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Preface

The work presented in this thesis has been carried out at the Department of Environ-

mental Technology at Institute for Energy Technology (IFE), Kjeller in the period of

February 2003 to June 2006. Parts of the work were also performed at the Norwe-

gian University of Science and Technology (NTNU) in Trondheim, and at University of

British Columbia (UBC) in Vancouver, Canada.

The work is a part of the larger project ”Future energy plants; Co-production of

electrical power and hydrogen from natural gas with integrated CO2-capture”, financed

by the Research Council of Norway through the KLIMATEK program. This project

is a co-operation between IFE, Christian Michelsen Research and Prototech AS, where

the objectives have been to develop and test a concept for co-production of electricity

and hydrogen from natural gas with integrated CO2-capture. The work presented in

this thesis is focusing on the hydrogen production part of the project.
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Abstract

Hydrogen is considered to be an important potential energy carrier; however, its ad-

vantages are unlikely to be realized unless efficient means can be found to produce it

without generation of CO2. Sorption-enhanced steam methane reforming (SE-SMR)

represent a novel, energy-efficient hydrogen production route with in situ CO2 cap-

ture, shifting the reforming and water gas shift reactions beyond their conventional

thermodynamic limits.

The use of fluidized bed reactors for SE-SMR has been investigated. Arctic dolomite,

a calcium-based natural sorbent, was chosen as the primary CO2-acceptor in this study

due to high absorption capacity, relatively high reaction rate and low cost. An ex-

perimental investigation was conducted in a bubbling fluidized bed reactor of diame-

ter 0.1 m, which was operated cyclically and batchwise, alternating between reform-

ing/carbonation conditions and higher-temperature calcination conditions. Hydrogen

concentrations of >98 mole% on a dry basis were reached at 600◦C and 1 atm, for su-

perficial gas velocities in the range of ∼0.03-0.1 m/s. Multiple reforming-regeneration

cycles showed that the hydrogen concentration remained at ∼98 mole% after four cy-

cles. The total production time was reduced with an increasing number of cycles due to

loss of CO2-uptake capacity of the dolomite, but the reaction rates of steam reforming

and carbonation seemed to be unaffected for the conditions investigated.

A modified shrinking core model was applied for deriving carbonation kinetics of

Arctic dolomite, using experimental data from a novel thermo gravimetric reactor. An

apparent activation energy of 32.6 kJ/mole was found from parameter fitting, which

is in good agreement with previous reported results. The derived rate expression was

able to predict experimental conversion up to ∼30% very well, whereas the prediction

of higher conversion levels was poorer. However, the residence time of sorbent in a

continuous reformer-calciner system is likely to be rather low, so that only a fraction of

the sorbent is utilized, highlighting the importance of the carbonation model at lower
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conversions.

A dual fluidized bed reactor for the SE-SMR system was modeled by using a simple

two-phase hydrodynamic model, the experimentally derived carbonation kinetics and

literature values for the kinetics of steam reforming and water gas shift reactions. The

model delineates important features of the process. Hydrogen concentrations of >98

mole% were predicted for temperatures ∼600◦C and a superficial gas velocity of 0.1 m/s.

The reformer temperature should not be lower than 540◦C or greater than 630◦C for

carbon capture efficiencies to exceed 90%. Operating at relatively high solid circulation

rates to reduce the need for fresh sorbent, is predicted to give higher system efficiencies

than for the case where fresh solid is added. This finding is attributed to the additional

energy required to decompose both CaCO3 and MgCO3 in fresh dolomite. Moreover,

adding fresh sorbent is likely to result in catalyst loss in the purge stream, requiring

sorbents with lifetimes comparable to those of the catalyst.

Thermo gravimetric analysis (TGA) was used to study the reversible CO2-uptake

of sorbents. In general, the multi-cycle capacity of the dolomite was found rather poor.

Therefore, synthetic sorbents that maintain their capacities upon multiple reforming-

calcination cycles were investigated. A low-temperature liquid phase co-precipitation

method was used for synthesis of Li2ZrO3 and Na2ZrO3. Li2ZrO3 showed a superior

multi-cycle capacity compared to Arctic dolomite in TGA, but the rate of reaction in

diluted CO2 atmospheres was very slow. The synthesized Na2ZrO3 proved to have both

fast carbonation kinetics and stable multi-cycle performance. However, regeneration in

the presence of carbon dioxide was not easily accomplished.

The findings of this thesis suggest that the bubbling fluidized bed reactor is an

attractive reactor configuration for SE-SMR. Low gas throughput is the major dis-

advantage for this configuration, and operation in the fast fluidization regime is most

likely to be preferred on an industrial scale of the process. Future work should focus

on developing sorbents and catalysts that are suited for high velocity operation, with

respect to reactivity and mechanical strength.
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Chapter 1

Introduction

We have a mighty task before us. The Earth needs our assistance.

(Laurens van der Post)

Fossil fuels, coal, oil and natural gas, have been a widely used source of energy every

since the Industrial Revolution just before the dawn of the 20th century. Present

concerns regarding global warming due to CO2 emissions from fossil fuel combustion

have given rise to extensive efforts in preventing CO2 reaching the atmosphere. In this

chapter, the scientific basis of global warming is presented along with a technological

overview of potential routes to ”CO2-free” energy production from fossil fuels. Special

attention is given to hydrogen production from fossil fuels. The rationale of this thesis

is presented at the end of the chapter.

1.1 Fossil fuel combustion

While the detailed science is complex, the basic premise of global warming is rela-

tively simple. The earth’s atmosphere contains so-called greenhouses gases (GHG) in

a delicate balance with other gases. These GHG gases, which include water vapor,

carbon dioxide, methane, ozone and nitrous oxide, serve to regulate the earth’s tem-

perature by allowing sunlight through to heat the earth’s surface and then trapping

and absorbing some of that heat as it is reflected back into space as infra-red radiation

- this is the greenhouse effect. Without this natural greenhouse effect, earth surface

temperatures would be much lower than they are now, and life as known today would

not be possible. Instead, thanks to greenhouse gases, the earth’s average temperature
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Chapter 1. Introduction

is a more hospitable 15.6◦C [1]. However, problems may arise when the atmospheric

concentration of greenhouse gases increases.

1.1.1 Greenhouse gas emissions

Statistics from the Intergovernmental Panel on Climate Change (IPCC) reveal that

the overall world’s temperature has increased by 0.6◦C over the past century, and is

projected to increase by a further 1.6 to 5.5◦C by 2100 [2]. Many scientists believe

that the observed global warming is mainly due to changes in human activities and

related increases in greenhouse gas emissions. Long droughts, severe cyclones, storm

surges and abnormally high and low temperatures are becoming increasingly common

and are causing a significant threat to people and their environments world-wide. These

extreme weather conditions are considered by IPCC to be caused by global warming and

climate change. Climate change is not a new phenomenon. The earth has undergone

significant variations in climate during its estimated five billion year life. However, of

particular concern is that the warming of today is occurring more rapidly than in any

of the previous climate changes that the earth has experienced. Unlike previous climate

changes this global warming has a very clear human component. The third assessment

report of IPCC [2] gives a very comprehensive scientific overview on global warming

and greenhouse gas emissions, and reports:

• The atmospheric concentration of carbon dioxide (CO2) has increased by 31%

since 1750.

• About 75% of the anthropogenic CO2 emissions to the atmosphere during the

past 20 years are due to fossil fuel burning.

• The atmospheric concentrations of methane, nitrous oxides and ozone have sig-

nificantly increased since year 1750.

Historically, CO2 emissions have come mainly from industrialized countries, but the

trend is now shifting. Population growth in developing nations in Asia, the Middle East

and Africa is increasing the energy demand, and economic growth is expected to cause a

continued rise in emissions unless fundamental technology changes occur in the world’s

energy systems. The contribution of renewable energy sources are likely to increase in

the future, but fossil fuels will continue to be the most important energy source for

-2-



1.1. Fossil fuel combustion

many decades to come. It has been forecasted that, for a ”business as usual”-scenario,

global emissions of CO2 could more than triple over this century, from 7.4 billion tons of

carbon per year in 1997 to approximately 26 billion tons per year in 2100 [3]. This means

that development of zero emission technologies for fossil fuel utilization will be critical

in order to reverse the very clear trend of increased atmospheric CO2 concentrations.

1.1.2 CO2-free energy production from fossil fuels

Emissions from fossil based fuels can be reduced by switching to fuels with lower carbon

content, increasing the fuel conversion efficiency or capturing and storing the carbon

dioxide emitted. Natural gas, which has a somewhat lower carbon content than oil, will

continue to take market shares from oil over the next decades. However, coal will main-

tain its position as an abundant and cheap fuel in the global electricity generation for

the same period. Therefore, the development of energy efficient combustion processes

and carbon capture and storage (CCS) will be of great importance.

Most of the emissions of CO2 to the atmosphere are in the form of flue gas from

combustion processes with typical CO2 concentrations of 4-15% by volume [4]. In

principle, flue gas could be stored to avoid emissions of CO2 to the atmosphere, it then

would have to be compressed to a pressure of typically more that 10 MPa which would

require an excessive amount of energy. In addition to this, the high volume of flue gas

would mean that storage reservoirs would be filled up quickly. For these reasons it is

preferable to produce relatively pure CO2 for transport and storage. There are three

main routes to CO2 capture from combustion processes, which are visualized in Figure

1.1, and briefly described below:

i) Post-combustion

ii) Oxy-fuel combustion

iii) Pre-combustion

Post-combustion

Post-combustion is a downstream process, capturing CO2 after the combustion, where

the most used process is to scrub the flue gas with a physical or chemical solvent.

Chemical absorption, with monoethanolamine (MEA) being the most used solvent, is a

-3-



Chapter 1. Introduction

Figure 1.1: Schematic representation of main CO2 capture routes [5].

relative mature technology. However, high degradation rates of the solvents in presence

of SOx, NO2 and O2, and the large amount of energy needed for regeneration are the

major disadvantages making this technology very costly. Also, low CO2 concentration

in the power plant flue gas means that large volume of gas has to be treated, resulting in

large equipment sizes. A number of novel solvents with higher selectivity for CO2 and

lower energy requirements for regeneration are therefore currently being investigated

[6], in order to reduce the size of absorption towers and capital and operation costs.

Gas separation membranes are likely to be applied in CO2 capture systems in the

future. The driving force for separation is given by differences in partial pressure

of gas species between the feed side and permeate side of the membrane. Developing

membranes with both high selectivity and permeability for separation of carbon dioxide

from flue gas is the major challenge. The cost of CO2 capture from the exhaust gas

of a coal fired power plant, using a polymer membrane, was found to be 30% more
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expensive than for a conventional MEA absorption process [7]. However, the cost of

the membrane process was significantly reduced when the CO2 concentration in the

flue gas was increased from 13% to 27%. In addition to gas separation membranes,

gas absorption membranes offer high capture potential. These membranes work as

contacting devices between the gas and the liquid phase, increasing the contact area,

thus reducing the size of the scrubbing equipment [8]. They will potentially also reduce

the mass transfer of undesirable gas phase components such as oxygen and nitrous

oxide, which are known to degrade the alkanolamine solvent.

Cryogenic separation offers high recovery of CO2, but the large amount of energy

required to provide the refrigeration necessary for the process, particularly for dilute

gas streams, is the major disadvantage. Some solid materials with high surface areas,

such as zeolites and activated carbon, can be used to separate CO2 from gas mixtures

by adsorption. These processes operate on repeated cycles with the basic steps being

adsorption and regeneration. The regeneration can be done by reducing the pressure,

by so-called pressure swing adsorption (PSA), or by increasing the temperature, in

temperature swing adsorption (TSA). Currently, adsorption is not considered attractive

for large-scale separation of CO2 from flue gas because the capacity and CO2 selectivity

of available adsorbents are low.

Oxy-fuel combustion

Using concentrated oxygen rather than air for combustion has the advantage of increas-

ing the CO2 concentration in the flue gas (>80%), eliminating the need for expensive

downstream separation equipment. Oxygen can be supplied from cryogenic air sepa-

ration and fed to either a boiler or a gas turbine. In order to avoid too high flame

temperatures, the CO2-rich flue gas is often recycled to make the flame temperature

similar to a normal air blown combustor [4]. NOx formation is also suppressed by using

oxygen rather than air. The main disadvantage of oxy-fuel combustion is the large

amount of O2 required, which is very energy consuming and expensive to produce.

Pre-combustion

As the name indicates, the pre-combustion route captures CO2 before the combustor

by separating it from a synthesis gas mixture (H2/CO). The fossil fuel is mainly con-

verted to CO and H2 by gasification, partial oxidation or reforming. CO is reacted with
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steam and catalytically converted to CO2 and more H2 in a water gas shift (WGS) step.

CO2 is then separated from hydrogen by chemical or physical absorption, membranes

or pressure swing adsorption. The advantage of doing the separation before the com-

bustor relates to the much higher partial pressure of carbon dioxide obtained compared

to post-combustion, hence reducing the size of the equipment. This approach gives

valuable hydrogen as product, as indicated on Figure 1.1, which in turn can be used

to generate electricity in fuel cells. The flexibility of such a system, which can both

produce electricity and hydrogen, is very useful as the ratio of produced hydrogen to

electricity can be adjusted based on the demand.

Figure 1.2: The process of chemical looping combustion [9].

In addition to the mentioned CO2-free energy production routes there are novel

concepts emerging, which cannot easily be categorized into the above groups. Chemical

looping combustion (CLC) is a novel method for facilitating CO2 separation from flue

gases [10]. The process is composed of two fluidized reactors, an air and a fuel reactor,

as shown in Figure 1.2. The fuel is introduced to the fuel reactor in a gaseous form

where it reacts with an oxygen carrier to CO2 and H2O. The reduced oxygen carrier

is transported to the air reactor, where it is oxidized back to its original state by air

[9]. As for the oxy-fuel combustion process, NOx formation is eliminated as oxygen is

supplied to the combustor in the form of a metal oxide without any nitrogen present,
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also giving pure CO2 out. The principle of the CLC process is the same as for the

oxy-fuel process, where pure oxygen is supplied to the combustor, and it has the same

absorption-regeneration nature of post-combustion.

Carbon can also be transferred between two reactors, and in another novel concept

CaO is used for capturing CO2 from the flue gas at elevated temperatures (typically

∼600◦C), and the carbonate formed is regenerated in the calciner at ∼900◦C [11, 12].

High temperature separation of CO2 has the advantage of efficient heat recovery from

regeneration, compared to low-temperature absorption or adsorption systems. The

major limitation of this concept is that the reactivity of CaO is reduced significantly

with the number of carbonation-calcination cycles [13].

1.1.3 Carbon capture and storage (CCS)

Figure 1.1 shows the different routes to separation of CO2 from fossil fuels, but does

not indicate how it can be stored and secured from reaching the atmosphere. Efforts

made to capture and separate CO2 from flue gases in efficient ways are worthless unless

it can be stored on a permanent basis.

CO2 can be stored in geologic formations, e.g. deep coal seams, depleted oil and

gas reservoirs, salt domes, the ocean or aquifers [14]. Once injected into a geological

formation for storage, physical trapping blocks upward migration of CO2 caused by

an impermeable layer, known as the ”cap rock”. Geological storage of CO2 is ongoing

in three industrial scale projects; the Sleipner project in the North Sea (operated by

Statoil), the Weyburn project in Canada and the In Salah project in Algeria [5]. Re-

injecting CO2 into oil wells for enhanced oil recovery (EOR) and simultaneously store

it underground is also a potential way of utilizing CO2.

Mineral carbonation and industrial usage are other ways of utilizing the captured

CO2. Mineral carbonation refers to the fixation of CO2 using alkaline and alkaline-

earth oxides, such as MgO and CaO, which may be present in naturally occurring

silicate rocks. For industrial use, CO2 is considered a reactant and can be used for urea

and methanol production. CO2 can also be used in technological applications such as in

beverages and fire extinguishers. However, industrial usage of CO2 does not contribute

to the net reduction of CO2 as it in most industrial processes has storage times of only

days or months, before it again will be emitted to the atmosphere. Table 1.1 shows

typical cost ranges for the different components of CCS [5]. In most CCS systems,
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Table 1.1: Cost ranges for CCS components [5]

CCS system
component

Cost range Remarks

Capture from coal or
gas fired power plant

15-75 US$/tCO2 net
captured

Compared to the
same plant without

capture

Transportation
1-8 US$/tCO2 net

transported

Per 250 km pipeline
or shipping 4-40

MtCO2/year

Geological storage
0.5-8 US$/tCO2 net

injected
Excluding potential
revenues from EOR

Geological storage:
monitoring and

verification

0.1-0.3 US$/tCO2 net
injected

Covers injection and
monitoring

the cost of capture (including CO2 compression) is the largest cost component. This

is attributed to the dilute concentrations of CO2 and the large volumes of gas to be

treated. Each capture technology has its advantages, and different technologies will

be applied for different power generation systems in the future, e.g. post-combustion

capture will be the likely choice for retrofitting of existing power plants, while the pre-

combustion approach, through hydrogen production, is an appealing choice to those

seeking to ”kick-start” the hydrogen economy.
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1.2. Hydrogen as energy carrier

1.2 Hydrogen as energy carrier

We even believed them when they said that ”hydrogen was the Second Com-

ing - limitless, pollution-free energy that will soon replace oil !”. We spent

so much money on our military to make sure we had access to oil that our

schools were falling apart, making everyone grow up dumb and dumber - and

therefore, no one realized that hydrogen was not even a fuel at all !

Michael Moore (in ”Dude, where’s my country ?”)

It is a common misconception that hydrogen is a clean source of energy, with water

being the only byproduct when burned. Although abundant in the universe, hydrogen

in a pure state does not occur in nature and must be synthesized, and should therefore

be considered as an energy carrier, not a source. As electricity has been an important

energy carrier in the last century, and will continue to be so, hydrogen is predicted to

become an important energy carrier in the future ”hydrogen society”.

1.2.1 Towards the hydrogen society

A hydrogen society, also referred to as a hydrogen economy, is one where hydrogen is

the main energy carrier along with electricity [15]. Hydrogen would be produced from

renewable energy sources (renewables) such as solar energy, wind power or hydro power

through water electrolysis or from biomass. In a hydrogen economy, electricity and

hydrogen would be produced in large quantities and used where fossil fuels are being

used today. Hydrogen is widely considered to be the transportation fuel of the future

[8], and fuel cells are likely to replace energy inefficient combustion engines with time.

It is obvious that fuel cell driven cars cannot be introduced to a market without any

infrastructure for hydrogen supply in place. On the other side, a hydrogen infrastructure

is worthless if the cost of hydrogen vehicles are too high for the customers to buy. It is

a classical ”chicken-egg” problem. Therefore, among the major short term challenges

is to develop a hydrogen infrastructure and cost efficient fuel cells.

Hydrogen from renewables will be introduced in long term perspective, as the fossil

fuel age may peak in 50-100 years. Then, the cost of fossil fuel, with CO2 capture and

storage costs included, will increase making renewables competitive. Today, however,

H2 from renewables is significantly more expensive than H2 from natural gas, oil and
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coal [16]. Hydrogen production from fossil fuels with CO2 capture is therefore likely to

be the first step towards the hydrogen economy.

1.2.2 Hydrogen from fossil fuels

Hydrogen can be synthesized from various fossil feed stocks through several reaction

routes, and hydrogen production routes from natural gas (NG) are considered in this

chapter. Natural gas is relatively abundant around the world and large pipeline systems

are available within and from developed countries. In addition there is a large interna-

tional trade of liquefied natural gas (LNG). With the proven reserves and established

distribution system, natural gas is currently the most available primary fossil fuel for

hydrogen production [17].

Table 1.2: Methane conversion routes

Process ∆H0
298 [kJ/mole]

Steam Methane Reforming (SMR)

CH4(g) +H2O(g)↔ CO(g) + 3H2(g) (1.1) 206

CO(g) +H2O(g)↔ CO2(g) +H2(g) (1.2) -41

CH4(g) + 2H2O(g)↔ CO2(g) + 4H2(g) (1.3) 165

Partial oxidation (POX)

CH4(g) + 0.5O2(g)↔ CO(g) + 2H2(g) (1.4) -38

The chemical composition of natural gas varies according to the source, with the

principal component being methane with small amounts of low molecular weight hydro-

-10-



1.2. Hydrogen as energy carrier

carbons, nitrogen and CO2. Small amounts of sulphur such as H2S, COS or other or-

ganic sulphur compounds are also usually present in NG, which have to be removed if

the gas is to be used as feed gas for steam reforming, a natural gas conversion route

discussed later in this section, due to its poisonous effect on the reforming catalysts.

There are two main reaction routes for conversion of methane to synthesis gas, i.e.

steam reforming and partial oxidation. The reactions are listed in Table 1.2.

Steam methane reforming (SMR)

Steam reforming is a mature technology, which has been used industrially for several

decades since its early developments in 1926 [18]. The reforming reactions, Eqs. (1.1-

1.3), are normally carried out at 700-900◦C and 15-30 bar, with nickel supported on

a metal oxide, e.g. Ni/Al2O3, as the most preferred catalyst due to its cost efficiency.

Rhodium, which also is used for catalyzing reforming reactions, has a lower tendency

towards coking than nickel systems, but is a much more expensive catalyst. Steam is

normally introduced in excess of the stoichiometric requirement, with typical steam-

to-carbon-ratios (S/C) of 2-5, to promote the reforming reactions and avoid carbon

deposition on the catalyst. Carbon can be formed through direct decomposition of

methane, Eq.(1.5), or by the Boudouard reaction in Eq.(1.6):

CH4(g)↔ 2H2(g) + C(s) (1.5)

2CO(g)↔ CO2(g) + C(s) (1.6)

Conventional steam methane reforming is carried out in multiple fixed bed tubes placed

in a furnace. Heat is supplied indirectly to the tubes by burning natural gas in the

furnace.

Partial oxidation (POX)

Partial oxidation, Eq.(1.4), is a slightly exothermic reaction, which occurs when the

oxygen-to-carbon ratio is less than required for total oxidation to CO2 and steam.

This reaction may be non-catalytic or use a catalyst for catalytic partial oxidation

(CPO), typically nickel on a metal oxide support. Without a catalyst present a reaction

temperature over 1000◦C is required, hence increasing coke formation due to methane

decomposition, Eq.(1.5), and the need of expensive construction material for the reactor.
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By comparing Eq.(1.4) with Eq.(1.1) it can be seen that less hydrogen is produced per

mole methane for the POX reaction.

Autothermal reforming (ATR)

Autothermal reforming is a combination of partial oxidation and steam reforming. By

mixing fuel, air/oxygen and steam, the heat required for the endothermic steam re-

forming is supplied by heat generated from oxidation reactions, hence operating at

thermal neutral conditions. This eliminates the need of external heat addition, used in

conventional steam reforming, where heat is supplied indirectly by burning fuel outside

the reactor in a furnace. However, it will require pure oxygen to be supplied to the

reactor in order to avoid diluting the hydrogen with nitrogen from the air. At present,

production of pure oxygen is both expensive and energy intensive, but ATR is likely to

be more attractive in the future when stricter CO2 emission regulations are established

by law. Then, in a pre-combustion system, relatively pure CO2 is obtained ready for

storage without any additional purification step required downstream.

High purity hydrogen

Regardless of reforming technology, additional process units downstream are required

to further increase the hydrogen yield and upgrade the product quality. Figure 1.3

shows a schematic drawing of the total process for production of high purity hydrogen.

The product gas from the reformer contains carbon monoxide at relative high con-

centrations, which is reduced by the water gas shift (WGS) reaction where CO is reacted

with steam to produce carbon dioxide and additional hydrogen. This is often done in

two stages; the high temperature shift (HTS) and the low temperature shift (LTS). Most

HTS reactors operate at about 350-400◦C, and the catalyst used is often Fe-Cr-based.

