
Verification and visualization of
equipment access on offshore platforms

Marius Hansen Røed

Master of Science in Engineering and ICT

Supervisor: Bjørn Haugen, IPM

Department of Engineering Design and Materials

Submission date: June 2014

Norwegian University of Science and Technology

THE NORWEGIAN UNIVERSITY
OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF ENGINEERING DESIGN
AND MATERIALS

MASTER THESIS SPRING 2014
FOR

STUD.TECHN. MARIUS ROED

VERIFICATION AND VISUALIZATION OF EQUIPMENT ACCESS ON OFFSHORE
PLATFORMS
Verifikasjon og visualisering av tilkomst av utstyr på offshoreplattformer

Aker Solutions provides engineering services, f rom feasibility studies to designing the
world’s most advanced floating facilities, to the global oil and gas market. For more than 40
years Aker Solutions has developed industry-leading expertise on topsides, flow assurance,
field architecture and a full range of floating production units.

The Aker Solutions Piping & Layout department is responsible for the design of piping,
equipment, access routes and small outfitting structures. This design has to be according to
the requirements of different standards like for instance NORSOK. They use the Plant
Design Management System (PDMS), the most common CAD-system in Norwegian
offshore industry, as the design tool. A key activity is to perform multidiscipline coordination
with Process, Structural and Electrical departments in PDMS and seek to fulfill other
discipline requirements.

The Material Handling group is a sub group of the Piping & Layout department. Their main
responsibility is to handle all equipment and valves weighing more than 25 kg. Lifting
equipment is designed in the 3D model and an obstruction votume is reserved for transport
of the equipment and valves. Examples of equipment are pumps, motors, coils, heaters,
coolers, compressors and gearboxes. One of the main deliveries is a description of how to
handle and transport equipment. The equipment is moved onto a trolley and then
transported to the required destination.

The procedure of validating the transport f rom its start point to its destination is done in
PDMS or another 3D tool. Today this is a manual process done by the engineer. He/she
simply moves the 3D object representing the trolley and equipment along the access routes
in the 3D model. This process is comprehensive and time consuming. When there are
changes of the equipment size or structural changes affecting the access way, the manual
process has to be repeated from scratch,

The goal of the master thesis is to use dynamic relaxation to create a software application
which helps the layout engineer to automatically check the feasibility to transport the
equipment. This could potentially save a lot of time and add value by enabling the ability to
run several iterations with a low cost.

This master thesis is a continuation at the project assignment Maris Røed wrote the fall
201 3; “Verification and visualization at personnel access on oil platforms”. Here, dynamic
relaxatian was used in a sottware application to verify the transport of a stretcher in a
stairtower. Dynamic relaxation is a numerical method that aims ta salve a linear ar non
linear system of equations by loaking at the steady-state solution at a pseudo-dynamic
problem.

Same af the tasks involved are:
1. Describe the current process and challenges at equipment and access way

modeling
2. Detine the input parameters tar the application ta be developed
3. Det ine a new work tlow for the modeling process with the software tool that is to be

develaped
4. Develop a .NET application which visualizes and vent les access at equipment and

access ways
5. Validate the results of the new work flow (3) and the new application (4) against the

current process (1)

Three weeks atter start at the thesis wark, an A3 sheet illustrating the work is to be handed
in. A template for this presentation is available on the IPM’s web site under the menu
“Masteroppgave” (http://www.ntnu .no/ipm/masteroppgave). This sheet should be updated
ane week betore the Master’s thesis is submitted.

Performing a nisk assessment at the planned work is obligatory. Known main activities must
be risk assessed before they start, and the form must be handed in within 3 weeks of
receiving the problem text. The form must be signed by your supervisor. All projects are to
be assessed, even theoretical and virtual. Risk assessment is a running activity, and must
be carried out betore starting any activity that might lead ta injury to humans ar damage ta
materials/equipment ar the external environment. Copies of signed risk assessments should
also be included as an appendix at the finished praject report.

The thesis should include the signed problem text, and be written as a research report with
summary both in English and Norwegian, conclusion, literature reterences, table at
contents, etc. Duning preparation ot the text, the candidate should make eftorts to create a
well arranged and well written report. To ease the evaluation at the thesis, it is impartant to
cross-reterence text, tables and tigures. For evaluation at the work a thorough discussion at
results is appreciated.

The thesis shall be submitted electronically via DAIM, NTNU’s system tor Digital Archiving
and Submission at Master’s thesis.

The contact person are: Christofter Lange, Aker Solutions (KBeDesign) and
Thomas Mørk, Aker Solutions (Piping & Layout)

TargeiWela Bjørn Haugen
Head bt Division Associate Protesson/Supervisor

NTNU
Ncres teknisk
nabIrv1icI5kapehgC iuuVeritet
Insitut for pmdaktitvi1din
ojnhaLe11eIe

i

Preface

This Master’s thesis is a result of the work done during spring 2014 at the De-
partment of Engineering Design and Materials (IPM) at Norwegian University of
Science and Technology (NTNU) in Trondheim. The Master’s thesis is the final
diploma thesis at the program of study; Engineering and ICT at NTNU. The thesis
is written in collaboration with Aker Solutions’ KBeDesign and Piping and Layout
departments. The academic supervisor from NTNU is Associate Professor Bjørn
Haugen, and the supervisors from Aker Solutions are Christoffer Lange (Developer,
KBeDesign), Thomas Mørk (Engineer, Design, Layout & Material Handling) and
Alan Roach (Specialist Engineer, KBeDesign).

The Master’s thesis is a continuation of the project work "Verification and visual-
ization of personnel access on oil platforms" conducted during the fall 2013. The
mathematical techniques and principles from the project are used in the Master’s
thesis, but the application is implemented this spring.

The thesis’ goal is to develop a software application which can help the layout en-
gineers in Aker Solutions to automatically check whether an equipment transport
route on offshore platforms is feasible using dynamic relaxation.

Marius Hansen Røed
10.06.2014
Trondheim

ii

Acknowledgement

I would like to express my sincere gratitude to my advisor Associate Prof. Bjørn
Haugen at NTNU for the continuous support of my Master’s thesis, for his pa-
tience, motivation, enthusiasm and immense knowledge. His guidance helped me
all the time during the development and implementation of the dynamic relaxation
algorithm both during the project work and the Master’s thesis.

Further, I would like to thank my advisors at Aker Solutions; Christoffer Lange
(KBeDesign), Thomas Mørk (Piping & Layout) and Alan Roach (KBeDesign),
for their encouragement, insightfully comments and response. Special thanks to
Christoffer Lange. Without his enthusiasm, the result would not be as it is.

I will also give my sincere gratitude to the following people;

Olivier Doucet, KBeDesign Aker Solutions
Frans Erstad, KBeDesign Aker Solutions

for their use of time to help with technical problems, answers to necessary questions
about the thesis and proofreading.

Lastly, I would like to thank my fellow students for their help with small, general
problems during the thesis.

iii

Abstract

The Master’s thesis discusses verification of equipment transport on offshore plat-
forms. The goal of the thesis is to use the form finding method dynamic relaxation
to create a software application, which helps the layout engineers to automatically
check whether an equipment transport route on offshore platforms is feasible us-
ing dynamic relaxation. This could potentially save a lot of time and add value
by enabling the ability to run several iterations of the transport route with little
effort. The thesis presents a new workflow, based on using the new application, and
discusses advantages and disadvantages between the new and current workflow for
transport route verification.

By using Autodesk Navisworks and its .NET and COM API, a plug-in application
was created for Navisworks, to automatically verify movement of an object through
a given access way. This was done using Navisworks clash detective feature through
the .NET API. The plug-in application required input parameter such as a validation
object, a boundary geometry and a path. The plug-in application is divided into two
phases; one path optimizing phase, and one verification phase. The optimizing phase
is a pre-phase for the verification phase, to optimize run-time speed. The verification
phase uses dynamic relaxation to try to move the validation object through the given
path. If the validation object clashes with the boundary geometry, the dynamic
relaxation will try to find a point of equilibrium where there is no clash.

The plug-in application uses WPF (Windows Presentation Foundation) as a pre-
sentation system in .NET, with the MVVM (Model-View-ViewModel) architecture.
The visualization of the validation object’s movement, and the verification result, is
done via Navisworks .NET API, where the movement is presented in Navisworks’
own UI. The plug-in application’s UI will present information about the status of
a verification. The UI gives the opportunity for the user to monitor the velocity,
acceleration and applied force in the dynamic relaxation method during verification
using chart controls.

iv

Sammendrag (Norwegian)

Denne masteroppgave omhandler verifisering av transport av utstyr på offshore plat-
tformer. Oppgavens mål er å bruke form findings metoden "dynamic relaxation" til
å utvikle en applikasjon, som kan hjelpe layout ingeniørene til å automatisk sjekke
muligheten til å transportere utstyr. Dette kan potensielt medføre sparing av tid,
ved å gi mulighet til å gjennomføre flere iterasjoner med lav kostnad. Oppgaven
presenterer en ny arbeidsflyt, basert på den nyutviklede applikasjonen, og ser på
fordeler og ulemper mellom den nye og tidligere arbeidsflyten for å transportere
utstyr.

Ved å bruke Autodesk Navisworks sitt .NET og COM API, ble det utvikler en plu-
gin applikasjon for Navisworks til å gjennomføre den automatiske verifiseringen av
utstyrstransport. Dette ble gjort ved å bruke Navisworks sin innebygde funksjon-
alitet for "clash detection" via .NET API’et. Plugin applikasjonen krever spesifikke
input parametre som verifikasjonsobjektet, grensegeometrien og en gitt følgebane.
Plugin applikasjonen er delt inn i to hovedfaser; En optimaliseringsfase for banen,
og en verifikasjonsfase. Optimaliseringsfasen er en for-fase til verifikasjonsfasen for å
optimalisere kjøretiden til verifikasjonen. Verifikasjonsfasen bruker dynamic relax-
ation til å prøve å flytte på verifikasjonsobjektet gjennom den gitte følgebanen. Hvis
verifikasjonsobjektet krasjer med grensegeometrien, vil dynamic relaxation metoden
prøve å finne et likevektspunkt hvor verifikasjonsobjektet ikke kolliderer.

Plugin applikasjonen bruker WPF (Windows Presentation Foundation) som pre-
sentasjonssystem i .NET, med MVVM (Model-View-ViewModel) som arkitektur.
Visualiseringen av verifikasjonsobjektets bevegelse, samt verifikasjonsresultatet, blir
gjort via Navisworks .NET API, hvor bevegelsen vises gjennom Navisworks sitt eget
UI. Plugin applikasjonens UI vil presentere informasjon om verifiseringen sin sta-
tus, og gir muligheten for brukeren å overvåke fart, akselerasjon og kraft i dynamic
relaxation metoden under verifikasjonen ved bruk av grafer/ trender.

Contents

1 Introduction 1
1.1 Problem outline, objectives and scope 1
1.2 Aker Solutions . 3

1.2.1 KBeDesign - Knowledge Based Engineering 3
1.2.2 Piping and Layout, Material Handling group 4

2 Background and motivations 7
2.1 Project work - Personnel access verification 7

2.1.1 Short introduction . 8
2.1.2 The project work continuation to Master thesis 8

2.2 Current process and challenges . 9
2.2.1 Manual verification with Navisworks 9
2.2.2 Today’s workflow . 12

3 Workflow and input parameters 15
3.1 Input parameters . 15

3.1.1 Path . 16
3.1.2 Boundary geometry . 18
3.1.3 Verification geometry . 19

3.2 New workflow . 20
3.3 Standalone v.s. plug-in application 21

4 Autodesk Navisworks 23
4.1 Introduction to Navisworks . 23
4.2 Clash detection feature in Navisworks Manage 2014 26
4.3 Navisworks .NET API and COM API 28

5 Dynamic Relaxation 31
5.1 Form finding using Dynamic Relaxation 31

5.1.1 The method . 32
5.1.2 HHT - Hilber-Hughes-Taylor α damping correction 33

5.2 Use of Dynamic Relaxation in this Master’s thesis 34
5.2.1 The final algorithm . 40

6 System design of plug-in application 43
6.1 Microsoft .NET technologies and architectures 43

6.1.1 Windows Presentation Foundation 43
6.1.2 Model-View-ViewModel architecture 44

v

vi CONTENTS

6.2 Plugin application architecture . 45
6.2.1 Navisworks Plugin (NwPlugin) 46
6.2.2 The Views . 47
6.2.3 The ViewModels . 48
6.2.4 The Models . 49
6.2.5 The Observer design pattern 51

7 Implementation of the plug-in application 53
7.1 Use of Navisworks .NET and COM APIs 53

7.1.1 Getting primitives from COM API 53
7.1.2 Transformation of Validation object position 55

7.2 Path factory . 57
7.3 The two phases . 58

7.3.1 Phase 1: Optimization of path using clash logging 58
7.3.2 Phase 2: Verification using dynamic relaxation 60

7.4 Implementation of Dynamic Relaxation algorithm 62

8 The final plug-in application 63
8.1 Short presentation . 64

8.1.1 The verification sessions view 65
8.1.2 The verification control view 65

8.2 User Interface - Usability . 72
8.3 Optimizing run-time . 74
8.4 Documentation . 75

9 Discussion - The new work flow v.s. the old 77

10 Conclusions and further work 79
10.1 Conclusion . 79
10.2 Further work . 80

Appendices 85

A User manual for plug-in application 87
A.1 Setting up plug-in with Navisworks 87
A.2 Setting input parametre in Navisworks 88
A.3 The plug-in application . 88

A.3.1 Creating a new dynamic validation session 90
A.3.2 Setting selections . 91
A.3.3 Setting path . 92
A.3.4 Setting the verification settings 94
A.3.5 Running optimizing and verification 95
A.3.6 Monitor verification . 96
A.3.7 Visualize result . 98

B Documentation 99
B.1 NORSOK schema . 99

CONTENTS vii

C Risk Assessment 101

viii CONTENTS

Nomenclature

.NET Software framework developed by Microsoft for Microsoft Win-
dows.

