trout (Salmo trutta): A 
summary of studies in Norwegian streams. 

 1990 Tor Jørgen Almaas Dr. scient. 
Zoology 

Pheromone reception in moths: Response characteristics 
of olfactory receptor neurons to intra- and interspecific 
chemical cues. 

 1990 Magne Husby Dr. scient. 
Zoology 

Breeding strategies in birds: Experiments with the 
Magpie Pica pica.

 1991 Tor Kvam Dr. scient. 
Zoology 

Population biology of the European lynx (Lynx lynx) in 
Norway. 



 1991 Jan Henning L'Abêe 
Lund 

Dr. philos. 
Zoology 

Reproductive biology in freshwater fish, brown trout 
Salmo trutta and roach Rutilus rutilus in particular. 

 1991 Asbjørn Moen Dr. philos 
Botany 

The plant cover of the boreal uplands of Central Norway.
I. Vegetation ecology of Sølendet nature reserve; 
haymaking fens and birch woodlands 

 1991 Else Marie Løbersli Dr. scient 
Botany 

Soil acidification and metal uptake in plants 

 1991 Trond Nordtug Dr. scient. 
Zoology 

Reflctometric studies of photomechanical adaptation in 
superposition eyes of arthropods. 

 1991 Thyra Solem Dr. scient 
Botany 

Age, origin and development of blanket mires in Central 
Norway 

 1991 Odd Terje Sandlund Dr. philos. 
Zoology 

The dynamics of habitat use in the salmonid genera 
Coregonus and Salvelinus: Ontogenic niche shifts and 
polymorphism. 

 1991 Nina Jonsson Dr. philos. Aspects of migration and spawning in salmonids. 
 1991 Atle Bones Dr. scient 

Botany 
Compartmentation and molecular properties of 
thioglucoside glucohydrolase (myrosinase) 

 1992 Torgrim Breiehagen Dr. scient. 
Zoology 

Mating behaviour and evolutionary aspects of the 
breeding system of two bird species: the Temminck's 
stint and the Pied flycatcher. 

 1992 Anne Kjersti Bakken Dr. scient 
Botany 

The influence of photoperiod on nitrate assimilation and 
nitrogen status in timothy (Phleum pratense L.) 

 1992 Tycho Anker-Nilssen Dr. scient. 
Zoology 

Food supply as a determinant of reproduction and 
population development in Norwegian Puffins 
Fratercula arctica

 1992 Bjørn Munro Jenssen Dr. philos. 
Zoology 

Thermoregulation in aquatic birds in air and water: With 
special emphasis on the effects of crude oil, chemically 
treated oil and cleaning on the thermal balance of ducks. 

 1992 Arne Vollan Aarset Dr. philos. 
Zoology 

The ecophysiology of under-ice fauna: Osmotic 
regulation, low temperature tolerance and metabolism in 
polar crustaceans. 

 1993 Geir Slupphaug Dr. scient 
Botany 

Regulation and expression of uracil-DNA glycosylase 
and O6-methylguanine-DNA methyltransferase in 
mammalian cells 

 1993 Tor Fredrik Næsje Dr. scient. 
Zoology 

Habitat shifts in coregonids. 

 1993 Yngvar Asbjørn Olsen Dr. scient. 
Zoology 

Cortisol dynamics in Atlantic salmon, Salmo salar L.: 
Basal and stressor-induced variations in plasma levels 
ans some secondary effects. 

 1993 Bård Pedersen Dr. scient 
Botany 

Theoretical studies of life history evolution in modular 
and clonal organisms 

 1993 Ole Petter Thangstad Dr. scient 
Botany 

Molecular studies of myrosinase in Brassicaceae 

 1993 Thrine L. M. 
Heggberget 

Dr. scient. 
Zoology 

Reproductive strategy and feeding ecology of the 
Eurasian otter Lutra lutra.

 1993 Kjetil Bevanger Dr. scient. 
Zoology 

Avian interactions with utility structures, a biological 
approach. 

 1993 Kåre Haugan Dr. scient 
Bothany 

Mutations in the replication control gene trfA of the 
broad host-range plasmid RK2 



 1994 Peder Fiske Dr. scient. 
Zoology 

Sexual selection in the lekking great snipe (Gallinago 
media): Male mating success and female behaviour at the 
lek. 

