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Many speech based applications are hampered by unwanted signals. This applies to speech
communication (telephone), recognition, diarization, meetings, industrial environments
etc. The sources of the unwanted signals can be other persons (overlapping speech) or
different kind of noises. Thus noise reduction has been a major research area for many
years.

Conventional signal processing methods like Wiener filters, spectral subtraction, active
noise control, voice activity detection etc. have been widely applied. Further, the methods
should show strong correlation between objecive and subjective quality criterias.

The performance of most speech based applications have recently shown a significant
improvement due to the introduction of machine learning approaches. This improvement
is mainly due to the recent success of learning in so called deep neural networks (DNN).

In this master task, suggested by Cisco, the student shall implement and evaluate one
such DNN approach to speech enhancement [1]. Both performance for white noise and
robustness with respect to different kinds of noise sources [2] shall be investigated. Further
the DNN solution should be robust over different signal to noise ratios. The quality of the
method shall be evaluated both by objective measures like segmental SNR and a measure
correlated by subjective quality scores PESQ [3]. Finally the quality shall be compared to
a standard signal processing method called OM-LSA [4].
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Summary

This master thesis describes the implementation and evaluation of a promising approach
to speech enhancement based on deep neural networks. A baseline system was imple-
mented and trained using noisy data synthesized by combining speech from the TIMIT
database with white Gaussian noise and recorded background noise signals from the Au-
rora2 database. Several techniques for improving the system, some proposed in other pa-
pers and some original, were implemented and evaluated. The quality of the enhanced
speech has been assessed by comparison with the reference clean speech using mean
square error (MSE) in the short time log-magnitude spectrum, segmental signal-to-noise-
ratio estimates on the waveforms, and a ITU-T standard method called Perceptual Evalu-
ation of Speech Quality (PESQ).

Of the implemented techniques, using dropout during training was shown in a small
experiment to give better results for the MSE, but worse or no better results in terms
of PESQ. Another technique called global variance equalization had the opposite effect,
negatively affecting MSE, but significantly improving the PESQ results. An experiment
replacing the sigmoid activation functions of the deep neural network with the increasingly
popular rectified linear units indicated that the latter setup could achieve as good or better
performance without using greedy layer-wise pretraining.

In addition to comparing variations of the deep neural network, the speech enhance-
ment system was compared to a standard signal processing method called OM-LSA. The
deep neural network based system giving best performance resulted in superior PESQ
score, but, in some cases, worse segmental SNR than what was achieved with OM-LSA.
Two hybrid systems combining OM-LSA with the DNN system were proposed, and one
showed a significant improvement in MSE for test set with unseen noise over the DNN
alone. In terms of PESQ, however, using the DNN alone gave better results than both
hybrid systems.

Testing the DNN systems performance for different sound classes gave some more
insight into what the method is good, and less good, at. An attempt to understand the
parameters of the trained DNN led to a new interpretation of the system as one identifying
speech features in noise and choosing from a set of ”basis vectors” how to best estimate
the clean speech log-magnitude spectrum. This was considered an interesting perspective
even if it might not be the ”correct” interpretation.

Some limited subjective evaluation was performed by the student by listening to files
from the test set enhanced by the system. This revealed that the system performs very
well in certain cases, also for unseen noise, but results in distorted speech of low expe-
rienced quality in other. This was especially true for files dominated by noise that were
mismatched to the training data.
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Sammendrag

Denne masteroppgaven beskriver implementasjon og testing av en lovende teknikk for
taleforbedring med bruk av dype nevrale nettverk. Et grunnleggende system ble imple-
mentert og trent med støyet data syntetisert ved å kombinere tale fra TIMIT databasen
med hvit gaussisk støy og opptak av bakgrunnsstøy fra Aurora2 databasen. Flere teknikker
for forbedring av systemet ble implementert og testet, enkelte foreslått andre artikler og
enkelte originale. Kvaliteten til talen etter støyfjerning ble målt ved sammenligning av ren
of støyet tale med middels kvadratisk avvik i log-magnitude spekteret til rammer av sig-
nalene, segmentelt signal-til-støy-forhold estimert basert på bølgeformen og en standard
utviklet av ITU-T kalt Perceptual Evaluation of Speech Quality (PESQ).

Av de implementerte teknikkene førte dropout, basert på et lite eksperiment, til en
forbedring i midlere kvadratisk avvik, men ingen forbedring i PESQ. En annen teknikk,
global variance equalization viste den motsatte tendensen: en negativ effekt på det kvadratiske
avviket og en forbedring av PESQ målet. Et eksperiment hvor aktiveringsfunksjonen i
nettverket ble byttet ut med en mer moderne likerettet lineær funksjon indikerte at dette
oppsettet kunne resultere i like god eller bedre ytelse uten å bruke en mye brukt teknikk
for lagvis pretrening av nettverket.

I tillegg til å sammenligne variasjoner av det dype nevrale nettverket, ble taleforbedrings-
systemet også sammenlignet med en tradisjonell signalprosesseringsteknikk kalt OM-LSA.
Det dype nevrale nettverket som hadde beste testresultater resulterte i forbedret tale med
høyere PESQ, men for noen data dårligere segmentelt signal-til-støy-forhold enn OM-
LSA. To hybridsystem som kombinerte de to metodene, OM-LSA og DNN, ble presentert
og testet. Det ene systemet viste signifikant forbedring i kvadratisk avvik for test data
med usette støytyper. For PESQ målet viste det seg imidlertid å være bedre å bruke DNN
systemet alene.

Testing av systemet på ulike lydklasser gav økt innsikt i hva systemet er bra og mindre
bra til. Et forsøkt på å forstå de trente parametrene til det dype nevrale nettverket resulterte
i en ny forståelse av estimeringsprosessen som en kombinasjon av ”basisvektorer” som til
sammen danner det beste estimatet av utgangsrammen. Uansett om dette er en riktig tolkn-
ing av nettverket eller ikke ble det vurdert som en interessant måte å tenke om systemet
på.

Noen subjektive vurderinger basert på lytting til resultatet av de forskjellige teknikkene
ble foretatt for enkelte filer fra testsettene. Disse testene indikerte at systemet har god
ytelse i mange tilfeller, men resulterer i tale med dårlig kvalitet i andre tilfeller. Dette er
særlig tilfellet for filer hvor signalet domineres av støytyper som er veldig ulik de som ble
inkludert i treningen av nettverket.
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Chapter 1
Introduction

In communication systems and other speech based applications, the signal of interest –
speech – will often be corrupted by background noise and other interfering signals. The
field of speech enhancement aims to remove this corruption by use of signal processing al-
gorithms, improving the quality of speech signals as a result. Many traditional techniques
such as the Wiener filter, spectral subtraction, voice activity detection and more, have
found widespread use and give good performance when the signal-to-noise-ratio (SNR) is
relatively high. For low SNRs, however, the traditional methods often lead to annoying
residual noise, like the so-called ”musical noise”. Traditional approaches also frequently
make assumptions about the corruption that might not hold in all scenarios. For exam-
ple, a much used assumption of stationary or slowly varying noise statistics in classical
speech enhancement methods results in these algorithms having poor performance for
non-stationary or transient noises.

With the growing popularity of machine learning in deep neural networks (DNN), new
approaches have been shown to result in state-of-the-art performance for many traditional
signal processing problems. Instead of finding analytical solution, based on assumptions
and approximations, these methods use enormous sets of data to train complex models
that implements the wanted functionality. Also in the field of speech enhancement, several
papers have reported good results using these kinds of machine learning techniques. In
one particular paper [1], a DNN based system trained to minimize the mean square error of
noisy speech in the log-magnitude spectrum demonstrated very promising noise reduction
capabilities for non-stationary noise, without introducing the mentioned ”musical noise”.
this system.

The work described in this master thesis is a continuation of a preliminary project
completed by the student in the preceding semester, implementing a limited version of the
system from [1] for enhancement of speech corrupted by additive white Gaussian noise.
The objective of the master work was to build on this, in order to implement and evalu-
ate a more complete version of the DNN based speech enhancement system. Part of the
practical challenge involved transitioning to more appropriate software for machine learn-
ing than what was used in the preliminary project. This gave the possibility of massively

1



Chapter 1. Introduction

accelerating the model training by use of a GPU.
Recreating the results from [1] was not considered realistic under the scope of the

master task. Rather, the contribution of this master thesis was intended to be a more in-
depth understanding of the system and how the different variations affect the performance.
Some possible alternative setups outside of [1] were also discussed, and an attempt was
made to interpret some of the learned parameters based on knowledge of the input and
output signals.

The document is structured as follows:
Chapter 2: Contains the basic theory needed to understand the rest of the thesis. It focuses
mainly on artificial neural networks and deep learning, but also contains a short descrip-
tion of a traditional speech enhancement algorithm used for comparison and the quality
measures used for testing.
Chapter 3: Contains a short description of the databases used, how noisy data was syn-
thesized and what software tools and resources were used.
Chapter 4: Contains a description of the speech enhancement system, the general training
and testing procedure, techniques implemented to improve the performance of the system
and proposed variations in the setup of the system.
Chapter 5: Contains an analysis of the system through presentation and discussion of the
results from the experiments.
Chapter 6: Contains suggestions for future work.
Chapter 7: Contains the conclusion.

2



Chapter 2
Basic Theory

2.1 Overview

This chapter contains the theoretical basis for the work presented in the thesis. The focus
has been on explaining the central concepts of artificial neural networks including some
details regarding architecture and training procedures. As the master thesis is a contin-
uation of project [5] completed by the student in the previous semester, much what was
written in the theory chapter there is also relevant for this thesis. The sections 2.2, 2.3 and
2.6 are copied directly from the project report with minor corrections and a few appended
paragraphs. The remaining sections are either extensively rewritten and reorganized or did
not appear in [5].

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a family of machine learning models that can be
trained to perform many complicated tasks. Originally inspired by our understanding of
biological nervous systems, ANNs are mostly made up of simple computational elements
(neurons) in a densely connected network structure [8]. Neural networks are used to per-
form non-linear mappings from input to output data, which can be trained to realize a wide
variety of functions. There are a number of different families of neural networks that vary
in the operations performed in individual nodes, in how the nodes are connected together,
and in the algorithms and procedures used for training.

The basic building block of most ANNs are neurons like the one illustrated in Fig-
ure 2.1. This neuron receives inputs from other nodes in the neural network through the
incoming connections, including a bias (or offset) that is not connected to any other node.
Each of the connections have a weight that is multiplied with the incoming value they are
communicating to the neuron. In the figure the bias is illustrated as a connection having
weight w0 (the value of the bias) and input always equal to 1. The sum of weighted inputs
to the neuron is passed to an activation function that computes the output, or activation, of

3



Chapter 2. Basic Theory

Figure 2.1: A single neuron. [5]

the neuron (Eq. 2.1).

y = f

(
N∑
i=1

wixi + w0

)
(2.1)

By defining data and weight vectors x = [1, x1, x2, ..., xN ]T and w = [w0, w1, w2, ..., wN ]T

we can write Equation 2.1 using vector notation:

y = f
(
wTx

)
(2.2)

Traditionally, common choices of f include the sigmoid function in Equation 2.3 and
the hyperbolic tangent among others [9]. In some cases the neurons might simply be linear,
meaning the activation function output equals its input: f(µ) = µ.

f(µ) =
1

1 + e−µ
(2.3)

Figure 2.2: The sigmoid function. [5]

If the absolute values of the weights are big and the input values not too small, neurons
with activation functions like the sigmoid can be thought of to be either ”on” or ”off”, cor-
responding to an output that is either 1 or 0 (see Figure 2.2). For small weights, however,
the input sum might be close to zero, meaning the output of the node will vary, approxi-
mately linearly, between values close to 0 and 1.

Ignoring the transitional part of the function, the negative of the bias value acts as
a threshold that the weighted sum of inputs must be greater than to turn on the neuron
(making the argument in Equation 2.1 greater than 0).

4



2.2 Artificial Neural Networks

In recent years rectified non-linearities like the rectified linear unit (ReLU) in Equa-
tion 2.4 and Figure 2.3 have become very popular, especially for classification tasks. In
[10] it was found that ”using a rectifying non-linearity is the single most important factor
in improving the performance of a recognition system”. Others have found that these types
of activation functions work equally well or better than hyperbolic tangent functions, and
that they are interesting because they provide a better model of biological neurons [11].
[12] calls the replacement of sigmoid units with rectified linear units one of two major al-
gorithmic changes that has ”greatly improved the performance of feedforward networks”.
Generalizations of the rectifier function in Equation 2.4 exist that have a non-zero gradient
for negative input values. An example is the one used in so-called leaky ReLUs, defined
in Equation 2.5. Here α is a small positive constant like 0.01 [12]. The gradient for this
function is 1 for positive µ and α for negative µ, and by setting α = 0 we get the standard
rectifier function.

f(µ) = max(µ, 0) (2.4)

Figure 2.3: The rectified linear function is a leaky ReLU with α = 0

f(µ) = max(µ, 0) + αmin(µ, 0) (2.5)

An important subclass of ANNs are so called feedforward neural networks, briefly
mentioned in the previous paragraph. In these networks the nodes are organized in a
directed acyclic graph from input nodes to output nodes. A special case of these kinds
of networks is the multilayer perceptron (MLP). Here the nodes are organized in layers
with connections only between neighboring layers [9]. The nodes in the first layer are
simply the input features that are fed to the network, meaning they do not perform any
computations. The final layer is the output layer and any layers preceding this – except
the input layer – are called hidden layers. A simple MLP is illustrated in Figure 2.4. The
biases of the neurons are drawn in red and are again represented as ones connected to the
neurons through weighted connections.

When numbering the layers in a MLP many choose to omit the input layer and only
count the layers containing the neurons that perform computations. By this convention
the neural network in Figure 2.4 is a two-layer MLP. The nodes in the hidden and output
layers are of the kind illustrated in Figure 2.1.

We can organize the output values from one layer in a vector and use notation similar
to Equation 2.2, only now using weight matrices for every layer of connections. Figure
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Chapter 2. Basic Theory

Figure 2.4: A simple multilayer perceptron (MLP). Previously featured in [5]

2.5 shows an alternative representation of the MLP from Figure 2.4, using vectors and
matrices to describe the network. The input vector x = [1, x1, x2]T is multiplied by the
transposed weight matrix for the first layer of connections W1 = [w

(1)
1 ,w

(1)
2 ,w

(1)
3 ]. Each

column in W1 is a weight vector, like the one in Equation 2.2, describing the connections
to one of the nodes in the hidden layer. The subscript indicates which of the three nodes
the connections lead to and the superscript (1) indicates that it’s the first layer of connec-
tions. The matrix-vector product is stored in r and the activation function of the neurons is
applied to the elements of this vector to compute the layer output, as written in Equation
2.6.

Figure 2.5: Block diagram for MLP in Figure 2.4. [5] Based on [6]

z̃ = f1(r) = f1
(
WT

1 x
)

(2.6)

To include possible biases a 1 is concatenated with the output vector: z = [1, z̃T ]T .
This is not illustrated in the figure. The concatenated vector serves as input to the next
layer, and the output of the MLP is computed as:

y = f2(g) = f2
(
WT

2 z
)

(2.7)

Note that here the same activation function is used for all neurons in the same layer, but
different functions might be used for the hidden and output layers. For both layers, and in
general, the activation function is computed element-wise on the matrix-vector product.
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2.3 Backpropagation

2.3 Backpropagation
Multilayer perceptrons are usually trained in a supervised manner, using labeled training
data. The set of training data is a collection of input-output pairs [{xk, tk}, k = 1, 2, ...,M ]
where tk is the ideal output vector, or target, for input vector xk, and M is the size of the
training set. An objective function is defined for measuring the disparity between the ac-
tual output yk and the ideal output tk for every input vector xk in the set. The training
procedure aims to minimize this objective function for the data in the training set by up-
dating the parameters θ of the network. A few popular choices for the objective function
are the sum of squared errors (SSE), mean-squared-error (MSE) and cross-entropy error
function [9]. For an output layer having N elements the SSE function is written in Equa-
tion 2.8. The θ is the set of parameters of the MLP. In [9] the MSE function is defined as
in Equation 2.9, which is simply the SSE function normalized by the size of the training
set and number of output elements. However, objective functions normalizing over the
training set, but not the number of vector elements, are also often referred to as MSE, e.g.
in [1]. The factor 1

2 is not necessary, but included to get nicer derivatives of the functions.