AI Artificial Intelligence

AML Adaptive Modeling Language

API Application Program Interface

CAD Computer Aided Design

CAE Computer Aided Engineering

COM (API) Component Object Model

DR Dynamic Relaxation

HDD Hard Disk Drive

HHT Hilber-Hughes-Taylor α damping

HSE Health, Security and Environment

ICT Information Communication Technology

KBE Knowledge Based Engineering

MVC Model View Controller

MVVM Model-View-ViewModel

NORSOK Norwegian Continental Shelf Competitive Position (Norsk sokkels
konkurranseposisjon)

ODE Ordinary Differential Equations

OS Operating System

PDMS Plant Design Management System

PHP Php Hypertext Preprocessor

SDK Software Developer Kit

SSD Solid State Drive

UI User Interface

ix

x CONTENTS

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

XML Extensible Markup Language

List of Figures

1.1 Problem outline illustration. 2
1.2 KBeDesign tool illustration. 4

2.1 Screenshot of project work. 8
2.2 Screenshot of Navisworks ItemTools. 10
2.3 Screenshot of trolley movement. 11
2.4 Illustration of current workflow. 12

3.1 Screenshot of selection menu in Navisworks. 16
3.2 Screenshot of selection tree and set. 16
3.3 Screenshot of path in Navisworks. 17
3.4 Screenshot of boundary geometry in Navisworks. 18
3.5 Screenshot of examples of validation objects in Navisworks. 19
3.6 Illustration of the new workflow. 20
3.7 Illustration of the new detailed workflow during verification. 21

4.1 Screenshot of Navisworks. 24
4.2 Screenshot of clash feature in Navisworks toolbar. 25
4.3 Screenshot of the item toolbar in Navisworks. 26
4.4 Screenshot of the clash detective feature in Navisworks. 28
4.5 Illustration of the Navisworks .NET API components. 29

5.1 Illustration of the DR elements in the verification. 34
5.2 Illustration of the axles on a trolley. 35
5.3 Illustration of movement of validation object in DR. 36
5.4 Illustration of validation object during clash. 37
5.5 Illustration of the validation object during clash, with vectors. 38
5.6 Illustration of the validation object during clash, with vectors 2. . . . 39
5.7 Illustration of the moment where the validation object is in equilibrium. 39

6.1 The MVVM pattern. 45
6.2 Overall architechure of plug-in application. 46
6.3 Class diagram of NwPlugin namespace. 47
6.4 Class diagram of the view. 48
6.5 Class diagram of the viewModel. 49
6.6 Class diagram of the model. 51
6.7 Class diagram of the observer pattern. 52

7.1 Illustration of the path generation. 59
7.2 Sequence diagram of the first phase in the application. 60

xi

xii LIST OF FIGURES

7.3 Sequence diagram of the verification phase using dynamic relaxation. 61
7.4 Sequence diagram of the verification process in the DynamicRelaxationSolver-

class. 62

8.1 Screenshot of the plug-in application in use in Navisworks. 64
8.2 Screenshot of dynamic clash verification sessions control view. 65
8.3 Screenshot of the selection tab in the control view. 66
8.4 Screenshot of the path popup view. 67
8.5 Screenshot of the settings tab view. 68
8.6 Screenshot of the verification tab view, where the user can start the

optimizing and verification. 69
8.7 Screenshot of the verification tab view after verification 70
8.8 Screenshot of the DR Analysis tab view. 71
8.9 Screenshot of the Option Editor. 75
8.10 Screen shot of the .chm-file with documentation. 76

A.1 Overview of the UI, and it’s different elements. 89
A.2 Overview of the verification sessions, and it’s elements. 90
A.3 Overview of the selection tab, and its different elements. 92
A.4 Overview of the path tab, and it’s different elements. 93
A.5 Overview of the path popup view, and it’s different elements. 94
A.6 Overview of the settings tab, and it’s different elements. 95
A.7 Overview of the verification tab, and it’s different elements. 96
A.8 Overview of the DR Analysis tab, and it’s different elements. 97
A.9 Overview of the verification tab after verification 98

B.1 . 99

Chapter 1

Introduction

In this chapter the problem outline, objectives, and scope of the thesis will be pre-
sented. Since the thesis is written in collaboration with Aker Solutions KBeDesign
and Piping & Layout, a short introduction will be given to these departments. This
will give the reader a better understanding of why these departments wanted to
collaborate on the thesis.

1.1 Problem outline, objectives and scope

The Material Handling Group in Aker Solutions has the responsibility to handle all
equipment and valves weighing more than 25 kg. The lifting equipment is designed
in the 3D model, and an obstruction volume is reserved for transport of the equip-
ment and valves. Examples of equipment are pumps, motors, coils, heaters, coolers,
compressors and gearboxes. One of the main deliveries is a description of how to
handle and transport equipment. The equipment is moved onto a trolley and then
transported to the required destination.

The procedure of validating the transport from its start point to its destination
is done in PDMS or another 3D tool. Today this is a manual process done by an
engineer. He/she simply moves the 3D object representing the trolley and equipment
along the access routes in the 3D model. This process is comprehensive and time
consuming. When there are changes of the equipment size or structural changes
affecting the access way, the manual process has to be redone every time.

1

2 1.1. PROBLEM OUTLINE, OBJECTIVES AND SCOPE

Figure 1.1: The figure shows an example on the movement of a trolley on a offshore
platform in the 3D model.

The goal of the Master’s thesis is to use dynamic relaxation to create a software
application, which helps the layout engineer to automatically check whether the
equipment transport route is feasible. This could potentially save a lot of time and
add value by enabling the ability to run several iterations of the transport route
with little effort.

The Master’s thesis is a continuation of the project assignment written fall 2013;
“Verification and visualization of personnel access on oil platforms”. Here, dynamic
relaxation was used in a software application to verify the transport route of a
stretcher in a stair tower. Dynamic relaxation is a numerical method that aims to
solve a linear or non-linear system of equations by finding the steady-state solution
of a pseudo-dynamic problem.

The KBeDesign team have, together with the Material Handling Group, set a list
of task, which should be in the final delivery:

1. Describe the current process and challenges of equipment and access way mod-
elling.

2. Define the input parameters for the application to be developed.

3. Define a new workflow for the modelling process with the software tool that
is to be developed.

4. Develop a .NET application which visualizes and verifies access of equipment
and access ways.

5. Validate the results of the new workflow (3) and the new application (4) against
the current process (1).

The first two sub-tasks are only intended to give an introduction to how the problem
is solved in current projects, and to show which parameters that are needed. The
first sub-tasks are also subject to confidentiality, and has therefore less focus. The

CHAPTER 1. INTRODUCTION 3

assignment’s focus is therefore on the last three sub-tasks, where the forth sub-task
is the main task with the primary focus in the thesis. This sub-task is also the most
time consuming and have been given most priority during the 20 weeks.

1.2 Aker Solutions

Aker Solutions provides engineering services, from feasibility studies to designing the
world’s most advanced floating facilities, to the global oil and gas market. For more
than 40 years Aker Solutions has developed industry-leading expertise on topsides,
flow assurance, field architecture and a full range of floating production units. Many
expertises are needed to achieve this, and departments as KBeDesign and the Piping
and Layout are some important departments with the needed knowledge. Next,
a short introduction will be given to the two departments and their knowledge
expertise.

1.2.1 KBeDesign - Knowledge Based Engineering

Knowledge Based Engineering (KBE) is the strategic use of computerized engineering
knowledge to automate design and engineering of variants [1]. KBE tools enable
engineers to write dedicated applications that can perform complex and repetitive
tasks in a much more efficient and accurate manner than what an ordinary engineer
can do. KBE applications combines object-oriented programming and logic and
reasoned systems (AI) with CAD / CAE systems. [1]

Figure 1.2: KBeDesign tool for automation of complex design. Figure from [4], ©
2014 Aker Solutions

Aker Solutions KBeDesign team is leading pioneers in using KBE tools to create
knowledge based software for engineers in the oil and gas industry. The KBeDesign
application has improved quality and reduced cost and time hours for Aker Solutions

4 1.2. AKER SOLUTIONS

for many years, and has become an important asset when competing for contracts.
[1]

" - KBeDesign is not basically about the IT-tool, it is about utilizing the knowledge
and experience that we as a company have gained over decades,"

- Department manager Jon Østmoen [4]

This thesis addresses just that. By exploiting prior knowledge, an application will be
developed, which can help the layout engineers in Aker Solutions to automatically
check the feasibility of equipment transport routes on offshore platforms.

1.2.2 Piping and Layout, Material Handling group

The Aker Solutions Piping & Layout department is responsible for the design of
piping, equipment, access routes and small outfitting structures. This design has
to be according to the requirements of different standards like for instance NOR-
SOK. They use the Plant Design Management System (PDMS), the most common
CAD-system in Norwegian offshore industry, as their design tool. A key activity
is to perform multi discipline coordination with Process, Structural and Electrical
departments in PDMS and seek to fulfil other discipline requirements.

The Material Handling group is a subgroup of the Piping & Layout department with
main responsibility to handle all equipment and valves weighing more than 25 kg.

Chapter 2

Background and motivations

During the summer and fall 2013 a collaboration with Aker Solutions and KBeDesign
were well established, through a summer internship and the project work. This
became the foundation for a continuing collaboration during the Master’s thesis.
The study program Engineering and ICT focus on combining computer science and
engineering task in one overall study. The KBeDesign departments work area is a
good example of such a combination, and they were therefore a good collaborator
for this Master’s thesis.

2.1 Project work - Personnel access verification

The project work "Verification and visualization of personnel access on oil platforms"
was done during the fall 2013. During a summer internship at KBeDesign the same
year, an introduction to an idea was given for the project work and the programming
technology to be used (.NET, WPF, MVVM). A task draft was basically already
created by one of the developers, and together with the supervisor at NTNU and a
responsible developer at KBeDesign, the task was formed.

5

6 2.2. CURRENT PROCESS AND CHALLENGES

2.1.1 Short introduction

Figure 2.1: Screenshot of the final application from the project work

The project work discusses HSE in stairs on platforms, specifically verification of
transport of injured personnel with stretcher in stair tower and hull. The project
scope was to create an application that could verify and visualize this, based on
input parameters. A mathematical algorithm/ formula was to be created for calcu-
lating the minimum landing size (the width of the stair landing/ response). After
some consulting from the supervisor at NTNU, the verification algorithm was made
using the form finding method Dynamic Relaxation (DR) , and geometric vector cal-
culations. The application was implemented in .NET with C#. The visualization
of the calculations in the application was implemented using WPF and the MVVM
architecture.

2.1.2 The project work continuation to Master thesis

The actual application from the project work was not to be continued in the Master’s
thesis, but the algorithm and technology were going to be used. The application in
the Master’s thesis was still going to be solved as a 2D problem, but was going to
be visualized in 3D. The dynamic relaxation technique was going to be used, as did
the architecture (MVVM), the framework (.NET) and the UI presentation system
(WPF).

2.2 Current process and challenges

The current process of equipment transport is very comprehensive and time con-
suming. As mentioned earlier, the engineer has to manually move the 3D object
representing the trolley and equipment along the access routes in the 3D model.
Possible collisions between the trolley object and walls, pipes, etc. must be seen

CHAPTER 2. BACKGROUND AND MOTIVATIONS 7

with his or her own eyes. It is also impossible to give the trolley a realistic move-
ment, and the verification can therefore not be one hundred percent correct. This is
one of the main challenges for the engineers. Many of the trolleys have axle bound-
aries either in front or in the rear of the trolley. This means that the trolley only
can move sideways either in front or in the back. This makes a large challenge when
trying to get a realistic movement for the trolley.

2.2.1 Manual verification with Navisworks

The Material Handing group uses Autodesk Navisworks Simulate or Freedom to ver-
ify the equipment transport through the access ways. Navisworks enables engineers
to holistically review integrated models and data with stakeholders to gain better
control over project outcomes. [9]. Navisworks is only a tool to review models,
modelled in PDMS (or in another 3D tool, ex. AutoCAD). Navisworks can’t it self
create any geometry. More of this in chapter 4.

Figure 2.2: Screenshot of the features used in Navisworks to verify equipment trans-
port today.

