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Abstract

The goal of this thesis, is to investigate the possible benefits of using general-purpose
computing on graphics processing units (GPGPU), in order to speed up the execution of
calculations in engineering applications.

The thesis focuses primarily on speeding up the process of analyzing laser scan point
clouds, in software developed by TechnoSoft Inc. This is achieved by developing faster
algorithms for solving the k-nearest neighbors (kNN), and All-kNN problem, optimized
for point cloud data.

A parallel brute-force algorithm is developed, which is capable of solving the kNN prob-
lem up to 70 times faster than a similar algorithm developed by Garcia et.al. [13], when
working on comparable data.

By utilizing the k-d tree data structure, a parallel tree-build and query algorithm is de-
veloped, suitable for solving the All-kNN problem. This algorithm improves the result
obtained by the brute-force algorithm by up to 300 times.

Utilizing general-purpose computing on graphic processing units for engineering
algorithm speed up
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Sammendrag

Målet med denne avhandlingen, er å utforske mulighetene knyttet til å anvende GPGPU
(general-purpose computing on graphics processing units) for å forbedre ytelsen til tunge
beregninger i programvarebaserte ingeniørverktøy.

Avhandlingen tar for seg en problemstilling, knyttet til analyse av punktskyer, i program-
vare utviklet av TechnoSoft Inc. Ytelsen i denne programvaren blir forsøkt økt, ved å
utvikle raskere algoritmer, for løsning av kNN (k nærmeste naboer) og Alle-kNN prob-
lemet, optimalisert for punktskybaserte data.

En GPU-parallellisert brute-force algoritme blir utviklet, som er i stand til å løse kNN
problemet 70 ganger raskere enn en tilsvarende algoritme, utviklet av Garcia et.al. [13],
anvendt på tilsvarende data.

Ved å anvende k-d trær, en GPU-parallellisert algoritme blir utviklet, egnet for å løse
Alle-kNN problemet. Denne algoritmen forbedrer resultatet oppnådd gjennom bruk av
brute-force algoritmen med 300 ganger.
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Chapter 1
Introduction

In more recent years, the hardware developers have increased the performance of new
systems, by utilizing the power of parallel processing. The demand for better computer
graphics has been a driving force for creating more powerful parallel computing hardware.
Powerful graphics cards, which features a highly parallel architecture, is today available
in the consumer market to a relatively low price.

Unfortunately, this parallel power is not automatically utilized by traditional algorithms
written with sequential execution in mind. In addition, parallelization is not a magic bullet.
It can deliver blisteringly fast execution when the type of problem permits it, but for many
classes of problems, benefiting from parallel processing capabilities, is not trivial, or even
possible.

Due to this need for different algorithms and specialized knowledge, in order to harness the
power of parallel execution, a lot of software is currently not benefiting from the possible
performance of modern hardware. This is a point to be concerned with, in relation to engi-
neering software, where complex, time consuming computations is commonplace.

In our thesis, we have studied how to utilize the power of general processing of graphical
processing units (GPGPU) in engineering software applications. We have studied this
problem, by developing faster, parallel algorithms, for use in point cloud analysis software,
made by TechnoSoft Inc (TSI).

During the course of our work, we discovered that some of the assignment topics was not
relevant, in the way initially envisioned. At the same time, new possibilities arose, that
was not accounted for during the draft of the assignment text. In collaboration with our
thesis advisors, we therefore choose to divert some from the original assignment.

An evaluation of GPGPU libraries like ViennaCL and cuBLAS was expected to be relevant
for the thesis, but this proved to be entirely irrelevant for the particular problem we studied,
since we ended up not being able to rely on any prefabricated GPGPU library. In addition,

1



Chapter 1. Introduction

the grid smoothing algorithms for CFD analysis was not developed in time to be a part of
our work, so this part of the assignment was left out as well.
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Chapter 2
Background

The purpose of this chapter, is to cover some background material, giving the reader a
foundation for the later chapters. A introduction to the kNN problem is given, and it’s
relation to All-kNN, and Q-kNN problem is discussed. In addition, relevant parallel pro-
gramming principles, practices and tools are presented.

2.1 The k-nearest neighbors search problem

The k-nearest neighbors (kNN) search problem, is, the problem of locating the k closest
neighbors to a given query point, with k being some positive natural number. This is
intuitively a quite simple problem to grasp, and for most of our purposes, an intuitive
understanding of the problem will be sufficient, but let us start by looking a bit closer at
the properties of kNN search in general.

If we consider p to be a point in d-dimensional space so that p = [x1, x2, . . . , xd]. Given
a set of size m, consisting of such points S = [p1, p2, . . . , pm], a additional query point
q, also in d-dimensional space, and some distance metric D = f(p, q), the kNN problem
is to find k points in S, such that the sum of distances in relation to q is minimized. We
introduce the term reference points to be the set S, to differentiate it from the query points
Q.

It is worth to note that since we are not limited, either in the number of dimensions, or
distance metric we choose, the kNN problem is applicable in many different situations. If
we e.g. wanted to construct a system for finding beer with similar flavor to one beer we
just tasted, we could build a database of different beers, categorized by flavor dimensions
like bitterness, maltiness, sweetness, and so on. Then, to find beers similar in flavor to
the one we just tasted, we would perform a kNN query on this database, using a suitable
distance metric, and the beer we just tasted as our query point.

3



Chapter 2. Background

The general nature of the kNN problem makes it relevant in many research and industrial
settings, from 3-d object rendering, content based image retrial, statistics and biology [14,
Introduction].

When wanting to query point cloud data, one can make some simplifications to this general
kNN problem. In our research we are only concerned with three spacial dimensions, and
their Euclidean relations.

This is not a universal way to simplify the kNN problem to point cloud data, and other
dimension might be interesting to add for other applications. Other metrics commonly
related to point cloud data, e.g. the color value of each point, could also be interesting to
include. But for most applications, TSI application included, three dimensions, and an
Euclidean distance metric is all we need. Throughout this text we will use the term kNN
to refer to this simplification of the kNN problem.

When studying point clouds, it can be interesting to find the k-closest points to all points in
the point cloud. In order to compute this, you would simply perform kNN queries, using
all the points in the point cloud as query points. In order to refer to this variant of the kNN
search problem, we will use the term All-kNN.

Another similar variant of the kNN problem, is application of the kNN algorithm to a set
of query points of size q. In this version of the problem, you are not limited to the query
point set being the points in the point cloud, it can be any set of three dimensional points.
We will refer to this problem variant as Q-kNN, and note that All-kNN is a subproblem of
Q-kNN.

2.2 A short introduction to parallel programming princi-
ples

Parallel programming is programming targeting parallel computing, where sections of the
program is executed simultaneously on multiple cores, processors, machines, or other suit-
able environments. We use the term parallelization to mean transformation of computa-
tional instructions intended for sequential execution to simultaneous, or parallel, execu-
tion.

Parallelization can be introduced on several different levels in a computer. Bit-level par-
allelization, where bit level operations is parallelized within a processor as is the case for
64-bit, 32-bit, 16-bit, etc. processors, being a common low level form. In order to avoid
confusion, this text is not concerned with such levels of parallelization, but will instead
focus on higher level parallelization, related to developing and implementing algorithms
in a regular programming language. We will also use the term parallel unit as a general
term for a single computational unit in a theoretical parallel machine, with a unlimited
number of parallel units.

It is easy to grasp that parallelization can speed up the execution of a program. Given a
problem where we want to add one to every element in a list of numbers. In a sequential
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2.2 A short introduction to parallel programming principles

program we could go through the list of numbers, adding one to each element in each step.
This would roughly take the time needed for adding one number to another, times the
number of elements in the list. In out theoretical parallel machine, we can simply assign
all the elements in the list to a different parallel unit and ask every unit to add one to it’s
assigned number. This would take much less time than the sequential algorithm, just the
time needed to add a number, since all numbers in the list is added at the same time.

Adding one to the elements of a list is a trivial problem, and unfortunately not all problems
can be parallelized as easy as this. Even simple problems can be hard to parallelize. Con-
sider adding all the numbers together, instead of adding one to each number. This is a very
similar problem, we still only has to add a number to all of the elements in the list. The
problem is that we does not know what to add to a given element before all the previous
elements has been added together. We could calculate the sub-sum of small subsections
of the list in parallel, and then add the resulting sub-sums together in a sequential fashion,
but then a part of our program does not execute in parallel. This exemplifies, that for many
problems, we cannot entirely parallelize the execution, because some data has to be trans-
fered between the threads. We need a way to let the parallel units communicate with each
other.

Communication is often a large factor in limiting the performance that can be harnessed
from parallelization. Communication can be the source of implied sequential execution,
since the parallel units have to wait for data from another unit. It is also often inherently
slow, and carries a high overhead due to low data transfer speeds between hardware com-
ponents. The possibility of minimizing the amount of communication, is therefor a major
factor in determining if a sequential algorithm can be successfully parallelized.

2.2.1 Shared memory architecture

In a parallel computer using shared memory architecture (SMA), the different parallel
units all share a global shared memory. The parallel units usually are different processors,
often located within the same physical chip like a multi-core CPU.

This is the architecture used by most modern desktop computers. Different varieties exist,
with separate processor cache for each processor core, shared cache or even a combination,
with shared L2 cache and distributed L1 cache. From the point of view of this thesis, all
these varieties would fall under the SMA classification.

Shared memory is easy to work with and understand, and communication between differ-
ent parallel units can be facilitated quite easily, and relatively fast, by reading and writing
the same memory. The drawback is that the programmer must ensure that the different
parallel units does not try to access the same memory at the same time, or in the wrong
order. SMA still works well for smaller parallel computer systems.
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2.2.2 Distributed memory architecture

In a computer system using distributed memory architecture (DMA), each parallel unit
contains both processor and memory. The processor can only access data from it’s own
local memory, and if data is needed from another parallel unit, it has to be transfered from
that units local memory into the memory of the unit in need of the data. DMA computer
systems usually scales better when using a high number of parallel units, compared to
SMA systems, since one memory does not have to facilitate all parallel units. The draw-
back is that communication carries a higher overhead, since data has to be transferred
between the different local memories of each unit.

Computer systems using a distributed memory architecture, often resemble many indi-
vidual computers, working in parallel on the same problem, and communicating using
specialized networking components.

This is the architecture favored in todays supercomputers. Many varieties exist, especially
concerning the network layout between the different machines. Since each individual
parallel unit in such systems usually can be considered to be an individual computer, each
unit often has a internal shared memory architecture, like desktop computer. This makes
the entire system capable of harnessing the strength of both SMA and DMA, but increases
the complexity that the programmer has to handle. As we will discover later in the text,
GPUs are organized using an architecture with this kind of hybrid architecture.

2.2.3 Parallel speedup

Parallel speedup, or just speedup as it is often called, is a measure of how much faster a
parallel algorithm is compared to it’s sequential counterpart.

Let Ts be the execution time of the sequential algorithm, and Tp be the execution time of
the parallel algorithm on a system with p parallel units. The speedup Sp is then defined as
Sp = Ts/Tp.

In the ideal situation, the relation between the speedup and the number of parallel units
will be linear. Due to overhead related to possible communication, and the use of a more
complex framework for the parallel code, this is usually not possible to achieve. We there-
fore have the parallel efficiency metric Ep = Sp/p, which describes how much is lost to
such factors.

Speedup and efficiency can be a good measure of how well the algorithm is parallelized,
but it can not necessarily be used to determine if one parallel algorithm is faster than an-
other. Parallelizing many inefficient brute-force algorithms can be done with excellent
speedup and efficiency, but the resulting algorithm will often be considerably slower than
the parallel version of a better sequential algorithm, or even just a better sequential algo-
rithm. Parallelizing bad code will result in just as bad code, and thorough study of efficient
algorithms should always be carried out before attempting any parallelization.
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2.2.4 The APOD design cycle

In order to work efficiently with parallelization problems, many programmers adopt a
work-flow similar to the APOD design cycle[2, Preface]. The cycle consists of four
steps:

1. Assess: Locate the parts of the code which take up most of the run-time. Re-writing
an entire application for parallel execution is usually very hard and time consuming,
if it is even possible. The best results for the user might be to just parallelize the one
algorithm that is taking a long time to execute. Parallelization might not even be the
answer, a faster sequential algorithm could also be a solution or part of the solution.

2. Parallelize: Investigate if any pre-written library of parallel functions could be used
as part of, or the entire solution. Try to pinpoint which part of the code that can
execute in parallel, and which part is dependent on communication. If the code
is inherently dependent on communication, sequential alternatives, more suitable
for parallelization, might be researched. Just not be tempted to use a inefficient
algorithm because it is easy to parallelize.

3. Optimize: Dependent on the parallel computer system, programming language, and
other tools you are using, a number of conventional optimization strategies might be
applied. This should not be forgotten when writing parallel code. On a CUDA GPU
you will often want to check that you are using the optimal type of memory for
different tasks, minimize the divergence in the code and try to optimize the use of
arithmetic operations.

4. Deploy: Run your application on real hardware, test thoroughly, and compare the
results to the original. Did the parallelization actually increase the performance of
the application? Deploy the code to potential users. They will benefit from the
increased performance, and you will get feedback if any bugs exist.

2.3 A short introduction to GPU programming and CUDA

Moore’s law has been a gift to all programmers the past 50 years. The law predicts that
performance of integrated circuits would double every two years, and it has become the
de facto standard for computer processing capabilities since it was first stated. However,
since the so called Power Wall in 2002, the world of computer hardware performance
has been changing. In order to keep up with Moore’s law, the hardware vendors have
been mowing from single core processors, where all computation is performed by one fast
processor core, to processors with multiple cores, working in parallel. As a result, many
programs and algorithms has to be rewritten, in order to benefit from this new hardware
architecture.

In recent years, many tools for working with parallel programming, has been developed.
Frameworks and libraries like OpenMP, CUDA, MPI and OpenCl being some of the
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more notable examples. These tool support various types of parallel hardware architec-
ture.

OpenMP supports parallelization, targeting shared memory architecture. It is an imple-
mentation of multi threading, whereby a master thread divide the workload to different
forked slave threads.

The Message Passing Interface (MPI), is a library specification for message passing, often
used for parallel programming, targeting distributed memory architecture. It is maintained
and promoted by a committee, consisting of a wide selection of academics, hardware and
software vendors.

In the consumer marked, GPUs represent hardware with a high number of parallel units
compared to the price. The NVIDIA GeForce GTX 480 GPU is e.g able to execute 23,040
threads in parallel [16]. The reason GPUs can have such a massive amount of parallel units
at this price point, compared to traditional hardware like a CPU, is that each parallel thread
is very lightweight. Individually, each thread has relatively low performance, but together
they can achieve an extremely high instruction throughput. This makes targeting the GPU,
a good solution for high performance parallel computing on a desktop computer.

2.3.1 General-purpose computing on graphics processing units

GPGPU is the utilization of a GPU in applications to perform heavy computations, nor-
mally handled by the CPU. This is most efficiently accomplished by using GPGPU spe-
cific programming tools. Two widely tools approaches are the Compute Unified Device
Architecture (CUDA) and the Open Compute Language (OpenCL).

OpenCl is a low-level framework for heterogeneous computing for both CPU and GPU’s.
It includes a programming language, based on C99, for writing kernels. Kernels are meth-
ods that executes on the GPU. It also includes an API that are used to define and control
the platform.

In contrast to the open OpenCL, the dominant proprietary framework, CUDA, is only
designed for GPU programming. It is, as OpenCL, based on a programming language and
a programming interface. Science CUDA is created by the vendor, it is developed in close
proximity with the hardware.

For a deep and thoroughly survey of GPGPU programming, techniques and applications
take a look at John D. Owens article from 2007 [19].

2.3.2 NVIDIA GPU architecture

A CPU is usually optimized for low memory latency. This enables the CPU to quickly
fetch data and instructions from memory. For a chip to achieve low latency, it needs to
have a large amount of cache available. This makes it hard to physically fit a very many
cores on a single chip.
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The GPU is optimized for high throughput. Throughput is a metric of how fast a processor
is able to process data, and this is desirable when processing graphics, where a data has to
be updated fast, in order to redraw the screen. To achieve high throughout, a large number
of cores, or ALUs, are needed. GPUs is therefore usually organized with a small control
unit and cache, but a large number of cores.

A NVIDIA GPU is build around a scalable array of multi-threaded Streaming Multipro-
cessors (SMs). A multiprocessor are designed to execute hundreds of threads concurrently.
It is organized according to an architecture called Single-Instruction, Multiple-Thread
(SIMT), where each SMs creates, manages, schedules and executes parallel threads in
groups of 32, called a warp. Threads composing a warp starts at the same program ad-
dress, but they have their own register state and instruction address, and is therefore free
to branch and execute independently [3].

Figure 2.3.1: A visualization of the memory hierarchy in CUDA.

An other impotent part of the GPU architecture is the memory hierarchy, see Figure 2.3.1.
Global memory is bottom-most part of this hierarchy and is analogous to RAM on the
CPU. The global memory can be used to transfer memory to and from the host CPU.
Each SM contains a fast L1 on-chip memory, which is divided into a shared memory and
a cache. The fast shared memory is shared across each thread in a block, and resembles
the shared memory found on the CPU. The threads also have their own 32-bit registers.
Other types of memory also exist. Constant memory and texture memory are read-only,
and therefore highly cacheable. Compared to the CPU, the peak floating-point capability
and memory bandwidth of the GPU, is an order of magnitude slower [20].

As better hardware is developed by NVIDIA, some properties change. These changes are
clustered into versions, called compute capabilities. All NVIDIA devices are backward
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compatible, so a device with compute capability of 3.x also have all properties that is
found in compute capability 1.x.

2.3.3 CUDA programming model

The CUDA programming model is designed to make the heterogeneous GPU/CPU pro-
gramming easier. The GPU works as a computation accelerator for the CPU, and the pro-
gramming model should therefore be a bridge between the two. CUDA have created this
bridge based on a runtime library, compiler and C language extensions. The C language
extensions, enables the programmer to create and launch methods on the GPU, through
the runtime library. These methods are called kernels.

A CUDA program, is based on a data-parallel behavior, where threads are executed in
parallel. The execution of a kernel, is organized as a grid of blocks consisting of threads,
see Figure 2.3.2. When a kernel grid is launched on the host CPU, blocks of the grid
is enumerated and distributed among the SMs. The blocks then executes concurrently
on each SM. Only threads in a block can communicate with each other. This is done
by creating synchronization walls. Communicate can also be facilitated through the fast
shared memory, located on the individual SMs. Each block and thread have their own id,
which often is used to determines what portion of data the thread should process.

Figure 2.3.2: The relationship between threads and blocks in a grid [3].
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Chapter 3
The quest for a faster kNN
search

TechnoSoft Inc. is currently developing point cloud analysis software library. This soft-
ware library is developed, with the goal of making comparisons between 3D models of
a engineering design, and laser scans of the finished product. Such a comparison, would
help engineers to pinpoint production errors faster, and more accurately.

In order to get good precision in the laser scan data, a large amount of points in 3D space
has to be recorded. This set of data is commonly called a point cloud, and it can easily
consist of 1 · 106 to 1 · 108 3D points, or even more, as a larger number of recorded points
give better accuracy in the data.

Processing such a large number of point, is a time consuming task, and reducing the time
required for individual operations become important, since they will be repeated many
times. Working on point cloud data is also a problem seemingly suitable for parallelization,
since operations on individual points could be executed concurrently.

TSI has analyzed their current point cloud analysis algorithms, and determined that a lot of
time is spent solving the All-kNN problem, for the point clouds. They would therefore try
to improve performance by developing GPU parallelized algorithms, capable of solving
the kNN and All-kNN problem for a high number of points, at least in the order of 1 · 107

to 1 · 108, and a low value for k ≤ 100.

In this chapter, we will try to develop algorithms capable of solving the kNN and All-kNN
problem, with the performance required by TSI.
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3.1 A short evaluation of OpenCL and CUDA

As mentioned in Section 2.3.1, there are two dominant frameworks for GPGPU program-
ming, CUDA and OpenCL. They both have their strengths and weaknesses, and in order to
determine which was the most suitable for our work, we performed a small evaluation of
both. This evaluation was based on a short benchmark test, where a matrix multiplication
application was developed in both frameworks. The development time for both the CUDA
and OpenCL matrix multiplier was limited, in order to highlight any differences in ease of
use, between the two frameworks.

In addition, a quick analysis of available documentation for both frameworks was made,
using common online search engines.

In all our tests CUDA outperformed OpenCL. Although our tests were very limited in
scope, they support the opinion that currently, CUDA is faster and better documented than
OpenCL. If the portability offered by OpenCL is not required, we would recommend using
CUDA for GPGPU programming.

3.1.1 Matrix multiplication benchmark

In order to compare the performance differences between CUDA and OpenCL, a simple
matrix multiplication algorithm was implemented in both CUDA and OpenCL. These
implementations where based on examples provided by NVIDIA and AMD. In order to
establish a baseline, to which the CUDA and OpenCL results could be compared, addi-
tional implementations of the matrix multiplication algorithm was made, as both a naive
serial implementation in C and a highly optimized implementation using the Automati-
cally Tuned Linear Algebra Software (ATLAS[1]) implementation of BLAS. Finally, a
highly optimized CUDA implementation was made using the cuBLAS[4] library.

The test algorithm multiplies two square matrices of size NxN. This is an interesting prob-
lem to use for performance benchmarking for a number of reasons:

• Matrix multiplication is often used as a subroutine in more advanced mathematical
algorithms.

• Matrix multiplication can be parallelized over a large number of computational
cores, making it suitable for GPGPU programming.

• The mathematics of matrix multiplication is trivial, making it an easy to understand
example problem.

The four implementations where tested on test environments described in Table 4.1.1. The
results are presented in Figure 3.1.1

We see that the naive serial implementation quickly becomes unusable, due to a rapid
increase in run time. The improvement gained by using ATLAS BLAS is very large com-
pared to the naive implementation, although it cannot keep up with the run times achieved
by the CUDA and OpenCL implementations.
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Figure 3.1.1: Matrix multiplication benchmark results

The difference between CUDA and OpenCL is quite small, compared to the naive and
BLAS implementations, but the CUDA implementation is on average about twice as fast
as the OpenCL implementation. This is quite a big difference, and this could be related to
all tests being run on a NVIDIA graphics card. It might also have been caused by different
quality between the NVIDIA and AMD examples.

Looking at the results for the cuBLAS implementation, we can also see the impact of
using a highly optimized library for GPGPU programming. The cuBLAS implementation
is faster than using the basic CUDA example, indicating that proper use of libraries can be
very beneficial.

It is also important to note that this is a very small test. In order to be able to conclude if
CUDA is indeed faster than OpenCL, one would have needed to implement a wide selec-
tion of algorithms and test them on several different hardware configurations. Although
this test is non conclusive regarding this question, the results seem to support several older
investigations, concluding that CUDA is faster than OpenCL. One notable example being
A Comprehensive Performance Comparison of CUDA and OpenCL[11] by Janbin Fang
et al.
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3.1.2 A quick evaluation of available documentation

When we where installing CUDA and OpenCL, and implementing our test algorithms, we
relied on the online documentation available for the two GPGPU frameworks. Our sub-
jective experience was that finding good documentation for CUDA was a lot easier than
for OpenCL. In order to investigate this, we made a series of queries for pages related to
CUDA and OpenCL on Google, Google scholar and Stackoverflow.com (a popular pro-
gramming QA site). The results are shown in the following tables (all data from 16. Jan
2014).

Query No of Stackoverflow.com results
Tagged OpenCL 1935
Tagged CUDA 6137
Open search OpenCL 5818
Open search CUDA 16174

Table 3.1.1: Query results from Stackoverflow

Query No of Google results No of Google Scholar results
opencl paralell programming 322000 7480
cuda paralell programming 558000 17100
opencl gpgpu 558000 5230
cuda gpgpu 816000 13500
opencl programming 875000 8160
cuda programming 2790000 22700

Table 3.1.2: Query results from Google

3.2 A brute-force based approach

As a starting point in our quest for a fast kNN search, we investigated relevant literature.
Consulting our advisors lead us to two papers by Garcia et.al. [13, 14]. In these papers,
a parallel brute-force algorithm is developed, capable of solving the kNN problem orders
of magnitude faster than comparable fast serial algorithms. Unfortunately, the algorithm
developed by Garcia et.al. has some limitations, especially regarding the number of points
that the kNN problem can be solved for. This could be due to the general nature of the
algorithm developed by Garcia et.al. as it is optimized for solving problems in a large
number of dimensions. By optimizing the algorithm for point cloud data, we could be able
to get around this limitation.

RQ 1. Can high performance be achieved by a parallel brute-force kNN algorithm on large
point clouds.
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Given a fast kNN algorithm for point cloud data, the All-kNN problem can be solved
easily, by applying the algorithm sequentially for all points in the cloud. This, however,
is a strategy sensitive to minor inefficiencies in the kNN algorithm. The algorithm will
have to be very fast for a single problem, in order to solve the All-kNN problem within
reasonable time. Whether this is achievable with a fast brute-force based algorithm will
have to be investigated.

RQ 2. Can a parallel brute-force kNN algorithm be fast enough to solve the All-kNN
problem within reasonable time?

3.2.1 Progress made by Garcia et.al.

The algorithm developed by Garcia et.al. is general in nature, and solves the kNN problem
for any given dimension. It does this by performing the following three steps:

1. Compute all distances between the query point q, and all reference points in S.

2. Sort the distances.

3. Pick the k shortest distances.

If this general brute-force algorithm is to be used on n query points the time complexity
will be O

(
nm d

)
. To an experienced programmer, this might seem like a inefficient choice

for a kNN algorithm. Usually, brute-fore based algorithm is frowned upon, but when
taking into account parallelization, it can be a valid choice. Brute-force algorithms tend to
perform a lot of isolated computations, which can be easily parallelized. Combined with
potential poor performance of the serial brute-force algorithm, this gives great speedup,
and in some cases actual good performance. In addition brute-force algorithms tend to be
very robust on different data, and behave in a predictable manner.