The LTS converter enables increased hydrogen yield by further moving the water gas

shift equilibrium in favour of H2 at lower temperatures (∼200◦C). Cu-based catalysts

are often preferred here. After H2O is removed from the WGS product gas by con-

densation, the primary diluent is carbon dioxide. CO2 can be removed in many ways,

where scrubbing with an appropriate amine solution, such as MEA, being commonly

used in the industry [19]. Table 1.3 shows typical concentrations of the gas streams in

Figure 1.3 from steam methane reforming (F1) followed by WGS (F2) and CO2 amine

scrubbing (F3) [20].
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Figure 1.3: Process steps for high purity hydrogen production.

Table 1.3: Composition of gas streams in hydrogen production route [20]

Compound F1 [dry %] F2 [dry %] F3 [dry %]

H2 76 87.3 98.2
CO2 10 10.7 0.01
CO 12 0.7 0.3
CH4 1.3 1.3 1.5

Pressure swing adsorption (PSA) could also be used for obtaining high purity hy-

drogen. The PSA process reduces the number of units by replacing the LTS and CO2

scrubber unit. The hydrogen purity is typically greater than 99%. However, there is a

significant loss of hydrogen (∼20%) in the purge stream as a result of the countercur-

rent depressurization of impurities from the adsorbent. Other alternative separation

processes, such as cryogenic fractionation and membrane separation, are currently not

regarded competitive for industrial purpose. Figure 1.3 indicates a final purification

step, and the process chosen is very dependent on the hydrogen purity requirement. If

the hydrogen is used for combustion, this final step could be eliminated. However, if the

hydrogen is to be used for a low temperature fuel cell application, a CO content lower

than 50 ppm must be achieved. Methanation, selective oxidation or oxygen assisted

water gas shift reaction are alternatives for reducing the CO content to this level.

-13-



Chapter 1. Introduction

1.3 Purpose

Novel concepts for hydrogen production from fossil fuels with CO2 capture are emerging.

Sorption-enhanced steam methane reforming (SE-SMR) is an example of such a concept.

When a CO2-acceptor (e.g. CaO) is mixed with a reforming catalyst, the CO2 in the

synthesis gas mixture is removed as soon as it is formed, causing the reforming and water

gas shift reactions to proceed beyond the conventional thermodynamic limits. Moreover,

when CO2 is captured in situ, high purity CO2 can be obtained from regeneration of

the sorbent, eliminating costly separation steps downstream.

1.3.1 Thesis scope

Work related to SE-SMR to date, has mostly been conducted in small scale fixed bed

reactors. However, fixed bed reactors are unlikely to be applied for the SE-SMR process

on an industrial scale where continuous regeneration of sorbent is required. This work

has been focusing on SE-SMR in fluidized bed reactors. Fluidized bed reactors are

common in processes where catalysts must be continuously regenerated, and they also

facilitate heat transfer, temperature uniformity and higher catalyst effectiveness fac-

tors. The ”philosophy” behind this work has been to combine experimental work with

modeling to obtain a detailed understanding of the continuous nature of the SE-SMR

process in a fluidized bed reactor configuration. The results from experimental inves-

tigations of particle properties (micro model) are used as input for modeling of the

fluidized bed reactor (macro model). The output from such a macro model can then be

used for sensitivity analysis of the total process, and ultimately provide target values

for sorbent properties, such as reaction rate and chemical stability, and be useful for

the screening of new sorbents.

1.3.2 Thesis outline

The structure of the thesis can be related to the micro and macro scale of the process.

Chapter 2 contains a comprehensive literature overview of SE-SMR, covering sorbent

characteristics and reactor concepts. Chapter 3 deals with particle properties, such as

kinetics, chemical and mechanical stability of the CO2-acceptor. Also in this chapter, a

carbonation rate expression is derived and kinetic parameters are found from fitting of

experimental data. Arctic dolomite is the primary sorbent investigated, but potential
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new synthetic sorbents for SE-SMR are also investigated, and this is discussed in this

chapter. In chapter 4, a bubbling fluidized bed reactor is investigated and its feasibility

as a reactor for SE-SMR is discussed based on experimental findings. Chapter 5 deals

with the whole process on a macro scale. Two interconnected bubbling fluidized beds

are modeled using a two-phase bubbling bed model. Key parameters such as hydrogen

purity, carbon capture efficiency and reformer efficiency are calculated from mole and

energy balances. Experimentally derived carbonation kinetics, found in chapter 3, are

used as input to the model. The major findings of the thesis are summarized in chapter

6, together with recommendations for future work.

1.3.3 List of publications

A list of international journal papers published during this work is presented below.

The papers are found in Appendix D.

I Johnsen, K., Ryu, H-J., Grace, J.R., Lim, J. Sorption-enhanced steam reforming

of methane in a fluidized bed reactor with dolomite as CO2-acceptor, Chemical

Engineering Science, 61:1195-1202, 2006

II Johnsen, K., Grace, J.R., Elnashaie, S.S.E.H., Kolbeinsen, L., Eriksen, D. Model-

ing of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor,

Industrial & Engineering Chemistry Research, 45:4133-4144, 2006

III Johnsen, K., Grace, J.R. High-temperature attrition of sorbents and catalyst for

sorption-enhanced steam methane reforming in fluidized bed reactors, submitted

to Powder Technology

Paper I contains the results of the experimental work conducted at University of

British Columbia in Vancouver during my five months stay at the Fluidization Research

Center, Department of Chemical and Biological Engineering in 2004. Paper II contains

modeling results from a dual fluidized bubbling bed reactor, and is a follow-up paper

discussing reactor configuration and operational issues for the SE-SMR process.

Paper III considers mechanical attrition of sorbent and catalyst in fluidization environ-

ments, using a gas jet attrition test.

In addition to the journal papers, the following conference contributions have been

made:
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• Johnsen, K., Grace, J.R., Kolbeinsen, L. and Eriksen, D. Sorption-enhanced

steam methane reforming in fluidized bed reactors, AIChE Annual Meeting, Cincin-

nati, 29th October-4th November 2005

• Johnsen, K., Meyer, J. and Yi, K.B. The selection, preparation and study of

high temperature novel CO2 sorbents for sorption-enhanced reforming, 8th Inter-

national Conference on Greenhouse Gas Control Technologies, Trondheim, 19th-

22nd June 2006
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Chapter 2

Sorption-enhanced steam methane

reforming: An overview

Although steam methane reforming (SMR) is a mature technology that has been suc-

cessfully used for decades in industrial large-scale hydrogen production, there are sev-

eral aspects of the process that could be improved. Sorption-enhanced steam methane

reforming (SE-SMR) represent a novel hydrogen production route that combines reac-

tion and separation of CO2 in a single step, breaking the thermodynamic limitation of

conventional SMR. This chapter treats, in turn, methods for improving the SMR per-

formance, thermodynamic analysis of SE-SMR, potential CO2-acceptors for SE-SMR,

and ends with reactor concept considerations.

2.1 Improving the SMR performance

During the last decades efforts have been made to make more efficient catalysts with

higher reaction rates and increased resistance to carbon deposition. However, one of the

major limitations is that the SMR reaction itself is limited by equilibrium conversion.

There are currently a number of novel concepts for enhanced hydrogen production

emerging in literature, that are based on shifting the equilibrium of conventional steam

reforming to more favorable hydrogen yields.
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2.1.1 Problems associated with conventional reforming

Conventional fixed bed reformers suffer from a number of limitations, making them

inefficient [21, 22]. Improvements to the SMR process have been proposed in three

major areas:

• Changing the reactor’s operation from a fixed bed to a fluidized bed

• Changing the heat supply from external firing to direct heating

• Separation of one of the reaction products to drive the reaction beyond its thermo-

dynamic equilibrium

In conventional steam reforming, the very endothermic reforming reaction is carried

out in tubes layed out in a furnace. Heat is supplied to the tubes by burning natural

gas in the furnace chamber. When heat is transferred from the furnace to the catalyst,

the outer sections of the packed bed tend to insulate the inner sections, making the heat

transfer inefficient. The catalyst is therefore packed in long narrow tubes of very costly

superalloys, which contributes to increased production cost of hydrogen. In order to

avoid excessive pressure drop along the fixed bed reformer tubes, relatively large catalyst

pellets are used, causing catalyst intraparticle diffusion limitations. Elnashaie and Adris

[23] were the first to propose the use of a bubbling fluidized bed steam reformer using

a powdered catalyst, in order to overcome the diffusional limitations of the catalyst

pellets. Fluidized beds offer good heat transfer between particles and the fluidizing gas,

caused by the circulation of solids acting as internal heat carrier in the bed. Moreover,

fluidized beds are excellent reactors for in situ oxidation of methane, providing heat

for endothermic reforming reactions. Roy et al. [24] demonstrated that oxygen can be

successfully introduced to a reforming fluidized bed providing the endothermic heat of

reaction.

One of the most serious constraints of SMR relates to conversion of methane, which

is limited by the thermodynamic equilibrium of the reversible reactions. For fixed

bed reformers, reaction temperature has to be in the region of 800-900◦C to achieve

complete conversion of methane. At this elevated temperature the catalyst suffers

deactivation due to carbon formation, also resulting in blockage of reformer tubes and

increased pressure drops [25]. The thermodynamic equilibrium can be shifted to give

more favorable yields at lower temperatures by removing either hydrogen or carbon

dioxide.
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2.1.2 Membrane enhancement

According to Le Chatelier’s principle, the conversion of a reactant is increased when

one of the reaction products is selectively removed from the gas mixture. Pure hy-

drogen can be extracted from the reformer reactor by perm-selective membranes made

of palladium or its alloys. Nazarkina and Kirichenko [26] were the first to investigate

the membrane selective separation technique for the reforming reactions. They used a

fixed bed configuration with a palladium alloy as H2-selective membrane at a reaction

temperature of 700◦C. The results showed a considerable shift in the thermodynamic

equilibrium towards high reaction conversions, and very pure hydrogen was obtained

on the membrane side. During the early 1990’s, Adris et al. [27] investigated a fluidized

bed reactor with immersed composite hydrogen perm-selective membranes, as a second

generation fluidized bed reformer for further enhancement of the reforming reactions.

Adris and Adris et al. further studied, validated and patented the Fluidized Bed Mem-

brane Reformer (FBMR) after building a pilot plant and undertaking experimental and

modeling studies of the system [28, 29, 30].

2.1.3 Sorption enhancement

Another way of shifting the equilibrium is by adding a CO2-acceptor to the reactor,

capturing carbon dioxide as it is formed, e.g. by CaO:

CaO(s) + CO2(g)↔ CaCO3(s) ∆H0
298 = −178 kJ/mole (2.1)

Carbon dioxide is then converted to a solid carbonate, shifting the reversible reforming,

Eq.(1.1), and water gas shift, Eq.(1.2), reactions beyond their conventional thermo-

dynamic limits. In this concept, catalyst and sorbent are mixed in the reformer, where

sorption-enhanced steam reforming is performed. The combined chemical reactions are

approximately thermally neutral. The product gas from the reformer mainly consists

of H2 and H2O, with minor quantities of CO, CO2 and unconverted CH4. Carbonated

sorbent is transferred to the regenerator where heat is supplied for the endothermic

calcination reaction. Regeneration of the sorbent releases relatively pure CO2 suitable

for storage. A schematic illustration of a continuous SE-SMR process based on parallel

fluidized bed reactors appears in Figure 2.1. A make-up stream of fresh sorbent must

be included to maintain capture capacity. This addition could be to the calciner, with
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withdrawal in the reformer, as indicated in Figure 2.1.

Figure 2.1: Simplified schematic of the sorption-enhanced SMR process.

The concept of a combined reaction and separation in hydrogen production is not

new. Rostrup-Nielsen [31] reports that the first description of addition of a CO2-

acceptor to a hydrocarbon steam reforming reactor was published in 1868 (by Tessie

du Motay and Marechal). In 1933, Williams [32] was granted a patent for a process in

which steam and methane react in the presence of limestone and catalyst to produce

hydrogen at a pressure in the range of 1 to 50 atm and temperatures of 300-550◦C. This

patent discusses a continuous process, where spent oxide is regenerated and sent back

to the reactor for reforming and CO2 removal, but limited data on the performance

of the system is published. In 1963, Gorin and Retallick [33] patented a fluidized bed

process using reforming catalyst and CO2-acceptor. In their proposed reactor configu-

ration, the catalyst is separated from the acceptor (CaCO3) prior to regenerating the

lime. The reaction vessel is divided into a hydrogen production zone and a regener-

ation zone, connected by a vertical standpipe. The reforming catalyst is packed as a

fixed bed in such a way that interstices exist between the particles in order to make
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acceptor particles circulate within the interstices. The catalyst particles ranged from

6.4 to 12.7 mm, while the acceptor particles ranged from 0.074 mm to 2.4 mm. The

production zone is maintained at 760◦C and 12.7 atm, while regeneration is accom-

plished at 925◦C to 1100◦C. Brun-Tsekhovoi et al. [34] described a similar process with

continuous regeneration of a dolomite as CO2-acceptor. The process was studied in a

0.1 m diameter fluidized bed reactor containing relatively large sized acceptor particles,

facilitating separation from the catalyst. Pilot plant runs were conducted at 20 atm

and temperatures around 600◦C with catalyst and acceptor particles of 0.25 and 1.3

mm, respectively. A hydrogen content of 98% (dry basis) was reported, together with

potential energy savings of about 20% compared to the conventional SMR process.

More recently, the sorption-enhanced reforming reaction and the use of calcium-

based CO2 sorbents has been demonstrated and intensively studied by a group at

Louisiana State University (USA) resulting in several published papers [35, 36, 37,

38, 39, 40]. For example, Han and Harrison [35] used CaO to capture CO2, overcom-

ing the equilibrium limitation and achieving complete CO conversion. Dolomite was

used as precursor and the combined shift and carbonation reactions were studied in

a laboratory-scale fixed bed reactor. Balasubramanian et al. [39] added a calcium-

based CO2-acceptor to a commercial steam reforming catalyst producing >95% H2 in

a laboratory-scale fixed bed reactor. The effect of temperature, steam-to-carbon ratio,

acceptor-to-catalyst ratio and feed gas flow rate were investigated. The combined re-

actions were sufficiently rapid above 550◦C that equilibrium was closely approached at

all reaction conditions studied.

Sorption enhancement can also be achieved with materials where an adsorption of

CO2 to form a weak bound to the adsorbent takes place. An example of such a type

of material is hydrotalcite. For these materials to adsorb, a lower temperature must be

applied, typically 400-450◦C. Hufton et al. [41] have developed a novel concept called

Sorption Enhanced Reaction Process (SERP) for hydrogen production, which uses a

fixed packed column of an admixture of a SMR catalyst and a chemisorbent to remove

carbon dioxide selectively from the reaction zone. Here the sorbent is periodically re-

generated using the principle of pressure swing adsorption. The SERP process steps

allow direct production of high-purity hydrogen (>95 mole%) at high methane to hy-

drogen conversion (>80%) with dilute methane (<5 mole%) and trace carbon oxide

impurities (50 ppm) at a low temperature of 450◦C.
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2.2 Thermodynamic analysis

The advantages of combining chemical reaction and separation in one step can be

understood from a thermodynamic analysis of the reactions, summarized below:

Reforming: CH4(g) +H2O(g)↔ CO(g) + 3H2(g) (2.2)

Shift: CO(g) +H2O(g)↔ CO2(g) +H2(g) (2.3)

Carbonation: CaO(s) + CO2(g)↔ CaCO3(s) (2.4)

Overall: CH4(g) + 2H2O(g) + CaO(s)↔ CaCO3(s) + 4H2(g) (2.5)

Calcination/Regeneration: CaCO3(s)↔ CaO(s) + CO2(g) (2.6)

A metal oxide, here CaO, is added to the reforming reactions, and the oxide will react

with CO2 and form a metal carbonate. CaO can also react with steam according to:

CaO(s) +H2O(g)↔ Ca(OH)2(s) (2.7)

However, the equilibrium partial pressure for H2O equals 1 atm at ∼450◦C, and the

hydration reaction is not thermodynamically favored at typical SE-SMR reaction cond-

tions at atmospheric pressure.

Figure 2.2 shows the equilibrium hydrogen concentration as a function of reaction

temperature at ambient pressure, a molar CaO/CH4 ratio of 2, and a steam-to-carbon

molar ratio (S/C) of 3. The predictions are calculated with the HSC thermodynamic

software package (HSC Chemistry 5.1, Outokumpu Research Oy, Finland). The hydro-

gen concentration is predicted to reach a maximum of ∼98 mole% at ∼600◦C, whereas

the equilibrium concentration of conventional steam reforming is only ∼74% at that

temperature. The figure shows that sorption enhancement allows lower reaction temper-

atures, which may reduce catalyst coking and sintering, enabling use of less expensive

reactor wall materials. In addition, the heat released by the exothermic carbonation

reaction supplies most of the heat required by the endothermic reforming reaction. A

H2 concentration of more than 95% can be obtained for reaction temperatures in the

range of 450-650◦C, which makes the process rather flexible and insensitive to temper-

ature fluctuations. Low reaction temperatures favor the water gas shift reaction, and

low CO equilibrium concentrations. Yi and Harrison [40] operated at temperatures as
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Figure 2.2: Hydrogen content at equilibrium as a function of temperature for a pres-
sure of 1 atm, a S/C-ratio of 3 and a CaO/CH4 molar ratio of 2 (calculated from HSC
Chemistry 5.1, Outokumpu Research Oy).

low as 400-460◦C producing 96 mole% H2 and CO concentrations as low as 7 ppmv

(dry basis), showing the potential of integrating an atmospheric PEM fuel cell with the

SE-SMR process.

The hydrogen concentration drops at reaction temperatures above 650◦C, due to the

reverse calcination reaction. For pure CO2, the decomposition temperature is ∼900◦C,

and calcination should therefore be performed in an inert atmosphere reducing the

decomposition temperature. Figure 2.3 shows the equilibrium partial pressure of CO2

as a function of calcination temperature, calculated from an equation proposed by Baker

[42]:

PCO2,eq =
1

KCO2,eq
= 107.079− 8308

T (atm) (2.8)
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Figure 2.3: Equilibrium pressure of CO2 over a CaO/CaCO3-mixture as a function of
temperature (based on an equation proposed by Baker [42]).
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Figure 2.4: Hydrogen content at equilibrium as a function of temperature at different
pressures, S/C=4, CH4:CaO=1:2 (calculated from HSC Chemistry 5.1, Outokumpu
Research Oy).

Figure 2.4 shows the variation of the H2 concentration in the product gas as a

function of the temperature at different pressures. The maximum H2 concentration

decreases as the pressure increases and it reaches values over 95% for pressures up to 15

bar. Moreover, the higher the pressure the higher is the temperature of the maximum

H2-yield point. From a thermodynamic point of view, operating the process at low

pressure is advantageous for obtaining very high hydrogen concentrations (> 98%) at

relatively low temperatures. However, from a reaction kinetic point of view and the

size of reactors, high-pressure operation is advantageous.
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2.3 CO2-acceptors

There are a number of criteria that should be fulfilled when evaluating potential sorbents
for the SE-SMR process:

• High reaction rate (in the temperature range of 450-650◦C)

• Sorbent stability

– reversible CO2 uptake/release

– long term multi-cycle use

– mechanical and thermal stability

• Small temperature gap between reaction and regeneration

– energy saving

– preventing thermal shock

• Low price and availability

• High sorption capacity

To date, no sorbents satisfy all these requirements. The sorbents that are mostly studied

in the literature can be divided into natural and synthetic sorbents and are listed in

Table 2.1. A detailed discussion on the different sorbents is provided in the following

subsections.

2.3.1 Natural sorbents

Limestone and dolomite precursors are readily available world wide at low cost, and

have been intensively studied because of their potential use for high temperature CO2

capture and for SE-SMR, since proposed in the early works of Williams [32] and Gorin

and Retallick [33]. A number of works, including Dedman and Owen [47], Bhatia and

Perlmutter [48] and Silaban and Harrison [36], report that the carbonation reaction

is rapid during the early stages, but undergoes an abrupt transition and becomes ex-

tremely slow before complete CaO conversion is achieved. Initial carbonation occurs

preferentially near the exterior of the CaO particle and the surface porosity and perm-

ability may approach zero, thereby drastically reducing the rate at which CO2 can reach

unreacted CaO at the interior of the particle.
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Table 2.1: Stoichiometric capacities and regeneration temperatures for various
sorbents

Sorbent
Stoich. capacity
[g CO2/g sorbent]

Regeneration
temperature [◦C]

Limestone (CaCO3) 0.79 900a

Dolomite
(CaCO3×MgCO3)

0.46 900a

Huntite
(CaCO3×3MgCO3)

0.25 900a

Hydrotalcite 0.029 b 400 c

Lithium orthosilicate
(Li4SiO4)

0.37 750d

Lithium zirconate
(Li2ZrO3)

0.29 690 e

Sodium zirconate
(Na2ZrO3)

0.24 790 f

a Temperature at which CO2 equilibrium pressure is 1 bar [42]
b A capacity of 0.65 mole CO2/kg, reported by Ding and Alpay [43]
c Regeneration is performed using pressure swing
d Reported by Essaki and Kato [44]
e Experimental findings of Yi and Eriksen [45] (regenerated in pure nitrogen)
f Experimental findings of López-Ortiz et al. [46] (regenerated in air)

The main problem associated with calcium-based absorbents is their rapid decay in

capacity upon multiple re-carbonation. In principle, the pore volume created by the

release of CO2 during calcination should be sufficient to permit complete re-carbonation

when the reaction is reversed. Sintering at high calcination temperatures tends to limit

carbonation. Han and Harrison [35] report dolomite (CaCO3×MgCO3) as a superior

sorbent compared to limestone, with higher achievable fractional conversion of CaO

and better multi-cycle performance than that of limestone, although limestone has a

greater CO2 capacity per unit mass. The advantage of dolomite is attributed to the dif-

ferences between the structural properties of calcined dolomite and calcined limestone.

Initial calcination produces complete decomposition so that dolomite is converted to

CaO×MgO, while limestone is converted to CaO. Carbonation conditions were such

that CaO, but not MgO, reacted with CO2, and half-calcined dolomite (CaCO3×MgO)

was the product. The extra pore volume created by MgCO3 decomposition is thought
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to be responsible for the more favorable cycling performance. This stabilizing effect of

inert MgO has been further studied by Bandi et al. [49], using other dolomite class

minerals such as ankerite, barytocalcite, strontiantite and huntite. They found that

the capacity losses after 45 cycles were approximately 60% for calcite, 40% for dolomite

and less than 20% for huntite. In the case of huntite, each CO2 absorption center

(CaO) is surrounded by three MgO molecules, which do not participate in the absorp-

tion/desorption cycles but clearly attributes to improved multi-cycling capacity. The

disadvantage of sorbents with large inactive parts is the increased energy demand for

regeneration, as the inactive parts will be heated up during regeneration.

Abanades and Alvarez [13] have investigated the use of limestone as CO2 regener-

able sorbents by studying the maximum carbonation conversion during many carbon-

ation/calcination cycles. In addition to their own data, they compared and reviewed

previously published data from different sources. They found an unavoidable decay in

activity that almost exclusively depended on the number of carbonation/calcination

cycles, and to a lesser extent, on the reaction conditions. In additon, they found from

some of the experimental series that the decay in conversion was much more rapid

where severe sintering conditions were used during calcination. Silaban and Harrison

[36] report that high temperature and presence of CO2 in the calcination atmosphere

affect the carbonation negatively. However, Ortiz and Harrison [38] report no signifi-

cant difference in loss of multi-cycle durability for different regeneration atmospheres,

using dolomite as sorbent, except when regeneration was carried out in pure nitrogen

at 950◦C.