The engineers uses the two features "Move" and "Rotate" (Fig: 2.2) to move the
trolley in a most realistic way as possible. This is very time consuming, since the
engineers only can do one of the two simultaneously. If an engineer wants the trolley
to go around a corner, he or she has to move it in x-, y- or z- direction, rotate it,
move it again, rotate, move, etc. It will take a lot of move- and rotate steps just
to get around a corner. If the transport path is very long, it will take a lot of time
just to move it. In addition the engineer has to look for clashes with the boundary
construction for each move. This is a very time consuming process.

Figure 2.3: Screenshot of the verification process used in Navisworks today. It takes
very many steps, just to get around a corner.

8 2.2. CURRENT PROCESS AND CHALLENGES

As shown in the figure (Fig: 2.3) it takes the engineer a lot of steps just to get
around a corner, especially if it is very little space. It will also be more difficult to
verify if there are many pipes or other components, instead of just a vertical wall.

2.2.2 Today’s workflow

Figure 2.4: Illustration of the current workflow for verification og modelling of access
ways.

As told, today’s workflow is very time consuming, mostly because of the way the
engineers have to create the movement of the trolley. In figure 2.4 today’s verification
work flow is described.

CHAPTER 2. BACKGROUND AND MOTIVATIONS 9

The engineer starts by finding necessary requirements for the access way based on
NORSOK standards. See B.1. Then, based on these requirements, they design and
model the required access ways. Unfortunately, this is not enough to secure that
transport through the access ways is possible. The model is therefore imported to
Navisworks from PDMS for review. By using the "Move" and "Rotate" features as
mentioned earlier, the trolley’s movement is created and the engineer can look for
clashes using his/her eyes only. If movement is not possible, they need to go back to
the design and modelling phase. If the movement constraints are very small, they
may apply for deviation. If the transport is possible, the engineer can continue to
the next phase of the design process. If nothing changes to the model during this
phase, the verification is finished. Note that there is very little documentation done
today. If there are changes of the equipment size, or structural changes affecting the
access way, the work flow process has to be repeated.

10 2.2. CURRENT PROCESS AND CHALLENGES

Chapter 3

Workflow and input parameters

In this chapter the new workflow developed during the Master’s thesis and the
required input parameters for the application will be addressed. This chapter will
cover the following two sub-tasks from the assignment text:

• Define the input parameters for the application to be developed.

• Define a new workflow for the modelling process with the software tool that
is to be developed.

The last section in this chapter, discusses the choice between a standalone applica-
tion, or a plug-in application to Navisworks, and why this choice was made.

3.1 Input parameters

One of the goals of the application was that it would be as generic as possible.
This means that the application should work for every type of model object that
is supposed to follow an access way and that any kind of model geometry could
be the boundary (the geometry that the object shouldn’t clash with). Therefore
three main input parameters became necessary: The verification object (the object
that is supposed to follow the access way, e.g. a trolley or stretcher), the boundary
geometry (walls, pipes, etc.) and the path (the access way).

Each of these input parameters have to be defined as Selection Sets in Navisworks.
A selection set is a selection of different model items from the current document.
By using selection sets, it is much more easier to keep track of the different model
item collections. As e.g. a trolley consists of many different components, it is easier
to select a set rather than search for all the components in a large model tree during
every verification. (Fig: 3.1 and Fig: 3.2)

11

12 3.1. INPUT PARAMETERS

Figure 3.1: Screenshot of the selection menu, where to use the feature Save Selection.

Figure 3.2: Screenshot of the "Selection tree" window (t.l.), where the engineer has
to find all needed components to e.g. a trolley, and then save them as a selection
set, using the Save Selection feature in the menu. All the saved selection sets are
shown in the "Sets" window. (t.r.)

More detailed information about how to do this in Navisworks, will be given in the
Navisworks chapter.

3.1.1 Path

Dynamic Relaxation demand a defined path, which the validation object is supposed
to follow. Since geometry can’t be created in Navisworks, the path has to be defined
at a earlier stage, i.e. in PDMS, AutoCAD etc. The path must therefore be an input
parameter to the application.

The path has to be a continuous path, with a start and an end point (not a circle).
It is very important that there is no gaps in the path, as the application will then
fail. The corners should be rounded, using arc segments with a large radius. A half
circle should be used if possible, see fig. 3.3. There are not any specific rules to
where the path should be drawn in the model. A good basis is to use the centre
line of the access way, and create arc with a reasonable radius for corners. A more
sensible line placement should be chosen, in cases where the centre line obviously
will cause a clash.

A selection set containing all needed line sets/ segments and arcs for representing
the path must be created. The application will only find the created selection sets
and not model items from the selection tree.

CHAPTER 3. WORKFLOW AND INPUT PARAMETERS 13

Figure 3.3: Screenshot of an example path in a corridor. The path is marked in
yellow.

3.1.2 Boundary geometry

Figure 3.4: Screenshot of an example of boundary geometry from a offshore instal-
lation. Pipes with valves, fans, pumps etc.

The boundary geometry defines the model geometry that the validation object is
supposed to be verified up against. This can be walls, pipes, racks, stairs, railings,
pumps etc. (components that can be found on an offshore platform.) Since the
application is generic in the choice of validation object, the boundary geometry can
also be walls in e.g. a building. A selection set containing all needed polyface meshes
from the model must be created.

14 3.1. INPUT PARAMETERS

3.1.3 Verification geometry

Figure 3.5: Screenshot of examples of different trolley validation objects. Size and
type of trolley are decided based on need and NORSOK standard requirements.

The verification object is the model object which the user wants to use to verify
transport movement on. It can be a trolley, a stretcher etc. In most cases (in
this thesis), it would be a trolley based on NORSOK requirements. A selection
set containing all needed polyface meshes and line set from the model needed to
represent the trolley must be created.

CHAPTER 3. WORKFLOW AND INPUT PARAMETERS 15

3.2 New workflow

A new workflow had to be developed before implementation of the application. The
new work flow (Fig: 3.6) is very similar to the old one and the only difference is
the verification. Instead of doing manually clash verification with the "Move" and
"Rotate" features, the engineers runs the Dynamic Clash Verification Plug-in, and
runs the verification after setting the required settings. The workflow when using
the plug-in application is shown in its own workflow schema (Fig: 3.7).

Figure 3.6: The new workflow, illustrated in a new schema. One of the new activities
during the design and modelling of access way, is the creation of needed path(s). The
creation of the path is explained in section 3.1.1. The blue circle, with "Run Clash
Verification" represents the totally new activity in the work flow, and are explained
in detail in its own work flow schema (Fig: 3.7). This activity will be much more time
saving than the optional from the old workflow. During the verification the engineer
can do other activities, since the calculations doesn’t require full supervision.

16 3.3. STANDALONE V.S. PLUG-IN APPLICATION

Figure 3.7: The detailed workflow schema for the "Run Clash Verification" activity
from Fig: 3.6. The schema explains how to go through the application on a high
level.

3.3 Standalone v.s. plug-in application

A choice which had to be made before starting of implementation was which applica-
tion type that should be made. Should the application be a standalone application,
like in the project work, or should it be a integrated plug-in application to Navis-
works? As the application had to use Navisworks .NET API and COM API, and
a visualization would be easier to implement in a plug-in application, the choice
became a integrated Navisworks plug-in. This would also give the users/ engineers
the opportunity to use a already known software, i.e. less training on the new
application, easier access together with other reviewing work on the model etc.

Chapter 4

Autodesk Navisworks

An introduction to Autodesk Navisworks will be given in this chapter. Knowledge
of Navisworks is useful to see advantages and disadvantages of the software when
developing the application in the Master’s thesis and to fully get an understanding
on how to use the software together with the application.

4.1 Introduction to Navisworks

The Navisworks software is a "project reviewing software" that enables architects,
engineers, or rest of the entire project team to holistically review integrated models
and data with stalk holders in order to gain better control over project outcomes.
The software includes features for integration, analysis and communication to help
project teams to coordinate between each discipline, to resolve conflicts and to plan
projects before construction or renovation begins (From [9]).

The Navisworks family consists of three products:

• Freedom

• Simulate

• Manage

The three are only upgrades of each other, where Freedom is the simplest one, and
Manage the most advanced one. Aker Solutions uses Freedom and Simulate in their
projects, much because Manage’s high price. On the other hand, the Manage version
has a functionality for clash detection. As this functionality is usable through the
API, and since Aker Solutions wasn’t aware of this feature, it would be impractical
to not use it for the thesis. Therefore Navisworks Manage will be the software of
choice in this thesis.

Navisworks Manage is a very easy to use. As it is only a reviewing tool, it doesn’t
support functionality to create or change geometry. It is however enable to import
a lot of different 3D-files and convert them to its own. There are shown some

17

18 4.1. INTRODUCTION TO NAVISWORKS

important features that the user needs to know to use the Master’s thesis’ own
application on the following figures (Fig: 4.1, 4.2, 4.3).

Figure 4.1: Screenshot of the main window in Navisworks after a file is opened. The
current model shown in Navisworks is a test model for the application.

Figure 4.2: Screenshot of the toolbar, where to find Navisworks Manage Clash
detective feature. An introduction to this feature will be given in the next section.

Figure 4.3: Screenshot of the item toolbar. This is the location of the "Move" and
"Rotate" features used in the verification today. This can still be useful, since you
need to rotate the validation object into the right direction. It is impossible for a
application to know what is front and what is back of the validation object. This
will be addressed later. The option to reset the original transform of the object
which has been moved or rotated is also a feature.

CHAPTER 4. AUTODESK NAVISWORKS 19

4.2 Clash detection feature in Navisworks Man-
age 2014

The clash feature in Navisworks checks if two model objects are intersecting each
other. If they do, Navisworks gives result data about clash distance and clash point
for each polyface mesh surface. It will also give a report, and create viewpoints/
visualizations of the clash. The clash detection feature has four different clash tests,
with a tolerance1 as a input.

• Hard clash test

• Hard conservative clash test

• Duplicate clash test (will not be addressed in this thesis)

• Clearance clash test

The hard clash test reports a clash in which the geometry of the first selection
intersects the second selection by a distance of more than the tolerance input. If the
hard conservative clash test is selected, it doesn’t only show all clashes shown by
the hard clash, but reports also all items that might clash. A clearance clash test is
a test where the first selection may intersect with the second selection, but comes
within a distance of less than the tolerance input[12].

Because of the way the dynamic relaxation method (which will be used in the clash
application) works, the clearance clash test is the only test that will be used in the
application. This will be explained in section 5.2.

A clash test in Navisworks applies a Normal Intersection Method. This method
tests for intersections between any triangles2 defining the two sections that are being
tested. This can lead to missed clashes between objects that none of the triangles
intersects. Example, if two pipes are exactly parallel and are overlapping each other
at their ends. The pipes will intersect, yet none of the triangles which defines the
geometry are clashing. This is the reason of using hard conservative clash testing,
since it will report clashes that might clash. However, the conservative test can give
false results of items that are not clashing. The clearance test uses the same method
as the hard (standard) method, but adds a clearance distance to the intersection
check.

1The tolerance controls the severity of the clashes reported and the ability to filter out negligible
clashes, which can be assumed to be worked around on site. Any clashes found that are within
this tolerance will be reported,whereas clashes outside of this tolerance will be ignored.[12]

2All geometry in Navisworks are composed of triangles.

20 4.3. NAVISWORKS .NET API AND COM API

Figure 4.4: Screenshot of the clash detective feature in Navisworks. On the left side
the clash detective window are shown, and on the right hand side is a visualization
of the occurred clash.

4.3 Navisworks .NET API and COM API

Autodesk has offered a .NET API for Navisworks since 2011. Since then a lot of new
features have been added to the API. In this application the Navisworks 2014 SDK
is being used. During the work with the thesis the 2015 SDK was released. There
are therefore possibilities for optimizing the application, or adding new features with
the new SDK as further work. All necessary assemblies, documentation and code
samples are available in the install folder for Navisworks (Manage and Simulate
only).

Using the Navisworks .NET API, custom plug-ins to Autodesk Navisworks products
can be created by running Navisworks from outside the GUI and automate certain
tasks. It is also possible to utilize the .NET controls by embedding them in new
applications. E.g. to create a document viewer for Navisworks. [14] The .NET API
gives access to application and model/ document information. It can perform simple
operations on documents as opning and saving files and running plug-ins without
fully running the main application. It also offers the possibility to interoperate with
the COM API.

The .NET API for Navisworks can be used in three ways [14] (Fig: 4.5):

• Plug-in: Makes it possible to create additional features for extending the Nav-
isworks product.

• Automation: Makes it possible to drive products from outside to automate
different assignments and invoke crucial plug-ins.

• Controls: Makes it possible to embed an Navisworks file viewer into a stand-
alone application, or to open Navisworks documents without the need to run
the full Navisworks program.

CHAPTER 4. AUTODESK NAVISWORKS 21

Figure 4.5: The different Navisworks .NET API components. Illustration (in slide
4) based on illustration from [13]

The Autodesk Navisworks .NET API contains the following assemblies:

• Autodesk.Navisworks.Api.dll - This is the core API assembly, for use in
plug-ins and control application development. This is the assembly used in
this application.

• Autodesk.Navisworks.Automation.dll - For the automation API.

• Autodesk.Navisworks.Controls.dll - For the control API.

If the .NET API should interoperate with the COM API, the following assemblies
must also be included:

• Autodesk.Navisworks.Api.Interop.ComApi.dll - Includes all COM API in-
terfaces.