3.2.2 Optimizing the brute-force algorithm for point cloud data

In order to improve performance of the general brute-force algorithm, we want restrict it to
3D space, and optimize it for low values of k. We also want to iron out any implementation
choices made, that limit the number of points, m, the algorithm can operate on. Let us start
by addressing the limit on number of points.

The implementation made by Garcia et.al. only supports problem sizes up to 65535. The
limitation of 65535 corresponds to the number of theoretical blocks a CUDA kernel is
allowed to spawn. This limitation is therefore only an implementation issue, not an issue
with the underlying algorithm, and can be solved by applying a general partitioning algo-
rithm. This algorithm splits the work amongst different CUDA blocks, and is shown in
Algorithm 3.1.

Additional improvements can be made to the general base algorithm, if we take advantage
of our restrictions to the kNN problem. With the dimension fixed to three, the Euclidean
distance can be calculated in a more optimized fashion. CUDA consists of lightweight
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Algorithm 3.1 General work distribution in CUDA

Let L be any dividable work quantity of size l.
function CUDA-KERNEL(L)

b← blockIdx.x . Current block id.
d← gridDim.x . Numbers of theoretical blocks in current grid.
while b < l do

DO-WORK(L(b))
b← b + d

end while
end function

threads, which makes reducing the amount of arithmetic calculations important for achiev-
ing good performance. The general base algorithm, who has to take any number of dimen-
sions into account, uses two vectors and cuBlas to calculate the distance. This increases
the complexity and data bandwidth required, and can be removed in our case.

The final, and maybe the most important, optimization we want to make, is changing
the sorting operation, used to sort the computed distances. For problem instances in
a low number of dimensions, the most time consuming operation is the sorting opera-
tion. For instance, given a search with 8 dimensions, the sort consumes 62% of the run-
time [13].

Bitonic sort

It is proven that general sorting can be performed with a time complexity of O
(
m log(m)

)
[10].

This is a costly operation, if one only need the smallest k values in a list, as is the case
with the brute-force algorithm. To improve this, a sorting algorithm that sorts the list in a
linear fashion, where the smallest elements are sorted first, could be used. This strategy is
applied to the general brute-force algorithm.

However, using this strategy often forces us to select a sorting algorithm with bad time
complexity. For instance, the insertion sort algorithm, used in the general brute-force
algorithm [10], has a time complexity of O

(
m2

)
, the time complexity of finding the k

smallest points will therefore be O
(
m k

)
. Asymptotically, this would give better timing

results in cases where k is smaller then log(m). Let us analyze a case with k = 100. For
the insertion sort to get any asymptoticly advantage over the best sorting algorithms, the
problem size has to be larger than 2100, which requires a point cloud of 1.3e30. This is
unrealistic for our problem. Choosing another sorting algorithm could therefore be a better
strategy.

Graham Nolan discusses the possibility of improving Garcia’s algorithm by using bitonic
sort, and he states that it gives a significant improvement [18]. Bitonic sort is a known
O
(
m log(m)

)
algorithm, and is based around a soring network. The network is a series

of interleaving bitonic sequences. A sequence is bitonic if it monotonically increases and
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then monotonically decreases [10]. An iterative version of the bitonic sort is described in
Algorithm 3.2.

Algorithm 3.2 Iterative Bitonic sort

Input: A list L with length m.
Output: A sorted list, L
P ← {2i|i ∈ N}
function BITONIC-SORT(L)

for all {p ∈ P | p ≤ m} do
for all {k ∈ P | p ≥ k > 0} do

for all 0 ≤ i < m) do
pos← k Y p . Y is the bitwise xor operator
if pos < i then

if ¬(i&p) then . & is the bitwise and operator
COMPARE(L(i), L(pos))

end if
if (i&p) then

COMPARE(L(pos), L(i))
end if

end if
end for

end for
end for

end function

function COMPARE(a, b)
if a > b then

SWAP(a, b)
end if

end function

Min-reduce

Sorting the distances, with a O
(
m log(m)

)
time complexity, still looks like a high price to

pay to get the smallest values. Especially if k is reasonably small. Do we need to sort the
list in the first place? An algorithm that is more suitable, and also highly parallelizable, is
the reduce operation. Cormen [10] defines ⊗-reduction of an array d of size m, where ⊗
is any associative operator, to be the value y, given by the following formula:

y = d[1]⊗ d[2] · · · ⊗ d[m].

In the serial case, this is a typical linear algorithm with time complexity O
(
m
)
, as shown

in Algorithm 3.3.
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Algorithm 3.3 Serial ⊗-reduction

Let ⊗ be any associative operator.
function REDUCE(d,⊗)

y ← d[0]
for i← 1, m do

y ← y ⊗ d[i]
end for

end function

Since the operator ⊗ is associative, there is no difference in which way the values are
calculated or if it’s done on parallel. A tree based approach, like Figure 3.2.1, could be
used. It is a good parallelization strategy, where every possible independent subtask is
parallelized. Here each tree level do the associative operations in parallel, the results are
combined as the tree level progresses downwards, until only one element remains. The
parallel equivalent to Algorithm 3.3 is therefore done in O

(
log(n)

)
time.

Figure 3.2.1: A visualization of the parallel min-reduce operation.

To solve our problem the associative operation has to be the minimum operator. Imple-
menting the min-reduce algorithm can easily be done in CUDA, but in order to get the best
performance some optimization techniques, like loop unrolling, sequential addressing and
warp unrolling, described in Section 3.6 should be applied.

Results

Two variations of our restricted brute-force algorithm where implemented, one using the
bitonic-sort strategy, and one using the min-reduce operator. Both where compared to
the algorithm developed by Garcia et.al. The complete implementations can be found in
Appendix C.2

Figure 3.2.2 shows the timing results with k equals 10, for the three different brute-force
implementations.

We see that the general brute-force algorithm has the worst performance. This is as ex-
pected, since it is developed for solving a more general problem, and does not use the
optimizations described in our previous sections. The results for the brute-force imple-
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mentation using bitonic sort, shows that Graham Nolan’s idea of improving the sorting
algorithm give a huge impact. It is almost five times faster then Garcia’s implementation,
shown in Table 3.2.1. As a note, bitonic sort has a soring network that is most suited for
lengths that is a power of two. This explains the two drops observed in the graph.

Figure 3.2.2: Three different kNN brute-force implementations. The timing results is based on a k
equal to 10.

Reference points (m) Garcia Bitonic sort Min-reduce
6,0 · 105 231.8ms 48.1ms 3.3ms
1,1 · 107 - 1077.2ms 54.2ms

Table 3.2.1: Selected results from Figure 3.2.2.

The big winner in this comparison is the min-reduce version. It is 70 times faster than the
general brute-force algorithm, and almost 15 times faster then the bitonic version.

Although the min-reduce brute-force algorithm is the best choice in this test for low values
of k, this is not always the case. Performing k min-reduce operations takes O

(
k log(m)

)
time, because one min-reduce has a time complexity of O

(
log(m)

)
. If we increase k

towards m, the result would be a sorted list, and the time complexity will go towards
O
(
m log(m)

)
. This is the same time complexity as our bitonic sort, but a sorting opera-

tion with min-reduce have a bigger constant time penalty than the bitonic version. How-
ever, for our use case, where k is kept reasonably small, the min-reduce method is far
superior.

19



Chapter 3. The quest for a faster kNN search

3.3 Application of k-d trees to the kNN problem

A common strategy when wanting to improve the performance of repeated queries in a
large dataset, is to organize the dataset into some data structure suited for fast querying.
This strategy trades the additional time required building an data structure, for increased
performance on each query. In Section 3.2 we developed an optimized parallel brute-force
algorithm for performing kNN queries on a large point cloud. In this section we will
investigate the possibility of improving on the brute-force algorithm by using the k-d tree
data structure.

RQ 3. It is possible to use a k-d tree to increase the performance of kNN queries, compared
to a parallel brute-force solution?

RQ 4. It is possible to use a k-d tree to increase the performance of All-kNN queries,
compared to a parallel brute-force solution?

A brief argument for why k-d trees is well suited for kNN query operations is given, then
we will present the k-d tree data structure, and show how it can be used for operating on
three-dimensional point cloud data. Finally a set of tests are performed on implementations
of the k-d tree based algorithms, in order to determine the possible benefits of a parallel
k-d tree based algorithm.

3.3.1 Why k-d trees?

A large part of this thesis is devoted to applying k-d trees to the kNN problem. The
reader might ask themselves why this is so. Other possible data structures exist which
is optimized for querying in geometrical data. Why choose to investigate k-d trees in
particular?

Part of the explanation has to do with the scope and time resources available for the work in
this thesis. Performing a full analysis and parallelization of every possible data structure,
and their associated query algorithms, would just not be feasible within our time frame.
That said, k-d trees is a very attractive data structure for our use case.

• k-d trees are easy to understand and implement, leaving more time to throughly
investigate parallelization of the algorithms.

• k-d trees are a very minimal data structure, and balanced k-d trees are complete
binary trees. This makes reducing the amount of additional memory required in
addition to the 3-d points a relative simple task. This is important considering the
memory bounds on GPUs, and the time penalty associated with moving data from
system memory to GPU memory.

• k-d trees are well adapted to performing associative queries, where the query is for
a point that is not equal to, but close to the query point.

• Studies on parallel kNN queries based on k-d trees has been documented in literature
with encouraging results[19, 21, 8].
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3.3 Application of k-d trees to the kNN problem

3.3.2 Building k-d trees for point cloud data

A k-d tree can be thought of as a binary search tree in k dimensions. A binary search tree is
constructed such that, for a given node, one child-subtree is consisting of elements smaller
than the current node, and the other child-subtree is consisting of elements larger than the
current node. The same strategy is applied when constructing a k-d tree, but at each level
we are sorting the child-subtree elements according to one selected dimension, called the
discriminant for this level. This discriminant is cycled through the different dimensions,
as we move down each level in the tree. A formal description of k-d trees is given by Jon
Louis Bentley in the paper Multidimensional Binary Search Trees Used for Associative
Searching[7].

Let us have a look at an example using data for two dimensions. Figure 3.3.1 shows us a
set of points on a two dimensional plane. The lines through each point indicate the split
plane formed by the discriminant associated with the different points.

Figure 3.3.1: A set of points on a plane, with a possible k-d tree indicated.

The corresponding k-d tree is shown in Figure 3.3.2. Note that lower values in each level
are placed in the left branches, and higher values are placed in the right branches.

By extending this example with three fixed dimensions for the spatial dimensions, x, y,
and z, we get a k-d tree suitable for storing point cloud data.

It it possible to construct several algorithms for building k-d trees from a set of points, and
one simple approach is using a recursive function. Algorithm 3.4 shows pseudocode for
such a simple tree building algorithm. In the pseudocode, we have chosen to represent
the different dimensions as a natural number. This means that x is represented by 0, y is
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Figure 3.3.2: Tree representation of the points in Figure 3.3.1.

represented by 1, z is represented by 2 and so on. Given a set of point, P , in k space, and
a initial split dimension i, it constructs a balanced k-d tree.

Algorithm 3.4 Recursive k-d tree build

function BUILD-KD-TREE(P , i)
if P.length = 0 then . We have reached the end of a branch

return NIL
else

m← Median(P )
Let L be all elements of P < m in dimension i
Let H be all elements of P > m in dimension i
i′ ← (i + 1) mod k . k = 3 for a three dimensional k-d tree
m.left← Build-KD-Tree(L, i′)
m.right← Build-KD-Tree(H, i′)

end if
return m

end function

Algorithm 3.4 starts by checking if there is any more points left in P . If not, it returns
NIL as an end of branch marker. If there still is points left, the algorithm selects the
median point, m, as the root node. Then it sorts all remaining points into a collection of
points lower than the median, L, and higher than the median, H . The dimension, i, is
incremented, and the Build-KD-Tree function is called recursively on both collections of
points. Finally the root node is returned, so it can be assigned as the child of it’s parent
node, or be used as a global root node.

It is worth to note that the performance of this k-d tree build algorithm is sensitive to the
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3.3 Application of k-d trees to the kNN problem

choice of a median finding algorithm, since we will be querying for the median O
(
m
)

times. Choosing to just sorting the collection P , and selecting the median from the middle
of the sorted collection, will not give optimal results. Fortunately, several O

(
m
)

median
selecting algorithms exist[10] (Get chapter citation), quickselect, being the choice for our
initial implementations. Given a fixed number of dimensions, this gives a algorithm with
a time complexity of O

(
m log(m)

)
[12].

A final note about Algorithm 3.4, is that it does not handles points with duplicate values
in one dimension. If the algorithm where to be feed with a point collection where all
points had the same value for x, it would not be able to handle it, since such a point does
not explicitly belong in L or H . Several modifications can be made to handle this case.
We can choose to place all conflicting median points, except one, in either L or H . The
problem with this solution, is that we are not guaranteed to get a balance tree. If we where
to have a set of points, where all points where tha same, we would get a tree at all, but just
one long branch of length n. Another strategy is to try to place the conflicting medians,
equally in L and H . This way the median we select will be the midmost element in the
point collection, retaining the balance in the finished k-d tree. Given that we consider
that duplicate median points can be located in both subtrees of a node, this will not affect
search operations on the tree, as we will see later.

3.3.3 Querying the k-d tree

With a k-d tree we can perform efficient searches for the closest point to a given point in
O
(
log(m)

)
average time[12]. By maintaining a collection of the k closest points during

execution of the query, we can even perform kNN searches. An example of a kNN search
algorithm is shown in Algorithm 3.5.

The procedure will take the root of a k-d tree, r and a query point, for which we want to
find the k closest points. In addition, it requires a initial dimension, i, which should be the
same as the initial dimension used when building the tree. It uses this data to manipulate a
collection of the k closest points to q. This collection is called the k-heap, K.

The k-heap is a data structure with some special properties. You can query it for the
maximum distance value of the k points stored in it, and it will only store a predetermined
number of points. If you try to insert more points than the predetermined number of points,
it will discard the highest values, and only keep the k lowest values. This data structure
can be easily implemented as a modified max-heap [10, Chapter 6]. When the size of
the heap is lower than k, it is used in the usual manner, but when the heap is of size k, a
slight modification to the insertion operation is made. Instead of adding the new element
to the heap, the new element is swapped with the maximum value of the heap, if it is
lower than the current maximum value in the k-heap. Then the heap is re-balanced using
the standard max-heap balance algorithm. In our code, we assume the k-heap to be filled
at the start with k points of either a random sample of points from the k-d tree, or with
positive infinity. This way we do not need to check if the heap is filled during the recursive
execution of the procedure.
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Algorithm 3.5 Recursive kNN k-d tree search

procedure KNN-KD-TREE(K, r, q, i)
if r = NIL then . We have reached the end of a branch

return
end if
d← Distance(r, q)
dx← r.x[i]− q.x[i]
if d < K.max then . Is r closer to q than the current k best points?

r.distance← d
Insert(K, r)

end if
i′ ← (i + 1) mod k . k = 3 for a three dimensional k-d tree
if dx > 0 then . Select t and o so we traverse towards closest point first

t← r.left, o← r.right
else

t← r.right, o← r.left
end if
kNN-KD-Tree (K, t, q, i′)
if dx2 < K.max then . Can there be closer points in the other subtree?

kNN-KD-Tree(K, o, q, i′)
end if

end procedure

Algorithm 3.5 starts by checking if we have reached the end of a branch. If not, it cal-
culates the Euclidean distance between the query point, q, and the current root point, r.
Calculating this distance is a costly step, since it usually involves calculating a square root.
This can be circumvented when implementing, by relying on using the square of the Eu-
clidean distance as the distance metric, instead of the actual distance. This will not make
a difference for the algorithm. The distance, dx, between the current root and the query
point in dimension i is also calculated.

The algorithm then checks if the current root point is closer to the query point than one of
the points in the k-heap. If this is the case, it inserts the current root into the k-heap. The
next dimension, i′, is calculated, and then the algorithm determines if it should traverse
to the right or left child node first. For efficient querying, we want to traverse down the
branch that would contain the query point. In other words, if the query point is lower than
the current root point in the current dimension, we want to traverse to the left child, and
vice versa. The child node that we want to traverse first, is often called the target, and
it’s corresponding subtree is often called the target subtree. In the algorithm the symbol
t is used to represent target. The child and child-subtree that is not chosen for immediate
traversal is called other and other-subtree. In the algorithm the symbol o is used to rep-
resent other. The ability to prune away the other subtree, given our current best estimates
stored in the k-heap and the distance dx, is what makes the k-d tree efficient for kNN
searches.
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After recursively investigating the target subtree, we ask if our estimates in the k-heap is
better than the distance dx, remembering that the distances stored in the k-heap is squared.
If this is the case, we know that there cannot be a closer point in the other subtree, and we
can prune it from our search. If not, we have to check the other subtree as well. When the
procedure terminated, the k closest points to the query point is stored in the k-heap.

3.3.4 Testing a serial k-d tree based kNN solver

In order to gain some real world insight into the performance characteristics of k-d tree
building and querying, a serial implementation of the build and query algorithm was made.
These implementations is available in Appendix C.3 and Appendix C.4.1. These two
implementations where then subjected to several tests, using test setup Y. All tests were
performed on a set of randomly generated points 3-d points, with the number of points
ranging from 105 to 1.41 ∗ 107. The result of these test are summed up in the following
figures.

Figure 3.3.3 shows the timing results for the recursive k-d tree build algorithm.

Figure 3.3.3: Timing results for recursive k-d tree building

We observe that constructing a k-d tree for a large number of points is a costly operation.
Given a tree of size 1.417 the algorithm uses nearly 9 seconds to construct the tree. We
also note that the timing results seem to scale linearly in relation to the number of points.
This relates nicely to calculated time complexity of the algorithm.

Figure 3.3.4 shows the timing results for querying a k-d tree of a given size. The k-d tree
is queried for one point with k = 1. Since we are interested in investigating the average
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performance, 105 consecutive queries was timed, and the average value for one query was
calculated.

Figure 3.3.4: Timing results for mean query time with k equal to one

We see that querying the k-d tree is very fast on average. Querying for one point in a tree
of size 1.417 takes about 0.0014 milliseconds. It has to be taken into account, that a query
with k = 1 will give the best query time, since the time complexity of the query algorithm
scales with k. Still, for queries with a low k, we should expect good performance. The
graph also seems to scale with the logarithm of the number of points, as expected by the
time complexity calculation.

In order to try to answer RQ 3, we compare the timing results gained from the fastest
brute-force algorithm developed in Section 3.2. Figure 3.3.5 compare the average time
required for building a k-d tree of a given size, and performing a single k = 1 query, to the
time required to compute the same result with the fastest brute-force algorithm obtained
in Section 3.2.

In this comparison, the k-d tree based algorithm does not seem like a good option. When
performing just one query, the additional time required to build the k-d tree heavily out-
weighs the benefit of the improved query time, compared to the brute-force solution. This
result is to be expected, since we are not really utilizing the benefit of the k-d tree, but
it is still an important point that a brute-force algorithm can be very efficient for certain
use-cases.

Let us finally look at some results more closely related to the use-case given by TSI.
Figure 3.3.6 does the same comparison as Figure 3.3.5, but instead of comparing the time
taken to perform one query, n repeated queries are performed, with n being the size of the
k-d tree.
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3.3 Application of k-d trees to the kNN problem

Figure 3.3.5: Comparison of mean query time with k equal to one with fast brute-force and recursive
k-d tree based algorithms

Figure 3.3.6: Comparison of timing of n queries with k equal to one with fast brute-force and
recursive k-d tree based algorithms

We observe that in this use-case, the k-d tree based approach have much better results than
the brute-force based approach. Now the k-d tree only have to be built once, but we benefit
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from the decreased query time in all n queries. Performing n queries on a point cloud of
size 1.417 with the brute-force based algorithm takes about 9,7 · 105 seconds, or about
11 days. With the recursive k-d based algorithm, the same operation can be calculated
in just over a minute. Considering the needs of TSI, it seem that this approach is worth
developing further into an parallel algorithm.

Despite these initial positive results, some problems are apparent from our initial tests.

The k-d tree building algorithm is very slow. Given that we want to perform kNN queries
on larger point clouds than 1.417, finding an efficient parallelization of this algorithm
would be very beneficial. This is not as trivial as it might seem, as tree-based algorithms
do not lend themselves very well to trivial parallelization.

When scaling the number of repeated queries from one to n we observed the huge impact
a seemingly small change in the time required for performing one query had on the time
needed to compute the entire result. A change from several milliseconds to a fraction of a
milliseconds might seem trivial, but given enough repeated queries, this was the difference
between minutes and days of computation time. Will we be able to keep the query time
down when increasing the value of k, and moving the computation over to the GPU, which
generally has a slower clock cycle than the CPU.

In the next sections we will address these challenges, along with others, and develop a
parallel algorithm for performing kNN queries based on k-d trees.

3.4 Development of a parallel k-d tree build algorithm

The build process is by far the most expensive operation on a k-d tree, and parallelizing
it could reduce the overall runtime significantly, when solving the kNN problem. This is
not as straight-forward as it might seem. The serial k-d tree build algorithm is usually
implemented as a recursive function, since recursive functions tend to go along well with
tree-based data structures. On the other hand, performance in CUDA is based on efficient
use of a massive number of lightweight threads, and to get a fast algorithm one have to split
the work between as many threads as possible. This is only possible if it is easy to divide
the work into independent subtasks, where data communication is kept at a minimum. In
a recursive context, execution flow in hidden inside each threads call stack. Information
needed by other threads is therefore not easy to obtain. To solve this, a iterative approach
should be used, which can be implemented with a global accessible execution flow. This
will however, give a more complex k-d tree build algorithm, and it is not certain that this
algorithm is easy to parallelize.

RQ 5. It is possible to parallelize the k-d tree build algorithm, in such a way that it gives a
significant speed improvement compared to the serial algorithm.

In order to investigate RQ 5, we have to look a bit closer at the different steps of the k-d
tree build algorithm and investigate different parallelization strategies.
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3.4.1 From recursive to iterative implementation

Before we dive into the parallelization strategy and how the parallelization can be done,
lets try to make a iterative solution. We can start by enumerating the different steps in the
recursive implementation.

1. Find the median of the points along a specified axis. This median point becomes the
value of the current node.

2. Sort all points with lower values than the median to the left of the median, and all
the points with higher values than the median to the right.

3. Perform this algorithm recursively on the left and right set of nodes.

From the steps one can see that for each node in the k-d tree, one have to partition a
list around it’s median. We will call this operation Balance-Subtree. If we analyze the
Algorithm 3.4, we see that there are two recursive calls. This is logical, because we are
building a binary tree where each node have two children. The interesting observation is
that a node balance is only dependent on the parent node. This means that each tree level
are independent and can be done iteratively.

The k-d tree construction basically boils down to successively balance each node in the
tree. This leads to a basic reimplementation, see Algorithm 3.6. It goes through each level
of the tree, starting at the top, and balances each node successively down the tree.

Algorithm 3.6 Iterative k-d tree build

Input: An array of points, T
Output: T , as a k-d formated array

function BUILD-KD-TREE(T )
for all L ∈ {all levels in T} do

for all S ∈ L do
d← |L| mod k . k = 3 for a three dimensional k-d tree
BALANCE-SUBTREE(S, d)

end for
end for

end function

3.4.2 Parallelization strategy

Now that an iterative solution have been created, lets start looking at how this algorithm
might be parallelized. First a good overall parallelization strategy has to be found. A good
strategy manage to easily split the main task into small individual subtasks, that can be
performed in parallel, while maintaining a minimal need for communication between the
subtasks.

When we converted our k-d tree algorithm from a recursive to a iterative solution some
interesting observations was made. One observation is that a node balance is only depen-
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dent on the parent node. This means that each tree level are independent, which acts as a
good start for our parallelization strategy.

This also implies that all subtrees in the k-d tree generation are independent. Hence, the
tree corresponding to the left and right child of a node can be done in parallel without any
communication.

The data is also independent, as a result of how we represent the tree as an array. By data
independent, it is meant that the data structure easily can be partitioned to each subtask.
In our case this will be to successively partition the tree into contentious subtrees.

These observation implies that we can divide the tree levels into dependent tasks, where
each node balance in a tree level is a independent subtask. This gives us an power of
two increasing number of parallel tasks as we go down a tree level. The subtree size will
decrease with a factor of two in each downward step, see Fig 3.4.1

This parallelization strategy gives many concurrent operations at the lower level of the
tree, but at the initial levels, will hardly get any parallelization at all. To compensate for
this one could seek to parallelize the work done in each Balance-Subtree procedure, which
also act as a parallelizations strategy.

Both strategies can be used in conjunction with each other. The parallel balance node task
algorithm can be used to speed up the early iterations, where the amount of nodes in a tree
level is small. As well as further parallelize the subtasks in later tree level iterations. This
strategy also fit well to our choice of tree representation. One parallel operation can now
take the tree representation, split it into subtrees, and balance each one.

Figure 3.4.1: Development of subtasks as the kd-tree generation progresses. It shows, at each tree
level, how many nodes there is to parallelize and how big each node balancing is.

CUDA parallelization

CUDA have a special architecture that should be taken into account when parallelizing
an algorithm. To efficiently use CUDA, the program has to keep thousands of threads
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occupied, otherwise the benefit of CUDA disappears. The CUDA programming model
is build up by a grid if independent block, i.e. execution can not be synchronized across
blocks. Execution can only be synchronized between the 1 to 1024 theoretical threads
launched inside a block [3]. Thread synchronization is important when multiple threads
cooperate on one task, because at some point information has to be exchanged.

Our parallelization strategy states that we have to balance one tree level after another,
since they are dependent. This implies that the threads need to communicate between each
tree level. One CUDA kernel should therefore balance a complete tree level. The other
alternative would be to build the hole tree in one block, which would restrict our kernel to
only be executed on one SM.

The next step is to split the tree level balance between the CUDA resources. The number
of node in a tree level increases with the power of two, as we go down the tree. Fig 3.4.1
shows that our kernel, the tree balance, changes throughout the build process. First only
one node needs to be balanced, e.g only one parallel operation. At the end there are m
different nodes to work on. The problem size also changes, at the top, it is m per node and
goes towards 1, as the tree level increases.