Large quantities of limestone make-up are required in order to maintain capture

capacity at an acceptable level, which can be justified to a certain extent due to the

availability of low cost limestones. However, large make-up streams cause large amount

of solid handling, therefore, attempts to improve multi-cycle durability have been made.

For example, Salvador et al. [50] studied the use of Na2CO3 and NaCl to reactivate lime

and enhance CO2 capture in a fluidized bed combustor (FBC). Addition of both dopants

failed to reactivate the CaO in the FBC environment, but doping with NaCl showed sig-

nificant improvements in performance in a TGA reactor after several cycles. The reason

for the different results in the two experimental set-ups is unclear. Also, according to

the findings of Gullet and Bruce [51], a reaction pathway involving intermediate hydra-

tion would affect the chemical and physical properties of Ca-based sorbents. According

to Kuramoto et al. [52], an intermediate hydration treatment was found to enhance the
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reactivity and durability of Ca-based sorbents in their HyPr-RING process (hydrogen

production by reactions integrated novel gasification). The presence of eutectics in the

CaO-Ca(OH)2-CaCO3 ternary system was observed at elevated pressures at 923 and

973 K. Intermediate hydration was also carried out at atmospheric conditions, by a

liquid-phsae hydration stage, where the sample was cooled to room temperature after

calcination. This hydration step will, however, complicate the process layout.

Natural limestones and dolomites often contain trace amounts of sulphur, which is

considered to be a severe catalyst poison. This calls for additional upstream process

equipment for removing poisonous sulphur compounds before the sorbent is mixed with

the catalyst, also complicating the process layout.

Also listed in Table 2.1 is the hydrotalcite (HTC), which is an anionic clay consist-

ing of positively charged layers of metal oxide (or metal hydroxide) with inter-layers

of anions, such as carbonate. The suitability of HTC as high-temperature CO2 sor-

bent relates to the strong basic sites at the surface of the structure, which favors the

adsorption of the acidic CO2 according to the Lewis acid-base theory [53]. These mate-

rials capture carbon dioxide at a somewhat lower temperature than the metal oxides, at

around 400◦C, and regeneration is done at the same temperature using a pressure swing

technique. Hydrotalcites are very stable under operation and do not lose capacity as

CaO does, but the adsorption capacity is very poor, most likely restricting its potential

as a sorbent on an industrial scale.

2.3.2 Synthetic sorbents

As limestones and dolomites fail to withstand numerous carbonation-calcination cycles,

novel synthetic sorbents with potential high multi-cycle durability have become a sub-

ject of a number of recent investigations. Nakagawa and Ohashi [54] reported lithium

zirconate (Li2ZrO3) as a promising sorbent capturing CO2 over a temperature range of

450-550◦C.

Li2ZrO3(s) + CO2(g)↔ Li2CO3(s) + ZrO2(s) ∆H0
298 = −163 kJ/mole (2.9)

Doping of lithium zirconate with sodium carbonate and/or potassium carbonate is re-

ported to enhance the rate of reaction. This is attributed to the formation of an eutectic

molten carbonate that reduces CO2 diffusion resistance [55]. To date, the reported rate

of reaction has been too slow to compete with calcium-based sorbents. However, efforts
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are made to further increase the kinetics by modifying the preparation method. Yi and

Eriksen [45] prepared Li2ZrO3 using a liquid based precipitation method, and found

the CO2 sorption rate to be ten times faster than for a solid-state preparation method.

The precipitated Li2ZrO3 possessed a very small average aggregate size of 40 nm, which

was believed to be responsible for the enhanced reaction rate. However, the reaction

rate decreased significantly as the CO2 partial pressure was reduced below 0.3 bar.

Three absorption-desorption cycles were carried out, and both the reaction rate and

the capacity were almost unchanged. Low reaction rates for Li2ZrO3 at low CO2 partial

pressures were also reported by Ochoa-Fernández et al. [56]. They simulated SE-SMR

in a fixed bed reactor configuration using a reaction rate expression obtained from an

oscillating microbalance. In addition to relatively slow reaction kinetics, lithium zir-

conate has the disadvantage of being a rather heavy material (low weight capacity) and

also costly.

Kato and Nakagawa [57] studied a series of lithium silicates, as silicon dioxide (SiO2)

is an abundant material with light molecular weight. Replacing ZrO2 with SiO2 results

in a reduced weight by 23%. The reversible reaction for CO2 absorption by lithium

orthosilicate (Li4SiO4) is described by the reaction:

Li4SiO4(s)+CO2(g)↔ Li2SiO3(s)+Li2CO3(s) ∆H0
298 = −142 kJ/mole (2.10)

Kato et al. [58] claims lithium orthosilicate to be superior of lithium zirconate in terms

of reaction rate, and report a reaction rate 30 times faster in 20% CO2 at atmospheric

pressure. Sodium-based sorbents are proposed as an alternative to the lithium sorbents.

López-Ortiz et al. [46] compared the sorption rate of sodium zirconate (Na2ZrO3) to

Li4SiO4 and Li2ZrO3 in a thermo gravimetric reactor at 600◦C, and found Na2ZrO3 to

have the highest reaction rate. However, regeneration was not easily achieved, which

may limit the use of this sorbent for the SE-SMR process.

As the use of natural sorbents are limited by the loss of capacity upon multiple

sorption-desorption steps, the introduction of synthetic sorbents seems to be mainly

restricted by the reaction rate and cost. Different synthesis techniques are currently

being investigated in order to ”design” nano-sized particles with large surface areas.

The cost of these sorbents will be dependent on both the compounds used and the

preparation method. It is obvious that the cost of these sorbents will be significantly

greater than for limestone and dolomite sorbents, and this will require them to sustain
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∼10,000 cycles to compete with natural sorbents [59]. At present, there are no multi-

cycle data covering more than approximately 100 sorption-desorption cycles published.

Recently, a US company named Cabot Superior MicroPowders, claim they can syn-

thesize artificial limestone and dolomite that do not degrade upon multi-cycling using

a spray-based powder technique [60]. Unfortunately, there are very little experimental

data published in the open literature yet on these synthetic calcium-based sorbents.
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2.4 Reactor concepts

Interestingly, the original proposed patents and early works on sorption-enhanced re-

forming were based on fluidized bed reactors (e.g. Gorin and Retallick [33]), while

recent experimental investigations have been conducted in small-scale fixed bed reac-

tors. Useful data such as reaction rates, multi-cycle behavior and the effect of different

operational parameters (e.g. S/C-ratios, sorbent-to-catalyst ratios, temperature etc.)

on the combined reactions have been reported. However, fixed bed reactors will most

likely not be applied for the SE-SMR process on an industrial scale where continuous

regeneration of sorbent is required. For fixed beds to be applied, at least two reactors

need to be operated alternatively and out of phase in reforming and sorbent regener-

ation modes. Synchronization of two reactors in different modes is likely to be very

difficult as the sorbent capacity decreases with cycling, and there will be a mismatch

between the production time and the regeneration time.

Several aspects of SE-SMR that have been extensively studied in fixed bed reactors

in literature, like multi-cycle stability of sorbents, do not necessarily apply for fluidized

beds. In a fixed bed batch reactor the whole sorbent should be utilized before switching

to regeneration mode, while in a continuous system the degree of conversion will be

dependent on solid residence time in the vessel. Moreover, the mechanical stability of

the sorbent will important as fluidization will cause particle attrition and generation of

fines.

2.4.1 Fluidized beds

Fluidized beds have a number of advantageous properties for industrial applications,

such as good mixing of solids, good temperature control and transfer of particles be-

tween reactors making continuous operation possible. Some of these advantageous

properties, relative to fixed bed reactors, are listed in Table 2.2. A possible reason for

fixed beds being the predominant reactor configuration studied is that fluidized beds

in general are considered a relatively immature reactor technology.

Fluidization occurs when solid particles are suspended in an upward flowing stream

of fluid, which is either a liquid or a gas (only gas is considered here). A distributor

plate distributes the gas evenly over the reactor cross section and at the same time

acts as a support for the bed material. Fluidized beds can be operated in different flow

regimes, e.g. in bubbling or fast fluidization, dependent on the velocity of the fluidizing
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Table 2.2: Comparison of fluidized beds relative to fixed bed reactors [61]

Advantages relative to fixed beds Disadvantages relative to fixed beds

Temperature uniformity (no hot spots)
Gas by-passing (limited gas-solid

contacting)
Excellent bed-to-surface heat transfer Substantial backmixing

Able to add/remove particles
continuously

Attrition (wear/erosion)

Low pressure drops Entrainment
Wide size distribution of particles Design and scale-up are more complex

Figure 2.5: Fluidization regimes [62].

gas, as illustrated in Figure 2.5. The choice of operation conditions is dependent on

the rate of reactions. For fast reactions, high-velocity fluidization, i.e. the fast fluidized

regime is likely to be used. For slow reactions, operation in the low-velocity bubbling

fluidization regime should be used. Both low and high velocity operations of fluidized

beds can be conducted in a variety of reactor configurations [63].

Two potential fluidized bed reactor configurations have been identified for the SE-

SMR process, shown in Figure 2.6. The dual bubbling bed configuration is inspired by
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an early reactor configuration for fluid catalytic cracking (FCC) proposed by Exxon and

described by Kunii and Levenspiel [64]. As highly active FCC catalysts were developed

in the 1960s, upflow riser-crackers with higher gas throughputs replaced the bubbling

bed reactor configuration.

Figure 2.6: Proposed reactor configurations [64].

In the bubbling bed-bubbling bed configuration, solids are transferred between the

reformer and regenerator/calciner by utilizing the difference in static pressure. The

superficial gas velocity is kept at a moderate rate (typically 0.1-1 m/s) and both re-

actors are operating in the bubbling regime. In the other proposed reactor concept,

the bubbling bed reformer is replaced by a riser. The fast fluidized bed-bubbling bed

configuration is also referred to as a circulating fluidized bed (CFB). Here the gas ve-
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locity is increased so that the particles are transported with the gas in the riser where

reforming is occurring. The regenerator is also here a bubbling bed type of reactor.

Typical gas velocities in the riser are in the range of 2-10 m/s. Therefore, the residence

time in the riser is much lower than for the bubbling bed, requiring high reaction rate

of reforming/carbonation. Moreover, the high velocity in the riser will also cause me-

chanical degradation of the particles by attrition. On the other hand, CFB reactors are

relatively easy to operate and the gas throughput is much higher than for the bubbling

bed. The choice of configuration should be made based on a number of criteria, and

the most important ones are listed in Table 2.3.

Table 2.3: Comparison of reactor configurations

Parameters
Bubbling bed-
Bubbling bed

Fast fluidized bed-
Bubbling bed

Operation Difficult ”Easy”

Attrition Low High

Gas throughput Low High

Reaction rate
Available at low

reaction rate
High reaction rate required

in riser

Another possible flow regime is turbulent fluidization. This regime is commonly

considered to lie between bubbling fluidization and the fast fluidization regime [65],

and has recently received increased attention because it combines high throughput

with small interphase mass transfer resistance and manageable attrition. Typical gas

velocities are in the range of 0.5-1.5 m/s.
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High reaction rate in diluted CO2 atmosphere, long term chemical and mechanical

stability are important properties for potential CO2-acceptors used in the SE-SMR

process. First in this chapter, the chemical stability of Arctic dolomite, chosen as the

primarty sorbent of investigation, is investigated by thermo gravimetric analysis (TGA)

at various carbonation-calcination conditions. Furthermore, the mechanical stability

with respect to generation of fines is investigated in an air jet attrition unit. Also, a

rate expression, describing the rate of carbonation for the dolomite, has been developed

based on a shrinking core model. In the closing section of the chapter, the multi-cycle

performance of two novel synthetic sorbents, Li2ZrO3 and Na2ZrO3, are investigated

and compared with the dolomite.

3.1 Multi-cycle tests

Arctic dolomite SHB, supplied by Franzefoss A/S, was chosen as the primary sorbent

of investigation, due to the previously reported advantageous properties of dolomites

in general [35]. In addition, X-ray diffraction (XRD) analysis indicated it being free

of sulphur, eliminating the need for any pretreatment. Composition data of Arctic

dolomite are given in Table 3.1.

3.1.1 Experimental

TGA was used to study carbonation/calcination of Arctic dolomite to evaluate its

multi-cycle sorption properties. The principle of TGA is based on measuring the weight
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Table 3.1: Analysis of Arctic dolomite, data from Franzefoss AS

Species CaO MgO SiO2 Al2O3 Fe2O3 Na2O TiO2 K2O
Loss on
ignition

Conc.
[wt%]

32 20.3 0.7 0.1 0.1 0.003 0.005 0.004 46.3

change of solids placed in a gaseous environment at the temperature under study, for a

given length of time. For example, as calcined dolomite is put into a CO2 atmosphere at

temperatures ∼500-650◦C, carbonation of CaO will occur and the weight will increase

as CaCO3 is formed, registered by a micro-balance. The experimental set-up of the

thermo gravimetric analyzer (TGA, CI electronics) is shown in Figure 3.1.

Figure 3.1: Experimental TGA set-up.

The TGA tests were initiated by heating the dolomite to 900◦C in nitrogen for ob-

taining the calcined dolomite form (CaO×MgO), and then cooling down to the desired

carbonation temperature. The flow rate of N2 (99.99%) and CO2 (99.9992%) were con-
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trolled by mass flow controllers (Bronkhorst, EL-FLOW, Digital series). When steam

was used the flow was controlled by a liquid flow controller (Bronkhorst, Liquid flow),

and mixed with the gas flow in a controlled evaporation mixing system (Bronkhorst,

CEM). The gas mixture entered the reactor at top and flowed downward over the solid

sample, before it was vented at the bottom of the reactor.

Several multi-cycle runs using Arctic dolomite as sorbent have been performed.

Table 3.2 lists the reaction conditions for all runs, and these tests are denoted Dolo.

Dolo 1-3 are multi-cycle tests where carbonation and calcination time and atmosphere

were varied. In Dolo 4 the effect of partial carbonation was investigated. A run with

ten cycles, where the dolomite was exposed to 10% CO2 for 80 minutes, was utilized

as a reference case (Dolo 1). Next, a new batch of dolomite was placed in the TG

reactor and exposed to 10% CO2 for only 8 minutes (with 100% N2 for the remaining

72 minutes in order to give the same total time of exposure) for the first 9 cycles, while

for the 10th cycle the carbonation time was 80 minutes (referred to as Dolo 4a, where

Dolo 4b is a reproduction test). The carbonation temperature was 600◦C.

The following relationship has been used for calculating conversion of Arctic dolomite

from thermo gravimetric data:

XCaO(t) =
∆w(t)

w0 · YCaO

YTotal
· (MCaCO3

MCaO
− 1)

=
∆w(t)

w0 · 0.472
(3.1)

where ∆w(t) is the weight increase at any time, w0 is the initial weight of calcined

dolomite, YCaO is the CaO content in the dolomite (from Table 3.1), YTotal = YCaO +

YMgO+YImpurities, MCaO and MCaCO3 are the molecular weights of CaO and CaCO3

respectively.

3.1.2 Results and discussion

Effect of time of exposure

The results of the multi-cycle tests (Dolo 1-3) are presented in Figure 3.2. It can be

seen that the rate of decay is different for the three reaction conditions employed.

Due to problems with the temperature program, the sample Dolo 2 was exposed to

CO2 at calcination conditions (925◦C) for a period of 12 hours rather than 2 hours, at

three stages during the 192 hours run. The sorbent will probably suffer great degra-

dation at this elevated temperature due to sintering, which can explain the very rapid
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Table 3.2: TGA experimental conditions for multi-cycle runs
Carbonation Calcination

Sample
ID

Dp Temp. Atm. Time Temp. Atm. Time
Total
Dura-
tion

Dolo 1
100-

200µm
600◦C

10%CO2

90% N2

80
min.

850◦C 100% N2
80

min.
∼ 46 h

Dolo 2
100-

200µm
850◦C 100%CO2

180
min.

925◦C
100%
CO2

120
min.

∼ 192 h

Dolo 3
100-

200µm
820◦C 100%CO2

20
min.

920◦C
100%
CO2

20
min.

∼ 50 h

Dolo 4aa 100-
200µm

600◦C
10%CO2

90% N2

8
min.b

850◦C 100% N2
80

min.
∼ 46 h

Dolo 5c 100-
200µm

820◦C 100%CO2
20

min.
920◦C

50% N2

50%
H2O

20
min.

∼ 115 h

Dolo 6
100-

200µm
820◦C 100%CO2

20
min.

920◦C

50%
CO2

50%
H2O

20
min.

∼ 70 h

a A reproduction is provided, denoted 4b
b Exposed to nitrogen for 72 minutes after carbonation, giving a total of 80 minutes

at carbonation temperature (making comparison with Dolo 1 possible)
c Initial calcination in 50% H2O/N2 mixture

decay in capacity compared to the two other runs. It is also evident from Figure 3.2

that nitrogen for calcination has a positive effect on the sorbent stability for the first 8

cycles, where Dolo 1 has a greater conversion than Dolo 3. As the number of cycles is

increased further, the sample Dolo 3 shows better resistance to loss of capacity. This

can probably be explained by the difference of 60 minutes in calcination time at elevated

temperature between the samples. Therefore, residence time rather than calcination

atmosphere seems to be more critical when it comes to sintering and loss of sorption

capacity. The total exposure time at elevated calcination temperatures seems to be

critical for the lifetime of the sorbent. Abanades and Alvarez [13] claim the number

of cycles to be the most important factor, which can be explained by the increased

cumulative calcination time. However, from the above findings, their claim of reaction

conditions to influence the decay to a lesser extent could only be true if the sorbents

are calcined for the same amount of time.
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Figure 3.2: Conversion of dolomite as function of carbonation/calcination cycles.
Dolo 1(−�−): Carb.: 600◦C, 10% CO2. Calc.: 850◦C, 100% N2(80 min);
Dolo 2(− • −): Carb.: 850◦C, 100% CO2. Calc.: 925◦C, 100% CO2(120 min);
Dolo 3(−N−): Carb.: 820◦C, 100% CO2. Calc.: 920◦C, 100% CO2 (20 min).

Effect of partial carbonation

In a continuous fluidized bed reformer-calciner system the degree of carbonation is very

dependent on the circulation rate of solids. Therefore, it is interesting to investigate

how partial carbonation affects multi-cycle conversion. The results from a test where

only ∼30% of the sorbent was carbonated are shown in Figure 3.3.

The characteristic decay of conversion as a function of number of cycles is observed

for the reference case Dolo 1, with a final conversion of 48.4% for the 10th cycle. For

Dolo 4, where carbonation time was set to 8 minutes, a small decay in conversion is ob-

served for the 9 first cycles. This is probably due to a somewhat slower reaction kinetics

as the number of cycles is increased. When carbonation was allowed to proceed for 80
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Figure 3.3: Effect of partial conversion on the multi-cycle capacity of dolomite. Car-
bonation at 600◦C in 10% CO2 for 80 min and 8 min for Dolo 1 and Dolo 4, respectively,
for the 9 first cycles. Carbonation for 80 minutes in the 10th cycle for both Dolo 1 and
Dolo 4. Calcination in pure N2 at 850◦C.

minutes in the 10th cycle, the CaO conversion increased to 77.4% and 82.2% for Dolo

4a and Dolo 4b respectively, which is significantly higher than the observed conversion

of 44.8% of Dolo 1 after the same number of cycles. The sorbent conversion appears to

be strongly dependent on the carbonation history of the sample, with partial carbona-

tion of the sorbent being favorable for maintaining the sorption capacity. The reason

for this may be attributed to structural properties of the dolomite, which experiences

mechanical stress when alternating between the oxide and fully carbonated state, with

very different molar densities. This finding is important when evaluating sorbents for

circulating systems where circulation rates are relatively high, because it suggests that

the sorbent can maintain its capacity much better, with partial carbonation, than if

the whole sorbent is utilized.
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The residence time of CaO, and then the degree of conversion, is dependent on the

fluidization regime. For a reactor operated in the fast fluidization regime, a fractional

CaO conversion as low as 1-2% has been reported based on modeling [66] using the

kinetics of carbonation found by Bhatia and Perlmutter [48]. A bubbling fluidized bed

configuration, with lower gas throughput, will reach higher solid conversions, but the

residence time of solids will in any case be too short for complete conversion to be

achieved. The chosen partial conversion of 30% is assumed to be representative for a

bubbling fluidized bed.

Calcination atmosphere

The effect of different calcination atmospheres was studied. 100 cycles were performed

for Dolo 5 with calcination in a mixture of steam and nitrogen, and the result is shown

in Figure 3.4.

It can be seen that the degree of conversion drops dramatically during the first 20

cycles. However, the degree of conversion stabilizes at a value of ∼30% that remains

throughout the run of 100 cycles. This means that addition of steam in the calcination

step has a very positive effect on the multi-cycle capacity, when compared to calcination

in pure nitrogen for Dolo 3. The ”noisy” baseline of Figure 3.4 is caused by water

condensation, which gave some fluctuations in the flow rate which again was registered

by the micro balance. Calcination in a H2O/N2 atmosphere corresponds to heat supply

by burning hydrogen in air in the regenerator. However, if pure CO2 is to be obtained

from the regenerator, calcination has to be performed in either H2O or CO2 itself.

Therefore, nitrogen was replaced by CO2 in the calcination atmosphere of Dolo 6, and

a comparison is shown in Figure 3.5. Calcination in pure nitrogen, Dolo 3, served as a

reference.

The multi-cycle tests were not performed for the same number of cycles, but the

trends observed in Figure 3.5 are clear. There is a rapid drop in conversion for the

first 20 cycles when steam is introduced compared to calcination in pure nitrogen.

However, steam seems to stabilize the carbonation conversion level as the number of

cycles are further increased for the H2O/N2 mixture, whereas the capacity for Dolo

3 is still decreasing after 35 cycles. However, when nitrogen is replaced by carbon

dioxide the multi-cycle capacity is reduced to ∼18% after 60 cycles, and seems to be

still decreasing. The presence of CO2 in the calcination atmosphere has previously been

reported by Silaban and Harrison [36] to affect the subsequent carbonation negatively,
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Figure 3.4: Multi-cycle conversion of Arctic dolomite. Carbonation: 100% CO2 at
820◦C, Calcination: 50% H2O in nitrogen at 920◦C.

due to enhanced sintering rates. They report that calcination should be carried out at

the mildest possible conditions, i.e. in a nitrogen atmosphere at low temperatures.

It should be noticed that both the carbonation temperature (820◦C) and the calci-

nation temperature used here (920◦C) are high. Also, the time of exposure at elevated

temperature is high making the conditions rather severe. Still, after more than 100

hours of operation, a multi-cycle sorption capacity of ∼30% is achievable when calcined

in a steam/nitrogen mixture. Calcination in pure steam was not performed as a carrier

gas always needed to be present in the controlled evaporator mixing (CEM) unit. As

previously discussed, this finding is valuable as the typical residence time of solids in

a continuous reformer/regenerator system in any case might be too short for complete

conversion to be reached. However, it will require additional energy to be supplied for
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Figure 3.5: Conversion of dolomite as function of carbonation/calcination cycles.
Dolo 3(−�−): Carbonation: 820◦C, 100% CO2. Calcination: 920◦C, 100% CO2;
Dolo 5(− • −):Carbonation: 820◦C, 100% CO2. Calcination: 920◦C, 50% N2/H2O;
Dolo 6(−N−): Carbonation: 820◦C, 100% CO2. Calcination: 920◦C, 50% CO2/H2O.

heating of inactive sorbent.

