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Abstract

This thesis was motivated by the use of machine vision and artificial intelligence in agricul-

tural robotics. More efficient agricultural production is needed as the worlds population

grows. It is also important, both from an economical and environmental point of view,

to reduce the amount of applied herbicidal products in agriculture. The use of machine

vision and artificial intelligence are already a part of the modern agriculture and will play

a important role in the technology to come.

The aim of this thesis is to implement a program for leaf detection in row crops and

investigate the use of different classifiers to detect weed. This work will form the base of

the weed detection part in a bigger project, Asterix, owned by Adigo AS.

The program uses images, in this thesis from a carrot field, to detect leaves by segmen-

tation and connected components analysis. From each leaf, ten features are extracted to

be used in the classification process. By a graphical user interface, a user can label leaves

into given classes to create training sets.

By the use of a resulting training set, leaf-objects were classified by six different basic

classifiers. By this classification, a success rate of over 89 % total correct classified leaves

was reached. Furthermore, by raising the lower boundary of the leaf size and using votes

from all the classifiers to determine the class, total classification success rate surpassed

95%.
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Sammendrag

Denne masteroppgaven ble skrevet for a undersøke bruk av datasyn og kunstig intelligens

i landbruksrobotikk. Mer effektiv landbruksproduksjon trengs ettersom jordens befolknin-

gen øker. Det er ogs̊a viktig, b̊ade fra et økonomisk og et miljøvennelig perspektiv, å re-

dusere bruksmengden av sprøytemiddler. Datasyn og kunstig intelligens benyttes allerede

i dagens jordbruk og vil ha en viktig rolle i fremtidens teknologi.

Målet med denne masteroppgaven er å implementere et program som detekterer blader

i radkulturer og å undersøke bruken av forskjellige klassifikatorer for å kjenne igjen ugress.

Dette arbeidet vil danne fundamentet for ugressdeteksjonsdelen i et større prosjekt, As-

terix, som eies av Adigo AS.

Programmet bruker bilder til å detektere blader ved bruk av segmentering og sam-

menkoblede komponenters analyse1. I denne oppgaven er dette blitt gjort i en gulrot̊aker.

Ti attributer brukes for å beskrive hvert blad i klassifiseringsprosessen. Gjennom et grafisk

brukergrensesnitt kan en bruker spesifisere hvilken klasse hvert enkelt blad tilhører. Dette

gjøres for å danne et treningssett.

Ved bruken av treningssett ble blad-objekter klassifisert av seks forskjellige enkle klas-

sifikatorer. Denne klassifiseringen førte til en suksessrate p̊a over 89 % riktig klassifiserte

blader totalt. Ved å øke grensen for hvor stort areal et blad m̊a ha for å detekteres og

innføre bruken av stemming ble en suksessrate p̊a over 95 % n̊add.

1Connected components analysis
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Chapter 1

Introduction

Robots used in agriculture has of today become the symbol of modern agriculture. By the

use of agricultural robotics one can greatly enhance the efficiency of agricultural processes.

One of the main focus areas of Adigo AS is weed control in crops using agricultural robotics.

Precision Agriculture (PA) is a concept in agricultural management based on observing,

measuring and responding to the variety between fields and within a field. This can

significantly reduce use of herbicide as well as human removal of weed. Agriculture is a

complex process and numerous factors play in to the end yield of harvest. Information

of these factors can aid better management decisions. Precision Agriculture span in scale

from using satellite images to monitor drought and crop health, to initiatives focusing on

individual plants. This project belongs in the latter category where we strive towards a

ultra-precise weed management in row crops.

Other students from NTNU1 have already written thesis for Adigo about precision

agriculture, (Utstumo, 2011), (Lien, 2013) and (Klungerbo, 2013). The Asterix project,

”Automatic detection and control of weed in row crops” is a research project by Adigo AS

in cooperation with NTNU Dept. of Cybernetics and Robotics and Bioforsk Plant Health

and Plant Protection.

1Norwegian University of Science and Technology
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1.1. AGRICULTURAL ROBOTICS

Figure 1.1: Asterix prototype robot frame (Adigo AS)

1.1 Agricultural robotics

Agriculture is one of the oldest and most important economic activity. With the worlds

population exceeding 7 billion and still growing, there is an enormous challenge to produce

enough food. The UN Sixty-fourth General Assembly clearly states that the world food

production need to double by 2050 to meet the demand of the world’s growing population

(64th General Assembly, 2009). As hand labor is costly and the sales price for crops are

competitive, an automated agriculture may be economically feasible.

Robotic implements for harvesting, sowing and spraying are relatively common in

modern agriculture and self-steering tractors have become an industry standard. As tech-

nology develops and become affordable for more farmers, the use of advanced sensors and

actuators Grændsen (2013) have increased in agricultural robotics.

As the agricultural industry becomes more dependent of machine usage the demands

for further development of agricultural robotics grows. As (Pota et al., 2007) presents,

the need for future Precision Autonomous Framing Systems that deploy unmanned sens-

ing and machinery systems with the possibility of centralized tele-supervision is needed.

2



CHAPTER 1. INTRODUCTION

Autonomous machinery will form the backbone of tomorrows farming systems.

1.2 Weed control and Precision Agriculture

Weed species grows in different rates and competes differently with crops with respect

of minerals and water in the soil, space and sunlight. Weed control can therefore not be

applied universally, but has to be adapted for each environment, growth-stage and species.

Precision Agriculture is a term commonly used for methods that exploit the variability

and heterogeneity within a crop field, to better adapt the treatment of the field. The

importance of weed control has been documented in a number of researches. The study

by (Monaco et al., 1981) reports a loss associated with weed competition of 71%, 67%, 48%

and 48% of four different tomato species. (Roberts et al., 1976) found that season-long

competition from muxed stands of grass and broadleaf weeds at 64 weeds/m2 resulted in

a complete loss of marketable lettuce in England.

Figure 1.2: Asterix principal illustration where the white dots corresponds
to herbicide droplets for weed removal (Adigo AS)

As the review article (Slaughter et al., 2008) presents, there are four core technologies

(guidance, detection and identification, precision in-row weed control and mapping) re-

3



1.3. MACHINE VISION IN AGRICULTURE

quired to successfully develop a general-purpose robotic system for weed control. Of the

four, detection and identification of weeds under the wide range of conditions common to

the agricultural fields remains the greatest challenge.

1.3 Machine vision in agriculture

A farmer can tell if his crops are ripe or not. This comes natural for a farmer, but for a

robot it is not as simple. To make a robot distinguish ripe crops from non-ripe or weed

from non-weed the use of optical sensors are applied, mostly as cameras. In the later years

the computational power of CPUs has increased drastically, making robots able to use

advanced machine vision functionality in real-time.

Today machine vision in agriculture is used mostly in six areas; sorting by color, quality

assessment, detection of weeds, livestock identification, picking and machine guidance

(Billingsley, 2011). Visual sensing surpass the human eye with the possibility to inspect

object by light in the ultraviolet (UV), the near-infrared (NIR) and the infrared (IR)

region with special camera and lenses. Information received from these light regions can

be useful determining preharvest plant and vegetable maturity, variety, ripeness, disease,

stress states and quality. Machine vision is also applied in both land-based and aerial-based

sensing. (Chen et al., 2002)

Identification of individual crops and weed in the field and locating their exact posi-

tion, is one of the most important tasks needed to further automate farming. Only with

the technology to locate individual plants, can ”smart” field machinery be developed to

automatically and precisely perform treatments such as weeding, thinning, and chemical

application (Tian et al., 2000).

1.4 Classification of leaves

Many tasks as fault diagnosis, pattern recognition and forecasting can be viewed as classi-

fication. Methods for dividing data into classes based on features (attributes) have become

4



CHAPTER 1. INTRODUCTION

a very attractive topic in later research. As the use of Artificial Intelligence have devel-

oped, classifiers have become one of the central aspects of many intelligent systems, in

agricultural robotics as well.

As mentioned, identification of weed is the most difficult of the four core technologies

in developing a general-purpose robotic system for weed control (Slaughter et al., 2008).

For plant identification, color, shape and pattern as information features are normally

used. A problem with plants is the huge variety of these features that each specie form.

For the human eye, it is easy to distinguish species because humans does not need to

linger to specific rules and can evaluate a huge amount of data. This information can

be compared to knowledge of the species, experience and environment. For an artificial

intelligent classificator problems occur when information does not follow patterns, but

each case can differ in form.

Classification of plants are primarily done by analyzing its leaves. To be able to distin-

guish leaves it is crucial to have sufficient data features as classificator inputs. The goal of

determining species can only be achieved with a huge set of training data and a number

of individual feature parameters. A lot of research has been done in the area of feature

parameters. Wang et al. (2003) used Centroid-Contour Distance, Moment Invariants and

Angle Code Histogram as features on 93 Chinese medical plants which gave promising

results. Other features as Leaf Vein Extraction, Fourier Coefficient(Fu et al., 2004), As-

pect Ratios, Dissimilarity Measures(Lee and Chen, 2006), Color and Texture(Kadir et al.,

2013) has also been used.

The most common classifiers today are Linear and Quadratic Discriminant Analy-

sis (LDA and QDA), Decision Tree(DT), Naive-Bayes Classifier(NBC), Bayesian Net-

work Classifier(BNC), Probabilistic Neural Network(PNN) and Artificial Neural Net-

work(ANN). Classifiers uses data from a training set to predict what class the each input

belong to. The success is not only based on feature quality, as mentioned, but strongly

conditioned by the quantity and quality of the training set. (Yang et al., 2000) has al-

ready achieved a classification rate above 91 % by the use of ANNs and (Kadir et al.,

2013) achieved above 93 % by the use of PNNs.

5



1.5. PROJECT OUTLINE

1.5 Project outline

Introduction: Presents some background information and accounts for the moti-

vation for the project.

Theory: Gives the theory behind the image-processing part and the artificial

inteligence part of the program. Also presents system architecture

theory from (Grændsen, 2013).

Implementation: Explains how the system is designed and implemented with func-

tionality and graphical user interface.

Results: Presents results from the segmentation and the classification.

Discussion: Here a discussion about the different aspects of the thesis will be

given together with advantages, challenges and remarks in respect

of the project goal.

Conclusion: The concluding part.

Future work: Suggest what the next steps would be.

1.6 Contributions of this project

1. Established an architectural plan for the Asterix project and a class diagram

for the classification program.

2. Implemented an image handler that sets the framework for the program.

3. Implemented modules for object segmentation, connected components analysis

and feature extraction.

4. Implemented graphical user interface for training.

5. Investigated and used different types of classifiers.

6



Chapter 2

Theory

2.1 Machine vision

Thirty years ago there was a lot of excitement about using visual sensing in robotics.

Along with AI, people believed that this would be a technological revolution (Kak and

DeSouza, 2002). But it took about twenty more years until the software and hardware

were enough developed to make a real difference. As of today, visual sensing has been

applied to a lot of robotic applications as well as automatic monitoring systems, guidance

systems and game consoles to mention a few.

2.1.1 OpenCV

From (Grændsen, 2013):

As the use of machine vision increase, a lot of tools have been developed to support

this. One of the biggest and most powerful tool in machine vision is OpenCV.

OpenCV is an open source computer vision library that originally is written i C. The

later versions uses C++ and Python interfaces (Bradski and Kaehler, 2008). There is also

ongoing development for Ruby, Matlab and other languages. The project was started by

Intel Research in 1999, but officially released in 2006.

As (Bradski and Kaehler, 2008) presents, OpenCV was designed for computational
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2.1. MACHINE VISION

efficiency with a strong focus on real-time applications. As a result of an optimized C

implementation, the library can take advantages of multi-core processors and lately the

use of GPU1.