This varying problem sizes and subtasks, makes it hard to create a good work distribution
between the CUDA resources. At the top part of the tree it is optimal to use many blocks
to balance a node, but at the end, it is desirable to balance many nodes inside a block. We
choose a middle ground, to balance one node in one block. This means that there should
be an overall good performance with a peek at the middle three levels.

3.4.3 Parallelization of Subtree-Balance

With the overall parallelization strategy planned, we can start investigate the most time-
consuming operation, balancing a tree level. We have already determent that the paral-
lelization should be done in one block, which means that one operation is done per SM.
In other words, the task can potentially be parallelized between 1024 theoretical threads.
Lets start investigating different approaches.

The main operation is to find a median. As we have seen in Section 3.3, many algorithms
for finding median exist. Since we now want to implement the algorithm with CUDA, the
environment has changed, and quick-select may not be the best alternative anymore. The
first problem with quick-select is that it is recursive, which makes it hard to parallelize
on CUDA. Therefore it may be profitable to look at other, more parallelization friendly,
algorithms.

First reusing the bitonic sort was investigated. Given a sorted list one can find the median
directly, by simply looking at the midmost element of the array. The partitioning is also
done in the process. Unfortunately this strategy proved unsuccessful, as re-purposing the
bitonic algorithm for such an task proved difficult. The reason for this is that a pure bitonic
sorting network only manage to sort lists with a length of power of two. The normal
solution is to create a longer list then needed, but wasting this much memory on on the
GPU is not a very good solution.
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Another way to make bitonic sort work with a list of any size is described by K.E. Batcher [6].
The description of this solution is very lengthy, and has been omitted, since it introduces a
lot of divergence, that would be decremental to performance on the GPU. We also have the
inherent downside of sorting a list in order to find the median, since O

(
m
)

algorithms for
finding the median exist, compared to the O

(
mlog(m)

)
time required by sorting.

Bucket-sort and radix-sort based algorithms are investigated in the paper Fast K-selection
Algorithms for Graphics Processing Units by Alabi et.al. [5]. The big difference between
them is the constant time penalty. The radix sort have a more exact time complexity of
O
(
b m

)
, where b is the number of bits in each number. While the penalty for bucket select

is O
(
a m

)
, where a denotes the degree of agglomeration in the values. In other words, the

algorithm is week when the points are clustered together. His results shows that bucket
select normally is slightly faster, except when a is high. Although bucket select normally
have better results, we expect a high degree of agglomeration in our application, so we
choose radix select.

Radix select

The radix select is based on a bitwise partitioning, much like radix sort [10, Chapter 8.3].
In each step, elements are partitioned in two subgroups based on the current bit. Then the
subgroup that contains the median is determined, and the search continue in that subgroup
until the median is found.

Figure 3.4.2: An illustration of radix selection [9].

When it comes to create a parallelization strategy for radix select it is first advisable to
take a look at a highly optimized radix sort, like the variant introduced by Merrill [17].
The radix select can easily be reduced from a radix sort, and many concepts can therefore
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be reused. An other interesting implementation is the radix select by Alabi [5]. They both
uses a parallelization strategy by splitting each radix partition into parallel operations.
The way our and Alabi’s solution differs from Merrill’s solution, is that we start on the
most significant digit, since a least significant digit approach will not reduce the k’th order
statistic problem in each step.

Our implementation

Our implementation is based on Algorithm 3.6. Calling Balance-Subtree on all nodes in
a tree-level, is performed on the GPU as a CUDA kernel. The outer for-loop is executed
on the CPU, and launches the kernel for increasing tree-levels, until the entire tree is built.
The complete implementation can be found in Appendix C.3.4.

Algorithm 3.7 is parallelized only within a single CUDA block. This means that the par-
allel threads are able to communicate. The algorithm is based around a repeat-until loop,
which basically do all the work. The loop keeps track of a partition array. This array
is then sliced in to, by giving each thread a portion of the array, each thread then counts
how many zeros it finds in the current bit position. The cut, as the arrows in Figure 3.4.2
shows, is calculated by doing a reduce sum operation [15]. This is repeated until the parti-
tion contains the median, which is when every bit is used or when the partition size is one.
After the loop, the array is transformed. Such that the median is in the center, with lesser
elements on the left and bigger on the right.

Algorithm 3.7 Parallel subtree balance

Input: A subtree S of length m, and dimension d
Output: A balanced subtree, S

function BALANCE-SUBTREE(T , d)
Let l and u be the upper and lower bond of current partition.
Let P be all nodes in S
repeat

for all {p ∈ P | l < p < u} do
Z(t)← Occurrences of zeros in current bit, b, found by thread, t.

end for
c← SUM-REDUCE(Z) . c is the cut of the current partition P .
if u− c ≥ m/2 then

u← u− c
else

l← u− c
end if
b← b + 1 . Move to the next bit
SYNCHRONIZE-THREADS( )

until u− l < 1 ∨ b > RADIX(p ∈ P )
PARTITION(S, P )

end function
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In CUDA thread instruction run sequentially in warps of 32. Control flow divergence
within a warp can therefore significantly destroy the instruction throughput. This is be-
cause the different execution paths must be serialized, as all the thread in a warp share
the same program counter [2]. The total number of instruction in a warp will therefore
increase. Any conditional operator, e.g. if and switch, should be used with care, since it
may branch the control flow. Optimizing the use of conditionals, in order to reduce the
amount of branching in the program control flow, will give better performance.

In our implementation, all threads perform the same thing in every iteration. This will
give a low thread branching. The loop is also almost done equal times by all thread, one
time for each bit used to represent the points. The one if statement in the iteration, can
be reduced to only contain one statement, which make the divergent thread branch small.
The code is therefore good in regard of divergence.

An other aspect to consider, is the CUDA memory hierarchy. It is beneficial to use the
fastest suitable memory. In our case, this include the shared memory, which is a fast
memory shared between all threads in a block. The downside is the memory size, it may
not be enough space to store our subtree. Although we may not be able to store the hole
subtree, there are some date we can put in the shared memory. The zero counter array,
shown as Z(t) in Algorithm 3.7, is a perfect candidate. Every thread only use one integer
and it is shared between all threads throughout the execution. It will therefore cause a big
impoverishment.

The complete implementation can be found in Appendix C.3.3.

3.4.4 Further improvements

Let us take a step back and look at RQ 5. The possibility of parallelizing the build al-
gorithm is achieved. Initial optimization has been performed, so according to the APOD
design cycle, we should test our implementation.

With the test setup as described in Section 4.1, the current version of the algorithm gave
results as shown in Figure 3.4.3. The most interesting observation are the big jumps in
the graph. If one look closely these jumps happens every time the problem size exceeds
a power of two, as for example when the size passes 8388608 the timing increases from
2703ms to 4335ms. The results of further investigation is shown in Table 3.4.1. It shows
how long time each tree level takes, and how the different tree level operations varies
throughout the build process.

The table reveal some weaknesses of our algorithm, that is based around how the CUDA
resources was divided in Section 3.4.2. It performs badly when the problem size or the
number of subtrees is relatively large. The potential for parallelizing the workload for the
first and last iterations is not being fully utilized. This is due to the implementation forcing
one version of the radix select algorithm to work on all problem types. This is not optimal
for dividing CUDA resources, and as a result, we get high penalties when the problem
reaches unsuitable values.
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Figure 3.4.3: Timing results from a intermediate version of the parallel k-d tree build algorithm.

Tree level Time [ms] Subtrees Size
1 52 1 1000000
2 26 2 500000
3 13 4 250000
4 8 8 125000
5 7 16 62500
6 6 32 31250
7 6 64 15625
8 6 128 7812
9 7 256 3906
10 7 512 1953
11 8 1024 976
12 10 2048 488
13 16 4096 244
14 26 8192 122
15 52 16384 61
16 105 32768 30
17 202 65536 15
18 389 131072 7
19 768 262144 3

Table 3.4.1: Development of a k-d tree build with a million points, showing how the different tree
level operations varies throughout the build process.

This hypothesis can also explain the big jumps in runtime. The observations above corre-
lates perfectly with the tree hight, since the hight of a binary tree is the binary logarithm of
the tree size. This implies that the jumps happens when an additional tree-level is required
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in order to fit the tree.

Tuning the algorithm to alternate between different algorithms to balance a subtree, elim-
inates this problem. This removes the penalty for calculating the median at unsuitable
problem sizes.

Our current implementation only use one block per subtree, which means we are only
able to use one SM to balance the subtree. By utilizing several blocks at the same time,
big subtrees could be processed faster. However, since all blocks are used to balance one
subtree, only one subtree can be balanced at a time.

The implementation details are omitted here, but can be found in Appendix C.3.1. In short,
the implementation follows the outline of the radix-select implementation, but the thread
synchronization is performed on the CPU, between kernel launches. This enables us to
communicate between the different blocks.

We also would like to improve performance, when Balance-Subtree is applied to many
small subtrees. For instance, at level 18 there are 131072 different subtask with only an
average size of 7. The previous implementation divided all these subtask between a small
number of SM, typically 8 − 32 on current NVIDIA GPUs. The algorithm the uses to
many cores to balance a subtree of only 7 elements, which is not a efficient way to divide
resources.

Figure 3.4.4: Visualization of the final improvments on the k-d tree build implementation.

Letting just one thread handle the Balance-Subtree operation for small subtrees, would let
us process more subtrees in parallel, improving performance. With this parallelization,
each thread is responsible for it’s own subtree, and communication with other threads is
no longer needed. With the need for communication eliminated, we can utilize Algo-
rithm 3.4.

Now that a lot of improvements have been made, lets take a look at the results. Figure 3.4.4
compare our intermediate result with our new and improved version, and the changes made
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a huge impact on the performance. The jumps disappeared, and was replaced by a faster
and smoother curve, indicating that the CUDA resources is perfectly balanced. The final
implementation can be found in Appendix C.3.2.

3.5 Development of a parallel k-d search algorithm

In this section, we will investigate parallelization of the k-d tree based query algorithm,
applied to the All-kNN problem. The following research question is stated:

RQ 6. It is possible to parallelize the All-kNN query algorithm, in such a way that it gives
a significant speed improvement compared to the serial algorithm.

To investigate RQ 6, we will device a parallelization strategy, rewrite the k-d search al-
gorithm as a iterative algorithm and optimize our implementation for CUDA execution.
Finally results obtained from testing this implementation is presented.

3.5.1 Parallelization strategy

Solving the All-kNN problem, can be done by repeated application of the kNN query
algorithm. This is an algorithm that is easily parallelized, by distributing individual kNN
queries across the available parallel units. However, there are still some possible pitfalls
to address. Should a query be done in one block, maybe each query should be done single
handedly by one thread, or maybe we should use one thread per k in a query.

We have previously determined that a single query on a k-d tree size m, will in average
visit log(m) nodes. This indicates that not a lot of GPU resources is needed to perform
a individual query. Assigning an entire CUDA block to one query therefore seems exces-
sive. Combined with the communication heavy nature of the query algorithm, the best
parallelization strategy is therefore to use one thread per query and equally distribute the
queries amongst the GPU’s SM.

Let us now consider if we can use Algorithm 3.5 directly with this parallelization strat-
egy. As discussed in previous sections, GPUs and recursion don’t get along well, the main
drawback being the inherent need for communication between the recursive calls. Unfor-
tunately, even with our current parallelization strategy, there are still reasons not to use a
recursive algorithm.

The GPU threads are lightweight, with restricted available memory and cache. This means
that the call stack, where the all program instructions are managed, is relatively small.
Given a non tail-recursive algorithm, the program context and instructions are appended
to the call stack at each recursive call. This will eventually fill up the limited call stack
available for an individual CUDA thread. It might be possible to still use a recursive
algorithm, given that the call stack never gets to large.
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To determine if the recursive k-d tree query algorithm can fit within a CUDA thread, call
stack tests was performed. On a individual block, 64 theoretical threads was spawned,
each querying a k-d tree of increasing size. The results showed that when the k-d tree
size passed 1 · 105 points, unknown errors started to appear. This indicated a stack over-
flow.

Divergence also needs to be considered. In a recursive algorithm the decision of whether
a recursive call should be made or not, is entirely up to a single thread. Once two threads
have made different decisions, there is no guaranty that they will stay synchronized.

Both problems would be solved by rewriting Algorithm 3.5 into an iterative algorithm.

3.5.2 From recursive to iterative implementation

To rewrite Algorithm 3.5 into a iterative algorithm by explicitly managing the recursion
stack, some properties about how the search traverse the k-d tree is needed. From Algo-
rithm 3.5 one can see that this is a variant of the depth-first traversal, since the work of
the current node is done before and between the recursive calls. This traversal in also the
best strategy in a binary tree search, because the pruning of subtrees is maximized. How
to make a standard binary search tree in an iterative fashion is described in Cormen [10,
Chapter 12], but since this is a k-d tree search the implementation is slightly different, as
shown in Algorithm 3.8,

The algorithm works in the same way as the recursive algorithm, but adds a stack, S, called
the s-stack, and a while loop in order to handle the tree traversal iteratively. While there
is a element assigned to the root variable, r, the algorithm will traverse down the target
branch, updating the dimension, i, calculating the distance, dx, determining the target, t,
and other, o, child node. Then it will collect r, o, i and dx into one element, and push it
on the s-stack. Finally the root variable is assigned to the target child, or NIL if we have
reached the end of a branch.

While there still is elements in the s-stack, but r is assigned to NIL, we are traversing back
up a branch. While this is happening, the algorithm pops elements from the s-stack, deter-
mines if they should be added to the k-heap, before it determines if it need to investigate
the other branch of this node. If that is the case, the other node is assigned to r, and the
algorithm will traverse down this subtree using the previously stated rules.

3.5.3 CUDA implementation

Our simple parallelization strategy, combined with an iterative implementation of the k-d
tree search algorithm, resulted in a trivial CUDA implementation, as we did not need to
parallelize the iterative search algorithm itself. The implementation can be found in it’s
entirety in Appendix C.4.1. In addition, we will highlight some implementation details,
and look at the results obtained from this code.
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Algorithm 3.8 Iterative kNN k-d tree search

procedure ITERATIVE-KNN-KD-TREE(K, r, q)
Let S be a stack for collecting tree nodes
i← 2
while !S.empty or r != NIL do

if r = NIL then
r ← POP(S)
i← r.dimension
if r.dx2 < K.max then . Can there be closer points in the other subtree?

r ← r.other
else

r ← NIL
end if

else
d← DISTANCE(r, q)
if d < K.max then . Is r closer to q than the current k best points?

r.distance← d
INSERT(K, r)

end if
i← (i + 1) mod k . k = 3 for a three dimensional k-d tree
r.dimention← i
r.dx← r.x(i)− q.x(i)
if r.dx > 0 then . Select t and o so we traverse towards closest point first

t← r.left, r.other ← r.right
else

t← r.right, r.other ← r.left
end if
PUSH(S, r)
r ← t

end if
end while

end procedure
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Algorithm 3.8 does not have a lot of divergence, and the remaining branching can be
further reduced. If threads in a warp is traversing completely different parts of the tree,
they will access different nodes. This is called data divergence. The solution is to let
each warp search for points that are located closely in the k-d tree. This will cause all the
threads to traverse down the tree in roughly along roughly the same branch, reducing the
data divergence. Due to the nature of our k-d tree implementation, this can be achieved by
feeding the points to the search algorithm as they are placed in the k-d tree.

The explicit stack also makes an interesting question about where to store the new stack.
This is data that are modifiable and thread independent, which means that the possible
options memory options are shared memory, local memory and global memory. Local
memory is the memory each thread can allocate dynamically from the heap. Global mem-
ory is a possible candidate. It has enough space, it is modifiable and accessible to all
threads. The drawback is the access time, it takes around 400 − 600 clock cycles[2], and
it would therefore be beneficial to use some other kind of memory. Shared memory would
be a perfect candidate, because the memory is fast and the need to communicate between
blocks is nonexistent. The only drawback is the amount of data available in shared mem-
ory, which is around 49kb on current NVIDIA GPU’s.

The iterative search algorithm uses one stack and one heap, both stored as arrays in mem-
ory. Th number of arrays are dependent on the number of threads used in each block. The
s-stack array size is dependent on how many elements the depth-first tree traversal needs
to store. If one looks on how the algorithm handles the stack, one can see that elements
are pushed on the way down, and poped on the way up. This means that the stack never
will be longer then the tree hight. One stack element uses 16 bytes of space, which means
that the stack memory is s subset of Θ(16 log2(n)T ). Here T represent the number of
threads and n is the k-d tree size. The k-heap array size, depends on the number of closest
neighbors, k, and one element uses 8 bytes. This implies that it’s memory usage will be,
Θ(8kT ).

In Figure 3.5.1 the memory usage of each stack is compared to the available shared mem-
ory. Some basic assumptions and approximations have been done in regard to the data.
Treads are only compared in multiples of 32, since this is the warp size and is therefore the
most optimal thread numbers. The value of k is dependent on the problem in hand, and as
our application only needs a value of 100, so that value is used.

Figure 3.5.1 shows that the k-heap will not fit in shared memory. Already at a thread count
of 64 the memory is filled up. The size of the k-heap is also highly dependent on the
size of k which is hard to predict. However, locating the s-stack on shared memory looks
promising. The memory size has also a relatively low asymptotic growth, O

(
log(n)

)
, in

regard to the tree size.

To decide what kind of memory is optimal location for the s-stack, Figure 3.5.2 has been
created. Surprisingly shared memory looks like the slowest alternative. One likely reason
is that elements in shared memory is synced between all threads in a block. This property
is not needed in the s-stack, since the s-stack is only used by one thread.

Although global and local memory presumably is stored at the same place, the are some
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Figure 3.5.1: The stacks memory usage, compared to the amount of shared memory. Here k was
sat to 100.

noticeable differences that can explain the time gap between them. The cache may be
a factor. The cache is placed on the same on-chip memory as the shared memory, and
should therefore be equally fast. The difference is that cashing is not programmable and
therefor not controlled be the programmer. However some properties in the local memory
may suggest that it is a more likely candidate to be cached. The local memory is thread
dependent and is not accessible to other threads or blocks as the global memory are. The
compiler can therefor logically imply that the data is not going to be modified by other
threads and caching becomes much more likely. Figure 3.5.1, also shows us that the cache
can fit the hole s-stack in a block, which correlates with the timing results. To enforce
cache use even further, CUDA gives a runtime option to enforce more of the on-chip
memory to caching.

Testing different memory locations for the s-stack, showed that the memory location is
important for performance. Even small improvements in the performance of the s-stack,
gives a significant improvement in overall runtime. This implies that the k-heap should be
highly optimized.

Figure 3.5.3 shows the runtime difference between two k-heap variants. One uses a bobble
sort [10] like implementation. It works by always keeping a sorted list. Elements are
inserted by placing it at the end if the list, and swapping it to the adjustment element,
until it is in the right place. The other method is based on a heap sort implementation,
that is explained in Section 3.3.3. The performance difference is the insertion time, where
the bobble variant is a O

(
n
)

time complexity, while heap sort variant has a O
(
log2(n)

)
.

Resulting in a almost 7 times faster k-heap, with only a k value of 100.
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Figure 3.5.2: Search time comparison between different stack memory types. The test are done with
k equals 10 and 1 · 106 queries per tree size.

Figure 3.5.3: Timing results from two different k-heap implementations, with varying k and 1 · 106

referance points.

Open-MP

The high impact the stack had on performance make an interesting question in regard to
RQ 6. Could a parallel implementation on the CPU outperform the CPU version? When
the latency effect, as the stacks showed, had such a huge impact on the performance. The
CPU has a lot more cache then the GPU and would therefor not be affected that much by
memory overhead. The question if this is enough to offset the lower number of parallel
threads on the CPU.

42



3.6 CUDA Optimizations

For this to be investigated properly, an OpenMP version of the k-d tree search has to
be created. The parallelization strategy is the same as for the CUDA implementation,
only differing in implementation details. Since the CPU has vastly more cache and the
system memory latency is not very high, we do not need to consider memory usage in the
same manner as with the CUDA implementation. The implementation can be found in
Appendix C.4.2.

3.6 CUDA Optimizations

Throughout this quest many optimizations have been done, some focusing on the algorith-
mic aspect, others more on implementation. This section is focusing on different CUDA
optimizations and why it is necessary in regard of performance. Some performance consid-
erations, like divergence, have already been mentioned, due to it’s direct relation to the dif-
ferent implementations. Other important factors, occupancy, coalescing, loop-unrolling,
block and thread load balancing.

Occupancy is a metric, which relates to how many active warps there are on a SM. Earlier
we have talked about how thread instructions are executed sequentially, resulting in alter-
nating warps, one warp is paused while the other is executing. The time a stalled warp
will use to retrieve data, increases with the number of warps per SM. One should note
that high occupancy does not always result in high performance, but low occupancy will
always result in an inability to hide latency, which result in bad performance.

The struggle to always have the right amount of occupancy, also relates to dividing CUDA
resources. As well as keeping a right amount of warps in a SM, one must also keep every
SM in activity. Forcing the algorithm to work over unsynchronizable blocks. The number
of blocks, that are optimal to keep in activity, changes with different GPUs. It is therefore
important to think of how many blocks and threads that are launched with each kernel.
We have solved this issue with methods that, based on different algorithmic parameters,
calculates how many threads and blocks are needed for a particular launch.

To coalesce memory access to global memory, is probably one of the most performance
increasing optimizations in CUDA, especially in our memory intense application. Global
memory that is loaded and stored by threads in a warp, can be coalesced into only one
transaction, if the right conditions are met. How a device coalesce memory depends on the
compute capability, but some basic properties are common. A warps access will coalesce
into onto a number of transactions that equals the number of cache lines needed to service
all the threads in the warp. Devices with compute capability 2.x will by default cache
directly to L1, which has 128-byte lines. Higher capabilities will always cache to L2
cache, that have 32-byte segments [2].

If we focus on compute capability 2.x, Figures 3.6.1, shows have memory are coalesced.
Green indicate memory lines that are retrieved, while blue indicate non retrieved lines. The
first figure illustrate perfect coalescing, a warp performs a sequential 128-byte transaction
that fit perfectly in a 128-byte lines. The second shows a misaligned sequential retrial,
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Figure 3.6.1: Three different memory transactions, where A and B result in good coalesced and
cached transactions, while C shows a stride access pattern with bad coalescing.

resulting in two transactions. The third uses stride access pattern with a offset of 128
resulting in bad coalescing.

We have tried to maximize coalescing by always using sequential addressing. This kind
of addressing can be achieved in many ways. One way, that we have use throughout the
code, is based on how data are partitioned and iterated. The generic partitioning algo-
rithm, Algorithm 3.1, that we used to expand Garcia’s algorithm, shows how this could be
done.

The last optimization keyword we would like to introduce is unrolling. This is a technique
we have used on many of our algorithms, like min-reduce, and also in some of our utility
functions, like for example to accumulate an array. Unrolling is a standard technique in
ordinary high performance serial programming, optimizing pipelining, and is given an
extra dimensions on CUDA.

Loop unrolling, is the procedure of rewriting a loop, containing conditional operators, into
hard-coded sequential steps. This way, the result of conditional operators may be deter-
mined at compile-time, eliminating branching of the control flow. On a CUDA context
this is of course the case, but in addition it will minimize divergence.

The idea of loop unrolling can also be applied to warps. This is called warp unrolling,
and it can be used if we know we are in a single warp. The results being, that no ex-
pensive thread synchronization is needed, since every warp is accessing a unique memory
location.
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Chapter 4
Final results, discussion and
conclusion

4.1 Test environment

To test and investigate our results three test environments have been used, as shown in
Table 4.1.1. They all have different properties that are used to test different aspects of our
algorithms. Test environment 3 has a normal Windows setup, with a graphics card that is
used for both display rendering and CUDA computation. On the other hand, test environ-
ment 1, uses the same hardware, but is setup with a dedicated GPU. CUDA computations
done on a environment without a dedicated GPU, is forced to split the resources with the
running OS, which implies some restrictive properties. For instance, it is normal for an
OS to kill long running GPU processes. On windows the normal timeout is around 30
seconds. To get around this restriction some editing in regedit is necessary.

The last environment, number 2, is build on an Amazon web service (AWS) cloud instance.
Using AWS, enables us to test implementations on a more powerful GPU, than what we
currently have in our personal procession. The biggest advantage of the AWS GPU for our
applications, is the increased on-board GPU memory. This enables us to store larger point
clouds directly on the GPU. The increased number of CUDA cores, also makes it possible
to test performance ratios, and different variants of resource distributions.

All tests was run multiple times and averaged, to get more accurate results. It should also
be noted that it is common practice to warm up the GPU before any test, because it may
take as long time for the CUDA runtime to create a CUDA context, as launching the kernel
itself.

All tests used synthetic data, generated as uniformly distributed random points in a unit
cube. Where needed, random points was generated and stored to disk. This data could
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Test envoronment 1 2 3
OS Ubuntu 14.04 Ubuntu 12.04 Windows 7
OS type x64 x64 x64
Kernel 3.13.0-24-generic 3.2.0-58-virtual Windows 7
CPU i7-2600K E5-2670 i7-2600K
CPU memory 7.8 Gb 16 Gb 7.8 Gb
GPU GeForce GTX 560 Ti NVIDIA GRID K520 GeForce GTX 560 Ti
GPU memory 1024 Mb 4095 MB 1024 Mb
Dedicated GPU Yes Yes No
CUDA cores 384 1536 384
CUDA capability 2.1 3.0 2.1
CUDA driver 5.5 5.5 5.5
CUDA runtime 5.5 5.5 5.5

Table 4.1.1: Tabulated information about the three test environments.

then be used as the source for several different tests, eliminating deviation in tests used for
comparison of between different implementations.

Using uniformly distributed data is not necessarily a good representation for all real world
point cloud data, but this should not affect our results for the brute-force and k-d tree
build algorithm, given that these algorithms have a non-stochastic runtime, not affected by
the location of our test points. Given that we always balance the k-d tree, the k-d query
algorithm should not be significantly affected by changing the point distribution, although
slight deviations might be observed.

Due to the reasons above, and the available time for this thesis, we have chosen not to
include other point distributions in our tests, but this could be an interesting study for
further work.