The rate of carbonation as a function of cycles is shown in Figure 3.6. The final

conversion after 20 minutes of carbonation decreases with cycle number. The rate of

carbonation is, however, not significantly affected during the initial stage of carbonation

as the number of cycles is increased. This is evident from the slope at the initial period.

This also indicates that CO2 only reacts with the outer region of the dolomite, as a

surface reaction, and the interior of the dolomite becomes inaccessible due to pore

blockage by the formed product layer. Although only 30% of the dolomite can be

utilized for CO2 capture, the fact that the reactivity is maintained in the presence of
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Figure 3.6: Rate of carbonation as function of cycle number for Dolo 5 (Carbonation:
820◦C, 100% CO2 for 20 min).

steam in the regeneration step makes the use of dolomite attractive and it should not

be disregarded as a sorbent for the process of SE-SMR. Figure 3.7 shows SEM images

of Dolo 5 after 100 cycles and dolomite after initial calcination in nitrogen. It is evident

that the morphologies of the two samples are different. Calcined dolomite has a porous

structur where grains can been seen, whereas Dolo 5 contains cracks and the presence

of grains is not observed.

3.2 Attrition tests

One of the major disadvantages of fluidized beds relative to fixed beds is the generation

of fines. In addition to chemical degradation, discussed in the previous section, there
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Figure 3.7: SEM image of; a) calcined dolomite after 100 cycles (Dolo 5), b) calcined
dolomite after 1 cycle (calcined in nitrogen).

will be mechanical degradation due to attrition of solids caused by fluidization of the

particles. The source of attrition is the mechanical motion between a particle and

another body, which may be the wall of a container or another particle. The degree

of attrition will be dependent on which fluidization regime one is operating in, with

attrition increasing with increasing superficial gas velocity. The presence of baffles and

internals will also cause increased attrition. A multitude of scenarios for fines generation

from an individual particle can be conceived, and the mechanism can be discussed in

terms of two extremes (illustrated in Figure 3.8):

• Particle breakage. The particle is broken up into smaller fragments due to

the severe impact of the particle against a solid surface or other particles. These

smaller fragments subsequently break down into increasingly smaller bits, into

fines.

• Abrasion. In this case, particle wear is the result of the particle rubbing against

other particles or a solid surface, eroding the particle at the outer surface. Fines

are directly produced as a result of the erosion, and no fragments of intermediate

size are produced.

In fluidized beds, the particles are normally required to remain in the bed for con-

siderable periods. Attrition to smaller particle sizes will change fluidization properties
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Figure 3.8: A schematic presentation of attrition through abrasion and breakage.

as well as causing loss of fines. This is of course a major problem when dealing with

expensive catalysts, and significant loss of fines will constitute a major cost of opera-

tion. Bemrose and Bridgwater [67] sum up in which part of the fluidized bed attrition

is most likely to occur. Within the bed, attrition will have the following sources:

• bubbling

• grid jets

• splashing of ejected particles

Some attrition will also occur when new particles are injected to the bed, due

to thermal shock. It is also reported that the attrition rate is proportional to the

difference between the superficial velocity and the minimum fluidization velocity (U-

Umf ). Attrition has two major effects on fluidization processes:

i) Particle properties change as a result of attrition. Surface area, bulk density and

particle size distribution are affected by attrition.

ii) Loss of material due to change of particle size will represent an additional process

cost and may also cause a dust pollution problem.

A major concern about dolomites and limestones is the fact that the particles are

relatively fragile, and co-fluidization with the much harder catalyst particles may cause

additional attrition.
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3.2.1 Experimental

The degree of attrition of both sorbent and catalyst was investigated using an Air Jet

Attrition System, using the experimental facilities at MRT (Membrane Reactor Tech-

nologies Ltd., Vancouver, Canada). This attrition test unit is based on the standard D

5757 [68], a standard test method for determination of attrition of powdered catalysts

by air jets. In a properly constructed air jet system the interaction between particles

will be dominant. The test determines the relative attrition characteristics of powders

by means of air jet attrition and intends to provide information about the ability of

a powder to resist particle size reduction during use in a fluidized environment. The

following definitions are used in describing particle attrition:

Fines Particles less than 20 µm are usually considered fines.

Air Jet Index (AJI) Unitless value that is numerically equal to the percent attrition

loss after 5 hours; AJI=
Mfines

Minitial

Recovery Defined as the percentage of total sample weight recovered;

Recovery=
Mfines+Mrest

Minitial
× 100%

Apparatus

The air jet attrition system consists of:

i) Stainless 710 mm long attrition tube with an inside diameter of 35 mm

ii) 3 nozzles with a diameter of 0.381 mm placed equidistant from each other, 10 mm

from center

iii) Settling chamber, a 300 mm long cylinder with inner diameter of 110 mm and

conical ends

iv) Fines collection assembly, filtering the fines from the gas

The overall arrangement of the attrition unit is shown in Figure 3.9.
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Figure 3.9: Air jet attrition apparatus.

Experimental plan

When the gas velocity in the settling chamber is greater than the terminal velocity

for a given particle size, the particles will be transported to the fines collector. Both

catalyst and sorbent attrition were evaluated. The superficial gas velocity in the settling

chamber is calculated to be 0.052 m/s in pure nitrogen at 550◦C. Terminal velocities

for the particles at different sizes were calculated using the Ergun software (Ergun

6.0, Divergent S.A., France). For calcined dolomite, with an apparent density of 1560

kg/m3, terminal velocities were found to be 0.015 m/s and 0.057 m/s for 20µm and 45

µm respectively. The terminal velocities of the catalyst, with an apparent density of

2200 kg/m3, were calculated to be 0.017 m/s and 0.075 m/s for the same particle sizes.

Therefore, it is evident that particle sizes somewhere between 20-45 µm will define the

upper cut of the fraction leaving the settling chamber. It was desirable to conduct the
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tests under realistic conditions, which will be as representative as possible for sorption-

enhanced steam reforming. However, due to possible formation of hydroxides, which

complicates weight calculations, pure nitrogen was used rather than steam at a gas flow

rate of 10 L/min (STP). At this flow rate and with a back-pressure of 170-200 kPa, air

jets are formed in the small orifices at choked flow conditions giving a gas jet velocity

of ∼450 m/s. The calcined form of dolomite was used in all tests. The total sample

weight was ∼50 g, particle sizes in the range of 45-180 µm and the tests were run for 5

hours before fines were collected and weighted. All experiments are listed in Table 3.3.

Table 3.3: Experimental conditions for Air jet attrition tests

Sample ID
Particle

type
Size range

[µm]
Temperature

[◦C]
Atmosphere

AJ-Dolo
Arctic

dolomite
45-180 550 Nitrogen

AJ-Cat Catalysta 45-180 550 Nitrogen

AJ-Mix
Arctic

dolomite/Catalystb 45-180 550 Nitrogen

AJ-Lime Limestonec 45-180 550 Nitrogen

a Reforming catalyst (Haldor Topsoe A/S, R-67-7H)
b A 50 wt% mixture of dolomite and catalyst
c Strassburg limestone (from the US)

3.2.2 Results and discussion

The percentage attrition loss after 5 hours, known as the Air Jet Index (AJI), is cal-

culated from the elutriated fines to give a relative estimate of attrition resistance of

the different samples. The index number is empirical and can only be applied under

limited conditions of use and testing, but it provides a useful parameter for comparing

different materials, or the same material in different environments. The results from

the tests are listed in Table 3.4. There was some loss of solid material associated with

disassembly of the attrition tube, but sample recoveries over 95% were obtained for all

samples.

The dolomite showed the poorest resistance to attrition with a AJI value of 0.23,

meaning that 23% of the initial sample was lost by generation of fines. A limestone

(AJ-Lime) was also tested, and a significantly lower AJI value of 0.14 was found. From
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Table 3.4: Results of air jet attrition tests

Sample ID
Initial

weight [g]
Fines [g] Rest [g]

Recovery
[%]

AJI

AJ-Dolo 47.6 11.1 35.7 98.3 0.23

AJ-Cat 51.3 8.0 41.1 95.7 0.16
AJ-Mix 51.2 9.0 41.1 97.9 0.18

AJ-Lime 50.3 7.2 42.9 99.6 0.14

this test is seems like the limestone withstands a fluidization environment better than

the dolomite. A possible explanation to this is that the initial decomposition of MgCO3

and the creation of extra pore volume makes the dolomite more fragile than the lime-

stone, partially nullifying the favorable multi-cycle properties of dolomites compared

to limestones. However, it is hard to make any general conclusions based on the re-

sults from these two samples, as each limestone and dolomite is unique in terms of

composition and structural properties.

The catalyst showed better resistance to attrition than the dolomite with an AJI

value of 0.16. Still, the degree of loss of fines is significant, especially when taking

the price of the catalyst into account. Loss of fines by attrition from natural cheap

sorbents is more acceptable than loss of expensive catalyst. The catalyst tested was a

commercial steam reforming catalyst from Haldor Topsoe, which is designed for fixed

bed applications. Commercial Ni catalysts are not mechanically robust and are designed

primarily for use in fixed bed reactors. This calls for developing catalysts that are

suited for fluidized bed operation. The air jet attrition tests were conducted at a

constant temperature of 550◦C and the effect of temperature swing operation was not

investigated. Alternating between carbonation and calcination will most likely cause

thermal stress on the particles and increase the degree of attrition.

The AJ-Mix sample, where catalyst and dolomite were mixed, had an AJI value

of 0.18. This value is between the AJI values of the pure compounds, indicating that

co-fluidization of catalyst and dolomite will not lead to additional attrition. It must be

emphasized that the AJI value does not say anything about the expected loss of fines

in a real fluidization reactor, where fluidization regime of operation and the presence

of internals will influence the degree of particle erosion.
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3.3 Reaction rate

The non-catalytic gas-solid reaction between CaO and CO2 is known to proceed through

two rate-controlling regimes [48, 69, 70]. Initially, a rapid chemically controlled stage

is rate determining, before the rate of reaction decreases due to diffusion limitations

caused by the very slow diffusion through the product layer. This is illustrated for

Arctic dolomite in Figure 3.10.

Figure 3.10: CaO conversion as a function of time for Arctic dolomite (Carbonation
in 10% CO2 at 600◦C).

Interestingly, a number of previously published works on the reaction rate of carbon-

ation are focusing on the slow product layer diffusion controlled regime [48, 71], which

is unlikely to be utilized in an industrial application. Bhatia and Perlmutter [48] used

a random pore model to describe the diffusion controlled stage and found activation

energy to be 88.9±3.6 kJ/mole (for T<515◦C) and 179.2±7 kJ/mole (for T>515◦C)
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for this region. While in the case of the rapid chemically controlled initial stage they

report an activation energy of zero in the temperature range of 823-998 K.

Lee [69] proposes the simple rate expression:

dX

dt
= k × (1− X

XU
)2 (3.2)

where k is a kinetic rate constant, X is the conversion and XU is the ultimate conversion.

Experimental data from Bhatia and Perlmutter [48] and Gupta and Fan [70] were used

to fit the apparent kinetic parameters in both the fast initial regime and the diffusion-

controlled regime. For the chemically controlled regime activation energies of 72.2

kJ/mole and 72.7 kJ/mole were found, respectively, for the data from Bhatia and

Perlmutter and Gupta and Fan.

Kyaw et al. [72] studied the reaction rate for both calcite and dolomite, and the

rate of reaction was described by:

dX

dt
= kx × (1−X)

2
3 × (P − Pe)

n (3.3)

where kx is a reaction rate constant, X is conversion, P is pressure of CO2 and Pe is

equilibrium pressure of CO2. They found the reaction order to be n=0.1, and activation

energy of calcite and dolomite to be about 78 kJ/mole and 35 kJ/mole respectively.

Dedman and Owen [47] report an apparent activation energy of 39.7 kJ/mole, using

calcite as sorbent, in the temperature range of 200-600◦C. However, they believe that

the true activation energy is twice this value, i.e. 79.4 kJ/mole, due to intra-particle

diffusion limitations.

The value of ultimate conversion reported in literature for calcium-based sorbents

varies from 60-100%. This great variation is associated with the different morphology

of the sorbents. Gupta and Fan [70] report the rate of carbonation in the diffusion

controlled regime and the ultimate conversion both to be largely dependent on pore

structure of the sorbent. Pore blockage and the build-up of a solid product layer make

the reaction very slow, and complete conversion will not be achieved for some sorbents.

Because of the unique morphology of different sorbents, rate expressions have to be

developed for the specific sorbents. Using literature values, e.g. diffusion constants

and activation energies, for prediction of the rate of reaction of other sorbents will most

likely lead to huge errors. Therefore, a rate expression describing the rate of carbonation

for Arctic dolomite has been developed.
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3.3.1 Carbonation model

A model should predict conversion as a function of time matching real data without too

many mathematical complexities. Different models for carbonation have been proposed

in the literature, everything from the rather simple model of Lee, Eq.(3.2), to the

more complex random pore model employed by Bhatia and Perlmutter [48] have been

proposed. For non-catalytic reactions, two simple idealized models are widely used; the

Progressive-Conversion Model (PCM) and the Shrinking unreacted-Core Model (SCM)

[73].

The PCM model assumes that intra-particle diffusion is fast compared to chemical

reaction, making a uniform reacting particle. It is well known that carbonation proceeds

through a slow diffusional limited regime at higher conversion levels, making the PCM

model not suitable for describing this regime. The classic SCM model assumes a sharp

reaction front advancing from the exterior of the particle towards the center. A sharp

boundary between the unreacted core and the product layer is an idealized situation,

and the real situation is probably something in between the two reaction mechanisms.

Model choice

Scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) was

found to be a convenient tool for analyzing the dolomite particles, in order to get an idea

of which of the two previously mentioned models that is closest to reality for describing

carbonation of calcined dolomite.

Calcined Arctic dolomite was first placed in a TG apparatus and exposed to 10%

CO2 in N2 at 550◦C for a period sufficiently long to observe a weight increase of the

sample. The CO2 flow was then stopped and the sample removed, and cross-sectional

cuts of the partially carbonated dolomite particles were prepared for SEM/EDS analy-

sis. Figure 3.11 shows the different positions chosen for EDS analysis. Position 1 was

located in the center of the particle, while position 4 was located close to the exterior.

The sample was coated with carbon, and oxygen concentration (rather than carbon)

was used as indication of whether CO2 had reacted with CaO. A typical EDS spectrum

is shown in Figure 3.12. Every peak in the EDS spectrum was normalized to the highest

intensity peak, and oxygen intensities at the different positions are listed in Table 3.5.

If carbon dioxide reacts with calcined dolomite throughout the whole particle, one

will expect oxygen concentration to be equal at all points. If the reaction proceeds as a
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Figure 3.11: EDS analysis selection of partially carbonated Arctic dolomite.

Table 3.5: Normalized oxygen intensity from EDS analysis of Arctic dolomite

Position Normalized oxygen intensity

1 0.2266

2 0.2212
3 0.2166

4 0.3922

shrinking unreacted core, there should be a lower concentration of oxygen at the interior

for a partially carbonated particle. It can be seen from Table 3.5 that the oxygen content

at position 1-3 is almost constant, while the intensity at position 4 is approximately

twice the value of the previous points, indicating that CO2 has not reacted uniformly

throughout the particle. Oxygen will mainly be found as CaO and MgO in the unreacted

core, while in the reacted product layer oxygen is present as CaCO3 and MgO (MgO

does not react with CO2 at this high temperature). If the difference in oxygen content

is related to the carbonation reaction, the oxygen ratio between carbonated dolomite

and calcined dolomite should be approximately 2 (assuming equal quantities of Mg

and Ca). The oxygen intensity at position 4 relative to the other positions is ∼1.8,

supporting the assumption of CO2 reacting with CaO at exterior of the particle first,

leaving an unreacted core. From this observation, a shrinking core model is chosen for

describing the reaction between carbon dioxide and calcined dolomite.
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Figure 3.12: EDS spectrum of dolomite at position 3.

Shrinking unreacted Core Model (SCM)

There are three resistances to reaction for the gas-solid reaction between CO2 and cal-

cined dolomite:

i) External mass transfer

ii) Intra-particle diffusion

iii) Chemical reaction

The three resistances occur in series and the algebraic combination of them is simply

handled by the classic Ohm’s law treatment of resistances in series, eliminating inter-

mediate concentration terms, and yielding a relationship for the rate of reaction with

the driving force expressed in terms of bulk concentration. Each case where one of the

three resistances is dominant is considered separately.
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Assumptions for derivation

i) It is assumed that CaO and inert material (mainly MgO) are uniformly distributed

in the dolomite pellet. Carbonation of MgO is thermodynamically unfavorable at

temperatures above 500◦C at ambient pressure, and is therefore considered inert.

However, it still makes up a great part of total volume of the particle, and the

derivation is for the particle of dolomite.

ii) Single spherical particle.

iii) Constant particle size.

A detailed derivation, based on the original shrinking core model from Levenspiel [73],

is provided in Appendix A.1 and only the final rate expression is presented in Eq.(3.4):

dX

dt
=

3
Rp
· (1−X)2/3 · b

ρB ·R·T · (PAg − PAe)

1
k

+ Rp·[(1−X)1/3−(1−X)2/3 ]
De

+ (1−X)2/3

kg

(3.4)

A first order reaction constant, k, is assumed in the derivation of Eq.(3.4), making

elimination of interfacial pressures possible, arriving at a linear dependency of CO2

partial pressure. However, Kyaw et al. [72] have found the difference between partial

pressure and equilibrium pressure to be nonlinear (Eq.(3.3)). It was therefore decided

to modify the rate equation by including a nonlinear partial pressure difference, n. Note

that n accounts for the nonlinear partial pressure difference between CO2 in the bulk

phase and the equilibrium pressure, and should not be considered as a reaction order.

The final rate equation can then be written as:

dX

dt
=

3
Rp
· (1−X)2/3 · b

ρCaO·R·T · (PCO2 − PCO2,e)
n

1
k

+ Rp·[(1−X)1/3−(1−X)2/3 ]
De

+ (1−X)2/3

kg

(3.5)

where Rp is the particle radius (m), b is the stoichiometric coefficient (mole CaO
mole CO2

) equal

to unity, ρCaO is the molar density of CaO in dolomite ( mole CaO
m3 dolomite

), PCO2 and PCO2,e

are the partial pressures (Pa) in the bulk phase and at equilibrium respectively, n is

nonlinearity factor, k is the reaction rate constant (m
s
), De is the effective diffusivity

(m2

s
), kg is the external mass transfer coefficient (m

s
) and X is conversion.
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The reaction rate constant, k, is expressed as:

k = k0 · exp(
Ea

R · T ) (3.6)

where k0 is a Arrhenius pre-exponential constant (m
s
) and Ea is the activation energy

( kJ
mole

). By inspection of the form of Eq.(3.4), regardless of the mathematics, one can

see it contains a driving force in the numerator represented by the difference between

partial pressure of CO2 and its equilibrium pressure at the reaction temperature. The

denominator contains the three resistances to the reaction in series, and the relative

importance of these individual resistances varies as conversion progresses.

A major problem with the shrinking unreacted core model is to obtain the value of

the effective diffusivity, De. Zevenhoven et al. [74] modeled the particle conversion of

limestone and dolomite sulfidation, using a variable effective diffusivity. Because of the

build-up of a solid product layer as the reaction proceeds, intra-particle transport of

CO2 is strongly affected by the progress of conversion. Their effective diffusivity takes

into account two mechanisms:

i) Diffusion in the pores of the particle (gas phase diffusion and Knudsen diffusion)

ii) Diffusion through a solid product layer

These two mechanisms occur in series, and CO2 has to diffuse through the pores in

the particle and in addition diffuse through the product layer before it can react with

the solid reactant. It is shown that the effective diffusivity can be expressed as:

De = De(X) = Deff,0 ·
(1 + A ·X)

(1 +B ·X)
(3.7)

A = 1−ε0
ε0

, Deff,0 = Dpore = ε0
τ
·Dmol+Kn and B = A·Dpore

Dpl

where ε0 is the initial particle porosity, τ is the tortuosity factor, Dmol+Kn is the com-

bined molecular and Knudsen diffusivity in the gaseous phase inside the porous solid

and Dpl is the product layer diffusivity. The effective diffusivity, De, is constant only

when the product layer diffusivity, Dpl, becomes of the same order of magnitude as the

pore diffusivity. More details on the diffusivity calculations are found in Appendix A.2.
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3.3.2 Experimental approach

Studies of carbonation reaction rates are usually done by thermo gravimetric analysis.

A small amount of sample is placed in a sample pan in an oven, and the sample pan is

connected to a microbalance. The weight change is recorded continuously during the

carbonation, and conversion-versus-time plots are then obtained. Typically, reaction

constants at various temperatures are then plotted versus reciprocal temperature, and

the activation energy can the be found. However, there are two major disadvantages

with this kind of experimental set-up:

i) Assuming constant temperature. A small sample amount is used to assure that the

temperature variation within the sample is minimized. However, the carbonation

reaction is a very exothermic reaction and heat is produced during the reaction,

even for a small amount of sample, and temperature variation during the course

of reaction should therefore be taken into account. The design of a conventional

TG apparatus makes temperature measurements in the sample very difficult, and

it is common to make the assumption of constant temperature.

ii) Flow pattern. Most of the reactant gas by-passes the sample pan, and each pellet

in the sample is not in direct contact with the bulk of the flowing gas. This may

cause situations where external mass transport is the rate limiting step.

The assumption of constant temperature in the sample of a converional TG reactor

was checked by inserting a thermocouple into the sample during carbonation. Weight

change could not be registered as this thermocouple interferred with the microbalance.

A sample of 200 mg calcined dolomite was put in the sample pan, and exposed to nitro-

gen to obtain a temperature baseline before changing to 100% CO2 and recording the

temperature change in the sample, as shown in Figure 3.13. A maximum temperature

rise of ∼60◦C was observed during the course of carbonation. The temperature drops as

the exothermic reaction ceases upon complete carbonation. It is evident that assuming

isothermal conditions is a poor assumption. One might accept gradients when investi-

gating the reversible carbonation reaction in multi-cycle tests, but when evaluating the

kinetics, temperature control is much more critical. Therefore, efforts have been made

to overcome the above mentioned weaknesses of conventional TGA.
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Figure 3.13: Temperature profile of Arctic dolomite during carbonation in conven-
tional TGA (200 mg sample was exposed to 100% CO2 at 550◦C).

Experimental set-up and conditions

Instead of trying to eliminate the temperature gradients, an approach where both tem-

perature and weight change could be recorded simultaneously during the course of

reaction, was chosen. A novel thermo gravimetric reactor was used for this study, and

schematic drawings of the experimental set-up and the reactor are shown in Figure 3.14

and Figure 3.15, respectively. The reactor was connected to a balance that recorded

weight change (like the sample pan of a conventional TG reactor) and placed in an oven.

The gas is pre-heated in the double-walled reactor before it flows upwards through a

sinter, on which the sample is placed. A thermocouple (K-type) was placed in the

sample, and the temperature was registered continuously together with weight change

during the carbonation of calcined dolomite.