As a result of OpenCV’s great library, users are able to create sophisticated vision

applications quite easily. It also includes machine learning functionality for computer

vision tasks. The open source license results in a rapidly growing library making thousands

of users contribute to functionality and web support.

2.1.2 RGB and HSV color space

The most common way to look at color images is in the RGB2 space or CMY3 color

space. The first is commonly used in images and displays and the latter in printing

and reproduction. RGB is an additive representation while the CMY is a subtractive

representation.

In image processing there are also other color spaces witch are used to analyze. The

most common are HSV/HSB4 (hereby referred to as HSV) and HSL5. HSV was first used by

painters because it was closer to their thinking and technique (Sonka et al., 2007). HSV

decouples the intensity of a color where hue and saturation corresponds to the human

perception. Using HSV as input in image processing algorithms will more easily maintain

the human perception of an image when the RGB input would make the image look

unfamiliar to the human eye.

According to (Morshidi et al., 2008), a transformation from the RGB to the HSV color

space can be achieved with the following equations:

H1 = cos−1

[
(R−G) + (R−B)

2
√

(R−G)2 + (R−B)(G−B)

]
(2.1)

1Graphics processing unit
2Red-Green-Blue
3Cyan-Magenta-Yellow
4Hue-Saturation-Value/Hue-Saturation-Brightness
5Hue-Saturation-Lightness
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CHAPTER 2. THEORY

Figure 2.1: HSV cylinder (wikipedia.org)

H =

 H1, if B ≤ G

360◦ −H1, if B > G
(2.2)

S =
max(R,G,B)−min(R,G,B)

max(R,G,B)
(2.3)

V =
max(R,G,B)

255
(2.4)

Hue is, as presented in (Fairchild, 2013), the degree to which a stimulus can be described

as similar to or different from stimuli that are described as red, green, blue, and yellow. A

hue-value is independent of saturation and value(brightness). This it is important when

looking for colors in images taken in changing light conditions and by different cameras.

Saturation is the colorfulness relative to its own brightness (Fairchild, 2013). Colors with

high saturation is considered as strong and clean while colors with low saturation value

9



2.1. MACHINE VISION

considered closer to gray. Value is a measure of the strongest component in the RGB

space. As the value increases from zero, the color changes from black to a color defined

by hue and saturation.

2.1.3 Segmentation

Image segmentation is one of the most important steps leading to the analysis of processed

image data. Its main goal is to divide an image into parts that have a strong correlation

with objects or areas of the real world contained in the image (Sonka et al., 2007). The

aim of segmentation can be either a complete segmentation, which gives a set of unique

objects and regions, or a partial segmentation where the regions do not correspond directly

to unique objects. A common use of partial segmentation is to separate foreground and

background. A complete segmentation require more information about the image and its

objects and is often achieved by advanced algorithms.

There is a whole class of partial segmentation problems that can be solved using simple

algorithms only. These consist mostly of separating contrasted parts of the image by

color, lightness or edges. The results from these algorithms are often used as the first

step in image processing and are followed by more complex tasks. By segmenting with

simple algorithms first, the following steps could then preformed faster as the regions are

drastically decreased. Partial segmentation is also often used as a first step to acquire

complete segmentation (Pal and Pal, 1993). From (Sonka et al., 2007):

A complete segmentation of an image R is a finite set of regions R1, ..., RS,

R =
S⋃

i=1

Ri, Ri ∩Rj = ∅, i 6= j (2.5)

Complete segmentation can result from thresholding in simple scenes. Thresholding

is the transformation of an input image f to an outputbinary image (segmented) g as

follows:
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CHAPTER 2. THEORY

g(i, j) =

 1, forf(i, j) ≥ T,

0, forf(i, j) < T,
(2.6)

where T is the threshold, g(i, j) = 1 for image elements of objects, and g(i, j) = 0 for

image elements of the background (or vice versa).

(a) Orginal image (b) Segmented image

Figure 2.2: Segmentation of a carrot leaf (Adigo AS).

Thresholding is the most common used method for partial segmentation. As most

images used in image processing has contrasted regions, a constant or a threshold can be

determined to segment objects and background (Sonka et al., 2007). The threshold T

(ref. eq. 2.6) could be set as a constant prior of image processes or could be adaptive

by calculating independent threshold for each image. The most common of the adaptive

algorithms are P-tile, Otsu and Simulated Annealing (Sezgin et al., 2004).

2.1.4 Connected components analysis

To be able to detect different objects in an image, Connected Components Analysis(CCA)

is often applied. This is an algorithmic application of graph theory where subsets of an

image are uniquely labeled based on a given heuristic (Westman et al., 1990). Merging

predetermined regions or creating regions pixels-wise are the most common usages for this
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2.1. MACHINE VISION

analysis. As image processing algorithms often takes objects as input, CCA is often used

as a preprocessing step. This subsection will look into CCA of binary segmented images.

(a) Segmentet image (b) Labled segmented image

Figure 2.3: Connected components analysis where
each color represents an ID (Adigo AS).

After a partial segmentation process with a binary image as output, CCA will ef-

fectively distinguish objects as illustrated in fig. 2.3. This could be done by applying

algorithms as Graph traversal, Union find and Flood-fill. The Flood-fill algorithm is com-

monly used in image processing and is applied in most image editing softwares today. By

labeling and flooding neighbours pixels with 4- or 8-connectivity recursively, its a robust

and efficient algorithm. The Flood-fill algorithm is presented in alg. 2.1.1.

2.1.5 Feature extraction

Feature extraction is a fundamental part of classifying objects of any type in pattern

recognition or in image processing. Instead of sending raw data into a classifier, a trans-

formation called dimensionality reduction is applied. In an image processing perspective,

the run-time speed of a classifier is minimized compared to using images as input. This

also makes it possible to select specific qualities and attributes of an object. This can also

make the process more robust to environmental changes.

12



CHAPTER 2. THEORY

Algorithm 2.1.1 Flood-fill

1. Let Ri be the i-th element of a set of image pixels R line wise, F be a set of
foreground pixels, B be a set of background pixels and H be a set of objects.
Each object Hj consists of a set of pixels where Hj ⊆ F . Initially, H = ∅.
Let S(Ri) be the set of pixels in neighbors in 4-connectivity of Ri.

2. Iterate though R until Ri ∈ F and Ri 6∈ H. If iteration is done, go to step 7.

3. Create a new object Hj in H.

4. If Ri ∈ F and Ri 6∈ H, add Ri to Hj.

5. Preform step 4 on all elements of S(Ri) 6∈ H recursively.

6. Continue iteration in step 2.

7. H is now all objects in R.

In image processing there are no limits to what kind of features that can be extracted.

This only depends of the knowledge and creativity of the developer. It is however im-

portant to choose features carefully with respect of the desired usage. As mentioned

in section 1.4, features as Centroid-Contour Distance, Moment Invariants, Angle Code

Histogram(Wang et al., 2003) Leaf Vein Extraction, Fourier Coefficient(Fu et al., 2004),

Aspect Ratios, Dissimilarity Measures(Lee and Chen, 2006), Color and Texture(Kadir

et al., 2013) has already been proven to be efficient in classification of leaves, but also ba-

sic features as area, circumference and density are widely applied. Both (Søgaard, 2005)

and (Persson and Åstrand, 2008) extracted advanced shape models as features with a

classification success from 65% to over 90%, while (Tang et al., 2003) based her features

on Gabor wavelets.

2.1.6 Skeleton analysis

Skeleton analysis based on geometric and topological properties of a shape. The analysis

corresponds significantly curving points of a region boundary to graph nodes. Its main

focus is to present a description for how far points are from the shape edge and their
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2.1. MACHINE VISION

internal distance from each other (Sonka et al., 2007). A skeleton structure can be repre-

sented in different ways. This subsection will look at a graph representation and a distance

transformation.

(a) Orginal image (b) Orginal image with skeleton graph

Figure 2.4: Illustration of a skeleton graph on a leaf (Adigo AS).

Skeleton analysis by machine vision has been applied in such as optical character

recognition, fingerprint recognition, visual inspection, pattern recognition, binary image

compression, and protein folding (Abeysinghe et al., 2008). The skeleton graph is easily

recognized by simple matching algorithms making classifying efficient.

The most used algorithm to find a graph representation of a skeleton structure is by

thinning. This is done by repeatedly removing boundary elements until a pixel set with

maximum thickness of 1 or 2 is found. The steps of this algorithm is presented in alg. 2.1.2.

A common problem with thinning algorithms is the run-time. As seen in the algorithm,

step 2 is repeated until the skeleton structure is achieved. If the objects are big and the

distance from center to the edge is large, step 2 is repeated d times where d is the greatest

distance from one point to the closest edge.

A distance transform of an image is a derived representation of an image. This is

also known as distance map or distance field (Pudney, 1998). A distance representation

is often used to measure the distance from obstacle objects and is most used in motion

planning in robotics and path-finding. A skeleton distance image is an image transform
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Algorithm 2.1.2 Skeleton by thinning (Sonka et al., 2007)

1. Let R be the set of region pixels, Hi(R) its inner boundary, and H0(R) its
outer boundary. Let S(R) be a set of pixels from the region R which have
all their neighbors in 8-connectivity either from the inner boundary Hi(R) or
from the background — from the residuum of R. Assign Rold = R.

2. Construct a region Rnew which is a result of one-step thinning as follows

Rnew = S(Rold) ∪ [Rold −Hi(Rold)] ∪ [H0(S(Rold)) ∩Rold]. (2.7)

3. If Rnew = Rold, terminate the iteration and proceed to step 4. Otherwise
assign Rold = Rnew and repeat step 2.

4. Rnew is a set of skeleton pixels, the skeleton of the region R.

(a) Orginal image (b) Skeleton distance image

Figure 2.5: Illustration of a skeleton distance image where the distance
is indicated with a lighter color (Adigo AS).

used to measure the distance from a pixel of an object to its closest edge. An illustration

of this can be seen i figure 2.5 where the value of the pixel represents its distance to the

closest edge. The algorithm is presented in alg. 2.1.3. This form of distance image is

mostly used to analyze the shape of a object for further analysis and classification. Key

values for classification is the highest skeleton distance value and the sum of all distances.
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Algorithm 2.1.3 Transformation to skeleton distance image

1. Let Ri be the i-th element of the set of region pixels R line wise and B its
outer boundary. All elements of R are initialized with the value of −1. Let
S(Ri) be the set of pixels in neighbors in 8-connectivity of Ri that are not
−1 .

2. Iterate though all elements of R as follows

Ri =

{
min(S(Ri)) + 1, if S(Ri) ∩B = ∅,
1, otherwise,

(2.8)

3. Repeat step 2, but reverse iteration order.

4. R is now transformed to a distance image where Ri is the chessboard distance
to the nearest edge.

2.2 Classification by the use of Artificial Intelligence

A classifier is a combination of the input values. In the AI literature, discrimination

and classification are described as supervised learning techniques; together, they are also

referred to as class prediction.(Izenman, 2008)

We assume the population P is portioned into K unordered classes which we denote

as Π1,Π2, ...,ΠK . Each item is classified into one (and only one) of those classes. Item

measurements from a training set of size m are to be used to help assign future unclassified

items to one of the designated classes. The random r-vector X, given by

X = (X1, ..., Xr)
T (2.9)

represents the r measurements on an item (i.e., X∈ Rr). The variables X1, X2, ..., Xr

are likely to be chosen because of their suspected ability to distinguish between the K

classes. The variables in eq. 2.9 are called discrimination or feature values (Izenman,

2008).
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2.2.1 Linear and Quadratic Discriminant Analysis

One of the most simple and robust classifiers is the Linear Discriminant Analysis classifier.