• Autodesk Navisworks.ComAPI.dll - Contains theComApiBridge class, the bridge
between COM and .NET API.

For a more detailed introduction to the Navisworks .NET API and COM API, see
Navisworks API Referance and Developer Guide (NET API.chm) either from the
web, or from the Master thesis’ attachments.

22 4.3. NAVISWORKS .NET API AND COM API

Chapter 5

Dynamic Relaxation

The thesis introduces a dynamic method for solving the verification problem nu-
merically. This chapter gives an introduction to the method and how it has been
implemented in the thesis.

Dynamic relaxation (DR) is a numerical method that aims to solve a linear or
non-linear system of equations by looking at the steady-state solution1 of a pseudo-
dynamic problem. It is modelled by a system of ordinary differential equations
(ODE) in pseudo time t. The system is solved by numerical integration, where only
the solution t→∞ is of interest. [2]

5.1 Form finding using Dynamic Relaxation

One of the many things DR can be used for is form finding [3]. The method aims to
find a geometry where all forces are in equilibrium. All the nodes in the geometry are
assigned a mass, and the stiffness is set to define the relationship that exists between
the nodes. The system starts to oscillate about an equilibrium position under the
influence of loads. One can simulate a dynamic process where the geometry is
updated at each step in the iteration by carrying out an iterative process, based on
the effect of the influencing loads.

Damping may be introduced to the system to make the DR more efficient (by re-
ducing the number of iterations). There are two ways to do this, either viscous and
kinetic damping. In this case, viscous damping has been chosen. A viscous force
between the nodes may be assumed between the nodes when using this damping.
The advantage of using viscous damping is that the representation of the system
becomes more realistic. In principle a drag cable between the nodes is added.[3]

1Steady-State: A system that is in steady-state, has a number of features which are consistent
over time. This means that for the features on the system, the partial derivatives with respect to
time equal zero

23

24 5.1. FORM FINDING USING DYNAMIC RELAXATION

5.1.1 The method

The equation the method (DR) originated from, is the equation of motion 5.1 (fig:
5.1b), which for a discretized2 system is:

Pji = [ΣKδ]ji + Mjiδ̈ji + Cδ̇ji (5.1)

where ji refers to the jth node in the ith direction in a discretized system. Pji is the
external load vector acting on the node. [ΣKδ]ji is the internal loads vector whereK
is the node stiffness and δ is the displacements. C is the viscous damping coefficient,
and δ̈ji and δ̇ji are the nodal acceleration and nodal velocities respectively. [3]

(a) A node with mass m, is connected
to a spring and a damper. The damp-
ing coefficient is represented by C. F is
external load.

(b) The principle of the motion equation.
Mass m, position r (δ), velocity v (δ̇),
acceleration a (δ̈). Fig. 1 from [25].

By introducing the residual force Rji as the difference between the external an
internal forces, and combine it with 5.1, the result becomes:

Rji = Pji − [ΣKδ]ji (5.2)

Rji = Mjiδ̈ji + Cδ̇ji (5.3)

The acceleration and velocity are then calculated at each iteration in order to predict
the displacement at time n+ 1:

δ̈n+1
ji = 1

Mji

(Rn
ji − Cδ̇n

ji) (5.4)

2Discrete system: A system with a finite countable number of states.

CHAPTER 5. DYNAMIC RELAXATION 25

δ̇n+1
ji = δ̇n

ji + δ̈n
ji∆t (5.5)

δn+1
ji = δn

ji + δ̇n
ji∆t (5.6)

The iterative process continues by using 5.4, 5.5 and 5.6 until the residual forces are
close to zero.

One needs to assume necessary values for the mass, damping coefficient, stiffness
and time increment to let the iterative method above work realistically, . This might
be a "trial and error" approach and is not always straight forward as we will see later.
In this case the damping coefficient is set to the value for critical damping3:

Ccritical = 2
√
mK

In the section 5.2, the use of DR in this thesis will be explained. There are some
differences between conventions and names which are used in this thesis and the
ones explained above. There are also made some special adaptations. The method
above is intended as a brief summary of the method. Refer to [2] and [3] for further
reading.

5.1.2 HHT - Hilber-Hughes-Taylor α damping correction

To increase the accuracy and stability in the dynamic relaxation method, a simpli-
fied Hilber-Hughes-Taylor method (also called the α-method) is introduced. This
method is an implicit method for solving the transient problem, which attempts to
increase the magnitude of numerical damping present without degrading the order
of accuracy. (From [23]) The equation 5.2 becomes:

Rji = α ·Rj+1,i − (1− α)(Pji − [ΣKδ]ji) (5.7)

where α is set to 0.1.

5.2 Use of Dynamic Relaxation in this Master’s
thesis

DR is used in the application to find a possible form of the path, which the validation
object is supposed to follow without clashing with the boundary geometry. (Fig.

3Critical damping: The damping of a system can be described as critical damped. This
means that the system returns to equilibrium as quickly as possible without oscillating.

26 5.2. USE OF DYNAMIC RELAXATION IN THIS MASTER’S THESIS

5.1) The validation object’s centre point (which is the point that follows the path)
is decided by the value of the bounding box centre of the model item. If additional
information about the validation object is selected, the centre is moved into correct
position. E.g. if the validation object represents a trolley with axles, on which only
one of the two axles have the possibility to rotate, the centre is moved to the rotating
axle. (Fig: 5.2)

Figure 5.1: Illustration overview of the different important elements in the verifica-
tion. The different elements are described in the text below.

The path consist of many path nodes which are used as drag nodes in the algorithm.
The step size between each drag node is decided by the movement precision, selected
in the application during optimizing. If optimizing is not done, there will only be
nodes in the edges of the line and arc segments from Navisworks. If optimizing is
done before verification, the movement precision can be altered before running the
verification. Altering the movement precision after optimizing will cause a better
performance for the verification, but less accurate. If the step distance between two
drag nodes are smaller than the movement precision, the algorithm will just skip to
the next drag point. This will continue until the movement size is equal or smaller
than the distance between the current centre node to the drag node.

The angle of the validation object is decided based on the vector direction of the
vector between the current node and the drag node. The smaller step size, the more
accurate is the validation object’s angle, and the movement becomes more realistic.

CHAPTER 5. DYNAMIC RELAXATION 27

Figure 5.2: The figure illustrates the axle situation if the validation object is a
trolley. The user needs to apply which of the two axles that are rotating, and the
distance from the centre of the trolley to the axle.

The drag node moves to the next path node as the algorithm iterates forward.
Between the validation object’s centre node and the drag node, there is a viscous
damper. (Fig: 5.3) The distance that occur between the centre node and drag node
(δ), together with the damper that exists between them, results in a velocity (δ̇) and
acceleration (δ̈) for the validation object. ∆t is set to 0.8 during ordinary movement,
and to 0.1 during clashes. ∆t can be tuned to get the most optimized run-time for
the algorithm. These values are the best values found in this thesis by "trail and
error".

With a certain number of time steps, the damper will cause the validation object to
move towards the drag node. The drag node will continue to the next path node as
soon as the system is in equilibrium (when the resultants are approximately zero,
1× 10−6).

The validation object has also been given an reasonable value for the mass and
stiffness.

28 5.2. USE OF DYNAMIC RELAXATION IN THIS MASTER’S THESIS

Figure 5.3: Figure describing what happens when the validation object moves
against a new drag node.

When a clash is registered, a force is applied on the validation object to force it
back inside the boundary. (Fig: 5.4) The size of the force is based on the dis-
tance "clash distance" outside the boundary and the boundary geometry’s stiffness
(Kboundary). The stiffness of the boundary is much larger than the stiffness (Kobject)
of the validation object. The applied force will create unbalance in the system, and
the algorithm will try to find equilibrium. When it does, the drag node will move
on to the next path node. If it doesn’t, the algorithm will return false and break.
The iteration tolerance is set to 500 iterations. If the system uses more than 500
iterations between two nodes on the path, it is not possible to get into equilibrium,
and the validation object fails to get through.

Figure 5.4: Figure describing what happens when the validation object clashes into
the boundary geometry.

CHAPTER 5. DYNAMIC RELAXATION 29

Necessary values for the mass, damping, stiffness and time increment needs to be
assumed, as mentioned earlier. These values were chosen based one the values used
in the project work. In the project work the "trial and error" method had been
used to find some good values. The only criteria are that Kwall � Kstretcher and
C = 2

√
M

∑
K. The following values have been set:

Object mass, m 2
Stiffness boundary, Kwall 8
Stiffness object, Kstretcher 1
Object damping, C 2

√
m ·∑K

Figure 5.5 and 5.6 shows the force, damping and velocity on the way into and out
of the boundary geometry. The stiffness during clash becomes:

Kclash =
∑

K = KO +KB (5.8)

where:

O - Object

B - Boundary

The damping during clash is:

C > Ccr = 2
√
m(KO +KB) (5.9)

C = CO + CB

CO + CB = 2
√
m(KO +KB)

CB = 2
√
m(KO +KB)− CO

CB = 2
√
m(KO +KB)− 2

√
m ·KO

CB = 2
√
m · (

√
KO +KB −

√
KO)

(5.10)

where CB is the damping applied during clashing.

30 5.2. USE OF DYNAMIC RELAXATION IN THIS MASTER’S THESIS

Figure 5.5: The figure shows the validation object in the moment it clashes, with
velocity direction (ṙ) into the boundary geometry. The damping and the applied
force have the same direction, directed against the validation object.

Figure 5.6: The figure shows the validation object during clashing, with velocity
direction (ṙ) out of the boundary geometry. The damping and the applied force
have the opposite directions.

When the resultant is closed to zero, the validation object has found equilibrium.
The current point during equilibrium is registered, before the algorithm goes on to
the next drag node. (Fig: 5.7)

Figure 5.7: Illustration of the moment where the validation object is in equilibrium.

Dynamic relaxation demands a certain intrusion in the boundary geometry to get
in equilibrium. Since the clash detection feature in Navisworks will not allow such

CHAPTER 5. DYNAMIC RELAXATION 31

an intrusion will a clearance clash test be used. This means that the clash detective
feature will detect every clash within 100 mm from the boundary geometry. This
causes that the DR method to allow an intrusion of 100 mm.

5.2.1 The final algorithm

In this sub section, the dynamic relaxation algorithm from the application is shown
in pseudo code, in a general way. The method SolveDynamicRelaxtion() is the
starting point of the algorithm and iterates and finds the next drag node. It also
performs the rotation of the validation object. It sends the next drag node as a
parameter to the NextIteration() method, which applies dynamic relaxation on
the node. The pseudo code is based on a object orientated programming language,
where methods for rotating, moving, and clash checking already exists.

function SolveDynamicRelaxation
Init validation object properties.
Init boundary geometry properties.

Add first node to RealPathList

for all nodes in path do
if Distance: current node and drag node < MovementPrecision then

continue
end if
Rotate the validation object based on direction vector.
if NextIteration(node) then

continue
else

return false
end if

end for
return true

end function

32 5.2. USE OF DYNAMIC RELAXATION IN THIS MASTER’S THESIS

function NextIteration(Node node)
Set all dynamic variables equal zero
while (R < 1× 10−6|| firstTime) do

Set force and moments equal zero
δn

x = Nn.X - node.X
δn

y = Nn.Y - node.Y
RunClashTest()
Set value of ∆t
for all clash do

Dn = GetClash()
F n

x += Kx,boundary ·Dx

F n
y += Ky,boundary ·Dy

end for

alpha = 0.1
Rn = Rn · alpha+ (1.0− alpha)(Fn −Kobject · δn −Cobject · δ̇n)
δ̈n+1 = 1

M
·Rji

δ̇n+1 = δ̇n + δ̈n∆t
δn+1 = δn + δ̇n∆t

Node newNode = new Node(δn+1
x ,δn+1

y)
MoveValidationObjectTo(newNode)
Nn = newNode
if tolerans > 500 then

return false
end if

end while
RealPath.Add(Nn)
return true

end function

Chapter 6

System design of plug-in
application

In this chapter the system design of the plug-in application will be presented. There
will be given an introduction to the different technologies, framework, techniques
and architectures used. The use of Autodesk Navisworks .NET and COM APIs in
the plug-in application will be addressed.

6.1 Microsoft .NET technologies and architectures

As Navisworks has a .NET API and that the project work was done in .NET, the
choice of framework for the Master thesis was obvious. .NET 4.0 and the same
architectural pattern and presentation system were used in the project work assign-
ment, .NET 4.0 was selected. As WPF and the MVVM pattern are central in the
application, a short introduction to these will be given.

6.1.1 Windows Presentation Foundation

The Windows Presentation Foundation (WPF) is a presentation system for building
Windows client applications. The core of WPF is that it is a resolution-independent
and vector-based rendering engine, which is built to take advantage of modern graph-
ics hardware. WPF extends the core with a extensive set of development features,
which includes the Extensible Application Markup Language (XAML) , controls,
data binding, layout, 2-D and 3-D graphics, animation, styles, templates, docu-
ments, media, text and typography. (From [6].)