JSSE(θ) =
1

2

M∑
k=1

N∑
i=1

(yki − tki)2 (2.8)

JMSE(θ) =
1

2NM

M∑
k=1

N∑
i=1

(yki − tki)2 =
1

NM
JSSE(θ) (2.9)

The most used algorithm for training MLPs is the backpropagation algorithm. It com-
putes the derivatives of the objective function with respect to the weights of the network
and use them to update the weights in a gradient descent like manner [9]. This means the
weight update for the connection going from node i in layer l− 1 to node j in layer l is set
proportional to the negative of the objective function J differentiated with respect to the
weight of that connection. Assuming the notation ∆w = wnew − wold this can be written
as in Equation 2.10. The parameter α is a small positive value called the learning rate.

∆w
(l)
ji = −α∂J(θ)

∂w
(l)
ji

(2.10)

Since backpropagation uses a gradient based update rule it is clear that the activation
function must be differentiable. Rectified linear units have previously been avoided be-
cause of the non-differentiable point for inputs equaling zero [12], however, in practice
this has been shown not to be a problem. Both the sigmoid (Eq. 2.3) and the hyperbolic
tangent also have simple, continuous derivatives and are much used in feedforward net-
works trained by backpropagation. In particular, if y = f(µ) where f is the sigmoid
function we can write its derivative as:

dy

dµ
= y(1− y) (2.11)

Assuming some initial value for the weights in the network, the backpropagation al-
gorithm first calculates the output vector for one, several or all of the input vectors in the
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Chapter 2. Basic Theory

training set. This is called the forward pass. To understand how the backpropagation al-
gorithm works it is useful to take a closer look at the last layer of the network. In the
following the y’s are neuron outputs and g’s are the sums of weighted inputs to the neu-
rons. Subscripts of these variables denote the neuron number and the superscripts the layer
number. The following derivations are based on [13].

Figure 2.6: A closer look at the last layer of the MLP [5].

Depending on the objective function, the differentiation of objective function J with
respect to the MLP output elements will be some kind of error term. In Figure 2.6 the j’th
neuron in the MLP output layer is emphasized. If we use the SSE objective function of
Equation 2.8, but for simplicity set the size of the training data to be M = 1, we have the
following derivative for output j:

∂JSSE(θ)

∂y
(L)
j

=
∂

∂y
(L)
j

1

2

N∑
i=1

(
y
(L)
i − ti

)2
=
(
y
(L)
j − tj

)
(2.12)

These terms are ’propagated’ backwards in the network using the chain rule to obtain
the partial derivatives in Equation 2.10. First, using the error term of Equation 2.12, the
derivative of J with respect to g(L)j (the input sum for node j) can be found. Assuming the
activation function f in the last layer is a sigmoid, we have:

∂JSSE(θ)

∂g
(L)
j

=
∂y

(L)
j

∂g
(L)
j

∂JSSE(θ)

∂y
(L)
j

= y
(L)
j

(
1− y(L)j

) ∂JSSE(θ)

∂y
(L)
j

(2.13)

This can be used to find the derivatives needed in the weight update:

∂JSSE(θ)

∂w
(L)
ji

=
∂g

(L)
j

∂w
(L)
ji

∂JSSE(θ)

∂g
(L)
j

(2.14)
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Using the three previous equations and also noting that g(L)j =
∑
i w

(L)
ji y

(L−1)
i we have:

∂JSSE(θ)

∂w
(L)
ji

= y
(L−1)
i

∂JSSE(θ)

∂g
(L)
j

= y
(L−1)
i y

(L)
j

(
1− y(L)j

)(
y
(L)
j − tj

)
(2.15)

Using Equation 2.15 one can update all the weights of layer L using Equation 2.10.
To update the weights of the preceding layers you need error terms like the one in

Equation 2.12. Since there are no target values for nodes in the hidden layers, these error
terms are also acquired using the chain rule. The outputs of layer L − 1, to the left in
Figure 2.6, are the values y(L−1)i , meaning the error terms are:

∂JSSE(θ)

∂y
(L−1)
i

=
∑
j

∂g
(L)
j

∂y
(L−1)
i

∂JSSE(θ)

∂g
(L)
j

=
∑
j

w
(L)
ji

∂JSSE(θ)

∂g
(L)
j

(2.16)

This can be used with Equations 2.13 and 2.14 for layer L − 1 to get the updates of the
weights connected to this layer. This process is repeated going backwards through all the
layers until all the weights of the network have been updated.

With matrix notation the gradient used in the update rule, using a single input vector,
can be written as in Equation 2.17 [6].

∇Wl
J(θ) = y(l−1)

[
y(l). ∗ (1− y(l)). ∗∆y(l)

]T
(2.17)

Here .∗ denotes element-wise multiplication and ∆y(l) is the error term for layer l. For the
last layer we have ∆y(L) = y(L) − t. For other layers with sigmoid activation functions
the error terms are given by Equation 2.18. The update rule for the weight matrix in layer
l is the same as in Equation 2.10, only for weight matrices: ∆Wl = −α∇Wl

J(θ).

∆y(l) = Wl+1

[
y(l+1). ∗ (1− y(l+1)). ∗∆y(l+1)

]
(2.18)

In all practical cases the training set size M � 1 and to get the correct derivatives of
objective functions like equations 2.8 and 2.9 a summation over the gradient term for every
training vector is necessary. In practical applications many choose to update the weights
using only a subset or even a single term. This is called mini-batch and on-line training
respectively, as opposed to full-batch learning which uses the whole training set for every
weight update.

2.4 Regularization and modifications of the update rule
To successfully train a neural network one needs a big enough model to implement the de-
sired mapping and enough representative data for the learned mapping to perform well also
for new, unseen data. If this is the case, the network is said to generalize well. However,
if the number of parameters (weights) of the neural network is too large compared to the
number of training examples, or the data is not representative, there’s a risk of overfitting
the network parameters to the training data. This means that the neural network learns a
mapping that is specific to the data it has seen, leading to a large gap between performance
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Chapter 2. Basic Theory

on training data and test data. Reducing the number of parameters in the model will make
overfitting less likely, but this obviously also reduces the capacity of the neural network,
which could lead to an inability to learn the desired mapping. An obvious remedy is to use
a big model and simply increase the amount of training data. However, since labeled data
in most cases is a limited resource, this is not always a realistic solution. Luckily there
exist a number of alternative strategies to try to keep neural networks from overfitting.
These methods are collectively referred to as regularization [12].

One way to combat overfitting to try to keep the weights of the network from growing
too big. This is essentially making the learning prefer ”smoother” functions, which can
be compared to using a simpler model (less parameters) [9]. This can be accomplished
in several ways, but among the most usual are penalizing the norm of the parameters. An
example is the much used L2 regularization which adds a parameter times the sum of
squared weight to the objective function. Intuitively, if this parameter has a big value, the
only way to minimize the objective function is to make sure the sum of squared weights
is a small number. Adding this term to the objective is equivalent [9] to subtracting a
parameter times the weight matrix from the weight matrix update term:

∆W′
l = −α∇Wl

J(θ)− ακWl (2.19)

Writing out the expression to be assigned to the weight matrix it’s easily seen that the old
parameter values are scaled by a number smaller than 1 for every update (Eq. 2.21). For
this reason L2 regularization is also referred to as weight decay.

Wl ←Wl + ∆W′
l (2.20)

Wl ← (1− ακ)Wl − α∇Wl
J(θ) (2.21)

Weight decay makes sure weights with small or zero gradient terms are slowly scaled
toward zero, essentially reducing unnecessary parameters and thus simplifying the model.

For weights with nonzero gradient terms it’s clear that the modified weight update
∆W′

l will be zero before the minimum of the original objective function is reached (and
the gradient is zero). In that sense there exists a certain trade-off in choosing the value of κ,
between penalizing large weights and reaching a minimum of the (original) objective func-
tion. Regularization can therefore be seen as methods that seek to improve performance
on unseen test data at the expense of (possibly) worsening performance on the training
data.

A form of regularization similar to weight decay penalizes the sum of absolute values
of the weights and is therefore called L1 regularization. According to [12] this type of
regularization typically leads to solutions with increased sparsity, meaning it may cause
several of the weight matrix elements to have an optimal value of zero. This might be
preferred for some types of problems.

Instead of adding a penalty term to the cost function it is possible to implement explicit
constraints of the parameters of the neural network. An example of this is constraining the
norm of each column of each weight matrix to be less than or equal to some value c. If the
norm exceeds this value, all elements in the column vector are scaled by the same value,
projecting the vector onto a N-dimensional sphere with radius c [12], N being the num-
ber of elements in the column. Since the elements in a column are the incoming weights
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to a single node in the next layer this type of regularization keeps the individual nodes
from having too large incoming weights. This seems reasonable, especially when using
saturating activation functions like sigmoid and the hyperbolic tangent. In [14] this type
of regularization is chosen because it allows the use of a large learning rate at the start of
training without big parameter updates causing the weights to ”blow up”. This regulariza-
tion technique is called max-norm in [15], where it is recommended in combination with
dropout, which is described in Section 2.5.

There exists other modifications to the weight matrix update rule that can improve
learning and generalization. A popular method called momentum is designed to speed up
learning by stabilizing the trajectory of the weight matrix update [9]. Instead of using the
gradient terms directly in the weight update, momentum accumulates the gradients in a
velocity matrix, defined in Equation 2.22.

Vl[n] = ωVl[n− 1]− α∇Wl
J(θ[n− 1]) (2.22)

Here the velocity of the n’th epoch is set equal to a parameter ω times the previous velocity,
minus the learning rate times the gradient of the objective using the parameters after the
previous update θ[n − 1]. Then the weight update term of the n’th epoch is set equal
to the velocity at time n: ∆Wl[n] = Vl[n]. The momentum parameter ω is chosen to
take values the range [0, 1), meaning the velocity term will contain a sum of exponentially
decayed past gradient terms.

A slightly different implementation of momentum that was used in the thesis work is
presented in equations 2.23 and 2.23. Here the the gradient term is scaled with 1 − ω
and added to the previous velocity to form the new one. The parameters are updated by
subtracting the velocity times the learning rate. The only change is the additional scaling
of the gradient, which in practice leads to using a lower learning rate α′ = α(1− ω).

Vl[n] = ωVl[n− 1] + (1− ω)∇Wl
J(θ[n− 1]) (2.23)

Wl[n] = −αVl[n] (2.24)

2.5 Dropout
A simple and effective way to improve the performance of neural networks on unseen data
is to train many different networks and average the predictions they make for a given input.
According to [12] this kind of model averaging is a very powerful and reliable method for
improving generalization. To train many different big neural networks to convergence can
however be very computationally expensive.

Dropout is a powerful way to prevent large neural network architectures from overfit-
ting that can be thought of as an approximation of model averaging using a big number
of different neural networks [15]. Dropout works by randomly dropping nodes and their
connections during the training of a neural network. This is equivalent to sampling among
an exponential set of smaller sub-networks of the bigger architecture, as illustrated in Fig-
ure 2.7. A new sub-network is sampled for every weight update, which means that every
unique model might just be trained a few times, if at all, during the training procedure.
However, since many of the smaller models will contain the same connections, all the
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weight of the original neural network will still – with high probability – be updated many
times throughout the training.

Figure 2.7: Three possible sub-nets, sampled from the original neural network by drop-
ping nodes with a certain probability

Dropout can be implemented by multiplying a binary mask with the activations, or
outputs, of every layer except the final one. The elements of the mask vector are typically
Bernoulli random variables that take the value 1 with probability p [15]. The inverse
probability, 1− p, will be referred to as the dropout rate of the nodes. According to [12] it
is normal to use a value of 0.5 for p for nodes in the hidden layers and 0.8 for nodes in the
input layer. The bias-nodes of the neural network are not dropped.

After training with dropout, one does not actually average the predictions of all the
sampled networks. Instead the complete architecture containing all the nodes is used,
with weights going out from a node scaled by multiplying them with the probability, p, of
keeping that node during training [15].

Dropout is thought to reduce overfitting by preventing the neurons forming complex
co-adaptions that tend to fit the training data well, but are less likely to generalize to
unseen examples [14]. Since a different set of nodes will be present for every weight
update, the neurons will be forced toward discovering useful features of their inputs on
their own, without relying too much on the other nodes of the network. Removing nodes
will however reduce the capacity of the neural network, something that can be remedied
by increasing the size of the model [12].

Dropout as it has been described here works by multiplying the node outputs in a layer
with independent Bernoulli random variables. Even though this method can be understood
as sampling and training sub-networks to approximate model averaging, it was found in
[15] that other random variables than Bernoulli can work as well. Especially random
variables drawn from a Gaussian distribution with unit mean and variance was found to
work ”just as well, or perhaps better” than Bernoulli variables, even though the nodes are
no longer dropped from the network in the same way. Making the variance σ2 = 1−p

p
gives the capability of scaling the ”dropout rate” similar to the Bernoulli method. Since
the expected values of the Gaussian variables are 1, unlike the Bernoulli variables, it is not
necessary to scale the weights by p after training.

Dropout is a type of regularization seemingly very different from the previous methods
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described. Dropout can be combined with these other regularization techniques to further
improve generalization. As mentioned, the max-norm technique described in the previous
chapter was found to be especially well suited for dropout in [15].

2.6 Restricted Boltzmann Machines
Restricted Boltzmann machines (RBM) are a special class of energy-based probabilistic
models called Boltzmann machines. They are graphical models with hidden and visi-
ble nodes, much like the neural networks previously described. They are described as
energy-based because the configuration of the nodes in the model has an associated en-
ergy. The probability of this configuration is set proportional to the exponential of the
negative energy (Eq. 2.26) [16]. RBMs are restricted in that the hidden and visible nodes
are organized in a bipartite graph structure with connections only between pairs of hidden
and visible nodes. This can be illustrated by placing the visible nodes in one layer and the
hidden nodes in another and only having connections going from one layer to the other,
as shown in Figure 2.8. RBMs are trained with unlabeled data and can be used as build-
ing blocks for deep architectures [17]. Using the weights and biases of stacked RBMs as
initial values for the parameters of deep neural networks led to breakthrough that caused a
revival of interest in neural networks in 2006. This is described further in the next section.

Figure 2.8: Graphical model of a Restricted Boltzmann machine. Values of the visible
and hidden nodes are contained in the vectors v and h respectively. [5]

In the standard RBM all nodes are stochastic, binary units and they are therefore dif-
ferent from the neurons in Section 2.2. Another difference from the neural networks de-
scribed earlier is the fact that the connections are bidirectional, so values can be commu-
nicated both ways between a pair of connected nodes. The connections still have a weight
associated with them, which is symmetric, meaning the connection has the same weight
going from the hidden to visible node as going from the visible to hidden node. Every
node has an additional bias term, though this is not illustrated in Figure 2.8.

The energy of a configuration (h,v) is given by the expression in Equation 2.25 [18].
Here bj is the bias of hidden node j and ci the bias of visible node i. The factor wij is the
weight of the connection between hidden node j and visible node i.

Energy(h,v) = −
∑

i∈visible

civi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij (2.25)

Equation 2.26 gives the probability of a configuration (h,v) for the visible and hidden
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variables of the RBM. The denominator Z is a normalizing constant, often referred to as
partition function, defined in 2.27. This is simply a sum over all possible configurations
of the nodes, necessary for the probabilities to sum to 1. θ in these equations is the set of
parameters of the RBM, containing the weight matrix and biases of both layers.