A series of five runs were performed with Arctic dolomite as sorbent. The experi-
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Figure 3.14: Experimental TGA set-up used for the study of carbonation kinetics.

mental conditions are listed in Table 3.6. A total flow rate of 2 NL/min was used. The

amount of dolomite used in each experiment was approximately 10 grams, with parti-

cle diameters in the range of 200-300 µm. The flow rate corresponds to a superficial

velocity of 0.042 m/s at 550◦C (reactor cross-sectional area of 24 cm2). The minimum

fluidization velocity at the same temperature with an average particle size of 250 µm

is calculated to be 0.017 m/s for fully calcined dolomite, and 0.024 m/s for the half

calcined dolomite, based on calculations from the Ergun software (Ergun 6.0, Divergent

S.A). Hence, the gas velocities used were always above the minimum fluidization veloc-

ity, utilizing the advantageous temperature uniformity caused by mixing. The effect of

fluidization on the scale was checked with inert particles to make sure that the weight

increase registered during carbonation was entirely caused by CO2-uptake.
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Figure 3.15: Reactor used for studying carbonation kinetics.

Table 3.6: Experimental operating conditions for reaction rate
investigation

Sample ID
Initial sample

temperature a[◦C]
CO2 partial

pressure [atm]

Kin-Dolo1b 550 1
Kin-Dolo2 550 0.8

Kin-Dolo3 550 0.5

Kin-Dolo4 730 1
Kin-Dolo5 650 1

a Sample temperature at t=0 in argon, before switching to
the carbonation atmosphere

b Particle diameter in the range of 150-200 µm
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3.3.3 Kinetic analysis and discussion

A typical experimental response curve, where both conversion and sample temperature

are plotted against time, is shown in Figure 3.16. The sampling rate was set to 1 second.

However, some sample points are left out in this figure for better visual illustration while

raw data for all runs are presented in Appendix B.1.

Figure 3.16: Temperature and conversion of the sorbent as a function of time for
sample Kin-Dolo1 (100% CO2 at 550◦C).

Figure 3.16 shows a remarkable temperature rise in the sample as CO2 is introduced

at a initial temperature of 550◦C, caused by the heat released from the exothermic car-

bonation reaction. In this non-isothermal approach, kinetic parameters can be obtained

by fitting conversion as function of time with multiple experimental temperatures as

input. Temperature uniformity within the sample is assumed.
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Model equations

The rate expression Eq.(3.5) has the unit of s−1. A more useful expression is obtained

by multiplying by the molar density

Rdolo(X) =
dX

dt
· ρCaO =

3
Rp
· (1−X)2/3 · b

R·T · (PCO2 − PCO2,e)
n

1
k

+ Rp·[(1−X)1/3−(1−X)2/3 ]
De

+ (1−X)2/3

kg

(3.8)

where Rdolo(X) has the unit of mol CaO
m3 dolomite·s . The bed of solids in the reactor (Figure

3.15) is modeled as a batch process

1

Vdolomite
· dnCaO

dt
= −Rdolo(X) (3.9)

Expressed as conversion, using the relationship nCaO = nCaO,0 · (1−X)

dX

dt
= Rdolo(X) · Vdolomite

nCaO,0

(3.10)

where nCaO,0 is the initial molar amount of CaO. The volume of solids in the reactor,

Vdolomite, is calculated from Vdolomite = Vbed · (1 − ε), where ε is the bed voidage. The

rate of carbonation is dependent on the partial pressure of carbon dioxide, and a mole

balance for the consumption of CO2 must also be included:

dnCO2

dt
= nCO2,feed − nCO2 − Rdolo(X) · Vdolomite (3.11)

Numerical procedure

Parameters to be estimated by fitting:

i) Arrhenius pre-exponential constant, k0 [m/s]

ii) Activation energy, Ea [kJ/mole]

iii) Product layer diffusion constant, Dpl [m2/s]

iv) Nonlinearity factor , n [-]

The conversion dependent effective diffusion constant, De, accounts for all diffusion

effects inside the solid particle. Product layer diffusivity, Dpl, was chosen as fitting
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parameter, while pore diffusion was calculated using correlations listed in Appendix

A.2.

Figure 3.17: Numerical procedure for fitting kinetic parameters to experimental data.

A in-built optimization function in MATLAB (MATLAB 6.5, The MathWorks,

Inc.), fmincon, was used for determining the best-fit parameters. The model equations,

Eqs.(3.10-3.11), are described by ordinary differential equations (ODE) that can be

solved numerically by using ODE solvers in MATLAB (e.g. ode45). However, using

experimental temperatures as input required a constant time-step solution method,

therefore a simple Euler approximation was used for solving the ODEs. Arbitrary initial

values of the fitting parameters are used as input for solving the rate equation, and the

simulated time-versus-conversion data are evaluated and compared with experimental

data. Figure 3.17 shows the iterative procedure for obtaining the best-fit parameters.

More details regarding the solving procedure, including MATLAB-scripts, are found in

Appendix B.2. The optimization procedure, fmincon, is based on minimization of a

user-defined function, and the sum of squared residuals was chosen for minimization:
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Fmin =

m∑

k=1

n∑

t=0

(Xk,t,predicted −Xk,t,experimental)
2 (3.12)

where Fmin is the sum of residuals from t=0 up to t=n of m data sets. Three data

sets (m=3) were used for fitting and obtaining kinetic parameters, while two data sets

(Kin-Dolo2 and Kin-Dolo4) were used for prediction purpose. The number of sample

points, n, was set to 240, which corresponds to 4 minutes.

Fitting to rate expression

The reaction rate parameters obtained from fitting are presented in Table 3.7. A com-

parison of the model with experimental data is shown in Figure 3.18.

Table 3.7: Carbonation rate parameters

k0

[m
s
]

Ea

[ kJ
mole

]

Dpl

[m2

s
]

n
[-]

3.05 32.6 7.7· 10−9 0.66

The activation energy of 32.6 kJ/mole, obtained from the current work, is somewhat

lower than the activation energy found by Kyaw et al. [72] of 35 kJ/mole using dolomite

as sorbent, but still in good agreement with this previously reported value. The pro-

posed model tries to include both the rapid chemically controlled and the slow diffusion

layer controlled regimes using a conversion dependent effective diffusivity. Therefore,

the activation energy obtained from fitting should be considered an apparent activation

energy rather than intrinsic. Also, the value of the product layer diffusion constant,

Dpl, is close to the range of previously reported diffusivities from Zevenhoven et al. [74],

which report values of 1.5-3.5· 10−10 m2

s
for five different limestones.

In general, the proposed rate expression describes the experimental data reasonably

well. The degree of conversion at the initial stage of carbonation is modeled very well for

all five sets, but the shift in the rate determining mechanism (from chemical to diffusion

controlled) is not well predicted for Kin-Dolo4 by using the conversion dependent effec-

tive diffusivity, where only the first ∼30% is predicted satisfactory. Prediction of the

other data set left out when obtaining fitting parameters (Kin-Dolo2) is very good up

to 50-60%, but is somewhat poorer after that. However, from a practical point of view,

-67-



Chapter 3. Sorbent investigation

Figure 3.18: Comparison of experimental conversion (points) and model predictions
(solid lines) for carbonation of Arctic dolomite.

only the rapid initial stage of carbonation is of interest when capturing CO2 with CaO

in an industrial application. It is therefore believed that the model is well suited for

prediction of typical conversion levels expected in a continuous reforming-regeneration

system, e.g. circulating fluidized beds.

Another model approach in which the energy balance was included, failed to predict

both the conversion and temperature profiles. This was probably due to heat losses,

which should be accounted for, but were difficult to quantify. Experiments with lower

partial pressures of CO2 than 0.5 atm could not be conducted due to flow rate restric-

tions of the mass flow controllers, and the current model is strictly speaking only valid

for CO2 partial pressures down to 0.5. However, it is assumed that the model can be

extrapolated to be valid for partial pressures typically present in SE-SMR, making the
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rate expression useful for the purpose of process design and modeling.

The non-isothermal approach applied in the current study is based on the elim-

ination of the previously mentioned limitations of conventional TGA. However, the

experimental set-up of the novel thermo gravimetric reactor in Figure 3.15 introduces

new assumptions when evaluating the kinetics. For example, the temperature measured

is assumed to be uniform within the bed of solids, by using gas velocities just above the

minimum fluidization velocity of the sample, hence utilizing the excellent heat transfer

caused by mixing. However, the formation of gas bubbles should be avoided as this

will cause significant by-passing of gas. Therefore, a very shallow bed of solids has to

be used, which again makes temperature measurements more difficult. Ideally, several

thermocouples should bed inserted in the bed, to see if radial temperature variations

are present. Anyway, it evident that the assumption of constant temperature during

carbonation is poor, and the non-isothermal approach used here is believed to represent

an improved methodology for studying the kinetics of gas-solid reactions.
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3.4 Novel sorbents

There are a number of criteria that needs to be fulfilled for synthetic sorbents to be able

to compete with natural sorbents. Two synthetic sorbents, Li2ZrO3 and Na2ZrO3, were

prepared and tested by TGA with respect to reaction rates and multi-cycle behaviour

and compared to the performance of Arctic dolomite.

3.4.1 Synthesis

A low-temperature liquid phase co-precipitation method, as described and patented by

Yi and Eriksen [45, 75], was used for the synthesis of Li2ZrO3 and Na2ZrO3.

Lithium nitrate (LiNO3·xH2O, ca 78% LiNO3, Merck) and zirconium oxynitrate

hydrate (ZrO(NO3)2·2H2O, Merck) were used as precursors. Sufficient starting mate-

rials, to produce a Li/Zr molar ratio of 2, were dissolved in distilled water in separate

beakers. The solutions were mixed and aged overnight at room temperature accompa-

nied by stirring with a magnetic bar. The mixed oxide was precipitated by dropwise

addition of aqueous ammonia (NH3, 25%, Merck), followed by filtering, drying and

calcination. The same procedure was used for the synthesis of Na2ZrO3, with sodium

nitrate (NaNO3, Aldrich) and zirconium oxynitrate hydrate (ZrO(NO3)2·2H2O, Merck)

as precursors.

3.4.2 Results and discussion

The prepared samples were put in the TGA and exposed to a simulated reforming

atmosphere of 10% CO2, 30% steam and balanced with nitrogen at a temperature of

550◦C. The CO2 uptake curves for the first 20 minutes are shown in Figure 3.19.

Na2ZrO3 has a superior reaction rate compared to the other two samples, with an

uptake of 0.17 g CO2/g sorbent after 15 minutes, corresponding to ∼70% conversion,

based on its theoretical stoichiometric capacity of 0.24 g CO2/g sorbent (listed in Ta-

ble 2.1). The dolomite has a somewhat slower reaction rate, and will require about

70 minutes to come to full conversion. The reaction rate of Li2ZrO3 is found to be

rather poor in the diluted CO2 atmosphere used, most likely restricting its potential

as a sorbent for the SE-SMR process. The very rapid reaction rate of Na2ZrO3 is in

accordance with the findings of López-Ortiz et al. [46], who rated the reaction rates,

from higher to lower, in pure CO2 atmosphere at 600◦C: Na2ZrO3 > Li4SiO4 > Li2ZrO3.
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Figure 3.19: Rate of CO2 removal (T=550◦C, PCO2=0.1 atm, PH2O=0.3 atm and
PN2=0.6 atm).

Ochoa-Fernández et al. [56] report the slow sorption kinetics of Li2ZrO3 at low partial

carbon dioxide pressures to be caused by a second order concentration dependency.

Multi-cycle TGA tests of the synthetic sorbents were performed, and the experi-

mental conditions are listed in Table 3.8. Figure 3.20 shows how Li2ZrO3 maintains its

capacity, after ∼40 cycles, at a constant value of approximately 0.22 g CO2/g Li2ZrO3,

which corresponds to 80% of the theoretical sorption capacity for this sorbent. The

carbonation time of 20 minutes was set too low for full conversion to be reached in each

cycle, confirming the rather slow kinetics of carbonation for this sorbent. Moreover, the

theoretical sorption capacity is based on pure compound to be produced from the syn-

thesis, which is unlikely from the co-precipitation method used. Figure 3.21 shows that

Na2ZrO3 is able to maintain its sorption capacity in the same manner as the Li2ZrO3,

with a CO2-uptake of ∼18 g CO2/g Na2ZrO3.

From the above findings it is evident that Na2ZrO3 is a very promising sorbent, with

both very fast carbonation kinetics and stable multi-cycle capacity. Nitrogen was used
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Table 3.8: Multi-cycle conditions for the synthetic sorbents
Carbonation Calcination

Sample Dp Temp. Atm. Time Temp. Atm. Time
Total
Dura-
tion

Li2ZrO3
100-

200µm
550◦C

75%CO2

25%
H2O

20
min.

700◦C
50% N2

50%
H2O

20
min.

∼ 60 h

Na2ZrO3
100-

200µm
600◦C

75%CO2

25%
H2O

20
min.

850◦C 100% N2
40

min.
∼ 80 h

as calcination atmosphere in the multi-cycle test, and regeneration was performed at

850◦C, where complete regeneration was achieved within 40 minutes.

From a practical point of view, nitrogen is unlikely to be used for calcination, and

regeneration in other atmospheres was tested. The sodium zirconate was successfully

regenerated when 50% steam was added to the calcination atmosphere, as illustrated

in Figure 3.22. The nitrogen was then replaced by carbon dioxide in the subsequent

cycle, without any CO2 being released at regeneration temperature of 850◦C. More-

over, increasing the temperature to 950◦C did not enhance the decomposition of the

carbonate, indicating that the presence of CO2, even at very high temperatures, inhibit

the calcination reaction. The effect of lowering the carbon dioxide partial pressure was

further investigated, and the results are shown in Figure 3.23. It was not possible to

calcine Na2CO3 in the presence of 10% CO2 at 850◦C, while complete regeneration was

achieved for 4% CO2 at the same temperature within 40 minutes. Moreover, regenera-

tion in a steam/nitrogen mixture is faster than when CO2 is present. This means that

very low partial pressures of CO2 is required in the calciner to be able to regenerate

the sorbent. Fluidized beds have substantial backmixing of gas and a certain partial

pressure of carbon dioxide, dependent on fluidization velocity, will be present in the

vessel during calcination. Given the adverse effect of CO2 on regeneration rate, this is

likely to restrict the use of the sorbent for the SE-SMR process. However, more detailed

studies are required for understanding the reaction mechanisms of Na2ZrO3. Addition

of promotors to enhance the rate of reversibility, as proposed by López-Ortiz et al. [46],

could be investigated.
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Figure 3.20: Multi-cycle conversion of Li2ZrO3 (Carbonation: T=550◦C, PCO2=0.75
atm and PH2O=0.25 atm; Calcination: T=700◦C, PN2=0.5 atm and PH2O=0.5 atm).
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Figure 3.21: Multi-cycle conversion of Na2ZrO3 (Carbonation: T=600◦C, PCO2=0.75
atm and PH2O=0.25 atm; Calcination: T=850◦C, PN2=1 atm).
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Figure 3.22: Regeneration of Na2ZrO3 with and without the presence of carbon dioxide
in the regeneration atmosphere.
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Figure 3.23: Regeneration of Na2ZrO3 at 850◦C without the presence of CO2 (−H−),
4% CO2 (−�−) and 10% CO2 (− • −) in the regeneration atmosphere.
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Summarizing, synthetic Na2ZrO3 and Li2ZrO3 for high-temperature CO2 capture

were produced from a simple low-temperature liquid phase co-precipitation method,

with Na2ZrO3 showing the highest carbonation rate in addition to good multi-cycle

stability. However, regeneration could not easily be done in the presence of >10%

CO2 at 850◦C. Moreover, a regeneration temperature of 950◦C was not sufficient to

decompose the sodium carbonate in 50% CO2. The lithium zirconate was found to be

regenerable in the presence of carbon dioxide and very stable during multi-cycling, but

the rate of reaction in a diluted CO2 atmosphere was very slow. Mechanical tests of

attrition resistance or crushing strength were not performed, but the produced powders

were seemingly rather fragile based on visual observations and sieving of the samples.

Additional coating with a porous ”shell” around the CO2-acceptor, e.g. Al2O3, is likely

to be required in order to avoid excessive loss of fines upon fluidization of these fragile

synthetic sorbents.
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Bubbling fluidized bed reformer

Continuous reforming with CO2 removal requires either that there be parallel reactors

operated alternatively and out of phase in reforming and sorbent regeneration modes,

or that sorbent be continuously transferred between the reformer/carbonator and re-

generator/calciner. Fluidized bed reactors allow transfer of solids between reactors

and are commonly used in processes where catalysts must be continuously regenerated.

Coupling of two bubbling beds will have the advantage of low rates of attrition due to

low gas and particle velocities, and the relatively slow carbonation reaction rate will

be facilitated in this flow regime. In this chapter, a bubbling fluidized bed is used for

sequential sorption-enhanced steam methane reforming and regeneration of sorbent.

Due to the lack of experimental data in the open literature on the performance of the

overall process in such reactor configuration, special attention is given to the multi-cycle

performance of both the sorbent and the catalyst. The rate of the combined reactions

is also evaluated using different superficial gas velocities within the bubbling regime.

4.1 Experimental

4.1.1 Reformer unit

A schematic of the reactor is shown in Figure 4.1. This reactor was used previously

[76] in studies of fluidized bed roasting of zinc concentrates, and was modified for the

purpose of SE-SMR. Among the most significant modifications were including a water

feed line and a sampling line for outlet gas analysis.

The major components of the reactor consist of a pre-heater, a 0.66 m high and
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Figure 4.1: Schematic of reformer unit.

0.1 m ID stainless steel fluidized bed reactor with freeboard, a filtration unit and a gas

cooler unit. Methane was fed to the upper part of the pre-heater where it was mixed

with steam. A removable stainless steel gas distributor plate, with 34 drilled 1.2 mm

holes on a hexagonal grid, was placed between the pre-heater and the reactor. The pre-

heated reactant gas passes through a mixture of commercial Ni-based steam-reforming

catalyst (Haldor Topsoe A/S, R-67R-7H) and calcined dolomite (Franzefoss A/S, Arctic

Dolomite). Dolomite was used in preference to limestone because of initial tests indi-

cating better ability to sustain performance in cyclical operation. Three different zones

of the reactor were heated by electrical furnaces, which could be controlled individually.

Temperatures and pressure drops were recorded by a data acquisition system. Teflon
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bags were used for gas sampling from a sampling line at the outlet of the freeboard

zone. The sampling line was placed before the filtration unit to eliminate additional

carbonation reactions occuring on the filters. The gas composition of the samples was

determined using a gas chromatograph (Shimadzu GC-8A, TCD detector).

4.1.2 Sample preparation

The composition of the dolomite is provided in Table 3.1. This dolomite was chosen

because it did not contain sulphur, which is poisonous to the reforming catalyst. Prior

to the experiments, dolomite and catalyst were sieved to ensure particle sizes between

125-300 µm and 150-250 µm, respectively. The dolomite had to be first calcined to

obtain the desired oxide form. This was accomplished at 850◦C in N2 without the

catalyst present. A portable gas analyzer (Horiba PG-250) was used to determine

complete calcination, corresponding to the disappearance of CO2 in the product gas.

The reactor was then cooled, and part of the calcined dolomite removed and stored in

a dessicator for later use, while the rest was mixed with catalyst and re-injected into

the reactor.

Table 4.1: BFBR experimental conditions

Parameters Values

Total mass of particles in bed (kg) 3.1
Catalyst-to-calcined dolomite mass ratio (-) 2.5

Static bed height (m) 0.3
Bulk density of mixture (kg/m3) 1300
Catalyst particle size range (µm) 150-250
Dolomite particle size range (µm) 125-300

Reforming temperature (◦C) 600
Superficial velocity (m/s)a 0.032b, 0.064, 0.096

Steam-to-carbon molar feed ratio 3
Calcination temperature (◦C) 850

Calcination atmosphere N2

a Corresponding to flow rates of 5, 10 and 15 NL/min
b Gas velocity for multi-cycle test
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Figure 4.2: Picture of fluidized bed reactor used for studying SE-SMR.
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4.1.3 Experimental procedure

The reactor had no feeding lines for solids, and was therefore operated batchwise, with

periodic calcination at higher temperatures to regenerate the dolomite. The experi-

mental investigation can be divided into two parts: multi-cycle tests and tests where

the superficial gas velocity was varied. Fresh dolomite and catalyst were used for the

investigation of the effect of gas velocity in order to make the results for different gas

velocities comparable.

The total initial bed mass was 3.1 kg for all runs, with a catalyst-to-calcined dolomite

mass ratio of 2.5. During the calcination stages of the multi-cycle tests, pure N2 was

fed to the reactor. No effort was made to separate the catalyst from the dolomite

between cycles. To ensure that the catalyst was active, reduction of the catalyst was

performed in a H2/N2 mixture at 650◦C for 1-2 hours prior to each reforming period.

The reforming reaction was always carried out at 600◦C and ambient pressure. The

experimental conditions for the BFBR unit are summarized in Table 4.1. A picture of

the reactor system is shown in Figure 4.2.

4.2 Results and discussion

4.2.1 Fluidization

Investigation of fluidization properties of both the catalyst and the dolomite was done

in a plexiglass reactor prior to the reforming runs, to ensure operation in the bubbling

regime with no particle segregation. A transparent reactor with a diameter of ∼0.1 m,

equipped with pressure taps for measuring the pressure drop over the bed of solids, was

used for experimental determination of the minimum fluidization velocity, Umf .

The gas velocity was increased and the pressure drop over the bed was registered.

First the pressure drop increases linearly as the gas velocity is increased, and the bed

behaves like a fixed bed. At a certain velocity, a further increase in the velocity will not

lead to increased pressure drop, and gas will bubble through the bed. This point is called

the minimum fluidization velocity. The experimentally found minimum fluidization

velocities of the catalyst and the dolomite are shown in Figure 4.3.

Dolomite has the higher minimum fluidization velocity of the two particles with

0.032 m/s compared to 0.021 m/s for the catalyst at ambient conditions. The average

particle sizes are similar with 200 µm and 215 µm for the catalyst and the dolomite
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Figure 4.3: Experimental determination of the minimum fluidization velocity of the
dolomite and the catalyst (using air at ambient temperature and pressure as fluidizing
gas).

respectively, and the difference in minimum fluidization velocity is related to the particle

densities, which are listed in Table 4.2. Calcined dolomite will have a lower minimum

fluidization velocity than uncalcined dolomite due to lower apparent density caused by

initial calcination.

A qualitative investigation of co-fluidization of the dolomite and the catalyst was

performed in order to see if segregation would occur. This was easily done due to the

fact that the dolomite was a white powder while the catalyst was black, and segregation

would visually be observed if present. The catalyst, with an average particle size of 150

µm, was initially added to the bed of calcined dolomite particles of 215 µm, as shown in

Figure 4.4. The gas velocity, at ambient conditions, was then increased until bubbling

occurred. It was evident that complete mixing of the two particles was achieved, and
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Table 4.2: Particle densities

Particle
Apparent density

[kg/m3]

Catalyst 2200
Dolomite 2870a

Calcined dolomite 1540
Half-calcined dolomite 2220b

a Data from Franzefoss A/S
b Density is calculated from a molar ratio of Ca/Mg=1.1

in Arctic dolomite

no segregation was observed for all gas velocities investigated.

4.2.2 Bubbling bed reformer

Based on the findings from the transparent cold bed reactor, a gas flow rate of 5 Nl/min,

corresponding to a superficial gas velocity of 0.032 m/s at 600◦C, was chosen as basis.

The reaction conditions corresponded to operation in the bubbling bed flow regime.

With 0.9 kg calcined dolomite present, the time required for complete carbonation of

CaO in dolomite was calculated to be 170 minutes for a superficial gas velocity of 0.032

m/s, based on the assumption that all carbon fed reacted with CaO to yield CaCO3.

The total time of operation was 5 hours for each run. A typical response curve is shown

in Figure 4.5, with the dry gas composition plotted as a function of time.

The hydrogen concentration is stable at 98-99 volume% on a dry basis for a period

of 150-180 min, often referred to as the pre-breakthrough period by previous authors

(e.g. Han and Harrison [35]), before there is sudden drop in concentration to ∼72-74%.

