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Introduction 
The chemical senses, gustation and olfaction, are present in virtually all organisms, and are in 

evolutionary context considered to be the oldest of the senses. In addition to their importance 

in aiding animals to find nutritious food and avoid toxic items, these senses play a major role 

in reproductive behaviour, kin recognition, social organisation, predator-prey relationship, and 

nest finding. Whereas the olfactory system has evolved for perceiving airborne molecules, the 

gustatory system has evolved for sensing molecules in liquids, crucial in the final acceptance 

or rejection of food or oviposition sites in insects. Phagostimulants like sugars elicit feeding, 

and bitter substances warn against ingesting toxins and cause rejection. Both responses are 

innate. However, learning by experience of the two categories of stimuli can modify these 

innate behaviours. 

 Detection of tastants has evolved differently in various organisms, depending on diet 

breadth and habitat. In vertebrates, gustation is limited to a few modalities, and mammals 

seem to be unable to distinguish different chemicals within one taste modality. Humans 

perceive the five taste modalities: sweet, salty, sour, bitter, and umami (the taste of 

glutamate). In general, sweet, umami, and low concentrations of salts elicit feeding, whereas 

bitter, sour and high concentrations of salts deter feeding. In insects, and particularly 

lepidopteran larvae, separate gustatory receptor neurons (GRNs) responding to substances 

perceived as one taste modality in mammals have been shown, indicating detection of a wider 

range of taste qualities. No sequence similarity of the gustatory receptor genes in insects and 

mammals has been found, suggesting different origins of the genes. In addition, the gustatory 

systems in the two groups of animals show anatomical differences; e.g., the mammalian 

gustatory organs are comprised of secondary sensory cells located in the oral cavity, whereas 

insects have primary sensory neurons in gustatory sensilla located at several appendages of 

the body. 

The gustatory system 

The mammalian gustatory system 

The anatomy of the gustatory system differs across phyla. Mammals have epithelial derived 

taste cells organised in taste buds (50-150 taste cells per bud) located in papillae on the tongue 

(Lindemann 1996). Apically, the gustatory receptor cells have microvilli extending into a 

taste pore cavity, exposing the receptor cells to chemicals in the mouth. Three 

morphologically different papillae types (fungiform, foliate, and circumvallate) are 
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topographically arranged on the tongue. Although the gustatory cells are not neurons with 

axons, they can fire action potentials that amplify the depolarisation leading to 

neurotransmitter release in response to stimulation with tastants (Roper 1983). The activity is 

transmitted to gustatory afferent fibres at the proximal part of the taste bud. Each gustatory 

afferent contacts several gustatory receptor cells within and between taste buds and follows 

one of three cranial nerves (Smith and Davis 2000). The chorda tympani (CT) branch of the 

VIIth cranial nerve (nervus facialis) innervates taste buds at the anterior part of the tongue, the 

glossopharyngeal branch of the IXth cranial nerve (nervus glossopharyngeus) innervates the 

posterior part of the tongue, and the superior laryngeal nerve (SLN) branch of the nervus 

vagus (cranial nerve X) innervates the epiglottis and larynx. The three nerves relay gustatory 

information in a loose topographical manner to the nucleus of the solitary tract (NST) of the 

medulla; the CT fibres terminate rostrally to the glossopharyngeal fibres, and the 

glossopharyngeal fibres terminate rostrally to the SLN fibres with some overlap between the 

projection areas (Figure 1A). Second order gustatory afferents from the NST synapse on 

neurons of the parabranchial nucleus (PbN) of the pons. Neurons of the PbN project to the 

ventral posterior medial nucleus (VPM) of the thalamus, from which neurons project to the 

primary gustatory cortex. In addition, neurons of the PbN project to limbic structures like the 

lateral hypothalamus and the amygdala. In primates, gustatory information converges with 

olfactory information in the orbitofrontal cortex providing the perception of flavour (Rolls 

and Baylis 1994). In addition to these main gustatory areas along the ascending pathway, 

other areas are involved, like the hippocampus (Kobayakawa et al. 1999). The neurons in the 

ascending and the modulatory descending pathways form a complex network involved in 

coding and learning of gustatory information (Jones et al. 2006).  

 

 
Figure 1: Schematic overviews of the ascending gustatory pathways and some known 
chemosensory areas in the rat brain (A) and in the moth brain and SOG (B). A: The 
ascending gustatory pathway in the rat brain includes branches of cranial nerves VII, IX and 
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X, mediating information from the taste buds on the tongue and in the oral cavity to the NST 
of the medulla. Second order gustatory afferents from the NST synapse on neurons of the PbN 
of the pons that relay information to the VPM of the thalamus, from which neurons project to 
the primary gustatory cortex. In a parallel pathway, neurons of the PbN project to the lateral 
hypothalamus and the amygdala. Amyg: amygdala, GC: gustatory cortex, L. hyp: lateral 
hypothalamus, NST: nucleus of the solitary tract, OB: olfactory bulb, PbN: parabrancheal 
nucleus, VII, IX and X: cranial nerves, VPM: ventral posterior medial nucleus. B: Scheme of 
the H. virescens brain and SOG showing some gustatory and olfactory areas. The gustatory 
information from the proboscis projects via the MxN to the SOG/tritocerebrum. AL: antennal 
lobe, AMMC: antennal mechanosensory and motor centre, AN: antennal nerve, Ca: calyces, 
EL: eye lobe, FN: frontal ganglion nerve, LP: lateral protocerebrum, MB: mushroom bodies, 
MxN: maxillary nerve, oe: oesophagus, SOG: suboesophageal ganglion, TC: tritocerebral 
bridge, Tr: tritocerebrum. 

 

Both peripheral and central gustatory neurons in mammals have appeared relatively 

unselective to chemical types and typically respond to more than one (often three or four) of 

the taste modalities in addition to tactile and thermal stimuli (Smith and Shepherd 1999). 

However, when the response of one neuron to a specific substance was expressed as a 

proportion of the responses to the other substances, individual fibres of the CT nerve appeared 

as sucrose-best (S), NaCl-best (N) and HCl-best (H) fibres. The S fibres respond to substances 

like amino acids, sugars, and artificial sweeteners (Frank 2000). Information about sodium 

salts like NaCl is conveyed to the NST by two fibre types, the N and the H fibres. One third of 

the N fibres also respond to HCl. The H fibres are considered as generalists because they 

respond strongly to stimuli of several taste qualities (Smith and Davis 2000). In recent 

molecular biological studies, two families of gustatory receptor genes coding for the 

receptors, T1R and T2R, have been identified (Hoon et al. 1999; Adler et al. 2000). The dimer 

of T1R2 and T1R3 seems to detect all natural sugars and artificial sweeteners, whereas the 

dimer of T1R1 and T1R3 detects umami (Chandrashekar et al. 2006). For the coding of bitter, 

25 T2R receptor types are involved in humans and 35 types in mice, and multiple bitter 

receptors are expressed in the same gustatory cells (Adler et al. 2000). Thus, unlike sugar-

responsive cells detecting a large number of substances with one receptor complex, bitter cells 

detect a large diversity of bitter substances by many specialised receptor proteins expressed in 

single cells. In experiments where bitter receptors were expressed in sugar cells, stimulation 

with bitter substances resulted in phagostimulatory behaviour, demonstrating a hard-wired, 

labelled line arrangement from the gustatory receptor cells to the brain (Mueller et al. 2005). 

In future experiments, it will be interesting to see the results of studies combining molecular 

biology and physiology in mammals.  
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The transduction mechanisms for the five taste modalities, particularly sweet, umami 

and bitter, have recently been elucidated in molecular biological studies. Salt and sour are 

detected by ligand gated ion channels that open in the presence of cations that pass through 

and directly depolarise the cell membrane. The transduction pathways for bitter, sweet and 

umami, all seem to be G-protein coupled (Chandrashekar et al. 2006). Gustducin, a signalling 

molecule expressed selectively on the tongue, shows partially overlapping expression with the 

sweet, bitter and umami receptors (T1Rs and T2Rs) in gustatory cells. The same 

phospholipase C/ IP3 second messenger pathway and cation channel (TRPM5) expressed 

selectively in gustatory cells seem to be involved in the transduction of all three modalities 

(Zhang et al. 2003). The neurotransmitter is suggested to be ATP (Finger et al. 2005). 

Discrimination of the three modalities in mammals is possible because different populations 

of gustatory receptor cells each express either sweet, bitter or umami receptors.  

 

The insect gustatory system 

Many insects have GRNs responding to the same tastants as mammalian receptors. However, 

depending on species and environment, the insect receptor neurons can in addition detect 

other substances. The contact chemosensilla (insect gustatory organs) are located on 

appendages, like antennae, tarsi, mouthparts, ovipositors and wings (De Boer and Hanson 

1987; Ramaswamy 1988; Städler and Roessingh 1991; Stocker 1994; Baur et al. 1998; 

Chapman 2003). These sensilla consist of an outer hair shaped cuticular structure with a 

single pore at the tip, and an inner lumen containing 4-6 GRNs surrounded by three 

supporting cells (Schneider 1964; Steinbrecht 1984; Zacharuk 1985; Ozaki and Tominaga 

1999). Different from the epithelial derived mammalian gustatory receptor cells, the GRNs in 

insects are primary sensory neurons with axons projecting to the CNS. The dendrites of the 

GRNs extend towards the tip pore of the sensillum hair where they are exposed to chemicals 

of the host plants or other materials when the sensillum is in contact with a substrate. In 

addition to the GRNs, many contact chemosensilla contain one mechanosensory receptor 

neuron with a dendrite attached to a cuticular structure at the base of the hair (Hallberg 1981; 

Chapman 1998; Ozaki and Tominaga 1999). In general, the axons of the GRNs project 

directly to the corresponding ganglia of the segment where they are located. GRNs on the 

mouthparts and some of the tarsal GRNs project to the suboesophageal ganglion (SOG, 

Figure 1B) and the tritocerebrum (Mitchell et al. 1999), whereas other tarsal and wing GRNs 

project to one thoracic ganglion (Stocker and Schorderet 1981; Rajashekhar and Singh 1994) 

and ovipositor GRNs in the terminal abdominal ganglion (Tousson and Hustert 2000). The 
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projections of antennal GRNs were not known in any species previous to the experiments 

included in this thesis. Because of the involvement of antennal GRNs in the proboscis 

extension reflex and in the association of olfactory and gustatory stimuli during learning it 

was of interest to study their projection patterns in the CNS.  

Functional studies of GRNs in contact chemosensilla have been performed in many 

species since the pioneer work on the blowfly Phormia regina (Hodgson et al. 1955; Dethier 

1955). Several extracellular recordings have shown that each GRN in a contact 

chemosensillum is specified for one taste modality and responds to many substances within 

the modality. However, the specificity of the neurons varies between species (Evans and 

Mellon jr. 1962; Blaney and Simmonds 1988; Simmonds et al. 1990; Chapman 1998; 

Schoonhoven and Van Loon 2002). In P. regina the sugar cell responds to sucrose, fructose, 

glucose, sugar alcohols, and some amino acids (Shiraishi and Kuwabara 1970; Dethier 1976), 

whereas in lepidopteran larvae, separate GRNs detect sugars, sugar alcohols and amino acids 

(Glendinning et al. 2000; Schoonhoven and Van Loon 2002). In addition, separate GRNs 

responding to a diverse range of deterrents, including substances that taste bitter to humans, 

have evolved in these insects (Dethier 1980; Schoonhoven et al. 1992). Bitter stimuli 

constitute the largest and structurally most diverse class of gustatory stimuli, being molecules 

with varying sizes and functional groups (Rouseff 1990). Previous to the experiments 

included in this thesis, physiological studies of antennal GNRs in adult insects had only been 

performed in honeybees, showing the presence of sucrose, but not bitter responses, in spite of 

a particular search for responses to bitter substances in one study (Haupt 2004; De Brito 

Sanchez et al. 2005). Thus, in our study of the moth Heliothis virescens, we wanted to find 

out whether the antennal GRNs responded to bitter substances as well as phagostimulants, or 

if the antennal sensilla were devoid of bitter GRNs like in the honeybee. 

For insects as well as for mammals, recent molecular biological studies have enhanced 

the knowledge about taste recognition (Scott 2005). In fruitflies Drosophila sp, a divergent 

family of 68 putative 7-transmembrane candidate gustatory receptors has been identified 

(Clyne et al. 2000; Scott et al. 2001; Dunipace et al. 2001; Robertson et al. 2003). Whereas 

these genes share no sequence similarity to the mammalian T1R or T2R receptors, they show 

resemblance to olfactory receptors in insects, suggesting a common ancestor for the two 

chemosensory gene families. The Gr5a receptor in Drosophila is a candidate sugar receptor; 

genetic ablation results in behavioural taste deficits to trehalose, sucrose and glucose (Wang 

et al. 2004), and imaging studies show responses to sugars in the Gr5a projections (Marella et 

al. 2006). Another receptor gene, Gr66a, which is never co-expressed with the Gr5a gene, is 
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believed to code for a bitter receptor (Thorne et al. 2004; Wang et al. 2004). Genetic ablation 

of Gr66a results in behavioural taste deficits to bitter substances, but not to sugars, and Gr66a 

projections show responses to bitter substances in imaging studies (Marella et al. 2006). 

Various other gustatory receptors are co-expressed in subsets of Gr66a GRNs. Thus, 

activation of different subpopulations of GRNs, all containing Gr66a in addition to different 

combinations of other bitter receptors, provides a basis for discrimination between bitter 

tastants. In H. virescens, a candidate gustatory receptor gene (HR5) has been identified, which 

is expressed in cell bodies located at the base of the contact chemosensilla sensilla chaetica 

on the antennae (Krieger et al. 2002). However, the role of this receptor gene in gustation has 

not been functionally proven. 

Learning and memory in insects 

Classical conditioning in insects 

In the animal kingdom, learning, remembering and forgetting are important mechanisms for 

adaptation to a changing environment. In feeding, learning and memory of the taste and smell 

of nutritious or noxious food is crucial for survival. Due to the relative simplicity of the insect 

nervous system with few, but fairly large, neurons insects have provided suitable model 

systems for studying the neural mechanisms and circuits behind complex behaviours like 

learning and memory (Menzel et al. 2006). Assays of physiology, biochemistry and behaviour 

have particularly been performed in the honeybee Apis mellifera, whereas molecular 

biological and behavioural methods have been combined in studies of Drosophila. The 

advantage of studying Drosophila is the known genome, which has enabled manipulation of 

genes, creating mutants with learning deficits, as well as determining what proteins are 

involved in learning and memory and their locations in the CNS. The most common learning 

paradigm in this species is to pair an odour stimulus with electric shock while another odour 

is presented without electric shock. In a subsequent choice test, the flies will show 

conditioned avoidance to the odour previously associated with electric shock.  

The advantage of studying A. mellifera is its excellent ability to learn and remember. 

In nature, honeybees learn to associate colours, shapes and odours with nectar rewards 

followed by communication of this information to other members of the hive. In this species, 

learning of odorants has been studied in an easily controlled form of appetitive conditioning 

that involves the proboscis extension response (PER). When the GRNs on the antennae are 

stimulated with sucrose, the hungry honeybee extends its proboscis in order to feed 

(Bitterman et al. 1983; Menzel 1993; Hammer and Menzel 1995). If an odour (the 
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conditioned stimulus, CS) is given previous to the sucrose stimulation (the unconditioned 

stimulus, US), the bees learn to associate the odour with the sucrose reward, and the CS will 

subsequently trigger a conditioned response (CR), i.e. the honeybees extend the proboscis in 

response to the odour. The interval between the CS and the US should only be a few seconds 

for optimal learning. The predictive value of the CS is dependent on how reliable the US 

follows. Repeated stimulation with CS without US results in impaired subsequent learning, 

i.e., latent inhibition (Bitterman et al. 1983; Abramson and Bitterman 1986). This PER 

conditioning model of olfactory learning has provided a framework for studies of learning and 

memory in other insects (e.g., heliothine moths). Conditioning studies of these moths have 

shown that they are able to learn odours both in laboratory and in field experiments 

(Cunningham et al. 1999; Hartlieb et al. 1999; Skiri et al. 2005; Cunningham et al. 2006). 

Olfactory conditioning is particularly interesting to study in H. virescens because plant 

odorant receptor neurons are functionally characterised according to biologically relevant 

odorants; i.e., primary and secondary odorants have been identified (Mustaparta and Stranden 

2005). Thus, when using the primary odorants in conditioning experiments, in principle only 

one type of olfactory receptor neuron is activated. Skiri et al (2005) found that conditioning 

with increased CS concentrations of the primary odorants increased the learning rates and the 

odorants activating different receptor neuron types caused different learning rates; i.e., they 

had different salience in H. virescens. However, the effect of increased US concentration in 

appetitive learning in H. virescens was not studied.  

 

Neuronal pathways involved in olfactory conditioning 

The olfactory pathways in insects have been described in many studies aimed at resolving the 

mechanisms involved in olfactory coding (Christensen and Hildebrand 1987; Boeckh and 

Tolbert 1993; Anton and Homberg 1999; Menzel and Giurfa 2001; Heisenberg 2003). The 

involvement of these pathways in olfactory conditioning has been the particular focus in 

studies of A. mellifera and Drosophila (Menzel and Giurfa 2001; Heisenberg 2003). In 

general, the odorants are detected by olfactory receptor neurons located in sensilla on the 

antennae (Schneider 1964; Steinbrecht 1999). Their primary axons form parts of the antennal 

nerve projecting to the glomeruli of the antennal lobe (AL, Figure 1B) (Homberg et al. 1989; 

Boeckh and Tolbert 1993; Berg et al. 1998; Vosshall et al. 2000). The glomeruli are 

condensations of synapses forming the neuronal networks between the sensory neurons and 

the AL interneurons; the local interneurons (mediating interglomerular inhibition) and the 

projection neurons (PNs) conveying information via three major antennocerebral tracts to the 
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protocerebrum (Homberg et al. 1988; Malun et al. 1993; Müller et al. 2002; Wong et al. 2002; 

Rø et al. 2007). Two major protocerebral areas receive olfactory information: the mushroom 

bodies (MBs), shown to be important in memory formation and storage, and the lateral 

protocerebrum (LP), a sensory-motor processing area providing a fast, but coarse odour 

analysis (Menzel and Giurfa 2001; Heisenberg 2003). Output MB neurons, like the PE1 

neuron in A. mellifera, convey information to the LP. Modulation of olfactory responses 

during learning has been shown in this neuron (Rybak and Menzel 1998). An important 

neuron responsible for modulation during conditioning in A. mellifera is the ventral unpaired 

median neuron of the maxillary neuromere 1, VUMmx1, with axonal arborisations that 

converge with the olfactory neurites in the ALs, the MBs and the LP, and dendrites 

converging with the gustatory pathways in the dorsal SOG and the tritocerebrum (Hammer 

1993). Its functional role in connecting the pathways conveying information about the US and 

the CS has been demonstrated. Electrical stimulation of the octopaminergic VUMmx1 neuron 

in association with an odour puff was sufficient to replace sucrose reinforcement, suggesting 

that it comprises the neural substrate for sucrose reinforcement in A. mellifera. In addition, 

pairing of an odour stimulus with injection of octopamine in certain areas of the brain has 

shown that both the MBs and the ALs are involved in olfactory conditioning, presumably 

contributing to different aspects of learning (Hammer and Menzel 1998). Other 

octopaminergic VUM neurons recently discovered in the honeybee brain might also be 

involved (Schröter et al. 2007). In H. virescens, a bilateral symmetrical neuron similar to the 

VUMmx1 with the cell body in the midline of the SOG and extensive arborisations in the 

olfactory neuropil has been shown (Rø et al. 2007). However, the physiology of this neuron, 

as well as whether its dendrites converge with the axon terminals of the gustatory neurons is 

not known. In general, projections in the CNS have only been known for GRNs of the sensilla 

on the mouthparts and tarsi of insect species like A. mellifera, P. regina, Drosophila, the 

fleshfly Neobellieria bullata, and the desert locust Schistocerca gregaria (Edgecomb and 

Murdock 1992; Mitchell et al. 1999; Thorne et al. 2004; Wang et al. 2004). The studies of the 

present thesis and a parallel study by Kvello et al (2006) present projections of the GRNs on 

the antennae and the proboscis that are involved in appetitive learning of H. virescens.  