P (h,v; θ) =
e−Energy(h,v)

Z
(2.26)

Z =
∑
v

∑
h

e−Energy(h,v) (2.27)

The exponent in 2.26 is the negative of the energy of the configuration, defined in Equation
2.25. It’s clear that in order to have high probability, a configuration (h,v) of the nodes
should have low energy. To get the probability of the data in the visible nodes, a sum over
all possible vectors h is necessary:

P (v; θ) =
∑
h

e−Energy(h,v)

Z
(2.28)

Inspired by physics [16], it is normal to define the free energy of the RBM to be:

FreeEnergy(v; θ) = − log

(∑
h

e−Energy(h,v)

)
(2.29)

Equation 2.28 then can be written on the same form as 2.26:

P (v; θ) =
e−FreeEnergy(v;θ)

Z
(2.30)

Since the RBM has no direct connections between pairs of hidden nodes or pairs of
visible nodes, the variables in one layer are independent when conditioned on the state of
the other layer [16]. For the hidden layer this can be written as in Equation 2.31.

P (h|v; θ) =
∏

j∈hidden

P (hj |v; θ) (2.31)

Here the value of the j’th node in the hidden layer, hj , is a binary random variable that takes
the value 1 with the probability in Equation 2.32. The function σ is the sigmoid, defined
in Equation 2.3. An almost identical expression in Equation 2.33 gives the probability of
a visible unit being equal to 1, given h.

P (hj = 1|v; θ) = σ

(∑
i

viwij + bi

)
(2.32)

P (vi = 1|h; θ) = σ

∑
j

wijhj + ci

 (2.33)
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The goal of RBM training is to update the parameters (weights and biases) using a set
of unlabeled training data, so that the model can generate this data with high probability.
This is done by lowering the energy of the node configurations (h,v) with the training data
at the visible nodes, and increasing the energy of other (unseen) configurations [18]. This
has the effect of increasing the numerator in Equation 2.28 for values of v in the training
set, and reducing terms in the partition function (Eq. 2.27) for other configurations. The
result is a higher probability for the data vector v, or rather a higher likelihood of the
RBM parameters θ for the training data. Essentially this is describing maximum likelihood
learning, which aims to maximize Equation 2.28 for training data {v} by updating the
parameters θ. To maximize the likelihood, one needs the gradient with respect to the
parameters. It turns out that the derivative of the log-likelihood with respect to the weights
is the relatively simple expression in Equation 2.34 [18]. The E denotes expectation over
the distribution specified in the subscript.

∂ log (P (v; θ))

∂wij
= Edata{vihj} − Emodel{vihj} (2.34)

Unfortunately, getting numerical values for 2.34 takes many iterations of alternating Gibbs
sampling, which is computationally inefficient in practical applications [18].

A learning procedure called Contrastive Divergence (CD1 for short) using a single
Gibbs sampling step has been shown to work well for training RBMs. This is an computa-
tionally efficient, although not very accurate, approximation of the log-likelihood gradient
described in 2.34. As illustrated in Figure 2.9, it starts with a vector from the training
set in the visible layer and then updates the hidden nodes by sampling from a Bernoulli
distribution with probability in 2.32. Having set the values of the hidden layer, the visible
nodes are sampled in the same fashion, creating a ’reconstruction’ of the visible data. Fi-
nally, a second update of the hidden units (given the reconstruction of the visible nodes)
is performed. Note that to avoid unnecessary variance in the update, the hidden values are
not actually sampled during this last step, but set equal to their probabilities of having the
value 1 (Eq. 2.32) [18]. The update rules are given in equations 2.35 – 2.37 [18]. The sub-
script denotes node number and the superscript the update number in the sampling chain,
as in Figure 2.9. α is again a learning rate or step factor.

wij = wij + α(v
(1)
i h

(1)
j − v

(2)
i h

(2)
j ) (2.35)

bj = bj + α(h
(1)
j − h

(2)
j ) (2.36)

ci = ci + α(v
(1)
i − v

(2)
i ) (2.37)

In many cases, doing more than one step of Gibbs sampling can improve the quality of
the RBM update. In general, the CDk algorithm performs k steps of conditionally updating
the visible and hidden states of the RBM, and uses statistics from the final update as the
second term in the equations 2.35 – 2.37 [18].

For continuous input data, using binary visible nodes is not the best solution. An
alternative to the binary RBM, called Gaussian-Bernoulli RBM (GB-RBM) uses binary
hidden nodes, but real-valued, gaussian visible nodes. This means the hidden nodes are
still updated by sampling from a Bernoulli distribution with probability as in Equation
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Figure 2.9: Illustration of sampling steps in Contrastive Divergence algorithm CD1. [5]

2.32, but that the visible nodes are updated by sampling from a gaussion distribution.
If the input features are normalized to have unit variance, the distribution of the visible
nodes is written in Equation 2.38 [19]. This is equivalent to having linear visible nodes
with added gaussian noise: vi =

(
ci +

∑H
j=1 wijhj

)
+ n, where n ∼ N (0, 1). In [18],

however, it is written that in practice it is easier to use noise-free reconstructions when
sampling the visible units.

P (vi|h; θ) = N

ci +
∑
j

wijhj , 1

 (2.38)

The learning rate should be smaller for the GB-RBM, as the real-valued visible units
are not bounded in size like the binary units are [18]. Aside from these differences, the
learning procedure for GB-RBM is the same as for the binary (Bernoulli-Bernoulli) RBM,
although the energy function is slightly different from 2.25.

Just like for neural networks, it is possible for RBMs to overfit the training data. The
free energy from Equation 2.29 can be used to monitor the overfitting of the model. The
procedure calls for calculating the ratio of the probability the RBM assigns to training data
vtrain over that which it assigns validation data vvalid. Using the ratio of the probabilities
causes the partition function Z to cancel out:

P (vtrain; θ)

P (vvalid; θ)
=
e−FreeEnergy(vtrain;θ)

e−FreeEnergy(vvalid;θ)
(2.39)

Taking the logarithm of this ratio reduces the expression to the difference in free energy
for the two datasets:

log

(
P (vtrain; θ)

P (vvalid; θ)

)
= FreeEnergy(vvalid; θ)− FreeEnergy(vtrain; θ) (2.40)

[18] recommends finding the free energy of a representative subset of the training data and
a validation set every few epochs during the training. If, after a number of epochs have
passed, the difference starts to increase, this might indicate that the likelihood of the RBM
is improving for the training data, but not the validation data.

When doing iterative gradient-based training we generally want to monitor the train-
ing objective as the learning is progressing. For RBM the objective we try to maximize,
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the likelihood in Equation 2.28, is difficult or intractable to calculate because of the many
terms in the partition function. In lack of a better measure it is normal to monitor the recon-
struction error when training RBMs [18], and see whether this is being reduced. Steadily
increasing reconstruction cost is a bad sign, but even when this measure is decreasing it is
hard to know if the likelihood is being increased as well. In fact, in [20] it was observed
that the likelihood might be steadily decreasing even when the reconstruction error is im-
proving. First of all, this reinforces that the reconstruction error is a bad measure of how
the learning is progressing. Secondly, it shows that the use of an approximate learning
algorithm, like CDk, might diverge without it being detected.

2.7 Deep Learning
The term deep learning is often used to describe machine learning approaches using deep
architectures, meaning models ”. . . composed of multiple levels of non-linear operations”
[16]. Within the domain of neural networks one example of such architectures are multi-
layer perceptrons having two or more hidden layers. These are often referred to as deep
neural networks (DNN). Deep architectures can provide multiple levels of hierarchical ab-
straction of the input data, something that is believed to be a central part of how the human
brain works and therefore necessary for many artificial intelligence tasks [16]. One can
think about the hidden layers of a DNN as learning a representation of the data that makes
the action of the last layer (typically a linear classifier or regression layer) easier [12].

It can be proven that an MLP with one hidden layer is an universal approximator,
meaning it can theoretically approximate any (compact) function with error arbitrarily
close to zero [9]. There is, however, no guarantee that one can learn the proper solution,
or that it will be computationally efficient. Indeed it might take an enormous amount of
nodes in the hidden layer to do so. In general, deep architectures like DNNs are much
more efficient for realizing highly varying functions [16].

For many years, DNNs were considered very difficult to train by the backpropaga-
tion algorithm described earlier. A commonly held belief was that the gradient based
trained found local minima with high cost compared to the global minimum. According
to [12], many experts in the field no longer consider local minima a big problem: ”...ex-
perts now suspect that, for sufficiently large neural networks, most local minima have a
low cost fuction value...”. It is, however, stated that this is still actively being researched.
Another problem for DNNs using sigmoid or similar neurons with weights initialized to
small random values, is that the error terms tend to become vanishingly small as they are
backpropagated through the architecture. The result is poor adaption of the first layers of
a DNN. This leads to under-fitting, meaning the model is unable to learn the mapping im-
plied by the labeled data. As opposed to the over-fitting described earlier, where the DNN
performed well for the training data, but not for test data, under-fitting means the network
performs bad for all data.

In 2006 a new approach, using an unsupervised pretraining procedure, stacking several
individually trained RBMs to create a deep architecture, was shown to be successful for
training models called Deep Belief Networks (DBN) [21]. In [17] the same procedure was
used successfully for initializing weight matrices in a feed-forward network, followed by
fine-tuning using labeled data and the backpropagation algorithm. The procedure, which
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has been used in this master thesis, can be described in the following steps:

1. Having the size of the final DNN, initialize a restricted Boltzmann machine for every
layer of connections, except the last one going to the output layer.

2. Using unlabeled data, train the RBM for the first layer using contrastive divergence
as described in 2.6

3. Use the activations of the hidden nodes, when driving the visible nodes of the trained
RBM with training data, as input data for the next level RBM

4. Train all RBMs in the same manner, using data from the hidden layer of RBM at the
previous level as input

5. Unfold the stacked RBMs to a DNN by copying the pre-trained weight matrices to
the MLP structure

6. Fine-tune the complete network using backpropagation with labeled data

Why this method of greedy, layer-wise pretraining works is not fully understood. Ex-
periment published in [22] suggest that pre-training acts as a form of regularization, by
”. . . minimizing variance and introducing bias towards configurations of the parameter
space that are useful for unsupervised learning”, but other plausible explanations also ex-
ist. Another potential benefit of pre-training is that the learning is unsupervised, allowing
use of unlabeled data in the network training procedure.

While RBMs were the first models used in this pretraining technique, others have since
been used successfully in much the same manner. One notable example is the denoising
autoencoder [23]. Explained in simple terms, an autoencoder is a feedforward neural
network that is trained to reconstruct its input. For pretraining, shallow autoencoders with
a single hidden layer are used. By using the input data as target for the output, this type of
neural network is said to encode the input going to the hidden layer, and then decode it by
reconstructing it as close to the original as possible. An optional constraint often used with
autoencoders is to tie the two weight matrices [23]. This means constraining the weight
matrix going from hidden layer to output of the autoencoder to be equal to the transpose
of the weight matrix going from the input to the hidden layer. This sounds very similar to
the RBM, which also reconstructs the input data in some sense by using the transpose of
the weight matrix going from visible to hidden units. An autoencoder, however, is trained
to do make this reconstruction as good as possible, measured by some objective like MSE
or cross-entropy. Also, unlike the RBM, the autoencoder does not perform sampling in the
hidden units.

The denoising autoencoder is an autoencoder that stochastically corrupts the input, but
keeps the original input as target [23]. It can be compared to using dropout, but only for
the input layer. This corruption, or added noise, is useful for keeping the autoencoder from
learning to simply copy the data from one layer to the other, or similar trivial solutions.
Rather than this, we want it to learn a representation of the data in the hidden layer that,
when using it as a building block for deep network, makes subsequent learning easier [12].
Denoising autoencoders have been found to work as well as, or even better than, RBMs
for greedy layer-wise pretraining [23]. Considering that RBMs are less intuitive and more
difficult to train also make denoising autoencoders an attractive alternative for pretraining.
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Since the breakthrough with greedy layer-wise pretraining in 2006 it has been shown
that it is possible to successfully train DNNs from random initializations. One example
came in 2010, when a method of Hessian-free optimization was shown to give superior
results to the pretraining method presented in [17] on the same problems [24]. In [25]
the same level of performance was achieved, without pretraining, using gradient descent
from a more carefully chosen random initialization with a gradually increasing momentum
value. In the same paper it is suggested that, with the right type of parameter initialization,
training deep neural networks is much simpler than previously believed. Other papers
report that using rectified linear units instead of sigmoid units result in DNNs that ”can
reach their best performance without requiring any unsupervised pre-training” [11]. In
cases with little labeled data, but large amounts of unlabeled data, pretraining can still
benefit these networks as well.

Some other recent techniques that might be worth mentioning include residual learn-
ing and batch-normalization. Both techniques are reported to be able to greatly improve
the performance of deep neural networks. Batch-normalization deals with the problem
that the input distribution to the individual layers of a DNN will change as the parameters
of the preceding layers are updated. This means the parameters of a layer will need to
adapt to a continuously evolving distributions during learning [26]. This is a problem that
is more severe for deeper networks. The method first uses mean and standard deviation es-
timates to normalize the mini-batch activations for every layer. The normalized activations
are then shifted and scaled by two learnable parameters per activation, that introduces the
possibility of undoing the preceding normalization (in case that turns out to be the optimal
solution). The reported results state that batch-normalization ”dramatically accelerates
the training of deep neural nets” [26].

Residual learning is a method of adding new layers to a model without risking higher
training error as a result (under-fitting). It introduces a ”shortcut” around stacks of layers,
adding the input of those layers to their output. This means the layers are not learning the
same mapping from input to output, but instead the residual of the mapping. Using this
method for image recognition, a very deep neural network with 152 layers was success-
fully trained and used to win an image classification competition, as described in [27].

2.8 OM-LSA
OM-LSA as it is used in this text refers to a speech enhancement method combining a
optimally-modified log-spectral amplitude (OM-LSA) speech estimator with a minima
controlled recursive averaging (MCRA) noise estimator as described in [4]. The method
assumes that the corrupted speech takes the form y(n) = x(n)+d(n), where x(n) is clean
speech and d(n) is uncorrelated noise. The algorithm operates on frames of speech using
the short-time Fourier transform (STFT) in Equation 2.41.

Y (k, l) =

N−1∑
n=0

y(n+ lM)h(n)e−j(2π/N)nk (2.41)

Here k is the index of the frequency bin, l is the frame index and h is a window function.
The clean speech frames are estimated by calculating a gain G(k, l) for every frame and
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frequency bin, which is multiplied with the input:

X̂(k, l) = G(k, l)Y (k, l) (2.42)

The log-spectral amplitude estimator is defined to minimize the mean square error:

E{(logA(k, l)− log Â(k, l))2} (2.43)

where A(k, l) = |X(k, l)|, under the assumption of Gaussian distributed STFT coeffi-
cients [4]. Operating with a binary hypothesis model for whether speech is present or
absent, the gain is given by:

G(k, l) = {GH1
(k, l)}p(k,l)G1−p(k,l)

min (2.44)

where GH1
is the conditional gain for when speech is present and Gmin is a lower bound

for the gain for when speech is absent, chosen subjectively for ”noise naturalness” [4].
p(k, l) is the speech presence probability, conditioned on Y (k, l). The expression for GH1

is not given here (see [4]), but it uses a noise power estimate based on the MCRA estimator
mentioned initially. An improved version (IMCRA) is described in [28].

Figure 2.10: Block diagram of OM-LSA. Taken from [4]

A block diagram of the OM-LSA method is illustrated in 2.10. Note that the method
only modifies the magnitude of the noisy speech spectrum, meaning the gain G(k, l) is
real and positive.

In this master thesis an implementation of OM-LSA found in [29] was used for com-
parison with the DNN based system. This is appropriate as both techniques attempt to
minimize essentially the same error, namely the mean square error of the log-magnitude
spectrum of the frames. In [1] an improved version of OM-LSA called logMMSE was
also used for comparison with the DNN system.

2.9 Measures of speech quality
When designing a speech enhancement system the objective generally is to improve the
quality of speech signals as experienced by the users of the system. One way to measure
speech quality is to use listening tests and collect mean opinion scores (MOS), but this can
be very costly and time-consuming. It is also a very impractical method during develop-
ment, as one might have many small variations of the system to compare in many stages
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of the process. Therefore there is a great need for an objective, calculable metric that is
highly correlated with subjective experience of quality.