4.2 Final results and discussion

During the development of our algorithms, we have presented many intermediate results,
in order to argument for the design and implementation choices made. In this section, we
will present our final results for the GPU parallelized brute-force, GPU parallelized and
CPU parallelized k-d tree based kNN algorithm.

The different research questions stated during development of our algorithms are revisited,
and answered are given, based on the presented results.

4.2.1 Solving the kNN problem

In Section 3.2 we started on our quest for a faster kNN search, by investigating a possible
brute-force algorithm, pioneered by Garcia et.al. The following research question was
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asked.

RQ 1. Can high performance be achieved by a parallel brute-force kNN algorithm on
large point clouds.

In order to discuss this question, we have to clarify what we consider to be high perfor-
mance in this context. The work of Garcia et.al. contains the fastest brute-force algorithm,
for solving the kNN problem, we have found in current literature. We would therefore
consider a kNN algorithm to have high performance, if it is able to solve the kNN prob-
lem for point cloud data, in the 3D format specified by TSI, at comparable speeds to the
algorithm developed by Garcia et.al.

Although the algorithm developed by Garcia et.al. is the fastest brute-force algorithm we
have managed to find, this is not as a high benchmark as it might initially seem. The
algorithm developed by Garcia et.al. is optimized for solving the kNN problem for a
more general version of the kNN problem than required by TSI. Where we are only
concerned with solving the kNN problem for three dimensions, Garcia’s algorithm will
solve problems stated in any dimension. Given that we solve a more restricted version of
the kNN problem, any less than comparable speeds to the implementation made by Garcia
et.al. could not be considered to be of high performance in our eyes.

Figure 4.2.1: Comparison of brute-force algorithm developed by Garcia et.al. and min-reduce based
brute-force algorithm developed in this thesis. k is fixed at 10 and m is increasing.

In Section 3.2.2, we discussed Figure 3.2.2. As a reminder, part of this figure is presented
as Figure 4.2.1, which shows the result of a comparison between the brute-force algorithm
developed by Garcia et.al. and our min-reduce brute-force algorithm developed in Sec-
tion 3.2.2. The test is performed with a low value for k = 10, and focuses on performance
for large values of number of points, m. In this test, our min-reduce brute-algorithm is
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shown to be almost 70 times faster than the algorithm developed by Garcia et.al. In addi-
tion, it is capable of solving the kNN problem for much larger values of m.

We therefore conclude that RQ 1 can be answered with yes. High performance can be
achieved with a brute-force based algorithm.

In Section 3.3 we introduced the k-d tree, a data-structure with a known O
(
log(m)

)
near-

est neighbor query algorithm. We therefore presented a new research question, which we
try to answer in Figure 4.2.2.

RQ 3. It is possible to use a k-d tree to increase the performance of kNN queries, compared
to a parallel brute-force solution?

Figure 4.2.2: Comparison of min-reduce brute-force and k-d tree based algorithms for solving the
kNN problem for k = 100 and increasing m ≤ 1e7.

The graph compares the runtime of the k-d tree build and query algorithms developed in
Section 3, with the min-reduce brute-force algorithm. All test data is generated using test
environment 1.

Figure 4.2.3 compares the same two algorithms, but for a fixed value of m, and increasing
value of k. This test is also performed using test environment 1.

Both Figure 4.2.2 and 4.2.3 shows that this algorithm is slower than a brute-force approach.
This answers RQ 3. In order to solve the kNN problem, the k-d tree based solution first
has to construct the k-d tree, then query for the closest points. Given that our previous
calculation shows that the time complexity of the k-d tree build algorithm is larger than
the time-complexity for the brute-force algorithm, this result should come as no surprise.
Constructing the k-d data-structure for a single query is simply a waste of resources, if just
one kNN query is to be performed.
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Figure 4.2.3: Comparison of min-reduce brute-force and k-d tree based algorithms for solving the
kNN problem for m = 1,0 · 106 and increasing k ≤ 200.

4.2.2 Solving the All-kNN problem

The All-kNN problem was studied in both relation to the brute-force algorithm and the k-d
tree based algorithm. In Section 3.2.2 we proposed RQ 2. We also wanted to compare our
parallel k-d tree based algorithm to the brute-force algorithm, postulated in RQ 4.

RQ 2. Can a parallel brute-force kNN algorithm be fast enough to solve the All-kNN
problem within reasonable time?

RQ 4. It is possible to use a k-d tree to increase the performance of All-kNN queries,
compared to a parallel brute-force solution?

Figure 4.2.4 compares the runtime of the min-reduce brute-force algorithm to the k-d tree
based algorithm, for increasing values of m ≤ 1e7, and a fixed value of k = 100. The data
series for the min-reduce algorithm is estimated from the data obtained in Figure 4.2.2.
This estimation is valid, since all GPU resources are used to perform one kNN query,
when using the brute-force algorithm. Solving the All-kNN problem with the brute-force
algorithm, can therefore only be performed as repeated application of the brute-force kNN
algorithm, given a reasonable hardware setup, with one CUDA enabled GPU.

The data series for the k-d tree based algorithms are, on the other hand, generated from
actual runtime results. This is due to the k-d query algorithm being developed as a paral-
lelized Q-kNN query, where individual kNN queries are parallelized, instead of one single
kNN query, as is the case with the brute-force algorithm. We have developed two different
implementations of this k-d tree based Q-kNN query. One parallelized on the GPU, anno-
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tated with GTX k-d build + m queries, and one parallelized on the CPU, annotated with
CPU k-d build + m queries. All tests was performed using test environment 1.

Figure 4.2.4: Comparison of min-reduce brute-force and k-d tree based algorithms with CPU and
GPU parallelized query. The graph compares runtime for solving the All-kNN problem for k = 100
and increasing m.

Figure 4.2.5 compares the GPU parallelized k-d tree algorithm, with the parallel brute-
force algorithm, for a fixed value of m, and increasing values for k ≤ 200. Test environ-
ment 1 is also used in this comparison.

Both graphs clearly shows the benefit of using a k-d tree based algorithm for solving
the All-kNN problem. As discussed in Section 3.3.4, part of this increased performance
over a brute-force based solver, is due to the k-d query algorithm being able to execute
in O

(
log(m)

)
time. Since we do not have to rebuild the tree between the individual

kNN queries when performing a All-kNN query, the reduction in query runtime has larger
impact on the overall execution of the algorithm.

Another important factor is that each k-d kNN query, is parallelized. This can be done
for a k-d based query algorithm, since the resource requirements for each individual kNN
query is lower than for the brute-force algorithm. These two improvements combined,
result in an algorithm that is capable of solving the All-kNN problem for values of m and
k, that would not be feasible with a brute-force algorithm. This answers RQ 4.

Figure 4.2.4 shows that the brute-force algorithm is capable of solving the All-kNN for
small point clouds, although significantly slower than the k-d tree based algorithm. With
a point cloud containing just 10000, the brute-force algorithm will take at least 10 s to
execute, compared to the 100 ms required by the k-d tree based algorithm. Although
slow, for low values of m, the brute-force algorithm computes the answer within arguably
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Figure 4.2.5: Comparison of min-reduce brute-force and GPU parallelized k-d tree based algorithms
for solving the All-kNN problem for m = 1e6 and increasing k ≤ 200.

reasonable time. When m is increased, this changes. For a point cloud of size 1e7, the
brute-force algorithm would require about 3e9 ms to compute the answer, or almost 34
days. This would most certainly not be considered to be within reasonable time. The
answer to RQ 2 is therefore dependent on the size of m. It can be argued that the brute-
force algorithm is capable, but not the best alternative, for solving the All-kNN problem
for small values of m.

In Figure 4.2.4 the impression is that the GPU and CPU parallelized k-d algorithms per-
forms similarly. We will therefore investigate additional results, to get a better understand-
ing of how they compare.

Figure 4.2.6 compares the difference between the CPU and the GPU parallelized k-d query
algorithm. Test environment 1 is again used.

In Figure 4.2.6 the CPU based parallelization is slower than the GPU based parallelization.
Although smaller than the difference between the brute-force algorithm and the k-d tree
based algorithm, it is still a significant difference. This indicates, that for this algorithm,
the benefit of having faster individual cores, and less overhead related to memory transfer
on the CPU, is not enough to offset the drawback of the CPU has a lot fewer parallel
cores than the GPU. Using the GPU parallelized version, where possible, is therefore
recommended.
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Chapter 4. Final results, discussion and conclusion

Figure 4.2.6: Comparison of runtime for GPU (GTX 560) and CPU (OpenMP) parallelized k-d tree
based n query.

4.2.3 Parallelization performance increase

Parallelization of the k-d tree build was introduced with RQ 5, in Section 3.4.

RQ 5. It is possible to parallelize the k-d tree build algorithm, in such a way that it gives
a significant speed improvement compared to the serial algorithm.

This research question is based around the complex nature of the k-d tree build, and the
uncertainty of it achieving a acceptable parallel speedup. This question was investigated
though implementation prototypes, together with a thorough discussion about the paral-
lelization strategy and the intermediate results.

Figure 4.2.7 tries to answer RQ 5, by comparing the serial and parallel k-d tree build
implementation. Both graphs follows the same trend, which correlates with the shared
time complexity of O

(
m log(m)

)
. We see that the impact of the parallel overhead is

decreasing as the problem size increase, and the profit of multiple cores is getting more
and more be dominant. Resulting in a faster parallel implementation.

To get a better picture of the parallel improvement, it is natural to talk about parallel
speedup. Figure 4.2.8 shows how the parallel speedup develops, as the problem size in-
crease. Here we see that the speedup starts below 1, indicating that the serial version is
faster then the parallel version, but from Figure 4.2.7 one can see that the time to build
such small k-d trees is almost negligible. As the problem size increase, the trend quickly
changes, until the speedup flattens out. The speedup increases as the problem size allows
utilization of more and more threads, until the limit is reached, and the curve flattens out
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4.2 Final results and discussion

Figure 4.2.7: Comparison between serial and parallel k-d tree build performance.

into a lower gradient.

Figure 4.2.8: Parallel speedup for the k-d tree implementation for varying values of m.

With the complex nature if the k-d tree build process, a speedup of three is acceptable,
and we consider overall performance increase to be a significant compared to the serial
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algorithm, answering RQ 5.

Parallelization of the All-kNN query was introduced with RQ 6, in Section 3.5.

RQ 6. It is possible to parallelize the All-kNN query algorithm, in such a way that it gives
a significant speed improvement compared to the serial algorithm.

Figure 4.2.9: Comparison between serial and parallel All-kNN query performance.

Figure 4.2.9 display the results from the two different parallel All-kNN query implemen-
tations, CUDA and OpenMP, compared to the serial version. The linear trend, also found
in the k-d tree build algorithm, is not surprising, as the time complexity for all algorithms
are O

(
m log(m)

)
. The parallel improvement is only shown in the gradient these slopes

have, which is reasonable, because the work is only divided amongst more cores. In both
OpenMp and CUDA the parallel improvement is significant.

If we look at the parallel speedup, shown in Figure 4.2.10, we can again conclude that
the OpenMP version is outperformed by the CUDA implementation. The trend resembles
what we saw in the k-d tree build parallelization, only this time the speedup goes towards
50 in the CUDA version. This correlations well with the discussion in Section 3.5.1, and
we can answer RQ 3. Our All-kNN query has a significant parallel improvement.

An final note, is that the speedup for the k-d tree based All-kNN algorithms are lower than
the speedup for both our and Garcia’s[13] brute-force implementations, which shows that
speedup don’t equal a fast implementations for this problem.
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4.3 Conclusion

Figure 4.2.10: Parallel speedup comparison for the All-kNN query between the CUDA and OpenMP
implementation.

4.3 Conclusion

In this thesis, we have investigated the possible benefits of using general-purpose com-
puting on graphics processing units, in order to speed up the execution of calculations in
engineering applications. We have investigated this topic, by improving the performance
of point cloud analysis in engineering software developed by TechnoSoft Inc.

By utilizing the parallelization possibilities offered by CUDA enabled GPUs, and optimiz-
ing our algorithms for 3D point cloud data, we have been able to develop fast algorithms
for solving the kNN and All-kNN problem.

The parallel brute-force algorithm developed in this thesis, is 70 times faster than the brute-
force algorithm developed by Garcia et-al. [13] on comparable problem sizes. Considering
the algorithm developed by Garcia et.al. is significantly faster than conventional libraries,
being up to 407 times faster than Matlab, and up to 148 times faster than ANN [13, Table
1], this is a notable result.

A parallel k-d tree based Q-kNN algorithm has also been developed in this thesis, and op-
timized for solving the All-kNN problem. The parallel k-d tree based algorithm is able to
solve the All-kNN problem 300 times faster than the parallel brute-force implementation,
and this could enable All-kNN analysis of much larger point clouds than was previously
feasible.

In addition, all algorithms has been implemented with memory scalability in mind, result-
ing in a finished library of algorithms, which solves kNN and All-kNN problems faster,
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and for larger point clouds, than other alternatives, known from literature. This library is
currently being integrated into point cloud analysis software at TechnoSoft Inc.

In conclusion, our results indicate that large runtime improvements can be achieved in
engineering software, by utilizing the parallel performance of GPUs to speed up time-
consuming algorithms.
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Appendix B
Source code documentation

B.1 Api documentation
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KNN GPGPU Documentation

Includes

point.h Contains definitions of the different point struct data-types used by
the knn gpgpu algorithms.

Members

void buildKdTree(struct Point points, int n, struct Node tree) Ac-
cepts a list of n PointS. Builds a balanced kd-tree from these points on the GPU,
and writes this tree to the Point list tree.

void queryAll(struct Point query_points, struct Node tree, int n_qp,
int n_tree, int k, int *result) Queries a previously built kd-tree of size
n_tree for the k closest neighbors to the points specified in the query_points list
of size n_qp. The index location of the k closest points are written to the result
array. Uses a wrapper to partition the problem, in order to handle memory
overflow.

void cuQueryAll(struct Point query_points, struct Node tree, int
n_qp, int n_tree, int k, int *result) Queries a previously built kd-tree of
size n_tree for the k closest neighbors to the points specified in the query_points
list of size n_qp. The index location of the k closest points are written to the
result array.

void mpQueryAll(struct Point query_points, struct Node tree, int
n_qp, int n_tree, int k, int *result) Performes same operations as cu-
QueryAll, but is parallelized on the CPU using OpenMP instead of CUDA.

void knn_brute_force_garcia(float ref_host, int ref_width, float
query_host, int query_width, int height, int k, float dist_host, int
ind_host) Performs a brute force knn-search based on the code written by
Garcia.

void knn_brute_force(float ref_host, int ref_nb, float query_host,
int dim, int k, float dist_host, int ind_host) Performs a improved brute
force knn-search.

1



Utils

size_t getFreeBytesOnGpu() Return the current amount of free memory
on the GPU in bytes.

void cuSetDevice(int device) Sets device as the current device for the
calling host thread.

int cuGetDevice() Returns the device on which the active host thread exe-
cutes the device code.

int cuGetDeviceCount() Returns the number of devices accessible.

size_t getNeededBytesForBuildingKdTree(int n_tree) Returns
needed bytes on GPU to build a tree of size n_tree.

size_t getTreeSize(int n_tree) Returns the size in bytes of a tree with
length n_tree.

size_t getNeededBytesForQueryAll(int n_qp, int k, int n_tree) Re-
turns needed bytes on GPU to perform a queryAll operation on CUDA.

size_t getNeededBytesInSearch(int n_qp, int k, int n_tree, int
thread_num, int block_num) Returns needed bytes on GPU to perform
a queryAll operation on CUDA without taking the tree size into account.

2



B.2 Installation instructions
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Installation notes for Ubuntu 13.04

Installing CUDA

sudo apt-get install nvidia-cuda-toolkit

Installing Git

apt-get install git

Installing CMake

sudo apt-get install cmake

Build with

...\tsi-gpu> mkdir build $$ cd build

...\tsi-gpu/build> cmake ../

...\tsi-gpu/build> make

All executables will be in /build/bin and all libraries will be in /build/lib/.

1



Installation notes on an Amazon instance

1. Create an amazon instance by following amazon’s instructions
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-
up-for-amazon-ec2.html). Select ubuntu-precise-12.04-amd64-server, and
selelct the GPU intance type g2.2xlarge.

2. After the instance is setup, SSH into it.

3. Setup dependencies needed to install CUDA (gcc):

sudo apt-get update
sudo apt-get install gcc

4. Download and install CUDA. For our choice in os, grap the following .deb
file.:

wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1204/x86_64/cuda-repo-ubuntu1204_5.5-0_amd64.deb

5. Then run:

sudo dpkg -i cuda-repo-ubuntu1204_5.5-0_amd64.deb
sudo apt-get update
sudo apt-get install cuda

6. Setup environment; Run the following lines. Add them to ~/.bashrc to
make it permanent.

export PATH=/usr/local/cuda-5.5/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-5.5/lib64:$LD_LIBRARY_PATH

7. Install CUDA samples (optional) to some directory:

cuda-install-samples-5.5.sh .

8. Verify an example works:

cd <NVIDIA_CUDA-5.5_Samples>/1_Utilities/deviceQuery
make
./deviceQuery

9. Now that CUDA is installed, lets start building the project. First, clone
the project from Github.

sudo apt-get install git
git clone https://github.com/hgranlund/tsi-gpgpu.git

1



10. Install cmake and build the project.

cd tsi-gpgpu
sudo apt-get install cmake
mkdir build && cd build
cmake ..
make

11. Now the project is created, test the solution by:

make test

2
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Appendix C
Source code

C.1 API header

# i f n d e f KNN GPGPU
# d e f i n e KNN GPGPU

# i n c l u d e ” p o i n t . h ”

void bu i ldKdTree ( s t r u c t P o i n t * p o i n t s , i n t n t r e e , s t r u c t
Node * t r e e ) ;

void q u e r y A l l ( s t r u c t P o i n t * h q u e r y p o i n t s , s t r u c t Node *
h t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * h r e s u l t ) ;

void cuQueryAl l ( s t r u c t P o i n t * q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * r e s u l t ) ;

void mpQueryAll ( s t r u c t P o i n t * q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * r e s u l t ) ;

void k n n b r u t e f o r c e g a r c i a ( f l o a t * r e f h o s t , i n t r e f w i d t h ,
f l o a t * q u e r y h o s t , i n t q u e r y w i d t h , i n t h e i g h t , i n t k ,

f l o a t * d i s t h o s t , i n t * i n d h o s t ) ;
void k n n b r u t e f o r c e ( f l o a t * r e f h o s t , i n t r e f n b , f l o a t *

q u e r y h o s t , i n t dim , i n t k , f l o a t * d i s t h o s t , i n t *
i n d h o s t ) ;

/ / #### U t i l s
s i z e t ge tFreeBytesOnGpu ( ) ;
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void c u S e t D e v i c e ( i n t d e v i c e ) ;
i n t cuGetDevice ( ) ;
i n t cuGetDeviceCount ( ) ;

/ / Tree b u i l d
s i z e t g e t N e e d e d B y t e s F o r B u i l d i n g K d T r e e ( i n t n t r e e ) ;
s i z e t g e t T r e e S i z e ( i n t n t r e e ) ;

/ / Search
s i z e t g e t N e e d e d B y t e s F o r Q u e r y A l l ( i n t n qp , i n t k , i n t

n t r e e ) ;
s i z e t g e t N e e d e d B y t e s I n S e a r c h ( i n t n qp , i n t k , i n t n t r e e ,

i n t th read num , i n t block num ) ;

# e n d i f / / KNN GPGPU

C.2 Brute Force

# i f n d e f DATA TYPES
# d e f i n e DATA TYPES

s t r u c t D i s t a n c e
{

i n t i n d e x ;
f l o a t v a l u e ;

d e v i c e h o s t v o l a t i l e D i s t a n c e &o p e r a t o r =(
v o l a t i l e D i s t a n c e &a ) v o l a t i l e

{
i n d e x = a . i n d e x ;
v a l u e = a . v a l u e ;
re turn * t h i s ;

}
} ;

# e n d i f / / DATA TYPES

C.2.1 Bitonic sort version

# i f n d e f KNN BRUTE FORCE
# d e f i n e KNN BRUTE FORCE

g l o b a l void cuCompu teDi s t anceGloba l ( f l o a t * r e f , i n t
r e f n b , f l o a t * query , i n t dim , f l o a t * d i s t ) ;
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g l o b a l void c u B i t o n i c S o r t ( f l o a t * d i s t , i n t * ind , i n t n ,
i n t d i r ) ;

g l o b a l void c u P a r a l l e l S q r t ( f l o a t * d i s t , i n t k ) ;

void b i t o n i c s o r t ( f l o a t * d i s t d e v , i n t * ind dev , i n t n , i n t
d i r ) ;

void k n n b r u t e f o r c e b i t o n i c s o r t ( f l o a t * r e f h o s t , i n t
r e f n b , f l o a t * q u e r y h o s t , i n t dim , i n t k , f l o a t *
d i s t h o s t , i n t * i n d h o s t ) ;

# e n d i f

/ / I n c l u d e s
# i n c l u d e <kNN−b r u t e−f o r c e . cuh>
# i n c l u d e <s t d i o . h>
# i n c l u d e <math . h>
# i n c l u d e <cuda . h>
# i n c l u d e <t ime . h>
# i n c l u d e <a s s e r t . h>

# i n c l u d e ” h e l p e r c u d a . h ”

# d e f i n e SHARED SIZE LIMIT 1024U
# d e f i n e c h e c k C u d a E r r o r s ( v a l ) check ( ( v a l ) , # va l ,

F ILE , LINE )

d e v i c e void cuCompare ( f l o a t &dis tA , i n t &indA , f l o a t &
d i s t B , i n t &indB , i n t d i r )

{
f l o a t f ;
i n t i ;
i f ( ( d i s t A >= d i s t B ) == d i r )
{

f = d i s t A ;
d i s t A = d i s t B ;
d i s t B = f ;
i = indA ;
indA = indB ;
indB = i ;

}
}

c o n s t a n t f l o a t q u e r y d e v [ 3 ] ;

73



g l o b a l void cuCompu teDi s t anceGloba l ( f l o a t * r e f , i n t
r e f n b , i n t dim , f l o a t * d i s t , i n t * i n d )

{

f l o a t dx , dy , dz ;

i n t i n d e x = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
whi le ( i n d e x < r e f n b )
{

dx = r e f [ i n d e x * dim ] − q u e r y d e v [ 0 ] ;
dy = r e f [ i n d e x * dim + 1] − q u e r y d e v [ 1 ] ;
dz = r e f [ i n d e x * dim + 2] − q u e r y d e v [ 2 ] ;
d i s t [ i n d e x ] = ( dx * dx ) + ( dy * dy ) + ( dz * dz ) ;
i n d [ i n d e x ] = i n d e x ;
i n d e x += gridDim . x ;

}
}

g l o b a l void c u B i t o n i c S o r t O n e B l o c k ( f l o a t * d i s t , i n t * ind
, i n t n , i n t d i r )

{

i n t b l o c k o f f s e t = b l o c k I d x . x * blockDim . x * 2 ;
d i s t += b l o c k o f f s e t ;
i n d += b l o c k o f f s e t ;

f o r ( i n t s i z e = 2 ; s i z e <= blockDim . x * 2 ; s i z e <<= 1)
{

i n t ddd = d i r ˆ ( ( t h r e a d I d x . x & ( s i z e / 2 ) ) != 0 ) ;
f o r ( i n t s t r i d e = s i z e / 2 ; s t r i d e > 0 ; s t r i d e >>=

1)
{

s y n c t h r e a d s ( ) ;
i n t pos = 2 * t h r e a d I d x . x − ( t h r e a d I d x . x & (

s t r i d e − 1) ) ;
cuCompare ( d i s t [ pos ] , i n d [ pos ] , d i s t [ pos +

s t r i d e ] , i n d [ pos + s t r i d e ] , ddd ) ;
}

}
}

g l o b a l void c u B i t o n i c S o r t ( f l o a t * d i s t , i n t * ind , i n t n ,
i n t d i r )

{
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i n t b l o c k o f f s e t = b l o c k I d x . x * blockDim . x * 2 ;
d i s t += b l o c k o f f s e t ;
i n d += b l o c k o f f s e t ;

f o r ( i n t s i z e = 2 ; s i z e <= blockDim . x * 2 ; s i z e <<= 1)
{

i n t ddd = d i r ˆ ( ( t h r e a d I d x . x & ( s i z e / 2 ) ) != 0 ) ;
f o r ( i n t s t r i d e = s i z e / 2 ; s t r i d e > 0 ; s t r i d e >>=

1)
{

s y n c t h r e a d s ( ) ;
i n t pos = 2 * t h r e a d I d x . x − ( t h r e a d I d x . x & (

s t r i d e − 1) ) ;
cuCompare ( d i s t [ pos ] , i n d [ pos ] , d i s t [ pos +

s t r i d e ] , i n d [ pos + s t r i d e ] , ddd ) ;
}

}

i n t ddd = b l o c k I d x . x & 1 ;
{

f o r ( i n t s t r i d e = blockDim . x ; s t r i d e > 0 ; s t r i d e
>>= 1)

{
s y n c t h r e a d s ( ) ;

i n t pos = 2 * t h r e a d I d x . x − ( t h r e a d I d x . x & (
s t r i d e − 1) ) ;

cuCompare ( d i s t [ pos ] , i n d [ pos ] , d i s t [ pos +
s t r i d e ] , i n d [ pos + s t r i d e ] , ddd ) ;

}
}

}

g l o b a l void c u B i t o n i c M e r g e G l o b a l ( f l o a t * d i s t , i n t * ind ,
i n t n , i n t s i z e , i n t s t r i d e , i n t d i r )

{
i n t g l o b a l c o m p a r a t o r I = b l o c k I d x . x * blockDim . x +

t h r e a d I d x . x ;
i n t c o m p a r a t o r I = g l o b a l c o m p a r a t o r I & ( n / 2 −

1) ;

i n t ddd = d i r ˆ ( ( c o m p a r a t o r I & ( s i z e / 2 ) ) != 0 ) ;
i n t pos = 2 * g l o b a l c o m p a r a t o r I − ( g l o b a l c o m p a r a t o r I