 

Molecular mechanisms behind olfactory conditioning 

A molecular model of olfactory conditioning in Drosophila has been made based on the 

molecular mechanisms of learning and memory in the sea slug Aplysia californica (Kandel 

and Abel 1995). The model suggests that PNs in Drosophila, mediating the CS, release 
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neurotransmitters that cause opening of Ca2+ channels in the postsynaptic Kenyon cells of the 

MBs, eliciting the following cascade: The weak influx of Ca2+ activates a Ca2+/calmodulin 

dependent adenylyl cyclase (AC) converting adenosine triphosphate (ATP) to cyclic 

adenosine monophosphate (cAMP) that in turn activates protein kinase A (PKA), which 

phosphorylates and closes K+ channels, causing a weak depolarisation of the Kenyon cells. 

The US, mediated by a modulatory neuron, releases dopamine in aversive conditioning and 

octopamine in appetitive conditioning (Schwaerzel et al. 2003), activating a G-protein 

coupled receptor in the Kenyon cell. The G-protein activates AC, increasing the level of 

cAMP that causes K+ channels to close. When the CS and the US are paired, both processes 

activate AC, which is the coincidence detector. This causes a prolonged closure of the K+ 

channels and a broader, longer lasting action potential. The mobilisation of vesicles is 

augmented, inducing increased neurotransmitter release and resulting in a subsequent CR to 

the CS alone. In short, when the activation of the Kenyon cells representing an odour occurs 

simultaneously with the modulatory reinforcement signal, the output from the activated 

Kenyon cells to the MB output neurons is strengthened. Together, the studies of A. mellifera 

and Drosophila show the necessity of convergence of the CS and US pathways and 

coincidence detection at the cellular level in classical conditioning. 

 

Memory processes 

Memory develops over time after learning, and the consolidation and storing of memories are 

dependent on the environmental requirements of the insects. Changes of odour responses in 

the ALs and the MBs after olfactory conditioning have been demonstrated with optical as well 

as intracellular recordings in A. mellifera (Faber et al. 1999; Faber and Menzel 2001; Sandoz 

et al. 2003). With the exception of one study of Drosophila showing changes both in the ALs 

and MBs (Yu et al. 2004), most studies show that learning and memory is restricted to the 

MBs only (Gerber et al. 2004b). Insects have both short-term and long-term memory phases. 

When honeybees search for suitable foraging sites, an early short-term memory enables 

recognition of the nectar qualities of different plants within a flower patch, whereas a late 

short-term memory is used to remember nectar rewards between flower patches (Menzel 

1999). These memory stages are transient, and sensitive to retrograde amnesia or additional 

experience (Erber 1976; Menzel 1990). If there has been only one learning trial, memory 

consolidates into a more stable and amnesia resistant middle term memory within 

approximately 1 h, declining over time (Menzel 1990). Only multiple spaced learning trials 

can lead to a stable long-term memory that does not decline over time. Two different types of 
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stable long-term memories have been described in the honeybee; a resistant early long-term 

memory, independent of protein synthesis and a protein synthesis (transcription) dependent 

late long-term memory (Wittstock et al. 1993; Wüstenberg et al. 1998). The same memory 

phases are found in olfactory conditioning of PER as in colour learning of free flying bees 

(Menzel 1999).  

In addition to learning, insects have the ability to stop responding to cues that no 

longer provide a reinforcing (negative or positive) effect. Extinction is a decline in the CR 

when the learned CS is no longer reinforced (presented repeatedly without the US). The 

mechanism behind this phenomenon is unclear. One explanation is that it involves destruction 

of the original learning, as suggested in earlier studies of vertebrates (McClelland and 

Rumelhart 1985). However, some of the original learning seems to remain after extinction, as 

shown with spontaneous recovery, where an extinguished response recovers with the passage 

of time. This implies that extinction involves formation of a new memory that transiently 

inhibits the old one (Rescorla 2001; Bouton 2002). One study of honeybees suggests that 

extinction could instead reflect some destruction of the CS-US association, since spontaneous 

recovery is dependent on the number of conditioning trials and the interval between 

conditioning and extinction. Depending on training parameters, different memory substrates 

are affected by extinction, and spontaneous recovery can occur (Sandoz and Pham-Delegue 

2004). An intracellular suppression of the old memory trace is shown in one study of 

Drosophila, in which extinction is an antagonistic process to the signalling cascade involved 

in associative memory formation (Schwaerzel et al. 2002).  

Extinction as well as pre-exposure of the CS was utilised in two experiments included 

in the thesis to study the putative aversive effects of two bitter substances in H. virescens. 

Regular aversive conditioning is generally performed by exposing an animal to a chemical 

stimulus paired with food contaminated with nauseating effects that cause the animal to avoid 

the particular taste or smell. In our experiment, we wanted to find out whether bitter taste in 

itself was sufficient to create inhibitory learning and facilitate extinction in the moths. Due to 

the non-appetitive effect of quinine and sinigrin shown in papers I-II, a decrease in acquisition 

and memory was expected after exposure to these substances. Therefore it was necessary to 

optimise the conditioning parameters in order to produce higher learning performance in H. 

virescens. One experiment assaying retention and the stability of memory at different 

retention times was performed, as well as the one testing US concentration. These two studies 

allowed us to perform the bitter tastant experiments under optimised learning conditions. 
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Heliothis virescens 

H. virescens (Insecta: Lepidoptera: Noctuidae) is a polyphagous species belonging to the 

subfamily Heliothinae that is comprised of numerous species living on all continents, several 

of them belonging to the most important pest species in agriculture. The larvae of H. virescens 

cause severe damage on monocultures of cotton, tomato, corn, soy beans, sunflower, and 

tobacco in North and South America (Fitt 1989; King and Coleman 1989). Their status as pest 

species is due to many factors, such as high polyphagy, mobility and fecundity, as well as the 

ability to have facultative diapauses and to resist insecticides. In addition, the feeding 

preference for reproductive and growing parts of the plants by the larvae causes severe 

damage to the plants that have fairly low damage thresholds. The female moths choose 

between many plant species for nectar feeding and oviposition, and they are attracted to the 

host plants by blends of odorants. However, in H. virescens, the final decision to feed or 

oviposit on a plant is made after antennating and ovipositor dragging on the leaf surface 

(Ramaswamy 1988). Taste substances on the plant surface and the composition of tastants in 

the nectar determine whether the plant is accepted. In addition, experience with the host plants 

seems to affect subsequent host plant choices in heliothine moths (Firempong and Zalucki 

1991; Cunningham et al. 1998). H. virescens and other heliothine moths have been used as 

models in our laboratory to study olfactory coding and learning (Mustaparta and Stranden 

2005). The pheromone system and detection of plant volatiles of H. virescens have been 

extensively studied, and narrowly tuned receptor neurons responding to primary and 

secondary odorants have been functionally classified (Almaas and Mustaparta 1990; Almaas 

and Mustaparta 1991; Berg and Mustaparta 1995; Berg et al. 1995; Røstelien et al. 2000a; 

Røstelien et al. 2000b; Stranden et al. 2002; Stranden et al. 2003a; Stranden et al. 2003b; 

Røstelien et al. 2005). Central olfactory pathways have been functionally as well as 

anatomically described (Christensen et al. 1991; Christensen et al. 1995; Mustaparta 1996; Rø 

et al. 2007). However, the gustatory pathways, as well as the physiology of the antennal 

contact chemosensilla in heliothine and other moths, remained unresolved when the studies of 

this thesis started. The ultimate goal of the studies included in this thesis was to contribute to 

resolving the neuronal networks involved in chemosensory coding and learning. 
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Aims of the thesis 
The aims of the thesis were: 

1. To morphologically characterise the contact chemosensilla s. chaetica on the antennae 

of H. virescens and trace the projections in the CNS of the receptor neurons of both s. 

chaetica and the proboscis sensilla styloconica (paper I). 

2. To functionally characterise the receptor neurons of s. chaetica by testing 

mechanosensory stimulation and taste substances selected as physiologically relevant 

for H. virescens (papers I-III).  

3. To study the behavioural significance of these tastants as phagostimulants or 

deterrents (papers I and II). 

4. To study the putative aversive effect of two bitter substances in a conditioning context 

(paper III). 

5. To enhance the learning and memory performances in H. virescens by studying 

parameters like US concentration and time (paper III). 
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Survey of the individual papers 

Paper I 

The aim of the study of paper I was to morphologically characterise the contact 

chemosensilla, s. chaetica, on the flagellum of the antennae of adult H. virescens, as well as to 

functionally classify the receptor neurons housed in the sensilla and determine the projection 

areas in the CNS of their primary axons. Scanning electron microscopy showed that each 

flagellar annulus, except the most distal, have 4-6 s. chaetica regularly distributed along 

transverse rows on the leading edge. The outer morphology of s. chaetica was characterized 

by a long, rigid hair with an annular surface pattern, a single pore at the tip, and a basal socket 

to which the hair shaft was attached.  

Application of tetramethylrhodamine dextran to the receptor neurons of s. chaetica on 

the antenna resulted in stained axons that followed the antennal nerve to the entrance of the 

AL, bypassed the AL posterio-laterally, and projected ipsilaterally in two areas posterior to 

the tritocerebral commissure. The terminals showed a fan-shaped projection in the antennal 

mechanosensory and motor centre (AMMC) located posterior and ventral to the AL, and a 

finger-like projection reaching in a posterior-medial direction into the dorsal SOG. In the 

preparations where single sensilla were stained, 1-5 neurons could be identified in the CLSM 

images. Intensive staining obtained by applying dye to the cut flagellum showed substantial 

staining in the AL (due to staining of olfactory receptor neurons), the AMMC, and the SOG. 

The projection areas of the receptor neurons of several s. chaetica were similar to the 

projection areas of the single sensillum receptor neurons, but covered a larger area. In some 

individuals, the receptor neurons of s. chaetica on the left flagellum and of the contact 

chemosensilla s. styloconica on the proboscis (left galea) were stained. These preparations 

showed projections in two separate, but closely located areas in the tritocerebrum/dorsal SOG, 

posterior to the tritocerebral commissure. Axons of the receptor neurons of the gustatory 

sensilla on the proboscis entered the tritocerebrum/ SOG via the maxillary nerve and 

terminated alongside, but anterior-medially, to the terminals of the antennal gustatory 

neurons. No overlap of the projection areas of the receptor neurons on the two appendages 

was found, neither when staining single nor several sensilla.  

The results obtained from electrophysiological recordings demonstrated the presence 

of one mechanosensory and 3-4 gustatory neurons in s. chaetica. Recordings with tungsten 

microelectrodes at the sensillum base showed no spontaneous activity of the neurons. In tip 
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recordings, nearly all sensilla had GRNs responding to sucrose, while the responses to KCl, 

leucin, sinigrin and water differed between sensilla, independent of their location on the 

flagellum. In experiments using the PER, stimulation of GRNs in s. chaetica with sucrose 

elicited a vigorous response by proboscis extension, whereas a non-appetitive response 

appeared when stimulating with sinigrin.  

Paper II 

The study of paper II was aimed at characterising the GRNs of s. chaetica according to their 

responses to selected substances considered as relevant tastants for the adult H. virescens. Tip 

recordings included systematic surveys of concentration series of KCl, sucrose, inositol, 

NaCl, sinigrin, quinine, and ethanol. In general, excitatory phasic-tonic firing was recorded, 

except for the response to quinine (0.001 M) that showed excitatory bursts of spikes at 

irregular intervals. Based on spike analysis and response profiles of individual sensilla, it 

appeared that sucrose and quinine activated separate GRNs, whereas the responses to KCl, 

NaCl, sinigrin, inositol, and ethanol were more difficult to ascribe to particular GRNs. The 

phagostimulant sucrose and the two bitter substances quinine and sinigrin elicited responses 

in the largest proportion of the GRNs of s. chaetica. Variations of sensitivity were observed 

between the GRNs in different sensilla, both in respect to threshold concentrations and 

response strength. Highest sensitivities were found for the sucrose-responsive GRNs and the 

quinine-responsive GRNs. For the other substances, the GRNs showed relatively low 

sensitivities. The GRN composition within individual sensilla varied to a great extent, and no 

systematic distribution of particular sensillum types was found.  

The variation of the response profiles appeared as follows. Responses to the two 

phagostimulants, sucrose and inositol, were obtained both in the same and in separate sensilla. 

Similarly, responses to the two bitter substances as well as the two inorganic salts appeared 

within single and separate sensilla. Using spike analyses some general features appeared. The 

spikes of the GRNs responding to sucrose were broader than those of the other GRNs. The 

GRNs responding to KCl, NaCl, inositol, and sinigrin had smaller spike amplitudes than the 

GRNs responding to sucrose, water, quinine, and ethanol. The GRN responding to quinine 

showed a gradual increase in spike amplitude during a burst, and the response to sinigrin 

differed from the quinine response both in spike amplitude and temporal firing pattern. 

Another GRN, probably a water responsive GRN, appeared with large spikes and tonic firing 

during stimulation with the lowest concentration of all substances. The spikes of this GRN 

usually disappeared at higher concentrations, when the other GRNs were activated.  
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Comparisons of responses to sucrose and mixtures of sucrose and quinine or sinigrin 

were performed in order to study possible interactions between phagostimulatory and 

deterrent GRNs. The average firing of the sucrose GRNs decreased with increasing 

concentrations of quinine or sinigrin in the mixture with sucrose. In addition, the bursting 

response to quinine disappeared when stimulating with the mixture, implying a mutual 

inhibition of the GRN responses to sucrose and quinine. These series of stimulations with 

single compounds and mixtures of sucrose and quinine or sinigrin imply that both sinigrin and 

quinine act excitatory on separate GRNs and cause inhibition of the sucrose responsive GRN. 

The behavioural significance of the phagostimulant sucrose and the putative deterrent quinine 

was assayed by applying quinine and sucrose to the antennae of a group of 30 moths. When 

quinine was applied to the antennae, only one moth extended its proboscis. In the subsequent 

stimulation with sucrose on the antennae of the same group of insects, 21 moths extended 

their proboscises, implying that quinine is non-appetitive to H. virescens. 

Paper III 

The aim of the study of paper III was to assay the putative aversive effects of the two bitter 

substances, quinine and sinigrin, on the adult moth H. virescens in an olfactory conditioning 

context. These two substances were in electrophysiological recordings shown to elicit 

excitatory responses, probably in two separate GRN types of s. chaetica (papers II and III). In 

addition, both quinine and sinigrin was found to induce a non-appetitive effect in the moths 

(papers I and II).  

Two main protocols were used to investigate the aversive effects of the two tastants. In 

the first protocol (pre-exposure), two groups of moths were pre-exposed to the odour linalool 

(CS) paired with one of the tastants, whereas the control group was pre-exposed to the 

linalool CS and a mechanosensory stimulus. A fourth group of moths was not pre-exposed. In 

the subsequent acquisition phase, the moths treated with quinine in the pre-exposure phase 

showed a higher resistance to acquisition than the control group. Treatment with sinigrin 

showed a similar effect as treatment with quinine, but the difference from the control group 

was not significant. The control group showed significantly lower acquisition than the group 

of untreated moths, indicating a latent inhibition phenomenon in the control group.  

In the second protocol (facilitated extinction), moths were first subjected to an 

acquisition phase with CS and sucrose, before being subjected to an extinction phase, where 

the same CS was associated with one of the tastants, quinine or sinigrin, or with no tastant 

(control). Extinction both in the quinine and the sinigrin groups was faster than in the control 

 19



group, implying that both quinine and sinigrin facilitated extinction of the conditioned 

response compared to the unrewarded presentations of linalool. The results of the experiments 

with pre-exposure and facilitated extinction indicated a latent inhibition effect, as well as an 

aversive effect of quinine and to a lower extent, of sinigrin. The results also suggested that the 

two tastants may act as negative reinforcers in H. virescens.  

Due to the non-appetitive and putatively aversive effects of the bitter substances 

(papers I and II), a decrease in CRs in these kinds of experiments was expected. Therefore the 

learning rates of the moths had to be improved before the pre-exposure and facilitated 

extinction experiments described above were carried out. Conditioning with both 2 M and 3 

M sucrose as US induced good acquisition, without any differences between the two 

concentrations. Retention was not affected by the US molarity, but by the time elapsed after 

training. Comparing the first extinction trial performed 15 min, 2 h, 8 h, 24 h, and 48 h after 

training in different groups of moths showed that memory decreased with time, being 

strongest at 15 min and declining gradually to a lower level at 48 h. The strength of the odour-

sucrose association at different times after conditioning was studied by comparing its 

resistance to extinction during 8 extinction trials. In all cases the responses decreased with 

increasing number of extinction trials. The moths tested after 8 h showed the fastest and 

highest overall extinction, whereas the 48 h group showed a slower and lower overall 

extinction than the other groups, suggesting a consolidation of memory within 48 h. 
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Discussion 

GRN specificity and sensitivity  

The results of papers I-III contribute to the knowledge about gustation in insects, particularly 

about the anatomical and functional properties of antennal gustatory sensilla. Although the 

presence of contact chemosensilla on the antenna has been known from earlier studies of 

many species, their functional significance has not been assayed, except in two studies of the 

sucrose responsive GRNs on the honeybee antennae (Haupt 2004; De Brito Sanchez et al. 