The plug-in application also uses the WPF Toolkit for creating charts. The WPF
Toolkit is a large collection of WPF features and components that has being made
available outside of the normal .NET Framework ship cycle. [15]

33

34 6.2. PLUGIN APPLICATION ARCHITECTURE

6.1.2 Model-View-ViewModel architecture

The Model-View-ViewModel (MVVM) is an architectural pattern used in software
engineering that originated from Microsoft. Largely based on the Model-View-
Controller pattern (MVC), MVVM is a specific implementation targeted at UI de-
velopment platforms which support the event-driven programming in Windows Pre-
sentation Foundation (WPF) and Silverlight on the .NET platforms using XAML
and .NET languages. (From [8].)

The plug-in application uses the MVVM Light Toolkit. The toolkit’s purpose is
to accelerate the creation and development of MVVM applications in WPF. The
ViewModelBase interface is the main part from the toolkit that has been used. It’s
being used to raise property change to the view, and for message passing between
the different view-models.

Data bindings

Data bindings provides a simple way for Silverlight-based applications to display and
interact with data. The way data is displayed is separated from the management of
the data. A connection, or binding, between the UI and a data object allows data
to flow between the two. When a binding is established and the data changes, the
UI elements that are bound to the data can reflect changes automatically. Similarly,
changes made by the user in a UI element can be reflected in the data object. (From
[7].)

Data bindings have been used in all parts of the application. The "code-behind" has
not been used. This is a one of many benefits by using data bindings. The figure
below shows have the different parts of the application are connected and where
data bindings are used.

Figure 6.1: The MVVM pattern. The figure shows where data bindings are used.

6.2 Plugin application architecture

The plug-in application has an extended MVVM architecture, with Views, View-
Models, Models and classes for connecting the application to Navisworks as a plug-

CHAPTER 6. SYSTEM DESIGN OF PLUG-IN APPLICATION 35

in/ add-in, as figure 6.2 shows. The application also uses the observer pattern for
updating the GUI with information about progress and current results.

Figure 6.2: Illustration of the overall architecture of the plug-in application. It shows
how Autodesk Navisworks is connected to classes in the NwPlugin namespace, which
is connected to the View, then the ViewModels, Models, DataModels and the .NET
& COM API. The different sections are explained in the following figures; 6.3, 6.4,
6.5 and 6.6.

6.2.1 Navisworks Plugin (NwPlugin)

The NwPlugin namespace consists of two classes and are the link to Navisworks;
DynamicClashVerificationPlugin and DynamicClashVerificationAddin. The add-
in plug-in class creates a generic plug-in for Navisworks, called through the GUI.
The dock pane plug-in class makes the add-in plug-in to be a dockable pane, and
adds it to Navisworks GUI[17]. The plug-in is loaded when Navisworks starts, and
unloaded when it stops. The plug-in is copied into the designated folder, which
usually is the "/Plugin" folder in the "/Autodesk/Navisworks Manage 2014/" from
"AppData".

Figure 6.3: Class diagram over the NwPlugin namespace. The AddInPlugin and
DockPanelPlugin are from Navisworks’ .NET API.

36 6.2. PLUGIN APPLICATION ARCHITECTURE

6.2.2 The Views

The view consists of three user controls; DynamicClashVerificationView, ResultView
and the ControlView. The DynamicClashVerificationView uses the static resource
class UniversalValueConverter, which inherits from the IValueConverter inter-
face1. The UniversalValueConverter is used to convert properties from a View-
Model, which is bounded to a property of an element in the user control and con-
verting it to the right type. E.g. from string to PathGeometry for the icons.

The plug-in user control window are separated into two main parts; the dynamic
clash verification view and the control view. The DynamicClashVerificationView
contains of elements for creating, deleting and reviewing all clash verification ses-
sions. The view makes it possible to create different verification sessions, for example
for different validation objects, paths etc. It will also give information about sta-
tus of the different sessions. The DynamicClashVerificationView is a part of the
ControlView, but has its own ViewModel.

The ResultView is a part of a TabItem in the ControlView and shows graphs/ trends
of the velocity, acceleration and applied force for the validation object. It uses the
WPF Charting Toolkit, with a custom styling of the graphs.

The ControlView is the main plug-in window. In addition to include the Dynamic-
ClashVerificationView and the ResultView, it consist of elements for selection
validation object, boundary geometry, path, settings, running the validation and
path optimization.

Almost all of the elements in the views have custom styling. This to get a consistency
between the UI design in Windows 7 and Windows 8.

Figure 6.4: Class diagram of the different views. Properties and fields are not
included. The "code-behind" classes are not being used, due the MVVM pattern.

1A converter that implements the System.Windows.Data.IValueConverter interface can
change data from one type to another, translate data based on cultural information, or modify
other aspects of the presentation (From [18]). See [18] for more info.

CHAPTER 6. SYSTEM DESIGN OF PLUG-IN APPLICATION 37

6.2.3 The ViewModels

The ViewModel classes are corresponding to the different views. The DynamicClash-
VerificationViewModel contains needed properties and method for handling needed
bindings to the DynamicClashVerificationView. It includes methods for handling
the current selected verification session, and communicates this to the ControlViewModel
through message passing via MVVM Light, which handles the communication with
the model.

The ResultViewModel contains properties and method for handling the the ele-
ments of the Result- View. It implements the ResultListener interface, and listen
for changes in velocity, acceleration and force during the dynamic relaxation ver-
ification. It communicates with the ControlViewModel with message passing via
MVVM Light.

The ControlViewModel includes properties and method for all of the elements in the
control view. This includes elements as validation object, boundary geometry and
path selection, settings, progress bar and verification. The ControlViewModel com-
municates with the DynamicClashVerification class. The DynamicClashVerification
class can be seen as a controller which controls all needed user input from the View-
Model and creates required objects from the model.

Figure 6.5: Class diagram of the ViewModels and their communication between
each other. The implemented interfaces are not shown in the figure, since they
aren’t important in this context. The ResultListnener interface will be adressed in
section 6.2.5.

38 6.2. PLUGIN APPLICATION ARCHITECTURE

6.2.4 The Models

The main model is the DynamicClashVerification. As mentioned, this class is the
connection between the ControlViewModel and all the model classes. The model
classes are divided into "ordinary" model classes, and data model classes. The data
model classes are classes for holding data, while the other model classes contains
methods using the data models.

The model classes:

• DynamicClashTest class

• DynamicMovement class

• DynamicRelaxationSolver class

• CallBackGeomListener class

The DynamicClashTest class contains properties and methods for creating a new
dynamic clash test. The class uses the Navisworks Clash API. Unlike a clash test in
Navisworks, a dynamic clash test contains thousands of Navisworks clash tests. It
will create a new Navisworks clash test for each step the validation object does. A
clash test consists of many 2D clashes, one for each triangle surface in the model item
that is clashing. Based on these 2D clashes, the DynamicClashTest class creates a
3D clash (for each clash the validation object does), whose properties are calculated
based on all the 2D clashes from the Navisworks clash test. In short, one can might
say that a 3D clash is the same as a Navisworks clash test.

The DynamicMovement class contains properties and methods for creating a dynamic
movement based on a set validation object and path. Based on a parameter to the
class’ constructor, it can create a movement with, or without clash testing.

The DynamicRelaxationSolver class contains properties and methods for running
the dynamic relaxation algorithm on a validation object, on a path with a set bound-
ary geometry.

The CallBackGeomListener class uses the COMApi.InwSimplePrimitivesCB inter-
face from the COM API, for getting the primitives (line, point, triangle, snap point)
from a model item fragment. More about this in section 7.1.

The data models:

• ValidationObject class

• Path class

• Clash3D class

• Line3D class

The ValidationObject class contains data about the validation object model item.
It also includes method for transforming the position of the validation object. The
Line3D represents a line in 3D and Clash3D represents a clash in 3D. The Path
class includes properties and method for storing and creating a path. It includes
methods for creating a path, from the .NET API from a ModelItemcollection and

CHAPTER 6. SYSTEM DESIGN OF PLUG-IN APPLICATION 39

for optimizing a path based on clashes. More details about the creation of the path
will be addressed in section 7.2.

The following classes from the Navisworks .NET API are used. See the Navisworks
documentation for detailed information about them:

• Document class

• DocumentClash class

• DocumentClashTest class

• ModelItemCollection class

• ModelItem class

• Point3D class

• Vector3D class

• Rotation3D class

Figure 6.6: A simplified class diagram of the model classes. See documentation for
full class diagram.

6.2.5 The Observer design pattern

The observer design pattern enables listeners to subscribe to an observable provider
to receive notifications when changes happen on observable objects. The pattern
defines a observable object and zero, one or more observers. Each observer is added
as listeners within the observable object. Whenever a predefined change happens,
the observable object will automatically fire a notification change message to all of
its listeners. The listeners can then do changes on itself, based on the observable’s

40 6.2. PLUGIN APPLICATION ARCHITECTURE

changes. The listeners have to implement a defined interface for the method that
the observable is going to call. [24]

The plug-in application uses this pattern to observe the progress during the path
factory, path optimization and during the dynamic relaxation verification. The
ControlViewModel is added as a progress listener to the DynamicRelaxationSolver,
which inherits from the abstract Observable- Progress class. The progress is pre-
sented with a progressbar in the ControlView. In addition, the ResultViewModel
is added as a result listener to the DynamicRelaxationSolver, which also is an
ObservableResult. This gives information about the current velocity, acceleration
and applied force of the validation object and is presented in two chart controls in
the ResultView.

Figure 6.7: Class diagram including the classes in the observer design pattern. Note
that the ObservableProgress class also includes methods for ObservableResult,
since a class only can inherit from one super class. See source code documentation
for method definitions.

Chapter 7

Implementation of the plug-in
application

In this chapter the different mathematical implementations will be addressed such
as the path generation and path optimization, the implementation of the main
algorithm, and the use of .NET API and COM API. The two main phases of the
application will be addressed, and the flow to some impotent sequential operations.
There will also be given a short introduction to the matrix translation used together
with the COM API.

7.1 Use of Navisworks .NET and COM APIs

There are two main functionalities from the .NET and COM API in Navisworks
used in the implementation. Besides the classes for creating a Navisworks plug-
in (NwPlugin-namespace), the transform features from .NET API and features for
getting primitives of models from the COM API that are used. There are also some
data model classes in use, such as Point3D and Vector3D.

7.1.1 Getting primitives from COM API

Navisworks .NET API doesn’t have features for getting detailed info about the
geometry of a model. It can give information about which type of primitives a model
item consists of (points, lines, triangles), give the centre position of the bounding
box and each maximum and minimum position values (the point on the model item
which is closest and farthest from the origin). The positions of these items are given
in the local coordinate system of the item and no translation method or matrix is
able to convert it to global system.

However, the COM API can give the value of the primitives. These values will
also only be given in its local coordinate system. The COM API has methods for
converting to the global coordinate system according to its documentation. These

41

42 7.1. USE OF NAVISWORKS .NET AND COM APIS

methods are unfortunately very difficult to use. Since the developers at Autodesk
had problems using them, they had to be developed manually by using the COM
API method GetLocalToWorldMatrix(). This methods returns a array representing
a 4x4 matrix.

The 4x4 transformation matrix is defined like this [20]:

T =

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

 =
[

R S
pT U

]
(7.1)

where

• R - (3x3) direction cosines

• S - (3x1) translation vector

• PT - (3x1) perspective vector

• U - The uniform scaling factor

Only the translation vector is important since the path has neither been scaled nor
rotated or had its perspective altered. The global coordinates are therefore defined
as:

PGlobal = PLocal · S =

xlocal
ylocal
zlocal

 ·
Sx

Sy

Sz

 =

xglobal
yglobal
zglobal

 (7.2)

This gives that the elements with index 13, 14 and 15 are the three elements in the
S-vector from the array returned from GetLocalToWorldMatrix().

The following code snipped shows how to get the primitives from a model item
(oModelColl). The code goes through each InwOaPath3 (3D path) from the model
and from each path it goes through each InwOaFragment3 (3D fragment). It gets its
primitives with the GenerateSimplePrimitives method. A fragment can e.g. be a
point, a line or a triangle.
// convert to COM selection
COMApi.InwOpState oState = ComBridge.State;
COMApi.InwOpSelection oSel = ComBridge.ToInwOpSelection(oModelColl);

// create the callback object. the false parameter is only to tell the
callback object that

// it is not used to generate a path.
CallBackGeomListener callbkListener = new CallBackGeomListener(true);

foreach (COMApi.InwOaPath3 path in oSel.Paths())
{

CHAPTER 7. IMPLEMENTATION OF THE PLUG-IN APPLICATION 43

foreach (COMApi.InwOaFragment3 frag in path.Fragments ())
{

// Getting the transformation matrix. See report for more
information.