Perceptual evaluation of speech quality (PESQ) is an ITU-T standard method for
speech quality assessment of speech codecs and telephone networks [30]. It compares
clean input speech with (possibly) distorted output speech and gives a score ranging from
-0.5 to 4.5 that is reported to have high correlation with MOS for certain application. The
method involves time-alignment of the signals, followed by a psychoacoustic model using
a modified Bark scale that is equalized and mapped to (Sone) loudness.These transformed
signals are used to form two disturbance measures, one symmetric and one asymmetric,
that are fed to a cognitive model that outputs the method’s MOS estimate [3]. This model
is the simple linear combination in Equation 2.45, which is the result of linear regression
on data from 30 subjective tests[3].

PESQMOS = 4.5− 0.1dSYM − 0.0309dASYM (2.45)

PESQ is the main measure used in [1] and [31] to evaluate the performance of the speech
enhancement systems, and for that reason it was also used in this work.

As briefly mentioned, the objective function that the DNNs in [1] and [31], and also
in this work, are trained to minimize is the mean square error of clean and noisy speech
in the log-magnitude spectral domain. Minimizing this objective is shown in [32] to have
some consistency with the human auditory system. Since it is pretty straight-forward to
compute, the MSE in the log-spectral domain might also be a useful measure of speech
quality, relative to the clean speech. Although it is considered less correlated with subjec-
tively experienced quality than PESQ, it is included also in the testing of the DNN systems
to get an idea of the quality of the enhancement.

The segmental SNR measure from [33], which is defined in Equation 2.46, was used
as an additional objective measure of speech quality for some of the experiments. This,
again, is not expected to give as good an idea of the subjective quality as PESQ, but it is
useful for measuring the degree of noise reduction. [1]

SNRseg =
10

M

M−1∑
m=0

log10

∑Nm+N−1
i=Nm x(i)2∑Nm+N−1

i=Nm (x(i)− x̂(i))2
(2.46)

Here x(i) are the samples of clean speech while x̂(i) were samples of enhanced or noisy
speech, depending on whether the input or output segmental SNR was being calculated.
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Chapter 3
Data and software

3.1 Overview
This chapter contains a short description of the database used for training, how noisy data
was synthesized and what software tools and resources were used in the project.

3.2 TIMIT
The speech data used for training and testing the deep neural networks was extracted from
the TIMIT corpus. TIMIT is an American English speech database containing in total
6300 sentences, read by 630 different speakers. Of these sentences there are 2342 unique
texts organized in such a way that 2 of them are read by all 630 speakers, 450 are read by 7
speakers each and the remaining 1890 are only read by 1 person per sentence [34]. Every
read sentence is stored as an individual audio file, organized in two different folders; one
for training and one for testing. All the audio files are labeled with their phonetic content
for use in speech technology applications like automatic speech recognition

The files contained in the TIMIT training folder was split into two sets, 3465 files to
be used for training and 1155 to be used for validation. Another 1344 files from the test
folder were reserved for testing. A list of all the file names for each of the three sets were
constructed and shuffled to not have all sentences from one speaker in direct succession.
When loading data for training or testing, file names were read from these list until as
many frames as specified by the user were obtained.

The audio files in the TIMIT database are sampled at 16kHz and were decimated to
8kHz before being used in the project.

3.3 Aurora 2
Aurora 2 is a framework and a database designed for evaluation of speech recognition sys-
tems and algorithms under noisy conditions [2]. Among other things it contains a number
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of audio clips of natural background noise, which were used in this work. There are 6
types of noise: babble, restaurant, street, airport, subway, exhibition and car. Spectro-
grams of these noises can be seen in figure 3.1. The duration of the different noise signals,
rounded to nearest whole second, are also given in the figure. All noise recordings have
sampling frequency 8kHz.

3.4 Synthesizing noisy speech
The noisy speech that was used as input to the speech enhancement system was synthe-
sized by adding different types of noise to the decimated TIMIT-files, scaled to different
SNR levels. This operation and the following feature extraction was performed in MAT-
LAB. The typical SNR levels used were 0, 5, 10 and 15 dB. When scaling the noise, a
global average of the power of all TIMIT training files was used as the signal power. This,
together with the target SNR value, was used to calculate the wanted noise power level.
Since this global average was used, the actual SNR of the individual files would vary
around the target SNR value, providing a range of different file-based SNR levels. For the
test set this is discussed further in 5.2.

For most of the training, the 4 noise types AWGN, babble, restaurant and street were
used for training, in some cases including airport and subway. The types car and exhibi-
tion were reserved for testing.

For every new SNR level for a speech-noise combination, a new noise-signal was
sampled. For additive white Gaussian noise (AWGN) this was done using the randn()
function in MATLAB. For the noise signals from the Aurora 2 database a segment of
length equaling that of the speech signal was selected by randomly choosing a start index
for the segment that fulfilled the condition that start index + segment length would not
extend beyond the end of the noise signal. Studying the lengths of the noise signals in
figure 3.1 it is clear that noise sampled from the shorter signals like subway, exhibition
or car would have a bigger probability of reusing the same noise samples multiple times.
Because either the speech or the SNR will be different for every time a noise segment is
sampled, this is not considered a big problem. One can argue that since the TIMIT-files
contains multiple speakers reading the same sentence, there is a very small probability that
the exact same noise signal could be combined twice with the same sentence, spoken by a
new person. Since these speaker will have different voice characteristics, dialects and/or
speak with different tempo, even this extreme case can probably be considered to provide
two unique signals.

3.5 Theano
Theano [35] is a Python library originating from the Machine Learning Laboratory (MILA)
at University of Montreal. It allows users to define symbolic mathematical expressions and
compile them efficiently using either CPU or GPU. The expressions are stored as graphs,
which allows Theano to simplify and optimize calculations and, among other things, easily
find the gradient of expressions with respect to the specified variables. Theano is a very
popular choice for machine learning applications, and is the foundation for other machine
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learning solutions that specialize in neural networks, like Keras [36], Lasagne [37] and
Blocks [38]. Theano, running on an nVidia GPU, was used extensively for training the
neural networks in the master thesis project work.

3.6 MATLAB and the DeepLearn Toolbox
Although Python and Theano was used for training the deep neural networks, MATLAB
was used for synthesizing the noisy speech, as mentioned previously, for extracting fea-
tures, and for testing the trained DNNs. The feature-extraction was only performed once,
storing the features of noisy and clean speech in binary files to be loaded in Python before
training. The testing of the trained models used an open source collection of scripts and
functions called the DeepLearn Toolbox [39]. This toolbox was also used in the project
leading up to the master thesis, but it is no longer maintained. That this toolbox might
no longer be up to date was not a problem for the purpose of testing, since only simple
functionality, like computing the feedforward pass, was needed.

3.7 Online code resources
A lot of freely available Theano code found online was used as basis or inspiration for the
code written in this master thesis. The Deep Learning tutorial from [40] formed the main
basis for the project although some code from the Lasagne documentation [37] was also
used. The implementation of dropout (see section 2.5) was based on code found on [41]. A
program implementing the PESQ measure was compiled from source code found on [42].
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(a) Babble, length 235 sec

(b) Restaurant, length 284 sec

(c) Street, length 54 sec

(d) Airport, length 180 sec

(e) Subway, length 21 sec

(f) Exhibition, length 19 sec

(g) Car, length 22 sec

Figure 3.1: Spectrograms of the noises in the Aurora 2 database
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Chapter 4
Implementation and experiments

4.1 Overview
This chapter starts with a high level description of the speech enhancement system and
an explanation of how the DNN at the core of the system was trained. Following this, a
description of techniques from [1] that were implemented to improve the system are given.
Investigating changes beyond what was done in [1], an alternative DNN based on rectified
linear units is discussed, as well as a hybrid system combining the DNN approach with the
OM-LSA method. At the end of the chapter the testing procedures are described.

4.2 Speech enhancement system
The speech enhancement system was based on [1] and is illustrated in Figure 4.1. En-
hancement is performed by a deep neural network on the log-magnitude spectrum of win-
dowed frames from the input signal. The system is designed for speech signals sampled at
Fs = 8kHz.

Figure 4.1: Speech enhancement system [5]. Based on [1]

The feature extraction before the DNN is depicted in Figure 4.2. The input signal, Y t,
in the discrete time domain, is divided into frames using a Hamming window of length
32 msec. Every new frame is extracted by shifting the window by half this value, 16
msec. The discrete Fourier transform (DFT) is used to get the samples of the frames’
frequency spectrum. These two steps are essentially an implementation of the short-time
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Fourier transform briefly mentioned in Section 2.8, Equation 2.41. The frame spectra are
separated into their magnitude and phase components. The enhancement mapping is only
performed for the magnitude, and so the noisy phase, ∠Y f , is used directly in the recon-
struction of the frames. Because of symmetry, only the one-sided magnitude spectrum is
sent to the DNN, which for the chosen window length and sampling frequency results in
129 frequency samples. The natural logarithm is applied to the magnitude components
which then are scaled to have zero mean and unit variance, using mean and standard de-
viation estimates found for the training data. To improve the performance of the system
some acoustic context is provided with the frame to be enhanced. This involves com-
bining the scaled log-magnitude spectrum of the current frame with some preceding and
following frames. For simplicity, these are referred to as the left and right context frames
respectively. The DNN performs a mapping from the input features, Y l, (containing the
log-magnitude components of several frames of noisy speech) to the log-magnitude com-
ponents of a single enhanced frame, X̂ l.

The waveform reconstruction from output vectors of the DNN is depicted in Figure 4.3.
The output features from the DNN, X̂ l, are multiplied with an optional Global Variance
equalization factor and scaled back using the same mean and standard deviation estimates
as in the feature extraction. The inverse of the natural logarithm is applied and the one-
sided magnitude spectrum estimate is mirrored and combined with the noisy phase to con-
struct the complete linear frequency spectrum of the enhanced frame. The inverse discrete
fourier transform (IDFT) is then applied and the frames are combined with overlap-add to
form the complete enhanced waveform. .

The size of the input of the DNN was N = 129Nfr, with Nfr being the size of the
acoustic context, including the current frame. The output was always a single frame with
length M = 129. The activation function used in the hidden layers was the sigmoid (Eq.
2.3) except for some experiments using leaky ReLUs (Eq. 2.5), described in Section 4.5.
The output layer was comprised of linear neurons, meaning no activation function was
used.

Figure 4.2: Feature extraction block diagram [5]. Based on [1]

4.3 General training procedure

Presented here is the core training procedure, adapted from [31] and [1], as it was used in
the project [5] and for most of this master thesis. Variations of the described method
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Figure 4.3: Waveform reconstruction block diagram [5]. Based on [1]

are given in the following sections as these in general were compared to this proce-
dure. All hidden layers were initialized using the greedy layer-wise pretraining described
in Section 2.7. For the first layer, having the normalized log spectral features as in-
put, a Gaussian-Bernoulli RBM (GB-RBM) was used. For the remaining layers, binary
(Bernoulli-Bernoulli) RBMs were used. The pretraining was done using the same data,
without targets, as in the supervised fine-tuning.

After pretraining for a set number of epochs, the parameters of the hidden layers of
the DNN, {W}L−11 , were set to the values of the corresponding parameters for the RBM.
The weights going to the output layer, WL, were initialized to be zeros. The DNN was
then trained in a supervised manner using backpropagation on mini-batches of the training
data. An illustration of the described training procedure is shown in Figure 4.4.

Figure 4.4: Block diagram of training procedure from [5]

The objective function minimized during training was the sum of squared errors of
Equation 2.8, normalized by the number of vectors in the mini-batch. The expression is
given in Equation 4.1 and will be referred to as mean-square error (MSE), even though
the averaging is over mini-batches only and not output elements. This MSE is therefore
slightly different than the one defined in the theory section in Equation 2.9, but is one
widely applied in the field. The size of the mini-batch used for updating the weights M in
Equation 4.1 was set to be M = 128 as in [1].

J(θ) =
1

2M

M∑
k=1

N∑
i=1

(yki − tki)2 (4.1)

The update rule for the velocity of layer l is given in Equation 4.2, where Vl[n] is the
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after the n’th epoch for layer l and∇Wl
J(θ[n−1]) is the gradient of the objective function

with regard to the weight matrix. The velocity is then used to update the weight matrix as
described in Equation 4.3. The function fMN (ψ, c) is the max-norm regularization that
constraints the columns of ψ to have an L2-norm less than or equal to the parameter c.
This was usually set to 2.6 or 3. The momentum parameter, ω, was initialized to 0.5 and
linearly increased to some maximum value, usually set to be 0.9. The learning rate, α,
was generally set to be 0.01 but decayed by a multiplicative factor (usually 0.95) after the
maximum momentum was reached.

Vl[n] = ωVl[n− 1] + (1− ω)∇Wl
J(θ[n− 1]), 1 ≤ l ≤ L (4.2)

Wl[n] = fMN (Wl[n− 1]− αVl[n], c) (4.3)

The training ran for a specified number of epochs. For every completed epoch the
MSE on a validation set was calculated. If the value was the best seen so far, the current
parameters were saved. At the end of training the parameters giving the lowest validation
MSE were kept as the final solution.

4.4 Improving the performance of the DNN
There are many ways of improving the DNN in the described speech enhancement system.
The most obvious one is to increase the amount of training data, but there are several
approaches to doing this. In the preceding project work only Gaussian white noise was
added to the TIMIT-speech files. One could increase the data set by adding more of the
same noise to new clean speech files, or to the existing ones at new SNRs. What was
considered more interesting for this master thesis was to introduce new types of noise.
This was done by using the Aurora2 database described in Section 3.3. Initially the 3
noise types babble, restaurant and street where used for training, together with AWGN,
although some bigger experiments included the types airport and subway as well.

The effect of introducing new noise types in the training set, on test sets with seen and
unseen data, was analyzed by training two identical DNN with two different datasets. The
architectures had 5 frames in the input layer, meaning 645 nodes, three hidden layers with
500 nodes in each, and, as always, 129 nodes in the output layer. Both DNNs were trained
using the same 905 files from the TIMIT-database. For the first network every speech file
was added white gaussian noise at SNR levels 0,5 and 10 dB, while for the second network
every file was added either white gaussian noise or one of the three noise types mentioned
above: babble, restaurant and street, from the Aurora2 database, at the same SNR levels.
The clean case was also included, which resulted in about 3 hours of speech data for both
cases. The results from this experiment motivated a second one, where the two identical
DNNs were trained again using 364 TIMIT-files as basis for the training sets. This time,
however, every file used for the more general training set were added all four noise types
including the clean version, and not just one noise type per file. The AWGN case used only
two fifths of this data, namely the clean and AWGN versions of the same files. The same
three SNR levels were used for these training sets. The resulting data amounted to about
4 hours of speech for the more general set and about 1 hour and 20 minutes for the purely
AWGN set. The results are presented and discussed in Section 5.3.
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Another way to improve the speech enhancement system is to increase the acoustic
context provided with every input frame. This increases the amount of data that the DNN
can use to estimate the clean output frame. Increasing the nodes in the first layer does,
however, introduce more parameters that the network needs to learn, which could lead to
the training becoming more difficult. So increasing the size of the input in this way is not
guaranteed to improve performance, especially if the additional information is of little use
in the prediction task. Having more frames in the input might also be a factor increasing
what [1] refers to as over-smoothing. The effect of different context sizes was studied
in [1], where 11 frames in the input was found to be the best alternative. At the start
of this thesis 5 frames chosen symmetrically around the current frame were used. Later
on this was increased to 9, meaning 4 left and 4 right context frames for every one frame
enhanced. When using a first hidden layer of sizeN1, this introduces 4∗129∗N1 = 516N1

new parameters to the model.
Not a lot of effort was spent comparing the performance of using 5 and 9 frames, since

the details around implementing this change are pretty trivial and the effect on performance
was well documented in [1]. Some experiments with choosing asymmetric context were
performed as an initial investigation into the possibility of a real time version of the system.
Enough experiments were not performed to conclude anything meaningful and so they are
not included in the analysis. A short discussion of the limited results can be found in
Appendix A for those interested.

In the paper [1] three techniques are presented for improving the speech enhancement
system initially introduced in [31]. These are dropout, global variance equalization and
noise aware training. The two first of these were also implemented in this master thesis.