Even if its old and simple, it is still one of the best classifiers in complex data sets.

(Fisher, 1936) presented the LDA classifier and since then this method has been expanded

to also handle multiple class problems. The LDA classifier have the assumption that

the measurements from each class are normally distributed. However if this assumption

cannot be made, the QDA classifier have to be applied.

The following equations for the LDA classifier in this section are based on (Li et al.,

2006), (Balakrishnama and Ganapathiraju, 1998) and (Izenman, 2008).

For a LDA classifier the scatter matrix for all classes are given as

Si =
∑
X∈Ki

(X− X̄i)(X− X̄i)
T (2.10)

where the mean X̄i for each class is given by X̄i = 1
mi

∑
X∈Πi

X and mi is the number

of samples in Πi. Hence the total intra-class scatter matrix is given by

Σ̂w = S1 + ...+ SK =
K∑
i=1

∑
X∈Πi

(X− X̄i)(X− X̄i)
T (2.11)

and the inter-class scatter matrix given by

Σ̂b =
K∑
i=1

mi(X̄− X̄i)(X̄− X̄i)
T (2.12)

where X̄ is the total mean vector given by X̄ = 1
m

∑K
i=0miX̄i. Then the linear trans-

formation Φ is found to maximize the so-called Rayleigh quotient. This coefficient is the

ratio of the determinant of the inter-class scatter matrix to the intra-class scatter matrix

of the projected samples:

I(Φ) =
|ΦT Σ̂bΦ|
|ΦT Σ̂wΦ|

(2.13)
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Figure 2.6: Illustration of resulting classification areas of LDA and QDA
with the same input (from results presented in section 4.2).

It can be shown that the transformation Φ can be obtained by solving the generalized

eigenvalue problem:
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Σ̂bΦ = λΣ̂wΦ (2.14)

It is easy to prove that the upper bounds of the rank of Σ̂w and Σ̂b are respectively

m−K and K − 1.

Once the transformation Φ is given, the classification is then preformed in the trans-

formed space based on some distance metric, such as Euclidean distance d(x,y) =
√∑

i(xi − yi)2

or cosine measure d(x,y) = 1−
∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

. Then upon the arrival of the new instance

z, it is classified to

arg min
k

d(zΦ, X̄k) (2.15)

where X̄k is the centroid of the k-th class.

QDA is not really that much different from LDA except that you do not assume that

the inter-class scatter matrix is the same for all classes, thus the scatter matrix Σ̂b in QDA

is to found separately for each class Φk, k = 1, 2, ..., K (Wu et al., 1996). The eq. 2.12

then stays quadratic.

2.2.2 Naive Bayes Classifier

Naive Bayes is one of the most efficient and effective inductive learning algorithms for

machine learning and data mining. Its competitive performance in classification is sur-

prising, because the conditional independence assumption it is based on, is rarely true in

real-world applications (Zhang, 2004).

Naive Bayes is the simplest form of Bayesian network where the class nodes has one

parent and no children. All attributes are independent given the value of the class variable.

A simple example is illustrated in fig. 2.7. The following equations are from (Chen et al.,

2009) and (John and Langley, 1995):

Bayes rule of xi belonging to a class Πj is
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Figure 2.7: An example of naive Bayes (Zhang, 2004)

P (Πj|xi) =
P (xi|Πj)P (Πj)

P (xi)
(2.16)

As P (xi) is the same for all classes, then label(xi), the class label of xi, can be deter-

mined by

label(xi) = arg max
Πj

{P (Πj|xi)} = arg max
Πj

{P (xi|Πj)P (Πj)} (2.17)

To simplify the calculation, the Naive Bayes assumption is made: In an element xi the

probability of a class Πj is independent of what class the other elements in X belongs to.

Given a training set, the probability P (Πj) from eq. 2.17 is estimated as

P (Πj) =
1 + nj

K +m
(2.18)

where nj is the number of elements in class Πj, K the number of classes and m the

number of all elements.

When dealing with continuous data, two common methods will be presented, Gaussian

distribution and Kernel density estimation. As for Gaussian, a common assumption not

intrinsic to the naive Bayesian approach, is that the values of numeric attributes are

normally distributed within each class (John and Langley, 1995). One can represent such

a distribution in terms of its mean and standard deviation. For continues attributes a

Gaussian distribution is given by
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P (xi|Πj) = g(xi;µΠj , σΠj), (2.19)

where

g(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.20)

given the mean µΠj and variance σ2
Πj

of class Πj.

The kernel density does not require a strong assumption such as a Gaussian distribution

and can be used in cases where the distribution of a feature may be skewed or have

multiple peaks or modes. For each feature you model with a kernel distribution, the Naive

Bayes classifier computes a separate kernel density estimate for each class based on the

training data for that class. Even so, the kernel density estimation is based on a Gaussian

distribution:

P (xi|Πj) =
1

nj

nj∑
k=0

g(xi;µk, σΠj) (2.21)

To make the native Bayesian classifiers more effective, a prior calculation of g can be

done before evaluating unseen elements.

2.2.3 Decision Tree

The use of Decision tree (DT) models in classification, called Classification tree, has not

been used widely before the later years. This is because DT analysis is unlike other

analyze methods (Lewis, 2000). A classification tree is a graph-tree and consist of nodes

and leaves. The most common form is the binary tree where each node has two arcs that

forms a statement. This statement could be either true/false or x > c/x ≤ c. A leaf-node

represents the the resulting class of an element. Fig. 2.8 illustrates a simple decision tree.

DT analysis is a form of binary recursive partitioning where each node can be split into

two children nodes several times. Thus, each parent node can give rise to two child nodes,

in turn, each of these nodes may themselves be split and from additional children. The
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Figure 2.8: A simple decision tree with x being the wind speed.

term partitioning refers to the fact that the dataset is split into sections or partitioned

(Lewis, 2000). Decision trees have the advantage of being very easy to interpret for the

human eye which is not common for a classifier. It is therefore often used a lot for

illustrating complex decisions, both in machine learning and the human brain.

Alg. 2.2.1 gives a brief presentation of creating a classification tree. This algorithm

has two functions that needs a closer look. A splitting function is applied to find the best

value of all feature variables in the current data set. In choosing the best split, the program

seeks to minimize the average entropy (Steinberg and Colla, 2009). This could lead to

one of the two sets gains entropy and the other reduce, but each set will be evaluated in

the next depth. The other function is a function that decides if a node is qualified to be

a class. This can be done by predefined conditions, utility or cost function. The later is

well presented in (Lewis, 2000).

An issue with the presented algorithm is overfitting. Overfit is when a tree is too

specific regarding the training set and will therefore missclassify future elements. This is

when tree pruning is applied. Often the method of cost-complexity pruning are used to

reduce the number of nodes in a classification tree. A pruned tree should preform better

over time than the original tree.

The cost-complexity pruning is done by calculating the resubstitution error for the
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Algorithm 2.2.1 Creating a classification tree based on a training set

1. Let Ni be a node containing a data set Di and N0 being the root node that
contains the whole training set. The training set consists of elements where
each element has the feature variables M and belongs to one of the classes
in K. Let H be a set of nodes, l be the maximum allowed depth and L(Ni)
return the depth of Ni. Initially, add N0 to H.

2. Pull the first element of H, Ni. Find the value of Mj in Di, if possible, that
best splits Di in two by the use of a splitting function. Copy each part of the
splitted set into two new children nodes, Ni+1 and Ni+2.

3. Check both Ni+1 and Ni+2 if none of the following criteria are not met. If
not, add that node to H:

• There are only elements of one class Kk in Di+x.

• L(Ni+x) > l

• The criteria for assigning class to node are met.

4. Repeat step 2 and 3 until H = ∅.

5. Calculate probability for each class in all nodes.

subsets of the original tree and then calculate the cross validation error rate for these

subtrees. As the number of leaf nodes grows in the construction of the decision tree, the

cross validation error rate decreases. But after a certain point, as more nodes are added,

the cross validation error rate starts to increase. The best pruned tree has the number of

leaf nodes as when the cross validation error rate are minimized.

2.3 Conceptual architecture

From (Grændsen, 2013):

Figure 2.9 gives a superficial description of how an agent should be implemented, but

details of what goes on in the different modules is a non general answer. As an agent

becomes complex it is difficult to make a good approach without a plan, an architectural

description of the agent.
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Figure 2.9: A brief schematic description of an agent

The perception module can consist of lots of different sensors and feedback inputs.

These inputs need to be interpreted before deciding a plan of action. A plan does not

only have to be based of the input of the sensor, knowledge from earlier experiences and

knowledge given in implementation. Other factors could also be due to security measures

or to failures.

Described functionality need to be implemented in a reasonable way. (Jensen et al.,

2012) suggest that an introduction of an open conceptual architecture tailored to field

robots. Implementing this architecture in a well supported framework will significantly

decrease development time and resources required to preform precision agriculture and

experiments due to efficient code reuse across field robot platforms and research groups.

They stress that this conceptual architecture is not to be a obstacle, but a modular design

so the researches can freely develop and experiment.

With the same simple description agent as in figure 2.9, they have created an expansion

as a suggestion for an open conceptual architecture as shown in figure 2.10.
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Figure 2.10: The FroboMind conceptual architecture (Jensen et al., 2012)
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Chapter 3

Implementation

3.1 System architecture

This section will present the overall system structure of the Asterix project and the soft-

ware architecture of the weed recognition program.

3.1.1 System architecture of the Asterix project

Adigo AS looks to the conceptional architecture of (Jensen et al., 2012), presented in

section 2.3, for developent of the Asterix project. By applying this as the principal system

architecture of the project the modularity will be similar to other agricultural robots. This

will improve the overall shared development level and experience in this small industrial

field.

The adapted conceptional architecture from (Jensen et al., 2012), see figure 2.10, to

the architecture of the Asterix project can be seen in figure 3.1. This is how the system

is planned at this stage. Because of its modularity, add-ons can easily be implemented as

the development process continues.

The project can be separated into three main parts which are closely connected, as seen

in figure 3.1 by the stippled lines; navigation (blue), weed detection (green) and precision

herbicide spraying (red):
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Figure 3.1: System architecture of the Asterix project. The stippled lines indicates the
main three parts in the project and the green boxes are the ones that this thesis involves.

• The navigation part shall consist of a program that reads from positioning instru-

ments as GPS, IMU, magnetometer and wheel encoder to localize where the robot

is at all times. It will also use visual odometer (Grændsen, 2013) to enhance local

positioning. A path planner program will also be applied as well as a differential

controller to the wheel drivers.

• The weed detection part will consist of a program that uses images from a camera

to detect and classify leafs into crops or weed. This program require knowledge from

prior training to classify correctly. After classification, the program shall create a

local spray map for where to spray the herbicide.

• The purpose of the Precision herbicide spraying part is to apply the herbicide by

individual droplets. Spray maps and local localization are inputs to a valve mapper
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that calculates where to shoot droplets to hit the desired weed leaves. A valve

executor will then use the camera trigger and output of the valve mapper to precisely

time the signal to the valve driver for releasing droplets.

The green boxes in figure 3.1 are the ones that this thesis involves. The next subsection

will look closer into these modules.

3.1.2 Software architecture of visual weed recognition

An abstract class diagram of the program can be seen in figure 3.2. The First thing of

notice is the program dual use. As mentioned in the last subsection, the classification

process can not been executed without a trained classifier. This is why a graphical user

interface is applied for off-line training, but this will be explained in section 3.3. For on-

line spraying, the program will output a spray image as mentioned. A brief explanation

will follow in the rest of this subsection, but will be explained in detail in section 3.2. The

total class diagram of the implemented program can be seen in figure C.1 in appendix C.