COMApi.InwLTransform3f3 localToWorld =
(COMApi.InwLTransform3f3)(object)frag.GetLocalToWorldMatrix ();

Array array_v1 = (Array)(object)localToWorld.Matrix;
double x = (Double)array_v1.GetValue (13);
double y = (Double)array_v1.GetValue (14);
double z = (Double)array_v1.GetValue (15);

Vector3D S = new Vector3D(x, y, z);
// Setting the translation vector , to be used to generate the

primitives.
callbkListener.SetTranslationVector(S);
frag.GenerateSimplePrimitives(COMApi.nwEVertexProperty.eNORMAL ,

callbkListener);
}

}

The GenerateSimplePrimitivesmethod calls on the correct methods via the COMApi.-
InwSimplePrimitivesCB interface, which is implemented in the CallBackGeomListener.
After all InwOaPath3 in the model item have been handled, it returns a list of all
the points the model item consists of. This list is then used to generate the path
further. [19]
public void Line(COMApi.InwSimpleVertex v1, COMApi.InwSimpleVertex v2);

public void Point(COMApi.InwSimpleVertex v1);

public void SnapPoint(COMApi.InwSimpleVertex v1);

public void Triangle(COMApi.InwSimpleVertex v1, COMApi.InwSimpleVertex
v2, COMApi.InwSimpleVertex v3);

See application souce code and Navisworks COM API documentation for more in-
formation.

7.1.2 Transformation of Validation object position

The transformation features through the .NET API enables the developer to override
the transformation of a model item in Navisworks. The transformation is only an
override and Navisworks will always remember the original position an object had
when it was imported to Navisworks for the first time. Then using this feature, the
position of the object will always move in the UI of Navisworks. This means that
during the dynamic relaxation calculations, the user will see the validation object
move inside the Navisworks UI.

44 7.1. USE OF NAVISWORKS .NET AND COM APIS

The method used to do translation transformation is:
public void MoveValidationObject(Vector3D newDirection)
{

// Creates a transformation matrix , based on the translation vector.
Transform3D oNewOverrideTrans =

Transform3D.CreateTranslation(newDirection);

// Overrides the current position sith the new transform. See NW doc
//to read why you need to override permanent , and what this mean.
doc.Models.OverridePermanentTransform(Model , oNewOverrideTrans ,

true);
}

The method takes a vector as parameter, and moves the Model based on the vector.
This vector is the same as the S vector described in the previous section. Based
on the translation vector, a transformation matrix is created and used to override
the transformation of the model. According to .NET API documentation, it should
also be possible to create the rotation matrix and use it in the same transformation
matrix as the S vector. Unfortunately this isn’t working. The API is only doing the
rotation and not translation if the matrices are put in the same override function
together. Therefore is the rotation done separately.

The method for doing rotation transformation is:
public void RotateValidationObject(Rotation3D rotation , Point3D

rotationPoint)
{

// Creates a opposite vector based on the position , to
//move the validation object to origo , for rotation.
Vector3D vec = rotationPoint.ToVector3D ().Multiply (-1.0);

//Move to origo
MoveValidationObject(vec);

//Do transformation , and override transform.
Transform3D oNewOverrideRotationTrans = new Transform3D(rotation);
doc.Models.OverridePermanentTransform(Model ,

oNewOverrideRotationTrans , true);

//Move back to original position.
MoveValidationObject(vec.Multiply (-1.0));

}

This method takes a Rotation3D (an angle represented in a Navisworks .NET API
object) and a rotation point and rotates the model the given angle around the point.
The rotation point is usually the centre of the model item. Because of the way the
transformation method works through the API, the model has to be translated to
its origin be rotated, and than moved back into position.

CHAPTER 7. IMPLEMENTATION OF THE PLUG-IN APPLICATION 45

7.2 Path factory

The path factory takes geometry data via Navisworks’ COM API, and generates
a List<Point3D> to be used in the optimizing and verification. As the geometry
data only consists of line sets and arcs in a random order, the geometry have to go
through phases with sorting and selection before it can be used.

The COM API (as described in the previous section) generates a list of all the
primitives (lines) of the path in a random order. The lines must therefore be sorted
based one there position on the path, so that all points will be in correct order
from start to end. This sorting is done by looking at similar points on different
lines. If two lines share a point, they should connect on the path, and must be in
sequence. The path generation is finished when all lines are sorted based on this
technique and all duplicate points have been removed. The sorting algorithm is
shown in following pseudo-code. This is most likely not the best way of sorting
the list based on run-time, but since the process itself doesn’t take significant time
hasn’t an optimization been prioritized. The RemoveDuplicationsInPath has not
been included here because of its obviousness. See application code for more.

function SortCurrentPath(List <Line> lineList)
1. Init new sortedList.
2. Add the first line to the sortedList from lineList.
3. Remove the first line from lineList
length = Path.Count()
counter = 0
while sortedList.Count() != length && lineList.Count() > 0 do

for all line in lineList do
if Diff(sortedList.First(), line) < 5 then

Add line to sortedList
Remove it from lineList

end if
end for

end while
RemoveDuplicationInPath()

end function

46 7.3. THE TWO PHASES

7.3 The two phases

The application consist of two phases; The optimization of path using clash logging,
and the verification using dynamic relaxation. The first phase is intended to be a pre-
phase for the verification. Its main task is to optimize the path created in another
software and generated by the path factory to optimize the run-time speed of the
verification. The optimization phase doesn’t need to run to get the verification phase
to run. If an optimizing has been performed, the application will use the optimized
path during the dynamic relaxation verification, otherwise it would just use the path
generated by the path factory.

7.3.1 Phase 1: Optimization of path using clash logging

The optimization of the path is done by moving the validation object through the
path generated by the path factory. During the movement, the application will
check for clashes with use of the .NET API and register all clashes that occur.
After finishing the movement, the path will be altered based on the clash distance
for each clash. The optimized path should then be a better alternative than the
factory generated path, since the validation object most likely would experience
fewer clashes during the dynamic relaxation verification.

Figure 7.1: Illustration of the path generation from line sets and arcs in Navisworks,
to a path list of points generated by the path factory, to an optimized path.

The optimizing phase uses the MoveValidationObjectThroughPath-method in DynamicMovment
to move the validation object through the path. The method creates required clash
tests and runs them for each step in the movement. (much the same as in DR). All
clashes which occur during the dynamic movement are stored as Clash3D object in
a list, which later is returned and used by the Path-class to optimize the path. See
the sequence diagram 7.2.

CHAPTER 7. IMPLEMENTATION OF THE PLUG-IN APPLICATION 47

Figure 7.2: Sequence diagram of the first phase in the application; The optimizing
phase.

7.3.2 Phase 2: Verification using dynamic relaxation

The last phase is the verification phase. When running this phase, the application
tries to use Dynamic Relaxation to move the validation object through the path
without clashing. It tries to find equilibrium before it continues if a clash occurs.
The application will give a response to the user of the result, either by a completed
verification with green symbols, or a fail on with a red symbol and progressbar.

During the verification, the user can monitor the velocity, acceleration and applied
force in the "DR Analysis" tab. This can happen when the path is not created the
proper way, or the geometry becomes to difficult.

The verification with dynamic relaxation is done by the SolveDynamicRelaxation-
method in the DynamicRelaxationSolver-class. See sequence diagram 7.3.

48 7.3. THE TWO PHASES

Figure 7.3: Sequence diagram of the verification phase using dynamic relaxation.

CHAPTER 7. IMPLEMENTATION OF THE PLUG-IN APPLICATION 49

7.4 Implementation of Dynamic Relaxation algo-
rithm

For each drag node in the path, the NextIteration-method is called to move the
validation object to the drag point by using DR and clash testing. The result is
returned. See sequence diagram 7.4. See 5.2.1 for the algorithm in pseudo code.

Figure 7.4: Sequence diagram of the verification process in the
DynamicRelaxationSolver-class.

50 7.4. IMPLEMENTATION OF DYNAMIC RELAXATION ALGORITHM

Chapter 8

The final plug-in application

In this chapter a short presentation will be given to the final plug-in application. A
full introduction on how to use the application will not be given, but details can be
found in the user manual in appendix A. There will also be given an introduction
to the techniques in human-computer-interaction used for the user interface, the
run-time and some run-time optimization and details about the plug-in application
documentation.

8.1 Short presentation

Figure 8.1: Screen shot of the plug-in application in use in Navisworks.

The final plug-in application (fig. 8.1)includes functionality for creating a path from
a Navisworks model item, optimizing the path based on clash logging, and verifying

51

52 8.1. SHORT PRESENTATION

movement of a validation object through path with use of dynamic relaxation. The
application can have multiple verification sessions for a model item, but can’t at
this time save and load verification sessions to file. The application also includes
chart controls for DR analysis during verification. An animation tab is included,
but is disabled, due to an unfinished implementation. However, a lot of example
code has been prepared in addition to methods in the source code of the application
for further development.

In the next sub sections the different user controls and tab items in the application
will briefly be introduced. Se appendix A for more detailed information.

8.1.1 The verification sessions view

Figure 8.2: Screen shot of dynamic clash verification sessions control view. Features
for viewing, adding and deleting sessions of different verifications.

The verification session control viewer (fig: 8.2) enables the user to review, add
and delete different clash verification sessions during the same Navisworks run-time
session. The data grid showing the sessions informations, includes name, description
and status information. The icon in the left most column represents the current
status and is connected to the status column.

8.1.2 The verification control view

The verification control view contains a tab control for setting required information/
settings for running optimization and verification. The view is divided into six tabs,
which the user is supposed to follow sequentially from left to right. The different tabs
are explained below. In addition there is a progress bar at the bottom, which shows
the progress during path generation, optimizing and verification. The progress bar
becomes red if the verification fails. See appendix A for descriptions of the different
icons.

CHAPTER 8. THE FINAL PLUG-IN APPLICATION 53

Selection tab

The user selects the wanted validation object and boundary geometry from the list
of selections sets in the Selection tab (fig: 8.3). The selection sets have to be
created in Navisworks. See section 3.1.

Figure 8.3: Screenshot of the selection tab in the control view.

Path tab

In the Path tab (Fig: 8.4a and 8.4b) the user must select the desired path from the
list of selection sets. After selection the user must run the Path Factory to convert
the path from a model item in Navisworks to a path in the application.

(a) Screenshot of the path tab before
Path Factory has been run.

(b) Screenshot of the path tab after Path
Factory has been run. The progress bar
shows that the path generation is fin-
ished.

The Path Factory will randomly select a start point on the path (one of the two end
points). In the path popup view (fig: 8.4) the user can change the start point, as well
as review the generated path. The user can also go back to the popup view after
optimizing and verification and see the resulting paths. The button "Show/Hide
Paths" displays the path popup view.

54 8.1. SHORT PRESENTATION

Figure 8.4: Screenshot of the path popup view. The different path results are shown,
as well as features for reverting start point and visibility for the different paths and
points.

CHAPTER 8. THE FINAL PLUG-IN APPLICATION 55

Settings tab

The user can set wanted step precision and axle settings in the Settings tab (fig:
8.5) t Note that the step precision can be changed between optimization and veri-
fication. The application should have a high step precision during optimizing and
less precision during verification to improve the run-time speed and achieve the best
result possible.

Figure 8.5: Screenshot of the settings tab view, where the user can set desired step
precision and axle settings.

Verification tab

The user can run and cancel path optimization and DR verification in the Verifi-
cation tab (fig: 8.6). Note that it is possible to run the DR verification without
running the optimization first, as long as the path factory has run. The "Visualize
result" button is being visible when the verification is finished (Fig 8.7).

Figure 8.6: Screenshot of the verification tab view, where the user can start the
optimizing and verification.

56 8.1. SHORT PRESENTATION

Figure 8.7: Screenshot of the verification tab view after the verification. The user
can now visualize the result.

DR analysis tab

The user has the possibility of monitor the progress in the tab DR Analysis (fig:
8.8) during verification. The tab shows two chart controls; one for the applied force,
and one for the velocity and acceleration. This feature can be practical to use for
looking at what happens during clashing and if the validation object displays strange
behaviour.

Figure 8.8: Screenshot of the DR Analysis tab view. The two chart controls shows
the progress of the applied force, velocity and acceleration of the validation object.

CHAPTER 8. THE FINAL PLUG-IN APPLICATION 57

8.2 User Interface - Usability

(a) Draft of user interface before imple-
mentation.

(b) The final user interface.

The application’s user interface uses techniques in human-computer-interaction for
best possible design. There haven’t been any usability tests performed with the
future users of the application because of time issues and implementation problems.
The user interface has therefore been developed based on experience and comments
from the supervisors in Aker Solutions and techniques and principles from theory
about human-computer-interaction.

Figure 8.9a shows the draft of the UI in a early phase of the development of the
application. Figure 8.9b shows the final user interface developed, based on the draft.
The two are very much a like, but with some deviations. The greatest changes in
the UI during development have been in the Settings, Verification and DR Analysis
(before called Result) tabs. There are unfortunately no draft figures of this.

Some of the principles tried followed during development is Don Norman’s Design
Principles. These principles are well known today, even though they are over 20
years old. Norman presents six principles for a good interactive design: ([21] and
[22])

• Visibility

• Feedback

• Constraints

• Mapping

58 8.2. USER INTERFACE - USABILITY

• Consistency

• Affordance

Visibility involves the idea that functions should be as visible as possible. This
is because it would most likely result in the user having better ability to decide
what to do next. Functions should not be hidden from the user. As the plug-in
application doesn’t have that many different functions, there has been a focus on
emphasizing the different tabs and their main tasks, so that it is very clear what
each tabs content does.

Feedback involves functions for sending feedback/ information back to the user
about the current status and action which has been performed. This allows the user
to have full control over the work flow in the application. The plug-in application
uses the progress bar and status text and icons to give feedback to the user. It also
uses short message boxes if something goes wrong.