2005). Most studies, including those of H. virescens, have focused on the GRNs of contact 

chemosensilla located on mouthparts, ovipositors, or tarsi (Blaney and Simmonds 1988; 

Blaney and Simmonds 1990; Chapman 2003). Comparison of the morphology of these 

sensilla on different appendages, including s. chaetica on the antennae of H. virescens (paper 

I), shows the typical properties of a hair/peg formed outer cuticular structure, with a 

uniporous hair tip, and a basal socket, as described in many early and recent studies 

(Schneider 1964; van der Peers et al. 1980; Steinbrecht 1984; Zacharuk 1985; Ozaki and 

Tominaga 1999; Kvello et al. 2006; Jørgensen et al. 2006). The number of 4-6 GRNs housed 

in the contact chemosensilla on the different appendages is relatively constant in the various 

species (Hallberg 1981; Koh et al. 1995; Ozaki and Tominaga 1999), including s. chaetica of 

H. virescens with 4 GRNs as shown in TEM studies (Færavaag 1999) and the present thesis 

(paper I). Commonly, each GRN of a contact chemosensillum has been considered as 

specified for one tastant. However, depending on diet and habitat, the specificity differs in 

various species (Evans and Mellon jr. 1962; Blaney and Simmonds 1988; Simmonds et al. 

1990; Chapman 1998; Schoonhoven and Van Loon 2002).  

In all animals, detection of phagostimulants and deterrents is particularly important 

due to their nutritional and toxic values, respectively. This is reflected in separate GRNs for 

sugars and bitter tastants, as shown in electrophysiological studies of insect contact 

chemosensilla (Dethier 1976; Blaney and Simmonds 1990; Glendinning J.I. and Hills 1997; 

Bernays and Chapman 2000; Hiroi et al. 2002; Chapman 2003; Meunier et al. 2003; Thorne et 

al. 2004; Haupt 2004). The significance of these taste modalities in heliothine moths is shown 

in paper II, indicating separate GRNs specified for sucrose and the two bitter substances 

quinine and sinigrin, respectively. In contrast to the strong responses to these tastants, the 

weak and unspecific responses, as well as the high thresholds to KCl, NaCl, inositol, ethanol, 

and leucin suggest a minor role of these substances in feeding. Possibly, other tastants present 
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in plants play more significant roles for H. virescens. Absence of biologically relevant tastants 

in the selection of test substances might have caused the impression of variability and 

unspecific responses, disabling a classification of distinct sensillum types. This particularly 

applies to GRNs of varying sensitivities, a feature known in insect GRNs as well as in sensory 

fibres of mammals (Schoonhoven 1976; Smith and Shepherd 1999) that contributes to the 

intensity coding, extending the detectable concentration range of the tastants. 

Feeding animals, including herbivorous insects, encounter complex mixtures of 

nutrients and other items. Many plant species contain toxins, and detection of the relative 

amount of toxic to nutritious substances is important for acceptance or rejection of food in 

herbivorous insects. In general, activity in the phagostimulatory GRNs stimulates feeding 

whereas activity in the deterrent GRNs inhibits feeding. Thus, acceptance or rejection of a 

potential food source depends on the ratio of activity in the two populations of GRNs. In 

particular, sucrose and other sweet tastants stimulate cells that ultimately connect to neurons 

controlling the ingestion of nutritive substances, whereas quinine and other aversive stimuli 

affect neural systems controlling rejection reflexes that prevent the ingestion of toxic 

substances. The present thesis shows that activation of sucrose GRNs elicits proboscis 

extension and feeding in H. virescens whereas activity of the quinine and sinigrin GRNs 

results in inhibition of proboscis extension, and thus feeding. The inhibitory effect caused by 

sinigrin has previously been shown in H. virescens larvae where the amount of food 

consumed was clearly negatively correlated with the firing rate of the sinigrin-responsive 

GRNs (Bernays et al. 2000; Bernays and Chapman 2000). In general, attractive and aversive 

behaviours in response to chemicals are found in all organisms, from simple forms like the 

bacteria Escherichia coli with only five chemosensory receptor proteins (Fain 2003) to 

mammals. In mammals, CT nerve fibres are relatively more responsive to phagostimulants 

(sugars and salts) than the fibres of the glossopharyngeal nerve that are more responsive to 

aversive stimuli (acids and bitter). Afferent input from the CT nerve is important for ingestive 

behaviour, while input from the glossopharyngeal nerve is important for rejection (Smith and 

Shepherd 1999). In the rat, sucrose and quinine produce opposite patterns of ingestive and 

aversive behaviour, respectively (Grill and Norgren 1978). Thus like in H. virescens, input 

about tastants seems to be directly related to a specific pattern of behavioural reaction in 

mammals, as also demonstrated in the molecular biological study showing a hard-wired 

arrangement from the sweet and bitter receptor cells to the neurons controlling behaviour 

(Mueller et al. 2005). The link between identified GRNs and their behavioural significance is 

also demonstrated in Drosophila where activation of the sugar receptor Gr5a and the bitter 
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receptor Gr66a seem to be sufficient for mediating acceptance and avoidance, respectively 

(Marella et al. 2006).  

The relative firing of phagostimulatory and deterrent GRNs should be sufficient to 

signal what is eatable or not in an organism. Interestingly, an additional mechanism of mutual 

inhibition has evolved, attenuating the response of the GRN mediating opposite information. 

This might facilitate the aversive or stimulatory behaviours linked to the deterrent and 

phagostimulatory tastants, respectively. Inhibitory interactions of information between the 

two categories of tastants are observed in the responses of insect GRNs as well as mammalian 

fibres of the CT and PbN (Schoonhoven et al. 1992; Smith et al. 1994; Formaker and Frank 

1996; Chapman 2003). In particular, the suppression of sucrose responses by quinine seems to 

be a widespread phenomenon (Dethier and Bowdan 1989; Chapman et al. 1991; Dethier and 

Bowdan 1992; Formaker et al. 1997; De Brito Sanchez et al. 2005). In insects, as shown in the 

present study of H. virescens (paper II), quinine inhibits firing of the sucrose GRNs when 

stimulating with a mixture of the two substances. This is in accordance with a previous 

behavioural study showing increased inhibition of PER during stimulation of tarsal contact 

chemosensilla with mixtures of sucrose and increasing concentrations of quinine 

(Ramaswamy et al. 1992). Similar behavioural studies, assaying PER responses to stimulation 

of antennal contact chemosensilla with mixtures of sucrose and bitter substances are topics of 

future experiments. Inhibition of bitter responses by sucrose is also seen in insects and 

mammals. In H. virescens (paper II), no spikes from the quinine responding GRNs appeared 

when stimulating with the mixture of sucrose and quinine. In hamsters, sucrose stimulation 

suppresses quinine responses in the PbN (Smith et al. 1994). Thus it seems that mutual 

inhibition is an important feature in processing information about phagostimulants and 

deterrents in insects and in vertebrates.  

When assaying the vast results of electrophysiological recordings from the afferent 

fibres and brain areas involved in gustation combined with the molecular and behavioural 

studies performed in many species, it seems that the coding of the gustatory information, for 

example in labelled line versus across fibre patterns is a matter of interpretation. As discussed 

above, activity in certain gustatory neurons might be sufficient for coding of the palatability 

of food, suggesting some kind of a labelled line system. The hard-wired system demonstrated 

in the molecular biological studies supports the principle of a labelled line system in 

mammals (Mueller et al. 2005). However, this does not exclude the possibility of a 

supplemental across fibre pattern arrangement. Another molecular biological study, knocking 

out the T1R3 receptor involved in both sweet and umami taste demonstrated that the mice 
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could detect and discriminate the two tastants without this particular receptor (Delay et al. 

2006). This implies that additional receptors are involved in sweet and umami taste. It is 

likely that both mechanisms of labelled line and across fibre pattering take part in gustatory 

coding. In mammals, the ascending fibres with best responses to specific taste modalities may 

be involved in a labelled line system, whereas the generalist H fibres may contribute in an 

across fibre manner. However, these two models might not be sufficient to explain the 

complexity of the gustatory system, as discussed in a recent review (Jones et al. 2006). 

Modulation plays an important role, as shown in experiments in which bitter substances that 

originally caused aversion mediated appetitive behaviour after repeated stimulation when no 

nauseating effects were experienced with the substance. Responses to gustatory stimuli can be 

modulated at several levels in the gustatory system in mammals, from the peripheral receptor 

cells to the highest order of gustatory neurons in the brain. 

Organisation of the central pathways 

Proximity of gustatory and mechanosensory neurons 

The presence of gustatory and mechanosensory neurons in the same sensory organs, 

mediating information about texture and gustatory quality is a feature appearing throughout 

the animal kingdom (Rolls 2004). In humans, the texture of food is mediated by 

mechanosensory fibres in the oral cavity, giving an additional dimension to the food quality 

during mastication. In herbivorous insects, the mechanosensory information from the external 

contact chemosensilla informs about the physical contact with and the structure of the plant 

surface and particular food source, whereas the mechanosensory information from the internal 

sensilla possibly concerns viscosity of the food or simply elicitation of the swallowing reflex. 

In mammals, the oral mucosa and lingual epithelium are innervated by general somatosensory 

fibres mediating information via the cranial nerves V, IX and X about touch as well as pain 

and temperature (Smith and Davis 2000). In addition, single peripheral gustatory fibres can 

respond to tactile and thermal stimuli as well as gustatory stimuli (Smith and Shepherd 1999), 

all mediating important information about food. The proximity of the sensory neurons 

detecting gustatory and mechanosensory stimuli is preserved as the information is conveyed 

to higher order neurons in the CNS in mammals (Smith and Davis 2000). More than half of 

the taste responsive neurons in the NST receive input from both gustatory and tactile 

receptors. Further anatomical proximity is shown by the lingual branch of cranial nerve V 

terminating in the gustatory portion of the NST, overlapping rostrocaudally with the gustatory 

inputs of the CT fibres. A rough topographic representation of the oral cavity with 
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overlapping gustatory and somatosensory receptor fields is also shown in the VPM. In the 

gustatory cortex, the oral somatosensory input seems to be located immediately dorsal to the 

area receiving gustatory input. 

The presence of mechanosensory neurons in contact chemosensilla, like in s. chaetica 

of H. virescens (paper I), is common in all insect species (Hallberg 1981; Koh et al. 1995; 

Ozaki and Tominaga 1999). A general problem in the anatomical studies has been to 

unambiguously separate the mechanosensory and gustatory fibres of the contact 

chemosensilla, as discussed in paper I. However, the one large diameter axon of the receptor 

neurons of contact chemosensilla in both P. regina and H. virescens (paper I) is assumed to 

belong to the mechanosensory neuron (Edgecomb and Murdock 1992; Jørgensen et al. 2006). 

As shown in paper I, the large diameter axon of the presumed mechanosensory neuron 

projects to the AMMC, whereas the small diameter axons of the GRNs project to the SOG, 

two neighbouring areas in the moth CNS (Figure 1). In addition, some preparations indicated 

an overlap of the projection patterns, such that projections of the thick and thin fibres were 

found in both areas. Projections to the AMMC and the SOG of mechanosensory neurons and 

to the SOG of gustatory neurons are also found in other insect species (Suzuki 1975; 

Strausfeld 1976; Hildebrand et al. 1980; Koontz and Schneider 1987; Homberg et al. 1989; 

Rehder 1989; Mitchell and Itagaki 1992; Stocker 1994; Kloppenburg 1995; Mitchell et al. 

1999; Thorne et al. 2004). This implies that the proximity of mechanosensory and gustatory 

information is preserved from the peripheral gustatory organs to higher CNS areas in insects 

like in mammals, showing the significance of the associated mechanosensory and gustatory 

information during feeding. 

 

Central gustatory projections 

Whereas some knowledge exists regarding the integration of gustatory information and 

functional organisation of the gustatory pathways in mammals, such data are only scarcely 

reported in insects. Intracellular recordings of local SOG interneurons in the fleshfly 

Sarcophaga bullata have shown separate neurons responding to labellar stimulation with 

sucrose and salt (KCl), with the sucrose neuron also responding weakly to water (Mitchell and 

Itagaki 1992). Bitter substances were not tested. In locusts, recordings from thoracic local 

interneurons have been performed, showing responses to all of the test substances: sucrose, 

NaCl, lysine glutamate and nicotine hydrogen tartrate. No interneurons or motor neurons 

responded specifically to one of the chemicals. In H. virescens, intracellular recordings 

combined with staining have started, with the aim to study how the information about the 
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different gustatory stimuli is handled by second order neurons, as well as how the gustatory 

pathways are functionally organised (Kvello et al, 2007). Prerequisite for these studies are 

results obtained in the present thesis (papers I-III), defining the primary gustatory areas in the 

SOG/tritocerebrum receiving information from the GRNs on the antennae and proboscis as 

well as the closely located area, AMMC, receiving information from the associated 

mechanosensory receptor neurons of s. chaetica on the antennae. In addition, the GRN tuning, 

particularly to sucrose and the two bitter substances quinine and sinigrin, is important for 

resolving how the information is transmitted from the periphery to the CNS.  

The organotopic organisation in the CNS of GRNs located on different appendages in 

insects is interpreted with respect to their different functional roles. Similar to the projections 

in separate CNS areas of the GRNs on the antennae and proboscis in H. virescens, GRNs on 

the mouthparts and legs of Drosophila show different projection patterns in the SOG (Wang 

et al. 2004). In H. virescens, the distinct localisation of the two areas (paper I) may reflect the 

functional differences of the two types of gustatory sensilla. Whereas GRNs of the s. chaetica 

are involved in the antennating behaviour during the search for food and the extension of the 

proboscis, the s. styloconica GRNs are involved in ingestion of food and proboscis recoiling. 

The role of s. chaetica was demonstrated in the behavioural experiments in papers I-III in 

which stimulation of the sensilla with sucrose led to proboscis extension, and stimulation with 

sinigrin or quinine inhibited the uncoiling of the proboscis. In addition, stimulation of the s. 

styloconica with sucrose led to increased ingestion. Thus, the two sensillum types seem to be 

involved in different behaviours, making the topographic separation of their projections 

reasonable. In contrast, no topographical organisation of the flagellar GRN projections 

appeared neither in respect to the GRN location on the flagellum nor to taste modality. The 

four GRNs of the same s. chaeticum ran tightly together and projected within the same area. 

In mammals, a crude topographic organisation of gustatory stimuli is observed in the NST 

(Smith and Shepherd 1999). The neurons from the fungiform papillae on the anterior part of 

the tongue mediating mainly sucrose and NaCl information, project caudally to the fibres 

mediating sour and bitter information from the foliate and circumvallate papillae on the 

posterior two-thirds of the tongue. This slight anatomical segregation continues throughout 

the gustatory pathway to the cortex. Recently, molecular labelling of gustatory afferents has 

shown a certain segregation of neurons providing information about sweet and bitter in the 

NST, the PbN, the VPM, and the gustatory cortex (Sugita and Shiba 2005). In Drosophila, 

molecular biological studies have shown separation of GRN projections mediating sweet and 

bitter (Marella et al. 2006). The molecular biological experiments in H. virescens have so far 
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identified one putative gustatory receptor protein (HR5), expressed at the base of s. chaetica 

on the antennae (Krieger et al. 2002). However, the expression pattern of the appurtenant 

receptor neuron axons in the CNS is not known. Future experiments combining molecular 

biological tools and physiological recordings may resolve the projection patterns of the GRNs 

mediating different taste modalities in H. virescens.  

Olfactory conditioning with sucrose and bitter tastants 

The importance of sugars is not only reflected in their phagostimulatory characters, but also in 

their role as positive reinforcers in appetitive conditioning of odorants in various species. 

Oppositely, the bitter substance quinine has been shown to act as a deterrent and a negative 

reinforcer in some species. Conditioned inhibition of the proboscis extension to sucrose in 

adult Drosophila has been observed when PER elicited by sucrose was punished by applying 

quinine to the fore tarsi (DeJianne et al. 1985). In addition, quinine is aversively associated 

with olfactory or other gustatory stimuli in this species (Mery and Kawecki 2002). 

Differential conditioning of bumblebees has shown that quinine acting as a negative 

reinforcer enables the insects to discriminate between visual stimuli faster than if the CS was 

paired with an absence of reward (Chittka et al. 2003; Dyer and Chittka 2004). In contrast to 

these studies, quinine was found to have an aversive, but not a reinforcing effect in associative 

learning in Drosophila larvae (Gerber et al. 2004a; Hendel et al. 2005).  

The two bitter substances quinine and sinigrin studied in this thesis elicited different 

temporal firing patterns in the GRNs (papers II and III), suggesting a differentiation by the 

GRNs of the two substances. The behavioural experiments (papers I and II), showed that both 

substances were non-appetitive, but no aversive effects could be measured in the PER 

experiments since the moths either extended their proboscides or not, disabling the study of a 

negative response. To find out whether quinine and sinigrin were aversive, we used PER 

conditioning experiments, already established in the lab (Skiri et al. 2005). We studied the 

putative aversive effects of quinine and sinigrin using pre-exposure and facilitated extinction 

experiments. In the pre-exposure experiments in paper III, only quinine was shown to be 

aversive, although a clear tendency appeared for sinigrin as well. In this experiment it was 

also interesting that pre-exposure to linalool (paired with the dry toothpick) caused 

significantly reduced learning performance in the acquisition phase compared to untreated 

moths. It is possible that this group showed a typical latent inhibition phenomenon, described 

in a number of animals, like honeybees (Abramson and Bitterman 1986; Chandra et al. 2001). 

During repeated presentations of CS in the absence of a punishment or a reward, the CS might 
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be associated with the absence of reinforcement, leading to a resistance towards re-learning 

the CS as a predictor for a reward (or punishment) in the subsequent acquisition phase. The 

lower learning in the acquisition phase can also be due to learned inattention in which the CS 

becomes less and less surprising throughout the pre-exposure phase, and therefore looses 

meaning (Lubow, 1997). When the CS (paper III) was paired with quinine or sinigrin in the 

pre-exposure phase, the acquisition deficit was further increased, although the effect was not 

significant for sinigrin. Possibly, the moths built aversive associations between linalool (CS) 

and quinine as an aversive negative reinforcer. Thus, at the end of the pre-exposure phase, 

linalool stimulation predicted the presence of a negative stimulus, which had a stronger 

obstructing effect on acquisition than just an absence of a reward or punishment. Although 

our experiments showed that quinine had an aversive effect in moths, a definite proof for a 

negative reinforcing effect of quinine is still lacking, since we did not control for possible 

non-associative effects of quinine. Future experiments including a pre-exposure phase where 

moths receive unpaired presentations of CS and the bitter substances will constitute a control 

for the formation of aversive CS-bitter associations. 

The results of the facilitated extinction experiments in paper III showed that both 

quinine and sinigrin enhanced extinction. Again the results might be explained by the 

formation of aversive associations. The moths would then learn two associations after one 

another; during acquisition, they would form CS-sucrose associations acting positively on 

PER, and during the second phase, they would form CS-quinine or CS-sinigrin associations, 

causing a resistance to elicit PER. The responses would reflect a balance between the two 

types of associations, the aversive association overbalancing the appetitive association. The 

second type of explanation could be that increased extinction with the bitter substances is a 

form of operant learning, because PER was punished by providing the bitter substance to the 

antennae and the proboscis.  