The opposite trend is observed for the CO2 concentration, where there is a sudden

increase from ∼0.3% to 13-14% after the same interval. CH4 concentration increases

from ∼1.0% to 5-6%, while CO concentration increases from ∼0.4% to 7-8% in the same

interval. This characteristic breakthrough occurs when the amount of CO2 produced by

steam reforming exceeds the sorption capacity of the CaO. Figure 4.5 clearly shows the

marked enhancement of hydrogen production achieved by in situ capture of CO2. The

shape of the curve is typical for sorption-enhanced steam reforming. Due to the limited

number of sample points, the time of the breakthrough cannot be given precisely, but

it seems to correspond to a time between 150 and 180 minutes, in good agreement with
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Figure 4.4: Co-fluidization of dolomite (white powder) and catalyst (black powder)
at ambient temperature and pressure using air as fluidizing gas; a) Start (no gas flow),
b) Bubbling starts, c) Complete mixing.

the calculated time for complete carbonation (assuming 100% calcium utilization) of

170 minutes. After complete carbonation, the hydrogen concentration dropped to a

value corresponding to equilibrium of steam methane reforming of ∼73 volume% on

a dry basis. At this point, no CaO was left to react with CO2, so that the reaction

enhancement was lost. This period is often referred to as the post-breakthrough period,

and re-calcination has to be performed to reactivate the sorbent.

Temperature distribution

Combining the strongly endothermic steam reforming with the exothermic carbonation

reaction makes the overall reforming reaction almost thermally neutral. Carbonation

of CaO is a reversible reaction, and temperature control is very important to prevent

the undesired reverse calcination reaction in the reformer. Temperature uniformity

promoted by rapid mixing of the solids makes fluidized beds well suited for processes
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Figure 4.5: Reformer outlet composition (dry gas) as a function of time (S/C=3,
U=0.032 m/s at 600◦C).

where temperature uniformity is important. Two thermocouples were placed in the

dense bed zone, one (T1) just above the distributor and the other (T2) 0.19 m above.

Typical temperature traces for one run are shown in Figure 4.6.

The difference in temperature between the two positions, T1 and T2, was nearly

constant at 3-4◦C during the entire course of reaction, confirming the excellent temper-

ature uniformity of the bubbling fluidized bed. Another feature observed from Figure

4.6 is the temperature drop after 150 minutes. This corresponds to the start of the

breakthrough period also observed in Figure 4.5, caused by the diminishing exothermic

carbonation reaction, while the endothermic reforming reaction continues.
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Figure 4.6: Time variation of temperature in bed zones.

Multi-cycle

In order to make the process continuous, the sorbent must be regenerated after com-

pletion of the carbonation stage. Several previous workers (e.g. Li et al.[77], Ortiz and

Harrison [38], Silaban and Harrison [36]) have investigated the multi-cycle performance

of CaO-based sorbents. Abanades and Alvarez [13] included previously published multi-

cycle results when they reported an unavoidable decay in carbonation conversion that

was dependent on the number of cycles. Most of these investigations have been carried

out using TGA, either in pure CO2 or in simulated reforming environments. There is

little information on how sorption enhancement is affected by carbonation-calcination

cycling in a fluidized bed.

The BFBR was operated batchwise, with periodic regeneration of sorbent without
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Figure 4.7: H2 and CO2 concentrations (dry basis) as functions of number of cycles
(S/C=3, U=0.032 m/s at 600◦C).

physically separating the catalyst from the dolomite. The solid mixture was exposed

to hydrogen after each period of calcination to ensure that the nickel in the catalyst

was in the reduced active form, corresponding to a continuous process where the solids

would be exposed to a reducing atmosphere in the reformer.

Figure 4.7 shows the concentrations of hydrogen and carbon dioxide for different

numbers of carbonation-calcination cycles. The first cycle is not included in this figure

because the dolomite had been exposed to air, reducing its absorption capacity, hence

making comparison with the other cycles difficult. It is clear from Figure 4.5 that the

duration of the pre-breakthrough period is reduced somewhat with an increase in the

number of cycles. This reduction is due to loss of CaO capacity, but the hydrogen

concentration remained constant at 98-99%, suggesting that the equilibrium concentra-
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tion of the combined reactions was reached for each cycle. The hydrogen concentration

during the post-breakthrough period was again at equilibrium for successive cycles, in-

dicating that the catalytic activity remained sufficiently high to reach equilibrium upon

cycling. The breakthrough period was characterized by onset of the slow carbonation

reaction rate regime, where diffusion through the solid product layer limited the rate of

reaction. The slopes of the breakthrough curves indicate that the global reaction rate

was not significantly affected by the number of cycles. However, the limited number of

cycles and the low gas velocity in this study make it hard to conclude that the rate of

reaction would in general not be affected by multi-cycling. Silaban and Harrison [36]

reported that the loss of capacity was associated with a change in structural properties

of the sorbent. It was claimed that reduced porosity left the interior of the sorbent

particles inaccessible to CO2. As a consequence, the CO2 uptake capacity decreased

with cycling, consistent with Figure 4.5.

Brun-Tsekhovoi et al. [34] employed relatively large dolomite particles (1.3 mm

average), to facilitate their physical separation from the catalyst (250 µm) before re-

generation. A separation stage should be avoided if possible as it would add extra

components and complexity to the system, lead to additional attrition and cause ex-

tra heat losses. Khotomlyanskii et al. [78] studied the separation of catalyst from a

heavier heat transfer agent in a fluidized bed using particles differing significantly in

density and size. The catalyst density in the current study was 2200 kg/m3, whereas

the sorbent density depended on the degree of carbonation, with a possible range from

1560 kg/m3 (fully calcined) to 2220 kg/m3 (completely carbonated), the latter density

being similar to that of the catalyst. Note that separation is more sensitive to differ-

ent particle densities than to differences in particle size (Rowe and Nienow [79]). Since

steam reforming catalysts commonly encounter temperatures similar to those employed

in calcination, it should be possible to expose the catalyst to the calcination conditions

without separation. The present investigation shows that catalytic activity remained

after 4 cycles, without any separation of the particles. Nitrogen would not be used as

the fluidizing gas for calcination in an industrial application, due to dilution of CO2

leaving the regenerator for sequestration. In that case, CO2 itself, or possibly steam,

would be more realistic as the medium to avoid separation processes downstream. Sil-

aban and Harrison [36] reported that a CO2 atmosphere had an adverse effect on CaO

sorption capacity during multi-cycling. It is therefore possible that the reduction in

production time as a function of cycles, observed from Figure 4.7, would have been
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greater if the carbonated sorbent had been calcined in atmospheres other than 100%

N2. However, Ortiz and Harrison [38] report no significant difference in loss of multi-

cycle durability for different regeneration atmospheres, except when regeneration was

carried out in pure nitrogen at 950◦C, using dolomite as sorbent.

Increased superficial velocity

All multi-cycle runs were conducted at a superficial gas velocity of 0.032 m/s, a very

low velocity compared to normal commercial fluidization processes. From an industrial

point of view, a higher gas throughput would be advantageous. Keeping the total mass

of solid constant, the superficial gas velocity was increased to see its effect. The high-

est gas velocity investigated was 0.096 m/s, again lower, though less so, than expected

commercial velocities. However, it was desirable to investigate whether bubbles bypass-

ing would lead to significantly lower conversions than reported for fixed bed reactors.

Figure 4.8 shows the hydrogen concentration at three different superficial gas velocities.

As the gas velocity increased, the total production time decreased, as expected. The

hydrogen concentration exceeded 95% on a dry basis for all three velocities. Both fresh

dolomite and fresh catalyst were used for each run, making the results comparable. It is

evident from Figure 4.8 that both mass transfer and reaction kinetics are fast enough to

reach equilibrium within the given range of operation conditions. If there was any loss

in catalyst activity, it was too small to reduce the conversion either before or after the

capacity of the sorbent was exhausted. Higher velocities were not tested, but high CO2

capture efficiencies by CaO have been reported [12] for flue gases at superficial velocities

of 1 m/s, indicating that further increases in gas velocity are likely to be feasible. The

experiment at U=0.064 m/s gave a somewhat lower maximum H2 concentration than

the two other runs, possibly due to the gas analysis method. There were always nitrogen

peaks in the chromatograms, originating from the use of sampling bags and a syringe

for manual injection into the GC, making the presence of air inevitable. The proportion

of N2 in the samples was usually 2-4 volume%, but for U=0.064 m/s a higher nitrogen

concentration was observed. Hydrogen is the most volatile gas, and any leakage from a

syringe or GC injection port would introduce air at the expense of hydrogen.

-91-



Chapter 4. Bubbling fluidized bed reformer

Figure 4.8: Hydrogen concentration (dry basis) in first cycle as a function of superficial
gas velocity (S/C=3 and T=600◦C).

Particle size distribution

The particle size distribution of the samples used in the BFBR was investigated by

sieving. In order to reduce the error of analysis, sample amounts of 1.5-2 kg were used

for the sieving tests. Several sieves with decreasing mesh sizes were put on top of each

other and put in a ”shaker machine”, and the different fractions were weighted after 5

minutes of sieving. The results are presented in Figure 4.9.

Unfortunately, a narrow range particle size distribution test of the samples prior

to the runs was not provided as reference samples, and only the rather coarse initial

particle distribution of 125-300 µm is known. However, all three samples were crushed

and sieved together making the particle size distribution comparable to each other. It
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Figure 4.9: Particle size distribution of samples after BFBR runs.

is evident that the generation of fines is very low for all tests, with 1.5% of particles <90

µm being generated for the highest velocity run (U=0.096 m/s). It can be seen that

the smaller particle size fractions are increased with increased gas velocity, which is as

expected due to increased attrition. The sample with the lowest superficial gas velocity

experienced four reforming/calcination cycles and was alternating between 600◦C and

850◦C with a total duration of about 30 hours, while the two other samples only expe-

rienced one cycle. Still, this sample showed the best resistance to generation of fines,

with only 0.4% of the sample having a particle size below 90 µm. From this it can

be understood that the effect of increased gas velocity is more critical than multiple

reforming/regeneration cycles on the generation of fines.
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Fluidized bed modeling

A primary objective in modeling of any chemical reactor system is to represent the

key physical and hydrodynamic features in a best possible manner. At the same time,

it is important that models are sufficiently straightforward that their application does

not demand excessive computation [61]. In this chapter, a steady-state model of a

dual fluidized bubbling bed SE-SMR reactor system is investigated. The kinetics of

carbonation and multi-cycle performance of Arctic dolomite, found in chapter 3, is

used as input for the model. The predicted exit gas concentrations of the reformer is

compared with the experimental results found in chapter 4. Circulation rates, reactant

pre-heating and other operational issues are discussed with respect to system efficiency

along with sorbent performance.

5.1 Bubbling bed models

Historically, two types of models have been proposed to describe the performance of

fluidized bed reactors [80]:

i) Pseudo homogeneous models

ii) Two-phase models

The pseudo homogeneous models include ideal or simple one-parameter models, such

as plug flow, complete mixing, dispersion and tank-in-series models. The model predic-

tions using pseudo homogeneous models are in general discouraging, because they are

95



Chapter 5. Fluidized bed modeling

unable to account for the true flow and mixing behavior of fluidized beds. The two-

phase approach, however, considers the bed to consist of at least two phases, a bubble

and a dense phase (emulsion). Each phase is described by separate equations, including

a term describing interfacial mass transfer. The two-phase theory states that all gas in

excess of that necessary to fluidize the bed passes through the bed as bubbles. Various

basic assumptions can be made on the nature of the different phases, e.g. the gas in the

bubbles are often modeled as plug flow and the gas in the dense phase is modeled as

stagnant or perfectly mixed. The presence of particles in the different phases is also an

important feature when choosing an appropriate model. The performance of fluidized

bed reactors is greatly influenced by the rate of mass transfer between the dilute phase

(bubbles) and the dense phase, and some models also consider a separate cloud phase.

Figure 5.1 shows a gas bubble surrounded by a cloud region.

Figure 5.1: Two dimensional gas bubble in a fluidized bed [61].

The region just below the bubble is called the wake region and forms as the pressure

in the bubble is less than in the nearby emulsion [64]. There are two resistances to mass

transfer for cases in which cloud formation occurs [61]; at the bubble boundary and at
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the cloud boundary. However, it is common that the mass transfer resistance at the

cloud boundary is lumped either with the dense phase or the bubble, so that two-phase

models, rather than three-phase models, can be adopted.

During the last decade, the development and availability of advanced numerical

modeling software has made computational fluid dynamics (CFD) an attractive tool to

simulate any process involving fluid flow. However, simultaneous modeling of flow and

reaction is still a challenging problem for CFD applications.

5.1.1 The Orcutt model

In this study, a simple and widely applied two-phase model, proposed by Orcutt et al.

[81], has been adopted. Figure 5.2 shows a schematic drawing of the Orcutt model.

Figure 5.2: Two-phase model of Orcutt et al. [81].

The gas is assumed to be perfectly mixed in the dense phase, and the gas is assumed

to be in plug flow in the bubble phase. There is no reaction taking place in the bubble

phase (no particles present), and mass transfer between the two phases is represented
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by an interphase mass transfer coefficient, kq (m/s):

kq = 0.75 · Umf +
0.975 · g0.25 ·D0.5

d0.25
eq

(5.1)

where Umf is the minimum fluidization velocity (m/s), g is the acceleration of gravity

(m/s2), D is the gas phase diffusivity (m2/s) and deq is the diameter of bubbles (m).

Gas flow through the dense phase is at minimum fluidization velocity, Umf , and all the

excess gas is present as bubbles in the bubbling phase. The model in generalized by

letting the fraction of gas which flows through the bubble phase at any height to be

defined as:

β =
U − Umf

U
(5.2)

There is no reaction taking place in the bubble phase, and we can write the molar flux

of specie i at any height in the bubble phase:

β · U · dCib = kq · (Cid − Cib) · ab · εb · dz (5.3)

where ab us the interfacial bubble area per unit bubble (1/m) and εb is the fraction of

bed volume occupied by bubbles. The boundary condition of Cib is Cib=Ci,in at z=0.

For the dense phase:

(1−β) ·U · (Ci,in−Cid)+

∫ H

0

kq · (Cib−Cid) ·ab · εb ·dz = (1− εb) · (1− εmf) ·H ·Ri (5.4)

where εmf is voidage at minimum fluidization and Ri is the rate of reaction (mole/(m2·s)).
The final exit concentration of i is written as:

Ci,Out = β · [Cib]z=H + (1− β) · Cid (5.5)

A detailed derivation is found in Appendix C.1.
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5.2 System description

A steady-state model of a dual fluidized bubbling bed SE-SMR reactor system is in-

vestigated and a schematic illustration of the process, based on parallel fluidized bed

reactors, appears in Figure 5.3 .

Figure 5.3: Schematic diagram of sorption-enhanced SMR process.

Reforming catalyst and CO2-acceptor particles are mixed in the reformer (with λ

as the volumetric ratio of sorbent to total volume of particles). The catalyst is a

commercial Ni-based steam reforming catalyst ground to a mean particle diameter of

200 µm. It is not separated from the sorbent before being transferred to calciner.

Temperature is relatively uniform due to rapid solid mixing, and solids are transferred

easily between the two reactors. With almost complete CO2 capture, the combined

reactions Eq.(2.5) are slightly exothermic, eliminating the need for additional heat to
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the reformer. The product gas from the reformer/carbonator then mainly consists of

hydrogen and steam, with only minor quantities of CO, CO2 and unconverted methane.

Carbonated sorbent is transferred to the calciner/regenerator where heat (Q) is

supplied for the endothermic calcination reaction (Eq.(2.6)). Heat can be supplied

either by burning fuel in the regenerator or by indirect heating from an external heat

source. Indirect heating has the advantage of producing essentially pure CO2 for further

sequestration, e.g. suited to geological storage or enhanced oil recovery, eliminating the

need for downstream purification. The SE-SMR process, illustrated in Figure 5.3,

is based on pure CO2 to be produced by the calciner. To avoid separation processes

downstream, CO2 and/or H2O can be used as the fluidizing gas in the regenerator. Ortiz

and Harrison [38] report no significant difference in loss of multi-cycle durability for

different regeneration atmospheres with dolomite as sorbent, except when regeneration

was carried out in pure nitrogen at 950◦C. Multi-cycling was performed in the presence

of reforming catalyst, which also appeared to maintain its activity.

The choice of fluidizing gas in the calciner influences the decomposition temperature

of the carbonate. In pure CO2, the decomposition temperature is ∼900◦C, based on

an equation proposed by Baker [42] (Eq.(2.8)). Steam as a fluidization medium has

the advantage of reducing the partial pressure of carbon dioxide, hence reducing the

temperature required for calcination, and it is therefore likely to be preferred over CO2.

Moreover, steam in the regeneration step proved to be advantageous in terms of sorbent

multi-cycle stability, as shown in Figure 3.4 in chapter 3.

Calcium-based sorbents have the advantage of being available at a low cost, but

they have proved to be unable to maintain their capture capacity over multiple reform-

ing/regeneration cycles as shown in chapter 3. A make-up stream of fresh sorbent (Fs,0)

must be included to maintain the capture capacity. The fresh sorbent is added to the

calciner, whereas withdrawal is from the reformer, as indicated in Figure 5.3. Initial

calcination completely decomposes both the MgCO3 and CaCO3, but carbonation con-

ditions are at such high temperatures that only CaO forms carbonate. Since only CaO

is considered as the active part of dolomite for CO2-capture at the reforming tempera-

tures, the dolomite is often referred to as CaO when considering sorbent conversion in

this chapter.

A SE-SMR unit has a limited number of independent variables, such as pre-heat

temperature of gas feed, volumetric feed rates of solids to the reformer and fresh sorbent

addition rate. The steady-state reformer temperature (T1) is influenced by the circu-
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lation rate of solids, which in turn affects the gas conversion, CO2 capture efficiency,

calciner heat requirement, etc. Although the process layout is rather simple, with only

two inter-connected vessels, the process is complex; proper design and operation require

knowledge of the response to changes in the various process parameters.

5.2.1 Assumptions

Simplifying assumptions used for modeling of the reactor system are listed below.

i) Steady-state operation.

ii) Both reformer and calciner/regenerator operate in the bubbling regime at ambient

pressure.

iii) Both reactors are isothermal, but they have different temperatures, T1 and T2.

Gas and solids leave the reactor at the same temperature (T1=Ts,1 and T2=Ts,2).

Heat loss associated with transfer of solids between the reactors is ignored, to-

gether with any other heat loss.

iv) The reformer operates under autothermal conditions. All heat needed for the

reforming/sorption reactions is supplied by the hot solids from the calciner and

the pre-heated feed gas.

v) The regenerator is assumed to be of the same size as the reformer. The volume

of the calciner is sufficiently large to convert all CaCO3 entering the regenerator

to CaO (Xcalc=1 ) at the given temperature. The fluidizing gas velocity in the

reformer is set at 0.05 m/s.

vi) The calciner temperature (T2) is calculated from the equilibrium pressure of CO2

for the calcination reaction, with 50◦C added to this temperature to assure com-

plete calcination.

vii) Catalyst is not separated from the sorbent before entering the calciner.

viii) The reaction rates are not affected by the number of reforming/calcination cycles.

ix) A make-up flow of fresh sorbent (Fs,0) is added to compensate for the loss of

sorbent capacity, and the decay is described by a simple relationship between
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CaO conversion after N cycles, XN , and cycle number, N, that was proposed by

Abanades [82]:

XN = fN+1 + b (5.6)

where f and b are constants. This equation is used to describe the multi-cycle

conversion of CaO in Arctic dolomite (Franzefoss A/S, Arctic Dolomite SHB).

Thermo-gravimetric analysis was performed, with alternating carbonation and

calcination in a pure CO2 atmosphere at 850◦C and 925◦C, respectively. The

results appear in Figure 5.4. Loss of sorption capacity as a function of carbon-

ation/calcination cycling is evident. The constants of Eq.(5.6) were found to be

f =0.82 and b=0.28 by fitting the experimental data.

Figure 5.4: Loss of sorption capacity of CaO in dolomite as a function of number of
cycles (Carbonation: 850◦C in pure CO2 for 2 hours; Calcination: 925◦C in pure CO2

for 3 hours).

x) The purge stream from the reformer is assumed to consist only of sorbent (no

catalyst), requiring a dry classifier to be used in the process.
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5.2.2 Model equations

To solve the system involving both catalytic reactions and a consumable solid, it is

necessary to write separate mole balances for the gaseous phase and the solid phase.

There are five gas species involved in the reactions, i.e. CH4, H2O, CO, CO2 and H2.

The two-phase model of Orcutt et al. [81], previously described in this chapter, is

used to model the reformer. This assumes the gas to be perfectly mixed in the dense

phase, whereas it is in plug flow in the bubble phase, and mass transfer between the two

phases is represented by an interphase mass transfer coefficient, kq (Eq.(5.1)). Other

hydrodynamic- and mass transfer correlations used in the model are listed in Table 5.1.

Table 5.1: Hydrodynamic and mass transfer relationships

Parameters Relationship Reference

Bubble size.
Evaluated at z=0.4·

Hmf
a

deq = dbm − (dbm − db0) · exp(−0.3·z
dt

)
where

db0 = 2.78
g
· (U − Umf )

2

and
dbm = 0.65 · [π

4
· d2

t · (U − Umf )]
0.4

Mori and
Wen [83]

Interfacial bubble
area per unit volume

ab = 6
db

Voidage fraction of
bubbles in bed

εb =
U−Umf

UA

Absolute bubble rise
velocity

UA = 0.711 ·
√
g · deq + (U − Umf )

Davidsion
and

Harrison
[84]

Minimum fluidization
velocity of a binary

system

Ar =
d3

p,mix·ρf ·(ρm−ρf )·g
µ2

d3
p,mix·Umf ·ρf

µ
= [(33.7)2 +0.0408 ·Ar]0.5− 33.7

where
1

ρmix
= ωc

ρcat
+ ωd

ρdolomite
, and

1
ρmix·dp,mix

= ωc

ρcat·dp,cat
+ ωd

ρdolomite·dp,dolomite

Wen and
Yu [85]

and
Goossens
et al. [86]

a Average bubble size at 40% of bed height

Mole balances for species, i, in the bubbles and dense phase are given by Eqs.(5.3-

5.4). CO2 is the only gas species consumed in the gas-solid reaction. Its rate of dis-
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appearance via the carbonation reaction must be included in the dense phase mole

balance. And the reaction rate term, Ri (mole/m3 solids/s), of Eq.(5.4) is expressed as:

Ri = (1− λ) · ρcat · ri ·
1000

3600
(5.7)

for i=CH4, CO, H2, H2O

Ri = (1− λ) · ρcat · ri ·
1000

3600
+ λ · r′

i (5.8)

for i=CO2

The reaction rates for the catalytic reactions are denoted by ri, whereas the gas-solid

reaction rate is designated by r
′
i. The previous derived carbonation reaction expression

in Eq.(3.8) is used for describing carbonation of Arctic dolomite. The rate expressions

for catalytic steam reforming of methane over a nickel-based catalyst are those proposed

by Xu and Froment [87] who used the same Ni/MgAl2O4 catalyst as is employed in this

study and investigated temperatures in the range of 773-848 K, typical of temperatures

for SE-SMR. The rate expressions were obtained under pressurized conditions, and

validity in the atmospheric carbonator-reformer is assumed. The rate expressions for

reactions, Eqs.(1.1-1.3), are, respectively, given by:

r1 =
k1

p2.5
H2

· [pCH4 · pH2O −
p3

H2
· pCO

K1
]/DEN2 (5.9)

r2 =
k2

pH2

· [pCO · pH2O −
pH2 · pCO

K2

]/DEN2 (5.10)

r3 =
k3

p3.5
H2

· [pCH4 · p2
H2O −

p4
H2
· pCO2

K1 ·K2

]/DEN2 (5.11)

where DEN = 1 +KCO · pCO +KH2 · pH2 +KCH4 · pCH4 +
KH2O·pH2O

pH2
. The values of the

kinetic parameters are listed in Table 5.2 and the total generation- and removal rates

are written as:
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rCH4 = −r1 − r3
rH2O = −r1 − r2 − 2 · r3
rCO = r1 − r2
rH2 = 3 · r1 + r2 + 4 · r3 (5.12)

rC02 = r2 + r3

r
′

C02
= −Rdolo(X)

Table 5.2: Kinetic parameters from Xu and Froment [87]

Rate constants Pre-exponential factor
Activation energy and
heat of chemisorption

[kJ/mole]

k1 [kmole· kPa0.5

kg cat· h
] 9.49· 1016 240.1

k2 [ kmole
kg cat· h· kPa

] 4.39· 104 67.13

k3 [kmole· kPa0.5

kg cat· h
] 2.29· 1016 243.9

KCH4 [kPa−1] 6.65· 10−6 38.28
KCO [kPa−1] 8.23· 10−7 70.65

KCH4 [-] 1.77· 105 -88.68
KH2 [kPa−1] 6.12· 10−11 82.9

Equilibrium constants

K1 [kPa2] K1=10267· 10
−26830

T
+30.11

K2 K2=10
4400

T
−4.036

Mole balances

Calcined dolomite consists of CaO and inert material (mainly MgO), which is uniformly

distributed in the dolomite pellet. YCaO and YMgO represent the weight percentages of

CaO and MgO, respectively, in calcined Arctic dolomite. Fs,2 is the total mass flow of

calcined dolomite from the calciner and is the sum of recycled sorbent, Fs,r, and fresh

added sorbent Fs,0. Fresh sorbent is introduced to the calciner as CaCO3 · MgCO3 and

must be fully calcined before entering the reformer. The calcination of freshly added

dolomite therefore adds to the energy requirement of the calciner. The catalyst is not
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separated from the mixture before entering the calciner, so that the solid circulation

includes catalyst. The solid streams between the reactors are listed in Table 5.3.