Dropout has already been described in the theory Section 2.5. In [1] a dropout rate
of 0.1 was used for the input layer, and 0.2 for all hidden layers. This is a bit lower than
the values usually recommended in literature so a few experiments were performed using
higher rates than in the paper. Most experiments did however use the same dropout rates
as [1]. To investigate the effect of dropout as a regularization technique three different
DNNs were trained. The two first had the same architecture: 645 nodes (5 frames) in
the input and three hidden layers with 500 nodes in each. The first was trained without
dropout and the second with the dropout rates mentioned above. The third DNN had
the same dropout rates and the same size for the input layer, but increased the number
of nodes in the hidden layers to 645. This was done so that the expected number of
nodes in the hidden layer would equal the number of nodes in the DNN trained without
dropout: Nnewp = 625(1 − 0.2) = 500 = Nold. The learning rates for the DNNs
were 0.0005 for pre-training and 0.1 for the fine-tuning. All networks were pre-trained
for 50 epochs and then fine-tuned for 200 epochs, storing the parameters giving the best
validation performance. To investigate how the technique could combat over-fitting, the
models were trained with a relatively small data set equaling about 30 minutes of noisy,
and clean speech and the max-norm regularization threshold was increased to 4.

Global Variance equalization (GVE) is a post-processing technique that aims to com-
bat a problem in the enhancement system referred to as over-smoothing. This problem is
characterized by a suppression of the formant peaks, especially for high frequencies, which
can lead to muffled speech [1]. Two definitions of global variance are given in [1]. The first
is the frequency dependent version in Equation 4.4 where X̂ l(d, n) is the d’th frequency
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sample of the n’th output vector X̂l. A number of of M estimated frames are used in the
computation.

GVest(d) =
1

M

M∑
n=1

(
X̂ l(d, n)− 1

M

M∑
n=1

X̂ l(d, n)

)2

(4.4)

A frequency independent, or constant, global variance is defined in Equation 4.5, the
only difference being that the averaging is over the D = 129 frequency bins as well.

GVest =
1

MD

D∑
d=1

M∑
n=1

(
X̂ l(d, n)− 1

MD

D∑
d=1

M∑
n=1

X̂ l(d, n)

)2

(4.5)

An identical global variance is calculated for the reference by using the target frame
instead of the estimate X̂ l(d, n). Using these values, two equalization factors are defined:
the frequency dependent α(d) in Equation 4.6 and the frequency independent β in Equa-
tion 4.7.

α(d) =

√
GVref (d)

GVest(d)
(4.6)

β =

√
GVref
GVest

(4.7)

Both factors are used by replacing η in Equation 4.8 to create the re-scaled, GVE
post-processed frame estimate X̂ ′′(d, n)

X̂ ′′(d, n) = X̂ l(d, n) ∗ η ∗ σN (d) + µN (d) (4.8)

Enhancement with and without both GVE factors were performed in most experiments, but
usually only the results for the factor giving best PESQ score are presented. Section 5.5
features a comparison of both β and a modified version of α(d) tested for a trained DNN.
This DNN had 9 frames in the input and three hidden layers with 700 nodes each. It was
trained using dropout as previously described and otherwise following the general training
procedure described in Section 4.3. 10 hours of data containing the 4 noise types AWGN,
babble, restaurant and street was used.

4.5 Changing the hidden nodes of the DNN
When studying the literature, the typical modern DNN seem to have moved away from
both using sigmoid activation functions as the standard choice for neurons, and from using
greedy layer-wise pre-training as the standard initialization technique. Both sigmoid units
and pre-training are still in use, but [12] recommends rectified linear units as the new stan-
dard neurons in hidden layers, and also warns about using pre-training unless it is known
to be appropriate for the problem. Having trained multiple networks with sigmoid units
and RBM pretraining it was interesting to test a variation of the system using these al-
ternative activation functions and training purely by backpropagation (with dropout) from
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a random initialization. The leaky ReLUs with activation function in Equation 2.5 were
chosen as the new units. The slope (α) of the leaky rectifier for negative inputs was set to
0.01 to have non-zero gradients also for negative inputs. The biases for the ReLUs were
initialized to 0.1 to increase the chance of the units being activated for the initial inputs.

Some initial experiments with smaller architectures were first carried out, until design-
ing a large DNN for both the standard and this alternative setup. The model had 1161
elements (9 frames) in the input, 4 hidden layers with 600 nodes each and the linear output
layer with 129 elements. Batches containing about 2 hours of data were loaded 10 times
for every epoch, meaning a total of 20 hours of noisy speech data was used to train the
networks. Mini-batches with 128 frames were chosen as usual from the 2 hour batch cur-
rently in memory. The 6 noise types AWGN, babble, restaurant, street, airport and subway
were added to the clean speech from the TIMIT database at SNR levels 0,5,10 and 15 dB.
Two noise types at all SNR levels were added to every clean TIMIT file used. The frames
within the 2 hour batch were shuffled before being divided into mini-batches. Dropout
rates for both DNNs were 0.1 for the first layer and 0.2 for the hidden layers, and the max-
norm threshold was set to 3. Momentum was used as described in the general procedure.
The learning rate for the sigmoid DNN was 0.0005 for pre-training and 0.1 for fine-tuning
with dropout. After the maximum value for the momentum parameter was reached, the
learning rate was reduced by 5% for every epoch. The learning rate for the ReLU based
DNN was 0.005 and followed the same scaling procedure as the sigmoid DNN. Results
from testing the networks using PESQ, MSE and segmental SNR are given in Section 5.7.

4.6 A hybrid speech enhancement system
When comparing the DNN based enhancement system and the OM-LSA method from [4]
it seemed that both methods were better than the other on different types of noisy speech.
It was therefore of interest to see if a combination of the two system would provide an
improvement over using the systems on their own. Two cases were tested and compared
with the standard DNN speech enhancement system. The first case, called hybrid system 1,
was simply to use the OM-LSA method on the reconstructed waveforms from the regular
DNN based system. This is illustrated in Figure 4.5b. The advantage of this approach is
that it is not necessary to train a new DNN since the input data is the same as before. The
second case, called hybrid system 2, is in Figure 4.5c and reverses the order of the two
methods. In this case the input data to the DNN will be quite different from the standard
noisy input, and therefore a new DNN with the same architecture and amount of training
data was designed for this system.

The DNNs of the two methods had 9 frames in the input layer, making 1161 nodes,
with the context frames chosen symmetrically around the current frames. Three hidden
layers were used, with 700 nodes in each. 10 hours of speech data containing TIMIT
speech files added one of the four noisetypes AWGN, babble, restaurant and street at the
SNR levels 0, 5, 10 and 15 dB were used for the DNN of hybrid system 1. The clean
version of every file was also included. For hybrid system 2 the same TIMIT files where
added re-sampled noise of the same types as the first DNN, at the same SNR levels. The
resulting files were enhanced by the OM-LSA method before used as input data to the
DNN. The exception is the clean versions of the files which were input directly to the DNN
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(a) The regular DNN speech enhancement system

(b) Hybrid system 1

(c) Hybrid system 2

Figure 4.5: Two possible implementations of OM-LSA DNN hybrid systems.

without pre-processing with OM-LSA. Both DNNs were trained with dropout, using rates
of 0.1 for the input and 0.2 for the hidden layers. The systems were tested both with and
without global variance equalization.

4.7 General testing procedure
The main quality metric used for testing the speech enhancement systems was the PESQ
measure, briefly described in Section 2.9, but the objective of the training, the MSE in
Equation 4.1, was also calculated, as well as the segmental SNR in some cases. For testing,
three different data sets were generally used:

• a matched set, sometimes referred to as test set 1, containing a number of TIMIT
files from the test folder added some, or all, of the types of noise that were used in
training at the 4 SNR levels 0, 5, 10 and 15 dB

• a mismatched set, sometimes referred to as test set 2, containing the same TIMIT
files as test set 1 added the unseen noise types car and exhibition at SNR levels 0, 5,
10 and 15 dB

• a subset of the training files

The noisy test files were synthesized as specified in Section 3.4 using the global signal
power of the training files and storing files with the extracted features for the different files
with all noise and SNR combinations. Using a global SNR had some consequences that are
discussed in Section 5.2. The pre-processed files to be used in the data sets were chosen by
specifying a number,Ntest, of frames to be included and then reading TIMIT file-names in
random order from a list. With each new file-name, only one of the noise types was chosen.
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Having selected a TIMIT source file and a noise type, the pre-processed data for all SNR
levels of this sentence-noise combination, including the clean case, were loaded. New files
were loaded until having at least Ntest number of frames. When calculating the MSE for
the test sets, only the Ntest first frames were used. In most cases this meant not including
all the frames of the last file. For the PESQ and segmental SNR measures, which operate
on the waveform, every file that had been selected was used in full at every SNR level.
Specifying Ntest to equal 20 minutes worth of frames led to using about 80 TIMIT files.
With 4 SNR levels this meant each set included about 320 noisy sentences. This amount
was chosen because it was believed to give a sufficient impression of the performance
while not taking too much time to test. In retrospect, much more data could have been
used for the MSE calculation, which was quite efficient compared to reconstructing all the
files and finding their PESQ score.

The PESQ and segmental SNR for clean files were assessed in some cases, but it was
not included when calculating the average score over all test files. The data sets for the
MSE did, however, include the clean frames, as this class was part of the data set for which
the MSE was being minimized during training.

All testing of the trained DNNs were performed using the DeepLearn Toolbox [39] in
MATLAB. The reason for choosing MATLAB was twofold. Firstly: this meant using an
environment the student was familiar with from the previous project, and secondly: testing
could be performed on a different machine than the one used for training, which was the
only one with Theano installed. The last point was convenient because this machine was
also used by several other people.

When evaluating the results, especially for the PESQ measure, it was not known how
big a change could be considered significant. This made it hard to conclude anything from
comparison of methods giving very small performance gains. When this is the case it is
noted in the discussion that the results might be too small for meaningful conclusions.

4.8 Testing performance for different sound classes
Since the TIMIT speech files have been labeled according to their phonetic content, it was
possible test how the speech enhancement system performed for different sound classes
like vowels, fricatives and so on. To do this, a hash table mapping from phonetic label
into bigger sound classes was constructed according to the TIMIT documentation. 8 dif-
ferent sound classes were used: stops, affricates, fricatives, nasals, semivowels and glides,
vowels and silence. Note that both stops and affricates include the closures preceding the
sound.

Since the signals were decimated and some initial frames were dropped during the
enhancement (the left context of the first frame and the right context of the last frame), the
indices for the labels in the database had to be scaled and shifted appropriately before the
phones could be extracted. Having found a segment in the speech waveform, the phonetic
label was mapped to the sound class label and the segment was concatenated with other
extracted segments of the same class. This was done for clean, noisy and enhanced speech.
The quality of the different classes of noisy and enhanced speech were then compared to
the corresponding classes of clean speech. To do this, the concatenated arrays were treated
as regular speech signals and given as input to the program calculating the PESQ score.
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This was done for about 80 files from the TIMIT test set using noise at the 4 SNRs 0,
5, 10 and 15 dB. In addition to the PESQ measure, a segmental SNR measure defined in
Equation 4.9 was used. This is similar to the one defined in Equation 2.46, but allows
segments of different length.

SNRseg =
10

M

M∑
j=1

log10

∑Nj

i=1 xj(i)
2∑Nj

i=1(xj(i)− x̂j(i))2
(4.9)

Here xj is the j’th clean speech segment of some sound class, and x̂j is the corresponding
segment of either noisy or enhanced speech. Nj is the length of the current segment and
M is the number of segments of the current sound class, extracted from all the processed
test files.

The sound class specific testing was only performed for a single DNN and was not the
basis for comparing different DNNs or the DNN with the OM-LSA method. The results
are presented and discussed in Section 5.8.
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Chapter 5
Analysis

5.1 Overview

This chapter contains the analysis of the DNN based speech enhancement system. Re-
sults from the experiments described in the preceding chapter are presented and discussed
in sections 5.3 to 5.8. The first of these sections analyze, by comparison of differently
trained DNNs, the benefit or disadvantages of using the presented techniques and changes
to the system. Section 5.7 also compares two different DNN setups with the OM-LSA
method described in Section 2.8. The two last sections analyze a single trained DNN, in
an attempt to learn more about how the system works. Section 5.8 does this by studying
the performance on different sound classes, while Section 5.9 contains an interpretation of
the learned weights of one of the DNNs.

5.2 A note about the test data

As mentioned in the previous chapter the different DNNs were tested using data with seen
and unseen noise added to globally set SNR levels. Many of the results presented in this
chapter give the performance measures for the different globally set SNR levels separately.
This is done even though the SNR of individual files will vary around the stated SNR value
value depending on the signal power of the clean speech relative to the global average. To
get an idea of the distribution of the file based SNR values, a histogram of these values for
the test set with seen noise at global SNR level 5dB is plotted in Figure 5.1a.

Studying Figure 5.1a, it is clear that the variation in SNR for the files is quite large.
Figures 5.1b and 5.1c show histograms of the PESQ scores for the same files as in 5.1a,
before and after enhancement with the DNN system. Noting that the PESQ measure re-
turns values in the range [−0.5, 4.5] these figures also show what should be considered a
significant variation in quality for the different files.

In Figure 5.2 every file’s SNR and its PESQ score before enhancement are plotted.
Not surprisingly there seems to be a positive correlation between SNR of the file and its
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(a) SNR of input files in dB (b) PESQ of input files

(c) PESQ of enhanced files

Figure 5.1: Distribution of SNR of input files and PESQ of output and enhanced files
in test set 1 for global SNR 5 dB. The enhanced files are from using the ReLU-DNN in
Section 5.7

Figure 5.2: Relationship between SNR and PESQ of the input files

perceived quality as measured by the PESQ. Figure 5.3 gives the same plot for SNR of
input files against their PESQ score after enhancement. These seem to be have a slightly
higher correlation. This indicates that the spread in SNR for the input files can be assumed
to be partly responsible for the spread in PESQ for the enhanced files.

A spread in SNR and PESQ might not be a big problem if the average PESQ for the
variable SNR files matches the average for files having exactly the global SNR level in
question. When choosing individual files from the different SNR groups to listen to, how-
ever, one could not expect the results to be representative for that particular SNR level. To
illustrate this, the files with best, worst and closest to the average PESQ were stored when
testing the DNNs in section 5.7. The results showed that the best file from the SNR 0
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Figure 5.3: Relationship between SNR of the input files and PESQ of the resulting en-
hanced files

dB class had higher file based SNR before enhancement (and higher PESQ after enhance-
ment) than the worst result in the SNR 15 dB class (results from this experiment are given
in Appendix B). Considering this it might have been better to set the SNR individually for
every file when adding noise for testing to get results that were more representative for
the listed SNR. Because of limited time this was, however, not done. Note that using a
globally set SNR for the training files probably is still considered a good idea since this
means a wide range of SNR levels are represented in the data.

In addition to the spread in SNR, the subset of test files that has been used for testing
can be seen in Figure 5.1a to be centered around a SNR value lower than the global av-
erage. In fact, as given in Table 5.1, the average SNR levels of the test subset was found
to be 2.2 dB under the global average value for every SNR. This is a result of using a
globally set SNR and then choosing only a subset of these files for the actual testing. That
the average SNR is lower than expected might have had a bigger effect on the results than
the variation in file based SNR around this average had. Again, because limited time did
not allow all the experiments to be repeated, the reader is advised to keep these results in
mind while reading the following results.

Table 5.1: Global average SNR used when adding noise to files and average SNR of
chosen testfiles

Global average SNR 0 5 10 15
Test set average SNR -2.2 2.8 7.8 12.8

5.3 Adding new types of noise
This section gives the results for the experiment evaluating the effect of introducing new
types of noise to the training set, as described in Section 4.4. Two datasets were used for
testing: one matched case, in which 81 TIMIT test files were added white gaussian noise
to SNR levels 0,5,10 and 15 dB, and one where the same files where added the unseen
noise types car and train from the Aurora2 database. In Figure 5.4 the PESQ score for the
two DNNs on the two test sets is shown, including the PESQ score before enhancing for
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Figure 5.4: Average PESQ score using two different test sets for DNNs trained with
either all AWGN or AWGN and three types of Aurora2 noise. The DNN with Aurora2
noise chooses one of the 4 types to add to every TIMIT speech file.

comparison. The Table 5.2 shows the MSE of the enhanced frames of the same test sets.
The leftmost columns of the two bar plots show the average PESQ of the noisy input files,
which is the same for both DNNs on the same test set.