& ( s t r i d e − 1) ) ;
cuCompare ( d i s t [ pos ] , i n d [ pos ] , d i s t [ pos + s t r i d e ] , i n d [

pos + s t r i d e ] , ddd ) ;
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}

g l o b a l void c u P a r a l l e l S q r t ( f l o a t * d i s t , i n t k )
{

unsigned i n t xIndex = b l o c k I d x . x ;
i f ( x Index < k )
{

d i s t [ x Index ] = s q r t ( d i s t [ x Index ] ) ;
}

}

g l o b a l void c u B i t o n i c M e r g e S h a r e d ( f l o a t * d i s t , i n t * ind ,
i n t n , i n t s i z e , i n t d i r )

{

i n t b l o c k o f f s e t = b l o c k I d x . x * blockDim . x * 2 ;
d i s t += b l o c k o f f s e t ;
i n d += b l o c k o f f s e t ;
i n t c o m p a r a t o r I = ( b l o c k I d x . x * blockDim . x + t h r e a d I d x .

x ) & ( ( n / 2 ) − 1) ;
i n t ddd = d i r ˆ ( ( c o m p a r a t o r I & ( s i z e / 2 ) ) != 0 ) ;
f o r ( i n t s t r i d e = blockDim . x ; s t r i d e > 0 ; s t r i d e >>= 1)
{

s y n c t h r e a d s ( ) ;
i n t pos = 2 * t h r e a d I d x . x − ( t h r e a d I d x . x & ( s t r i d e
− 1) ) ;

cuCompare ( d i s t [ pos ] , i n d [ pos ] , d i s t [ pos + s t r i d e ] ,
i n d [ pos + s t r i d e ] , ddd ) ;

}
}

void b i t o n i c s o r t ( f l o a t * d i s t d e v , i n t * ind dev , i n t n , i n t
d i r )

{
i n t m a x t h r e a d s p e r b l o c k = min ( SHARED SIZE LIMIT , n ) ;
i n t b lockCoun t = n / m a x t h r e a d s p e r b l o c k ;
i n t t h r e a d C o u n t = m a x t h r e a d s p e r b l o c k / 2 ;
b lockCoun t = max ( 1 , b lockCoun t ) ;
t h r e a d C o u n t = min ( m a x t h r e a d s p e r b l o c k , t h r e a d C o u n t ) ;
i f ( b lockCoun t == 1)
{

c u B i t o n i c S o r t O n e B l o c k <<< blockCount , t h r e a d C o u n t
>>>(d i s t d e v , i nd dev , n , d i r ) ;
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}
e l s e
{

c u B i t o n i c S o r t <<< blockCount , t h r e a d C o u n t >>>(
d i s t d e v , i nd dev , n , d i r ) ;

f o r ( i n t s i z e = 2 * m a x t h r e a d s p e r b l o c k ; s i z e <=
n ; s i z e <<= 1)

{
f o r ( i n t s t r i d e = s i z e / 2 ; s t r i d e > 0 ; s t r i d e

>>= 1)
{

i f ( s t r i d e >= m a x t h r e a d s p e r b l o c k )
{

c u B i t o n i c M e r g e G l o b a l <<< blockCount ,
t h r e a d C o u n t >>>(d i s t d e v , i nd dev , n ,

s i z e , s t r i d e , d i r ) ;
}
e l s e
{

c u B i t o n i c M e r g e S h a r e d <<< blockCount ,
t h r e a d C o u n t >>>(d i s t d e v , i nd dev , n ,

s i z e , d i r ) ;
break ;

}
}

}
}

}

i n t f a c t o r R a d i x 2 ( i n t * log2L , i n t L )
{

i f ( ! L )
{

* log2L = 0 ;
re turn 0 ;

}
e l s e
{

f o r (* log2L = 0 ; ( L & 1) == 0 ; L >>= 1 , * log2L ++) ;
re turn L ;

}
}

void k n n b r u t e f o r c e b i t o n i c s o r t ( f l o a t * r e f h o s t , i n t
r e f n b , f l o a t * q u e r y h o s t , i n t dim , i n t k , f l o a t *
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d i s t h o s t , i n t * i n d h o s t )
{

unsigned i n t s i z e o f f l o a t = s i z e o f ( f l o a t ) ;
unsigned i n t s i z e o f i n t = s i z e o f ( i n t ) ;

f l o a t * r e f d e v ;
f l o a t * d i s t d e v ;
i n t * i n d d e v ;

i n t log2L ;
i n t f a c t o r i z a t i o n R e m a i n d e r = f a c t o r R a d i x 2 (&log2L ,

r e f n b ) ;
/ / a s s e r t ( f a c t o r i z a t i o n R e m a i n d e r == 1) ;

c h e c k C u d a E r r o r s ( cudaMal loc ( ( void **) &d i s t d e v , r e f n b
* s i z e o f f l o a t ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc ( ( void **) &ind dev , r e f n b
* s i z e o f i n t ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc ( ( void **) &r e f d e v , r e f n b
* s i z e o f f l o a t * dim ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( r e f d e v , r e f h o s t , r e f n b *
dim * s i z e o f f l o a t , cudaMemcpyHostToDevice ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpyToSymbol ( que ry dev ,
q u e r y h o s t , dim * s i z e o f f l o a t ) ) ;

i n t t h r e a d C o u n t = min ( r e f n b , SHARED SIZE LIMIT ) ;
i n t b lockCoun t = r e f n b / t h r e a d C o u n t ;
b lockCoun t = min ( b lockCount , 65000) ;
cuCompu teDi s t anceGloba l <<< blockCount , t h r e a d C o u n t >>>(

r e f d e v , r e f n b , dim , d i s t d e v , i n d d e v ) ;
b i t o n i c s o r t ( d i s t d e v , i nd dev , r e f n b , 1 ) ;
c u P a r a l l e l S q r t <<< k , 1>>>( d i s t d e v , k ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( d i s t h o s t , d i s t d e v , k *
s i z e o f f l o a t , cudaMemcpyDeviceToHost ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( i n d h o s t , i nd dev , k *
s i z e o f i n t , cudaMemcpyDeviceToHost ) ) ;

c h e c k C u d a E r r o r s ( c u d a F r e e ( r e f d e v ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( i n d d e v ) ) ;

}
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C.2.2 min-reduce version

# i f n d e f KNN BRUTE FORCE REDUCE
# d e f i n e KNN BRUTE FORCE REDUCE
# i n c l u d e <d a t a t y p e s . h>

g l o b a l void cuComputeDis tance ( f l o a t * r e f , unsigned i n t
r e f n b , f l o a t * query , unsigned i n t dim , D i s t a n c e *

d i s t ) ;
g l o b a l void c u P a r a l l e l S q r t ( D i s t a n c e * d i s t , unsigned i n t

k ) ;
void m i n r e d u c e ( D i s t a n c e * d d i s t , unsigned i n t n , unsigned

i n t k , unsigned i n t d i r ) ;

void k n n b r u t e f o r c e ( f l o a t * r e f h o s t , i n t r e f n b , f l o a t *
q u e r y h o s t , i n t dim , i n t k , f l o a t * d i s t h o s t , i n t *
i n d h o s t ) ;

# e n d i f

# i n c l u d e ”kNN−b r u t e−f o r c e−b i t o n i c . cuh ”
# i n c l u d e ”kNN−b r u t e−f o r c e−r e d u c e . cuh ”
# i n c l u d e ” knn gpgpu . h ”
# i n c l u d e ” r e d u c t i o n−mod . cuh ”

# i n c l u d e <s t d i o . h>
# i n c l u d e <math . h>

# i n c l u d e ” h e l p e r c u d a . h ”

# d e f i n e SHARED SIZE LIMIT 512U
# d e f i n e c h e c k C u d a E r r o r s ( v a l ) check ( ( v a l ) , # va l ,

F ILE , LINE )

c o n s t a n t f l o a t d q u e r y [ 3 ] ;

g l o b a l void cuComputeDis tance ( f l o a t * r e f , i n t r e f n b ,
i n t dim , D i s t a n c e * d i s t )

{

f l o a t dx , dy , dz ;

i n t i n d e x = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
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whi le ( i n d e x < r e f n b )
{

dx = r e f [ i n d e x * dim ] − d q u e r y [ 0 ] ;
dy = r e f [ i n d e x * dim + 1] − d q u e r y [ 1 ] ;
dz = r e f [ i n d e x * dim + 2] − d q u e r y [ 2 ] ;
d i s t [ i n d e x ] . v a l u e = pow ( dx , 2 ) + pow ( dy , 2 ) + pow (

dz , 2 ) ;
d i s t [ i n d e x ] . i n d e x = i n d e x ;
i n d e x += gridDim . x * blockDim . x ;

}
}

g l o b a l void c u P a r a l l e l S q r t ( D i s t a n c e * d i s t , i n t k )
{

i n t xIndex = b l o c k I d x . x ;
i f ( x Index < k )
{

d i s t [ x Index ] . v a l u e = r s q r t ( d i s t [ x Index ] . v a l u e ) ;
}

}

void k n n b r u t e f o r c e ( f l o a t * h r e f , i n t r e f n b , f l o a t *
h query , i n t dim , i n t k , f l o a t * d i s t , i n t * i n d )

{

f l o a t * d r e f ;
D i s t a n c e * d d i s t , * h d i s t ;
i n t i ;
h d i s t = ( D i s t a n c e * ) ma l l oc ( k * s i z e o f ( D i s t a n c e ) ) ;
c h e c k C u d a E r r o r s ( cudaMal loc ( ( void **) &d d i s t , r e f n b *

s i z e o f ( D i s t a n c e ) ) ) ;
c h e c k C u d a E r r o r s ( cudaMal loc ( ( void **) &d r e f , r e f n b *

s i z e o f ( f l o a t ) * dim ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( d r e f , h r e f , r e f n b * dim *
s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpyToSymbol ( d query , h query ,
dim * s i z e o f ( f l o a t ) ) ) ;

i n t t h r e a d C o u n t = min ( r e f n b , SHARED SIZE LIMIT ) ;
i n t b lockCoun t = r e f n b / t h r e a d C o u n t ;

b lockCoun t = min ( b lockCount , 65536) ;
cuComputeDis tance <<< blockCount , t h r e a d C o u n t >>>(d r e f ,

r e f n b , dim , d d i s t ) ;
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f o r ( i = 0 ; i < k ; ++ i )
{

d i s t m i n r e d u c e ( d d i s t + i , r e f n b − i ) ;
}

c u P a r a l l e l S q r t <<< k , 1>>>( d d i s t , k ) ;
c h e c k C u d a E r r o r s ( cudaMemcpy ( h d i s t , d d i s t , k * s i z e o f (

D i s t a n c e ) , cudaMemcpyDeviceToHost ) ) ;

f o r ( i = 0 ; i < k ; ++ i )
{

d i s t [ i ] = h d i s t [ i ] . v a l u e ;
i n d [ i ] = h d i s t [ i ] . i n d e x ;

}

c h e c k C u d a E r r o r s ( c u d a F r e e ( d r e f ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d d i s t ) ) ;

}

# i f n d e f REDUCTION MOD
# d e f i n e REDUCTION MOD
# i n c l u d e <d a t a t y p e s . h>

void d i s t m i n r e d u c e ( D i s t a n c e * d i s t d e v , i n t n ) ;

# e n d i f

# i n c l u d e ” r e d u c t i o n−mod . cuh ”
# i n c l u d e ” cuda . h ”
# i n c l u d e ” s t d i o . h ”
# i n c l u d e ” h e l p e r c u d a . h ”

# d e f i n e CUDART INF F i n t a s f l o a t (0 x7f800000 )
# d e f i n e THREADS PER BLOCK 512U
# d e f i n e MAX BLOCK DIM SIZE 65535U

boo l isPow2 ( i n t x )
{

re turn ( ( x & ( x − 1) ) == 0) ;
}

d e v i c e void cuMinR ( D i s t a n c e &dis tA , D i s t a n c e &d i s t B ,
i n t &min index , i n t index , i n t d i r )

{
i f ( ( d i s t A . v a l u e >= d i s t B . v a l u e ) == d i r )
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{
d i s t A = d i s t B ;
m i n i n d e x = i n d e x ;

}
}

i n t nextPow2 ( i n t x )
{

−−x ;
x |= x >> 1 ;
x |= x >> 2 ;
x |= x >> 4 ;
x |= x >> 8 ;
x |= x >> 1 6 ;
re turn ++x ;

}

void getNumBlocksAndThreads ( i n t n , i n t maxBlocks , i n t
maxThreads , i n t &blocks , i n t &t h r e a d s )

{

t h r e a d s = ( n < maxThreads * 2) ? nextPow2 ( ( n + 1) / 2 )
: maxThreads ;

b l o c k s = ( n + ( t h r e a d s * 2 − 1) ) / ( t h r e a d s * 2) ;
b l o c k s = min ( maxBlocks , b l o c k s ) ;

}

t e m p l a t e < i n t b l o c k S i z e , boo l nIsPow2>
g l o b a l void cuReduce ( D i s t a n c e * g d i s t , i n t n )

{
s h a r e d D i s t a n c e s d i s t [ b l o c k S i z e ] ;
s h a r e d i n t s i n d [ b l o c k S i z e ] ;

i n t d i r = 1 ;

D i s t a n c e m i n d i s t = {1 , CUDART INF F } ;
i n t m i n i n d e x = 0 ;

i n t t i d = t h r e a d I d x . x ;
i n t i = b l o c k I d x . x * b l o c k S i z e * 2 + t h r e a d I d x . x ;
i n t g r i d S i z e = b l o c k S i z e * 2 * gridDim . x ;

whi le ( i < n )
{

cuMinR ( m i n d i s t , g d i s t [ i ] , min index , i , d i r ) ;
i f ( nIsPow2 | | i + b l o c k S i z e < n )
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{
cuMinR ( m i n d i s t , g d i s t [ i + b l o c k S i z e ] ,

min index , i + b l o c k S i z e , d i r ) ;
}
i += g r i d S i z e ;

}

s d i s t [ t i d ] = m i n d i s t ;
s i n d [ t i d ] = m i n i n d e x ;

s y n c t h r e a d s ( ) ;

i f ( b l o c k S i z e >= 512)
{

i f ( t i d < 256)
{

cuMinR ( m i n d i s t , s d i s t [ t i d + 2 5 6 ] , min index ,
s i n d [ t i d + 256] , d i r ) ;

s d i s t [ t i d ] = m i n d i s t ;
s i n d [ t i d ] = m i n i n d e x ;

}
s y n c t h r e a d s ( ) ;

}

i f ( b l o c k S i z e >= 256)
{

i f ( t i d < 128)
{

cuMinR ( m i n d i s t , s d i s t [ t i d + 1 2 8 ] , min index ,
s i n d [ t i d + 128] , d i r ) ;

s i n d [ t i d ] = m i n i n d e x ;
s d i s t [ t i d ] = m i n d i s t ;

}
s y n c t h r e a d s ( ) ;

}

i f ( b l o c k S i z e >= 128)
{

i f ( t i d < 64)
{

cuMinR ( m i n d i s t , s d i s t [ t i d + 6 4 ] , min index ,
s i n d [ t i d + 64] , d i r ) ;

s i n d [ t i d ] = m i n i n d e x ;
s d i s t [ t i d ] = m i n d i s t ;

}
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s y n c t h r e a d s ( ) ;
}

i f ( t i d < 32)
{

v o l a t i l e i n t * v i n d = s i n d ;
v o l a t i l e D i s t a n c e * v d i s t = s d i s t ;

i f ( b l o c k S i z e >= 64)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 3 2 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 3 2 ] ;
m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 3 2 ] ;

}
}

i f ( b l o c k S i z e >= 32)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 1 6 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 1 6 ] ;
m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 1 6 ] ;

}
}

i f ( b l o c k S i z e >= 16)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 8 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 8 ] ;
m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 8 ] ;

}
}

i f ( b l o c k S i z e >= 8)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 4 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 4 ] ;
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m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 4 ] ;
}

}

i f ( b l o c k S i z e >= 4)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 2 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 2 ] ;
m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 2 ] ;

}
}

i f ( b l o c k S i z e >= 2)
{

i f ( ( m i n d i s t . v a l u e >= v d i s t [ t i d + 1 ] . v a l u e )
== d i r )

{
m i n d i s t = v d i s t [ t i d ] = v d i s t [ t i d + 1 ] ;
m i n i n d e x = v i n d [ t i d ] = v i n d [ t i d + 1 ] ;

}
}

}

i f ( t i d == 0)
{

i = b l o c k I d x . x ;
m i n d i s t = g d i s t [ i ] ;
g d i s t [ i ] = g d i s t [ s i n d [ t i d ] ] ;
g d i s t [ s i n d [ t i d ] ] = m i n d i s t ;

}
}

void r e d u c e ( i n t s i z e , i n t t h r e a d s , i n t b locks , D i s t a n c e *
g d i s t )

{
dim3 dimBlock ( t h r e a d s , 1 , 1 ) ;
dim3 dimGrid ( b locks , 1 , 1 ) ;

i n t smemSize = ( t h r e a d s <= 32) ? 2 * t h r e a d s * ( s i z e o f (
D i s t a n c e ) + s i z e o f ( i n t ) ) : t h r e a d s * ( s i z e o f (
D i s t a n c e ) + s i z e o f ( i n t ) ) ;

i f ( isPow2 ( s i z e ) )

85



{
sw i t ch ( t h r e a d s )
{
case 512 :

cuReduce< 512 , t r u e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 256 :
cuReduce< 256 , t r u e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 128 :

cuReduce< 128 , t r u e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 6 4 :
cuReduce< 64 , t r u e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 3 2 :

cuReduce< 32 , t r u e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 1 6 :
cuReduce< 16 , t r u e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 8 :

cuReduce< 8 , t r u e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 4 :
cuReduce< 4 , t r u e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 2 :

cuReduce< 2 , t r u e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 1 :
cuReduce< 1 , t r u e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
}

}
e l s e
{

sw i t ch ( t h r e a d s )
{
case 512 :

cuReduce< 512 , f a l s e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 256 :
cuReduce< 256 , f a l s e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;

86



case 128 :
cuReduce< 128 , f a l s e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 6 4 :

cuReduce< 64 , f a l s e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 3 2 :
cuReduce< 32 , f a l s e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 1 6 :

cuReduce< 16 , f a l s e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 8 :
cuReduce< 8 , f a l s e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 4 :

cuReduce< 4 , f a l s e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

case 2 :
cuReduce< 2 , f a l s e > <<< dimGrid , dimBlock ,

smemSize >>>( g d i s t , s i z e ) ; break ;
case 1 :

cuReduce< 1 , f a l s e > <<< dimGrid , dimBlock ,
smemSize >>>( g d i s t , s i z e ) ; break ;

}
}

}

void d i s t m i n r e d u c e ( D i s t a n c e * g d i s t , i n t n )
{

i n t numBlocks = 0 ;
i n t numThreads = 0 ;
getNumBlocksAndThreads ( n , MAX BLOCK DIM SIZE ,

THREADS PER BLOCK , numBlocks , numThreads ) ;

r e d u c e ( n , numThreads , numBlocks , g d i s t ) ;
n = numBlocks ;
whi le ( n > 1)
{

getNumBlocksAndThreads ( n , MAX BLOCK DIM SIZE ,
THREADS PER BLOCK , numBlocks , numThreads ) ;

r e d u c e ( n , numThreads , numBlocks , g d i s t ) ;
n = numBlocks ;

}
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}

C.3 k-d tree build

# i f n d e f POINT
# d e f i n e POINT

/ / # d e f i n e ADD POINT ID

/ / Main p o i n t s t r u c t used i n f i n i s h e d kd−t r e e
s t r u c t Node
{

f l o a t p [ 3 ] ;
i n t l e f t ;
i n t r i g h t ;

# i f d e f ADD POINT ID
i n t i d ;

# e n d i f
} ;

/ / Sma l l p o i n t used as in−da ta t o t h e kd−t r e e b u i l d i n g
a l g o r i t h m .

s t r u c t P o i n t
{

f l o a t p [ 3 ] ;
# i f d e f ADD POINT ID

i n t i d ;
# e n d i f
} ;
# e n d i f / / DATA TYPES

# i f n d e f STACK
# d e f i n e STACK

/ / C o l l e c t i o n o f s t r u c t s f o r i n t e r n a l s t a c k use

/ / Used t o ha nd l e t h e p o i n t s when i n t h e kd s e a r c h s t a c k .
s t r u c t S P o i n t
{

i n t i n d e x ;
i n t dim ;
f l o a t dx ;
i n t o t h e r ;

} ;
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/ / Used t o ha nd l e t h e p o i n t s when t h e y are p o t e n t i a l k
n e a r e s t p o i n t s .

s t r u c t KPoint
{

i n t i n d e x ;
f l o a t d i s t ;

} ;

# e n d i f / / DATA TYPES

C.3.1 Radix select

# i f n d e f RADIX SELECT
# d e f i n e RADIX SELECT
# i n c l u d e <p o i n t . h>
# i n c l u d e <s t a c k . h>

# d e f i n e THREADS PER BLOCK RADIX 512U
# d e f i n e MAX BLOCK DIM SIZE RADIX 65535U
# d e f i n e MAX SHARED MEM 49152U

void r a d i x S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * p o i n t s , s t r u c t
P o i n t *swap , i n t * p a r t i t i o n , i n t n , i n t d i r ) ;

# e n d i f

# i n c l u d e ”sum−r e d u c t i o n . cuh ”
# i n c l u d e ” r a d i x−s e l e c t . cuh ”
# i n c l u d e <s t d i o . h>

# i n c l u d e <h e l p e r c u d a . h>

# d e f i n e c h e c k C u d a E r r o r s ( v a l ) check ( ( v a l ) , # va l ,
F ILE , LINE )

# d e f i n e debug 0
# d e f i n e FILE ( s t r r c h r ( F ILE , ’ / ’ ) ? s t r r c h r ( F ILE , ’ /

’ ) + 1 : F I L E )
# d e f i n e debugf ( fmt , . . . ) i f ( debug ) p r i n t f ( ”%s :%d : ” fmt ,

FILE , LINE , VA ARGS ) ;

i n t nextPowerOf2 ( i n t x )
{

−−x ;
x |= x >> 1 ;
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x |= x >> 2 ;
x |= x >> 4 ;
x |= x >> 8 ;
x |= x >> 1 6 ;
re turn ++x ;

}

d e v i c e void c u C a l c u l a t e B l o c k O f f s e t A n d L o c a l N ( i n t n , i n t
&l o c a l n , i n t &b l o c k o f f s e t )

{
i n t r e s t = n % gridDim . x ;
l o c a l n = n / gr idDim . x ;
b l o c k o f f s e t = l o c a l n * b l o c k I d x . x ;

i f ( r e s t >= gridDim . x − b l o c k I d x . x )
{

b l o c k o f f s e t += r e s t − ( gr idDim . x − b l o c k I d x . x ) ;
l o c a l n ++;

}
}

d e v i c e void c uA c cu mu l a t e In d ex ( i n t * l i s t , i n t n )
{

i n t i , j , temp ,
t i d = t h r e a d I d x . x ;

i f ( t i d == blockDim . x − 1)
{

l i s t [−1] = 0 ;
}

f o r ( i = 1 ; i <= n ; i <<= 1)
{

s y n c t h r e a d s ( ) ;
i n t t e m p i n d e x = t i d * i * 2 + i − 1 ;
i f ( t e m p i n d e x + i < n )
{

temp = l i s t [ t e m p i n d e x ] ;
f o r ( j = 1 ; j <= i ; ++ j )
{

l i s t [ t e m p i n d e x + j ] += temp ;
}

}
}

}
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d e v i c e void cuSumReduce ( i n t * l i s t , i n t n )
{

i n t t i d = t h r e a d I d x . x ;

i f ( n >= 1024)
{

i f ( t i d < 512)
{

l i s t [ t i d ] += l i s t [ t i d + 5 1 2 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( n >= 512)
{

i f ( t i d < 256)
{

l i s t [ t i d ] += l i s t [ t i d + 2 5 6 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( n >= 256)
{

i f ( t i d < 128)
{

l i s t [ t i d ] += l i s t [ t i d + 1 2 8 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( n >= 128)
{

i f ( t i d < 64)
{

l i s t [ t i d ] += l i s t [ t i d + 6 4 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( t i d < 32)
{

v o l a t i l e i n t *smem = l i s t ;
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i f ( n >= 64)
{

smem [ t i d ] += smem [ t i d + 3 2 ] ;
}

i f ( n >= 32)
{

smem [ t i d ] += smem [ t i d + 1 6 ] ;
}

i f ( n >= 16)
{

smem [ t i d ] += smem [ t i d + 8 ] ;
}

i f ( n >= 8)
{

smem [ t i d ] += smem [ t i d + 4 ] ;
}

i f ( n >= 4)
{

smem [ t i d ] += smem [ t i d + 2 ] ;
}

i f ( n >= 2)
{

smem [ t i d ] += smem [ t i d + 1 ] ;
}

}
s y n c t h r e a d s ( ) ;

}

g l o b a l void c u P a r t i t i o n S w a p ( s t r u c t P o i n t * p o i n t s ,
s t r u c t P o i n t *swap , i n t n , i n t * p a r t i t i o n , i n t l a s t , i n t

d i r )
{

s h a r e d i n t ones [ 1 0 2 5 ] ;
s h a r e d i n t z e r o s [ 1 0 2 5 ] ;
s h a r e d i n t medians [ 1 0 2 5 ] ;
s h a r e d f l o a t m e d i a n v a l u e ;

i n t big ,
l e s s ,
mid ,
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par ,
* z e r o c o u n t = ones ,

* o n e c o u n t = z e r o s ,
* m e d i a n c o u n t = medians ,

t i d = t h r e a d I d x . x ;

f l o a t p o i n t d i f f e r e n c e ;
s t r u c t P o i n t p o i n t ;

z e r o c o u n t ++;
o n e c o u n t ++;
m e d i a n c o u n t ++;
z e r o c o u n t [ t h r e a d I d x . x ] = 0 ;
o n e c o u n t [ t h r e a d I d x . x ] = 0 ;
m e d i a n c o u n t [ t h r e a d I d x . x ] = 0 ;

whi le ( t i d < n )
{

i f ( p a r t i t i o n [ t i d ] == l a s t )
{

m e d i a n v a l u e = p o i n t s [ t i d ] . p [ d i r ] ;
}
t i d += blockDim . x ;