Table 5.3: Solid stream relationships

To reformer [kg/s] To calciner [kg/s]

Fs,2=Fs,0+Fs,r Fs,1=Fs,r

FCaO,2=Fs,2·YCaO· Xcalc FCaO,1=Fs,r·YCaO· Xcalc·(1-XCaO)

FCaCO3,2=0 FCaCO3,2=Fs,r·YCaO·
MCaCO3

MCaO
XCaO

FMgO,2=Fs,2·YMgO FMgO,1=Fs,r·YMgO

Fcat,2=Fs,r· ωc

1−ωc

a Fcat,1=Fcat,2

a ωc = (1−λ)·ρcat

(1−λ)·ρcat+λ·λdolo

A mole balance on CaO in the solid dolomite, continuously added and withdrawn

from the reformer, has to be included:

moles CaO in - moles CaO out = moles CaO reacted

FCaO,2

MCaO
·XCaO = −Rdolo(X) · Vdolomite (5.13)

The CO2 conversion in the gas phase and solids conversion satisfies the equation:

Number of moles CO2 consumed = number of moles CaO consumed

XCO2 · CCH4,in
· U · Ac =

FCaO,2

MCaO

·XCaO (5.14)

The solid conversion is calculated based on the reaction kinetics. However, there is an

upper limit for solid conversion as the CaO sorption capacity dramatically decreases as a

function of the number of cycles (as shown in Figure 5.4). The amount of fresh sorbent,
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Fs,0, to be added to the system is calculated from a population balance, combined

with the empirical Eq.(5.6) based on the work of Abanades [82] and should satisfy the

equation:

XCaO =
f · Fs,0

Fs,0 + Fs,r · (1− f)
+ b (5.15)

If no fresh sorbent is added, this equation predicts that the steady-state conversion

approaches 28%, which is consistent with the findings from the 100 multi-cycle test

presented in Figure 3.4.

Enthalpy balances

Both reactors operate isothermally, and enthalpy balances are used to calculate the

steady-state temperatures of the reactors. These balances have to be solved simulta-

neously with the mole balances in an iterative manner, as the solid outlet temperature

of each reactor is required as an input to the other reactor. For component, i, without

any phase change, the enthalpy at temperature T is given by:

H◦
i (X) = H◦

i (298) +

∫ T

298

CP,i · dT (5.16)

The heat capacity is a function of temperature expressed by:

CP,i = Ai +Bi · T +
Ci

T 2
+Di · T 2 (5.17)

The constants in Eq.(5.17) are obtained from the thermodynamic software program

HSC Chemistry (HSC Chemistry 5.1, Outokumpu Research Oy, Finland), and listed in

Appendix C.2. The enthalpy of the solids entering the reformer is calculated from:

Hs,2 = FCaO,2 ·∆HCaO,2 + FCaCO3,2 ·∆HCaCO3,2 + FMgO,2 ·∆HMgO,2 + Fc ·∆HCatalyst,2

(5.18)

For the reformer the enthalpy balance to be solved is:

(Hs,1 +H1 +Hs,p)− (Hs,2 +Hs,ref) + ∆Hrx,reformer = 0 (5.19)

where ∆ Hrx,reformer is the sum of the heats of reaction for the endothermic reforming

reactions
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∆Hrx,reformer = VBed ·(1−εb)·(1−εmf)·[ρcat ·(1−λ)·
3∑

j

∆Hrx,j ·Rj+λ·∆Hrx,4·Rdolo(X)]

(5.20)

with

∆Hrx,1=206.2 kJ
mole

, ∆Hrx,2=-41.1 kJ
mole

, ∆Hrx,3=164.9 kJ
mole

,

∆Hrx,4=-178.8 kJ
mole

, ∆Hrx,5=-100.9 kJ
mole

For the calciner:

(Hs,2 +H2)− (Hs,0 +Hs,1 +H0,calc) + ∆Hrx,calciner = 0 (5.21)

The heat of reaction for ∆Hrx,calciner is the sum of the endothermic calcination reaction

of CaCO3. Note that the heat of decomposition of MgCO3, ∆Hrx,5 , is included for

fresh dolomite added to the system.

5.2.3 Solving the system of equations

The model consists of a set of highly nonlinear algebraic equations. Mole balances

and enthalpy balances for both reactors were solved simultaneously to obtain steady-

state solutions for the system. The calculation procedure was iterative, implemented

in MATLAB (MATLAB 6.5, The MathWorks, Inc.). The numerical solution procedure

is:

i) Guess an initial temperature of solids entering the reformer from the calciner, Ts,2

(assumed equal to T2).

ii) Calculate T1 from the mole and enthalpy balances with the above temperature

as input.

iii) Use calculated reformer temperature, T1, as input to the energy balance in the

calciner to calculate an improved value of the calciner temperature T2. (No mole

balance for the calciner is needed here, just the assumption that Xcalc=1.)

iv) Compare the calculated T2 from the energy balance with the initial guess value.

A steady-state solution is reached when the calciner temperature is equal to the

temperature of the solids entering the reformer.
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Figure 5.5 shows a simplified block diagram of the model.

Figure 5.5: Simplified block diagram of solution procedure.

Evaluation parameters

Product gas purity and dry gas hydrogen concentration are key parameters in evaluating

the performance of the process. Other important parameters include hydrogen yield

(moles hydrogen produced/moles methane fed), YH2 , and carbon capture efficiency

(moles CO2 captured/moles carbon fed), XCO2 . The reformer efficiency is defined as in

the work of Rydén and Lyngfelt [88]. A H2-equivalent term, H2,eq, describes the amount

of hydrogen remaining per mole of CH4 fed if all external heat and power demands were

to be met using the produced H2 for heating and power production.
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H2,eq = YH2 −H2,calciner +H2,steam −H2,compression (5.22)

A reformer efficiency is defined as:

ηr = H2,eq ·
LHVH2

LHVCH4

(5.23)

where

H2,calciner = QH

LHVH2
, H2,steam = QS·0.9

LHVH2
, H2,compression = QC

LHVH2

QH is the heating demand of the calciner (J/mole CH4), and QS is the heating ex-

cess of the streams entering and leaving the system. A steam generation efficiency of

90% is assumed. QC is the electricity needed to compress the product gases (both H2

and CO2). If the process produces excess heat and power, then H2,eq exceeds the ac-

tual hydrogen product. The lower heating values (LHV) for hydrogen and methane are

241.8 kJ/mole and 802.3 kJ/mole respectively. Rydén and Lyngfelt assumed that the

electrical energies required to compress CO2 and H2 to 20 and 100 bar are 15 kJ/mole

and 13 kJ/mole, respectively, and these values have also been adopted.
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5.3 Model results and discussion

Unless otherwise stated the reactor dimensions used in the previous batch experiments

were employed for the calculations, as listed in Table 4.1.

5.3.1 Effect of sorbent addition

Hydrogen concentration is predicted as a function of reactor length for three values of

λ in Figure 5.6 for a reformer temperature of 600◦C, a steam-carbon ratio of 3 and a

superficial gas velocity of 0.1 m/s.

Figure 5.6: Effect of sorbent addition on exit hydrogen concentration (T1=600◦C,
S/C=3, U=0.1 m/s).

An equilibrium dry hydrogen concentration of 73.8% is reached after traversing

-111-



Chapter 5. Fluidized bed modeling

∼0.07 m when no sorbent is added (λ=0). When sorbent is added to the reactor, the

hydrogen concentration increases to 95.8% and 97.0% for λ=0.36 and λ=0.90 respec-

tively, showing the shift in equilibrium product composition.

A dry hydrogen concentration of ∼98% for λ=0.36 was found experimentally at

the same reaction conditions, as reported in chapter 4. The under-prediction by the

model may be related to the hydrodynamic model, in particular the fact that solids

are not accounted for in the bubbles. Improved models are available [61, 89] which

include a small portion of the solids within the bubbles. However, given the predicted

leveling out of all three curves with height, the difference between the predictions and

experimental results in this case is primarily related to the equilibrium approached, not

the kinetic model. The temperature in the freeboard region was hotter than the actual

bed temperature for the experimental investigation and additional reactions in this

region of the reactor are likely to cause increased methane conversion. The relatively

low ratio of λ=0.36 was chosen to give reasonable production times, as the experiments

were conducted in batch mode. Previous workers, e.g. Ortiz and Harrison [38] used

a dolomite-catalyst mass ratio of 2.2-2.7, corresponding to λ≈0.8. To minimize the

requirement for expensive catalyst, operation with high λ is desirable. For λ=0.90 a

hydrogen concentration of 97% is predicted in the product gas. A further increase led

to a drop in the predicted hydrogen concentration, indicating that at least 10% catalyst

by volume is required to maximize the hydrogen yield and reduce the catalyst cost.

The observed ”breakthrough”, found from the experimental investigation, occurred

somewhere between 40-55 minutes for U≈0.1m/s. For this superficial gas velocity the

total carbon feed rate is calculated to 2.9·10−3 moles/s. Assuming that 95% of the car-

bon fed to the reformer is converted to CO2 and reacted to form CaCO3, the amount

of unreacted sorbent at the point before the experimental breakthrough (40 minutes) is

280 g, corresponding to a solid conversion of 69%. Figure 5.7 shows the experimental

hydrogen concentration compared with model predictions at different degree of sorbent

conversion using the steady-state model. The point of breakthrough at 55 minutes is

also modeled, corresponding to 95% conversion. The predicted dry hydrogen outlet

concentration is somewhat lower than the experimental for the pre-breakthrough pe-

riod. However, the kinetics and model predictions are quite consistent with the batch

experiments.
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Figure 5.7: Experimental and predicted hydrogen concentration (T1=600◦C, S/C=3,
U=0.1 m/s).

Effect of S/C-ratio

The effect of increased steam-to-carbon (S/C) ratio on outlet hydrogen concentration is

shown in Figure 5.8. The ratio is varied over the range 3-4, the likely range of interest to

minimize carbon formation while not requiring excessive energy for steam generation.

The hydrogen concentration is predicted to increase from 97.0% to 98.4% as the S/C-

ratio is varied from 3 to 4. This increase is related to the positive effect on the water-gas

shift reaction (WGS) equilibrium, which favors production of H2 and CO2. Increased

CO2 partial pressure increases the rate of carbonation, further enhancing the steam

reforming reaction.
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Figure 5.8: S/C-ratio effect on reformer hydrogen purity (T1=600◦C, λ=0.9, U=0.1
m/s).

5.3.2 System considerations

Based on the above findings, a steam-to-carbon ratio of 4 and λ=0.90 were chosen for

the remaining simulations. The scale of the reformer/regenerator system was increased

to a reactor diameter of 1 m. The static bed height of the shallow bubbling bed was

slightly increased to 0.35 m to compensate for bigger bubbles. The velocity of 0.1 m/s

is low when considering the practical application of the process. However, the velocity

is within the bubbling regime, suiting the hydrodynamic two-phase model.

The concentration of hydrogen in the reformer depends on the rate of reaction of

the combined reactions, which are strongly related to reformer temperature and solid

conversion. Increasing the solid circulation rate leads to increased reformer temperature
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as more hot solids are added from the calciner. Figure 5.9 shows how the reformer

temperature, solid conversion and dry hydrogen mole concentration in the product gas

are affected by increased circulation rate.

Figure 5.9: Reformer temperature (a), solid conversion (b) and dry hydrogen mole
concentration (c) in reformer product gas as a function of circulation rate for S/C=4,
λ=0.9 and T0,ref=250◦C.

It can be observed from Figure 5.9 that a reformer temperature in the range 550-

620◦C is optimal for obtaining a high hydrogen concentration in the product gas

(>98%). In order to achieve this, the circulation rate of calcined dolomite has to

be within the 3 to 5 kg/min range for this size of reactor and a pre-heating temper-

ature of 250◦C. The temperature effect on the combined reactions is rather complex.

Increased temperature leads to an increased steam reforming reaction rate, whereas

the rate of carbonation increases to a certain point before the reaction rate decreases
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due to the drop in equilibrium constant, i.e. due to the reverse calcination reaction, as

can be seen from the rate expression for carbonation in Eq.(3.8) used in the modeling,

where the difference in partial CO2 pressure and the equilibrium pressure at the given

temperature represents the ”driving force” for reaction. The circulation rate not only

influences the reformer temperature, but also the solid conversion (Figure 5.9b). Solid

conversion is dependent on residence time in the reformer, and a low solids conversion

of 20-30% is achieved for the circulation rates, giving the maximum hydrogen concen-

tration observed at > 98% H2. High circulation gives a low fractional conversion of the

sorbent, in addition to increased temperature. The reformer temperature can also be

adjusted by varying the reactant pre-heating. By employing higher pre-heating tem-

peratures (T0,ref), the circulation rate can be reduced in order to reach the optimum

reaction temperature for the combined reactions. Figure 5.10 shows how dry hydrogen

concentration is affected by solid conversion and reformer temperature for two different

pre-heating temperatures.

The higher pre-heating temperature of 500◦C requires a lower solid circulation to

achieve proper reaction temperatures; hence a steady-state solid conversion of 50-60%

is reached at reforming temperatures close to 600◦C. For a pre-heating temperature

of 250◦C, the same reforming temperature is reached at lower solid conversions of 20-

30%. The maximum hydrogen concentration is also somewhat higher for the lowest

pre-heating temperature. This can be understood by looking at the nature of the

carbonation reaction, with a rapid initial reaction rate followed by a slower regime in

which the rate is controlled by CO2 diffusion through the CaCO3 product layer. A

reaction temperature of ∼600◦C can be maintained by adjusting the circulation rate

of hot solids entering the reformer in combination with pre-heating of the feed gas. If

an increased circulation rate is used to raise the reformer temperature, more heat must

be supplied to the calciner, thereby reducing the total system efficiency. However, this

leads to a lower sorbent conversion in the reformer, utilizing the fast reaction regime,

and the need for fresh sorbent addition is reduced. The effect of circulation rate on

solid conversion and reformer efficiency is shown in Figure 5.11.

It seems that reformer efficiencies of about 86% can be achieved for moderate circula-

tion rates of calcined dolomite of 4-6 kg/min. Efficiencies are reduced at low circulation

rates due to the need to add more fresh sorbent to the calciner, requiring more heat to

pre-calcine fresh dolomite. This is clearly seen in Figure 5.11, where there is a marked

drop in reformer efficiency for CaO conversions exceeding 28%. The MgCO3 uncalcined
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Figure 5.10: Reformer temperature and dry hydrogen concentration in reformer prod-
uct gas as a function of CaO conversion for pre-heating values, T0,ref , of 250◦C (solid
line) and 500◦C (dashed line) (S/C=4 and λ=0.9).

dolomite also contributes to increased energy demand in the calciner compared to the

case where the sorbent is pure limestone. The reformer efficiency also depends strongly

on the temperature difference between the reformer and calciner. A high reformer tem-

perature reduces the energy needed to heat the solids up to the calcination temperature.

However, the reformer temperature has an upper limit as shown in Figures 5.9, because

CO2 capture decreases as its equilibrium shifts towards calcination with increasing re-

former temperature.

The overall system performance for a pre-heat temperature of 250◦C, S/C-ratio of 4

and λ=0.90 is presented in Table 5.4. It can be seen that increasing the solids circulation
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Figure 5.11: Reformer efficiency and solid conversion as function of circulation rate
for S/C=4, λ=0.9 and T0,ref=250◦C.

rate causes the sorbent conversion (XCaO) to decrease due to the shorter residence

time in the reformer, whereas temperature (T1) increases due to the increased flow

of hot solids from the regenerator. The regenerator temperature (T2) always equals

the thermodynamic equilibrium decomposition temperature of CaCO3 at the given

partial pressure, with 50◦C added to this temperature to assure complete calcination,

and therefore slightly decreases as the degree of carbonation is reduced, so that less

CO2 is being released. The temperature difference between the reformer and calciner

is critical for high system efficiencies. A higher temperature of the solids leaving the

reformer means that less energy is needed for the calciner, hence increasing the efficiency.

In addition, a lower CaO conversion means that less CO2 is released in the calciner,

reducing its partial pressure and decreasing the carbonate decomposition temperature.
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Clearly there is a trade-off in choosing the reaction conditions if both high energy-

efficiencies and high-purity of H2 are sought. This is a major motivation for exploring

other sorbents, which could release CO2 at lower temperatures. The carbon capture

efficiency is plotted as function of reformer temperature in Figure 5.12.

Table 5.4: Process parameters for S/C=4, λ=0.9 and T0,ref=250◦C

Solid circulation rate, Fs,2

[kg calcined dolomite/min]
2.7 3.6 5.1 8.4

Solid make-up ratio
[fresh sorbent/recycled sorbent]a

0.11 0.03 - -

T1 [◦C] 542 578 619 665
T2 [◦C] 887 881 874 869

XCaO 0.40 0.31 0.22 0.12
XCH4 0.92 0.96 0.98 0.99

XCO2 0.90 0.94 0.92 0.82
H2 dry concentration [%] 97.4 98.4 98.0 95.5

YH2 3.65 3.84 3.89 3.86
H2,calciner 1.60 1.47 1.39 1.42

H2,steam 0.70 0.66 0.65 0.68
H2,caompression 0.27 0.27 0.27 0.26

H2,eq 2.48 2.76 2.88 2.84

ηr [%] 74.7 83.1 86.7 85.6

a Based on calcined dolomite

The capture efficiency also depends to some extent on the sorbent conversion, as

well as on temperature, and for a gas feed pre-heat temperature of 250◦C the sorbent

conversion ranges from 5-50% in the reformer temperature interval shown in Figure 5.12.

Note that >90% of the carbon entering the reformer (assuming no carbon deposition

on the catalyst) can be captured for reforming temperatures in the range of 540-630◦C.

5.3.3 Heat supply to calciner

As previously mentioned, the heat of calcination can either be supplied by direct burning

of fuel in the vessel or by the insertion of heat transfer tubes. There are two requirements

that have to be fulfilled when determining the size of the calciner and the insertion of

heat transfer tubes; the heat transfer area should be sufficiently large to supply the heat

for the endothermic reaction, and the other is that the residence time of solids is high
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Figure 5.12: Carbon capture efficiency (XCO2) as function of reformer temperature
for S/C=4, λ=0.9 and T0,ref=250◦C.

enough to ensure full conversion of the carbonate. The required heat transfer area can

be estimated by assuming that the heat supply is the rate-limiting step for calcination.

The heat demand of calcination is represented by H2,calciner in Table 5.4, where a

value of ∼1.4 mole H2/mole CH4 is representative for the heat demand of the calciner

without any sorbent make-up addition. Multiplying with the molar feed rate of methane

of 0.219 mole/s, and the lower heating value of hydrogen, the heat demand (Q) is found

to be 74.2 kW. The heat transfer coefficient between the particle/gas medium and the

submerged tube surfaces, hw (kW//(m2·K)), can be described by:

hw =
Q

aw · (Tw − T2)
(5.24)
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where aw (m2) is the submerged surface area, Tw is the temperature of the submerged

surface, T2 is the temperature of the bed and Q (kW) is the required heat for the

calcination reaction.

The mechanisms of heat transfer are significantly different for different fluidization

regimes [90]. Due to its engineering importance, the bed-to-surface heat transfer coef-

ficient has been measured by many investigators for various geometries and operating

conditions. Here, the heat transfer coefficient is estimated by using Vreedenberg’s [91]

correlation for horizontal tubes:

hw ·Dt

kt
= 0.66 · Pr0.3

g · (
ρs · (1− ε)
ρg · ε

)
0.44

·Re0.44
D for

ρs

ρg
·Rep ≤ 2050 (5.25)

where ReD = Dt·ρg ·U
µg

, Rep = dp·ρg ·U
µg

, Prg = Cp.g ·µg

kt
. Key properties for a gas mixture

of steam and CO2 at 870◦C, obtained from the software Ergun (Ergun 6.0, Divergent

S.A.), are listed in Table 5.5.

Table 5.5: Parameters used for calculating the heat transfer coefficient, obtained from
Ergun (Ergun 6.0, Divergent S.A.) for a 50% H2O/CO2 mixture at 870◦C

Cp,g

[J/kg K]
dp

[µm ]
Dt

[m]
kt

[W/m K]
U
[m/s]

ρg

[kg/m3]
ρs

[kg/m3]
µg

[Pa · s]
1795 200 0.05 0.0961 0.05 0.3887 2200 4.39 · 10−5

Inserting into Eq.(5.25):

hw ·Dt

kt
= 0.66 · 0.820.3 · (2200 · (1− 0.5)

0.3887 · 0.5 )
0.44

· 22.140.44 = 108.84 (5.26)

hw = 108.84 · 0.0961

0.05
= 0.209

kW

m2 ·K (5.27)

Radiative heat transfer needs to be taken into account at the high temperatures

employed in the calciner. Ozkaynak et al. [92] found that the radiant contribution to

heat transfer increased with temperature, and at 800◦C the contribution was greater

than 35% of the total heat flux in a bubbling bed. One way of calculating the radiative

heat transfer coefficient, hr, is to use the Stefan-Boltzman equation for radiant exchange
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between opaque gray bodies [90], where it can be shown that:

hr = (
εb · εw

εw + εb − εw · εb
) · σ · (T

4
2 − T 4

w)

T2 − Tw

(5.28)

where σ is the Stefan-Boltzman constant (5.67 · 10−8 W/(m2 K4)), εw and εb are the

emissivities of the wall and the bed respectively. For a bubbling bed it can be assumed

that εb has the value of 0.9, while εw equals 0.66 for a SS316 material [90]. The required

heat transfer area can be calculated by defining h=hw+hr, and rearranging Eq.(5.24):

aw =
Q

h · (Tw − T2)
(5.29)

Table 5.6 shows the calculated heat transfer area for various temperatures of the sub-

merged surface, using T2=870◦C and Q=74.2 kW.