Table 5.2: MSE on two different test sets for DNNs trained with either all AWGN or
AWGN and three types of Aurora2 noise. The DNN with Aurora2 noise chooses one of
the 4 types to add to every TIMIT speech file.

Noise types DNN trained with DNN trained with
in test set AWGN only 4 noisetypes
AWGN 35.38 38.13
unseen noise 86.96 57.43

The two right columns of the plot to the left show that the DNN trained with only
AWGN gives a slightly bigger improvement in PESQ-score on the test set featuring AWGN
only. This difference is also found in the MSE results in the first row of Table 5.2. This
could be because the purely AWGN trained DNN had training data with this type of noise
added to all the files, while the other DNN only used AWGN for about a quarter of the
files. Using more training data of this type should be expected to improve performance
on the matched test set. Another possible explanation of why the purely AWGN trained
DNN works better for this test set is that it is more specialized for this type of noise.
Since the DNN trained with 4 noisetypes uses a more diverse or general training set, it
is possible that it might not learn mappings that work especially well for white noise,
but bad for other types, if any such mappings exist. These results motivated the second
experiment described in section 4.4, where the more general set was chosen to contain
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the same amount of files with AWGN as the purely AWGN set. The results are given in
PESQ-scores in Figure 5.5 and MSE in Table 5.3.

Studying the results of this second experiment the PESQ-scores look very similar to
Figure 5.4 with the AWGN DNN again performing slightly better for test data with this
noise type. The difference in MSE is bigger in this case, as seen in the first row of Ta-
ble 5.3, with the specialized DNN performing better for the AWGN test set. It looks like
adding more noise types to the same TIMIT-files is making the DNN worse at enhancing
the AWGN test data. This seems to confirm that the AWGN trained DNN in the first ex-
periment is better at this type of noise mainly because it is more specialized and not just
because it had more training data with AWGN than the other neural network.

Figure 5.5: Average PESQ score using two different test sets for DNNs trained with either
all AWGN or AWGN and three types of Aurora2 noise. The DNN with Aurora2 noise adds
all 4 types to every TIMIT speech file.

Table 5.3: MSE on two different test sets for DNNs trained with either all AWGN or
AWGN and three types of Aurora2 noise. The DNN with Aurora2 noise adds all 4 types to
every TIMIT speech file.

Noise types DNN trained with DNN trained with
in test set AWGN only 4 noisetypes
AWGN 34.48 55.34
unseen noise 93.45 87.09

Of course, if we want to design a general speech enhancement system the matched test
set is not the most interesting case to study. The benefit of using 4 noise types instead of
just one is seen when testing on unseen noise types, illustrated in the bar plot to the right of
both figures 5.4 and 5.5. While the AWGN trained DNN doesn’t look to do much at all, the
DNN trained with 4 types gives a noticeable increase in PESQ-score. Again the difference
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is greater in terms of MSE, especially for the first experiment given in the second row of
Table 5.2.

A last thing to note about these experiments is the difference in MSE for the DNN
trained with 4 noise types between the first and second experiment. Comparing the second
column of tables 5.2 and 5.3, it is clear that the first DNN trained with about 3 hours of
speech data performs significantly better than the second DNN trained with 4 hours of
speech data. The difference here is that the first training set, although shorter in duration,
is made by adding noise to 905 TIMIT-files, while the second only uses 364, but adds
all noise types to every file. This means that 13 input vectors of the second training set
have the same target vector: one clean version and four different noisy versions of the
same frame at the three SNR levels 0,5 and 10 dB. The first case had only 4 cases of input
vectors sharing a target vector: one clean and three SNR levels of the single noise type
chosen to be added to that file. The conclusion is that a smaller, but more diverse training
set can result in a DNN with better performance than one with a larger, but more redundant
training set. This is useful to be aware of when wanting to add more data to the training
set. Since more data gives an increase in training time, it is probably a good idea to try to
prioritize diversity when expanding the training set.

5.4 Using dropout for increased generalization

As described in Section 4.4 an experiment of training three DNNs on the same data with
and without dropout was performed. To get an idea of how dropout affected the learning,
the cost (MSE) for training, validation and an unmatched test set was calculated for every
epoch. The results are plotted in Figure 5.6. The curves in Figure 5.6a and Figure 5.6b
are for the same DNN architecture without and with dropout respectively. It looks like
introducing dropout stabilizes the learning in some way, leading to slightly less noisy
curves. In addition, the curves for the cost of the different data sets have been brought
closer together. This could indicate that the network is generalizing better. It is clear that
this is a result both of higher training error and lower cost on the validation and test sets.

The third DNN with increased model size gives the curves in Figure 5.6c that look
very similar to the ones for the smaller model with dropout. From looking at these figures,
increasing the number of parameters seems not to have negatively affected the training in
any big way, except possibly a slightly higher test cost.

Table 5.4: MSE and PESQ on test sets for the discussed DNNs using half an hour of data,
with and without dropout

Seen noise Unseen noise
DNN trained... MSE PESQ MSE PESQ
without dropout 41.29 2.33 66.96 2.29
with dropout and
same architecture 37.18 2.29 54.40 2.25
with dropout and
bigger architecture 37.18 2.32 55.79 2.28
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(a) Without dropout

(b) With dropout, same architecture

(c) With dropout, bigger architecture

Figure 5.6: Cost for training, validation and test sets during learning, with and without
dropout.
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In Table 5.4 the results in MSE and PESQ for the parameters giving the lowest vali-
dation cost during training for the three DNNs are given. These are from testing on the
same unseen test set as previously described and a test set with seen noise now featuring
all 4 noise types used in training. Again the effect of dropout on the MSE is noticeable,
this being lowered for both DNNs trained with dropout on both test sets. A somewhat
surprising result was that the average PESQ scores on the test files were worse after in-
troducing dropout. This problem seems to be somewhat alleviated when increasing the
model size, although the PESQ results for the third DNN are still slightly below the first
one. In [1] there is, contrary to this result, reported an improvement in PESQ after imple-
menting dropout, so this result did not seem to make sense. One possible explanation is
that only the sizes of the hidden layers in the third architecture were increased to have the
same expected number as the DNN trained without dropout, and nothing was done with
the input layer. Since nodes are also dropped from the input, the first layer of connections
has a lower expected value for the number of parameters than the ”dropout-free” DNN
had. Instead of having the same expected number of nodes in the individual hidden layers,
maybe the network should have been scaled to have the same expected number of param-
eters in total, or more. Assuming nothing was wrong with the implementation, the main
difference from [1] was in model size and amount of training data, so this supports the
idea that the bigger third model might still have been too small. Whatever the explanation,
dropout was used in spite of these results for the remaining experiments.

5.5 Using Global Variance equalization
In Figure 5.7a the constant and frequency dependent global variances of the target and
estimated clean speech features are illustrated. The values for the estimated clean speech
will of course be slightly different depending on the DNN and what data is used. These
results were found using a subset of the training data for a 4 layer DNN trained with 10
hours of speech data.

Calculating the frequency dependent global variance factor, α(d), results in much
higher values for low frequencies, as illustrated in Figure 5.7b. For this reason a mod-
ified factor, α̃(d) was used in practice. Here the values for the first 6 frequency bins was
set equal to the values of bins 7-11 of α(d), in reverse order. In the figure it is clear that
α̃(d) and β are quite similar.

Table 5.5: Effect of global variance equalization (GVE) on PESQ using the ReLU-DNN
from Section 4.5

Enhanced Enhanced Enhanced
Test set Input without GVE with α̂(d) GVE with β GVE
seen noise 2.09 2.55 2.62 2.61
unseen noise 2.07 2.42 2.52 2.53

In Table 5.5 the average PESQ scores before and after speech enhancement using a
DNN with and without global variance equalization are given. Clearly, using GVE has an
impact on the PESQ results, improving the score for both test sets using both the frequency
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(a) Global variance for the reference and estimated clean speech

(b) Global variance equalization factors

Figure 5.7: The different global variances of the clean and estimated speech and the
resulting equalization factors used in post-processing

dependent and independent factors. It is not clear here which of the two factors are the
best as both perform slightly better than the other for one of the test sets.

Listening to some of the results the effect of GVE was not always noticeable, but
in some cases it seemed to remove some of the residual noise that often is present after
enhancement. In a few of the examples, the energetic voiced sounds were also noticeably
louder compared to the results without GVE. In [1] the frequency independent β was
reported to give better results for testing on unseen noise environments, which also is the
tendency in Table 5.5, if a difference of 0.01 can be considered significant. This was
however not always the case for other experiments, and whichever of the factors that gave
the best results for a particular DNN was chosen as the standard for that DNN.

Since the GVE-factors are multiplied with the output before re-scaling using mean and
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Table 5.6: Effect of global variance equalization (GVE) on MSE using the ReLU-DNN
from Section 4.5

Enhanced Enhanced Enhanced
Test set Input without GVE with α̂(d) GVE with β GVE
seen noise 129.93 37.10 42.57 42.33
unseen noise 122.68 67.89 64.25 64.25

standard deviation estimates, one can find the MSE between the output-GVE product and
the target. The results, for the same DNN as above, are given in Table 5.6. Although
there is an improvement for unseen noise, for the test set with seen noise the equalization
actually results in higher MSE. The purpose of global variance equalization is, however, to
improve the subjectively experienced quality of the speech and the PESQ score is assumed
to be a better measure of this than the MSE of the log-magnitude features. For this reason
the effect of GVE on the MSE has largely been ignored when considering the different
DNN systems.

5.6 Testing the hybrid system approach
As described in Section 4.6, two ways of combining the OM-LSA method with the DNN
based speech enhancement were implemented and tested. The two methods calls for dif-
ferent DNNs, here simply called DNN1 and DNN2, trained on features from noisy speech
and features from OM-LSA enhanced noisy speech respectively. The results for the DNN
are without global variance post-processing unless stated otherwise.

In Table 5.7 and Table 5.8 the PESQ results for hybrid system 1, using test files with
seen and unseen noise respectively, are given. The first column gives the average PESQ
of the noisy input speech at different SNR levels. The second column shows the result
after the first enhancement-stage, which here is the DNN1 system. The last column show
results after the files are further enhanced by the OM-LSA method.

Table 5.7: Average PESQ for test set with seen noise after the two stages of hybrid system
1 from figure 4.5b

.

After DNN1
Input After DNN1 and OM-LSA

SNR 15 2.57 2.88 2.74
SNR 10 2.24 2.63 2.46
SNR 5 1.93 2.35 2.13
SNR 0 1.64 2.00 1.74
Average 2.09 2.47 2.27

For both tables 5.7 and 5.8 the highest average PESQ scores result from only using
the DNN1 system. This indicates that using OM-LSA for post-processing not only fails to
provide additional performance gains, it actually seems to result in lower speech quality, as
measured by the PESQ score. The numbers are not given here, but using Global variance
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Table 5.8: Average PESQ for test set with unseen noise after the two stages of hybrid
system 1 from figure 4.5b

After DNN1
Input After DNN1 and OM-LSA

SNR 15 2.55 2.77 2.73
SNR 10 2.22 2.53 2.45
SNR 5 1.90 2.20 2.12
SNR 0 1.62 1.90 1.75
Average 2.07 2.35 2.26

equalization for this system actually resulted in lower PESQ after using OM-LSA, even
though it improved the results after the DNN1 alone. When listening to some of the
files it seemed like the OM-LSA was successful in removing some of the residual noise
from the DNN, but in some cases it alse introduced some distortion of the speech signal.
Based on the numbers and listening tests it seems possible that using OM-LSA for post-
processing can improve the results in some cases, but in general it seems that the DNN1
alone outperforms hybrid system 1.

In Table 5.9 and Table 5.10 the PESQ results for hybrid system 2 are given. Again the
results after the first part and after the whole hybrid system are provided. The results for
the DNN1 alone are also included for comparison. First, comparing the result after just
using the OM-LSA (column two) to the whole hybrid system (column three), the addition
of the DNN after the OM-LSA results in better PESQ score in all cases except for SNR
15. For this highest SNR the DNN gives no improvement for seen noise and lower PESQ
score for unseen noise. In general, the improvement in PESQ of using the DNN seems to
be bigger for the lower SNRs than for the higher.

Further, comparing the hybrid system to using only the DNN1 system (columns three
and four) the hybrid system is seen to give lower PESQ score for test files with seen noise,
but higher for files with added unseen noise. When Global variance equalization was
implemented, however, the pure DNN gave equal or better PESQ score for the data with
unseen noise also. The results with GVE are given in Table 5.11.

Table 5.9: Average PESQ for test set with seen noise after the two stages of hybrid system
2 from figure 4.5c

After OM-LSA
input After OM-LSA and DNN2 DNN1 only

SNR 15 2.57 2.87 2.87 2.88
SNR 10 2.24 2.50 2.60 2.63
SNR 5 1.93 2.10 2.31 2.35
SNR 0 1.64 1.65 1.95 2.00
Average 2.09 2.28 2.44 2.47

In Table 5.12 the MSE results for DNN1 and DNN2 are given for the same two test
sets used in the PESQ-testing, and a subset of the training set. The MSEs of the inputs
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Table 5.10: Average PESQ for test set with unseen noise after the two stages of hybrid
system 2 from figure 4.5c

After OM-LSA
input After OM-LSA and DNN2 DNN1 only

SNR 15 2.55 2.92 2.85 2.77
SNR 10 2.22 2.56 2.58 2.53
SNR 5 1.90 2.16 2.25 2.20
SNR 0 1.62 1.74 1.93 1.90
Average 2.07 2.35 2.40 2.35

Table 5.11: Average PESQ for hybrid system 2 and DNN1 for the two test sets when using
Global Variance Equalization

Hybrid system 2 DNN1 only Hybrid system 2 DNN1 only
seen noise seen noise unseen noise unseen noise

SNR 15 2.94 2.97 2.91 2.91
SNR 10 2.63 2.69 2.61 2.64
SNR 5 2.30 2.36 2.27 2.29
SNR 0 1.95 2.01 1.92 1.97
Average 2.46 2.51 2.43 2.45

are also given, which for DNN1 is the noisy speech features and for DNN2 is the noisy
speech features after OM-LSA enhancement. Comparing the input columns we see that
using OM-LSA for pre-processing gives considerably lower MSE for all three sets. Using
DNN2 on this data further improves the results and gives lower MSE than using the DNN1
alone. The difference in MSE after enhancement between the two DNNs is greatest for
the unseen noise case, where DNN1 performs considerably worse than DNN2. In fact the
MSE after DNN1 is higher than the MSE of the input for DNN2 (after OM-LSA only).
Consequently, the performance gap of the DNNs between the sets with seen and unseen
noise is smaller for the hybrid system than the DNN1 system. One possible explanation is
simply that the SNR of the input files are higher for the OM-LSA pre-processed features
than for the ”raw” noisy features, making the speech enhancement in the DNN easier for
DNN2. This interpretation seems very plausible considering the big difference in MSE
for the input signals of the two DNNs. An alternative explanation is that the residual
noises after OM-LSA method are more similar to one another than the original noise types
were, which makes the mismatched test data seem more like the data the DNN2 has seen
during training. Another way of formulating this is that the OM-LSA method might have
managed to remove parts of the noise that were the most mismatched to the training data,
removing some of the disparity between the test sets.