If quinine and sinigrin are negative reinforcers in H. virescens, we expect that the 

reinforcement signals triggered by quinine and sinigrin will converge with the olfactory 

pathway to form associations, possibly involving a modulatory neuron with an opposite effect 

to the VUMmx1 in honeybees. In honeybees (Vergoz et al. 2007) and in Drosophila 

(Schwaerzel et al. 2003), dopamine has been found to be the neurotransmitter involved in 

aversive olfactory learning with electric shock as punishment. Moreover, in Drosophila 

larvae, activation of dopaminergic neurons in association with an odour stimulus was 

sufficient to create an aversive olfactory memory (Schroll et al. 2006). Independent of 

whether quinine or sinigrin are negative reinforcers or not, the pre-exposure and facilitated 
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extinction experiments show that both quinine and sinigrin are aversive and thus 

behaviourally relevant deterrents for H. virescens. 

 

Memory phases in H. virescens  

In order to influence performance and adaptability of an organism, the learned information 

must be remembered and the consolidation and storing of memories are dependent on 

environmental requirements. Learning of plant odorants in moths serves self consumption and 

oviposition purposes, so a strong memory shortly after learning declining over time as shown 

in H. virescens (paper III) may be well adapted to the life of the moth. The 15 min and 2 h 

memories can be equivalent to the late short-term memory phase described in A. mellifera, 

developing over time in the minute range, and used to remember rewards (nectar quality and 

quantity) between flower patches (Menzel 1999). In honeybees, this memory stage is transient 

and sensitive to retrograde amnesia or additional experience, which fits well with the little 

resistance to extinction in the 15 min and 2 h groups of H. virescens (paper III) (Erber 1976; 

Menzel 1990). The moths tested after 48 h showed low retention but a strong resistance to 

extinction, suggesting that the CS-US association was strong and stable in the moths that 

remembered the odour. Two different types of stable long-term memory have been described 

in other insects. A resistant form of memory, independent of protein synthesis, is found in the 

early long-term memory in honeybees as well as the anaesthesia-resistant memory in 

Drosophila. The second type is the protein synthesis (transcription) dependent late long-term 

memory that is formed after 3-4 days in A. mellifera. Whether the 48 h memory in H. 

virescens is a protein synthesis dependent long term memory will have to be investigated in 

future studies. 
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Conclusions and future prospects 
This thesis constitutes the first steps in assaying the gustatory system in H. virescens. The 

results have shown that several tastants are detected by antennal GRNs, and that sucrose and 

bitter substances are especially important, eliciting strong responses in the GRNs on all parts 

of the flagellum. In addition, sucrose is shown to be highly appetitive to the moth H. 

virescens, whereas the bitter substances act as deterrents and are both non-appetitive and 

aversive, possibly acting as negative reinforcers in the appetitive conditioning context. One 

mechanosensory neuron is also present in each s. chaetica. The gustatory and 

mechanosensory neurons project to the SOG/tritocerebrum and the AMMC, respectively. 

GRNs of the proboscis and the antennae project to closely located but separated areas in the 

CNS, suggesting that the two appendages provide different information to the moth brain. 

Conditioning experiments show that H. virescens has a long-term memory that is resistant to 

extinction.  

Future studies involving molecular biology, intracellular recordings and calcium 

imaging of second order neurons in the SOG and protocerebrum may show how the gustatory 

information is transmitted and processed in the CNS of H. virescens. In particular, it will be 

interesting to find out whether information about phagostimulants is mediated by different 

second order neurons than information about deterrents, or whether both types of information 

are integrated in some neurons of the gustatory pathways. Intracellular recordings may further 

enable the revelation of modulatory connections from the gustatory to the olfactory neuropils 

involved in appetitive and aversive learning. Calcium imaging experiments may demonstrate 

changes of activity in the AL and MBs during associative appetitive and aversive learning in 

H. virescens. 
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Abstract 
Discrimination of edible and noxious food is crucial for survival in all organisms. We have 

studied the physiology of the gustatory receptor neurons (GRNs) in contact chemosensilla 

(insect gustatory organs) located on the antennae of the moth Heliothis virescens, emphasising 

putative phagostimulants and deterrents. Sucrose and the two bitter substances quinine and 

sinigrin elicited responses in a larger proportion of GRNs than inositol, KCl, NaCl, and 

ethanol, and the firing thresholds were lowest for sucrose and quinine. Variations in GRN 

composition in individual sensilla occurred without any specific patterns indicating specific 

sensillum types. Separate neurons showed excitatory responses to sucrose and the two bitter 

substances quinine and sinigrin, implying that the moth might be able to discriminate bitter 

substances in addition to separating phagostimulants and deterrents. Besides being detected 

by separate receptors on the moth antennae, the bitter tastants were shown to have an 

inhibitory effect on phagostimulatory GRNs. Sucrose was highly appetitive in behavioural 

studies of proboscis extension, whereas quinine had a non-appetitive effect in the moths. 

 

Key words: Antennal taste, sucrose, quinine, sinigrin, proboscis extension, insect taste 

 

Introduction 
Gustation is an omnipresent sense in virtually all organisms, and is used in finding and 

securing the quality of food, as well as avoiding toxic items. In selecting food and oviposition 

sites, female insects use gustatory receptor neurones (GRNs) located in contact chemosensilla 

on various parts of the body (De Boer and Hanson 1987; Ramaswamy 1988; Städler and 

Roessingh 1991; Bernays and Chapman 1994; Baur et al. 1998; Chapman 2003). In the moth 

Heliothis virescens (Lepidoptera: Noctuidae), contact chemosensilla are located on the 

antennae (sensilla chaetica), the proboscis (sensilla styloconica) and the tarsi (Blaney and 

Simmonds 1990; Kvello et al. 2006; Jørgensen et al. 2006). A contact chemosensillum 

typically contains 2-4 GRNs with dendrites extending towards the tip of the sensillum hair, 

and one mechanosensory neurone attached to the hair base (Hallberg 1981; Koh et al. 1995; 

Ozaki and Tominaga 1999; Kvello et al. 2006), and the antennal s. chaetica has 4 GRNs and 

one mechanosensory neuron (Jørgensen et al. 2006). When the moth antennates, gustatory 

stimuli are detected by the GRNs of s. chaetica that are especially abundant at the antennal 

tip. Information from the antennal GRNs is conveyed by their primary axons to the 
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suboesophageal ganglion (SOG) (Jørgensen et al. 2006), where it is transmitted to 

interneurones and motorneurones involved in the proboscis extension reflex (PER). 

Phagostimulants like sucrose, applied to the antennae, release PER when the moth is hungry 

and motivated to feed, whereas deterrents inhibit the release of PER. During feeding, GRNs 

on the proboscis are stimulated and convey information to the tritocerebrum/SOG (Kvello et 

al. 2006), controlling ingestion. Despite the importance of antennal GRNs in feeding, few 

studies of these neurons have been performed. 

Detection of tastants has evolved differently in various organisms, depending on diet 

breadth and habitat. Mammals detect only a few taste modalities, and seem unable to 

distinguish different chemicals within each taste category, whereas insects seem to 

differentiate between a wider variety of tastants, including substances within categories. 

Sugars, an important energy source, are detected by particular gustatory cells, present in many 

species. In mammals, the two coupled receptor proteins, T1R2 and T1R3, seem to detect all 

natural sugars and artificial sweeteners tested (Chandrashekar et al. 2006). The specificity of 

the insect GRNs involved in sweet taste vary between species (Evans and Mellon jr. 1962; 

Blaney and Simmonds 1988; Simmonds et al. 1990; Chapman 1998; Schoonhoven and Van 

Loon 2002). In the blowfly Phormia regina, one sugar-responsive GRN responds to all of the 

feeding stimulants, sucrose, fructose, glucose, sugar alcohols, and some amino acids 

(Shiraishi and Kuwabara 1970; Dethier 1976), whereas separate GRNs detect sugars, sugar 

alcohols, and amino acids in lepidopteran larvae (Glendinning J.I. et al. 2000; Bernays and 

Chapman 2000; Schoonhoven and Van Loon 2002). The fleshfly Boettcherisca peregrina 

evidently has ionotrophic sugar detection (Murakami and Kijima 2000), whereas the 

transduction mechanism in P. regina and the fruitfly Drosophila involves a G-protein coupled 

cascade reaction with cGMP as second messenger (Amakawa and Ozaki 1989; Amakawa et 

al. 1990; Thorne et al. 2004). A putative sugar receptor, Gr5a, has been identified in 

Drosophila (Dahanukar et al. 2001). In H. virescens, a candidate gustatory receptor gene is 

expressed in cell bodies located at the base of s. chaetica, but the specificity of the receptor is 

not known (Krieger et al. 2002). 

In addition to detecting phagostimulants, most animals, including herbivorous insects, 

possess GRNs responding to a diverse range of deterrents (Dethier 1980; Schoonhoven et al. 

1992). Bitter stimuli constitute the largest and most structurally diverse class of gustatory 

stimuli (Rouseff 1990). In mammals, a family of gustatory receptors, T2R, is involved in 

bitter taste detection (Adler et al. 2000). Approximately 30 T2R receptor types are present in 

humans and mice, and multiple bitter receptors are expressed in the same gustatory cells 
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(Mueller et al. 2005). In Drosophila, the receptor gene, Gr66a, is believed to code for a bitter 

receptor (Thorne et al. 2004; Wang et al. 2004). In addition, various other putative bitter 

receptors are co-expressed in subsets of Gr66a neurons, implying that several types of GRNs 

mediate bitter taste. Thus, unlike sugar-responsive cells detecting many substances with one 

receptor type, bitter cells detect a large number of bitter substances with several receptor types 

expressed in the same cell, both in mammals and insects. This might provide a mechanism 

enabling flies to discriminate between bitter tastants possibly eliciting different behaviours. In 

insects, little is known about the transduction mechanisms behind detection of bitter tastants. 

In P. regina, a lipophilic ligand-binding protein has been found to carry lipophilic members of 

toxic taste substances to the deterrent GRNs (Ozaki et al. 2003), and a ligand-gated GABA/ 

glycine chloride channel has been found in the western corn rootworm, Diabrotica virgifera 

(Mullin et al. 1994). One previous study assaying antennal detection of bitter by GRNs in the 

honeybee Apis mellifera revealed an absence of such GRNs on the antennae (De Brito 

Sanchez et al. 2005). 

The moth H. virescens, a serious pest on monocultures like cotton, tomato, corn, soy 

beans, grain, and tobacco (Fitt 1989; King and Coleman 1989) is a polyphagous species also 

preferring other host plants. The females choose between many plant species for nectar 

feeding and oviposition. The moths are attracted to the host plants by blends of odorants, but 

the final decision to feed or oviposit is made after antennating and ovipositor dragging on the 

leaf surface (Ramaswamy 1988). Taste substances on the plant surface and the composition of 

taste substances in the nectar determine whether the plant is accepted. In the present paper 

assaying the physiology of the GRNs on the antennae of female H. virescens, we have 

focused on the following substances of putative importance in host plant selection. The sugar 

sucrose is present in high levels in Lepidoptera-pollinated plant nectar (Baker and Baker 

1983), the sugar alcohol myo-inositol is detected by specialised GRNs in H. virescens larvae 

(Bernays and Chapman 2000), the alcohol ethanol is observed to be attractive to H. virescens 

larvae, KCl and NaCl are two important inorganic salts, and quinine and sinigrin are known as 

bitter substances. The alkaloid, quinine, is found to act through blocking certain K+ channels 

in vertebrates, or to permeate cell membranes directly and activate G-proteins, bypassing the 

receptor in in vitro preparations (Spielman et al. 1992; Naim et al. 1994). The glucosinolate 

sinigrin is found to be non-appetitive for H. virescens and other lepidopterans (Blaney and 

Simmonds 1988; Shields and Mitchell 1995b; Jørgensen et al. 2006). The aim of the present 

study was to functionally characterise the antennal GRNs in respect to specificity and 

sensitivity to these substances of putative importance to female H. virescens. In addition, we 
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wanted to study GRN composition in the different s. chaetica to find out if it was similar or 

different across sensilla. 

 

Material and methods 

Insects and preparation 

H. virescens used in the experiments were received as pupae (Novartis Crop Protection AG, 

Rosental, Switzerland). The male and female pupae were sorted and hatched with access to 

5% sucrose solution in separate climate chambers (Refritherm 200, Struers-Kebolab, 

Albertslund, Denmark; 22°C, reversed photoperiod). On the day of the experiment, the adult 

female moths (1-2 days old) were immobilized with tape and wax between the head with the 

thorax in Plexiglas holders, exposing the head and the antennae. The antennae were attached 

to a wax foundation with tungsten hooks so that the leading edge was facing upwards making 

the s. chaetica accessible. 

Test substances 

The gustatory stimuli used in the experiments were (applied in the following order) KCl, 

sucrose, the sugar alcohol myo-inositol, NaCl (all from Sigma-Aldrich), the glucosinolate 

sinigrin monohydrate, the alkaloid quinine hydrochloride (both from VWR), and ethanol 

(Arcus) prepared in dilutions of the electrolyte 0.01 M KCl. The concentration range was 

from 0.0001 M to 0.1 M for KCl, sucrose, inositol, NaCl, and sinigrin (up to 1 M for NaCl). 

Quinine was applied at two concentrations only (0.00001 M and 0.001 M) due to putative 

damage of the cells by this substance. Ethanol was applied at 5% (1 M), 10% (2.2 M), and 

20% (4.3 M). Studies of GRN interaction were performed with mixtures of 0.01 M sucrose 

and quinine (0.00001 M and 0.001 M) or 0.01 M sucrose and sinigrin (0.01 M and 0.1 M). 

The experiments started with the lowest concentrations and ended with the highest to avoid 

adaptation in the cells. The solutions were prepared every two weeks and stored at 4°C. For 

the behavioural experiments 1.0 M sucrose and 0.16 M quinine dissolved in distilled water 

was used. 

Electrophysiology 

Electrophysiological recordings from GRNs of s. chaetica were carried out using tip 

recording (Hodgson et al. 1955). The recording electrode (thin walled borosilicate glass 
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capillaries, Harvard apparatus) was pulled in a two step electrode puller (PP-830, Narishige 

group, Japan) to a tip diameter of approximately 10-20 µm. To avoid crystallisation and 

concentration changes at the tip, the electrode was filled with the test substance just a few 

seconds before the start of the recording. The recording electrode containing the test solution 

was placed over single sensilla hairs for five seconds with an inter stimulus interval of 

approximately 10 minutes to avoid adaptation. The recording glass electrode was connected to 

a TastePROBE amplifier (10x, Syntech, Hilversum, Netherlands) (Marion-Poll and Van der 

Peers 1996) and the signals were filtered (low pass: 50 Hz and high pass 3000 Hz) using 

CyberAmp 320 (Axon Instruments). The grounded reference electrode was a 1 mm diameter 

AgCl coated silver wire placed in the moth abdomen or in the contralateral eye. Analyses of 

the spikes were performed using the software AutoSpike-32 (Syntech). The annuli were 

numbered 1-81 from the most proximal to the most distal annulus of the flagellum, and 

recordings were made from the four sensilla on each annulus without preferences. All sensilla 

between annulus 81 and 55 were described as distally located, between 54 and 27 medially 

located, and between 26 and 1 proximally located. Only the three highest concentrations 

(0.001 M, 0.01 M, and 0.1 M) were included in the dose-response curves to avoid interference 

of the water cell that was firing at 0.0001 M.  

Statistics 

For each substance, the proportion of GRNs responding to the substance distally, medially 

and proximally on the flagellum was compared using Fisher’s exact tests. Differences in 

response strength distally, medially and proximally on the flagellum were compared using 

Kruskal-Wallis tests, and when applicable, 2-by-2 comparisons were performed using Mann-

Whitney tests. 

Behaviour 

In order to compare behavioural effects of the appetitive stimulus sucrose and the putative 

aversive stimulus quinine, PER experiments were performed. Moths were starved for 24 h 

before they were tested for PER by applying 0.16 M quinine or 1.0 M sucrose to the antennae. 

In the first part of the experiment, quinine was applied to the moth antennae, and the number 

of proboscis extensions was counted. After 10 minutes, sucrose was applied to the antennae of 

the same moths, and the number of proboscis extensions was compared to that elicited by 

quinine. 
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Results 

Proportion of s. chaetica with GRNs responding to the test substances 

The results are based on electrophysiological recordings from 132 s. chaetica of 11 moths, 

systematically tested for concentration series of the following seven substances: KCl, sucrose, 

inositol, NaCl, sinigrin, quinine, and ethanol. The GRNs that fired in a dose-response manner 

to a particular substance were considered to be responsive to the substance. In general, 

excitatory phasic-tonic firing was recorded as responses to all stimuli (Figures 1A,E, 2A,E, 

3A,E, 4A,E), except for 0.001 M quinine that elicited an excitatory bursting firing at irregular 

intervals (Figure 1A). The latency of the cell responding to quinine varied and sometimes 

extended four seconds. The most active substances were quinine, sucrose, and sinigrin 

eliciting GRN responses in a larger proportion of s. chaetica; quinine in 74% (98 of 132), 

sucrose in 65% (85 of 130), sinigrin in 46% (60 of 131), KCl in 39% (48 of 124), NaCl in 

35% (24 of 84), ethanol in 31% (29 of 95), and inositol in 25% (32 of 128). Complete 

recordings at all concentrations were missing in some sensilla, causing the difference in 

numbers of tested sensilla. The distribution of these GRNs differed along the flagellum 

(Figures 1C,G, 2C,G, 3C,G, 4C), the proportion of sensilla with GRNs responding to sucrose 

increased significantly from the base to the tip of the flagellum (All parts: Fisher’s exact test, 

p < 0.001; 2-by-2 comparisons by Fisher’s exact tests: Distal vs medial, p = 0.5; Distal vs 

proximal, p < 0.001; Medial vs proximal, p = 0.005), whereas the opposite was observed for 

KCl (All: Fisher’s exact test, p < 0.019; 2-by-2 comparisons by Fisher’s exact tests: Distal vs 

medial, p = 0.83; Distal vs proximal, p < 0.011; Medial vs proximal, p = 0.032). The number 

of GRNs responding to the other substances was approximately equal along the flagellum 

(Fisher’s exact tests, p > 0.544 in all cases). → Figures 1-4 

Sensitivity of the GRNs 

The sensitivity varied between the GRNs in different sensilla, both in respect to threshold 

concentrations and response strength. Quinine, the only substance tested at 0.00001 M, 

elicited responses in 51% of the quinine responsive GRNs at this concentration. The average 

firing frequency was 2.9 imp/ s, increasing to 18.2 imp/ s at 0.001 M (Table 1, Figure 1B). 