Figure 3.2: Abstract class diagram
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As the program receives a SourceImage from either a camera (on-line) or a file (off-

line), the DataHandler creates an unique DataFrame-object. This DataFrame process

the image into several new images for different analyses. Each DataFrame-object holds a

number of LeafObjects that corresponds to leafs in the SourceImage. All objects, except for

DataFrame and LeafObject, are static. This means they only do work on other objects, and

in this case these objects are DataFrame and LeafObject. The ObjectDetector distinguish

leaves from background and creates unique LeafObjects. The LeafClassifier is responsible

for the classification process by gather data by the use of the FeatureExtractor and classify

each leaf by knowledge from KnowledgeDB. If the program are set up for training, the

LeafClassifier will instead store data in the KnowledgeDB. The LogWriter documents all

information from the objects as the program runs. The UIQT is running the graphical

user interface for training. The SprayDecider is jet to be implemented, but this shall

create a binary image, the SprayImage, of where to apply herbicide.

The source code of the implementation of the DataHandler is presented in appendix

E.

3.2 Machine vision

All implementation in this part has been done using an OpenCV1 environment. Pre-

implemented functionality from the OpenCV library has been used in order to keep ro-

bustness of the program and will be stated when presented. This section will present a

step-by-step solution of the image processing from source images to extracted features

data of each leaf.

3.2.1 Image handling

As this program needs to handle multiple images as it runs, the DataHandler will take

care of creating and deleting new DataFrames objects. It also holds and handle the other

1OpenCV version 2.4.9
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static objects, including the GUI. As mentioned above, the program can receive images

from a camera as input in spraying mode, but will get a path to a folder of training

images as input in training mode. The program stores a vector of all paths of the image

files according to the input folder.

Figure 3.3: A SourceImage example (Adigo AS)

As a new DataFrame is created, a constructor sets an unique ID and adds the Sour-

ceImage to a vector of images. Figure 3.3 shows an example of a SourceImage. The

constructor then calls an initialization function that creates all the images for further

processing. These images are in RGB, HSV, binary and integer formats. The use of the

different types of images will be explained later, as they are used. As this program is still

in development, the DataFrame stores all images to a file when it is destroyed.
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3.2.2 Segmentation

As explained in subsection 2.1.3, different methods can be used for segmentation. As the

leaves are green, they are easy to distinguish from the background by the human eye. After

some research and testing, the use of threshold for a partial segmentation was chosen. But

using RGB-values for the thresholding process proved not to be robust. As (Kumar et al.,

2012) suggest, the HSV color space is a good solution. The advantages of the HSV color

space are explained in subsection 2.1.2.

Figure 3.4: SourceImage converted into HSV color space

Figure 3.4 shows the SourceImage converted to HSV. The image is not intuitive, but

the red channel represents value, the green represents saturation and the blue represents

hue. In figure 3.5 the HSV image has been decomposed, this might ease the understanding.
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(a) Hue channel (b) Saturation channel (c) Value channel

Figure 3.5: The decomposed image in figure 3.4.

As seen in figure 3.5(a), the hue channel shows the most clearly difference from the

leaves and the background. This is why we set the hue values as the primary source of the

thresholding. The threshold Th1 > 30 and Th2 < 90. As leaves have a strong saturated

green color, it is necessary to distinguish these from background or other objects that

might have the same hue value, but less saturated. The threshold Ts > 58 is then also

applied. Lastly, dark areas can contain the same hue and saturation as the leaves, but

setting the last threshold as Tv > 50 solves this issue. All these values are set by examining

images as well as experimenting.

By iterating though the HSV image, a binary mask image is set by applying all four

thresholds in respective channels. The resulting segmented binary image can be seen in

figure 3.6 and will be used as a image mask for further processing. Even if the segmentation

is good, there are some small areas or pixels in the image which is not part of an object.

This is due to pixel error and noise.

This by applying the image mask to the SourceImage, a segmented RGB image is found.

This image is used, instead of the SourceImage, from this moment for image processing in

terms of RGB information. Because it only holds information of the objects of interest, it

will make analysis more efficient. Such an image can be seen in figure 3.7.
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Figure 3.6: Resulting segmented binary image

3.2.3 Connected components analysis

As the segmentation process is done, a connected components analysis is in order. This is

for labeling each object with an unique id and create a LeafObject of them. The theory

behind this subsection, can be found in 2.1.4.

The label image is crated by cloning the binary image mask, where 0 is background and

1 is foreground, and changing the image format to an integer image. By use of the floodfill

function in the OpenCV library, a resulting image with unique values from 2 and up for

each object and still 0 for background is done. All points of a labeled object are stored in

vectors. As each object is labeled, the object size is checked before creating a LeafObject

of the labeled pixels. If the sum of pixels is less than a given value (in this case, 1000), the

labeled pixels are marked as background and discarded as an object. Figure 3.8 illustrates

different detected leaves. If comparing this figure with figure 3.6, small detected objects
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Figure 3.7: Resulting segmented image in RGB

are now removed.

One thing worth mentioning in the terms of connected components analysis is the

ability to separate leaves that are connected after segmentation. After several attempts

with Sobel filters and graph cuts where both methods were inconclusive, the only way of

advancing with the development was to assume the separation were complete. This was

done by adding red lines between connected leaves before running the program.

3.2.4 Feature extraction

After successfully detecting, labeling and storing LeafObjects in a DataFrame, the last

step in the machine vision part of the program is to extract features from each LeafOb-

ject. The LeafClassifier asks the FeatureExtractor for features from each LeafObject. The

FeatureExtractor analyze each leaf with the respect of the given feature from the Leaf-
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Figure 3.8: Labeled image with random colors indicating unique objects

Classifier. In total, there are ten different features that are being extracted, but some of

them are combinations of other features:

Area equals the number of pixels included in the LeafObject.

Circumference equals the sum of all pixels in an edge of the LeafObject.

Density is the area divided by the circumference.

Highest skeleton distance is the greatest distance from a point to the edge of a

LeafObject. This is based on a distance transformation presented in subsection 2.1.6.

Highest skeleton distance factor is the square root of the areal divided by the

highest skeleton distance.

Skeleton size is the sum of all distances from all points to the closest edge of a

LeafObject. This is based on a distance transformation presented in subsection 2.1.6.

Skeleton size factor is the area divided by the square root of the skeleton size.

Skeleton back is the number of pixels included in the skeleton graph of the LeafOb-
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ject. This is based on the skeleton structure presented in subsection 2.1.6.

Hue is the average hue value of the LeafObject. The theory is presented in 2.1.2.

Saturation is the average saturation value of the LeafObject. The theory is presented

in 2.1.2.

The highest skeleton distance factor and the skeleton size factor are found by analyzing

relationships by regression in Matlab. Every feature of all LeafObjects are logged by the

LogWriter to unique comma-separated values (CSV) files. When the program is in training

mode, the LeafClassifier looks for CSV files that equals the DataFrame id. If found, it

loads the values so they do not need to be extracted again.

3.3 Training program

This section will present how the program work in training mode, without focusing on the

already covered machine vision functionality. If users are to be able to create a training

set with this program, there have to be a user interface that is easy to understand and

use. The program also need to be adaptable for other environments than, in this case,

carrot fields.

3.3.1 Functionality

Before running the program, some parameters have to be set. A configuration file contains

all the classes you want to label the leaves in. In this thesis, there are four classes; Carrots

1st stage, Carrots 2nd stage, Weed and Other. The Other class is for eventually wrongly

detected objects or leaves in the edges that would damage the training set. As this

program is not developed and hard coded for identifying solely carrots and weed, this kind

of external configuration files are needed. An example of labeling six different classes are

shown in figure 3.9.

As an input when running the program, the path of the folder where the training images

are located, are to be given. As mentioned earlier, the program finds all images of the
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Figure 3.9: An example of six different classes labeled.

Joint Photographic Experts Group format (JPEG/JPG) and stores them. As the program

iterates though the image list, initiated by the user, the program stores all information of

every leaf. This includes id, features and class. If the user relaunches the program with

the same training folder, the program loads the previously stored information of all the

images that has been opened before. This enables users to continue earlier work if wanted.

3.3.2 Graphical user interface

OpenCV has its own graphical user interface functions, but this proved to be too limited.

Instead a GUI library called Qt2 was chosen. Qt is the most powerful GUI library in the

C++ world. It also has its own cross-platform IDE for development called QtCreator,

which was partly used for this program. The purpose of this interface is to give the user

2Qt version 4.8.6
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an easy way of labeling the leaves to their corresponding classes as well as iterating though

the whole folder of training images.

Figure 3.10: The graphical user interface for training mode without overlay

After the the image processing is done for the current DataFrame, the SourceImage is

displayed as seen in figure 3.10. To match the screen resolution of the user, the resolution

is found and the image is scaled down so it covers 85 % of the screen height. A panel on

the right side of the interface is set up with four static buttons; Toggle, Prev, Next and

Quit.

If Toggle is clicked, a transparent overlay will be added on top of the image and covers

all detected LeafObjects. This overlay is white for all objects that is not yet labeled (ref.

subsection 3.3.1). As the user labels the objects, the overlay will change to the color that

corresponds to the labeled class. This process will be explained later in this subsection.

If Toggle is clicked again, the overlay will become invisible. The overlay is created from

a copy of a binary version of the image shown in figure 3.8, but then filled with colors

corresponding to its labeled class. When the LeafObject are created, it is labeled as class
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zero, an invalid class. If the LeafObject belongs to an invalid class, the overlay is white.

The figure 3.11 illustrates this.

Figure 3.11: The graphical user interface for training mode with overlay

The goal of Next and Prev are intuitive, but their functionality needs explanation. As

mentioned, the DataHandler holds a list of all images in the training folder. If one of these

buttons are clicked, the DataHandler is notified. It then loads the next or previous image

and processes it as presented in section 3.2 and then deletes the DataFrame that has been

replaced. The GUI is then notified that the new image are loaded and processed, and will

then display the new image. If next is clicked at the last image or prev is clicked at the

first image, nothing happens.

If quit is clicked, the DataHandler is notified and will close the program in the correct

manner by logging the current DataFrame before shutting down.

The four buttons with colored squares represents the classes that are to be used in

labeling. These are loaded from the LeafClassifier dynamically. This means the number

of buttons listed can change based on the input from the configuration file. If one of this
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buttons are clicked it becomes toggled, and the user can then click on a leaf to label it into

the desired class. The button is toggled until an other of the label-buttons are clicked.

When a LeafObject is clicked, the GUI calculates the coordinates based on the scaling of

the image. It then asks the corresponding DataFrame what id the LeafObject in the given

coordinates has. If this is an LeafObject, the GUI informs the LeafClassifier of the class

which sets it in the LeafObject.

All buttons have hotkeys connected to them. In example, the label buttons are con-

nected to the numbers on the keyboard and toggle to the keyboard button ”t”.

Figure 3.12: Table showing the features of a selected leaf

The last function to be mentioned is the listing of features that belongs to a selected

LeafObject. If the SHIFT-button on the keyboard is pressed and the cursor is held over a

LeafObject, a table with the id and all features are shown as in figure 3.12. This is mostly

an feature for developing.

3.4 Classification

The classification has been done in Matlab (R2013b, 64-bit linux version) with the statis-

tics toolbox. The procedure was inspired by an example given at the MathWorks web

page3.

After the training process, a script which gathers all data from the training, sorts them

into classes and stores each class in a separate file is run. Then this data is put into a n x m

3http://www.mathworks.se/help/stats/examples/classification.html
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matrix, where n is the number of elements and m is the number of feature measurements.