 1994 Kjell Inge Reitan Dr. scient 
Botany 

Nutritional effects of algae in first-feeding of marine fish 
larvae 

 1994 Nils Røv Dr. scient. 
Zoology 

Breeding distribution, population status and regulation of 
breeding numbers in the northeast-Atlantic Great 
Cormorant Phalacrocorax carbo carbo.

 1994 Annette-Susanne 
Hoepfner 

Dr. scient 
Botany 

Tissue culture techniques in propagation and breeding of 
Red Raspberry (Rubus idaeus L.) 

 1994 Inga Elise Bruteig Dr. scient 
Bothany 

Distribution, ecology and biomonitoring studies of 
epiphytic lichens on conifers 

 1994 Geir Johnsen Dr. scient 
Botany 

Light harvesting and utilization in marine phytoplankton: 
Species-specific and photoadaptive responses 

 1994 Morten Bakken Dr. scient. 
Zoology 

Infanticidal behaviour and reproductive performance in 
relation to competition capacity among farmed silver fox 
vixens, Vulpes vulpes.

 1994 Arne Moksnes Dr. philos. 
Zoology 

Host adaptations towards brood parasitism by the 
Cockoo. 

 1994 Solveig Bakken Dr. scient 
Bothany 

Growth and nitrogen status in the moss Dicranum majus 
Sm. as influenced by nitrogen supply 

 1995 Olav Vadstein Dr. philos 
Botany 

The role of heterotrophic planktonic bacteria in the 
cycling of phosphorus in lakes: Phosphorus requirement, 
competitive ability and food web interactions. 

 1995 Hanne Christensen Dr. scient. 
Zoology 

Determinants of Otter Lutra lutra distribution in 
Norway: Effects of harvest, polychlorinated biphenyls 
(PCBs), human population density and competition with 
mink Mustela vision.

 1995 Svein Håkon Lorentsen Dr. scient. 
Zoology 

Reproductive effort in the Antarctic Petrel Thalassoica 
antarctica; the effect of parental body size and condition.

 1995 Chris Jørgen Jensen Dr. scient. 
Zoology 

The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

 1995 Martha Kold Bakkevig Dr. scient. 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport. 

 1995 Vidar Moen Dr. scient. 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints 
on Cladoceran and Char populations. 

 1995 Hans Haavardsholm 
Blom 

Dr. philos 
Bothany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden. 

 1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine 
fish; inpact fish-bacterial interactions on growth and 
survival of larvae. 

 1996 Ola Ugedal Dr. scient. 
Zoology 

Radiocesium turnover in freshwater fishes 

 1996 Ingibjørg Einarsdottir Dr. scient. 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some 
physiological and immunological responses to rearing 
routines. 



 1996 Christina M. S. Pereira Dr. scient. 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation. 

 1996 Jan Fredrik Børseth Dr. scient. 
Zoology 

The sodium energy gradients in muscle cells of Mytilus
edulis and the effects of organic xenobiotics. 

 1996 Gunnar Henriksen Dr. scient. 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region. 

 1997 Gunvor Øie Dr. scient 
Bothany 

Eevalution of rotifer Brachionus plicatilis quality in 
early first feeding of turbot Scophtalmus maximus L. 
larvae. 

 1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site 
and stand parameters. 

 1997 Ole Reitan  Dr. scient. 
Zoology 

Responses of birds to habitat disturbance due to 
damming. 

 1997 Jon Arne Grøttum  Dr. scient. 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture. 

 1997 Per Gustav Thingstad  Dr. scient. 
Zoology 

Birds as indicators for studying natural and human-
induced variations in the environment, with special 
emphasis on the suitability of the Pied Flycatcher. 

 1997 Torgeir Nygård  Dr. scient. 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 
Biomonitors. 

 1997 Signe Nybø  Dr. scient. 
Zoology 

Impacts of long-range transported air pollution on birds 
with particular reference to the dipper Cinclus cinclus in 
southern Norway. 

 1997 Atle Wibe  Dr. scient. 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed 
by gas chromatography linked to electrophysiology and 
to mass spectrometry. 