}

t i d = t h r e a d I d x . x ;
s y n c t h r e a d s ( ) ;

whi le ( t i d < n )
{

swap [ t i d ] = p o i n t = p o i n t s [ t i d ] ;
p o i n t d i f f e r e n c e = ( p o i n t . p [ d i r ] − m e d i a n v a l u e ) ;
p a r = p a r t i t i o n [ t i d ] ;
i f ( p o i n t d i f f e r e n c e < 0)
{

p a r = −1;
z e r o c o u n t [ t h r e a d I d x . x ] + + ;

}
e l s e i f ( p o i n t d i f f e r e n c e > 0)
{

p a r = 1 ;
o n e c o u n t [ t h r e a d I d x . x ] + + ;

}
e l s e
{
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p a r = 0 ;
m e d i a n c o u n t [ t h r e a d I d x . x ] + + ;

}
p a r t i t i o n [ t i d ] = p a r ;
t i d += blockDim . x ;

}

s y n c t h r e a d s ( ) ;
c uA c cu m ul a t e In d ex ( z e r o c o u n t , blockDim . x ) ;
c uA c cu m ul a t e In d ex ( one coun t , blockDim . x ) ;
c uA c cu m ul a t e In d ex ( med ian coun t , blockDim . x ) ;

s y n c t h r e a d s ( ) ;

t i d = t h r e a d I d x . x ;
one coun t −−;
z e r o c o u n t −−;
med ian coun t−−;
mid = z e r o c o u n t [ blockDim . x ] + m e d i a n c o u n t [ t h r e a d I d x .

x ] ;
l e s s = z e r o c o u n t [ t h r e a d I d x . x ] ;
b i g = o n e c o u n t [ t h r e a d I d x . x ] ;

whi le ( t i d < n )
{

i f ( p a r t i t i o n [ t i d ] < 0)
{

p o i n t s [ l e s s ] = swap [ t i d ] ;
l e s s ++;

}
e l s e i f ( p a r t i t i o n [ t i d ] > 0)
{

p o i n t s [ n − b i g − 1] = swap [ t i d ] ;
b i g ++;

}
e l s e
{

p o i n t s [ mid ] = swap [ t i d ] ;
mid ++;

}
t i d += blockDim . x ;

}
}

g l o b a l void c u P a r t i t i o n S t e p ( s t r u c t P o i n t * da t a , i n t n ,
i n t * p a r t i t i o n , i n t * z e r o s c o u n t b l o c k , i n t l a s t , i n t

94



b i t , i n t d i r )
{

s h a r e d i n t z e r o c o u n t [THREADS PER BLOCK RADIX ] ;

i n t t i d = t h r e a d I d x . x ,
i s o n e ,
b l o c k o f f s e t ,
l o c a l n ,
r a d i x = (1 << 31 − b i t ) ;

c u C a l c u l a t e B l o c k O f f s e t A n d L o c a l N ( n , l o c a l n ,
b l o c k o f f s e t ) ;

z e r o c o u n t [ t h r e a d I d x . x ] = 0 ;

d a t a += b l o c k o f f s e t ;
p a r t i t i o n += b l o c k o f f s e t ;

whi le ( t i d < l o c a l n )
{

i f ( p a r t i t i o n [ t i d ] == l a s t )
{

i s o n e = p a r t i t i o n [ t i d ] = ( boo l ) ( ( * ( i n t *) & (
d a t a [ t i d ] . p [ d i r ] ) )&r a d i x ) ;

z e r o c o u n t [ t h r e a d I d x . x ] += ! i s o n e ;
}
e l s e
{

p a r t i t i o n [ t i d ] = 2 ;
}
t i d += blockDim . x ;

}
s y n c t h r e a d s ( ) ;

cuSumReduce ( z e r o c o u n t , blockDim . x ) ;

i f ( t h r e a d I d x . x == 0)
{

z e r o s c o u n t b l o c k [ b l o c k I d x . x ] = z e r o c o u n t [ 0 ] ;
}

}

g l o b a l void f i l l A r r a y ( i n t * a r r a y , i n t va lue , i n t n )
{
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i n t l o c a l n ,
b l o c k o f f s e t ,
t i d = t h r e a d I d x . x ;

c u C a l c u l a t e B l o c k O f f s e t A n d L o c a l N ( n , l o c a l n ,
b l o c k o f f s e t ) ;

a r r a y += b l o c k o f f s e t ;
whi le ( t i d < l o c a l n )
{

a r r a y [ t i d ] = v a l u e ;
t i d += blockDim . x ;

}
}

void g e t T h r e a d A n d B l o c k C o u n t P a r t i t i o n ( i n t n , i n t &blocks ,
i n t &t h r e a d s )

{
t h r e a d s = min ( nextPowerOf2 ( n ) , THREADS PER BLOCK RADIX)

;
b l o c k s = n / t h r e a d s / 2 ;
b l o c k s = max ( 1 , nextPowerOf2 ( b l o c k s ) ) ;
b l o c k s = min ( MAX BLOCK DIM SIZE RADIX , b l o c k s ) ;
debugf ( ” b l o c k s = %d , t h r e a d s = %d , n = %d\n ” , b locks ,

t h r e a d s , n ) ;
}

void r a d i x S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * p o i n t s , s t r u c t
P o i n t *swap , i n t * p a r t i t i o n , i n t n , i n t d i r )

{
i n t numBlocks ,

numThreads ,
cu t ,
l = 0 ,
u = n ,
m u = ( i n t ) c e i l ( ( f l o a t ) n / 2 ) ,
b i t = 0 ,
l a s t = 2 ,
* h z e r o s c o u n t b l o c k ,
* d z e r o s c o u n t b l o c k ;

g e t T h r e a d A n d B l o c k C o u n t P a r t i t i o n ( n , numBlocks ,
numThreads ) ;

f i l l A r r a y <<< numBlocks , numThreads>>>( p a r t i t i o n , 2 , n )

96



;

h z e r o s c o u n t b l o c k = ( i n t *) ma l l oc ( numBlocks * s i z e o f
( i n t ) ) ;

c h e c k C u d a E r r o r s (
cudaMal loc ( ( void **) &d z e r o s c o u n t b l o c k ,

numBlocks * s i z e o f ( i n t ) ) ) ;

do
{

c u P a r t i t i o n S t e p <<< numBlocks , numThreads>>>(p o i n t s
, n , p a r t i t i o n , d z e r o s c o u n t b l o c k , l a s t , b i t
++ , d i r ) ;

sum reduce ( d z e r o s c o u n t b l o c k , numBlocks ) ;
cudaMemcpy ( h z e r o s c o u n t b l o c k , d z e r o s c o u n t b l o c k

, s i z e o f ( i n t ) , cudaMemcpyDeviceToHost ) ;

c u t = h z e r o s c o u n t b l o c k [ 0 ] ;

i f ( ( u − c u t ) >= ( m u ) )
{

u = u − c u t ;
l a s t = 1 ;

}
e l s e
{

l = u − c u t ;
l a s t = 0 ;

}
}
whi le ( ( ( u − l ) > 1) && ( b i t <= 32) ) ;

c u P a r t i t i o n S w a p <<< 1 , min ( nextPowerOf2 ( n ) ,
THREADS PER BLOCK RADIX) >>> ( p o i n t s , swap , n ,
p a r t i t i o n , l a s t , d i r ) ;

c h e c k C u d a E r r o r s (
c u d a F r e e ( d z e r o s c o u n t b l o c k ) ) ;

}

C.3.2 Parallel quick select

# i f n d e f QUICK SELECT
# d e f i n e QUICK SELECT
# i n c l u d e <p o i n t . h>
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# i n c l u d e <s t a c k . h>

# d e f i n e MAX SHARED MEM 49152U
# d e f i n e THREADS PER BLOCK QUICK 64U
# d e f i n e MAX BLOCK DIM SIZE 65535U

void q u i c k S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * d p o i n t s , i n t *
d s t e p s , i n t n , i n t p , i n t d i r ) ;

void q u i c k S e l e c t S h a r e d ( s t r u c t P o i n t * p o i n t s , i n t * s t e p s ,
i n t p , i n t d i r , i n t s i z e , i n t numBlocks , i n t numThreads )
;

void g e t T h r e a d A n d B l o c k C o u n t F o r Q u i c k S e l e c t ( i n t n , i n t p , i n t
&blocks , i n t &t h r e a d s ) ;

void c p u Q u i c k S e l e c t ( s t r u c t P o i n t * p o i n t s , i n t n , i n t d i r ) ;

# e n d i f

# i n c l u d e ” quick−s e l e c t . cuh ”
# i n c l u d e <s t d i o . h>

d e v i c e void cuPoin tSwap ( s t r u c t P o i n t *p , i n t a , i n t b )
{

s t r u c t P o i n t temp = p [ a ] ;
p [ a ] = p [ b ] , p [ b ] = temp ;

}

d e v i c e void c u C a l c u l a t e B l o c k O f f s e t A n d N o O f L i s t s ( i n t n ,
i n t &n p e r b l o c k , i n t &b l o c k o f f s e t )

{
i n t r e s t = n % gridDim . x ;
n p e r b l o c k = n / gr idDim . x ;
b l o c k o f f s e t = n p e r b l o c k * b l o c k I d x . x ;

i f ( r e s t >= gridDim . x − b l o c k I d x . x )
{

b l o c k o f f s e t += r e s t − ( gr idDim . x − b l o c k I d x . x ) ;
n p e r b l o c k ++;

}
}

d e v i c e void cuCopyPo in t s ( s t r u c t P o i n t * s p o i n t s , s t r u c t
P o i n t * l p o i n t s , i n t n )

{
i n t i ;
f o r ( i = 0 ; i < n ; ++ i )
{
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s p o i n t s [ i ] = l p o i n t s [ i ] ;
}

}

t e m p l a t e < i n t max step , boo l i n s h a r e d > g l o b a l
void c u Q u i c k S e l e c t ( s t r u c t P o i n t * p o i n t s , i n t * s t e p s , i n t p ,

i n t d i r )
{

s h a r e d s t r u c t P o i n t s s p o i n t s [ max s t ep *
THREADS PER BLOCK QUICK ] ;

s t r u c t P o i n t * s p o i n t s = s s p o i n t s , * l p o i n t s ;

f l o a t p i v o t ;

i n t pos ,
i ,
l e f t ,
r i g h t ,
m,
s tep num ,
n ,
l i s t i n b l o c k ,
t i d = t h r e a d I d x . x ,
b l o c k o f f s e t ;

c u C a l c u l a t e B l o c k O f f s e t A n d N o O f L i s t s ( p , l i s t i n b l o c k ,
b l o c k o f f s e t ) ;

s t e p s += b l o c k o f f s e t * 2 ;
s p o i n t s += ( t i d * max s t ep ) ;

whi le ( t i d < l i s t i n b l o c k )
{

s t ep num = t i d * 2 ;
l p o i n t s = p o i n t s + s t e p s [ s t ep num ] ;
n = s t e p s [ s tep num + 1] − s t e p s [ s t ep num ] ;
m = n >> 1 ; / / same as n / 2 ;
l e f t = 0 ;
r i g h t = n − 1 ;

i f ( i n s h a r e d )
{

cuCopyPo in t s ( s p o i n t s , l p o i n t s , n ) ;
}
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e l s e
{

s p o i n t s = l p o i n t s ;
}
whi le ( l e f t < r i g h t )
{

p i v o t = s p o i n t s [m] . p [ d i r ] ;
cuPoin tSwap ( s p o i n t s , m, r i g h t ) ;
f o r ( i = pos = l e f t ; i < r i g h t ; i ++)
{

i f ( s p o i n t s [ i ] . p [ d i r ] < p i v o t )
{

cuPoin tSwap ( s p o i n t s , i , pos ) ;
pos ++;

}
}
cuPoin tSwap ( s p o i n t s , r i g h t , pos ) ;
i f ( pos == m) break ;
i f ( pos < m) l e f t = pos + 1 ;
e l s e r i g h t = pos − 1 ;

}
i f ( i n s h a r e d )
{

cuCopyPo in t s ( l p o i n t s , s p o i n t s , n ) ;
}
t i d += blockDim . x ;

}
}

void q u i c k S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * d p o i n t s , i n t *
d s t e p s , i n t s t e p , i n t p , i n t d i r )

{
i n t numBlocks , numThreads ;
g e t T h r e a d A n d B l o c k C o u n t F o r Q u i c k S e l e c t ( s t e p , p , numBlocks

, numThreads ) ;
i f ( s t e p > 16)
{

c u Q u i c k S e l e c t <1, f a l s e > <<< numBlocks , numThreads
>>>(d p o i n t s , d s t e p s , p , d i r ) ;

}
e l s e i f ( s t e p > 8 && s t e p * s i z e o f ( P o i n t ) * numThreads

< MAX SHARED MEM)
{

c u Q u i c k S e l e c t <16 , t r u e > <<< numBlocks , numThreads
>>>(d p o i n t s , d s t e p s , p , d i r ) ;
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}
e l s e i f ( s t e p > 4 && s t e p * s i z e o f ( P o i n t ) * numThreads

< MAX SHARED MEM)
{

c u Q u i c k S e l e c t <8, t r u e > <<< numBlocks , numThreads
>>>(d p o i n t s , d s t e p s , p , d i r ) ;

}
e l s e i f ( s t e p * s i z e o f ( P o i n t ) * numThreads <

MAX SHARED MEM)
{

c u Q u i c k S e l e c t <4, t r u e > <<< numBlocks , numThreads
>>>(d p o i n t s , d s t e p s , p , d i r ) ;

}
e l s e
{

c u Q u i c k S e l e c t <1, f a l s e > <<< numBlocks , numThreads
>>>(d p o i n t s , d s t e p s , p , d i r ) ;

}
}

void g e t T h r e a d A n d B l o c k C o u n t F o r Q u i c k S e l e c t ( i n t n , i n t p , i n t
&blocks , i n t &t h r e a d s )

{
t h r e a d s = min (THREADS PER BLOCK QUICK , p ) ;
b l o c k s = p / t h r e a d s ;
b l o c k s = min ( MAX BLOCK DIM SIZE , b l o c k s ) ;
b l o c k s = max ( 1 , b l o c k s ) ;
/ / p r i n t f (” b l o c k = %d , t h r e a d s = %d , n = %d , p =%d\n ” ,

b l o c k s , t h r e a d s , n , p ) ;
}

void c p u Q u i c k S e l e c t ( s t r u c t P o i n t * p o i n t s , i n t n , i n t d i r )
{
# d e f i n e SWAP( a , b ) { tmp = p o i n t s [ a ] ; p o i n t s [ a ] = p o i n t s [ b

] ; p o i n t s [ b ] = tmp ; }

s t r u c t P o i n t tmp ;

f l o a t p i v o t ;

i n t pos ,
l e f t ,
r i g h t ,
i ,
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m;

m = n >> 1 ; / / same as n / 2 ;
l e f t = 0 ;
r i g h t = n − 1 ;

whi le ( l e f t < r i g h t )
{

p i v o t = p o i n t s [m] . p [ d i r ] ;
SWAP(m, r i g h t ) ;
f o r ( i = pos = l e f t ; i < r i g h t ; i ++)
{

i f ( p o i n t s [ i ] . p [ d i r ] < p i v o t )
{

SWAP( i , pos ) ;
pos ++;

}
}
SWAP( r i g h t , pos ) ;
i f ( pos == m) break ;
i f ( pos < m) l e f t = pos + 1 ;
e l s e r i g h t = pos − 1 ;

}
}

C.3.3 Multiple radix select

# i f n d e f MULTI RADIX SELECT
# d e f i n e MULTI RADIX SELECT
# i n c l u d e <p o i n t . h>
# i n c l u d e <s t a c k . h>

# d e f i n e THREADS PER BLOCK MULTI RADIX 512U
# d e f i n e MAX BLOCK DIM SIZE MULTI RADIX 65535U

void getThreadAndBlockCountMulRadix ( i n t n , i n t p , i n t &
blocks , i n t &t h r e a d s ) ;

void m u l t i R a d i x S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * da t a ,
s t r u c t P o i n t * d a t a c o p y , i n t * p a r t i t i o n , i n t * s t e p s , i n t
n , i n t p , i n t d i r ) ;

g l o b a l
void cuBa lanceBranch ( s t r u c t P o i n t * p o i n t s , s t r u c t P o i n t *

swap , i n t * p a r t i t i o n , i n t * s t e p s , i n t p , i n t d i r ) ;
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# e n d i f

# i n c l u d e ” m u l t i p l e−r a d i x−s e l e c t . cuh ”
# i n c l u d e <s t d i o . h>

# i n c l u d e <h e l p e r c u d a . h>

# d e f i n e c h e c k C u d a E r r o r s ( v a l ) check ( ( v a l ) , # va l ,
F ILE , LINE )

# d e f i n e debug 0
# d e f i n e FILE ( s t r r c h r ( F ILE , ’ / ’ ) ? s t r r c h r ( F ILE , ’ /

’ ) + 1 : F I L E )
# d e f i n e debugf ( fmt , . . . ) i f ( debug ) p r i n t f ( ”%s :%d : ” fmt ,

FILE , LINE , VA ARGS ) ;

i n t nextPowTwo ( i n t x )
{

−−x ;
x |= x >> 1 ;
x |= x >> 2 ;
x |= x >> 4 ;
x |= x >> 8 ;
x |= x >> 1 6 ;
re turn ++x ;

}

boo l isPowTwo ( i n t x )
{

re turn ( ( x & ( x − 1) ) == 0) ;
}

i n t prevPowTwo ( i n t n )
{

i f ( isPowTwo ( n ) )
{

re turn n ;
}
n = nextPowTwo ( n ) ;
re turn n >>= 1 ;

}

d e v i c e void cuAccumula te Index ( i n t * l i s t , i n t n )
{

i n t i , j , temp ,
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t i d = t h r e a d I d x . x ;
i f ( t i d == blockDim . x − 1)
{

l i s t [−1] = 0 ;
}
f o r ( i = 1 ; i <= n ; i <<= 1)
{

s y n c t h r e a d s ( ) ;
i n t t e m p i n d e x = t i d * i * 2 + i − 1 ;
i f ( t e m p i n d e x + i < n )
{

temp = l i s t [ t e m p i n d e x ] ;
f o r ( j = 1 ; j <= i ; ++ j )
{

l i s t [ t e m p i n d e x + j ] += temp ;
}

}
}

}

d e v i c e void f i l l A r r a y ( i n t * p a r t i t i o n , i n t l a s t , i n t n
)

{
i n t t i d = t h r e a d I d x . x ;
whi le ( t i d < n )
{

p a r t i t i o n [ t i d ] = l a s t ;
t i d += blockDim . x ;

}
}

d e v i c e i n t cuSumReduce ( i n t * l i s t , i n t n )
{

i n t t i d = t h r e a d I d x . x ;

i f ( n >= 1024)
{

i f ( t i d < 512)
{

l i s t [ t i d ] += l i s t [ t i d + 5 1 2 ] ;
}

s y n c t h r e a d s ( ) ;
}
i f ( n >= 512)
{
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i f ( t i d < 256)
{

l i s t [ t i d ] += l i s t [ t i d + 2 5 6 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( n >= 256)
{

i f ( t i d < 128)
{

l i s t [ t i d ] += l i s t [ t i d + 1 2 8 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( n >= 128)
{

i f ( t i d < 64)
{

l i s t [ t i d ] += l i s t [ t i d + 6 4 ] ;
}

s y n c t h r e a d s ( ) ;
}

i f ( t i d < 32)
{

v o l a t i l e i n t *smem = l i s t ;

i f ( n >= 64)
{

smem [ t i d ] += smem [ t i d + 3 2 ] ;
}

i f ( n >= 32)
{

smem [ t i d ] += smem [ t i d + 1 6 ] ;
}

i f ( n >= 16)
{

smem [ t i d ] += smem [ t i d + 8 ] ;
}

i f ( n >= 8)
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{
smem [ t i d ] += smem [ t i d + 4 ] ;

}

i f ( n >= 4)
{

smem [ t i d ] += smem [ t i d + 2 ] ;
}

i f ( n >= 2)
{

smem [ t i d ] += smem [ t i d + 1 ] ;
}

}
s y n c t h r e a d s ( ) ;

re turn l i s t [ 0 ] ;
}

d e v i c e void c u P a r t i t i o n S w a p ( s t r u c t P o i n t * da t a , s t r u c t
P o i n t *swap , i n t n , i n t * p a r t i t i o n , i n t * z e r o c o u n t , i n t

* one coun t , i n t * med ian coun t , f l o a t median va lue , i n t
d i r )

{
i n t t i d = t h r e a d I d x . x ,

big ,
mid ,
par ,
l e s s ;

f l o a t p o i n t d i f f e r e n c e ;
s t r u c t P o i n t p o i n t ;

z e r o c o u n t ++;
o n e c o u n t ++;
m e d i a n c o u n t ++;
z e r o c o u n t [ t h r e a d I d x . x ] = 0 ;
o n e c o u n t [ t h r e a d I d x . x ] = 0 ;
m e d i a n c o u n t [ t h r e a d I d x . x ] = 0 ;

whi le ( t i d < n )
{

p o i n t = d a t a [ t i d ] ;
swap [ t i d ] = p o i n t ;
p o i n t d i f f e r e n c e = ( p o i n t . p [ d i r ] − m e d i a n v a l u e ) ;
i f ( p o i n t d i f f e r e n c e < 0)
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{
p a r = −1;
z e r o c o u n t [ t h r e a d I d x . x ] + + ;

}
e l s e i f ( p o i n t d i f f e r e n c e > 0)
{

p a r = 1 ;
o n e c o u n t [ t h r e a d I d x . x ] + + ;

}
e l s e
{

p a r = 0 ;
m e d i a n c o u n t [ t h r e a d I d x . x ] + + ;

}
p a r t i t i o n [ t i d ] = p a r ;
t i d += blockDim . x ;

}

s y n c t h r e a d s ( ) ;
cuAccumula te Index ( z e r o c o u n t , blockDim . x ) ;
cuAccumula te Index ( one coun t , blockDim . x ) ;
cuAccumula te Index ( med ian coun t , blockDim . x ) ;

s y n c t h r e a d s ( ) ;

t i d = t h r e a d I d x . x ;
one coun t −−;
z e r o c o u n t −−;
med ian coun t−−;
l e s s = z e r o c o u n t [ t h r e a d I d x . x ] ;
b i g = o n e c o u n t [ t h r e a d I d x . x ] ;
mid = z e r o c o u n t [ blockDim . x ] + m e d i a n c o u n t [ t h r e a d I d x .

x ] ;

whi le ( t i d < n )
{

i f ( p a r t i t i o n [ t i d ] < 0)
{

d a t a [ l e s s ] = swap [ t i d ] ;
l e s s ++;

}
e l s e i f ( p a r t i t i o n [ t i d ] > 0)
{

d a t a [ n − b i g − 1] = swap [ t i d ] ;
b i g ++;

}
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e l s e
{

d a t a [ mid ] = swap [ t i d ] ;
mid ++;

}
t i d += blockDim . x ;

}
}

d e v i c e i n t c u P a r t i t i o n ( s t r u c t P o i n t * da t a , i n t n , i n t *
p a r t i t i o n , i n t * z e r o c o u n t , i n t l a s t , i n t b i t , i n t d i r )

{
i n t i s o n e ,

t i d = t h r e a d I d x . x ,
r a d i x = (1 << 31 − b i t ) ;

z e r o c o u n t [ t h r e a d I d x . x ] = 0 ;

whi le ( t i d < n )
{

i f ( p a r t i t i o n [ t i d ] == l a s t )
{

i s o n e = p a r t i t i o n [ t i d ] = ( boo l ) ( ( * ( i n t *) & (
d a t a [ t i d ] . p [ d i r ] ) )&r a d i x ) ;

z e r o c o u n t [ t h r e a d I d x . x ] += ! i s o n e ;
}
e l s e
{

p a r t i t i o n [ t i d ] = 2 ;
}
t i d += blockDim . x ;

}

s y n c t h r e a d s ( ) ;
re turn cuSumReduce ( z e r o c o u n t , blockDim . x ) ;

}

d e v i c e void c u R a d i x S e l e c t ( s t r u c t P o i n t * da t a , s t r u c t
P o i n t * d a t a c o p y , i n t n , i n t * p a r t i t i o n , i n t d i r )

{
s h a r e d i n t o n e c o u n t [ 1 0 2 5 ] ;
s h a r e d i n t z e r o s c o u n t [ 1 0 2 5 ] ;
s h a r e d i n t m e d i a n s c o u n t [ 1 0 2 5 ] ;
s h a r e d f l o a t m e d i a n v a l u e ;
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i n t l = 0 ,
b i t = 0 ,
l a s t = 2 ,
u = n ,
m u = c e i l ( ( f l o a t ) n / 2 ) ,
t i d = t h r e a d I d x . x ;

f i l l A r r a y ( p a r t i t i o n , l a s t , n ) ;

do
{

s y n c t h r e a d s ( ) ;
i n t c u t = c u P a r t i t i o n ( da t a , n , p a r t i t i o n ,

z e r o s c o u n t , l a s t , b i t ++ , d i r ) ;

i f ( ( u − c u t ) >= ( m u ) )
{

u = u − c u t ;
l a s t = 1 ;

}
e l s e
{

l = u − c u t ;
l a s t = 0 ;

}
}
whi le ( ( ( u − l ) > 1) && ( b i t < 32) ) ;

t i d = t h r e a d I d x . x ;

whi le ( t i d < n )
{

i f ( p a r t i t i o n [ t i d ] == l a s t )
{

m e d i a n v a l u e = d a t a [ t i d ] . p [ d i r ] ;
}
t i d += blockDim . x ;