A vector of size n is also created with classes corresponding to the rows of the matrix. To

be able to train and test the classifiers, the matrix and the vector is split into two sets by

selecting them even and odd. This two sets will form the training set and the test set.

The following classifiers have been tested:

LDA: Linear Discriminant Analysis, presented in subsection 2.2.1.

QDA: Quadratic Discriminant Analysis, presented in subsection 2.2.1.

DT: Decision tree, presented in subsection 2.2.2.

DTp: Decision tree, pruned, presented in subsection 2.2.2.

nbGau: Naive Bayes with Gaussian distribution, presented in subsection 2.2.3.

nbKd: Naive Bayes with Kernel density, presented in subsection 2.2.3.

To be able to analyze the quality and behavour of the classifiers further, the classifi-

cation process was run with different reduction of the size of the initial training set. All

tests was performed with the same test set.

After looking at the results, presented in chapter 4, an experiment was done by creating

a voting classifier that uses the results from all classifiers mentioned above. This is done

by labeling each LeafObject as the class the majority of the classifiers have chosen. If two

classes have the same amount of votes for a given object, it is labeled as a carrot.

By studying the scatter plots in chapter 4 and in appendix D, another experimental

approach was done by setting raising the lower limit of the size of each LeafObject. By

doing so, the small leaves were removed from the training set. The same classification

procress as before was then executed with the resulting training set.

42



Chapter 4

Results

This chapter will present results from the segmentation and the classification that was

explained in chapter 3. The images used in this thesis are given by Adigo AS. All images

were taken the same day in a carrot field in Østfold, the southeastern part of Norway, in

the middle of June 2012.

Figure 4.1: Camera setup in field (Adigo AS)

For photographing, a Nikon D7000 camera mounted on a tripod, 54 cm above ground,

was used. For making the light conditions as similar as possible, an umbrella was set up

to shade the sunlight and a flash was used as the main light source. The camera setup

can be seen in figure 4.1.
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4.1 Object detection

As mentioned in section 3.2, the connective component analysis implemented in this thesis

can not distinguish two overlapping leafs from another. But the detection of leaves in

general are done solely by image processing. By respect of this, the figure 4.2 illustrates

the presence of leaves by contours.

Figure 4.2: SourceImage with contours of the detected presence of leaves

4.2 Classification

The classification was done with a total set of 1351 objects from 25 different images, where

677 objects was used for training and 674 objects for testing.

The results from classifying all objects with the six classifiers and the use of voting,

all presented in section 3.4, can be seen in table 4.1.

44



CHAPTER 4. RESULTS

LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 206 211 197 167 212 207 211 223
Carrot 2nd stage 120 123 104 109 109 102 111 133
Weed 276 267 290 306 243 287 294 318
Total 602 601 596 577 564 596 616 674

Table 4.1: Classification success by number of unique
LeafObjects correctly classified

In table 4.2 the results from table 4.1 have been presented by the percentage of total

elements of each class.

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 92.38 % 94.62 % 88.34 % 74.89 % 95.07 % 92.83 % 94.62 %
Carrot 2nd stage 90.23 % 92.48 % 78.20 % 81.95 % 81.95 % 76.69 % 83.46 %
Weed 86.79 % 83.96 % 91.19 % 96.23 % 76.42 % 90.25 % 92.45 %
Total 89.32 % 89.17 % 88.43 % 85.61 % 83.68 % 88.43 % 91.39 %

Table 4.2: Classification success in percent

Table 4.3 to 4.8 shows specified results for each of the six classifiers based on the total

elements of their true class.

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 2.24 % 5.38 %
Carrot 2nd stage 6.77 % 90.23 % 3.01 %

Weed 11.01 % 2.20 % 86.79 %

Table 4.3: True vs. detected for Linear Discriminant Analysis

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.62 % 4.04 % 1.35 %
Carrot 2nd stage 3.76 % 92.48 % 3.76 %

Weed 13.52 % 2.52 % 83.96 %

Table 4.4: True vs. detected for Quadratic Discriminant Analysis
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 2.69 % 2.24 %
Carrot 2nd stage 11.28 % 81.95 % 6.77 %

Weed 22.01 % 1.57 % 76.42 %

Table 4.5: True vs. detected for Naive Bayes with Gaussian distribution

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.83 % 2.24 % 4.93 %
Carrot 2nd stage 9.02 % 76.69 % 14.29 %

Weed 7.55 % 1.89 % 90.25 %

Table 4.6: True vs. detected for Naive Bayes with Kernel density

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 88.34 % 2.69 % 8.97 %
Carrot 2nd stage 11.28 % 81.95 % 6.77 %

Weed 6.29 % 2.52 % 91.19 %

Table 4.7: True vs. detected for Decision tree

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 74.89 % 4.04 % 21.08 %
Carrot 2nd stage 8.27 % 78.20 % 13.53 %

Weed 3.14 % 0.63 % 96.23 %

Table 4.8: True vs. detected for Decision tree, pruned
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Figure 4.3: Scatter plot of density vs highest skeleton distance.
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Figure 4.4: Scatter plot of average hue value vs average saturation value.

In figure 4.3 and 4.4 a selection of two scatter plots are given. More of these plots can

be seen in appendix D.
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Figure 4.5: 3d scatter plot of density, saturation
and highest skeleton distance factor.

Figure 4.5 show a three dimensional scatter plot of Density, Saturation and Highest

skeleton distance factor.

The full decision three after training can be seen in 4.6. This figure illustrates the

complexity of the three, rather than its values and node statements. The total number of

leaf nodes is 45.

Figure 4.7 shows the decision three in figure 4.6 after pruning. The number of leaf

nodes is now reduced to 6.
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Carrot 1st stageWeed Carrot 1st stageWeedCarrot 1st stageWeed Carrot 2nd stageCarrot 1st stage

Carrot 2nd stage

Carrot 1st stageWeed Carrot 1st stageWeedCarrot 1st stage

Carrot 1st stageWeed

HSDF < 2.74531   

SAT < 164.375   Dens < 7.76201   

HSDF < 2.3895   SS < 38675.5   SAT < 121.047   SAT < 126.937   

SAT < 154.195   SB < 221.5   Circ < 515.5   HSDF < 3.95169   HUE < 36.3265   HSD < 8.5   

Area < 3762.5   SAT < 115.558   SS < 19256   SB < 312   Area < 4652   SAT < 149.367   HSD < 32.5   SB < 555.5   

Dens < 4.09698   SAT < 137.162   Dens < 5.31916   Dens < 7.13545   Dens < 4.5057   HSDF < 3.15417   HUE < 37.9077   

Area < 2085   SAT < 138.016   Dens < 4.73944   SAT < 101.201   SB < 561   

HSDF < 2.73307   SAT < 112.432   HSDF < 2.94536   HSDF < 2.84586   HSDF < 4.1283   

SAT < 158.675   HUE < 41.601   

SB < 404.5   Dens < 4.80014   Dens < 5.69299   

Area < 4936.5   

  HSDF >= 2.74531

  SAT >= 164.375   Dens >= 7.76201

  HSDF >= 2.3895   SS >= 38675.5   SAT >= 121.047   SAT >= 126.937

  SAT >= 154.195   SB >= 221.5   Circ >= 515.5   HSDF >= 3.95169   HUE >= 36.3265   HSD >= 8.5

  Area >= 3762.5   SAT >= 115.558   SS >= 19256   SB >= 312   Area >= 4652  SAT >= 149.367   HSD >= 32.5   SB >= 555.5

  Dens >= 4.09698   SAT >= 137.162   Dens >= 5.31916   Dens >= 7.13545   Dens >= 4.5057   HSDF >= 3.15417   HUE >= 37.9077

  Area >= 2085   SAT >= 138.016   Dens >= 4.73944   SAT >= 101.201   SB >= 561

  HSDF >= 2.73307   SAT >= 112.432  HSDF >= 2.94536   HSDF >= 2.84586   HSDF >= 4.1283

  SAT >= 158.675   HUE >= 41.601

  SB >= 404.5   Dens >= 4.80014  Dens >= 5.69299

  Area >= 4936.5

Figure 4.6: Resulting decision tree.
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Weed

Carrot 2nd stage Carrot 1st stage

HSDF < 2.74531   

SAT < 164.375   Dens < 7.76201   

SAT < 121.047   

HUE < 36.3265   

  HSDF >= 2.74531

  SAT >= 164.375   Dens >= 7.76201

  SAT >= 121.047

  HUE >= 36.3265

Figure 4.7: Resulting decision tree, pruned.
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Figure 4.8: Plots of the different classifiers and their performance based on training size.
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As described in section 3.4, the classification process was also tested with reduced

training sets. Figure 4.8 shows the success rate of the of the different classifiers with

respect of percentage of the full training set. All results of each individual test are provided

in appendix B.

Lda Qda DT DTp nbGau nbKd voted total
Carrot 1st stage 147 144 137 140 148 147 148 152
Carrot 2nd stage 83 87 85 85 86 86 87 89
Weed 139 139 145 143 135 141 146 158
Total 369 370 367 368 369 374 381 399

Table 4.9: Classification success by number of unique LeafObjects correctly classified
after setting the lower limit of areas to 5000 pixels.

Lda Qda DT DTp nbGau nbKd voted
Carrot 1st stage 96.71 % 94.74 % 90.13 % 92.11 % 97.37 % 96.71 % 97.37 %
Carrot 2nd stage 93.26 % 97.75 % 95.51 % 95.51 % 96.63 % 96.63 % 97.75 %
Weed 87.97 % 87.97 % 91.77 % 90.51 % 85.44 % 89.24 % 92.41 %
Total 92.48 % 92.73 % 91.98 % 92.23 % 92.48 % 93.73 % 95.49 %

Table 4.10: Classification success in percent after setting
the lower limit of areas to 5000 pixels.

An experiment was done by setting a lower limit of the area in each LeafObject, as

presented in section 3.4. In this case, the limit was set to 5000 pixels. Table 4.9 and 4.10

shows the results of this experiment.
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Chapter 5

Discussion

In this chapter the main topics of this thesis will be discussed;Architecture and implemen-

tation, Segmentation and object detection and Feature extraction and classification. In

particular, the experience from the implementation in chapter 3 and the results in chapter

4 are to be evaluated and discussed.

5.1 Architecture and implementation

The system architecture presented in figure 3.1 has proved to be a promising approach

at this stage of development. All though there is still major parts of the system to

be developed, its modularity makes it easy to develop and understand. Furthermore,

the design of the weed detection part of the Asterix project has been established and is

presented in figure 3.2.

The implemented program works well and the training mode is fully functional. How-

ever, a classifier to be used in the spraying mode in the classification part of the system,

presented in figure 3.2, is to be implemented. In this thesis, the use of MATLAB has been

applied to examine the different classifiers. This is done in order to investigate the results

and the performance before choosing a classifier and implementing it into the program.

On the other hand, a framework for the program has been created and is easy to develop

further.
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As presented in section 3.3, a graphical user interface was implemented by the use of

Qt. The choice of using Qt as GUI library has proven to be a good solution. By the huge

amount of options in Qt, the GUI has become delicate and easy to use. Even though there

are much data being processed, the program runs fluently during the labeling process. In

addition, further functionality as simulation and evaluation of the spraying mode can be

implemented without changing the already existing functionality.

The use of OpenCV has also proved to be well suited for this program. As there are a lot

of already implemented functions in the library, the handling of images is easily controlled.