 1997 Rolv Lundheim  Dr. scient. 
Zoology 

Adaptive and incidental biological ice nucleators.     

 1997 Arild Magne Landa Dr. scient. 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation 
and conservation. 

 1997 Kåre Magne Nielsen Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation 
in Acinetobacter calcoacetius.

 1997 Jarle Tufto  Dr. scient. 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and 
statistical models 

 1997 Trygve Hesthagen  Dr. philos. 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

 1997 Trygve Sigholt  Dr. philos. 
Zoology 

Control of  Parr-smolt transformation and seawater 
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual seawater 
acclimation, NaCl and betaine in the diet 

 1997 Jan Østnes  Dr. scient. 
Zoology 

Cold sensation in adult and neonate birds 

 1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins. 



 1998 Thor Harald Ringsby Dr. scient. 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

 1998 Erling Johan Solberg Dr. scient. 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: 
consequences of harvesting in a variable environment 

 1998 Sigurd Mjøen Saastad Dr. scient 
Botany 

Species delimitation and phylogenetic relationships 
between the Sphagnum recurvum complex (Bryophyta): 
genetic variation and phenotypic plasticity. 

 1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a 
head liver S9 vial  equilibration system in vitro. 

 1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – 
A conservtaion biological approach. 

 1998 Bente Gunnveig Berg Dr. scient. 
Zoology 

Encoding of pheromone information in two related moth 
species 

 1999 Kristian Overskaug Dr. scient. 
Zoology 

Behavioural and morphological characteristics in 
Northern Tawny Owls Strix aluco: An intra- and 
interspecific comparative approach 

 1999 Hans Kristen Stenøien Dr. scient 
Bothany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts 
and hornworts) 

 1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in 
the outlying haylands at Sølendet, Central Norway. 

 1999 Ingvar Stenberg Dr. scient. 
Zoology 

Habitat selection, reproduction and survival in the 
White-backed Woodpecker Dendrocopos leucotos

 1999 Stein Olle Johansen Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis. 

 1999 Trina Falck Galloway Dr. scient. 
Zoology 

Muscle development and growth in early life stages of 
the Atlantic cod (Gadus morhua L.) and Halibut 
(Hippoglossus hippoglossus L.) 

 1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and life history studies of 
fishes. 

 1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua)
in the North-East Atlantic 

 1999 Hans Martin Hanslin Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and 
Rhytidiadelphus lokeus.

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, behaviour and 
performance of wild and farmed Atlantic salmon (Salmo 
salar) revealed by molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from 
Brassica napus hypocotyls cultivated under various g-
forces 

 1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for mates, and conflicts of 
interest in the Lekking Great Snipe 

 1999 Katrine Wangen Rustad Dr. scient. 
Zoology 

Modulation of glutamatergic neurotransmission related 
to cognitive dysfunctions and Alzheimer’s disease 



 1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous families: 
mate choice and conflicts over parental care in the 
Bluethroat (Luscinia s. svecica)

 1999 Gunnbjørn Bremset Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences 
and competitive interactions 

 1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional analyses of human, 
secretory phospholipase A2 

 2000 Ingrid Salvesen, I Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

 2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions 
and counteradaptions in a coevolutionary arms race 

2000 Pavlos Makridis Dr. scient 
Botany

Methods for the microbial econtrol of live food used for 
the rearing of marine fish larvae 

 2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana)

 2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

 2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in 
Central Norway 

 2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine 
cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the 
managed boreal forset systems 

 2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.)

 2001 Bård Gunnar Stokke Dr. scient. 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus)

 2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in 
boreal vegetation influenced by scything at Sølendet, 
Central Norway 

 2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in beaver (Castor fiber)

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in 
Monocytes During Atherosclerosis Development 

 2002 Terje Thun Dr.philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 



 2002 Birgit Hafjeld Borgen Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) 
and their role in defense, development and growth 

 2002 Bård Øyvind Solberg Dr. scient 
Biology 

Effects of climatic change on the growth of dominating 
tree species along major environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms.  Studies of RAC GTPases in Arabidopsis 
thaliana and 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in 
fitness-related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

 2003 Åsa Maria O. Espmark 
Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in 
threespine stickleback Gasterosteus aculeatur L.