}
s y n c t h r e a d s ( ) ;

c u P a r t i t i o n S w a p ( da t a , d a t a c o p y , n , p a r t i t i o n ,
one coun t , z e r o s c o u n t , m e d i a ns c ou n t , med ian va lue ,

d i r ) ;
}
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g l o b a l
void cuBa lanceBranch ( s t r u c t P o i n t * p o i n t s , s t r u c t P o i n t *

swap , i n t * p a r t i t i o n , i n t * s t e p s , i n t p , i n t d i r )
{

i n t b l o c k o f f s e t ,
n ,
b i d = b l o c k I d x . x ;

whi le ( b i d < p )
{

b l o c k o f f s e t = s t e p s [ b i d * 2 ] ;
n = s t e p s [ b i d * 2 + 1] − b l o c k o f f s e t ;
c u R a d i x S e l e c t ( p o i n t s + b l o c k o f f s e t , swap +

b l o c k o f f s e t , n , p a r t i t i o n + b l o c k o f f s e t , d i r ) ;
b i d += gridDim . x ;

}
}

void getThreadAndBlockCountMulRadix ( i n t n , i n t p , i n t &
blocks , i n t &t h r e a d s )

{
t h r e a d s = n − 1 ;
t h r e a d s = prevPowTwo ( t h r e a d s / 4 ) ;
b l o c k s = min ( MAX BLOCK DIM SIZE MULTI RADIX , p ) ;
b l o c k s = max ( 1 , b l o c k s ) ;
t h r e a d s = min ( THREADS PER BLOCK MULTI RADIX , t h r e a d s ) ;
t h r e a d s = max ( 1 2 8 , t h r e a d s ) ;
debugf ( ”N =%d , p = %d , b l o c k s = %d , t h r e a d s = %d\n ” , n ,

p , b locks , t h r e a d s ) ;
}

void m u l t i R a d i x S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * d d a t a ,
s t r u c t P o i n t * d d a t a c o p y , i n t * d p a r t i t i o n , i n t *
d s t e p s , i n t n , i n t p , i n t d i r )

{
i n t numBlocks , numThreads ;
getThreadAndBlockCountMulRadix ( n , p , numBlocks ,

numThreads ) ;
cuBa lanceBranch <<< numBlocks , numThreads>>>(d d a t a ,

d d a t a c o p y , d p a r t i t i o n , d s t e p s , p , d i r ) ;
}

/ / For t e s t i n g − One ca nn o t i m p o r t a d e v i c e k e r n e l
g l o b a l void c u R a d i x S e l e c t G l o b a l ( s t r u c t P o i n t * da t a ,
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s t r u c t P o i n t * d a t a c o p y , i n t n , i n t * p a r t i t i o n , i n t d i r )
{

c u R a d i x S e l e c t ( da t a , d a t a c o p y , n , p a r t i t i o n , d i r ) ;
}

C.3.4 Parallel k-d tree build

# i f n d e f KD TREE NAIVE
# d e f i n e KD TREE NAIVE
# i n c l u d e <p o i n t . h>
# i n c l u d e <s t a c k . h>

void bu i ldKdTree ( s t r u c t P o i n t * p o i n t s , i n t n , s t r u c t Node *
p o i n t s o u t ) ;

void getThreadAndBlockCountMulRadix ( i n t n , i n t p , i n t &
blocks , i n t &t h r e a d s ) ;

void g e t T h r e a d A n d B l o c k C o u n t F o r Q u i c k S e l e c t ( i n t n , i n t p , i n t
&blocks , i n t &t h r e a d s ) ;

i n t s t o r e l o c a t i o n s ( s t r u c t Node * t r e e , i n t lower , i n t upper
, i n t n ) ;

g l o b a l
void cuBa lanceBranch ( s t r u c t P o i n t * p o i n t s , s t r u c t P o i n t *

swap , i n t * p a r t i t i o n , i n t n , i n t p , i n t d i r ) ;

g l o b a l
void c u Q u i c k S e l e c t G l o b a l ( s t r u c t P o i n t * p o i n t s , i n t n , i n t p

, i n t d i r ) ;

t e m p l a t e < i n t maxStep> g l o b a l
void c u Q u i c k S e l e c t S h a r e d ( s t r u c t P o i n t * p o i n t s , i n t n , i n t p

, i n t d i r ) ;

# e n d i f

# i n c l u d e ” kd−t r e e−b u i l d . cuh ”
# i n c l u d e ” m u l t i p l e−r a d i x−s e l e c t . cuh ”
# i n c l u d e ” quick−s e l e c t . cuh ”
# i n c l u d e ” r a d i x−s e l e c t . cuh ”

# i n c l u d e ” s t d i o . h ”
# i n c l u d e ” p o i n t . h ”

# i n c l u d e ” h e l p e r c u d a . h ”

i n t nex tPowerOf2 ( i n t x )
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{
−−x ;
x |= x >> 1 ;
x |= x >> 2 ;
x |= x >> 4 ;
x |= x >> 8 ;
x |= x >> 1 6 ;
re turn ++x ;

}

void UpDim ( i n t &dim )
{

dim = ( dim + 1) % 3 ;
}

void ge tThreadAndBlockCoun tForBu i ld ( i n t n , i n t &blocks , i n t
&t h r e a d s )

{
t h r e a d s = min ( nex tPowerOf2 ( n ) , 512) ;
b l o c k s = n / t h r e a d s ;
b l o c k s = max ( 1 , b l o c k s ) ;
b l o c k s = min ( MAX BLOCK DIM SIZE , b l o c k s ) ;
/ / p r i n t f (” b l o c k = %d , t h r e a d s = %d , n = %d\n ” , b l o c k s ,

t h r e a d s , n ) ;
}

d e v i c e void c u C a l c u l a t e B l o c k O f f s e t A n d N o O f L i s t s ( i n t n ,
i n t &n p e r b l o c k , i n t &b l o c k o f f s e t )

{
i n t r e s t = n % gridDim . x ;

n p e r b l o c k = n / gr idDim . x ;
b l o c k o f f s e t = n p e r b l o c k * b l o c k I d x . x ;

i f ( r e s t >= gridDim . x − b l o c k I d x . x )
{

b l o c k o f f s e t += r e s t − ( gr idDim . x − b l o c k I d x . x ) ;
n p e r b l o c k ++;

}
}

d e v i c e void c u P o i n t S w a p C o n d i t i o n ( s t r u c t P o i n t *p , i n t a
, i n t b , i n t dim )

{
s t r u c t P o i n t temp a = p [ a ] , temp b = p [ b ] ;
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i f ( t emp a . p [ dim ] > temp b . p [ dim ] )
{

p [ a ] = temp b , p [ b ] = temp a ;
}

}

g l o b a l void b a l a n c e L e a f s ( s t r u c t P o i n t * p o i n t s , i n t *
s t e p s , i n t p , i n t dim )

{
s t r u c t P o i n t * l p o i n t s ;

i n t l i s t i n b l o c k ,
b l o c k o f f s e t ,
t i d = t h r e a d I d x . x ,
s tep num ,
n ;

c u C a l c u l a t e B l o c k O f f s e t A n d N o O f L i s t s ( p , l i s t i n b l o c k ,
b l o c k o f f s e t ) ;

s t e p s += b l o c k o f f s e t * 2 ;

whi le ( t i d < l i s t i n b l o c k )
{

s t ep num = t i d * 2 ;
l p o i n t s = p o i n t s + s t e p s [ s t ep num ] ;
n = s t e p s [ s tep num + 1] − s t e p s [ s t ep num ] ;
i f ( n == 2)
{

c u P o i n t S w a p C o n d i t i o n ( l p o i n t s , 0 , 1 , dim ) ;
}
e l s e i f ( n == 3)
{

c u P o i n t S w a p C o n d i t i o n ( l p o i n t s , 0 , 1 , dim ) ;
c u P o i n t S w a p C o n d i t i o n ( l p o i n t s , 1 , 2 , dim ) ;
c u P o i n t S w a p C o n d i t i o n ( l p o i n t s , 0 , 1 , dim ) ;

}
t i d += blockDim . x ;

}
}

i n t s t o r e l o c a t i o n s ( s t r u c t Node * t r e e , i n t lower , i n t upper
, i n t n )

{
i n t r ;
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i f ( lower >= upper )
{

re turn −1;
}

r = ( i n t ) ( ( uppe r − l ower ) / 2 ) + lower ;

t r e e [ r ] . l e f t = s t o r e l o c a t i o n s ( t r e e , lower , r , n ) ;
t r e e [ r ] . r i g h t = s t o r e l o c a t i o n s ( t r e e , r + 1 , upper , n ) ;

re turn r ;
}

d e v i c e h o s t
void p o i n t C o n v e r t ( s t r u c t Node &p1 , s t r u c t P o i n t &p2 )
{

p1 . p [ 0 ] = p2 . p [ 0 ] , p1 . p [ 1 ] = p2 . p [ 1 ] , p1 . p [ 2 ] = p2 . p
[ 2 ] ;

# i f d e f ADD POINT ID
p1 . i d = p2 . i d ;

# e n d i f
}

g l o b a l
void c o n v e r t P o i n t s ( s t r u c t P o i n t * p o i n t s s m a l l , i n t n ,

s t r u c t Node * p o i n t s )
{

i n t l o c a l n ,
b l o c k o f f s e t ,
t i d = t h r e a d I d x . x ;

c u C a l c u l a t e B l o c k O f f s e t A n d N o O f L i s t s ( n , l o c a l n ,
b l o c k o f f s e t ) ;

p o i n t s += b l o c k o f f s e t ;
p o i n t s s m a l l += b l o c k o f f s e t ;

whi le ( t i d < l o c a l n )
{

p o i n t C o n v e r t ( p o i n t s [ t i d ] , p o i n t s s m a l l [ t i d ] ) ;
t i d += blockDim . x ;

}
}
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void n e x t S t e p ( i n t * s t eps new , i n t * s t e p s o l d , i n t n )
{

i n t i , midpo in t , from , t o ;
f o r ( i = 0 ; i < n / 2 ; ++ i )
{

from = s t e p s o l d [ i * 2 ] ;
t o = s t e p s o l d [ i * 2 + 1 ] ;
m i d p o i n t = ( t o − from ) / 2 + from ;

s t e p s n e w [ i * 4 ] = from ;
s t e p s n e w [ i * 4 + 1] = m i d p o i n t ;
s t e p s n e w [ i * 4 + 2] = m i d p o i n t + 1 ;
s t e p s n e w [ i * 4 + 3] = t o ;

}
}

void s w a p p o i n t e r ( i n t **a , i n t **b )
{

i n t *swap ;
swap = *a , * a = *b , *b = swap ;

}

void s i n g l e R a d i x S e l e c t A n d P a r t i t i o n ( s t r u c t P o i n t * d p o i n t s ,
s t r u c t P o i n t * d swap , i n t * d p a r t i t i o n , i n t * h s t e p s ,
i n t p , i n t d i r )

{
i n t nn , o f f s e t , j ;
f o r ( j = 0 ; j < p ; j ++)
{

o f f s e t = h s t e p s [ j * 2 ] ;
nn = h s t e p s [ j * 2 + 1] − o f f s e t ;
i f ( nn > 1)
{

r a d i x S e l e c t A n d P a r t i t i o n ( d p o i n t s + o f f s e t ,
d swap + o f f s e t , d p a r t i t i o n + o f f s e t , nn ,
d i r ) ;

}
}

}

s i z e t ge tFreeBytesOnGpu ( )
{

s i z e t f r e e b y t e , t o t a l b y t e ;
c u d a E r r o r t c u d a s t a t u s = cudaMemGetInfo ( &f r e e b y t e , &

t o t a l b y t e ) ;
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re turn f r e e b y t e ;
}

s i z e t g e t N e e d e d B y t e s F o r B u i l d i n g K d T r e e ( i n t n )
{

i n t n u m b e r o f l e a f s = ( n + 1) / 2 ;
re turn ( n u m b e r o f l e a f s * 2 * s i z e o f ( i n t ) ) + (2 * n *

s i z e o f ( i n t ) ) + (2 * n * s i z e o f ( P o i n t ) ) ;
}

void cuBui ldKdTree ( s t r u c t P o i n t * h p o i n t s , i n t n , i n t dim ,
s t r u c t Node * t r e e )

{
s t r u c t P o i n t * d p o i n t s , * d swap ;
s t r u c t Node * d t r e e ;
i n t * d p a r t i t i o n ,

block num , thread num ,
* d s t e p s , * h s t e p s o l d , * h s t e p s n e w ,
s t e p ,
i = 0 ,
p = 1 ,
n u m b e r o f l e a f s = ( n + 1) / 2 ,
h = ( i n t ) c e i l ( l og2 ( ( f l o a t ) n + 1) ) ;

h s t e p s n e w = ( i n t *) ma l l oc ( n u m b e r o f l e a f s * 2 *
s i z e o f ( i n t ) ) ;

h s t e p s o l d = ( i n t *) ma l l oc ( n u m b e r o f l e a f s * 2 *
s i z e o f ( i n t ) ) ;

h s t e p s n e w [ 0 ] = 0 ;
h s t e p s o l d [ 0 ] = 0 ;
h s t e p s o l d [ 1 ] = n ;
h s t e p s n e w [ 1 ] = n ;

c h e c k C u d a E r r o r s (
cudaMal loc (& d s t e p s , n u m b e r o f l e a f s * 2 * s i z e o f (

i n t ) ) ) ;
c h e c k C u d a E r r o r s (

cudaMal loc (& d p a r t i t i o n , n * s i z e o f ( i n t ) ) ) ;
c h e c k C u d a E r r o r s (

cudaMal loc (& d p o i n t s , n * s i z e o f ( P o i n t ) ) ) ;
c h e c k C u d a E r r o r s (

cudaMal loc (&d swap , n * s i z e o f ( P o i n t ) ) ) ;

c h e c k C u d a E r r o r s (

116



cudaMemcpy ( d p o i n t s , h p o i n t s , n * s i z e o f ( P o i n t ) ,
cudaMemcpyHostToDevice ) ) ;

r a d i x S e l e c t A n d P a r t i t i o n ( d p o i n t s , d swap , d p a r t i t i o n ,
n , dim ) ;

UpDim ( dim ) ;
i ++;
whi le ( i < ( h − 1) )
{

n e x t S t e p ( h s t e p s n e w , h s t e p s o l d , p <<= 1) ;
s t e p = h s t e p s n e w [ 1 ] − h s t e p s n e w [ 0 ] ;
c h e c k C u d a E r r o r s (

cudaMemcpy ( d s t e p s , h s t e p s n e w , p * 2 * s i z e o f
( i n t ) , cudaMemcpyHostToDevice ) ) ;

i f ( s t e p >= 9000000)
{

s i n g l e R a d i x S e l e c t A n d P a r t i t i o n ( d p o i n t s , d swap ,
d p a r t i t i o n , h s t e p s n e w , p , dim ) ;

}
e l s e i f ( s t e p > 3000)
{

m u l t i R a d i x S e l e c t A n d P a r t i t i o n ( d p o i n t s , d swap ,
d p a r t i t i o n , d s t e p s , s t e p , p , dim ) ;

}
e l s e i f ( s t e p > 3)
{

q u i c k S e l e c t A n d P a r t i t i o n ( d p o i n t s , d s t e p s , s t e p
, p , dim ) ;

}
e l s e
{

ge tThreadAndBlockCoun tForBu i ld ( n , block num ,
th r ead num ) ;

b a l a n c e L e a f s <<< block num , th r ead num >>> (
d p o i n t s , d s t e p s , p , dim ) ;

}
s w a p p o i n t e r (& h s t e p s n e w , &h s t e p s o l d ) ;
i ++;
UpDim ( dim ) ;

}

c h e c k C u d a E r r o r s ( c u d a F r e e ( d swap ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d p a r t i t i o n ) ) ;
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c h e c k C u d a E r r o r s ( c u d a F r e e ( d s t e p s ) ) ;
f r e e ( h s t e p s n e w ) ;
f r e e ( h s t e p s o l d ) ;

c h e c k C u d a E r r o r s ( cudaMal loc (& d t r e e , n * s i z e o f ( Node ) ) ) ;

ge tThreadAndBlockCoun tForBu i ld ( n , block num , th r ead num
) ;

c o n v e r t P o i n t s <<< block num , th r ead num >>> ( d p o i n t s ,
n , d t r e e ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( t r e e , d t r e e , n * s i z e o f (
Node ) , cudaMemcpyDeviceToHost ) ) ;

c h e c k C u d a E r r o r s ( c u d a F r e e ( d p o i n t s ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d t r e e ) ) ;

}

void b u i l d K d T r e e S t e p ( s t r u c t P o i n t * h p o i n t s , i n t n , i n t dim
, s t r u c t Node * t r e e )

{
i f ( n <= 0) re turn ;

s i z e t f r e e b y t e s , n e e d e d b y t e s ;
i n t m = n >> 1 ;

f r e e b y t e s = ge tFreeBytesOnGpu ( ) ;
n e e d e d b y t e s = g e t N e e d e d B y t e s F o r B u i l d i n g K d T r e e ( n ) ;

i f ( f r e e b y t e s > n e e d e d b y t e s )
{

cuBui ldKdTree ( h p o i n t s , n , dim , t r e e ) ;
}
e l s e
{

c p u Q u i c k S e l e c t ( h p o i n t s , n , dim ) ;
p o i n t C o n v e r t ( t r e e [m] , h p o i n t s [m] ) ;

UpDim ( dim ) ;

b u i l d K d T r e e S t e p ( h p o i n t s , m, dim , t r e e ) ;
b u i l d K d T r e e S t e p ( h p o i n t s + m + 1 , n − m − 1 , dim ,

t r e e + m + 1) ;
}

}
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void bu i ldKdTree ( s t r u c t P o i n t * h p o i n t s , i n t n , s t r u c t Node
* t r e e )

{

i n t dim = 0 ;
b u i l d K d T r e e S t e p ( h p o i n t s , n , dim , t r e e ) ;
s t o r e l o c a t i o n s ( t r e e , 0 , n , n ) ;

}

C.4 k-d tree search

C.4.1 CUDA k-d tree search

# i f n d e f CU KD SEARCH
# d e f i n e CU KD SEARCH
# i n c l u d e <p o i n t . h>
# i n c l u d e <s t a c k . h>

# d e f i n e THREADS PER BLOCK SEARCH 64U
# d e f i n e MAX BLOCK DIM SIZE 8192U
# d e f i n e MAX SHARED MEM 49152U
# d e f i n e MIN NUM QUERY POINTS 100U

d e v i c e h o s t void c u I n i t S t a c k ( s t r u c t S P o i n t ** s t a c k )
;

d e v i c e h o s t boo l cuIsEmpty ( s t r u c t S P o i n t * s t a c k ) ;
d e v i c e h o s t void cuPush ( s t r u c t S P o i n t ** s t a c k ,

s t r u c t S P o i n t v a l u e ) ;
d e v i c e h o s t s t r u c t S P o i n t cuPop ( s t r u c t S P o i n t **

s t a c k ) ;
d e v i c e h o s t s t r u c t S P o i n t cuPeek ( s t r u c t S P o i n t *

s t a c k ) ;
d e v i c e h o s t void c u I n i t K S t a c k ( KPoin t ** k s t a c k , i n t

n ) ;
d e v i c e h o s t void c u I n s e r t ( s t r u c t KPoint * k s t a c k ,

s t r u c t KPoint k p o i n t , i n t n ) ;
d e v i c e h o s t s t r u c t KPoint cuLook ( s t r u c t KPoint *

k s t a c k ) ;

d e v i c e h o s t i n t f a s t I n t e g e r L o g 2 ( i n t x ) ;

d e v i c e h o s t f l o a t c u D i s t ( s t r u c t P o i n t qp , s t r u c t
Node p o i n t ) ;
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d e v i c e h o s t void cuUpDim ( i n t &dim ) ;

d e v i c e h o s t void cuKNN( s t r u c t P o i n t qp , s t r u c t Node
* t r e e , i n t n , i n t k ,

s t r u c t S P o i n t * s t a c k p t r ,
s t r u c t KPoint *
k s t a c k p t r ) ;

s i z e t ge tFreeBytesOnGpu ( ) ;
i n t g e t Q u e r i e s I n S t e p ( i n t n qp , i n t k , i n t n ) ;
void ge tThreadAndBlockCoun tForQueryAl l ( i n t n , i n t &blocks ,

i n t &t h r e a d s ) ;
s i z e t g e t N e e d e d B y t e s I n S e a r c h ( i n t n qp , i n t k , i n t n , i n t

th read num , i n t block num ) ;

void cuQueryAl l ( s t r u c t P o i n t * h q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t qp n , i n t t r e e n , i n t k , i n t * r e s u l t ) ;

# e n d i f

# i n c l u d e < s t d l i b . h>
# i n c l u d e <math . h>
# i n c l u d e < f l o a t . h>

# i n c l u d e <h e l p e r c u d a . h>
# i n c l u d e <cu−kd−s e a r c h . cuh>
# i n c l u d e ” kd−t r e e−b u i l d . cuh ”

d e v i c e h o s t
f l o a t c u D i s t ( s t r u c t P o i n t qp , s t r u c t Node p o i n t )
{

f l o a t dx = qp . p [ 0 ] − p o i n t . p [ 0 ] ,
dy = qp . p [ 1 ] − p o i n t . p [ 1 ] ,
dz = qp . p [ 2 ] − p o i n t . p [ 2 ] ;

re turn ( dx * dx ) + ( dy * dy ) + ( dz * dz ) ;
}

d e v i c e h o s t
void c u I n i t S t a c k ( s t r u c t S P o i n t ** s t a c k )
{

(* s t a c k ) [ 0 ] . i n d e x = −1;
(* s t a c k ) ++;

}

d e v i c e h o s t
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boo l cuIsEmpty ( s t r u c t S P o i n t * s t a c k )
{

re turn cuPeek ( s t a c k ) . i n d e x == −1;
}

d e v i c e h o s t
void cuPush ( s t r u c t S P o i n t ** s t a c k , s t r u c t S P o i n t v a l u e )
{

* ( ( * s t a c k ) ++) = v a l u e ;
}

d e v i c e h o s t
s t r u c t S P o i n t cuPop ( s t r u c t S P o i n t ** s t a c k )
{

re turn *(−−(* s t a c k ) ) ;
}

d e v i c e h o s t
s t r u c t S P o i n t cuPeek ( s t r u c t S P o i n t * s t a c k )
{

re turn *( s t a c k − 1) ;
}

d e v i c e h o s t
void c u I n i t K S t a c k ( s t r u c t KPoint ** k s t a c k , i n t n )
{

(* k s t a c k )−−;
f o r ( i n t i = 1 ; i <= n ; ++ i )
{

(* k s t a c k ) [ i ] . d i s t = FLT MAX ;
(* k s t a c k ) [ i ] . i n d e x = −1;

}
}

d e v i c e h o s t
void c u I n s e r t ( s t r u c t KPoint * k s t a c k , s t r u c t KPoint k p o i n t

, i n t n )
{

i n t i c h i l d , now ;
s t r u c t KPoint c h i l d , c h i l d t m p 2 ;
f o r ( now = 1 ; now * 2 <= n ; now = i c h i l d )
{

i c h i l d = now * 2 ;
c h i l d = k s t a c k [ i c h i l d ] ;
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c h i l d t m p 2 = k s t a c k [ i c h i l d + 1 ] ;
i f ( i c h i l d <= n && c h i l d t m p 2 . d i s t > c h i l d . d i s t )
{

i c h i l d ++;
c h i l d = c h i l d t m p 2 ;

}

i f ( i c h i l d <= n && k p o i n t . d i s t < c h i l d . d i s t )
{

k s t a c k [ now ] = c h i l d ;
}
e l s e
{

break ;
}

}
k s t a c k [ now ] = k p o i n t ;

}

d e v i c e h o s t
s t r u c t KPoint cuLook ( s t r u c t KPoint * k s t a c k )
{

re turn k s t a c k [ 1 ] ;
}

d e v i c e h o s t
void cuUpDim ( i n t &dim )
{

dim = ( dim + 1) % 3 ;
}

d e v i c e h o s t
void c u C h i l d r e n ( s t r u c t P o i n t qp , s t r u c t Node c u r r e n t , f l o a t

dx , i n t &t a r g e t , i n t &o t h e r )
{

i f ( dx > 0)
{

o t h e r = c u r r e n t . r i g h t ;
t a r g e t = c u r r e n t . l e f t ;

}
e l s e
{

o t h e r = c u r r e n t . l e f t ;
t a r g e t = c u r r e n t . r i g h t ;
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}
}

d e v i c e h o s t
void cuKNN( s t r u c t P o i n t qp , s t r u c t Node * t r e e , i n t n , i n t k

,
s t r u c t S P o i n t * s t a c k , s t r u c t KPoint * k s t a c k )

{
i n t dim = 2 , t a r g e t ;
f l o a t c u r r e n t d i s t ;

s t r u c t Node c u r r e n t p o i n t ;
s t r u c t S P o i n t c u r r e n t ;
s t r u c t KPoint w o r s t b e s t ;

c u r r e n t . i n d e x = n / 2 ;

c u I n i t S t a c k (& s t a c k ) ;
c u I n i t K S t a c k (& k s t a c k , k ) ;
w o r s t b e s t = cuLook ( k s t a c k ) ;

whi le ( ! cuIsEmpty ( s t a c k ) | | c u r r e n t . i n d e x != −1)
{

i f ( c u r r e n t . i n d e x == −1 && ! cuIsEmpty ( s t a c k ) )
{

c u r r e n t = cuPop(& s t a c k ) ;
dim = c u r r e n t . dim ;

c u r r e n t . i n d e x = ( c u r r e n t . dx * c u r r e n t . dx <
w o r s t b e s t . d i s t ) ? c u r r e n t . o t h e r : −1;

}
e l s e
{

c u r r e n t p o i n t = t r e e [ c u r r e n t . i n d e x ] ;

c u r r e n t d i s t = c u D i s t ( qp , c u r r e n t p o i n t ) ;
i f ( w o r s t b e s t . d i s t > c u r r e n t d i s t )
{

w o r s t b e s t . d i s t = c u r r e n t d i s t ;
w o r s t b e s t . i n d e x = c u r r e n t . i n d e x ;
c u I n s e r t ( k s t a c k , w o r s t b e s t , k ) ;
w o r s t b e s t = cuLook ( k s t a c k ) ;