Due to the bursting firing, the response to quinine is given as imp/ s during the bursting 

period. At higher concentrations than 0.001 M, quinine caused noise, and the spikes 

disappeared in all GRNs within the sensilla. Even hours after stimulation with higher 

concentrations of quinine, the recordings showed only irregular noise to the other test 
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substances. Therefore, tests with quinine were only performed twice in each sensillum at 

concentrations causing no damage. Like the quinine responsive GRNs, the GRNs responding 

to sucrose showed a high sensitivity; all activated by 0.001 M sucrose with an average firing 

frequency of 18.8 imp/ s (Table 1, Figure 2B). At the highest concentration of sucrose (0.1 

M), the average firing frequency was 66.8 imp/ s, the strongest average response measured 

(Table 1, Figures 1B,F, 2B,F, 3B,F, 4B). The individual sensitivities of these GRNs showed 

variations from 3 to 133 imp/ s as responses to 0.1 M sucrose. The other test substances had 

higher threshold concentrations than 0.001 M (Table 1, Figures 1B,F, 2B,F, 3B,F, 4B), and 

the dose-response curves showed an overall lower response to these substances compared to 

sucrose. → Table 1 

Differences in the GRN response strength to the individual substances were evident 

along the flagellum. Sucrose, quinine and ethanol elicited significantly stronger responses 

distally and proximally than medially on the flagellum (Figures 1D, 2D, 4D) (Sucrose (all 

parts): Kruskal-Wallis, p = 0.019; 2-by-2 comparisons, Mann-Whitney: Distal vs medial, p = 

0.03; Proximal vs medial, p = 0.02; Distal vs proximal, p = 0.119; Ethanol (all parts): 

Kruskal-Wallis, p = 0.010; 2-by-2 comparisons, Mann-Whitney: Distal vs medial, p = 0.026; 

Proximal vs medial, p = 0.007; Distal vs proximal, p = 0.310; Quinine (all parts): Kruskal-

Wallis, p = 0.001; 2-by-2 comparisons, Mann-Whitney: Distal vs medial, p < 0.0001; 

Proximal vs medial, p = 0.019; Distal vs proximal, p = 0.395). Inositol elicited significantly 

stronger firing proximally than distally (All parts: Kruskal-Wallis, p = 0.07; 2-by-2 

comparisons, Mann-Whitney: Distal vs medial, p = 0.388; Proximal vs medial, p = 0.277; 

Distal vs proximal, p = 0.019) (Figure 2H), whereas KCl, NaCl and sinigrin elicited 

approximately equal firing at all parts of the flagellum (Kruskal-Wallis, p > 0.207 in all 

cases). 

Comparison of responses between individual s. chaetica 

In 76 sensilla, complete recordings were obtained at all concentrations of each substance. 

Comparison between the individual response profiles of the sensilla showed variations (Table 

2). Separate sensilla showed responses to the two inorganic salts in two populations of 18 and 

16 sensilla, respectively, whereas 12 other sensilla showed responses to both salts. The two 

bitter substances also elicited responses in different sensilla, 29 only to quinine and 8 only to 

sinigrin, while 29 others showed responses to both. In addition, individual variations were 

observed between responses to sinigrin and the two salts; GRNs in 13 sensilla responding 

only to KCl, in 21 only to sinigrin, and in 16 to both. Fifteen sensilla showed responses only 
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to NaCl, 24 only to sinigrin, and 12 to both. In addition, responses to the two phagostimulants 

sucrose and inositol showed individual variations between sensilla; in 37 sensilla responses 

appeared only to sucrose, in 10 only to inositol, and in 9 to both. Comparison between inositol 

and ethanol showed 6 sensilla with responses to both, 14 only to inositol and 15 only to 

ethanol. → Table 2 

Analysis of single GRN responses 

Spike analysis were performed in order to separate spikes originating from different GRNs. 

Overall, a definite identification of the neuron types across recordings was difficult due to the 

change of recording electrodes with varying conductance. In spite of this, some general 

features appeared. The GRNs responding to KCl, NaCl, inositol, and sinigrin had smaller 

spike amplitudes (less than 1 mV) than the GRNs responding to sucrose, water, quinine, and 

ethanol (Figures 1A,E, 2A,E, 3A,E, 4A,E, 5). The relative large spikes of the GRNs 

responding to sucrose were broader than those of the other cells (Figures 2A, 5). The GRN 

responding to quinine showed a gradual increase in spike amplitude during a burst, and the 

response to sinigrin differed from the quinine response both in spike amplitude and temporal 

firing pattern (Figures 1A,E, 5B). Concerning the two salts, two GRNs with different spike 

amplitudes seemed to be involved in the responses to both KCl and NaCl (Figure 5). Figure 

5A shows activity of the small amplitude GRN, and figure 5B of the larger amplitude GRN. 

Firing of both as well as of only one of them appeared in the recordings. The small amplitude 

GRN fired vigorously to 0.1 M and 1 M NaCl, whereas the large amplitude GRN often 

displayed a low frequency firing at all NaCl concentrations. Stimulation with KCl showed a 

similar response pattern. Variations considered not to be real responses were occasionally 

seen in different recordings, as exemplified in figure 3E (third trace) where a large amplitude 

GRN appeared, that did not fire to the other concentrations of NaCl. Peculiarly, the response 

to ethanol consistently showed larger spike amplitudes (2 mV) at the highest concentration 

than at the two lowest (Figure 4A), possibly due to the fat-soluble properties of ethanol. 

Another GRN, probably a water responsive GRN, appeared with large spikes and tonic firing 

during stimulation with the lowest concentration (0.0001 M) of all substances (Figure 4E, 

upper trace), and occasionally to 0.001 M (Figure 2E, upper trace). The spikes of this GRN 

usually disappeared at higher concentrations, when the other GRNs were activated. In a few 

cases where no excitatory response to the test substance was observed, this water GRN 

showed decreased firing with increasing concentration of the substance, exemplified in figure 

4E.  
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The different compositions of GRNs in individual sensilla are exemplified in figure 5. 

Both recordings show responses to sucrose, NaCl, KCl, and inositol. Responses to sinigrin 

and ethanol are evident in the recordings shown in figure 5A, whereas response to quinine is 

seen only in the recordings shown in figure 5B. Based on the analysis of spike amplitudes and 

wave forms, it seems that the response to KCl, NaCl and sinigrin originate from the same 

GRN; in figure 5A from the small amplitude GRN and in figure 5B from the larger amplitude 

GRN. The characteristic broad spikes are elicited by the sucrose GRN, whereas the spikes 

elicited by inositol originate from a third GRN. In addition, the largest spikes in the two 

recordings originate from an ethanol GRN (Figure 5A) and a quinine GRN (Figure 5B), 

respectively. → Figure 5  

Responses to mixtures of sucrose and bitter substances 

Comparisons of the responses to sucrose and the mixtures of sucrose and the two bitter 

substances, quinine and sinigrin, were performed in order to study possible interactions 

between phagostimulatory and deterrent GRNs. Stimulation with mixtures of sucrose and 

quinine were performed in 92 sensilla with separate GRNs responding to sucrose and quinine 

(Figure 6A-C). The average responses to the initial and final stimulation with 0.01 M sucrose 

were approximately equal, 54 and 53 imp/ s, respectively. The average firing decreased to 39 

and 14 imp/ s, respectively, when 0.00001 M and 0.001 M quinine was mixed with the 0.01 

M sucrose solution. In addition, the bursting response to quinine was not seen when quinine 

was mixed with sucrose, implying a mutual inhibition of the quinine- and sucrose-responsive 

GRNs. The GRN responding to quinine had a long and inconsistent latency when stimulated 

with quinine alone, whereas the latency of inhibition of the sucrose responsive GRN was 

immediate, impairing the sucrose response from the start of the stimulation period.  

In 44 other sensilla, sinigrin elicited the same pattern of inhibition when stimulating 

with the mixtures of 0.01 M sucrose and two different concentrations (0.01 and 0.1 M) of 

sinigrin (Figure 6D-F). Because of sensitivity differences, higher concentrations of sinigrin 

than quinine were used in the mixtures. The initial and final stimulation with sucrose elicited 

an average firing of 41 imp/ s, whereas the mixtures with increasing concentrations of sinigrin 

elicited decreased firing (27 and 9 imp/ s). These series of stimulations with single 

compounds and mixtures of sucrose and the two bitter substances imply that both sinigrin and 

quinine act excitatory on separate neurons and cause inhibition of the sucrose responsive 

GRN. → Figure 6 
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Behaviour 

Behavioural effects of the phagostimulant sucrose and the putative deterrent quinine was 

assayed by applying 0.16 M quinine and 1.0 M sucrose to the antennae of 30 starved moths. 

When quinine was applied to the antennae, only one moth extended its proboscis. In the 

subsequent stimulation with sucrose on the antennae of the same group of insects, 21 moths 

extended their proboscises, showing that sucrose is highly appetitive whereas quinine is non-

appetitive. 

 

Discussion 
The results in the present study have shown that the moth H. virescens has GRNs responding 

to all seven selected tastants, with strongest responses to sucrose and quinine. In addition, 

sucrose- and quinine-responsive GRNs were present in a majority of the s. chaetica. 

However, the GRN composition of individual sensilla varied to a great extent, showing no 

distinct sensillum types or distribution of specific types to particular locations. This absence 

of sensillum types might appear because of the limited number of test substances as well as 

varying sensitivities of the GRNs. Other biologically relevant tastants might have elicited 

stronger responses, particularly in the weakly activated GRNs. The varying sensitivities of the 

GRNs might have enhanced the impression of variability of the responses, disabling a 

classification of sensillum types.  

We based our choice of test substances on their statuses as general phagostimulants or 

deterrents as well as expected relevance to H. virescens. Sucrose, an important energy source 

and the most prominent component in the nectar of Lepidoptera- pollinated plants (Baker and 

Baker 1983), is a well known phagostimulant and relevant for H. virescens during nectar 

feeding, as evidenced by the strong responses in numerous GRNs in our study. When the 

moth searches for food or oviposition sites, it antennates, tapping the surface rapidly with the 

antennal tip. Approaching a flower, the whole flagellum of H. virescens is in contact with the 

interior of the flower, whereas the tip is touching the nectar source. This behaviour in 

combination with the vital importance of sugar might be reflected in the relatively large 

number of specific sucrose responding GRNs at the antennal tip, also found in other insects 

(Dethier 1976; Blaney and Simmonds 1990; Hiroi et al. 2002; Thorne et al. 2004; Haupt 

2004). The second expected phagostimulant, the sugar alcohol inositol, is ubiquitous in plants, 

a key structural component of phospholipids, involved in osmoregulation and phosphate 
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storage in animals, as well as being a second messenger probably in all insects (Loewus 

1990). Its phagostimulatory effect is well known in many insect species, including the tobacco 

hawkmoth Manduca sexta (Dethier 1976; Bernays and Chapman 1994; Chapman 2003). We 

found no evidence for a general phagostimulatory GRN type responding both to sucrose and 

inositol, as reported in the fleshfly Sarchophaga bullata (Shimada 1987). The different spike 

shapes of the responses, as well as responses to only one of them in some sensilla, indicated 

that separate GRNs were activated by the two substances. Overall, the weak firing of few 

GRNs during stimulation with inositol, imply that no specific inositol GRN was present in 

these moths. In contrast, Lepidopteran larvae, including H. virescens, have GRNs vigorously 

responding to inositol (Dethier and Kuch 1971; Shields and Mitchell 1995a; Schoonhoven et 

al. 1998; Bernays and Chapman 2000), implying that ingestion of inositol is more important 

for larvae than adults, although both need inositol due to its overall importance in the cells. 

One might speculate whether the nectar of the host plants is devoid of inositol, while it is 

present in leaves, explaining the absence of specialised inositol GRNs in adults. In addition, 

inositol might be more vital to growing and developing larvae than to adults, or adults 

synthesise inositol easier than larvae, diminishing the need to acquire it through ingestion.  

As putative deterrents we selected quinine and sinigrin. The prototypical bitter 

substance, the alkaloid quinine, is used in studies of many organisms, and the glucosinolate, 

sinigrin, is a non-appetitive tastant for H. virescens and other lepidopterans (Blaney and 

Simmonds 1988; Shields and Mitchell 1995b; Jørgensen et al. 2006). In a recent study of 

adult H. virescens, we have shown an aversive effect of both quinine and sinigrin in a 

conditioning context (Jørgensen et al., submitted). As shown in the present study, the bitter 

substances were detected by specific GRNs, corresponding to results obtained in studies of 

other insect species (Glendinning J.I. and Hills 1997; Bernays and Chapman 2000; Chapman 

2003; Meunier et al. 2003; Thorne et al. 2004). The presence of bitter GRNs on insect 

antennae has not previously been found, in spite of particular search for them on the antennae 

of honeybees (De Brito Sanchez et al. 2005). Separation of the responses by the two quinine 

and sinigrin GRN types in H. virescens was based on the different response patterns, bursting 

and phasic-tonic, respectively, as well as responses to only one of the substances in some 

sensilla (Fig 1, Tab 2). The bursting activity with long latency elicited by quinine in the GRNs 

is previously described in several insect species (Dethier 1980; Chapman et al. 1991; 

Schoonhoven et al. 1992). In humans, a long latency of the perception of bitter taste is known, 

which is proposed to be caused by a slow and long lasting binding to the receptor (Rouseff 

1990). An alternative interpretation of the responses to quinine and sinigrin in the present 
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study might be that they originate from the same GRN, where the different temporal response 

patterns  result from the involvement of two receptor types and possibly different excitatory 

transduction pathways, as suggested in M. sexta (Glendinning J.I. and Hills 1997). Co-

expression of different bitter receptor proteins in the same GRN is shown in molecular studies 

of Drosophila (Thorne et al. 2004; Wang et al. 2004). Having several receptor types for 

different bitter substances in subsets of bitter responsive GRNs increase the ability of the 

insect to discriminate the components in mixtures of bitter substances in plants, and allow 

differentiation between toxic and harmless constituents, possibly eliciting different behaviours 

of acceptance or rejection. The behavioural experiments showed a non-appetitive effect of 

both quinine and sinigrin in this study as well as in Jørgensen et al. (2006), in contrast to the 

highly appetitive effect of sucrose in both studies. Possibly, there is a hard-wired labelled line 

arrangement from the gustatory receptors to the brain driving the two different behaviours, as 

shown in mammals, by expressing bitter receptors in sugar gustatory cells, resulting in 

phagostimulatory behaviour towards bitter substances (Mueller et al. 2005). 

In nature, feeding animals, especially herbivores, encounter complex mixtures of 

nutrient and other substances. The responses of the GRNs are thus greatly affected by 

interactions between chemicals (Schoonhoven et al. 1992; Smith et al. 1994; Chapman 2003). 

In particular, the suppression of phagostimulant GRN activity by bitter substances, e.g. 

quinine, is a widespread phenomenon in several species (Dethier and Bowdan 1989; Chapman 

et al. 1991; Dethier and Bowdan 1992; Formaker et al. 1997; De Brito Sanchez et al. 2005). In 

the present study, quinine and sinigrin caused excitatory responses of particular GRNs as well 

as inhibition of the sucrose- and water- responsive GRNs (Fig 6), similar to the results 

obtained from GRNs on the prothoracic legs of Drosophila (Meunier et al. 2003). Feeding is 

positively correlated to activity in phagostimulatory GRNs, and negatively correlated to 

activity in deterrent GRNs, suggesting that quinine and sinigrin inhibit feeding both by 

exciting the deterrent GRNs and inhibiting the sucrose GRNs in H. virescens moths. In H. 

virescens larvae, a clear negative correlation has been found between the firing rate of the 

sinigrin-responsive GRNs and the amount of food consumed (Bernays et al. 2000; Bernays 

and Chapman 2000). In addition, behavioural studies of adult H. virescens, assaying PER 

during tarsal stimulation, showed an increasing inhibition of PER when stimulating with 

mixtures of sucrose and increasing concentrations of quinine (Ramaswamy et al. 1992). How 

the two kinds of information (phagostimulatory and aversive) is transmitted to second order 

neurones in the insect CNS, e.g. VUM-like neurones or motorneurons is an interesting 

question in future studies. In our study, there also seemed to be an inhibition of the bitter-
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responsive GRNs by the sucrose GRN, since no spikes from these GRNs were observed when 

stimulating with the mixture. This kind of mutual inhibition is also observed in the 

parabranchial nucleus in hamsters (Smith et al. 1994). In addition, we demonstrated 

interactions between the water-responsive GRNs and the GRNs responding to the test 

substances. Suppression of water-responsive GRNs by other substances is previously shown 

in the fly Phormia terranovae (Rees 1970). In our study, neither quinine nor sinigrin caused 

any damage to the GRNs, shown by the similar firing to the initial and final sucrose 

stimulation.  

The two inorganic salts, KCl and NaCl, are in general important in regulating the 

osmotic equilibrium in all organisms. K+ is the major cation in plants, and present in high 

concentration in lepidopteran haemolymph (Dethier 1977). The responses to the inorganic 

salts in our study seem to originate from two GRNs eliciting small and large spike amplitudes, 

respectively. The GRN that often fired vigorously with small amplitude spikes to high salt 

concentrations might be the same GRN responding to sinigrin. Several GRN types involved in 

the response to inorganic salts, as well as deterrent receptors detecting high concentrations of 

salts are previously reported in other insects (Dethier and Hanson 1968; Bernays and 

Chapman 2001; Chapman 2003; Hiroi et al. 2004; Marella et al. 2006). In our study, the 

GRNs fired weakly to low salt concentrations and often vigorously to higher concentrations, 

which might influence feeding behaviour, eliciting feeding or avoidance, respectively, as 

shown in an early study of the blowfly (Dethier 1968). This seems to be reflected in the 

nutritional needs; low levels of salts being satisfactory, whereas high concentrations threaten 

the osmotic equilibrium. There is no evidence that insects ever suffer from salt deficiency in 

nature, possibly reflected by the weak overall salt responses. The stronger average firing to 

KCl than to NaCl might reflect the moths’ common exposure to KCl in plants. We expected 

the two salts to be detected by the same GRN type, but some sensilla had GRNs responding to 

only one of the salts, indicating involvement of separate GRNs in salt detection. In contrast, 

two types of channels in the same GRN accepts different cations in Drosophila (Siddiqi et al, 

1989), suggesting a possible discrimination of salts by the same GRNs. 

Ethanol was included because according to our observations, it seems to be attractive 

to the H. virescens larvae. The highest concentrations of ethanol and quinine elicited peculiar 

response properties, ethanol causing tonic firing of larger spikes than at lower concentrations, 

and quinine spikes of increasing amplitude during the bursts. Possibly, high concentrations of 

these substances act on the GRN membranes. One in vitro study of the amphiphilic quinine 

have shown that it permeate cell membranes directly, bypassing the receptors, and activate G-
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proteins (Naim et al. 1994). Ethanol is fat-soluble, and might also act directly on the GRN 

membranes, causing large amplitude spikes. However, ethanol did not elicit responses in the 

sucrose or inositol-responding GRNs, in contrast to recordings from monkey chorda tympani 

nerves showing that ethanol stimulate sweet-best fibres, and at high concentration some salt-

best fibres (Hellekant et al. 1997).  