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine 
vegetation – an integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in Scandinavian brown bears 

 2003 Cyril Lebogang Taolo Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use 
of the African buffalo (Syncerus caffer) in Chobe 
National Park, Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones specified for the same 
odorants in three related Heliothine species (Helicoverpa 
armigera, Helicoverpa assulta and Heliothis virescens)

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

 2003 David Alexander Rae Dr.scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and 
Artic environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive behaviour in gobies and 
guppies: a female perspective 

 2003 Eldar Åsgard Bendiksen Dr.scient 
Biology 

Environmental effects on lipid nutrition of farmed 
Atlantic salmon (Salmo Salar L.) parr and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae (Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and functional studies of RAC 
GTPases and the WAVE-like regulatory protein complex 
in Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory learning of plant odours 
in heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa 
assulta).



 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA 
adducts as biomarkers for organic pollution in the natural 
environment 

 2004 Emmanuel J. Gerreta Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by 
Botrytis cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-
Term Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species discrimination from 
High-Resolution Magic Angle Spinning NMR analysis 
of whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate choice, and parental 
investment among Norwegians over a 300-year period 

 2005 Tonette Røstelien PhD 
Biology 

Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus 
grypus) pups and their impact on plasma thyrid hormone 
and vitamin A concentrations. 

 2005 Christian Westad Dr.scient 
Biology 

Motor control of the upper trapezius 

 2005 Lasse Mork Olsen PhD 
Biology 

Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

 2005 Åslaug Viken PhD 
Biology 

Implications of mate choice for the management of small 
populations 

 2005 Ariaya Hymete Sahle 
Dingle 

PhD 
Biology 

Investigation of the biological activities and chemical 
constituents of selected Echinops spp. growing in 
Ethiopia 

 2005 Ander Gravbrøt Finstad PhD 
Biology 

Salmonid fishes in a changing climate: The winter 
challenge 

 2005 Shimane Washington 
Makabu 

PhD 
Biology 

Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

 2005 Kjartan Østbye Dr.scient 
Biology 

The European whitefish Coregonus lavaretus (L.) 
species complex: historical contingency and adaptive 
radiation 

 2006 Kari Mette Murvoll PhD 
Biology 

Levels and effects of persistent organic pollutans (POPs) 
in seabirds 
Retinoids and -tocopherol –  potential biomakers of 
POPs in birds?

 2006 Ivar Herfindal Dr.scient 
Biology 

Life history consequences of environmental variation 
along ecological gradients in northern ungulates 



 2006 Nils Egil Tokle PhD 
Biology 

Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with 
main focus on Calanus finmarchicus

 2006 Jan Ove Gjershaug Dr.philos 
Biology 

Taxonomy and conservation status of some booted 
eagles in south-east Asia 

 2006 Jon Kristian Skei Dr.scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

 2006 Johanna Järnegren PhD 
Biology 

Acesta Oophaga and Acesta Excavata – a study of 
hidden biodiversity 

 2006 Bjørn Henrik Hansen PhD 
Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in 
Central Norway 

 2006 Vidar Grøtan PhD 
Biology 

Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

 2006 Jafari R Kideghesho PhD 
Biology 

Wildlife conservation and local land use conflicts in 
western Serengeti, Corridor Tanzania 

 2006 Anna Maria Billing PhD 
Biology 

Reproductive decisions in the sex role reversed pipefish 
Syngnathus typhle: when and how to invest in 
reproduction 

 2006 Henrik Pärn PhD 
Biology 

Female ornaments and reproductive biology in the 
bluethroat 

 2006 Anders J. Fjellheim PhD 
Biology 

Selection and administration of probiotic bacteria to 
marine fish larvae 

 2006 P. Andreas Svensson PhD 
Biology 

Female coloration, egg carotenoids and reproductive 
success: gobies as a model system 

 2007 Sindre A. Pedersen PhD 
Biology 

Metal binding proteins and antifreeze proteins in the 
beetle Tenebrio molitor 
- a study on possible competition for the semi-essential 
amino acid cysteine 

     
     