When working with large images, the memory management is crucial to prevent memory

leaks. The problem with memory leak was learned the hard way while training, but this

was later solved. Another consequence of working with huge amounts of data, is that the

run time of this program is not close to what it have to be if used on-line. On the other

hand, the focus of this thesis is to investigate the possibility of implementing a program

that preforms well in the terms of weed detection and classification. When this goal is

fully reached, the runtime of the program can be properly addressed.

5.2 Segmentation and object detection

A big challenge when processing images from natural environments, is the variety it pro-

duce. This is certainly the case when it comes to images of leaves in a field. Every leaf

is different from the next, even if they belong to the same species. They also unfold in

different ways depending of weather, soil and specie.

The use of HSV color space in the segmentation process, see figure 3.4, has proven to

be very robust. As seen in figure 4.2 almost all leaves has been successfully detected. The

only problem in this case was a special weed specie1 that becomes white in the center, just

as the soil around it. This problem has not been addressed because the program are not

implemented to handle specific species.

As the program is not able to separate overlapped leaves, the use of predefined separa-

1Chenopódium album
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tion was used. This was done in order to test and develop the rest of the system properly.

As presented in subsection 3.2.3, the use of graph cut and Sobel filter was investigated

and applied, but proved inaccurate. As the leaves often have a very similar color and the

light source is mounted on the camera, the edge of the leaf is very hard to detect in the

image, even for the human eye. This problem has to be solved if this program shall work

in the field and classify on-line. A solution to this could be the use of stereo vision or a

infra-red image to measure distance in height.

5.3 Feature extraction and classification

As seen in the table 4.2 the results from the classification are satisfiable based on the

stage of development. Another thing to be noticed in the table is that there are no

classifiers which clearly proves to be the best choice. However, there are two classifiers

that scores significantly lower than the other four. The naive Bayesian classifier with

Gaussian distribution and the pruned decision tree deviates from the other four by about

5 and 3 percent. The cause of this can be that the assumption of a Gaussian distribution

of the data features is not valid and the pruning of the decision tree is too rough. But to

be certain that these two classifiers are ill suited for this kind of problem, more testing on

different unique data set are required.

By studying figure 4.8, some more remarks are to be discussed. The naive Bayesian

Gaussian classifier preforms lower in general compared to the rest. In addition both the

pruned and the regular decision tree are varying in their performance. The naive Bayesian

kernel classifier (after 40 % of training set) and both of the discriminant analysis classifiers

are stable and preform well.

It is important to note that even though there are three classes to be determined, the

weed-class do not consist of only one species. This makes it very hard for any classifier to

learn from a training set. As for the images used in this thesis, there are two main weed

species that are frequent and more than ten that are not.

It does not matter what kind of classifier that is being used if the inputs are inadequate.

55



5.3. FEATURE EXTRACTION AND CLASSIFICATION

An example of this is trying to divide Weed from Carrot 2nd stage in figure 4.4. If all

feature values for all classes were as inseparable as this, no classifier could be able to

achieve a good result. By choosing features that can be used to find tendencies of pattern

in a data set, and if the features are not directly correlated, then there can be a possibility

for a good result. Figure 4.3 can be used to illustrate this. There are patterns to be seen

between the three classes, but not enough to divide them adequately. On the other hand,

if we include saturation as a new dimension (see figure 4.5), a more clear pattern can be

seen. If all classifiers had ten dimensional feature data to use, as they have in this thesis,

the ability to distinguish classes with good results is more likely.

In this thesis, six of the features are based on skeleton analysis. Even though the results

are satisfying, introducing new and more uncorrelated features could make the classifiers

preform even better. Examples of this are texture, aspect ratios, moment invariants and

more as mentioned in subsection 2.1.5.

When studying the scatter plots of the feature values correlated with the area of each

LeafObject, it can be seen clearly that in the area closer to zero, the classes are more

disorganized. As the leaves gets smaller, humans can also have problems distinguishing

different species. From a farmers perspective, the smaller weeds do not present a threat at

that stage. By applying a limit for size in the classification, the results became significantly

better, as seen in 4.10. If restrictions can be made that enhances the classification without

a negative effect of the weed control, there are reason to apply them.

An experiment done during the classification process is the use of voting. As seen

in table 4.2 and 4.10, this performs better in the terms of total success then any other

classifier does on its own. This does not prove that the best solution would be using as

many classifiers as possible and use voting instead of the best classifier. On the other

hand, the possibility to use three well adapted classifiers at the same time, can make the

classification process more robust.

Lastly, a farmers view of classification has to be taken into account before making any

conclusions. From a theoretical perspective, the total success of a classifier would be the

determining result, but it is not the same for a farmer. A worst case scenario for a farmer is
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spraying the crops, rather then not spraying the weed. As seen in table 4.2, the quadratic

discriminant analysis classifier preforms superior to the rest in terms of classifying carrots.

The details of this can be seen in table 4.4. The table shows that carrots of 1st and 2nd

stage has been classified as weed in 1.35 and 3.76 percent of the cases. In contrast, the

naive Bayesian kernel classificator (see table 4.6) which scores almost the same as the

quadratic discriminant analysis classifier in total, has classified the carrots as weed in 4.93

and 14.29 percent of the cases.
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Chapter 6

Conclusion

This master thesis was motivated by the use of machine vision and artificial intelligence

in agricultural robotics. A program that segmented and detected leaves was implemented

for feature extraction from each leaf.

By using six different classifiers, the classification of leaves has proven promising due

to the testing and evaluation done in this thesis. Even though a final conclusion can

not be made on what type of classifier that preforms best, the quadratic discriminant

analysis classifier shows assuring results. Total correct classified leaves with a success rate

of over 89 % has been reached by basic classification. Furthermore, by raising the lower

boundary of the leaf size and using votes from all the classifiers to determine the class,

total classification success surpassed 95 %.

The use of the 10 different features based on basic shape parameters, color and skeleton

analysis are the main reason for the classification success. By using features that describes

each leaf in different ways, the classifiers are able to distinguish the leaves and label them

as the right class with a high success rate.
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Chapter 7

Future work

According to the objective and the results of this master thesis, there are still more to be

done before the weed detection part in the Asterix project can be tested in the field. For

future work, the following is proposed:

• Find and implement a method for separating overlapping leaves in the

ObjectDetector module.

• Find more uncorrelated features to extract in the FeatureExtractor module.

• Continue the testing and the evaluation of the classifiers with more training sets.

• Implement a classifier in the LeafClassifier module.

• Implement a simulation module in the GUI class for evaluation of the classifiers

performance.

• Optimize the program to meet the real-time demands of the Asterix project.

• Implement the SprayDecider module from figure 3.2.

61



62



Bibliography

64th General Assembly, U. (2009). Food production must double by 2050 to meet de-

mand from world’s growing popukatuion. Second Committee, Panel Discussion (AM)

GA/EF/3242, 64.

Abeysinghe, S., Ju, T., Baker, M. L., and Chiu, W. (2008). Shape modeling and matching

in identifying 3d protein structures. Computer-Aided Design, 40(6):708–720.

Ahmed, I., Islam, M., Shah, S. I. A., and Adnan, A. (2007). A real-time specific weed

recognition system using statistical methods. International Journal of Computer, In-

formation & Systems Science & Engineering, 1(4).

Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a brief

tutorial. Institute for Signal and information Processing.

Billingsley, J. (2011). Machine vision in agriculture. Encyclopedia of Agrophysics, pages

433–436.

Chen, J., Huang, H., Tian, S., and Qu, Y. (2009). Feature selection for text classification
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Appendix A

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

CMY Cyan Magenta Yellow

CPU Central processing unit

CSV Comma Separated Value

DB Data Base

DT Decision Tree

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical user interface

HSV Hue Saturation Value

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IR Infra Red

LDA Linear Discriminant Analysis
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NBC Naive Bayesian Classifier

nbGau Native Bayesian Gaussian Classifier

nbKd Native Bayesian Kerlnel Classifier

NIR Near Infra Red

NTNU Norwegian University of Science and Technology

PA Precision Agriculture

PNN Probabilistic Neural Network

QDA Quadratic Discriminant Analysis

RGB Red Green Blue

UN United Nations

UV Ultra-Violet

80



Appendix B

Classification results

LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 207 211 196 192 214 206 210 223
Carrot 2nd stage 120 128 125 126 120 118 126 133
Weed 271 267 285 280 250 287 288 318
Total 598 606 607 597 584 611 624 674

Table B.1: Classification success by number of unique LeafObjects
correctly classified (90 % of full traing set)

81



LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 92.83 % 94.62 % 87.89 % 86.10 % 95.96 % 92.38 % 94.17 %
Carrot 2nd stage 90.23 % 96.24 % 93.98 % 94.74 % 90.23 % 88.72 % 94.74 %
Weed 85.22 % 83.96 % 89.62 % 88.05 % 78.62 % 90.25 % 90.57 %
Total 88.72 % 89.91 % 90.06 % 88.58 % 86.65 % 90.65 % 92.58 %

Table B.2: Classification success in percent
(90 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.83 % 1.79 % 5.38 %
Carrot 2nd stage 7.52 % 90.23 % 2.26 %

Weed 12.58 % 2.20 % 85.22 %

Table B.3: True vs. detected for Linear Discriminant Analysis
(90 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.62 % 4.04 % 1.35 %
Carrot 2nd stage 3.01 % 96.24 % 0.75 %

Weed 11.95 % 4.09 % 83.96 %

Table B.4: True vs. detected for Quadratic Discriminant Analysis
(90 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.96 % 1.79 % 2.24 %
Carrot 2nd stage 6.77 % 90.23 % 3.01 %

Weed 18.55 % 2.83 % 78.62 %

Table B.5: True vs. detected for Naive Bayes with Gaussian distribution
(90 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 1.35 % 6.28 %
Carrot 2nd stage 5.26 % 88.72 % 6.02 %

Weed 7.55 % 1.89 % 90.25 %

Table B.6: True vs. detected for Naive Bayes with Kernel density
(90 % of full traing set)
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APPENDIX B. CLASSIFICATION RESULTS

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 87.89 % 2.69 % 9.42 %
Carrot 2nd stage 1.50 % 94.74 % 3.76 %

Weed 5.35 % 5.03 % 89.62 %

Table B.7: True vs. detected for Decision tree
(90 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 86.10 % 3.14 % 10.76 %
Carrot 2nd stage 4.51 % 93.98 % 1.50 %

Weed 8.18 % 3.77 % 88.05 %

Table B.8: True vs. detected for Decision tree, pruned
(90 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 208 212 191 192 213 208 210 223
Carrot 2nd stage 120 126 124 122 119 116 125 133
Weed 268 265 282 281 244 284 285 318
Total 596 603 595 597 576 608 620 674

Table B.9: Classification success by number of unique LeafObjects
correctly classified (80 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 93.27 % 95.07 % 85.65 % 86.10 % 95.52 % 93.27 % 94.17 %
Carrot 2nd stage 90.23 % 94.74 % 93.23 % 91.73 % 89.47 % 87.22 % 93.98 %
Weed 84.28 % 83.33 % 88.68 % 88.36 % 76.73 % 89.31 % 89.62 %
Total 88.43 % 89.47 % 88.28 % 88.58 % 85.46 % 90.21 % 91.99 %

Table B.10: Classification success in percent
(80 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.27 % 1.79 % 4.93 %
Carrot 2nd stage 7.52 % 90.23 % 2.26 %

Weed 13.21 % 2.52 % 84.28 %

Table B.11: True vs. detected for Linear Discriminant Analysis
(80 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 4.04 % 0.90 %
Carrot 2nd stage 3.01 % 94.74 % 2.26 %

Weed 13.21 % 3.46 % 83.33 %

Table B.12: True vs. detected for Quadratic Discriminant Analysis
(80 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.52 % 2.24 % 2.24 %
Carrot 2nd stage 7.52 % 89.47 % 3.01 %