}

cuUpDim ( dim ) ;
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c u r r e n t . dim = dim ;
c u r r e n t . dx = c u r r e n t p o i n t . p [ dim ] − qp . p [ dim ] ;
c u C h i l d r e n ( qp , c u r r e n t p o i n t , c u r r e n t . dx ,

t a r g e t , c u r r e n t . o t h e r ) ;
cuPush (& s t a c k , c u r r e n t ) ;

c u r r e n t . i n d e x = t a r g e t ;
}

}
}

d e v i c e h o s t
i n t f a s t I n t e g e r L o g 2 ( i n t x )
{

i n t y = 0 ;
whi le ( x >>= 1)
{

y ++;
}
re turn y ;

}

d e v i c e void c u C a l c u l a t e B l o c k O f f s e t A n d N o O f Q u e r i e s ( i n t n ,
i n t &n p e r b l o c k , i n t &b l o c k o f f s e t )

{
i n t r e s t = n % gridDim . x ;
n p e r b l o c k = n / gr idDim . x ;
b l o c k o f f s e t = n p e r b l o c k * b l o c k I d x . x ;

i f ( r e s t >= gridDim . x − b l o c k I d x . x )
{

b l o c k o f f s e t += r e s t − ( gr idDim . x − b l o c k I d x . x ) ;
n p e r b l o c k ++;

}
}

d e v i c e h o s t i n t g e t S S t a c k S i z e ( i n t n )
{

re turn f a s t I n t e g e r L o g 2 ( n ) + 2 ;
}

s i z e t g e t S S t a c k S i z e I n B y t e s ( i n t n , i n t th read num , i n t
block num )

{
re turn block num * th read num * ( ( g e t S S t a c k S i z e ( n ) *
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s i z e o f ( S P o i n t ) ) ) ;
}

s i z e t g e t N e e d e d B y t e s I n S e a r c h ( i n t n qp , i n t k , i n t n , i n t
th read num , i n t block num )

{
re turn n qp * ( k * s i z e o f ( i n t ) + s i z e o f ( P o i n t ) ) +

( n qp * k * s i z e o f ( KPoint ) ) +
( g e t S S t a c k S i z e I n B y t e s ( n , th read num , block num ) )

;
}

void p o p u l a t e T r i v i a l R e s u l t ( i n t n qp , i n t k , i n t n t r e e , i n t
* r e s u l t )

{
# pragma omp p a r a l l e l f o r
f o r ( i n t i = 0 ; i < n qp ; ++ i )
{

f o r ( i n t j = 0 ; j < k ; ++ j )
{

r e s u l t [ i * k + j ] = j % n t r e e ;
}

}
}

t e m p l a t e<i n t s t a c k s i z e > g l o b a l
void dQueryAl l ( s t r u c t P o i n t * q u e r y p o i n t s , s t r u c t Node *

t r e e , i n t n qp , i n t n t r e e , i n t k , s t r u c t KPoint *
k s t a c k p t r )

{

S P o i n t s t a c k [ s t a c k s i z e ] ;

i n t t i d = t h r e a d I d x . x ,
b l o c k s t e p ,
b l o c k o f f s e t ;

c u C a l c u l a t e B l o c k O f f s e t A n d N o O f Q u e r i e s ( n qp , b l o c k s t e p ,
b l o c k o f f s e t ) ;

q u e r y p o i n t s += b l o c k o f f s e t ;
k s t a c k p t r += b l o c k o f f s e t * k ;

whi le ( t i d < b l o c k s t e p )
{
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cuKNN( q u e r y p o i n t s [ t i d ] , t r e e , n t r e e , k , s t a c k ,
k s t a c k p t r + ( t i d * k ) ) ;

t i d += blockDim . x ;
}

}

void ge tThreadAndBlockCoun tForQueryAl l ( i n t n , i n t &blocks ,
i n t &t h r e a d s )

{
t h r e a d s = THREADS PER BLOCK SEARCH ;
b l o c k s = n / t h r e a d s ;
b l o c k s = min ( MAX BLOCK DIM SIZE , b l o c k s ) ;
b l o c k s = max ( 1 , b l o c k s ) ;
/ / p r i n t f (” b l o c k s = %d , t h r e a d s = %d , n= %d\n ” , b l o c k s ,

t h r e a d s , n ) ;
}

i n t g e t Q u e r i e s I n S t e p ( i n t n qp , i n t k , i n t n )
{

i n t numBlocks , numThreads ;
s i z e t n e e d e d b y t e s t o t a l , f r e e b y t e s ;

f r e e b y t e s = getFreeBytesOnGpu ( ) ;

ge tThreadAndBlockCoun tForQueryAl l ( n qp , numThreads ,
numBlocks ) ;

n e e d e d b y t e s t o t a l = g e t N e e d e d B y t e s I n S e a r c h ( n qp , k , n ,
numThreads , numBlocks ) ;

i f ( f r e e b y t e s > n e e d e d b y t e s t o t a l ) re turn n qp ;
i f ( n qp < 50) re turn −1;

re turn g e t Q u e r i e s I n S t e p ( ( n qp / 2 ) , k , n ) ;
}

i n t n e x t P o w e r O f 2 ( i n t x )
{

−−x ;
x |= x >> 1 ;
x |= x >> 2 ;
x |= x >> 4 ;
x |= x >> 8 ;
x |= x >> 1 6 ;
re turn ++x ;
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}

void t e m p l a t e Q u e r y A l l ( s t r u c t P o i n t * d q u e r y p o i n t s , s t r u c t
Node * d t r e e , i n t q u e r i e s i n s t e p , i n t n t r e e , i n t k ,
i n t s t a c k s i z e , i n t numBlocks , i n t numThreads , s t r u c t
KPoint * d k s t a c k )

{
i f ( s t a c k s i z e <= 20 )
{

dQueryAll<20> <<< numBlocks , numThreads>>>(
d q u e r y p o i n t s , d t r e e , q u e r i e s i n s t e p , n t r e e ,
k , d k s t a c k ) ;

}
e l s e i f ( s t a c k s i z e <= 25)
{

dQueryAll<25> <<< numBlocks , numThreads>>>(
d q u e r y p o i n t s , d t r e e , q u e r i e s i n s t e p , n t r e e ,
k , d k s t a c k ) ;

}
e l s e i f ( s t a c k s i z e <= 30)
{

dQueryAll<30> <<< numBlocks , numThreads>>>(
d q u e r y p o i n t s , d t r e e , q u e r i e s i n s t e p , n t r e e ,
k , d k s t a c k ) ;

}
e l s e
{

dQueryAll<35> <<< numBlocks , numThreads>>>(
d q u e r y p o i n t s , d t r e e , q u e r i e s i n s t e p , n t r e e ,
k , d k s t a c k ) ;

}
}

void cuQueryAl l ( s t r u c t P o i n t * h q u e r y p o i n t s , s t r u c t Node *
h t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * h r e s u l t )

{
i n t numBlocks , numThreads , q u e r i e s i n s t e p ,

q u e r i e s d o n e , s t a c k s i z e ;
s t r u c t Node * d t r e e ;
s t r u c t KPoint * d k s t a c k , * h k s t a c k ;
s t r u c t S P o i n t * d s t a c k ;
s t r u c t P o i n t * d q u e r y p o i n t s ;

i f ( k >= n t r e e )
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{
p o p u l a t e T r i v i a l R e s u l t ( n qp , k , n t r e e , h r e s u l t ) ;
re turn ;

}

c h e c k C u d a E r r o r s ( cudaDev iceSe tCacheConf ig (
cudaFuncCachePre fe rL1 ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc (& d t r e e , n t r e e * s i z e o f (
Node ) ) ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( d t r e e , h t r e e , n t r e e *
s i z e o f ( Node ) , cudaMemcpyHostToDevice ) ) ;

q u e r i e s i n s t e p = g e t Q u e r i e s I n S t e p ( n qp , k , n t r e e ) ;

i f ( q u e r i e s i n s t e p <= 0)
{

p r i n t f ( ” There i s n o t enough memory t o pe r fo rm t h i s
q u e r i e s on cuda .\ n ” ) ;

re turn ;
}

q u e r i e s d o n e = 0 ;
s t a c k s i z e = g e t S S t a c k S i z e ( n t r e e ) ;
q u e r i e s i n s t e p = n e x t P o w e r O f 2 (++ q u e r i e s i n s t e p ) >>

1 ;
ge tThreadAndBlockCoun tForQueryAl l ( q u e r i e s i n s t e p ,

numBlocks , numThreads ) ;

h k s t a c k = ( KPoint * ) ma l lo c ( q u e r i e s i n s t e p * k *
s i z e o f ( KPoint ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc (& d k s t a c k , q u e r i e s i n s t e p
* k * s i z e o f ( KPoint ) ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc (& d s t a c k , numThreads *
numBlocks * s t a c k s i z e * s i z e o f ( S P o i n t ) ) ) ;

c h e c k C u d a E r r o r s ( cudaMal loc (& d q u e r y p o i n t s ,
q u e r i e s i n s t e p * s i z e o f ( P o i n t ) ) ) ;

whi le ( q u e r i e s d o n e < n qp )
{

i f ( q u e r i e s d o n e + q u e r i e s i n s t e p > n qp )
{

q u e r i e s i n s t e p = n qp − q u e r i e s d o n e ;
}
c h e c k C u d a E r r o r s ( cudaMemcpy ( d q u e r y p o i n t s ,
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h q u e r y p o i n t s , q u e r i e s i n s t e p * s i z e o f ( P o i n t ) ,
cudaMemcpyHostToDevice ) ) ;

t e m p l a t e Q u e r y A l l ( d q u e r y p o i n t s , d t r e e ,
q u e r i e s i n s t e p , n t r e e , k , s t a c k s i z e ,
numBlocks , numThreads , d k s t a c k ) ;

c h e c k C u d a E r r o r s ( cudaMemcpy ( h k s t a c k , d k s t a c k ,
q u e r i e s i n s t e p * k * s i z e o f ( KPoint ) ,
cudaMemcpyDeviceToHost ) ) ;

# pragma omp p a r a l l e l f o r
f o r ( i n t i = 0 ; i < q u e r i e s i n s t e p ; ++ i )
{

f o r ( i n t j = 0 ; j < k ; ++ j )
{

h r e s u l t [ i * k + j ] = h k s t a c k [ i * k + j ] .
i n d e x ;

}
}

h q u e r y p o i n t s += q u e r i e s i n s t e p ;
h r e s u l t += ( q u e r i e s i n s t e p * k ) ;
q u e r i e s d o n e += q u e r i e s i n s t e p ;

}

f r e e ( h k s t a c k ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d q u e r y p o i n t s ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d k s t a c k ) ) ;
c h e c k C u d a E r r o r s ( c u d a F r e e ( d t r e e ) ) ;

}

k-d tree split wrapper

# i f n d e f CU UTILS
# d e f i n e CU UTILS

void c u S e t D e v i c e ( i n t d e v i c e ) ;
i n t cuGetDevice ( ) ;
i n t cuGetDeviceCount ( ) ;
s i z e t ge tFreeBytesOnGpu ( ) ;

# e n d i f

# i n c l u d e ” h e l p e r c u d a . h ”
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# i n c l u d e ” u t i l s . cuh ”
# i n c l u d e ” knn gpgpu . h ”

void c u S e t D e v i c e ( i n t d e v i c e )
{

c h e c k C u d a E r r o r s ( c u d a S e t D e v i c e ( d e v i c e ) ) ;
}

i n t cuGetDevice ( )
{

i n t d e v i c e ;
c h e c k C u d a E r r o r s ( cudaGetDev ice (& d e v i c e ) ) ;
re turn d e v i c e ;

}

i n t cuGetDeviceCount ( )
{

i n t d e v i c e c o u n t ;
c h e c k C u d a E r r o r s ( cudaGetDeviceCount (& d e v i c e c o u n t ) ) ;
re turn d e v i c e c o u n t ;

}

s i z e t ge tFreeBytesOnGpu ( )
{

s i z e t f r e e b y t e , t o t a l b y t e ;
c u d a E r r o r t c u d a s t a t u s = cudaMemGetInfo ( &f r e e b y t e , &

t o t a l b y t e ) ;
re turn f r e e b y t e − 1024 ;

}

# i f n d e f KD SEARCH
# d e f i n e KD SEARCH
# i n c l u d e ” cu−kd−s e a r c h . cuh ”

# d e f i n e MIN NUM QUERY POINTS 100U

void q u e r y A l l ( s t r u c t P o i n t * h q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t qp n , i n t t r e e n , i n t k , i n t * r e s u l t ) ;

# e n d i f

# i n c l u d e < s t d l i b . h>
# i n c l u d e <math . h>
# i n c l u d e < f l o a t . h>

# i n c l u d e <h e l p e r c u d a . h>
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# i n c l u d e <kd−s e a r c h . cuh>
# i n c l u d e <cu−kd−s e a r c h . cuh>
# i n c l u d e ” kd−t r e e−b u i l d . cuh ”
# i n c l u d e ” u t i l s . cuh ”

s i z e t g e t T r e e S i z e ( i n t n )
{

re turn n * s i z e o f ( s t r u c t Node ) ;
}

s i z e t g e t N e e d e d B y t e s F o r Q u e r y A l l ( i n t n qp , i n t k , i n t n )
{

i n t numBlocks , numThreads ;
ge tThreadAndBlockCoun tForQueryAl l ( n , numBlocks ,

numThreads ) ;
re turn g e t T r e e S i z e ( n ) + g e t N e e d e d B y t e s I n S e a r c h (

MIN NUM QUERY POINTS , k , n , numThreads , numBlocks ) ;
}

void m a x H e a p R e s u l t I n s e r t ( i n t * r e s u l t , s t r u c t Node * t r e e ,
i n t p o i n t i n d e x , s t r u c t P o i n t qp , i n t k )

{
i n t c h i l d , now ;
s t r u c t Node i n s e r t n o d e = t r e e [ p o i n t i n d e x ] ;

i f ( c u D i s t ( qp , i n s e r t n o d e ) > c u D i s t ( qp , t r e e [ r e s u l t
[ 0 ] ] ) ) re turn ;

f o r ( now = 1 ; now * 2 <= k ; now = c h i l d )
{

c h i l d = now * 2 ;
i f ( c h i l d <= k && c u D i s t ( qp , t r e e [ r e s u l t [ c h i l d +

1 ] ] ) > c u D i s t ( qp , t r e e [ r e s u l t [ c h i l d ] ] ) ) c h i l d
++;

i f ( c h i l d <= k && c u D i s t ( qp , i n s e r t n o d e ) < c u D i s t (
qp , t r e e [ r e s u l t [ c h i l d ] ] ) )

{
r e s u l t [ now ] = r e s u l t [ c h i l d ] ;

}
e l s e
{

break ;
}

}
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r e s u l t [ now ] = p o i n t i n d e x ;
}

void m e r g e R e s u l t ( s t r u c t Node * t r e e , s t r u c t P o i n t *
q u e r y p o i n t s , i n t k , i n t n qp , i n t r o o t , i n t *
r e s u l t r i g h t , i n t * r e s u l t )

{
# pragma omp p a r a l l e l f o r
f o r ( i n t i q p = 0 ; i q p < n qp ; ++ i q p )
{

i n t i k ;
i n t * r e s u l t m a x h e a p = r e s u l t + i q p * k − 1 ;
f o r ( i k = 0 ; i k < k ; ++ i k )
{

m a x H e a p R e s u l t I n s e r t ( r e s u l t m a x h e a p , t r e e ,
r e s u l t r i g h t [ i q p * k + i k ] , q u e r y p o i n t s [
i q p ] , k ) ;

}
}

}

void q u e r y A l l ( s t r u c t P o i n t * h q u e r y p o i n t s , s t r u c t Node *
h t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * h r e s u l t )

{
i f ( ge tFreeBytesOnGpu ( ) > g e t N e e d e d B y t e s F o r Q u e r y A l l (

n qp , k , n t r e e ) | | k > n t r e e )
{

cuQueryAl l ( h q u e r y p o i n t s , h t r e e , n qp , n t r e e , k ,
h r e s u l t ) ;

}
e l s e
{

s t r u c t Node * t r e e r i g t h ;
i n t * h r e s u l t r i g h t , r o o t = n t r e e / 2 ,

n t r e e r i g t h ;
h r e s u l t r i g h t = ( i n t *) ma l l oc ( k * n qp * s i z e o f (

i n t ) ) ;

q u e r y A l l ( h q u e r y p o i n t s , h t r e e , n qp , r o o t , k ,
h r e s u l t ) ;

c u d a D e v i c e R e s e t ( ) ;

n t r e e r i g t h = n t r e e − r o o t − 1 ;
t r e e r i g t h = h t r e e + ( r o o t + 1) ;
s t o r e l o c a t i o n s ( t r e e r i g t h , 0 , n t r e e r i g t h ,
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n t r e e r i g t h ) ;

q u e r y A l l ( h q u e r y p o i n t s , t r e e r i g t h , n qp ,
n t r e e r i g t h , k , h r e s u l t r i g h t ) ;

m e r g e R e s u l t ( h t r e e , h q u e r y p o i n t s , k , n qp , r o o t ,
h r e s u l t r i g h t , h r e s u l t ) ;

}
}

C.4.2 OpenMP k-d tree search

# i f n d e f KD SEARCH OPENMP
# d e f i n e KD SEARCH OPENMP
# i n c l u d e <p o i n t . h>
# i n c l u d e <s t a c k . h>

void push ( s t r u c t S P o i n t ** s t a c k , s t r u c t S P o i n t v a l u e ) ;
s t r u c t S P o i n t pop ( s t r u c t S P o i n t ** s t a c k ) ;
s t r u c t S P o i n t peek ( s t r u c t S P o i n t * s t a c k ) ;
i n t i sEmpty ( s t r u c t S P o i n t * s t a c k ) ;
void i n i t S t a c k ( s t r u c t S P o i n t ** s t a c k ) ;

void upDim ( i n t &dim ) ;

void i n i t K S t a c k ( s t r u c t KPoint ** k s t a c k , i n t n ) ;
void i n s e r t ( s t r u c t KPoint * k s t a c k , s t r u c t KPoint va lue ,

i n t n ) ;
s t r u c t KPoint l ook ( s t r u c t KPoint * k s t a c k ) ;

void mpQueryAll ( s t r u c t P o i n t * q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * r e s u l t ) ;

void kNN( s t r u c t P o i n t qp , s t r u c t Node * t r e e , i n t n , i n t k ,
i n t * r e s u l t , s t r u c t S P o i n t * s t a c k p t r , s t r u c t KPoint *
k s t a c k p t r ) ;

# e n d i f

# i n c l u d e <s t d i o . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e <math . h>
# i n c l u d e < f l o a t . h>

/ / # i f d e f HAVE OPENMP
# i n c l u d e <omp . h>
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/ / # e n d i f

# i n c l u d e ” kd−s e a r c h−openmp . cuh ”

f l o a t d i s t ( s t r u c t P o i n t qp , s t r u c t Node p o i n t )
{

f l o a t dx = qp . p [ 0 ] − p o i n t . p [ 0 ] ,
dy = qp . p [ 1 ] − p o i n t . p [ 1 ] ,
dz = qp . p [ 2 ] − p o i n t . p [ 2 ] ;

re turn ( dx * dx ) + ( dy * dy ) + ( dz * dz ) ;
}

void i n i t S t a c k ( s t r u c t S P o i n t ** s t a c k )
{

(* s t a c k ) [ 0 ] . i n d e x = −1;
(* s t a c k ) ++;

}

i n t i sEmpty ( s t r u c t S P o i n t * s t a c k )
{

re turn peek ( s t a c k ) . i n d e x == −1;
}

void push ( s t r u c t S P o i n t ** s t a c k , s t r u c t S P o i n t v a l u e )
{

* ( ( * s t a c k ) ++) = v a l u e ;
}

s t r u c t S P o i n t pop ( s t r u c t S P o i n t ** s t a c k )
{

re turn *(−−(* s t a c k ) ) ;
}

s t r u c t S P o i n t peek ( s t r u c t S P o i n t * s t a c k )
{

re turn *( s t a c k − 1) ;
}

void i n i t K S t a c k ( s t r u c t KPoint ** k s t a c k , i n t n )
{

(* k s t a c k )−−;
f o r ( i n t i = 1 ; i <= n ; ++ i )
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{
(* k s t a c k ) [ i ] . d i s t = FLT MAX ;
(* k s t a c k ) [ i ] . i n d e x = −1;

}
}

void i n s e r t ( s t r u c t KPoint * k s t a c k , s t r u c t KPoint k p o i n t ,
i n t n )

{
i n t i c h i l d , now ;
s t r u c t KPoint c h i l d , c h i l d t m p 2 ;
f o r ( now = 1 ; now * 2 <= n ; now = i c h i l d )
{

i c h i l d = now * 2 ;
c h i l d = k s t a c k [ i c h i l d ] ;
c h i l d t m p 2 = k s t a c k [ i c h i l d + 1 ] ;
i f ( i c h i l d <= n && c h i l d t m p 2 . d i s t > c h i l d . d i s t )
{

i c h i l d ++;
c h i l d = c h i l d t m p 2 ;

}

i f ( i c h i l d <= n && k p o i n t . d i s t < c h i l d . d i s t )
{

k s t a c k [ now ] = c h i l d ;
}
e l s e
{

break ;
}

}
k s t a c k [ now ] = k p o i n t ;

}

s t r u c t KPoint l ook ( s t r u c t KPoint * k s t a c k )
{

re turn k s t a c k [ 1 ] ;
}

void upDim ( i n t &dim )
{

dim = ( dim + 1) % 3 ;
}

i n t t a r g e t ( s t r u c t P o i n t qp , s t r u c t Node c u r r e n t , f l o a t dx )
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{
i f ( dx > 0)
{

re turn c u r r e n t . l e f t ;
}
re turn c u r r e n t . r i g h t ;

}

i n t o t h e r ( s t r u c t P o i n t qp , s t r u c t Node c u r r e n t , f l o a t dx )
{

i f ( dx > 0)
{

re turn c u r r e n t . r i g h t ;
}
re turn c u r r e n t . l e f t ;

}

void kNN( s t r u c t P o i n t qp , s t r u c t Node * t r e e , i n t n , i n t k ,
i n t * r e s u l t ,

s t r u c t S P o i n t * s t a c k p t r , s t r u c t KPoint *
k s t a c k p t r )

{
i n t i , dim = 2 ;
f l o a t c u r r e n t d i s t , dx , dx2 ;

s t r u c t Node c u r r e n t p o i n t ;
s t r u c t S P o i n t * s t a c k = s t a c k p t r ,

c u r r e n t ;
s t r u c t KPoint * k s t a c k = k s t a c k p t r ,

w o r s t b e s t ;

i n i t S t a c k (& s t a c k ) ;
i n i t K S t a c k (& k s t a c k , k ) ;

w o r s t b e s t = look ( k s t a c k ) ;
c u r r e n t . i n d e x = n / 2 ;

whi le ( ! i sEmpty ( s t a c k ) | | c u r r e n t . i n d e x != −1)
{

i f ( c u r r e n t . i n d e x == −1 && ! isEmpty ( s t a c k ) )
{

c u r r e n t = pop(& s t a c k ) ;
dim = c u r r e n t . dim ;

dx = c u r r e n t . dx ;
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dx2 = dx * dx ;

c u r r e n t . i n d e x = ( dx2 < w o r s t b e s t . d i s t ) ?
c u r r e n t . o t h e r : −1;

}
e l s e
{

c u r r e n t p o i n t = t r e e [ c u r r e n t . i n d e x ] ;

c u r r e n t d i s t = d i s t ( qp , c u r r e n t p o i n t ) ;
i f ( w o r s t b e s t . d i s t > c u r r e n t d i s t )
{

w o r s t b e s t . d i s t = c u r r e n t d i s t ;
w o r s t b e s t . i n d e x = c u r r e n t . i n d e x ;
i n s e r t ( k s t a c k , w o r s t b e s t , k ) ;
w o r s t b e s t = look ( k s t a c k ) ;

}

upDim ( dim ) ;
c u r r e n t . dim = dim ;
c u r r e n t . dx = c u r r e n t p o i n t . p [ dim ] − qp . p [ dim ] ;
c u r r e n t . o t h e r = o t h e r ( qp , c u r r e n t p o i n t ,

c u r r e n t . dx ) ;
push (& s t a c k , c u r r e n t ) ;

c u r r e n t . i n d e x = t a r g e t ( qp , c u r r e n t p o i n t ,
c u r r e n t . dx ) ;

}
}

k s t a c k ++;
f o r ( i = 0 ; i < k ; ++ i )
{

r e s u l t [ i ] = k s t a c k [ i ] . i n d e x ;
}

}

void mpQueryAll ( s t r u c t P o i n t * q u e r y p o i n t s , s t r u c t Node *
t r e e , i n t n qp , i n t n t r e e , i n t k , i n t * r e s u l t )

{
i n t s t a c k s i z e = log2 ( ( f l o a t ) n t r e e ) + 5 ;
# pragma omp p a r a l l e l
{

i n t t h i d = o m p g e t t h r e a d n u m ( ) ;
s t r u c t S P o i n t * s t a c k p t r = ( s t r u c t S P o i n t * ) ma l l oc
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( s t a c k s i z e * s i z e o f ( s t r u c t S P o i n t ) ) ;
s t r u c t KPoint * k s t a c k p t r = ( s t r u c t KPoint * )

ma l l oc ( k * s i z e o f ( s t r u c t KPoint ) ) ;

whi le ( t h i d < n qp )
{

kNN( q u e r y p o i n t s [ t h i d ] , t r e e , n t r e e , k ,
r e s u l t + ( t h i d * k ) , s t a c k p t r , k s t a c k p t r
) ;

t h i d += o m p g e t n u m t h r e a d s ( ) ;
}

f r e e ( s t a c k p t r ) ;
f r e e ( k s t a c k p t r ) ;

}
}
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Appendix D
Risk assessment
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