The PESQ results indicate DNN1 with GV gives better results in than hybrid system
2, while the MSE shows the opposite tendency. One explanation is that the OM-LSA will
not only remove the noise, but might distort the speech in a way that affects the PESQ
measure more than the MSE. A possible way to avoid speech distortion from OM-LSA,
but use the method together with the DNN, is discussed under future work in Chapter 6.
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Table 5.12: MSE before and after DNN enhancement in the two hybrid systems

Input Enhanced
Data set DNN2 DNN1 DNN2 DNN1
subset of training set 53.39 135.23 28.11 32.54
test set with seen noise 52.66 129.48 29.26 33.13
test set with unseen noise 50.98 137.85 32.06 56.97

5.7 Using rectified linear units and comparing with OM-
LSA

As mentioned in Section 4.5 some smaller experiments with the leaky-ReLU replacing the
sigmoid neurons were done initially. These models, in general, performed slightly worse
than the pre-trained sigmoid models both in terms of higher MSE and lower average PESQ.
For bigger architectures with more data the results from the two networks seemed to be
more comparable. In this section the result from the 5 layer architecture with 600 nodes in
the hidden layers and 9 frames in the input, trained with 20 hours of data, are given. For
the test set with seen noise only the four noisetypes AWGN, babble, restaurant and street
were used, leaving out the two last types used in the training set. The mismatched test set
was the same as previously.

The tables 5.13 and 5.14 give PESQ result for both test sets enhancing with the two
DNN systems and the OM-LSA method, including the average PESQ scores of the input
data and the optimal PESQ score. The ”optimal” column gives the average PESQ of the
waveforms reconstructed by combining the optimal magnitude (the clean target frame)
with the phase of the noisy input. Since the system only enhances the magnitude this is
a better measure for the best attainable performance than the maximum PESQ value of
4.5. The results for the clean input case are also provided, but these are not included in
the averages given in the bottom row of the tables. Studying the columns with PESQ
scores for enhanced test files we see that both systems lead to a significant increase in
the PESQ score compared to the noisy input, but a big decrease for the clean case. Both
DNNs also outperform the OM-LSA method for the noisy data. For the test set with seen
noise the ReLU-DNN gives better PESQ results than the pre-trained sigmoid-DNN for all
SNR and the clean case. For the unseen noise it performs about the same, or better by an
insignificant amount.

In the tables 5.15 and 5.16 the segmental SNR of Equation 2.46 is used on the input
and enhanced files from both systems. Both DNN systems leads to an improvement which
again seems to be bigger for the ReLU-DNN. Comparing with the OM-LSA method shows
that this system results in higher score than the DNNs on the mismatched test set and the
SNR 15 dB case for the test set with seen noise. It is possible that the OM-LSA method
has been able to remove more noise in the second test set, but also negatively affected
the speech leading to a higher segmental SNR, but lower PESQ compared to the DNN
systems.

For completeness, the MSE calculated on the log-magnitude spectrum of the frames
are given in Table 5.17. Here it is seen that the ReLU-DNN results in a slightly lower MSE
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Table 5.13: Average PESQ for test set with seen noise added at different SNR using a
DNN with sigmoid units and one with rectified linear units.

Enhanced Enhanced Enhanced
Input sigmoid-DNN ReLU-DNN OM-LSA Optimal

clean 4.50 3.54 3.59 4.01 4.50
SNR 15 2.57 3.01 3.07 2.84 3.81
SNR 10 2.24 2.73 2.81 2.49 3.63
SNR 5 1.93 2.40 2.47 2.08 3.49
SNR 0 1.64 2.06 2.11 1.65 3.33
Average 2.09 2.55 2.62 2.26 3.57

Table 5.14: Average PESQ for test set with unseen noise added at different SNR using a
DNN with sigmoid units and one with rectified linear units.

Enhanced Enhanced Enhanced
Input sigmoid-DNN ReLU-DNN OM-LSA Optimal

clean 4.50 3.54 3.59 4.01 4.50
SNR 15 2.55 2.95 2.97 2.88 3.79
SNR 10 2.22 2.70 2.71 2.53 3.65
SNR 5 1.90 2.36 2.36 2.14 3.50
SNR 0 1.62 2.06 2.06 1.71 3.35
Average 2.07 2.52 2.52 2.31 3.57

for the test set with seen noise and the training set, but a bigger MSE for the test set with
unseen noise. This differs from the results for the PESQ and segmental SNR measure.
This disparity between the different measures has been encountered multiple times when
comparing the performance of differently trained DNNs. For example, comparing the
MSE and PESQ results of the DNNs in this chapter to the results presented in earlier
sections, we see that other DNNs often perform better in terms of MSE than the ones in
this section, but that they have worse PESQ results. A good explanation of this cannot be
provided by the student.

Some listening tests were performed by the student for the three methods compared

Table 5.15: Average segmental SNR for test set with seen noise added at different SNR
using a DNN with sigmoid units and one with rectified linear units.

Enhanced Enhanced Enhanced
Input sigmoid-DNN ReLU-DNN OM-LSA

SNR 15 3.00 4.66 5.38 6.22
SNR 10 -2.03 3.51 4.29 2.91
SNR 5 -6.98 2.19 2.92 -0.52
SNR 0 -11.98 0.83 1.31 -4.04
Average -4.50 2.80 3.48 1.14
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Table 5.16: Average segmental SNR for test set with unseen noise added at different SNR
using a DNN with sigmoid units and one with rectified linear units.

Enhanced Enhanced Enhanced
Input sigmoid-DNN ReLU-DNN OM-LSA

SNR 15 2.68 4.11 4.44 6.57
SNR 10 -2.35 2.29 2.45 3.57
SNR 5 -7.26 0.13 0.21 0.58
SNR 0 -12.29 -2.56 -2.44 -2.50
Average -4.80 0.99 1.16 2.05

Table 5.17: MSE for the DNNs with ReLU and sigmoid units

Data set Sigmoid-DNN ReLU-DNN
subset of training set 36.55 34.96
test set with seen noise 38.27 37.10
test set with unseen noise 62.17 67.89

in this section. As mentioned in Section 5.2 the files with the PESQ scores that were
highest, lowest and closest to the average, out of all the test files, for every SNR, were
stored. Quite often, but not always, the same files were found to be best and worst in terms
of PESQ for the two variations of the DNN system. Which files that were considered
”most average” differed quite a lot more. Comparing the enhanced versions of the files
that were the same for the two systems, it was not easy to claim that one was better than
the other. It was also not always easy to decide if the DNN based systems were better than
the OM-LSA either, especially for the worst case files of the lower SNR levels, where the
speech was almost impossible to understand for all systems. As indicated in the plot of
Figure 5.3, the files with lowest PESQ would generally be ones with very low SNR. For
removing non-stationary or transient noises, the DNN systems were much more effective
than OM-LSA, which was also noted in [1]. Another big difference between the OM-LSA
and DNN systems is in the nature of the residual noise. While the OM-LSA often would
fail to remove much of the non-stationary noises, the DNN would in some cases introduce
annoying background noise very different from what was present in the noisy input speech.

In addition to listening to files from the test sets, some audio files with noisy speech
used for demonstration purposes for papers [1, 31] were downloaded from [7] and [43] and
enhanced using the ReLU-DNN from this section. The enhanced speech was compared
subjectively by the student with the enhanced results from the systems in [1] and [31],
which were also given on [7] and [43]. On these files the results achieved with the ReLU-
DNN was considered comparable to those from [7], but on the files from [43] the system
from [1] was superior, as expected. Spectrograms for one of the files from the website [7],
with the unseen exhibition noise added to 10 dB SNR are illustrated in Figure 5.8. In
Appendix C links to the audio examples are provided.

It should also be noted that, because of the increased training time for the DNNs in
this section it was too time-consuming to try many different choices for all the hyper-
parameters. That the ReLU based DNN seems to work better here might therefore be a
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case of the sigmoid-based one not being as well optimized. However, the results do imply
that the ReLU-DNN trained by backpropagation alone might be an equally good choice as
a sigmoid-based DNN with RBM pre-training. ReLU based networks are reportedly [44]
easier to optimize and faster to train, which, in addition to not needing pretraining makes
them attractive for further development.

(a) Clean speech (b) Noisy speech

(c) Speech enhanced with ReLU-DNN (d) Enhanced speech from [31]

(e) Enhanced speech using OM-LSA

Figure 5.8: Spectrograms using files from [7].
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5.8 Performance on different sound classes

(a) Average PESQ

(b) Segmental SNR

Figure 5.9: Comparison of clean enhanced sound classes from test files with seen noise

Figure 5.9 show results for the selected test files with added AWGN, babble, restaurant,
street, airport and subway noise. For the network tested here these are the same types of
noise used in the training set. Figure 5.10 show results for the same TIMIT files with the
added unseen noisetypes car and exhibition. Note that the class semivowels and glides
is simply labeled as glides in the figures, although it contains both types of sounds. For
the PESQ results in figures 5.9a and 5.10a, the average PESQ scores for whole sentences
are also included. Looking at these figures, it is clear that vowels and semivowels and
glides are the sound classes with the highest PESQ score for both noisy and enhanced
speech. This seems reasonable considering they are sounds with high energy, meaning
they have a higher SNR relative to other sound classes. This is also confirmed looking
at the corresponding segmental SNR values in figure 5.9b and 5.10b, where these two
classes are the only two that have a positive SNR for the noisy speech. The fact that the
segmental SNR measure for the silence class is a number, and not −∞, illustrates that the
extracted segments contain some non-zero samples like traces of ends or starts of other
sounds and possibly some background noise. The power of the noisy signal will, however,
be dominated by the noise, which is why the segmental SNR value is so low for this
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class. The same applies to stops and affricates since these classes include the longer silent
closures before the more energetic release of the sound.

(a) Average PESQ

(b) Segmental SNR

Figure 5.10: Comparison of clean enhanced sound classes from test files with unseen
noise

In the segmental SNR figures for both test sets there is an improvement going from
noisy to enhanced speech for all sound classes. For PESQ, however, nasals for seen noise
and affricates, nasals and silence for unseen noise stand out as having worse PESQ score
after speech enhancement. Studying the difference in PESQ and segmental SNR within all
the sound classes, it is evident that the speech enhancement system does not seem to work
equally well for all types. To get a better idea of this, the differences in performance for
enhanced and noisy speech are plotted in figure 5.11. Classes semivowels and glides and
vowels are seen to be among the most improved in terms of PESQ (5.11a), but the least
improved in terms of segmental SNR (5.11b). The difference in improvement between the
two test sets is largest for the silence and affricates classes for both PESQ and segmental
SNR. Affricates in particular shows an extreme difference in the PESQ improvement, go-
ing from having the biggest increase for the seen noise to having the largest reduction for
the unseen noise.

It is important to consider the reliability of the performance measures as they are used
in this section. Clearly PESQ was designed to be used on spoken sentences and not long
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(a) Average PESQ

(b) Segmental SNR

Figure 5.11: Improvement after enhancement in PESQ and segmental SNR

concatenated arrays of instances from a single speech sound class. Therefore it is hard to
know whether or not the PESQ results make sense when used in this way. The segmental
SNR is easier to understand, but it is a completely objective measure and probably less
correlated with the subjective experience of speech quality. These measures on the indi-
vidual sound classes have therefore not be considered when comparing different DNNs.
Another issue is that the length and frequency of use of the different sound classes vary
greatly. This means the length of the segment arrays used for calculating the performance
will be very different depending on the sound class. For the results given here, for exam-
ple, the test files contained about 6 minutes of concatenated vowels, but only 50 seconds
of affricates.

5.9 Studying the learned weights of the DNN
Deep neural networks are often described as ”black box” models, since it can be very
difficult to understand what is happening within the nodes of the network. Nonetheless, it
can be interesting to try to interpret what the network has learned even though it is hard,
or impossible, to fully understand it. One approach is to try to make sense of what the
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different nodes of the first hidden layers are activated by in the input data. In the case
of the described speech enhancement system the input is the log-magnitude spectrum of
several frames concatenated to form one vector. This is illustrated in Figure 5.12 with 4
past and future context-frames included in the input for frame k.

Figure 5.12: Choosing group of 9 frames from spectrogram to make input vector

In a densely connected MLP, every node in the first hidden layer will have a connection
to every element of the input vector. Knowing that the input is a concatenation of several
frames, the weights going to a single node can be separated based on which part of the
input vector they are connected to. Taking the node j as an example, this means dividing
the j’th column of the weight matrix into as many parts as there are frames in the input.
These can be organized the same way the input data was in the spectrogram of Figure 5.12
to get an idea of what kind of features the first node ”looks for” in the input data. This is
illustrated in Figure 5.13.

To activate a sigmoid or rectifier neuron we need the weighted sum of input elements
to be greater than the negative bias value. This means the weights should overlap with the
part of the spectrogram that makes up the input in such a way that big positive weights are
multiplied with positive values, and big negative weights with negative values. Therefore,
by plotting the generated ”weight images”, scaled such that the biggest weight are repre-
sented by white pixels and the smallest (most negative) are represented by black, one can
make some sense of what features the neural network has learned to recognize in the input
data. In Figure 5.14 this is done for 30 nodes in the first layer of a well trained sigmoid
DNN, using 9 frames in the input.

Studying Figure 5.14, it’s seen that several of the nodes contain horizontal striped
pattern that might indicate that they have learned to recognize the harmonics associated
with voiced sounds. It’s also interesting to see how some of these striped patterns span
the width of the images, while others seem only focused on the middle frame. Since the
middle frame of the input is the one the system is supposed to enhance it makes sense that
more focus is placed on this rather than the context frames. When conducting experiments
with non-symmetric context it was observed that this emphasis was shifted to the new
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Figure 5.13: Dividing weight column into image based on which frames they are con-
nected to in the input

Figure 5.14: Incoming weights for nodes 361-390 in the first hidden layer. In all the
images white or light grays mean values close to the maximum value for that node and
black or dark grays are close to the minimum.

location of the current frame in the input. The information about where in the input vector
the current frame is located comes from supervised training with the target frames, and is
not something that can be learned in the unsupervised pre-training. For very deep networks
with logistic neurons, which might experience vanishing gradients, it’s possible that this
information would not propagate all the way back to the first layer.

Assuming some of the neurons are trained to activate if certain patterns typical for
speech appear in the spectrogram, maybe some neurons are purely ”noise detectors” in
much the same way. To get an idea whether this was the case, unsupervised learning
using a shallow denoising autoencoder was performed for both clean input data and purely
noisy data. The same dimension and scaling factors where used as for the complete DNN
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presented earlier. The same kind of weight images were plotted for a subset of nodes for
both autoencoders in Figure 5.15. Studying the weights for the speech autoencoder in
Figure 5.15a we can see some similar patterns to what we saw in Figure 5.14, although
less noisy and without the focus on the center frame that we saw earlier. The weights of
the noisy autoencoder in Figure 5.15b look very different for the most part, although one
can find some resemblance between a few of the weight images in Figure 5.14 and Figure
5.15.

(a) Weights learned for clean speech

(b) Weights learned for noise

Figure 5.15: Weigths for a subset of nodes learned by the denoising autoencoders using
log-magnitude spectrum of frames of clean speech and noise.

A short experiment was conducted to explore whether these ”specialized” features in
Figure 5.15 could be useful when training the speech enhancement system with noisy
speech data. A DNN with two hidden layers containing 500 and 300 nodes respectively
was used for the experiment. The 500 nodes of the first layer were split into two groups,
300 to be trained for speech detection and 200 for noise detection.Two denoising autoen-
coders with these dimensions of the hidden layers were trained using clean speech and
noise respectively, in the same way as before. The weights and biases for the speech and
noise autoencoders were then combined to form the first layer of the DNN. The other
layers were pre-trained as denoising autoencoders using the preceding layer’s activations
for noisy input speech, before the complete DNN was fine-tuned using labeled data. For
comparison an identical model was trained using the standard pre-training method (with
denoising autoencoders instead of RBMs). When trained for the same number of epochs
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this specialized first layer pretraining approach resulted in worse performance than for
the standard setup. A possible explanation is that, because we use the logarithm of the
magnitude-spectrum as input, the noisy speech features are not a linear combination of
features from clean speech and noise, as the waveforms are. Therefore the specialized
neurons might not be equipped to recognize the noise and clean-speech ”parts” of the
noisy speech features. The efforts were abandoned at that point, but the idea of utilizing
the noise and speech data separately in some way could be interesting to look into more
closely.