Recordings from s. chaetica in the present study showed responses to more than four 

substances in each sensillum (Fig 5). Since s. chaetica have only four GRNs, it implies that at 

least one GRN responded to more than one substance, like the mammalian afferent gustatory 

fibres (Smith and Davis 2000). However, specific GRNs responding to sucrose and quinine 

were found, which by activation elicited appetitive and non-appetitive behavioural responses, 

respectively. Like in mammals, this might be a hard-wired arrangement where 

phagostimulants and deterrents elicit different innate behaviours. 
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Figure legends 
Fig 1: Response properties of GRNs in s. chaetica of H. virescens responding to the two bitter 

substances sinigrin and quinine. A: Responses and spike analyses of three different sensilla to 

quinine, illustrating the variation of the bursting response to 0.001 M quinine. The spike 

amplitude increased during bursts. (The response properties of the sensillum in the two upper 

traces to other substances are shown in figure 5B). B: Dose-response curve of average firing 

to quinine. C: Distribution of quinine-responding GRNs along the flagellum. The letters NS 

indicate no significant differences (Fisher’s exact test, p > 0.05). D: Response strength to 

0.001 M quinine of the GRNs located along the flagellum. Different letters indicate 

significant differences (Mann-Whitney tests, p < 0.05). E: Example of responses and spike 

analyses of one GRN to sinigrin. There was no response to 0.001 M. (The response properties 

of this sensillum to other substances are shown in figure 5A). F: Dose-response curve of 

average firing to sinigrin. G: Distribution of sinigrin-responding GRNs along the flagellum. 

The letters NS indicate no significant differences (Fisher’s exact test, p > 0.05). H: Response 

strength to 0.1 M sinigrin of the GRNs along the flagellum. The letters NS indicate no 

significant differences (Mann-Whitney tests, p > 0.05). 

 

Fig 2: Response properties of GRNs in s. chaetica of H. virescens to sucrose and the sugar 

alcohol inositol. A: Example of responses and spike analyses of one GRN to sucrose. Sucrose 

elicited spikes with relatively high amplitude and broad spike shape. B: Dose-response curve 

of the average firing to sucrose. C: Distribution of sucrose-responding GRNs along the 

flagellum. Different letters indicate significant differences (Fisher’s exact test, p < 0.05). D: 

Response strength to 0.1 M sucrose of the GRNs along the flagellum. Different letters 

indicate significant differences (Mann-Whitney tests, p < 0.05). E: Example of responses and 

spike analyses of one GRN to inositol. The upper trace shows spikes elicited by the water 

responsive GRN (no response to inositol), and the spike analyses show that this is a different 

GRN than the small amplitude GRN responding to inositol. F: Dose-response curve of 

average firing to inositol. G: Distribution of inositol-responding GRNs along the flagellum. 

The letters NS indicate no significant differences (Fisher’s exact test, p > 0.05). H: Response 

strength to 0.1 M inositol of the GRNs along the flagellum. Different letters indicate 

significant differences (Mann-Whitney tests, p < 0.05). 
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Fig 3: Response properties of GRNs in s. chaetica of H. virescens to the two inorganic salts 

KCl and NaCl. A: Example of responses and spike analyses of one GRN to KCl. The GRN 

responding to KCl had small amplitude. B: Dose-response curve of average firing to KCl. C: 

Distribution of KCl-responding GRNs along the flagellum. Different letters indicate 

significant differences (Fisher’s exact test, p < 0.05). D: Response strength to 0.1 M KCl of 

the GRNs along the flagellum. The letters NS indicate no significant differences (Mann-

Whitney tests, p > 0.05). E: Example of responses and spike analyses of one GRN to NaCl. 

The spike amplitude of the NaCl-responding GRN was small, whereas the additional cell 

firing at 0.1 M and had high amplitude, and was not considered a real response. F: Dose-

response curve of average firing to NaCl. G: Distribution of NaCl-responding GRNs along the 

flagellum. The letters NS indicate no significant differences (Fisher’s exact test, p > 0.05). H: 

Response strength to 0.1 M NaCl of the GRNs along the flagellum. The letters NS indicate no 

significant differences (Mann-Whitney tests, p > 0.05). 

 

Fig 4: Response properties of GRNs in s. chaetica of H. virescens responding to ethanol and 

water. A: Example of response and spike analyses of one GRN to ethanol. The response to the 

two lower concentrations showed smaller spike amplitudes than to the highest concentration. 

B: Dose-response curve of average firing to ethanol. C: Distribution of ethanol-responding 

GRNs along the flagellum. The letters NS indicate no significant differences (Fisher’s exact 

test, p > 0.05). D: Response strength to 20 % ethanol of the GRNs along the flagellum. 

Different letters indicate significant differences (Mann-Whitney tests, p < 0.05). E: Example 

of a water-responsive GRN and spike analyses during stimulation with 0.0001, 0.001, 0.01 

and 0.1 M sinigrin. There was no excitatory response to sinigrin, but the water-responsive 

GRN was inhibited with increasing concentrations of sinigrin. 

 

Fig 5: Response properties of two different s. chaetica of H. virescens to the highest 

concentrations of various substances. A: Responses and spike analyses of GRNs on annulus 

72 to KCl, sucrose, inositol, NaCl, sinigrin, and ethanol. (The response properties of this 

sensillum to three concentrations of sinigrin are shown in figure 1G). The spike shape of the 

sucrose-responsive GRN was broader then the other GRNs. KCl, NaCl and sinigrin might be 

detected by the same small amplitude GRN, whereas ethanol seemed to be detected by a large 

amplitude GRN. B: Responses and spike analyses of GRNs on annulus 60 to KCl, sucrose, 

inositol, NaCl, sinigrin, and quinine. (The response properties of this sensillum to two 

concentrations of quinine are shown in the two upper traces of figure 1A). Again, broad 
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shaped spikes of one GRN were elicited by sucrose. One GRN seemed to respond to the two 

salts. There was no response to sinigrin, and two different GRNs seemed to be responding to 

quinine and inositol. 

 

Fig 6: Responses to sucrose and mixtures of sucrose and bitter stimuli. A: Response 

properties when stimulating one s. chaetica of H. virescens with sucrose and mixtures of 

sucrose and quinine. There was a mutual inhibition of the quinine- and sucrose-responsive 

GRNs. B: Average responses (imp/ s) of 92 sensilla elicited by sucrose and mixtures of 

sucrose and quinine, showing inhibition of the sucrose-responding GRN by quinine. C: The 

percentual change from the initial stimulation with sucrose, when stimulating with the quinine 

mixtures and the final stimulation with sucrose. D: Response properties when stimulating one 

s. chaetica with sucrose and mixtures of sucrose and sinigrin. Sinigrin inhibited the sucrose-

responsive GRN. E: Average responses (imp/ s) of 44 sensilla elicited by sucrose and 

mixtures of sucrose and sinigrin, showing that sinigrin inhibited the sucrose-responsive GRN. 

F: The percentual change from the initial stimulation with sucrose, when stimulating with the 

sinigrin mixtures and the final stimulation with sucrose. S: 0.01 M sucrose, Q 1: 0.00001 M 

quinine, Q 2: 0.001 M quinine, Sin 1: 0.01 M sinigrin, Sin 2: 0.1 M sinigrin. 
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Table 1: Average GRN responses to two concentrations (0.001 M and 0.1 M) of sucrose, 
sinigrin, KCl, inositol, and NaCl, in addition to 1 M and 4.3 M ethanol and 0.00001 M and 
0.001 M quinine. The percentage of the GRNs with a threshold of 0.001 M solution (1 M for 
ethanol and 0.00001 M for quinine) for the 7 substances is also shown. 
Substance 0.001 M (imp/ s) 0.1 M (imp/ s) % GRNs responding to 0.001 M 
Sucrose 18.8  66.8 100 
Sinigrin 0.5 21.2 17 
Inositol 0.4 16.3 31 
KCl 1.0  15.8 17 
NaCl 0.3  7.7 10 
Ethanol 6.6 to 5 % (1 M) 18.6 to 20 % (4.3 M) 93 to 5 % (1 M) 
Quinine 2.9 to 0.00001 M 18.2 to 0.001 M  
 
 

 



Table 2: Response properties of 76 s. chaetica, allowing comparison of the responses to 
different substances by individual sensilla. Firing in a dose-response manner was considered 
as response (+). 
Individual 
moth 

S. chaetica 
of annulus # KCl Sucrose Inositol NaCl Sinigrin Quinine  Ethanol 

1 80  +      

 77  +    +  

 76  +  +  +  

 75 + +      

 74 + +  + +   

 73  + + + +  + 

 72  +   + +  

 71     + + + 

 70  +  + +  + 

 69  + + +  +  

 68    +    

2 58  +  +  +  

 57  +    +  

 56 +     +  

 55  +  + + +  

 54  +  + + +  

 53  + +  + +  

 52  +   +  + 

 51  +  + + + + 

 50  + +  + +  

 49  +   + +  

 48 + +   + +  

 47  +   + +  

3 36  +    + + 

 35  +    +  

 34    +  +  

 32   +  + +  

 31  + +   + + 

4 31  +      

 29   +  + +  

 28      +  

 27   +     

 26 +     +  

 24     +  + 

 23   +  +  + 

 22   + +  + + 

 21 +       

 20    +  +  

 19     + +  

 18      +  

5 36  +     + 

 35 + +   +   

 34 + +  + + +  

 33  +      

 



 32       + 

 31 +     + + 

 30 + +   + + + 

 29      +  

 28 +  + +  +  

 27 +  + + + +  

 26  + +  + +  

 25 +  +  + +  

 24 +  +  + +  

6 60 + + +  + +  

 59 + +  + + + + 

 58  + + + + +  

 57  +  +  + + 

 56 + +  +  +  

 55  +  +  +  

 54 + +    + + 

 53  +   + +  

 52 + +  +  +  

 51 + + + +  + + 

 50 + +  +  +  

 49 + +  + +  + 

 47 + +  + + +  

 46  +  + + +  

7 18 +   +    

 17 +    + +  

 16 + +   + +  

 15 + + +   + + 

 14 +    + + + 

 13 +  +   +  

 12 +    + +  

 11  +    +  

 10      +  
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Abstract 
In nature, moths encounter nutritious and toxic substances in plants, and thus have to 

discriminate between a diversity of tastants. Whereas olfactory learning allowing memory of 

nutritious plants, is well demonstrated, little is known about learning and memory of toxic 

items in adult lepidopterans. Moths may use bitter substances to detect and possibly learn to 

avoid noxious plants. We have studied the physiological and behavioural effects of two bitter 

substances, quinine and sinigrin, on the moth Heliothis virescens. Electrophysiological 

recordings showed responses to both compounds in gustatory receptor neurons on the 

antennae. The response patterns suggested a peripheral discrimination between quinine and 

sinigrin. We evaluated their putative aversive effect in an appetitive conditioning context 

where the moths learned to associate an odour with sucrose. We first aimed at enhancing 

olfactory conditioning of the proboscis extension response by testing the effect of the sucrose 

concentration on acquisition, retention and extinction. 2 M and 3 M sucrose concentration 

gave similar acquisition, retention and extinction performances. Experiments involving pre-

exposure or facilitated extinction with an odour paired with quinine, sinigrin or no tastant 

showed a latent inhibitory effect, as well as an aversive effect of quinine and to a lower 

extent, of sinigrin. The results suggested that the two tastants may act as negative reinforcers 

in H. virescens. 

 

Introduction 
The ability to learn, remember and forget is important for the adaptation of an organism to a 

changing environment. In food consumption, learning and memory of the taste and smell of 

nutritious or noxious food is crucial for survival. For example, insects searching for nectar 

learn to prefer the odour of the favourable flowers. Stimulation with sucrose of the gustatory 

receptor neurons (GRNs) of contact chemosensilla (insect taste organs) located on different 

appendages of the insect body, e.g. antennae, mouthparts, and tarsi, causes the hungry insect 

to extend its proboscis in order to feed. This response, the proboscis extension response 

(PER), has been utilized to study classical conditioning, particularly appetitive olfactory 

learning in several insect species, including the honeybee Apis mellifera (Bitterman et al., 

1983; Menzel, 1993; Hammer and Menzel, 1995), the bumblebee Bombus terrestris (Laloi et 

al., 1999), and several moth species (Hartlieb, 1996; Fan et al., 1997; Daly et al., 2004; Skiri 

et al., 2005). In all these species, including moths, it was demonstrated that the olfactory 
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conditioning of the PER is associative. If an initially neutral odour puff (the conditioned 

stimulus, CS) is given a few seconds before the sucrose stimulation (the unconditioned 

stimulus, US), the insects learn to associate the odour with the sucrose reward, and the CS 

will then trigger a conditioned response (CR), the insects extending the proboscis to the 

odour. In heliothine moths, previous studies have shown that they will learn to associate 

odours with an appetitive reward, both in the laboratory and in the field (Cunningham et al., 

1999; Hartlieb et al., 1999; Skiri et al., 2005; Cunningham et al., 2006). The olfactory 

pathways involved in olfactory conditioning have been extensively studied and are well 

described in several species, including A. mellifera and the moth Heliothis virescens. The 

odorants are detected by olfactory receptor neurons located on the antennae, and olfactory 

information is transmitted via synapses within the glomeruli of the antennal lobes to local 

interneurons which carry out local computation, and to projection neurons (Menzel and 

Giurfa, 2001; Mustaparta and Stranden, 2005; Rø et al., 2007). Projection neurons further 

convey odour information via the antennocerebral tracts to the calyces of the mushroom 

bodies and to the lateral horn, a premotor area.  

In the gustatory system, the sucrose solution used as US is detected by the GRNs on 

the antennae and the proboscis, and information is conveyed to the suboesophageal ganglion 

and the tritocerebrum (Mitchell et al., 1999; Kvello et al., 2006; Jørgensen et al., 2006). In A. 

mellifera, the suboesophageal-calycal tract is comprised of neurons passing on information 

directly from the suboesophageal ganglion to a particular area of the calyces of the mushroom 

bodies that is segregated from the olfactory areas (Schröter and Menzel, 2003). In addition, 

the ventral unpaired median neuron of the maxillary neuromere 1, VUMmx1, has dendrites 

converging with the gustatory pathways in the dorsal suboesophageal ganglion and the 

tritocerebrum and axonal arborisations that converge with the olfactory pathways in the 

antennal lobes, the mushroom bodies and the lateral horn (Hammer, 1993). The VUMmx1 

forms a modulatory connection between the pathways of the conditioned olfactory stimulus 

and the unconditioned sucrose stimulus. Electrical stimulation of this neuron in association 

with an odour puff is sufficient to replace sucrose reinforcement (although it does not elicit 

PER), suggesting that it comprises the neural substrate for sucrose reinforcement in bees. 

Changes of odour responses in the antennal lobes and the mushroom bodies after olfactory 

conditioning have been demonstrated in several studies with optical or intracellular recordings 

(Faber et al., 1999; Faber and Menzel, 2001; Sandoz et al., 2003; Daly et al., 2004; Yu et al., 

2004).  
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Bitter taste, warning against the ingestion of unfavourable food is important in all 

organisms. Bitter stimuli constitute the largest and structurally most diverse class of gustatory 

stimuli, and a wide range of molecules of varying sizes and functional groups are perceived as 

bitter tasting (Rouseff, 1990). Both in insects and mammals, bitter taste stimuli are detected 

by many divergent bitter receptor proteins expressed in single GRNs (Adler et al., 2000; 

Thorne et al., 2004; Wang et al., 2004; Mueller et al., 2005). In the fruitfly Drosophila, the 

receptor proteins are co-expressed in subsets of bitter GRNs. If the different subsets of bitter 

GRNs synapse on different interneurons or motorneurons in the CNS, or if several 

transduction mechanisms are involved, passing on different information to the downstream 

neurons, this would provide mechanisms enabling flies to discriminate between bitter tastants. 

In insects, different bitter stimuli may elicit different behavioural reactions, indicating the 

presence of a differential coding system (Glendinning and Hills, 1997).  

In the present study, two bitter substances that are indiscernible to humans were tested 

for their aversive value in H. virescens. The prototypical bitter compound, quinine, is an 

alkaloid known to act through blocking of certain K+ channels in vertebrates or permeate cell 

membranes directly and activate G-proteins, bypassing the receptor in in vitro preparations 

(Spielman et al., 1992; Naim et al., 1994). We also chose sinigrin (a glucosinolate) because it 

was previously found to be non-appetitive in H. virescens (Blaney and Simmonds, 1988; 

Jørgensen et al., 2006). Analyses of antennal GRN responses to the two substances were 

performed and their aversive effects were tested in the appetitive context of olfactory 

conditioning of PER. Two main protocols were used to study the aversive effect of the two 

tastants. In the first protocol (pre-exposure), moths were pre-exposed to the odour CS 

associated to one of the tastants (no tastant as control), and the success of subsequent 

acquisition of the same CS and sucrose was observed. In the second protocol (facilitated 

extinction), moths were first subjected to an acquisition phase with CS and sucrose, before 

being subjected to an extinction phase, where the same CS was associated with one of the 

tastants (no tastant as control). Possible facilitation of extinction was determined. Such 

experiments where a decrease in CRs is expected due to the bitter stimuli, has to rely on high 

learning rates. A previous study of appetitive conditioning in H. virescens analysed the effect 

of CS quality and concentrations (Skiri et al. 2005). Conditioning with increased CS 

concentrations increased the learning rate, and odorants activating different receptor neuron 

types caused different learning performances. Racemic linalool induced strong and reliable 

learning, and was chosen as CS in the present study. However, the effect of sucrose 

concentration on learning success was unknown. Therefore, we first performed an experiment 
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comparing the effect of two high sucrose concentrations (2M and 3M) on acquisition of CRs, 

retention between 15 min and 48 h, and resistance to extinction at the same intervals. This 

allowed us to choose adequate conditions for the pre-exposure and facilitated extinction 

experiments with the bitter substances. 

 
Material and methods 

Insects and preparation 

Adult H. virescens (Fabricius) used in the experiments were received as pupae from Syngenta, 

Basel, Switzerland. The male and female pupae were sorted and hatched in separate climate 

chambers (22°C, reversed photoperiod, Refritherm 200, Struers-Kebolab, Albertslund, 

Denmark). Experiments with males and females were carried out in separate groups. Newly 

hatched insects were placed in containers with free access to 5 % (w/v) sucrose solution. After 

24 h the insects were immobilized in Plexiglas holders with tape between the head and the 

thorax, exposing the head with the proboscis and the antennae. The insects were then deprived 

of food for 48 h in the climate chambers. One hour before the experiments started the insects 

were placed in the experiment room for familiarisation to the experimental context. 