Weed 20.13 % 3.14 % 76.73 %

Table B.13: True vs. detected for Naive Bayes with Gaussian distribution
(80 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.27 % 1.79 % 4.93 %
Carrot 2nd stage 6.02 % 87.22 % 6.77 %

Weed 8.18 % 2.20 % 89.31 %

Table B.14: True vs. detected for Naive Bayes with Kernel density
(80 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 85.65 % 4.93 % 9.42 %
Carrot 2nd stage 3.76 % 91.73 % 4.51 %

Weed 6.29 % 5.03 % 88.68 %

Table B.15: True vs. detected for Decision tree
(80 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 86.10 % 3.14 % 10.76 %
Carrot 2nd stage 4.51 % 93.23 % 2.26 %

Weed 8.18 % 3.46 % 88.36 %

Table B.16: True vs. detected for Decision tree, pruned
(80 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 208 211 200 196 212 206 208 223
Carrot 2nd stage 120 127 123 125 118 114 125 133
Weed 268 267 283 271 245 286 284 318
Total 596 605 608 590 575 606 617 674

Table B.17: Classification success by number of unique LeafObjects
correctly classified (70 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 93.27 % 94.62 % 89.69 % 87.89 % 95.07 % 92.38 % 93.27 %
Carrot 2nd stage 90.23 % 95.49 % 92.48 % 93.98 % 88.72 % 85.71 % 93.98 %
Weed 84.28 % 83.96 % 88.99 % 85.22 % 77.04 % 89.94 % 89.31 %
Total 88.43 % 89.76 % 90.21 % 87.54 % 85.31 % 89.91 % 91.54 %

Table B.18: Classification success in percent
(70 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.27 % 1.79 % 4.93 %
Carrot 2nd stage 7.52 % 90.23 % 2.26 %

Weed 12.89 % 2.83 % 84.28 %

Table B.19: True vs. detected for Linear Discriminant Analysis
(70 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.62 % 4.04 % 1.35 %
Carrot 2nd stage 2.26 % 95.49 % 2.26 %

Weed 12.89 % 3.14 % 83.96 %

Table B.20: True vs. detected for Quadratic Discriminant Analysis
(70 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 2.69 % 2.24 %
Carrot 2nd stage 8.27 % 88.72 % 3.01 %

Weed 20.13 % 2.83 % 77.04 %

Table B.21: True vs. detected for Naive Bayes with Gaussian distribution
(70 % of full traing set)

86



APPENDIX B. CLASSIFICATION RESULTS

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 2.24 % 5.38 %
Carrot 2nd stage 6.77 % 85.71 % 7.52 %

Weed 7.55 % 2.20 % 89.94 %

Table B.22: True vs. detected for Naive Bayes with Kernel density
(70 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 89.69 % 3.14 % 7.17 %
Carrot 2nd stage 3.76 % 93.98 % 2.26 %

Weed 6.92 % 4.09 % 88.99 %

Table B.23: True vs. detected for Decision tree
(70 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 87.89 % 2.69 % 9.42 %
Carrot 2nd stage 4.51 % 92.48 % 3.01 %

Weed 9.12 % 5.66 % 85.22 %

Table B.24: True vs. detected for Decision tree, pruned
(70 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 206 211 196 190 212 206 210 223
Carrot 2nd stage 120 122 100 121 111 112 117 133
Weed 269 269 289 292 239 286 286 318
Total 595 602 606 582 562 604 613 674

Table B.25: Classification success by number of unique LeafObjects
correctly classified (60 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 92.38 % 94.62 % 87.89 % 85.20 % 95.07 % 92.38 % 94.17 %
Carrot 2nd stage 90.23 % 91.73 % 75.19 % 90.98 % 83.46 % 84.21 % 87.97 %
Weed 84.59 % 84.59 % 90.88 % 91.82 % 75.16 % 89.94 % 89.94 %
Total 88.28 % 89.32 % 89.91 % 86.35 % 83.38 % 89.61 % 90.95 %

Table B.26: Classification success in percent
(60 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 1.79 % 5.83 %
Carrot 2nd stage 7.52 % 90.23 % 2.26 %

Weed 13.21 % 2.20 % 84.59 %

Table B.27: True vs. detected for Linear Discriminant Analysis
(60 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.62 % 4.04 % 1.35 %
Carrot 2nd stage 3.01 % 91.73 % 5.26 %

Weed 12.89 % 2.52 % 84.59 %

Table B.28: True vs. detected for Quadratic Discriminant Analysis
(60 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 2.69 % 2.24 %
Carrot 2nd stage 10.53 % 83.46 % 6.02 %

Weed 22.64 % 2.20 % 75.16 %

Table B.29: True vs. detected for Naive Bayes with Gaussian distribution
(60 % of full traing set)

88



APPENDIX B. CLASSIFICATION RESULTS

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 2.24 % 5.38 %
Carrot 2nd stage 7.52 % 84.21 % 8.27 %

Weed 7.55 % 2.20 % 89.94 %

Table B.30: True vs. detected for Naive Bayes with Kernel density
(60 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 87.89 % 3.14 % 8.97 %
Carrot 2nd stage 3.01 % 90.98 % 6.02 %

Weed 5.97 % 3.14 % 90.88 %

Table B.31: True vs. detected for Decision tree
(60 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 85.20 % 2.24 % 12.56 %
Carrot 2nd stage 12.03 % 75.19 % 12.78 %

Weed 7.86 % 0.31 % 91.82 %

Table B.32: True vs. detected for Decision tree, pruned
(60 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 209 212 192 184 213 207 207 223
Carrot 2nd stage 123 123 113 104 110 110 116 133
Weed 266 266 276 280 226 282 282 318
Total 598 601 572 577 549 599 605 674

Table B.33: Classification success by number of unique LeafObjects
correctly classified (50 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 93.72 % 95.07 % 86.10 % 82.51 % 95.52 % 92.83 % 92.83 %
Carrot 2nd stage 92.48 % 92.48 % 84.96 % 78.20 % 82.71 % 82.71 % 87.22 %
Weed 83.65 % 83.65 % 86.79 % 88.05 % 71.07 % 88.68 % 88.68 %
Total 88.72 % 89.17 % 84.87 % 85.61 % 81.45 % 88.87 % 89.76 %

Table B.34: Classification success in percent
(50 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.72 % 1.79 % 4.48 %
Carrot 2nd stage 5.26 % 92.48 % 2.26 %

Weed 13.84 % 2.52 % 83.65 %

Table B.35: True vs. detected for Linear Discriminant Analysis
(50 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 4.04 % 0.90 %
Carrot 2nd stage 3.76 % 92.48 % 3.76 %

Weed 13.84 % 2.52 % 83.65 %

Table B.36: True vs. detected for Quadratic Discriminant Analysis
(50 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.52 % 2.69 % 1.79 %
Carrot 2nd stage 11.28 % 82.71 % 6.02 %

Weed 26.42 % 2.52 % 71.07 %

Table B.37: True vs. detected for Naive Bayes with Gaussian distribution
(50 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.83 % 2.24 % 4.93 %
Carrot 2nd stage 9.02 % 82.71 % 8.27 %

Weed 8.49 % 2.52 % 88.68 %

Table B.38: True vs. detected for Naive Bayes with Kernel density
(50 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 86.10 % 3.14 % 10.76 %
Carrot 2nd stage 10.53 % 78.20 % 11.28 %

Weed 10.06 % 3.14 % 86.79 %

Table B.39: True vs. detected for Decision tree
(50 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 82.51 % 2.24 % 15.25 %
Carrot 2nd stage 12.03 % 84.96 % 3.01 %

Weed 6.60 % 5.35 % 88.05 %

Table B.40: True vs. detected for Decision tree, pruned
(50 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 209 212 188 202 214 210 213 223
Carrot 2nd stage 122 125 112 118 114 111 120 133
Weed 269 268 284 277 209 285 287 318
Total 600 605 590 591 537 606 620 674

Table B.41: Classification success by number of unique LeafObjects
correctly classified (40 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 93.72 % 95.07 % 84.30 % 90.58 % 95.96 % 94.17 % 95.52 %
Carrot 2nd stage 91.73 % 93.98 % 84.21 % 88.72 % 85.71 % 83.46 % 90.23 %
Weed 84.59 % 84.28 % 89.31 % 87.11 % 65.72 % 89.62 % 90.25 %
Total 89.02 % 89.76 % 87.54 % 87.69 % 79.67 % 89.91 % 91.99 %

Table B.42: Classification success in percent
(40 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.72 % 1.79 % 4.48 %
Carrot 2nd stage 6.02 % 91.73 % 2.26 %

Weed 13.21 % 2.20 % 84.59 %

Table B.43: True vs. detected for Linear Discriminant Analysis
(40 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 4.04 % 0.90 %
Carrot 2nd stage 2.26 % 93.98 % 3.76 %

Weed 13.21 % 2.52 % 84.28 %

Table B.44: True vs. detected for Quadratic Discriminant Analysis
(40 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.96 % 2.69 % 1.35 %
Carrot 2nd stage 9.77 % 85.71 % 4.51 %

Weed 32.39 % 1.89 % 65.72 %

Table B.45: True vs. detected for Naive Bayes with Gaussian distribution
(40 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.17 % 1.35 % 4.48 %
Carrot 2nd stage 8.27 % 83.46 % 8.27 %

Weed 8.18 % 1.89 % 89.62 %

Table B.46: True vs. detected for Naive Bayes with Kernel density
(40 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 84.30 % 4.04 % 11.66 %
Carrot 2nd stage 3.76 % 88.72 % 7.52 %

Weed 7.23 % 3.46 % 89.31 %

Table B.47: True vs. detected for Decision tree
(40 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 90.58 % 3.59 % 5.83 %
Carrot 2nd stage 3.76 % 84.21 % 12.03 %

Weed 10.38 % 2.52 % 87.11 %

Table B.48: True vs. detected for Decision tree, pruned
(40 % of full traing set)

93



LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 209 212 186 214 214 208 215 223
Carrot 2nd stage 121 121 91 114 112 107 109 133
Weed 276 275 276 241 228 271 280 318
Total 606 608 576 546 554 586 604 674

Table B.49: Classification success by number of unique LeafObjects
correctly classified (30 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 93.72 % 95.07 % 83.41 % 95.96 % 95.96 % 93.27 % 96.41 %
Carrot 2nd stage 90.98 % 90.98 % 68.42 % 85.71 % 84.21 % 80.45 % 81.95 %
Weed 86.79 % 86.48 % 86.79 % 75.79 % 71.70 % 85.22 % 88.05 %
Total 89.91 % 90.21 % 85.46 % 81.01 % 82.20 % 86.94 % 89.61 %

Table B.50: Classification success in percent
(30 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.72 % 1.79 % 4.48 %
Carrot 2nd stage 6.77 % 90.98 % 2.26 %

Weed 11.64 % 1.57 % 86.79 %

Table B.51: True vs. detected for Linear Discriminant Analysis
(30 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.07 % 3.59 % 1.35 %
Carrot 2nd stage 3.76 % 90.98 % 5.26 %

Weed 11.64 % 1.89 % 86.48 %

Table B.52: True vs. detected for Quadratic Discriminant Analysis
(30 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.96 % 2.24 % 1.79 %
Carrot 2nd stage 10.53 % 84.21 % 5.26 %

Weed 26.42 % 1.89 % 71.70 %

Table B.53: True vs. detected for Naive Bayes with Gaussian distribution
(30 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.27 % 0.90 % 5.83 %
Carrot 2nd stage 9.77 % 80.45 % 9.77 %