When it comes to the hidden layers not connected to the input, it is a bit more com-
plicated to get an idea of what the weights have learned. Some work has been done in
this field for computer vision tasks [45, 46], but none of those methods were applied here.
Instead some focus was placed on the final layer, which produces the observed output and
therefore might be easier to study. In the case of the speech enhancement system the final
layer is doing the job of estimating the (normalized) clean log-magnitude spectrum of the
frame being processed. The operations performed in this layer is illustrated in Figure 5.16.

Figure 5.16: Last layer of the DNN

Denoting the transposed weight matrix by its column vectors WT
L = [wc1,wc2, ...,wcM ],

and the activations of the previous layer by its elements y(L−1) = [y
(L−1)
1 , y

(L−1)
2 , ..., y

(L−1)
M ]T ,

the output of the DNN can be written as in Equation 5.1

X̂l =

M∑
i=1

y
(L−1)
i wci + bL (5.1)

To get the final estimate of the clean log-magnitude spectrum, X̂′, the output must be
scaled back by element-wise multiplication (denoted by .∗) with the standard deviation
estimate, σN, and addition of the mean estimate, µN, used in the pre-processing:

X̂′ = X̂l. ∗ σN + µN (5.2)

Inserting the sum from Equation 5.1 we get:

X̂′ =

M∑
i=1

y
(L−1)
i wci. ∗ σN + bL. ∗ σN + µN (5.3)

We see the final spectrum estimate has two parts. The first is a sum of the scaled
column vectors wci. ∗ σN weighted by the elements of the previous layer’s output vector.
The other is the term bL. ∗ σN + µN which is independent of the input and therefore the
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same for every frame estimate. In Figure 5.17 this last term is plotted together with µN ,
which is the mean log-magnitude spectrum of many frames of noisy speech, and the mean
log-magnitude spectrum of many frames of clean speech. For this DNN at least, the scaled
bias vector seems to have brought the mean vector, µN , closer to the mean of the target
clean speech, µC , in addition to changing its shape somewhat.

Figure 5.17: Scaled bias of last layer and mean log-magnitude spectrum for clean and
noisy speech frames

The sum of scaled vectors in Equation 5.3 is the frame specific part of the output.
When using sigmoid units in the hidden layers, the elements of the vector y(L−1) will be
somewhere in the range [0, 1]. One can think of the elements of this vector as choosing
which columns vectors of the weight matrix will be used to estimate the frames clean log-
magnitude spectrum. Thinking of it this way the scaled vectors {wci. ∗ σN}i=1:M must
form some kind of ”basis” for the clean speech log-magnitude spectrum (together with the
input independent part). In Figure 5.18 some of these ”basis vectors” are plotted, which
gives the possibility of attempting to interpret the nature of the vectors. For example the
top one, number 683 on the plot, might be used in the estimation of a voiced frame. Others,
like number 677 and 678 might be used to introduce new formants to the spectrum, since
they are mostly zero except for a single top centered around some frequency. Number 675
looks like it has the purpose of raising the high frequencies of the spectrum. To create
silent frames in the output, maybe a combination of many vectors similar to number 679
and 680 is used to flatten the shape in Figure 5.17 and reduce its values. The dimension of
the last layer in this example is 700, so there are many possible combinations that can be
used to estimate the clean speech spectrum of the frame.

If the last layer is interpreted as described, it follows that the DNN up to that point
performs the operation of finding the ”coefficients” (elements of y(L−1)) that form the
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Figure 5.18: Some of the scaled column vectors of the last transposed weight matrix.
Might be interpreted as basis vectors being combined to form the frame spectral estimate

closest approximation of the clean target vector. For example, if the nodes with weight
patterns in Figure 5.14 that look like like voiced sounds are activated, this information
might be propagated through the DNN resulting in a big value of the node being multiplied
with a column vector like 683 in Figure 5.18. Thinking of the system in this way might
be of use when trying to further improve the system. If nothing else, this was considered
an interesting interpretation that gives a different insight into the operation of the speech
enhancement system than the student had at the start of the master thesis work.
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Chapter 6
Future work

6.1 Overview

This section contains some suggestions of future work and research based on the results
presented in the master thesis. The content reflects what the student feels would have been
most interesting to work with further if given more time.

6.2 Improving the hybrid system approach

Two hybrid systems combining the OM-LSA method with the DNN system were described
in sections 4.6 and 5.6. The best results were found using a cascade of the methods with
OM-LSA being applied before the DNN. In these experiments, the complete waveform
was reconstructed in between the two systems. Since both methods use a STFT approach
with enhancement of only the samples of the magnitude of the frames |Y (k, l)|, the wave-
form reconstruction after the OM-LSA method is not necessary. An alternative, more
compact approach, is illustrated as a block diagram in Figure 6.1a. Note that in the figure,
since the system is drawn as multiplying the spectral gain from the OM-LSA method to
the squared magnitude (i.e. the energy spectral density) of the frames, the square of the
gain is used. After the logarithm this amounts to a factor 2 which can be removed when
scaling the features in the DNN pre-processing.

In 5.6 it was observed that the hybrid system gave a big improvement in MSE, but
worse PESQ, compaed to using the DNN system alone. This result was interpreted as
a result of the OM-LSA introducing some speech distortion that was hard for the DNN
to undo. An alternative method of combining the OM-LSA method with the speech
enhancement system, which could possibly improve the system, is to let the DNN it-
self ”decide” how to apply the spectral gain used in this method. Instead of using the
multiplication in Figure 6.1a, the gain can be passed as input features together with the
noisy spectral features to the DNN. The DNN cannot implement multiplication of the
input elements with each other. However, since we apply the logarithm in the previ-
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ous hybrid system, what the DNN in Figure 6.1a gets as input is a scaled verion of
log(G(k, l)|Y (k, l)|) = log(G(k, l))+log(|Y (k, l)|). So by providing both log(|Y (k, l)|)
and log(G(k, l)) to the DNN, the network can learn to apply the same operation as in the
first hybrid system, but also other combinations. To see that this is the case, consider
the activation of node j in the first hidden layer, receiving the weighted sum of the input
features y(0):

{y(1)}j = f

(
N∑
i=1

wji{y(0)}i + wj0

)
(6.1)

Assume, for simplicity, that the input of the DNN in Figure 6.1a for frame l is comprised of
just this frame’s 129 frequency samples of OM-LSA pre-processed noisy features: y(0) =
[log(G(1, l)|Y (1, l)|), ..., log(G(129, l)|Y (129, l)|)]T . Then the activation can be written
as in Equation 6.2.

{y(1)}j = f

(
129∑
i=1

wji log (G(i, l)|Y (i, l)|) + wj0

)

= f

(
129∑
i=1

wji log (|Y (i, l)|) +

129∑
i=1

wji log (G(i, l)) + wj0

) (6.2)

If the gains are concatenated with the log-spectral features the input vector will be y(0) =
[log(|Y (1, l)|), ..., log(|Y (129, l)|), log(G(1, l)), ..., log(G(129, l))]T . Then the activa-
tion can be written as:

{y(1)}j = f

(
129∑
i=1

wji log (|Y (i, l)|) +

258∑
k=130

wjk log (G(k − 129, l)) + wj0

)
(6.3)

Comparing equations 6.2 and 6.3 it is clear that choosing the weights in the second sum
to be equal to the weights of the first, wjk = wj(k−129) for k ∈ [130, 258], will make
the activations in 6.2 and 6.3 the same. In practice the scaling in the pre-processing block
will change this somewhat, but it still holds that the DNN in the second case, at least in
theory, can learn to implement the OM-LSA exactly as it was used in Figure 6.1a. It might,
however, also learn to better utilize information from this method.

In addition to the gain, the OM-LSA system produces a noise spectrum estimate λ̂d that
also could be useful to have as input to the DNN. In fact, one of the methods implemented
for improving the DNN system in [1] is to provide the DNN with an estimate of the noise
log-power spectrum. This was called noise aware training (NAT) and was shown in the
paper to improve the speech enhancement system for most cases, even though the estimate
used simply was an average of the first 6 frames (assumed to contain only noise). The OM-
LSA estimate, λ̂d, uses a recursive averaging based on frames where speech is assumed
to be absent, and is therefore updated throughout the enhancement. This adaptive-NAT
might prove to be a better estimate than the the one in [1] for changing noise environ-
ments. An alternative hybrid system, that combines the proposed methods, is illustrated in
Figure 6.1b. This might be a preferred solution to Figure 6.1a as the DNN here receives
the non-processed magnitude of the frame, without possible distortions caused by the OM-
LSA method, but it can still use the information provided by the OM-LSA method. The
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downside is the increase in input layer size, which means more parameters to learn in the
first layer. A possible trade-off would be to only include the 129 gain factors of the current
frame and the 129 frequency bins of the noise estimate, meaning the input size would be
N = Nfr129+258 withNfr again being the size of acoustic context including the current
frame.

(a) Compact version of hybrid system 2 (see Sec. 4.6)

(b) Alternative combination of the OM-LSA and DNN method

Figure 6.1: Block diagrams for hybrid OM-LSA and DNN speech enhancement systems.

6.3 Modifications of the existing system
There are many ways in which the speech enhancement system can be modified. The first
thing would be to implement the noise aware training (NAT) that was presented in [1],
that because of limited time was not included in this project. Training the system to also
provide a noise estimate for the frame, or simply using the difference (in the the linear
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spectral domain) of estimated output and noisy input, an adaptive NAT could possibly be
implemented. This would need some changes in the training procedure, but might give
some performance gains for changing noise environments over the NAT proposed in [1].

Moving beyond what is already done by the authors of [1], it could be interesting to
test a recurrent neural network setup of the system. That is, a neural network containing
directed cycles instead of strictly the feed-forward structure utilized in this project. Using
a single frame as input, information from previous frames could then be ”stored” in the
network. This means, in theory, that the network automatically can leverage past useful
information without explicitly including a left context. Maybe a system like this can even
learn to keep a running estimate of the noise, replacing the need of NAT. Recurrent models
are often much harder to train than feed-forward network, but special versions like the
so called Long Short Term Memory (LSTM) network have used successfully for many
applications [12].

Starting from the interpretation of the weights of the last layer as forming a collection
of basis vectors, presented in Section 5.9, it could be interesting to see if a robust and
general basis could be explicitly trained, introducing a form for pretraining of the last
layer. As mentioned in that section, it could also be interesting to see if the noise and
speech data could be utilized separately for the training, in some way.

6.4 Moving towards a real-time implementation
In today’s society, where communication via speech or video on digital devices has be-
come almost as widespread as face-to-face conversations, it is obvious that effective real-
time speech enhancement systems are of great interest. Having a complex speech enhance-
ment system running on a smart-phone or other device demands computational efficiency
and minimized delay. Limiting delay by removing the right side context of the frames,
with a thorough examination of how this affects performance, is an obvious first step in
this regard. It is probable that much work is needed before the system is applicable for this
scenario and so it is an interesting direction in which to continue the research.
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Chapter 7
Conclusion

The task for this master thesis was to implement and evaluate a DNN based approach to
speech enhancement as described in the paper [1]. Attaining the performance reported
in [1] was not considered realistic so no direct comparison was performed with the re-
sults presented there. Rather the aim was to examine and understand in more detail the
effect of the proposed techniques on the performance of the speech enhancement system.
Among these, dropout has been implemented as a regularization technique during train-
ing, global variance equalization post-procesing was introduced to reduce a problem of
over-smoothing, and more data combined with new types of noise, was used to increase
performance on speech corrupted by unseen noise. Some changes outside those discussed
in [1], including a hybrid OM-LSA DNN system, have been proposed and implemented.
In addition, some novel evaluations of the system have been performed, examining perfor-
mance on sub classes of speech as well as attempting to interpret the learned parameters
of the model.

Implementing many of the techniques, and training on a data set containing 20 hours
of speech corrupted by AWGN and 5 noise types from the Aurora2 database resulted in
two variations of the system giving superior performance over the traditional OM-LSA
method in terms of PESQ. From listening to a subset of test files it was harder to conclude
a clear improvement for the DNN over OM-LSA, as both methods give poor performance
on noisy speech with low SNRs.
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Appendix

A Studying the effect of the context frames on performance
Considering possible real time use of the speech enhancement system it was interesting to
see how limiting the right context affected the performance. Ideally the past context would
be the most important, as this would limit the need for buffering future frames to process
the current, and thereby reduce the delay. A DNN with 5 frames in the input layer and
two hidden layers with 500 and 300 nodes were trained with about three hours of noisy
and clean speech data. One standard net was trained where the target frame was the clean
version of the frame in the center of the input. This gives a symmetrical context with 2
frames to the left and 2 to the right of the frame being enhanced. A second DNN was
trained with the target shifted one frame to the right. This gave a skewed context, with 3
frames to the left and a single to the right. A third DNN was trained with the target frame
shifted another frame to the right, meaning the last of the five frames was the one being
enhanced. This meant a one-sided context with 4 frames to the left and 0 frames to the
right of the frame to be enhanced. The results for shifting the context in a 5 frame input is
given in table 1. It seems from this experiment that using a skewed context, with 3 left and
1 right frame, doesn’t affect the PESQ results too much. The one-sided case, on the other
hand, does seem to perform worse than the symmetrical case in terms of PESQ.

Table 1: MSE and average PESQ for two identical DNNs trained with 5 frames in the
input layer chosen to be symmetric (left = 2, right = 2), skewed (left = 3, right = 1) or
one-sided (left = 4, right = 0)

Seen noise Unseen noise
Context MSE PESQ MSE PESQ
symmetric 33.66 2.37 55.04 2.36
skewed 34.05 2.36 56.78 2.36
one-sided 35.46 2.31 55.75 2.33

A bigger network with 9 frames in the input and three hidden layers with 700 neurons
each was also trained using about 10 hours of noisy and clean speech data. For this only
two cases were tested: the symmetrical one and a skewed version with 6 frames of left
context and 2 to the right. The results for the bigger DNN with 9 frames in the input
is given in table 2. With the exception of the MSE for the unseen noise, shifting the
context does not seem to hurt the performance, and actually seems to improve it somewhat.
The improvement is, however, very small and can probably not be considered significant.
As mentioned, [1] found that increasing the context from 2 frames on either side (5 in
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total) to 4 frames (9 in total) lead to better performance. These limited result seem to
indicate that keeping the 2 frames of right sided context and simply increasing the left
sided (past) context might lead to equivalent performance as the symmetrical increase.
More experiments are needed before concluding if this is the case.

Table 2: MSE and average PESQ for two identical DNNs trained with 9 frames in the
input layer chosen to be symmetric (left = 4, right = 4) or skewed (left = 6, right = 2)

Seen noise Unseen noise
Context MSE PESQ MSE PESQ
symmetric 33.13 2.51 56.97 2.45
skewed 32.95 2.53 60.08 2.47

B The good, the bad and the average
SNR of noisy files and PESQ of enhanced files for the files having the worst, best and
closest to the average PESQ score are given in tables 3 and 4

Table 3: PESQ scores and SNR for best and worst files from test set with seen noise

Global SNR 0 5 10 15
Best PESQ 3.06 3.21 3.48 3.66
SNR of file 5.11 5.94 15.05 20.16
Worst PESQ 0.98 1.41 2.06 2.35
SNR of file -10.80 -6.95 -1.33 4.37
Average PESQ 2.11 2.47 2.81 3.07

Table 4: PESQ scores and SNR for best and worst files from test set with unseen noise

Global SNR 0 5 10 15
Best PESQ 3.10 3.26 3.53 3.64
SNR of file 5.26 10.25 15.23 20.23
Worst PESQ 0.98 1.44 1.53 2.18
SNR of file -12.60 -4.02 -1.51 2.93
Average PESQ 2.06 2.36 2.71 2.97

C Link to audio demos of the ReLU based DNN
Url containing the audio files from [7] enhanced with the ReLU-DNN based system
https://www.dropbox.com/sh/hodv3x08jmrfx05/AAAoFLwf4o_qFL9QmH4n46MFa?
dl=0

Url containing the audio files from [7] enhanced with the ReLU-DNN based sys-
tem
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https://www.dropbox.com/sh/ugecp32e334rueo/AABRDQ7T7P38ma_J936j3stqa?
dl=0
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