 

Test compounds 

The odorant used as CS was racemic linalool (95 % checked in GC, Sigma-Aldrich, 

Steinheim, Switzerland) which was diluted in n-hexane (99 %, v/v, 1:100), and stored at 

minus 20°C. A dose (100µl) of this solution was applied to a piece of filter paper (160 mm 

diameter) from which the n-hexane evaporated before it was placed in a glass cartridge sealed 

with Teflon caps. Each cartridge was used for 1 h (maximum 124 stimulations), and was 

made the day of the experiment. The appetitive stimuli were 2 M or 3 M sucrose (99.9 %, 

Sigma-Aldrich). The 3 M solution was put on a stirrer for 4-5 hours at room temperature for 

all the sucrose to dissolve. The putative aversive stimuli were 1 M sinigrin monohydrate (99 

%, VWR International, Oslo, Norway) or 0.16 M quinine hydrochloride dihydrate (98 %, 

VWR International). Because of the low solubility of quinine in water, this was the highest 

possible molarity without adding acid or alcohol. Quinine (0.01 mM, 0.1 mM) and sinigrin 

(1.0 mM, 10 mM, 100 mM) were solved in the electrolyte 0.01 M KCl (99,5 %, Sigma-

Aldrich) for the electrophysiological recordings.   
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Experiment 1 

US concentration, retention and extinction 

The experiments were carried out in a dimly lit room with a constant temperature of 23°C. 

One at a time, each moth was placed in front of a ventilation outlet with a weak suction. 

Facing the insect at 2 cm distance was a glass tube with a constant air flow (~ 400 mL/min). 

The cartridge containing the CS was inserted into the tube, and the odour stimulus was given 

as a 5 s puff of ~100 mL/min flow into the constant air stream. The sucrose US (5 s) was 

applied with a toothpick 2.5 s after the onset of the odour puff, first to both antennae, and then 

to the extended proboscis. Since moths tend to be unresponsive at the beginning of 

conditioning due to low attention, the same method as in previous work was used to ensure 

learning success (Skiri et al., 2005): If the insect did not extend its proboscis at first encounter 

with the sucrose, the proboscis was forced out, and the insect was allowed to drink. This was 

not done in subsequent trials, meaning that the insects that failed to show PER were not 

rewarded. Each insect was placed in the setup 15 s before CS onset in order to adapt to the air 

flow, and was removed 10 s after the end of the US. For each insect there were 8 conditioning 

trials with 15 min inter-trial intervals (ITI). Subsequently there were 8 extinction trials where 

the odour was given without reward (15 min ITI). At the end of every experiment, all insects 

were tested for the unconditioned response (UR) to sucrose. The results were calculated as the 

percentage of insects that showed CR during each stage of the conditioning trials and the 

extinction trials. To find out if US concentration affected acquisition, retention, or extinction, 

2 M and 3 M concentrations were used as US in conditioning experiments in different insects. 

Each of the 2 groups were further divided into 5 retention groups, for which the first 

extinction trial started after the last acquisition trial at 15 min, 2 h, 8 h, 24 h, or 48 h, 

respectively. All retention periods were tested in each experiment. The different parameters 

were chosen according to previous conditioning experiments in H. virescens (Skiri et al., 

2005). 

 

Experiment 2 
Antennal gustatory neuron responses to quinine and sinigrin  

Electrophysiological recordings from GRNs of sensilla chaetica on the H. virescens antennae 

were carried out using a tip recording technique (Hodgson et al., 1955). The recording 

electrode (thin walled borosilicate glass capillaries, Harvard apparatus, UK) was pulled in a 2-

step electrode puller (PP-830, Narishige group, Japan) to a tip diameter of approximately 10-

20 µm. To avoid crystallisation and concentration changes at the tip, the electrode was filled 
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with the test substance just a few seconds before the start of the recording. The recording 

electrode containing the test solution was placed over single sensilla hairs for 5 s with an 

inter-stimulus interval of at least 10 min to avoid adaptation. Taste sensilla from all parts of 

the flagellum were included in the experiments. The recording glass electrode was connected 

to a TastePROBE amplifier (10x, Syntech, Hilversum, Netherlands) (Marion-Poll and Van 

der Peers, 1996) and the signals filtered (low pass: 50 Hz and high pass 3000 Hz) using the 

CyberAmp 320 from Axon Instruments (Burlingame, CA). The reference electrode was a 1 

mm AgCl coated silver wire placed in the moth abdomen. Analysis of the spikes was 

performed using the software AutoSpike-32 (Syntech). The responses were counted as 

number of spikes elicited during the 5 s stimulation period, and the temporal patterns were 

assayed, counting spikes in 0.5 s bins. 

 

Experiment 3 
CS pre-exposure associated with putative aversive stimuli 

In this experiment we tested whether the bitter compounds sinigrin and quinine could induce 

aversive effects on the subsequent learning of odour-sucrose associations. The experiment 

consisted of 2 phases, a pre-exposure phase and a conditioning phase. In the pre-exposure 

phase, 3 groups of insects were pre-exposed to different stimuli 8 times (15 min ITI). In the 

control group each insect was exposed to linalool (5 s) paired with stimulation with a dry 

toothpick (5 s, no tastant, mechanosensory control) of the antennae 2.5 s after the onset of the 

linalool stimulus. In the two bitter treatment groups the insects were exposed to linalool (5 s) 

paired with 1 M sinigrin or 0.16 M quinine stimulation, respectively, applied with a toothpick. 

Bitter tastant stimulation started 2.5 s after the onset of the linalool stimulus and lasted 5 s. 

Since the aversive value of the tastants might be mediated by GRNs on the proboscis as well 

as on the antennae, the stimulation was first applied to the antennae, and then to the proboscis. 

At the first trial, after antennal stimulation, the proboscis was forced out and the bitter tastant 

or dry toothpick was shortly applied. In nature, if the insect extends the proboscis to an 

antennal stimulation, it expects to taste the compound with the proboscis. This process could 

be necessary for choosing to accept or avoid a given food. For this reason, in subsequent 

trials, moths that extended the proboscis to the tastant received a stimulation of the proboscis. 

In our control group, moths received CS presentations without sucrose before the acquisition, 

which could lead to a so-called latent inhibition effect, i.e. a resistance to acquisition. To test 

for this effect we included a fourth untreated control group in which the moths were left 

without pre-exposure. In the conditioning phase (starting 15 min after the end of the pre-
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exposure phase), all groups were subjected to an identical acquisition procedure, with 8 

conditioning trials (CS associated to 2 M sucrose US) with 15 min ITI, as in experiment 1. 

After 15 min, all moths received a retention test with the CS alone for 5 s.  

 

Experiment 4 
Extinction of CR combined with putative aversive stimuli  

The goal of this experiment was to evaluate the aversive effects of bitter tastants when applied 

during extinction. The experiment consisted of 2 phases, a conditioning phase and an 

extinction phase. In the conditioning phase, all insects were conditioned to linalool with 2 M 

sucrose (described in experiment 1). In the extinction phase (starting 15 min after the end of 

the conditioning phase) the insects were divided in 3 groups receiving different types of 

extinction trials (8 trials, 15 min ITI). The control group was given a dry toothpick (no tastant, 

mechanosensory control) on the antennae and on the proboscis, when extending the proboscis 

to the CS. The 2 treatment groups were given 1 M sinigrin or 0.16 M quinine, respectively, 

with a toothpick on the antennae and on the proboscis, when extending the proboscis to the 

CS.  

 

Statistics 

Behaviour 

All insects that failed to show UR 3 times or more during acquisition or at the end of the 

experiment were considered unmotivated and excluded from the data analysis. To compare 

extinction performance independently of different retention levels, only insects showing CR 

at the first extinction trial were included in the analysis (Fig 1D and 5B). Comparisons of 

acquisition or extinction performance among groups were carried out on the sum of 

conditioned responses given by each moth during the respective phase, using Mann-Whitney 

tests (for n = 2 groups) or Kruskal-Wallis tests (for n > 2 groups). Performance at individual 

trials was compared between groups using Fisher’s exact tests. Depending on the question 

addressed in each experiment, either multiple comparisons with threshold corrections 

(experiment 1) or planned comparisons without threshold correction (experiments 3 and 4) 

were performed. In experiment 1, we compared extinction at different retention times. After a 

global Kruskal-Wallis test, we carried out multiple comparisons using the Noether method 

(1976, in Scherrer 1984). The alpha level was corrected using the Dunn-Sidak threshold 

correction [α’ = 1 – (1 – α)1/k where k is the number of two-by-two comparisons in which 

each data is used]. The goal of experiments 3 and 4 was to test specifically the effect of bitter 
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compounds in appetitive conditioning situations. Therefore, we only carried out a few planned 

comparisons between performance in the bitter-treated groups and the control group, using 

Mann-Whitney tests with an alpha-level of 0.05 (the number of planned comparisons being 

always lower than the number of degrees of freedom (n groups – 1) of the experiment).  

 

Electrophysiology 

To compare the time courses of responses of the receptor neurons to the different 

concentrations of tastants, 2-way tastant x time bin ANOVA were carried out (with repeated 

measurements). Two-by-two comparisons of tastant responses were carried out with 1-way 

ANOVA, using the Dunn-Sidak threshold correction as above. Comparisons between tastants 

at individual time bins were done using Scheffé tests for multiple comparisons. 

 

Results 
Experiment 1 

Out of the 554 moths used in the experiment, 348 (62.8%) were included according to the 

criteria listed in the methods chapter.  

 

Effect of sucrose concentration on acquisition 

Conditioning with 2 M and 3 M sucrose as US induced good acquisition, where the responses 

to the odour increased with trials, from zero at the first conditioning trial (no spontaneous 

responses), to 50% and 45% at the eighth conditioning trial for the 2 M and 3 M groups, 

respectively (Fig 1A). The acquisition curves did not reach asymptotic levels after eight 

conditioning trials, indicating that more trials might further have enhanced the learning 

success. Acquisition was similar in the 2 groups (Mann-Whitney test, z = 0.59, p = 0.56). 

 

Effects of time after training and sucrose concentration on retention 

Retention time is the period between the last conditioning trial and the first extinction trial. 

The effect on retention of time elapsed after training was studied by comparing responses of 

the first extinction trial performed after 15 min, 2 h, 8 h, 24 h, and 48 h in different groups of 

moths (Fig 1B). Overall, memory decreased with time, being strongest at 15 min and 

declining gradually to a lower level at 48 h. Retention was highest in the 2 M reward group 

tested after 15 min where the proportion of insects responding was 67% and lowest (21%) in 

the 3 M reward group tested after 48 h. An exception from the gradually declining response 
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with time appeared for the 3 M group, showing a slightly stronger retention after 24 h than 

after 8 h. No statistical differences between the 2 concentrations at any of the retention times 

were found (Mann-Whitney, 15 min: p = 0.473; 2 h: p = 1; 8 h: p = 0.626; 24 h: p = 0.311; 48 

h: p = 1), so the data of the 2 M and 3 M groups were pooled before testing whether the first 

extinction trial differs between the 5 retention groups. The 15 min and 2 h groups were 

significantly different from the other retention groups (Fisher’s exact tests, all p < 0.01), but 

not from each other (p = 1). The 8 h, 24 h, and 48 h groups were not significantly different 

from each other (Fisher’s exact tests, p > 0.04) when the α-level was corrected for multiple 

comparisons (Dunn-Sidak correction, α’ = 0.0127). 

 

Effect of time on extinction 

To compare the strength of the odour-sucrose association at different times after conditioning, 

we assessed its resistance to extinction during the 8 extinction trials (Fig 1C). To be able to 

compare extinction between groups, despite the differences observed in absolute retention 

scores (see above), only moths showing a CR at the first extinction trial were included (Fig 

1D). In all cases the responses decreased with increasing number of extinction trials. The 

moths tested after 8 h showed the fastest and highest overall extinction, the percentage of 

responses declining to 4% at the last trial. The 48 h group showed a slower and lower overall 

extinction than the other groups, 40% of the moths still showing CR at the last trial. There 

was a significant heterogeneity in overall extinction among the 5 groups (Kruskal-Wallis, p = 

0.03). Two-by-two comparisons indicated that extinction in the 48 h group was significantly 

lower than in the 8 h and the 24 h groups (Noether multiple comparisons with Dunn-Sidak 

correction, z = 3.11 and z = 2.53, respectively, p < 0.0127) and just short of significance 

compared to 15 min and 2 h groups (z = 2.35 and z = 2.39, respectively, p < 0.02). Although 

retention decreased with the interval between acquisition and extinction, the remaining 

association was strongest for the 48 h interval.  

 

Experiment 2 
Antennal gustatory neuron responses to quinine and sinigrin  

When applying different concentrations of sinigrin and quinine to the contact chemosensilla, 

s. chaetica, on the flagellum of the H. virescens antenna, responses to the 2 substances 

seemed to be elicited in separate receptor neurons. A bursting firing pattern was elicited in 

one type of receptor neuron during stimulation with 1 mM quinine compared to no activity 

when stimulating with the electrolyte KCl (Fig 2A-B). The GRN responding to quinine often 
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showed a long latency, and the bursts appeared at varying intervals in different recordings. 

The same concentration of sinigrin induced only a few spikes with smaller amplitude and no 

bursting activity when recording from the same sensillum (Fig 2A). When increasing the 

concentration of sinigrin to 100 mM, the number of spikes per 5 seconds was in the same 

range as that of 1 mM quinine, enabling comparison of the average temporal firing patterns 

induced by the 2 substances (Fig 2, 3A). Sinigrin elicited a phasic-tonic firing, and quinine a 

bursting firing. The bursting response to quinine did not change across recordings, and was 

similar in sensilla showing responses to quinine alone or both quinine and sinigrin. The mean 

responses to quinine and sinigrin in 74 sensilla plotted in 0.5 s bins showed the temporal 

differences in firing patterns (Fig 3B). Because the bursts of the quinine responsive GRNs 

appeared at varying intervals in different recordings, the average response appeared as a 

sustained high level of firing throughout the 5 s. For comparison, the average temporal 

response patterns to 1 mM sinigrin and the electrolyte 10 mM KCl were included in the 

figure. There were significant differences in the average overall responses to the different 

tastants. A 2-factor ANOVA on the effects of tastants and time bins (both repeated measures) 

indicated a significant tastant effect (F3.219 = 15.48, p < 0.001), a significant time bin effect 

(F9.657 = 42.76, p < 0.001) and a significant interaction (F27 = 12.79, p < 0.001). In particular, 

the time courses of spiking activity were significantly different between responses to 1 mM 

quinine and 100 mM sinigrin (tastant x time bin ANOVA, F9.657 = 10.21, p < 0.001), although 

the average response over the 5 s to the 2 tastants was not different (tastant ANOVA, F1.73 = 

3.60, p = 0.06). The responses to 10 mM KCl and 1 mM sinigrin over the 5 s were not 

significantly different (tastant ANOVA, F1.73 = 0.42, p = 0.51), but the response to both 

substances differed from the response to 100 mM sinigrin and 1 mM quinine (tastant 

ANOVA, F1.73 > 8.68, p < 0.01). During the first 0.5 s (tastant effect: F3.219 = 17.00, p < 

0.001), the response to 100 mM sinigrin was significantly higher than that to 1 mM quinine, 

indicated with letters in the first dotted square in figure 3B (Scheffé test, p = 0.004), but by 

the third time bin (1-1.5 s, tastant effect: F3.219 = 13.84, p < 0.001), the relationship was 

reversed, the response to 1 mM quinine being significantly higher than the 100 mM sinigrin 

response, indicated with letters in the second dotted square in figure 3B (Scheffé test, p = 

0.0005). A high proportion of the sensilla (93%) had GRNs responding to 1 mM quinine, 

whereas 83% of the sensilla had GRNs responding to 100 mM sinigrin, and 68% to the 

electrolyte 10 mM KCl. A few sensilla (5%) had GRNs that responded to 100 mM sinigrin, 

but not to 1 mM quinine, whereas 15% of the sensilla had GRNs responding to quinine, but 

not to sinigrin. Twenty-one percent of the sensilla had GRNs responding to quinine and 
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sinigrin, but not to KCl. These results suggested that sinigrin and quinine are detected by 

different GRNs on the moth antennae. The putative aversive effect of the 2 substances was 

tested in the following experiments. 

 

Experiment 3 
Out of the 338 moths used in the experiment, 230 (68%) were included according to the 

criteria listed in the methods chapter.  

 

Acquisition after CS pre-exposure associated with quinine or sinigrin 

During pre-exposure, no insects showed PER to the odorant linalool while 3.4% of the insects 

showed PER to the dry toothpick (mechanosensory control), 3.5% to quinine and 24.6% to 

sinigrin (Fig 4A). The quinine group did not differ from the control (Mann-Whitney test, z = 

0.052, p = 0.958), whereas stimulation with sinigrin elicited significantly more PER than in 

the control (Mann-Whitney test, z = 3.38, p = 0.001).  

Acquisition in the control group reached 25% at the end of training, while moths 

treated with CS + quinine reached only 11%, and moths treated with CS + sinigrin only 13% 

(Fig 4B). However, in untreated moths, not receiving linalool in the first phase, acquisition 

reached 42%. Acquisition performance was significantly lower in the quinine group compared 

to the control (Mann-Whitney test, z = 2.28, p = 0.023), but not in the sinigrin group (Mann-

Whitney test, z = 1.24, p = 0.217). Acquisition in untreated moths was significantly higher 

than in the control group (Mann-Whitney test, z = 1.94, p = 0.05), meaning that pre-exposure 

to the CS and mechanosensory stimulus (no tastant) led to a resistance to acquisition. The 

treatment with quinine enhanced this effect leading to significantly higher resistance to 

acquisition. The differences in acquisition were not due to differences in the appetitive 

motivation of the moths, since no significant effects of the pre-exposure treatments on 

subsequent UR to sucrose in the acquisition phase appeared (Mann-Whitney test, control vs. 

quinine: z = 0.247, p = 0.805, control vs. sinigrin: z = 0.838, p = 0.402, control vs. untreated 

moths: z = 1.532, p = 0.126). 

The results of a retention test 15 min after acquisition showed the same pattern of 

response for the bitter compounds: retention was significantly lower in the quinine group 

compared to the control group (Fisher’s exact test, p = 0.045), but not in the sinigrin group 

(Fisher’s exact test, p = 0.21). However, retention in untreated moths was not significantly 

higher than in controls (Fisher’s exact test, p = 0.121).  
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This experiment shows a putative aversive effect of quinine on subsequent acquisition. 

Although sinigrin gave similar results as quinine, no significant difference was found in 

acquisition between control and sinigrin-treated moths. This experiment also shows that pre-

exposure with the CS (here with a mechanosensory stimulation) reduces subsequent 

acquisition of the CS-sucrose association. This effect suggests the possible existence of a 

latent inhibition phenomenon in moths. In the following experiment we addressed the putative 

aversive effects of quinine and sinigrin in a different learning situation. 