Constraints involves including restrictions in the application to control which
activities the user is supposed to do at different times. In the plug-in application the
collapsed and enabled properties on different elements are used to control this. E.g.
the control view will be disabled when no verification sessions have been created.

Mapping refers to a relationship which exists between different controls and the
controls’ effect in the real world. E.g. a round rotation button for controlling sound
volume - the user must rotate clockwise to get more sound. There is not really any
need for use of this in the plug-in application, since the amount of controls are at a
minimum.

Consistency involves creating user interfaces, which have equal operations and
elements do equal tasks. The user interface is consistent if it follows specific rules
for similar elements/ tasks. E.g. the plug-in application uses the same method for
selecting the validation object as the boundary geometry and path does.

Affordance involves giving elements a look which corresponds to their task. An
element’s task should be obvious to understand just by looking at it. In the plug-in
application it is used a lot of symbols to achieve this. The symbols should relate
to known features for the user. E.g. the path symbol, which looks like a path, or
the settings symbol which is similar to all other known settings symbols, from other
software.

Since there haven’t been any usability test for this plug-in application, there could
potentially be a lot that could have been improved on the UI. This will be addressed
more in further work (sec. 10.2).

CHAPTER 8. THE FINAL PLUG-IN APPLICATION 59

8.3 Optimizing run-time

Autodesk Navisworks has a default global option that will decrease run-time on the
plug-in application. Navisworks is set to auto-save the current document every time
a clash test is done. As the plug-in application runs thousands of clash test during
a verification, the auto-saving feature can consume a lot of time. The feature saves
five temporary files/ copies of the document. This means that Navisworks needs
to both create and delete a file for each clash. Tests done shows that the plug-
in application uses five times more time with the auto-save function enabled, then
when it’s disabled. These tests are also done on a SSD, which means that it will take
a lot of time on a ordinary HDD (as SSDs can have 100 times better performance
than HDD). It is therefore important that the user turns the auto-save feature off
during plug-in application use, and turn it back on when using Navisworks for other
activities. [6]

To disable auto-save do:

1. Select the main menu, pushing the Navisworks logo in the upper
left corner.

2. Select Options.

3. General –> Auto-Save –> Enable Auto-Save (Fig: 8.9).

4. Unselect to disable.

5. Push OK.

Figure 8.9: Screenshot of the Option Editor, where the auto save function may be
enabled.

60 8.4. DOCUMENTATION

8.4 Documentation

The plug-in application’s source code folder includes full documentation as a .chm-
file (Windows only), and as a a web page (needs to run on a php server. Works on
all OS types.) The documentation is created using XML tags in the source code,
and GhostDoc Pro to generate the .chm-file and the web page.

Figure 8.10: Screen shot of the .chm-file with documentation.

An XML example for generating documentation for a method is shown below:

/// <summary >
/// Calculates the vector angle.
/// </summary >
/// <param name=" previousVc">The previous vc.</param >
/// <param name="vc">The vc.</param >
/// <returns >System.Double.</returns >
public static double CalculateVectorAngle(Vector3D previousVc ,

Vector3D vc)
{

UnitVector3D u = new UnitVector3D(previousVc);
UnitVector3D v = new UnitVector3D(vc);

return u.AngleWithReference(v, new UnitVector3D (0, 0, 1));
}

Chapter 9

Discussion - The new work flow
v.s. the old

This chapter will give a short discussion based on the last sub-task from the assign-
ment text:

• Validate the results of the new work flow (3) and the new application (4)
against the current process (1).

where (3), (4) and (1) refers to the other subtasks. (See section 1.1.)

As addressed in section 2.2, the current process and work flow is very comprehensive
and time consuming. The Material Handling Group has no record of how much
time which is being used on transport verification today. They are only giving
the impression that the current process is very time consuming and that it takes
especially long time when large design changes occur.

One of the main problems with the current process is that the engineers have to do
everything manually. By doing the verification process only partially automated,
the engineers can perform other important tasks, regardless of how much time the
automatic verification uses and thus save time. The plug-in application developed
in this thesis is a step in this direction. The engineers still have to do some tasks
manually, but the most time consuming part of the verification is done automatically.
Even though the verification with using the plug-in can use some time, the engineers
don’t need to focus on it during the verification sequence. The engineers can simply
start the verification with the plug-in and turn their focus on something else.

Even though the plug-in application has some run-time speed issues, the engineers
can save a lot of time using it. If this concept may be further developed, with better
clash detection, or even with a better software API than Navisworks, the engineers
can save a substantial amount of time. This kind of engineering activity is a typical
problem which should be done using automation that can save the offshore projects
a lot of cost.

The plug-in application can also provide a much more accurate and realistic clash
testing than what an engineer can do manually. Small clashes or movement solutions

61

62

which the engineers are overlooking, can be detected by the application and in some
cases be a solution to a problem. I.e. can the engineer in some cases give failed
verification, while the application gives an approved verification. This can of course
give a opposite result if the dynamic system in the application isn’t implemented
well and realistic enough. This is maybe one of the main challenges with this kind
of application. One can may discuss if there are some better algorithms/ methods
than dynamic relaxation, like methods used in the gaming industry. With a well
defined path and with some modifications, will the application therefore most likely
be able to illustrate a much more realistic movement of the validation object, than
an engineer which uses the "rotate" and "move" feature in the 3D-tool software.

Chapter 10

Conclusions and further work

10.1 Conclusion

During the Master’s thesis, a plug-in application for Autodesk Navisworks with
C# in .NET and the .NET and COM API to Navisworks has been developed, in
collaboration with KBeDesign, for use in the Material Handling Group in Aker
Solutions. The assignment was do develop an application which could verify and
visualize transport of equipment on offshore platforms, based on input parameters.
Based on the current work flow and process for access way modelling and transport
verification, a specific set of input parameters were defined; the verification object,
the boundary geometry and the path, where each of these should be defined as a
selection set in Navisworks. The path had to be created in PDMS, AutoCAD or
another 3D modelling tool, since Navisworks can’t generate geometry.

The plug-in application uses the dynamic relaxation method introduced and devel-
oped in the project work done fall 2013. Dynamic relaxation tries to find a geometry
where all forces are in equilibrium. The plug-in application is used to check if an
outer boundary geometry is good enough, so that an validation object can go through
path by checking whether the object can be in equilibrium at all nodes defining the
path.

The final plug-in application has two main phases; The path optimizing phase and
the DR verification phase. Based on the input parameters defined as selection sets,
the user can generate a path, alter start position on path, setting movement precision
and axle settings and running optimizing and verification. The optimized path will
most likely give a better basis for the verification, and therefore improve run-time
speed. During the verification, the user can monitor the validation object’s current
velocity, acceleration and applied force with two chart controls.

The application has a MVVM architecture, and WPF is used as a UI presentation
system. The UI has been developed based on experience, feedback from Aker and
human-computer interaction theory. The UI has been given a custom styling, to
ensure continuity between Windows 7 and Windows 8, as WPF gives different styling
based on the OS. The custom styling is also based on the current UI in Navisworks.

63

64 10.2. FURTHER WORK

10.2 Further work

The plug-in application has several improvement elements with the implementation.
The ControlView should be divided into more view, for a more clean code. The
ControlViewModel consists of very many properties and method, and it would be
a more clean code if it was separated in more classes. F.ex. could each tab item
in the tab control be divided into their own views and viewModels. There is also
potentially some code which could be more reused in the application. The use of
f.ex. value converters, would also give a more cleaner code. The converter was
implemented in the end of the thesis, and was therefore not used with all wanted
elements.

As discussed in the previous chapter, there are many possibilities to optimize the
application, both considering run-time speed, usability etc., but also to look at other
opportunities to develop a better clash detection or using an other dynamic system.
Maybe is it possible to combine different dynamic system, or clash testing methods
to get a better and more realistic result. It is also a possibility to use an other
software tool, instead of Navisworks, f.ex. AML, which KBeDesign already use to
run analysis, clash testing etc. on 3D models.

As the clash detective feature in Navisworks is very time consuming, one can look at
the possibilities to develop a new clash detective feature more suited for this problem
outline. It could also be possible to create an own data model and a model factory
to fill the data model with geometry data through the COM API and then create
suitable clash detection and verification based on the new data model. The DR
algorithm could then be used as a kernel for the application, which could use both
the data model, and the Navisworks Clash API. The Normal Intersection method,
used in Navisworks is also not flawless and better methods more suited for the
verification problem may exists.

Another issue that may should be more discussed, is the standalone v.s. plug-
in application issue. The plug-in was created so that the engineers could use the
verification application together with a well known software, which they already use
on a daily basis. It is possible that a standalone application could be better, which
then could be connected to many different 3D software applications. One could have
a standalone application with it’s own clash detective feature (No API in use), which
could run analysis on a standard 3D model format file. It could also have its own
API, with a interface making it possible to create custom plug-ins/ applications for
difference software and visualizations, where the application could be an analysis
kernel. This would be a great deal of work and is not suitable for an one person
thesis, but could potentially be a good task for a smaller team, or individual thesis
written in collaboration.

Bibliography

[1] Hans Petter Hildre, Ola Jon Mork, Vilmar Æsøy, The Maritime Innovation Fac-
tory. Aalesund University Collage, Aalesund, July 2010.

[2] Espen Messel, Cand. Scient, Solid Mechanics, Explicit Dynamic Relaxation.
http://folk.uio.no/esjen/kilder/NFEM.Ch22.pdf,
University of Oslo

[3] Wanda J. Lewis, Tension Structures: Form and Behaviour. Thomas Telford
Publishing, London, 2003.

[4] Aker Solutions KBeDesign webpage
http://www.akersolutions.com/en/Global-menu/Media/Feature-stories/
Engineering/KBeDesign/
Date: 07.12.2013

[5] Norsk Stårforbund - NOROSK Standard (C-002 + S-002N)
http://www.stalforbund.com/Standarder/norsok.htm
Date: 20.08.2013

[6] Microsoft Developer Network - Windows Presentation Foundation
http://msdn.microsoft.com/en-us/library/ms754130(v=vs.110).aspx
Date: 14.12.2013

[7] Microsoft Developer Network - Data Bindings
http://msdn.microsoft.com/en-us/library/cc278072(v=vs.95).aspx
Date: 15.12.2013

[8] MVVM - Model View ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
Date: 14.12.2013

[9] Autodesk Navisworks
http://www.autodesk.com/products/autodesk-navisworks-family/
overview
Date: 01.05.2014

[10] AEC DevBlog for Navisworks .NET API
Article: Navisworks 2014 API new feature - Override Transformation
http://adndevblog.typepad.com/aec/2013/05/navisworks-2014-api-new-feature-override-transformation.

65

66 BIBLIOGRAPHY

html
Date: 13.02.2014

[11] AEC DevBlog for Navisworks .NET API
Article: Navisworks .NET API 2013 new feature - Clash 1 & 2
http://adndevblog.typepad.com/aec/2012/05/navisworks-net-api-2013-new-feature-clash-1.
html
http://adndevblog.typepad.com/aec/2012/05/navisworks-net-api-2013-new-feature-clash-2.
html
Date: 13.02.2014

[12] Autodesk Navisworks 2015 HELP, Glossary, Clash Detective Terminology
Autodesk Knowledge Network
http://help.autodesk.com/view/NAV/2015/ENU/?guid=
GUID-27EA59E6-1A15-4372-9D7D-90508936B512
Date: 08.05.2014

[13] FIG Technologies Ltd.
Navisworks .NET API presentation
http://fig-tech.com/downloads/3.\%20DotNETAPIIntroduction.pdf
Date: 09.05.2014

[14] Autodesk Developer Network
About Navisworks .NET API
http://usa.autodesk.com/adsk/servlet/index?id=15024694\&siteID=
123112
Date: 09.05.2014

[15] CodePlex - Project Hosting for Open Source Software
Welcome to Windows Presentation Foundation
http://wpf.codeplex.com/
Date: 09.05.2014

[16] CodePlex - Project Hosting for Open Source Software
MVVM Light Toolkit
https://mvvmlight.codeplex.com/
Date: 09.05.2014

[17] FIG Technologies Ltd.
Navisworks Plugin API Overview
http://fig-tech.com/downloads/4.\%20PluginAPIOverview.pdf
Date: 11.05.2014

[18] Microsoft Developer Network
Libaries - IValueConverter Interface
http://msdn.microsoft.com/en-us/library/system.windows.data.
ivalueconverter.aspx
Date: 11.05.2014

[19] AEC DevBlog
Article: "Get primitives from solid of Navisworks"

BIBLIOGRAPHY 67

Written by: Xiaodong Liang
http://adndevblog.typepad.com/aec/2012/05/get-primitive-from-solid-of-navisworks.
html Date: 13.05.2014

[20] Virtual Testing of Mechanical Systems, Theories and Techniques
Chapter 2.2 - Transformations and Rotations
Presentation foilers from subject TMM2 Product Simulations, NTNU

[21] Summery of Don Norman’s Design Principles
Source: Preece, J., Rogers, Y., Sharp, H. (2002), Interaction Design: Beyond
Human-Computer Interaction, New York: Wiley, p.21
http://www.csun.edu/science/courses/671/bibliography/preece.html
Date: 19.05.2014

[22] Summery presentation TDT4180, Human-Computer-Interaction
By Dag Svanæs
NTNU, Trondheim 2012

[23] Hilber-Hughes-Taylor Method,
OpenSee, Berkely edu
http://opensees.berkeley.edu/wiki/index.php/Hilber-Hughes-Taylor\
_Method
Date: 20.05.2014

[24] Microsoft Developer Network,
Observer Design Pattern,
http://msdn.microsoft.com/en-us/library/ee850490(v=vs.110).aspx
Date: 23.05.2014

[25] Equation of motion
http://en.wikipedia.org/wiki/Equations_of_motion
Date: 09.06.2014

68 BIBLIOGRAPHY

Appendices

69

Appendix A

User manual for plug-in
application

This document will give a detailed introduction to the user interface and function-
alities of the Dynamic Clash Verification Plug-in to Autodesk Navisworks Manage
2014, developed in the Master thesis spring 2014. The document will give a step-by-
step presentation on how to use the application, as the needed pre-steps done with
Navisworks functionality. The user manual is based on Windows 8 OS.