Weed 7.23 % 6.92 % 85.22 %

Table B.54: True vs. detected for Naive Bayes with Kernel density
(30 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 83.41 % 4.04 % 12.56 %
Carrot 2nd stage 6.02 % 85.71 % 8.27 %

Weed 9.43 % 3.77 % 86.79 %

Table B.55: True vs. detected for Decision tree
(30 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.96 % 2.24 % 1.79 %
Carrot 2nd stage 21.80 % 68.42 % 9.77 %

Weed 23.58 % 0.63 % 75.79 %

Table B.56: True vs. detected for Decision tree, pruned
(30 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 206 213 172 191 211 200 206 223
Carrot 2nd stage 127 121 111 120 124 117 121 133
Weed 267 282 279 239 238 258 278 318
Total 600 616 571 541 573 575 605 674

Table B.57: Classification success by number of unique LeafObjects
correctly classified (20 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 92.38 % 95.52 % 77.13 % 85.65 % 94.62 % 89.69 % 92.38 %
Carrot 2nd stage 95.49 % 90.98 % 83.46 % 90.23 % 93.23 % 87.97 % 90.98 %
Weed 83.96 % 88.68 % 87.74 % 75.16 % 74.84 % 81.13 % 87.42 %
Total 89.02 % 91.39 % 84.72 % 80.27 % 85.01 % 85.31 % 89.76 %

Table B.58: Classification success in percent
(20 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 92.38 % 4.04 % 3.59 %
Carrot 2nd stage 1.50 % 95.49 % 3.01 %

Weed 13.21 % 2.83 % 83.96 %

Table B.59: True vs. detected for Linear Discriminant Analysis
(20 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.52 % 2.24 % 2.24 %
Carrot 2nd stage 2.26 % 90.98 % 6.77 %

Weed 9.43 % 1.89 % 88.68 %

Table B.60: True vs. detected for Quadratic Discriminant Analysis
(20 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.62 % 3.14 % 2.24 %
Carrot 2nd stage 3.76 % 93.23 % 3.01 %

Weed 21.70 % 3.46 % 74.84 %

Table B.61: True vs. detected for Naive Bayes with Gaussian distribution
(20 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 89.69 % 3.14 % 7.17 %
Carrot 2nd stage 5.26 % 87.97 % 6.77 %

Weed 7.55 % 10.69 % 81.13 %

Table B.62: True vs. detected for Naive Bayes with Kernel density
(20 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 77.13 % 9.42 % 13.45 %
Carrot 2nd stage 4.51 % 90.23 % 5.26 %

Weed 9.12 % 3.14 % 87.74 %

Table B.63: True vs. detected for Decision tree
(20 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 85.65 % 12.56 % 1.79 %
Carrot 2nd stage 6.77 % 83.46 % 9.77 %

Weed 18.55 % 6.29 % 75.16 %

Table B.64: True vs. detected for Decision tree, pruned
(20 % of full traing set)
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LDA QDA DT DTp nbGau nbKd voted total
Carrot 1st stage 216 209 210 218 213 208 218 223
Carrot 2nd stage 124 85 86 115 103 107 99 133
Weed 259 290 249 239 233 217 267 318
Total 599 584 574 543 549 532 584 674

Table B.65: Classification success by number of unique LeafObjects
correctly classified (10 % of full traing set)

LDA QDA DT DTp nbGau nbKd voted
Carrot 1st stage 96.86 % 93.72 % 94.17 % 97.76 % 95.52 % 93.27 % 97.76 %
Carrot 2nd stage 93.23 % 63.91 % 64.66 % 86.47 % 77.44 % 80.45 % 74.44 %
Weed 81.45 % 91.19 % 78.30 % 75.16 % 73.27 % 68.24 % 83.96 %
Total 88.87 % 86.65 % 85.16 % 80.56 % 81.45 % 78.93 % 86.65 %

Table B.66: Classification success in percent
(10 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 96.86 % 1.79 % 1.35 %
Carrot 2nd stage 4.51 % 93.23 % 2.26 %

Weed 16.35 % 2.20 % 81.45 %

Table B.67: True vs. detected for Linear Discriminant Analysis
(10 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.72 % 1.35 % 4.93 %
Carrot 2nd stage 18.80 % 63.91 % 17.29 %

Weed 8.49 % 0.31 % 91.19 %

Table B.68: True vs. detected for Quadratic Discriminant Analysis
(10 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 95.52 % 3.14 % 1.35 %
Carrot 2nd stage 16.54 % 77.44 % 6.02 %

Weed 24.53 % 2.20 % 73.27 %

Table B.69: True vs. detected for Naive Bayes with Gaussian distribution
(10 % of full traing set)
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Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 93.27 % 2.24 % 4.48 %
Carrot 2nd stage 13.53 % 80.45 % 6.02 %

Weed 11.01 % 20.13 % 68.24 %

Table B.70: True vs. detected for Naive Bayes with Kernel density
(10 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 94.17 % 1.35 % 4.48 %
Carrot 2nd stage 3.76 % 86.47 % 9.77 %

Weed 15.41 % 6.29 % 78.30 %

Table B.71: True vs. detected for Decision tree
(10 % of full traing set)

Detected
Carrot 1st stage Carrot 2nd stage Weed

True
Carrot 1st stage 97.76 % 0.45 % 1.79 %
Carrot 2nd stage 25.56 % 64.66 % 9.77 %

Weed 19.18 % 5.66 % 75.16 %

Table B.72: True vs. detected for Decision tree, pruned
(10 % of full traing set)
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Appendix C

Class diagrams

Figure C.1: Total class diagram
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Figure C.2: Presentation of the classes; DataHandler, LeafClassifier, FeatureExtractor,
ObjectDetector and LogWriter
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Figure C.3: Presentation of the classes; DataFrame and LeafObject
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Figure C.4: Presentation of the classes; UIQT
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Appendix D

Scatter plots
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Figure D.1: Scatter plot of circumference vs highest skeleton distance.
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Figure D.2: Scatter plot of circumference vs sum of skeleton distance.
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Figure D.3: Scatter plot of circumference vs size of skeleton.
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Figure D.4: Scatter plot of density vs sum of skeleton distance.
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Figure D.5: Scatter plot of density vs highest skeleton distance factor.
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Figure D.6: Scatter plot of density vs sum of skeleton distance factor.
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Figure D.7: Scatter plot of density vs size of skeleton.
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Figure D.8: Scatter plot of highest skeleton distance factor vs sum of skeleton distance
factor.
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Figure D.9: Scatter plot of size vs circumference.
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Figure D.10: Scatter plot of size vs highest skeleton distance.
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Figure D.11: Scatter plot of size vs sum of skeleton distance.
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Figure D.12: Scatter plot of size vs size of skeleton.
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Figure D.13: Scatter plot of sum of skeleton distance vs size of skeleton.
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Figure D.14: Scatter plot of size of skeleton vs highest skeleton distance factor.
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Figure D.15: Scatter plot of size of skeleton vs sum of skeleton distance factor.
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Appendix E

DataHandler source code

This appendix presents the code from the DataHandler class, presented in chapter 3. This

is given for the reader to see an example of the implementation.

1 #include <dirent.h>

2 #include <iostream >

3 #include <string >

4 #include <stdio.h>

5

6 #include "DataFrame.h"

7 #include "ObjectDetector.h"

8 #include "LogWriter.h"

9 #include "FeatureExtractor.h"

10 #include "LeafClassifier.h"

11 #include "DataHandler.h"

12 #include "UIQT.h"

13

14 DataHandler :: DataHandler(char* path , LeafClassifier* leaf_classifier ,

ObjectDetector* object_detector , LogWriter* log_writer){

15 this ->path = path;

16 this ->leaf_classifier = leaf_classifier;

17 this ->object_detector = object_detector;

18 this ->log_writer = log_writer;

19 this ->current_frame = NULL;
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20

21 DIR* dir;

22 dirent* pdir;

23

24 dir = opendir(path); // open given directory

25

26 while ((pdir = readdir(dir))) { //find all images in directory

27 std:: string filename = std:: string(pdir ->d_name);

28 if(filename.find(".jpg") != std:: string ::npos || filename.find(

".JPG") != std:: string ::npos){

29 this ->files.push_back(filename);

30 }

31 }

32 for(size_t i = 0; i < this ->files.size(); i++){ //for information

while running

33 std::cout << this ->files[i] << std::endl;

34 }

35 closedir(dir);

36 if(this ->files.size() == 0){

37 perror("No images in folder");

38 }

39 this ->current_frame_id = 0;

40 //this ->loadFrame ();

41

42

43 }

44

45 void DataHandler :: getUI(UIQT* uiq){

46 this ->uiq = uiq;

47 }

48

49 void DataHandler :: nextFrame (){

50 if(this ->current_frame_id != (int)this ->files.size() -1){

51 this ->current_frame_id ++;
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52 }

53 this ->loadFrame ();

54 }

55

56 void DataHandler :: prevFrame (){

57 if(this ->current_frame_id != 0){

58 this ->current_frame_id --;

59 }

60 this ->loadFrame ();

61 }

62

63 void DataHandler :: loadFrame (){ //this function is called for each new

image

64 DataFrame* prev_frame = NULL;

65

66 if(this ->current_frame != NULL){

67 prev_frame = this ->current_frame;

68 }

69

70 std::cout << "loading new data_frame" << std::endl;

71 std::cout << this ->current_frame_id << std::endl;

72

73 char* file_id = new char [100];

74 strcpy (file_id ,std:: string(this ->files[this ->current_frame_id ].

substr(0,this ->files[this ->current_frame_id ].find(".JPG"))).c_str

());

75 std::cout << "loading new data_frame" << std::endl;

76

77 std::cout << "opening image: " <<(std:: string(this ->path) + this ->

files[this ->current_frame_id ]).c_str () << std::endl;

78 this ->current_frame = new DataFrame ((std:: string(this ->path) + this

->files[this ->current_frame_id ]).c_str (),

79 file_id ,

80 leaf_classifier); // Created new DataFrame
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81

82 std::cout << (std:: string(this ->files[this ->current_frame_id ].

substr(0,this ->files[this ->current_frame_id ].find(".JPG")))).c_str

() << std::endl;

83

84 std::cout << "created data_frame" << std::endl;

85

86 object_detector ->findBlobs(this ->current_frame); // connected

component analysis

87 std::cout << "found blobs init" << std::endl;

88

89 leaf_classifier ->classify(this ->current_frame); // feature

extraction

90 std::cout << "did classify" << std::endl;

91

92 this ->current_frame ->paintLeafs (); //for output in development

process.

93 std::cout << "painted leafs" << std::endl;

94

95 uiq ->copyFromDataFrame(this ->current_frame); // copies the image

from DataFrame to present in the GUI

96 std::cout << "copied from data_frame to ui" << std::endl;

97

98 this ->current_frame ->writeAll (); // stores all image for development

analysis

99 std::cout << "wrote all images" << std::endl;

100

101 std::cout << "deleting old data_frame" << std::endl;

102 if(prev_frame != NULL){ //logs the last DataFrame if any. This

includes feature values and labeled class

103 log_writer ->writeLeafs(prev_frame);

104 std::cout << "written leafs" << std::endl;

105 delete prev_frame;

106 }
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107

108 }

109

110 DataFrame* DataHandler :: getCurrentDataFrame (){

111 return this ->current_frame;

112 }

113

114 void DataHandler :: deleteCurrentFrame (){ // logging and deleting

current image on quit

115 log_writer ->writeLeafs(this ->current_frame);

116 std::cout << "written leafs" << std::endl;

117 delete current_frame;

118 this ->current_frame = NULL;

119 }

code/DataHandler.cpp
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