 

Experiment 4 
Out of the 398 moths used in the experiment, 294 (73.9 %) were included according to the 

criteria listed in the methods chapter.  

 

Facilitated extinction of CR combined with quinine or sinigrin 

Acquisition was efficient in all groups, reaching 32-34% at the end of training, without any 

significant difference between treatment and control groups (Fig 5A, Mann-Whitney, quinine 

vs. control, z = 0.299, p = 0.77, sinigrin vs. control, z = 0.568, p = 0.57). 39-43% of the moths 

showed CR in the first extinction trial. To compare extinction on an identical basis in the 

different groups, only these insects were included (Fig 5B). Extinction was strong in all 

groups, responses declining with repeated trials, down to 17% in the control group, and 0% 

and 2% in the quinine- and sinigrin-treated groups, respectively (Fig 5B). Extinction was 

significantly stronger both in the quinine group (Mann-Whitney, z = 2.5, p = 0.012) and in the 

sinigrin group compared to the control group (Mann-Whitney, z = 2.12, p = 0.03). 

 

Discussion 
The first part of this study (Fig 1) was aimed at improving the PER conditioning protocol 

previously used in heliothine moths (Skiri et al., 2005), as well as investigating the duration of 

the established memory and the resistance of the CS-US association to contradictory 

information. All these parameters were crucial for assessing the aversive effects of bitter 

stimuli. We found similar learning performances when using 2 and 3 M sucrose as rewards. 

However, in a previous study with the same CS and 1 M sucrose reinforcement (Skiri et al., 

2005), we obtained only 29% CR in the last trial, compared to 45-50% obtained with 2 M and 

3 M sucrose in the present study. This observation shows that the strength of the US may be 

important for acquisition in H. virescens, as is generally observed in learning studies. The 
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same observation was made in other insects, like the honeybee and the bumblebee (Bitterman 

et al., 1983; Loo and Bitterman, 1992; Laloi et al., 1999; Scheiner et al., 1999; Scheiner et al., 

2004). In moths, a saturation of the reinforcing effect of sucrose seems to be reached with 2 M 

sucrose solution.  

Eight spaced conditioning trials were sufficient for the moths to remember the CS-US 

association for at least 48 h. This implies that moths, although non-social insects with an adult 

life span of approximately two weeks, can build long memories. In comparison, A. mellifera 

receiving three spaced appetitive learning trials will remember the odour for the rest of their 

lives (several weeks) (Sandoz et al., 1995; Menzel, 1999), Drosophila remember odour-

electric shock associations for seven days after 10 spaced aversive conditioning trials (Tully et 

al., 1994), and memory after four-trial differential conditioning in the crickets lasts one week 

(Matsumoto and Mizunami, 2002).  

The moths tested after 15 min and 2 h showed the highest retention performances. The 

responses dropped to a lower level after 8 h, suggesting that it is most important for moths to 

remember an odour within a few hours, and probably less important to remember it for 

several hours or days. In contrast to honeybees, learning of plant odorants in moths serves 

only self consumption and oviposition purposes. A strong memory shortly after learning may 

therefore be well adapted to the life of the moth. It is possible that the 15 min and 2 h 

memories constitute the same forms of memory in the moth, both because of equally high 

retention and equal resistance to extinction in the two groups, suggesting similar consolidation 

statuses at the two time intervals. These memories in the moths could be equivalent to the late 

short-term memory phase described in honeybees, developing over time in the minute range, 

and used to remember rewards (nectar quality and quantity) between flower patches (Menzel, 

1999). In honeybees, this memory stage is transient, and sensitive to retrograde amnesia or 

additional experience (Erber, 1976; Menzel, 1990). Memory then consolidates to a more 

stable and amnesia resistant middle term memory within approximately 1 h (Menzel, 1990). 

In Drosophila as well, memory is sensitive to cold treatment in the first hour after 

conditioning (Tully et al., 1994). Experiments using cold treatment after conditioning in 

moths may help examine amnesia-sensitive and amnesia resistant memories, providing further 

insights into memory phases underlying performance. In contrast to honeybees, retention after 

two hours in the moths declined quickly with time, and was lowest in the group tested after 48 

h. In this group, there was a strong resistance to extinction, suggesting that the CS-US 

association was strong and stable in the moths that remembered the odour. Two different 

types of stable long-term memory have been described in other insects; one corresponds to the 
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early long-term memory found in honeybees as well as the anaesthesia-resistant memory in 

Drosophila, that are both resistant forms of memory, independent of protein synthesis 

(Wittstock et al., 1993; Tully et al., 1994; Wüstenberg et al., 1998). The second type is the 

protein synthesis (transcription) dependent late long-term memory that is found as early as 5 h 

after conditioning in crickets (Matsumoto et al., 2003) or as late as 3-4 days in honeybees. 

Future experiments using protein synthesis inhibitors will reveal which memory phase 

controls 48 h retention in moths.  

The presented electrophysiological recordings show excitatory responses to both 

quinine and sinigrin in GRNs on the moth antennae. In contrast, one study of the honeybee 

antennae showed no excitatory responses of GRNs to the bitter substances tested (De Brito 

Sanchez et al., 2005). In our study, sinigrin and quinine might be detected by two different 

GRNs (Fig 2-3). This assumption is based on the different temporal firing patterns elicited 

when stimulating with the two tastants. The bursting firing pattern of the GRNs responding to 

quinine differs significantly from the phasic-tonic firing pattern elicited in the GRNs 

responding to sinigrin. Some classes of bitter substances, like quinine, are known to elicit a 

bursting firing pattern in GRNs whereas others are not (Dethier, 1976; Chapman et al., 1991). 

The observed differences in firing pattern in the present recordings was not due to differences 

in response intensity, since the temporal firing pattern for sinigrin did not change when the 

concentration was increased to elicit the same number of spikes as quinine. Moreover, the few 

sensilla with neurons responding to sinigrin, but not to quinine and vice versa, further support 

the assumption of two separate GRNs mediating information about the two tastants. An 

alternative explanation is that one GRN might respond to both substances, eliciting different 

temporal firing patterns, where two different receptor types and possibly different excitatory 

transduction pathways are involved, as suggested in the tobacco hawkmoth Manduca sexta 

larvae (Glendinning and Hills, 1997). Having several receptor proteins for different bitter 

substances in the same GRN would increase the chances of the insects to detect the 

components in mixtures of bitter plant substances that are potentially toxic or nutritious. An 

important presumption for the discrimination mechanism in this case would be that the CNS 

could differentiate the different spike firing patterns of the same GRNs. Regardless of 

whether there are one or two GRN types for sinigrin and quinine, our results suggest that the 

gustatory system of moths is able to discriminate between these two substances.  

The putative aversive effects of the two substances were elucidated using pre-exposure 

(Fig 4) and facilitated extinction experiments (Fig 5). In the pre-exposure experiments, only 

quinine was shown to be significantly aversive, although a clear tendency appeared for 
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sinigrin as well. In the facilitated extinction experiments, both quinine and sinigrin were 

shown to be aversive. All together, the two experiments showed that both sinigrin and quinine 

can be aversive to H. virescens, with a more consistent effect of quinine relative to sinigrin. 

Furthermore, during the pre-exposure phase of experiment 3, 24.6% of the insects showed 

PER to sinigrin stimulation, whereas only 3.5% showed PER to quinine stimulation, 

supporting the assumption of a stronger aversiveness to quinine. In previous feeding and 

proboscis extension experiments, sinigrin has been shown to be non-appetitive for H. 

virescens (Blaney and Simmonds, 1988; Jørgensen et al., 2006), but the behavioural effect of 

quinine has not previously been assayed in this moth. The increasing elicitation of PER to 

sinigrin during the pre-exposure phase could be due to a familiarity of the substance after 

several exposures to the moths. Since the substance is not toxic (the moths ingesting it 

survived), the moths might have learned that sinigrin is harmless in spite of the bitter taste. 

Insects have evolved a variety of physiological mechanisms for selectively adapting their 

aversive responses to harmless or toxic substances (Glendinning and Gonzalez, 1995). In 

contrast, bitter taste thresholds in mammals vary independently of toxicity thresholds, 

indicating that the bitter rejection response is just as likely to be elicited by a harmless bitter 

food as it is by a harmful one (Glendinning, 1994). In our experiment, another possibility is 

that the 2-day starvation period before the experiment, which is necessary for PER 

conditioning in moths, might have caused the insects to elicit PER to substances they would 

normally avoid.  

In the acquisition phase following the pre-exposure phase (experiment 3), we found 

that previous presentation of linalool (paired with the dry toothpick) caused significantly 

reduced acquisition performance relative to the untreated group. The dry toothpick elicits a 

mechanosensory response in the receptor neurons, but presumably this has neither an aversive 

nor an appetitive influence on the moth. Therefore, it is possible that this group shows a 

typical latent inhibition phenomenon that has previously been shown in a number of animals, 

like honeybees (Abramson and Bitterman, 1986; Chandra et al., 2001). If this is a pure CS 

pre-exposure effect is not known because there was no control with mechanosensory 

stimulation alone. During the repeated presentations of CS in the absence of a punishment or 

a reward, it is believed that the CS is associated with the absence of reinforcement, which 

leads to a resistance towards re-learning the CS as a predictor for a reward (or punishment) in 

the subsequent acquisition phase. Other interpretations propose that the CS becomes less and 

less surprising in the experimental context, and therefore loses meaning throughout the pre-

exposure phase (learned inattention, Lubow, 1997). Most importantly, when the CS was 
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associated with quinine in the pre-exposure phase in our study, the acquisition deficit was 

significantly increased. In this case, it is possible that the moths built aversive associations 

between linalool (CS) and quinine as an aversive reinforcer. Thus, at the end of the pre-

exposure phase, linalool predicted the presence of a negative stimulus, which had a stronger 

obstructing effect on acquisition than just an absence of a reward or punishment, as is the case 

with the mechanosensory treatment.  

Quinine has previously been found to have an aversive, but not a reinforcing effect in 

associative learning in Drosophila larvae (Gerber et al., 2004; Hendel et al., 2005). However, 

conditioned inhibition of the proboscis extension in adult Drosophila was observed when the 

proboscis extension was punished by applying quinine to the foreleg tarsi (DeJianne et al., 

1985), supporting that quinine can act as a negative reinforcer. Other experiments on adult 

Drosophila have also shown that quinine supports aversive association with olfactory or other 

gustatory stimuli (Mery and Kawecki, 2002). In differential conditioning of bumblebees, 

quinine acted as a negative reinforcer, enabling the insects to discriminate between visual 

stimuli faster than if the CS was just associated with an absence of reward (Chittka et al., 

2003; Dyer and Chittka, 2004). Although our experiments showed that quinine had an 

aversive effect in moths, a definite proof for a negative reinforcing effect of quinine is still 

lacking, since we have not controlled for possible non-associative effects of quinine. 

However, repeated presentations of quinine, sinigrin and the dry toothpick did not seem to 

reduce the appetitive motivation compared to the untreated control. Future experiments 

including a pre-exposure phase where moths receive unpaired presentations of CS and quinine 

will constitute a control for the formation of aversive CS-quinine associations. 

 In experiment 3, the group receiving sinigrin treatment showed the same tendency 

towards reduced acquisition and retention as the quinine group, although its performance was 

not significantly lower than that of the control group. Possibly, testing an even larger number 

of animals, or presenting a higher concentration of sinigrin could have yielded a significant 

difference. To confirm a possible aversive effect of the two tastants, we performed facilitated 

extinction experiments (Fig 5), showing that both quinine and sinigrin enhanced extinction, 

compared to the control. As before, we may explain the results in terms of the formation of 

aversive associations. Thus, the moths would learn two associations after one another; during 

acquisition, they would form CS-sucrose associations acting positively on PER, and during 

the second phase, they would form CS-quinine or CS-sinigrin associations, causing a 

resistance to elicit PER. Responses would thus reflect a balance between the two types of 

associations, the aversive association progressively overbalancing the appetitive association. 
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Additionally, a second type of explanation could apply in the facilitated extinction 

experiment. Increased extinction with the bitter substances could be a form of operant 

learning, because the action of PER was punished by providing the bitter substance to the 

antennae and the proboscis. To test for such effects, adequate controls can be applied, like the 

use of omission and yoked groups, in which the bitter reinforcement of the moths would be 

uncoupled from the PER. 

In both the pre-exposure and the facilitated extinction experiments, it was shown that 

quinine, and to a lesser extent sinigrin, detected by GRNs on the antenna, had aversive effects 

on the moth behaviour. Although it was not the aim of the present work to study aversive 

learning in moths, it is possible that the effect found of both impaired acquisition (experiment 

3) and facilitated extinction (experiment 4), is caused by the formation of CS-bitter tastant 

associations. Choice tests could perhaps reveal such associations. For example, in a PER 

situation, one group of moths could be exposed to an odour combined with quinine or 

sinigrin, whereas another control group could be exposed to an odour of similar salience 

combined with no stimulus. If the treated moths in a subsequent choice test actively choose 

the odour combined with no stimuli, then a formation of CS-bitter tastant association could be 

proven. Another way of testing this would be to let the same moth receive one odour with 

quinine or sinigrin and another odour with no other stimulus in a PER situation, and 

subsequently let the moth choose between odours.  

If quinine and sinigrin were negative reinforcers, we would expect that the 

reinforcement signals triggered by quinine and sinigrin would converge with the olfactory 

pathway to form associations in the moth, possibly involving a modulatory neuron with 

opposite effect to the VUMmx1 in honeybees. In honeybees (Vergoz et al., 2007) and in 

Drosophila (Schwaerzel et al., 2003), dopamine has been found to be the neurotransmitter 

involved in aversive olfactory learning with electric shock as punishment. In crickets (Unoki 

et al., 2005; Unoki et al., 2006), dopamine was involved in odour- and colour-salt punishment 

associations. Moreover, in Drosophila larvae, activation of dopaminergic neurons in 

association with an odour stimulus was sufficient to create an aversive olfactory memory 

(Schroll et al., 2006). All these data point towards a prominent role of dopaminergic 

modulatory neurons in odour-punishment associations, and in the formation of aversive 

olfactory memories. The confirmation of the existence of odour-bitter taste associations in 

moths and their dependency on such dopaminergic reinforcement systems will be the focus of 

future work.  
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Abbreviations: 
CR: Conditioned response 

CS: Conditioned stimulus 

GRN: Gustatory receptor neuron 

ITI: Inter-trial interval 

PER: Proboscis extension response 

UR: Unconditioned response 

US: Unconditioned stimulus 

VUMmx1: Ventral unpaired median neuron of the maxillary neuromere 1 
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Figure legends 
Fig 1: The effect of US concentration on acquisition, retention and extinction of the 

conditioned PER, and the effect of time on retention and extinction in H. virescens. The 

proportion (%) of moths showing CR in each of the acquisition, retention, and extinction trials 

is shown. A: Average acquisition curves obtained in classical conditioning experiments with 

racemic linalool as CS and 2 M and 3 M sucrose as US. The letters NS indicate no significant 

between-group differences (Mann-Whitney test, p < 0.05). B: Retention in moths receiving 2 

M or 3 M sucrose reward tested at different times after acquisition. Retention decreased 

significantly from 15 min to 48 h. N > 31 in all retention groups. Different letters indicate 

significant between-group differences (Fisher’s exact tests, p < 0.0127). C: Acquisition and 

extinction curves for the five retention times and the two sucrose concentrations. The 

extinction curves were obtained by stimulating with CS alone. No significant between-group 

differences were found, indicated by the letters NS (2M: Kruskal-Wallis test, p > 0.05, 3 M: 

Kruskal-Wallis test, p > 0.05). D: Extinction curves for moths tested after 15 min, 2 h, 8 h, 24 

h, or 48 h. Only moths showing CR at the first extinction test were included. Extinction was 

slower in the moths tested after 48 h. Different letters indicate significant between-group 

differences (Noether tests, p < 0.0127).  

 

Fig 2: Typical responses obtained by tip recordings from gustatory receptor neurons in s. 

chaetica on the flagellum of the H. virescens antennae. Stimulation and recording starts 

simultaneously when the electrode is applied and ends when the electrode is removed, 
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meaning that only the stimulation period is shown. A: Responses to 1 mM quinine, 1 mM 

sinigrin, 100 mM sinigrin, and the electrolyte 10 mM KCl in the same s. chaeticum. B: 

Responses to 1 mM quinine in four different s. chaetica. C: Responses to 100 mM sinigrin in 

four other sensilla.  

 

Fig 3: A: Average dose-response curves for quinine and sinigrin obtained during 5 s 

recordings from single s. chaetica. The average response to the electrolyte 0.01 M KCl is 

indicated as a reference. B: Average temporal response patterns for KCl, quinine and two 

concentrations of sinigrin, counted in 0.5 s bins in 75 s. chaetica during 5 s recordings. While 

100 mM sinigrin elicited a high response frequency very shortly after application, responses 

to 1 mM quinine were bursts of activity distributed over the whole 5 s recordings. Different 

letters indicate significant between-group differences. The dotted squares show tests within 

the first and the third time bin, respectively. Letters behind the captions in B indicate 

differences between the average spiking activity during 5 s (Scheffé tests after ANOVA, p < 

0.01).  

 

Fig 4: Inhibitory learning effects of pre-exposure to linalool paired with a mechanosensory 

control, quinine or sinigrin on acquisition and retention. A: Responses to the mechanosensory 

stimulus, quinine and sinigrin during pre-exposure. The odorant linalool alone elicited no 

responses. Different letters indicate significant between-group differences (Mann-Whitney 

tests, p < 0.05). B: Effect of pre-exposure on acquisition in moths. The group of moths 

receiving quinine treatment showed lower acquisition than the control group, suggesting an 

aversive effect of quinine. Such an aversive effect appeared only as a tendency for sinigrin. 

The untreated group of moths was not pre-exposed. The control group showed reduced 

acquisition compared to the untreated group, corresponding to a latent inhibition effect. 

Different letters indicate significant between-group differences (Mann-Whitney tests, p < 

0.05). C: The control group showed higher retention than the quinine treatment group, but not 

the sinigrin treatment group. The control group was not different from the untreated group in 

retention. Different letters indicate significant between-group differences (Fisher’s exact tests, 

p < 0.05). 

 

Fig 5: Acquisition, extinction and facilitated extinction of CRs in moths receiving different 

treatments during the extinction phase. A: Acquisition and extinction in moths receiving 

different extinction treatments. No significant between-group differences were found, 
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indicated by the letters NS (Mann-Whitney tests, p > 0.05). B: Extinction curves for moths 

that have learned the CS. Only moths showing CR at the first extinction test were included. 

Pairing of linalool with quinine or sinigrin induced a more rapidly decreasing number of 

responses than the control. Different letters indicate significant between-group differences 

(Mann-Whitney tests, p < 0.05).  
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