A.1 Setting up plug-in with Navisworks

In order to use the plug-in application with Navisworks Manage1 2014, the plug-in
class library has to be imported to the \Plugins folder in Navisworks.

1. Locate the \Plugins folder in one of the following location. If one uses the
first \Plugins folder, one needs to restart the system, to let Navisworks find
the new plug-in. If one uses the second folder, from the \AppData location,
the plug-in will work at once.

• C:\Program Files\Autodesk\Navisworks Manage 2014\Plugins\

• C:\Users\your user name\AppData\Roaming\Autodesk Navisworks Man-
age 2014\Plugins\ *

2. Copy the \DynamicClash.MHRK folder with the plug-in class library files from
the Master’s thesis attachments into the \Plugins folder. The class library
folder should include a lot of .dll-files.

* The \AppData folder is by default hidden in Windows. To reveal the folder do
the following:

1Note that the plug-in application only works with Autodesk Navisworks Manage 2014 and
newer, and not Freedom and Simulate. This because of Navisworks Manage’s clash detection
feature, which is used by the plug-in.

71

72 A.2. SETTING INPUT PARAMETRE IN NAVISWORKS

• In the Ribbon toolbar select View.

• Check Hidden Items, under Show/hide

The plug-in application is know ready for use with Autodesk Navisworks Manage.

A.2 Setting input parametre in Navisworks

This sections expects that the user already has experience with Autodesk Navisworks
Manage software.

1. Open model document, in which the model items to be verified is.

2. Use the Save Selection feature to create selection sets for the validation object,
boundary geometry and path. The floor which the validation object is moving
on, should not be a part of the boundary geometry.

3. The user should now have e.g. the following selection sets in the list of selection
set in Navisworks: Trolley, Walls, Path.

4. Start the plug-in application "DynamicClashAddin" from the Add-ins tab.

A.3 The plug-in application

This sections goes through the different steps in the Dynamic Clash Verification
Plug-in. The different elements of the plug-in UI is shown in fig: A.1.

Figure A.1: Overview of the UI, and its different elements.

APPENDIX A. USER MANUAL FOR PLUG-IN APPLICATION 73

A.3.1 Creating a new dynamic validation session

Figure A.2: Overview of the verification sessions, and its elements.

The user can switch between, add and delete verification sessions in the verification
session view. To create new verification session do:

1. Add new verification session using the Add verification button.

2. Create/ change name of the verification session.

3. Create/ change the description of the verification session.

A verification session has a status describing the current status of how long the
verification has come in the verification process. The different statuses are:

Status icon Status
New
Working
Optimized
Finished
Cancelled
Failed

Table A.1: Overview over the different status icons.

A.3.2 Setting selections

After the a verification session has been created, the control view enables. The user
must now go through the tabs from left to right sequentially.

The first tab is the Selection tab. This tab is used to set the validation object and
boundary geometry for the verification. (Fig: A.3)

74 A.3. THE PLUG-IN APPLICATION

1. Push the Update Selections button the update the list box with the newest
created selection sets.

2. Select the selection set, which should be the validation object in the left list
box.

3. Select the selection set, which should be the boundary geometry in the right
list box.

4. Go to next tab (the Path tab).

Figure A.3: Overview of the selection tab, and it’s different elements.

A.3.3 Setting path

The user should generate a path for use in the verification, from a selected selection
set in the Path tab. (Fig: A.4)

1. Select the selection set, which should be the path from the list box.

2. Push the Run Path Factory button, to run path generation. When the progress
bar is finished, go to (3).

3. Push the Show/Hide Paths button.

4. Control that the path looks correct in the path grid.

5. Revert the start point if needed using the Revert Start Point button. (See fig:
A.5)

6. Use if necessary the check boxes to hide/unhide paths and points.

7. Unhide the popup view using the Show/Hide Paths.

8. Go to next tab (the settings tab).

APPENDIX A. USER MANUAL FOR PLUG-IN APPLICATION 75

Figure A.4: Overview of the path tab, and its different elements.

Figure A.5: Overview of the path popup view, and its different elements.

76 A.3. THE PLUG-IN APPLICATION

The user can at any time go back to this tab to review the different paths generated
after path factory, path optimizing and DR verification.

A.3.4 Setting the verification settings

The user should set needed settings for movement precision and axle settings in the
Settings tab . (Fig: A.6)

1. Use the slider in Movement precision to set the step precision2. A high preci-
sion causes a low step size, and a low precision causes a high step size. The
tool-tip of the slider gives the step size in [mm].

2. Set the Axle-centre length in [mm]. Default is 0. If no axle exists, the value
should be 0.

3. Set axle position; Front or Rear. NOTE: The validation objects front has to
be facing in the path direction. Default is centre. If no axle the axle position
should not be selected. (It is not dangerous if it is, as long the axle-centre
distance is 0.)

4. Go to next tab (the verification tab).

Figure A.6: Overview of the settings tab, and its different elements.

A.3.5 Running optimizing and verification

The user can run both the path optimizing and the DR verification in the Verifi-
cation tab . The optimizing should be run before the DR analysis, but it is not
demanded. The progress bar will show the progress during both optimizing and
verification. The status in the verification sessions view will show the results.

2The step precision should be high (around 100-200 mm) during path optimizing, an lower
during verification due to run-time speed (around 300-400 mm).

APPENDIX A. USER MANUAL FOR PLUG-IN APPLICATION 77

Figure A.7: Overview of the verification tab, and its different elements.

A.3.6 Monitor verification

The user can in theDR Analysis tab monitor the velocity, acceleration and applied
force during clash of the validation object during the DR verification.

Figure A.8: Overview of the DR Analysis tab, and its different elements.

NOTE: The DR Analysis tab only works in some versions of Windows 8. It may
occur some errors using it in Windows 8, and in Windows 7 with specific updates.

78 A.3. THE PLUG-IN APPLICATION

A.3.7 Visualize result

The user can in the Verification tab, also visualize the result after DR verification
by using the "Visualize result" button (fig: A.9).

Figure A.9: Overview of the verification tab after verification. The user can use the
"Visualize result" button to visualize the result.

Appendix B

Documentation

B.1 NORSOK schema

Figure B.1

79

80 B.1. NORSOK SCHEMA

Appendix C

Risk Assessment

81

C
:\

U
se

rs
\m

ar
iu

ro
e\

D
ro

pb
ox

\N
T

N
U

\M
as

te
ro

pp
ga

ve
\R

is
i k

ov
ur

de
ri

ng
\K

ar
tl

eg
gi

ng
ji

si
ko

vu
rd

er
in

g_
m

as
te

r_
v2

.x
ls

x

E
n
h
e
t
:

L
i
n
j
e
l
e
d
e
r
:

D
e
l
t
a
k
e
r
e

v
e
d

k
a
r
t
l
e
g

g
i
n

g
e
n

(m
l
t
u

n
k

s
j
o

n
)
:

(A
ns

v.
ve

il
ed

er
,

st
ud

en
t,

ev
t.

m
ed

ve
il

ed
er

e,
ev

t.
an

d
re

m
.

k
o
m

p
et

an
se

)

K
o
r
t

b
e
s
k

r
i
v

e
l
s
e

a
v

h
o

v
e
d

a
k

t
i
v

i
t
e
t
l
h

o
v

e
d

p
r
o

s
e
s
s
:

E
r

o
p

p
g

a
v

e
n

e
r

r
e
n

t
t
e
o

r
e
t
i
s
k

?
(J

A
IN

E
I)

_
_

_
_

_
_

_
_

S
i
g

n
a
t
u

r
e
r
:

A
ns

va
rl

ig
ve

il
ed

er
:

30
.0

1.
20

14
Si

de
1

av
2

M
a
r
i
u

s
R

o
e
d

M
a
s
t
e
r
o
p
p
g
a
v
e

v
e
d

1
P

M
D

a
t
o
:

29
.0

1
.2

01
4

M
ar

iu
s

H
an

se
n

R
ø

ed
(s

tu
de

nt
),

B
jø

rn
H

au
ge

n
(v

ei
le

de
r)

M
as

te
ro

pp
ga

ve
M

ar
iu

s
H

.
R

øe
d.

V
er

if
ik

as
jo

n
og

vi
su

al
is

er
in

g
av

ti
lk

om
st

av
ut

st
yr

pa
of

fs
ho

re
-p

la
tt

fo
rm

er

JA
“J

A
”

be
ty

r
at

ve
il

ed
er

in
n
es

tã
r

fo
r
at

o
p
p
g
av

en
ik

ke
in

nh
ol

de
r

n
o
en

ak
ti

vi
te

te
r

so
m

kr
ev

er
ri

si
ko

vu
rd

er
in

g
D

er
so

m
“J

A
”:

B
es

kr
iv

ko
rt

ak
ti

vi
te

te
n

I k
ar

tl
eg

gi
ng

sk
je

m
ae

t
un

de
r.

R
is

ik
qv

uj
de

ri
ng

tr
en

g
er

ik
ke

a
fy

i/
es

,p
it.

-
S

tu
de

nt
/

-

A
n

s
v

a
r
l
i

E
k
s
i
s
t
e
r
e
n
d
e

E
k
s
i
s
t
e
r
e
n
d
e

I
D

n
r
.

A
k
t
i
v
i
t
e
t
l
p
r
o
s
e
s
s

L
o
v
,

f
o
r
s
k
r
i
f
t

0
.1

.
K

o
m

m
e
n
t
a
r

g
d
o
k
u
m

e
n
t
a
s
j
o
n

s
i
k
r
i
n
g
s
t
i
l
t
a
k

it
tp

:l
li

n
n

si
d

a.
n

n
u

.n
o

lw
ik

i/
1

S
it

te
a s

kr
iv

e
op

pg
av

el
p
ro

g
ra

m
m

er
e

‘w
ik

i!
N

or
sk

/K
on

to
ra

rb
ei

ds
pl

as
ht

tp
:/

/w
w

w
.n

tn
u.

no
/h

m
s/

re
tn

in
2

pa
ko

nt
or

.
M

H
R

s+
-+

er
go

no
m

i
Ii

nj
er

/M
us

ea
rm

.p
df

2 3 4 5 6

	Introduction
	Problem outline, objectives and scope
	Aker Solutions
	KBeDesign - Knowledge Based Engineering
	Piping and Layout, Material Handling group

	Background and motivations
	Project work - Personnel access verification
	Short introduction
	The project work continuation to Master thesis

	Current process and challenges
	Manual verification with Navisworks
	Today's workflow

	Workflow and input parameters
	Input parameters
	Path
	Boundary geometry
	Verification geometry

	New workflow
	Standalone v.s. plug-in application

	Autodesk Navisworks
	Introduction to Navisworks
	Clash detection feature in Navisworks Manage 2014
	Navisworks .NET API and COM API

	Dynamic Relaxation
	Form finding using Dynamic Relaxation
	The method
	HHT - Hilber-Hughes-Taylor damping correction

	Use of Dynamic Relaxation in this Master's thesis
	The final algorithm

	System design of plug-in application
	Microsoft .NET technologies and architectures
	Windows Presentation Foundation
	Model-View-ViewModel architecture

	Plugin application architecture
	Navisworks Plugin (NwPlugin)
	The Views
	The ViewModels
	The Models
	The Observer design pattern

	Implementation of the plug-in application
	Use of Navisworks .NET and COM APIs
	Getting primitives from COM API
	Transformation of Validation object position

	Path factory
	The two phases
	Phase 1: Optimization of path using clash logging
	Phase 2: Verification using dynamic relaxation

	Implementation of Dynamic Relaxation algorithm

	The final plug-in application
	Short presentation
	The verification sessions view
	The verification control view

	User Interface - Usability
	Optimizing run-time
	Documentation

	Discussion - The new work flow v.s. the old
	Conclusions and further work
	Conclusion
	Further work

	Appendices
	User manual for plug-in application
	Setting up plug-in with Navisworks
	Setting input parametre in Navisworks
	The plug-in application
	Creating a new dynamic validation session
	Setting selections
	Setting path
	Setting the verification settings
	Running optimizing and verification
	Monitor verification
	Visualize result

	Documentation
	NORSOK schema

	Risk Assessment
	Blank Page
	Blank Page
	Blank Page
	Blank Page