Table 5.6: Heat transfer area required in the calciner for different ∆T
(T2=870◦C and Q=74.2 kW)

Tw [◦C] ∆T [◦C] h [kW/(m2 K)] aw [m2]

900 30 0.425 5.82

920 50 0.431 3.44

950 80 0.440 2.10

There are several ways the heat tubes can be arranged in the calciner. For simplicity,

a rectangular box with horizontal tubes with a outer tube diameter of 0.05 m is assumed.

With this geometry, seven tubes with a length of approximately 0.71 m can be placed

in the cross section area of the reactor, and the distance between the tubes, the tube

pitch, will be 0.06 m. Figure 5.13 shows the arrangement of the heat exchanger tubes.

The surface area of a single heating tube is calculated to be:

At = 2 · π · 0.05

2
· 0.71 = 0.11 m2 (5.30)

The total number of heat exchanger tubes can now be calculated, based on the required

heat transfer area in Table 5.6. The number of tubes was found to be 53, 32 and 20

for surface temperatures of 900, 920 and 950◦C, respectively. The height of the bed

(ZH in Figure 5.13) can be calculated by assuming that the distance between each
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Figure 5.13: Arrangement of heat transfer tubes in calciner.

horizontal assembly of heating tubes is equal to the tube pitch of 0.06 m. Hence, 20

tubes correspond to a height of 0.27 m, whereas 53 tubes give a bed height of 0.82 m.

These values are by no means unrealistic for a calciner of diameter 1 m, operated in

the bubbling fluidization regime. However, surface temperatures of >900◦C will require

expensive high-temperature alloys to be used.

Design of high-temperature heat exchangers represent a major challenge for the

process. Based on the above estimations, it is evident that high surface temperatures

of the submerged heating tubes are required for obtaining reasonable values for the

heating area. Indirect heat transfer is probably more likely to be applied for synthetic

sorbents that are regenerated at lower temperatures.
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5.3.4 Fresh sorbent addition

Abanades [82] incorporated a fresh sorbent make-up feed for CO2 capture from combus-

tion flue gases when evaluating carbon capture efficiency and claimed that there would

be a compromise between moderate recycling rates and low addition of fresh sorbent to

achieve high capture efficiencies. From Figure 5.11 it is clear that adding fresh sorbent

reduces the efficiency of the system. Initial calcination of the fresh dolomite requires

that MgCO3 decomposes, partially nullifying the favorable multi-cycle properties of

dolomites compared to limestone. Addition of fresh sorbent is only required for lower

circulation rates to give steady-state CaO conversions above 28%. However, the model

suggests that circulation rates can be relatively high while maintaining high-purity hy-

drogen and reformer efficiency. Note that the 28% conversion limit in the current model

is based on a limited number of TG-cycles , and that a larger number of cycles is likely

to give a lower conversion limit, which would require increased addition of fresh sorbent

to the calciner, reducing the energy efficiency. For example, if the conversion limit (b)

were to be reduced from 28% to 10%, and the circulation rate of sorbent remained

constant at 6 kg/min, the reformer efficiency would be reduced from 86.6% to 72.1%.

Separation of catalyst from sorbent between the reactors should be avoided as this

would add extra components and complexity to the system, lead to additional attrition

and cause extra heat losses. Efficient separation of catalyst from the sorbent purge is

likely to be difficult, meaning that addition of fresh sorbent should be minimized to

reduce the loss of expensive catalyst from the purge stream. Ideally, the lifetime of the

sorbent should be close to the expected catalyst lifetime - months or even years.
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5.3.5 Increased gas velocity

A superficial gas velocity of 0.1 m/s is low for an industrial application. The effect of

increased gas throughput was investigated, assuming a pseudo-steady-state conversion

of sorbent of 20%, S/C=4, λ=0.9 and T1=600◦C, and the results are shown in Figure

5.14.

∞

∞

Figure 5.14: Effect of increased superficial gas velocity (S/C=4, λ=0.9, XCaO=0.2
and T1=600◦C).

The exit hydrogen concentration is >95% for velocities up to ∼0.5 m/s, after which

there is a marked drop in hydrogen concentration and carbon capture efficiency. For

U=0.8 m/s a hydrogen concentration of 82.2% is found at the reactor exit. In order to

check if the reduced hydrogen concentration was caused by kinetic or interfacial mass

transfer limitations, the mass transfer coefficient, kq, was set to a infinite value and the
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exit concentration was recalculated.

It is evident, from Figure 5.14, that the reduced hydrogen concentration is mainly

caused by interphase mass transfer limitations rather than kinetics in the investigated

range of velocities. The mass transfer coefficient, kq, in Eq.(5.1), contains the sum of

two terms. The first term is a throughflow component (convective flow) and the second

term describes diffusion according to the penetration theory [61]. The convective term

is mainly influenced by the particle size, as minimum fluidization velocity, Umf , is

increased with the particle diameter. Also, as the gas velocity is increased, the diameter

of the bubbles in the bed, deq, increases in accordance with the findings of Mori and Wen

[83], presented in Table 5.1. This effect is shown in Figure 5.14, where gas velocities

exceeding ∼0.5 m/s will lead to significant by-pass of gas in the larger bubbles, reducing

the exit hydrogen concentration. Note that the interphase mass transfer coefficient

employed in the model is based on isolated bubbles. However, bubbles are likely to

undergo interaction and coalescence as the gas velocity is increased and other mass

transfer relationships might be more suited.

The rate of carbonation is also reduced as the residence time of the gas in the bed

is reduced. The reforming reactions were found to be sufficiently fast, by setting λ=0,

to reach equilibrium at all investigated velocities. The insertion of baffles in the bed

is likely to reduce the bubble size and enhance the mass transfer between the bubbles

and the dense phase.

5.3.6 Effect of pressure

The SE-SMR reactions are thermodynamically favored at low pressures, as shown in

Figure 2.4. However, operating at pressurized conditions has the advantage of reducing

the size of the reactors, and also reducing the energy requirements of compression of

the product gases. If pressurized conditions are to be employed in the process, both

reactors must be operated at essentially the same pressure in order to be able to transfer

solids without adding a compressor.

Model predictions of hydrogen concentration as a function of temperature for pres-

sures in the range of 1-20 atm, presented in Figure 5.15, are consistent with the thermo-

dynamic calculations in Figure 2.4. The maximum hydrogen concentration is obtained

at a higher reforming temperature as the pressure is increased. Increased total pressure

will allow more gas to be fed to the reformer at a fixed superficial gas velocity, which
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Figure 5.15: Exit hydrogen concentration as function of temperature for different
pressures (S/C=4, λ=0.9 and T0,ref=250◦C).

again will require a higher circulation rate of sorbent. Circulation rates were adjusted

so that the reformer temperature for obtaining maximum hydrogen concentration was

reached, and a comparison of system performance at atmospheric pressure and at 20

atm is made in Table 5.7.

The volumetric feed rate of the gas is adjusted so that the superficial gas velocity

corresponds to ∼0.1 m/s. Operating at 20 atm eliminates the need to compress the

hydrogen product from the reformer. However, energy is still required to further com-

press the carbon dioxide from the calciner up to a pressure suited for transportation,

i.e. 100 bar. From Table 5.7 it can be seen that the reformer efficiency is lower for the

pressurized case. In fact, the reformer efficiency of 79.3% at 20 atm should be even

lower if compression of the feed gas is taken into account. The lower efficiency is caused
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Table 5.7: Pressure effect on system performance
(S/C=4, λ=0.9 and T0,ref=250◦C)

Pressure 1 atm 20 atm

Volumetric feed rate
[Nm3/min]

1.47 29.4

Solid circulation rate, Fs,2

[kg calcined dolomite/min]
4.5 108

T1 [◦C] 601 754
T2 [◦C] 864 1076

XCaO 0.25 0.17
XCH4 0.97 0.85

XCO2 0.94 0.78
H2 dry concentration [%] 98.4 93.9

YH2 3.88 3.37
H2,calciner 1.43 1.60

H2,steam 0.69 0.91
H2,compression 0.27 0.05a

H2,eq 2.87 2.63
ηr [%] 86.5 79.3

a Compression of feed gas is not included

by lower hydrogen yield and the very high regeneration temperature (1076◦C) required.

Operating the calciner at high pressure will increase the decomposition temperature of

the carbonate, T2, increasing the heat requirement for calcination, H2,calciner, and also

call for more expensive construction materials to be used. The very high regeneration

temperature is also likely to cause severe sintering of the particles in the system. From

this is it understood that the SE-SMR process should be run at low pressure.
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5.4 Circulating fluidized bed

A circulating fluidized bed (CFB) for sorption-enhanced steam methane reforming has

been modeled in order to get rough estimates of reactor dimensions and operating

conditions. Reaction rate expressions as used in section 5.2 were adopted with a simple

hydrodynamic model, assuming both gas and solids to be in plug flow [66]. More

advanced models are available, e.g. the core-annulus model, but for getting rough

estimates of e.g. the required reactor height for obtaining desirable hydrogen yield, the

simple 1-D model was chosen. Only the reformer of the CFB system, shown in Figure

5.16 is considered.

Figure 5.16: Simplified drawing of the CFB reactor concept.
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5.4.1 Riser model

The following simplifying assumptions are made to the model of the riser:

i) Steady-state.

ii) Gas, catalyst and sorbent (calcined Arctic dolomite) are flowing in plug flow

through the reformer, which is a cylindrical riser reactor.

iii) Negligible axial gas mixing and complete radial mixing.

iv) Constant volume fraction of solids along the height of the riser.

v) Isothermal operation at 600◦C.

Design equations:

dFi

dz
= (1− λ) · (1− ε) · Ac · ρcat · ri ·

1000

3600
(5.31)

for i=CH4, CO, H2, H2O

dFi

dz
= (1− λ) · (1− ε) · Ac · ρcat · ri ·

1000

3600
− λ · (1− ε) · Ac · r

′

i (5.32)

for i=CO2

dFi

dz
= λ · (1− ε) · r′

i (5.33)

for i=CaO, CaCO

where Fi (mole/s) is the molar flow of specie i, ε is the voidage in the riser and Ac is

the cross sectional area of the riser (m2). The reaction rates are as previously defined

by Eq.(5.12), and λ is the volumetric ratio of sorbent to the total volume of solids

calculated from:

λ =
γ · ψ · ρcat

γ · ψ · ρcat + ρdolo

(5.34)

where γ is the feed mass ratio of sorbent to catalyst and ψ is the slip-factor (ratio

between the particles and actual gas velocity). The slip-factor is calculated from a

correlation proposed by Patience et al. [93] based on the Froude number:
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ψ =
U

Vp · ε
= 1 +

5.6

Fr
+ 0.47 · Fr0.41

t (5.35)

where the Froude number is Fr = U
(g·dt)0.5 . For calculating the Froude number, Frt, the

terminal particle velocity, Ut, is required, and the following relationship is used:

Ut = [0.072 · g · d
(8/5)
p · (ρs − ρg)

ρ
(2/5)
g · µ(3/5)

](5/7) (5.36)

The solid fraction, (1-ε), in the reformer is an important parameter for modeling

of CFB risers, and numerous empirical correlations are available [94]. Investigations in

the literature have demonstrated that the axial variation of the cross sectional average

hold-up is dependent on many factors, such as operating conditions, solid properties,

solid inventory, as well as geometry and system design configurations. At low solid rate,

the solids move co-currently upwards with the gas and a uniform axial distribution is

observed. By increasing the solid flow rate, a dense region at the bottom of the riser

is observed with a dilute upper region. Without any experimental data on sorption-

enhanced steam reforming in CFB reactors, empirical correlations are not available for

the process. Therefore, for the purpose of preliminary estimates, the voidage correlation

adopted by Pugsley and Berruti [95] was used:

ε =
U · ρs

U · ρs +Gs · ψ
(5.37)

where Gs is the total solid flux (kg/(m2 ·s)).
The molar flow rates of CaO and CaCO3 can be rewritten, by using molar concen-

tration [66]:

Fi = λ · (1− ε) ·Ac · Vp · Ci (5.38)

for i=CaO, CaCO

Inserting into Eq.(5.33):

dCi

dz
=
r
′
i

Vp
(5.39)

where CCaO=ρCaO at z=0

The particle velocity, Vp, found from the slip-factor, decreases as the particle size
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increases, hence increasing the residence time. The base case conditions are listed in

Table 5.8.

Table 5.8: Base case conditions for riser

Parameter Value

Methane flow rate (Nm3/h) 7.0 a

Steam-to-carbon molar feed ratio 4

Riser diameter (m) 0.1
Riser temperature (◦C) 600

Superficial gas velocity (m/s) ∼4b

Particle sizec(µm) 150

Height of riser (m) 6

Feed ratio, γ (kg dolomite/kg
catalyst)

2

a Corresponding to ∼80 kW LHV(H2)-based for a hydrogen yield of
3.7 moles H2/mole CH4

b For feed gas entering at 600◦C
c For both the dolomite and the catalyst

5.4.2 Results and discussion

The effect of increased circulation rate on hydrogen concentration in product gas was

investigated, and the results are presented in Table 5.9.

Table 5.9: Reactor performance at proposed operation conditions

Scenario
1

Scenario
2

Scenario
3

Solid circulation rate [kg/h] a 1922 2880 3837
Solid flux [kg/(m2 ·s)] 68 102 136

λ [m3 dolomite/m3 total solids] 0.882 0.883 0.884
XCaO [-] 0.0050 0.0045 0.0039

Voidage, ε [m3 gas/m3 reactor] 0.9795 0.9686 0.9579

Methane conversion, XCH4 [%] 88.3 90.4 92.4
Exit dry H2-concentration [%] 87.3 91.5 94.4

a Catalyst+dolomite
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A very high circulation rate is needed in order to achieve hydrogen concentrations

>90% at a reactor height of 6 meters. The rates calculated are comparable to other

experimental studies in typical riser configurations listed by Bai and Kato [94], and the

mass fluxes calculated in Table 5.9 are by no means unrealistic for CFBs. The very

Figure 5.17: Exit hydrogen and carbon dioxide concentrations in riser for Scenario 3
(S/C=4, T=600◦C and U=4 m/s).

high gas velocities in the riser are associated with large solid circulation rates. Increased

solid flow increases the solid fraction, also referred to as solid hold-up, and according

to Eqs.(5.31-5.33), the reaction rates will increase. It is therefore understood that the

solid fraction in the riser is a key parameter in the model, and the uniform distribution

of solids assumed should be regarded as a rough estimate. The solid hold-up is very

dependent on solid properties as well as reactor configuration. For example, the exit

shape of the riser will affect the pressure drop over the riser, again affecting the axial

dispersion of solids in the riser. It is worth noticing the very low fractional conversion of
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CaO at the exit of the riser (∼0.4%). Prasad and Elnashaie [66] also report a very low

degree of CaO conversion in their CFB model, and found that increasing the slip-factor

by increasing the particle size gave higher conversions. However, increasing the particle

size of solids was not found to have the same advantageous effect in this study, due to

slower reaction rate for larger dolomites particles, caused by diffusional limitations in

the increased product layer of dolomite.

Figure 5.17 shows the concentration profiles of hydrogen and carbon dioxide for

Scenario 3, where a final exit concentration of 94.4% hydrogen is reached. By allowing

for a reactor height of 10 meters, the equilibrium concentration of ∼98% is approached.

The very high riser required relates to the rather slow rate of carbonation. CO2 will be

consumed when the partial pressure is higher than the equilibrium partial pressure at

the given temperature, and the onset of the net removal rate is observed approximately

1 m after the reactor inlet.

It should be emphasized that the very simple model adopted here only serves as a

preliminary tool for analyzing the typical dimensions of a riser for the SE-SMR process.

The assumptions of uniform solid distribution, discussed above, and uniform tempera-

ture are most likely not very realistic. In reality the solids entering the riser from the

regenerator will probably have a temperature of ∼850◦C, depending on the heat loss,

and it will be important to control the temperature in order to operate at the opti-

mum reaction temperature of ∼600◦C. However, the model indicates CFB risers, with

a height of 6-7 meters, to be a potential configuration with very high gas throughput

and high hydrogen yield. Due to the uncertainties related to the hydrodynamics in

the riser configuration, preliminary experimental studies of flow pattern in a cold flow

reactor are needed.
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6.1 Conclusions

The use of fluidized bed reactors for sorption-enhanced steam methane reforming has

been investigated. The process has a continuous nature, as sorbent needs to be regen-

erated, and fluidized beds are considered an attractive reactor concept for this process.

Arctic dolomite was chosen as the primary CO2-acceptor in the study due to high ab-

sorption capacity, high reaction rate and low cost. The major findings of this work are

summarized below:

• There is a lack of literature on the kinetics of carbonation of CaO, and due to

different morphology of different calcium-based sorbents, rate equations for one

sorbent cannot be applied for another. Conventional thermo gravimetric analy-

sis, assuming constant temperature in the sample, was found unsatisfactory for

obtaining kinetic parameters. Therefore, a non-isothermal approach using a novel

thermo gravimetric reactor was applied, with a shrinking core model describing

experimental data. An apparent activation energy of 32.6 kJ/mole was found

from parameter fitting, which is in good agreement with previous reported re-

sults. The rate expression was able to predict experimental conversion up to

∼30% very well, whereas the prediction of higher conversion levels was poorer.

However, the residence time of sorbent in a continuous reformer-calciner system is

likely to be rather low, so that only a fraction of the sorbent is utilized, highlight-

ing the importance of the carbonation model at lower conversions. It is believed

that the methodology for obtaining kinetic parameters used in this study, with
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simultaneous recording of sample weight and temperature, could be applied to

other gas-solid reactions as well.

• Hydrogen equilibrium concentrations were obtained in a bubbling fluidized bed

reactor, operated at 600◦C and 1 atm, for gas velocities investigated in the range

of 0.032-0.096 m/s. Multiple reforming-regeneration cycles showed that the hy-

drogen concentration remained at 98-99 mole% after four cycles. The total pro-

duction time was reduced with an increasing number of cycles due to loss of

CO2-uptake capacity of the dolomite, but the reaction rates of steam reforming

and carbonation seemed to be unaffected for the conditions investigated. The very

uniform temperature within the bed, with maximum axial differences in temper-

ature of only 3-4◦C, confirmed the good temperature control offered by bubbling

fluidized beds. The degree of attrition of particles was found to be low in the

bubbling bed, with 1.5% of the particles having a diameter of <90 µm for the

highest velocity run of ∼0.1 m/s. At the given reaction conditions the overall

reaction rate was sufficiently fast so that equilibrium was approached, making

bubbling bed reactors an appealing choice for this process.

• Although the experimental results were obtained from a sequence of batch reforming-

batch regeneration, it is believed that comparison can be made to coupling of

two bubbling fluidized beds, which was investigated by modeling. Dry hydrogen

concentrations of >98% can be achieved for temperatures of ∼600◦C and a su-

perficial gas velocity of 0.1 m/s using a simple two-phase bubbling bed model for

the reformer, coupled with steam methane reforming and water gas shift reaction

kinetics from the literature and experimentally-determined carbonation kinetics

for Arctic dolomite. The model delineates important features of the system. Sor-

bent properties such as reactivity, multi-cycle capacity and reformer temperature

determine the overall process performance. The catalytic reactions were found

to be faster than the gas-solid carbonation reaction. A mixture containing 10%

catalyst is predicted to obtain maximum hydrogen yield for the reactor condi-

tions investigated. The reformer temperature should not be less than 540◦C nor

greater than 630◦C to achieve carbon capture efficiencies >90%. The effect on

carbonation for higher superficial gas velocities was investigated, and reduced hy-

drogen concentrations for U>0.5 m/s were found, mainly caused by interphase

mass transfer limitations and by-pass of gas in bubbles. The multi-cycle capacity
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of natural sorbents such as dolomites is rather poor, so that fresh sorbent needs

to be added to the system to reduce the recycle flow. Operating at relatively high

circulation rate is calculated to give the highest system efficiencies, because the

reaction rate of natural sorbents is slow at high conversions compared to the initial

carbonation stage, while addition of fresh dolomite requires energy to decompose

both CaCO3 and MgCO3.

• A multi-cycle conversion limit of ∼30% was assumed in the model, which was

based on experimental findings from TGA. This limit is, however, based on

a limited number of cycles and the reformer efficiency was found very sensi-

tive to this value. Synthetic sorbents that maintain their capacity upon mul-

tiple reforming-calcination cycles were also investigated. A low-temperature liq-

uid phase co-precipitation method was used for synthesis of both Li2ZrO3 and

Na2ZrO3. Li2ZrO3 showed a superior multi-cycle capacity compared to dolomite,

but the rate of reaction in a diluted CO2 atmosphere was very slow. The synthe-

sized Na2ZrO3 proved to have both fast carbonation kinetics and stable multi-cycle

performance. However, regeneration in the presence of carbon dioxide was not

easily accomplished.

• Based on the findings of this work, a dual bubbling fluidized bed reactor con-

figuration is believed to be an attractive configuration for SE-SMR. Low gas

throughput is the major disadvantage for this configuration, and operation in the

fast fluidization regime (circulating fluidized bed) is most likely to be preferred

on an industrial scale of the process. Preliminary model results, using a plug flow

assumption, suggest that the riser height in such a configuration will be in the

order of 6-10 meters for equilibrium concentrations of >95% to be approached.
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6.2 Future work

Based on the aforementioned conclusions, several new aspects of the process, subject

for further investigations, arise. Also, there are subjects encountered that have been

considered outside the scope of this work that should receive further attention.

• Further work is required on the cycling capacity properties of dolomites and other

sorbents, in particular with respect to the sorption capacity after many more cy-

cles than investigated in the current study or found in literature, because of

the importance of the conversion limit with respect to the practicality and opti-

mization of the sorption-enhanced reforming process. The lifetime of the sorbent

should be close to that of the catalyst, in order to reduce the loss of expensive cat-

alyst in the purge stream, and the number of cycles should be several thousands

rather than the hundred investigated here.

• The use of circulating fluidized beds should be investigated. As a first approach,

a cold flow reactor model of the CFB unit should be investigated for checking

flow and circulation patterns, which also will give valuable information on solid

hold-up in the system. The turbulent regime should also be investigated as a

possible flow regime.

• Important hydrodynamic properties, such as voidage and solid hold-up, should

be used as input for modeling of the CFB-unit. The very simple model of the

riser employed in this study, should be made more sophisticated, incorporating

the regenerator and energy balances. The model results should be used as basis

for designing a full-scale CFB hot unit.

• Mechanical strength of particles will be crucial in a high velocity riser reactor,

and both sorbent and catalyst attrition should be studied in detail. Most com-

mercial reforming catalysts are designed for fixed bed applications, and will most

likely not be suited for CFB operation. This calls for a comprehensive screening

of catalysts. Also, long term performance in alternating reforming-regeneration

atmospheres should be investigated in order to evaluate the catalyst stability in

reducing/oxidizing environments. The use of noble based catalysts such as Ru,

Rh and Ir, which are likely to withstand the oxidative regeneration conditions

better than nickel, should also be investigated.
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• The development of synthetic sorbents should be further investigated, with focus

on understanding the reaction mechanisms of carbonation and calcination in order

to formulate materials with better sorption properties. Sodium zirconate, in par-

ticular, proved to be a very promising sorbent, and may be further improved by

adding a mixture of Na/K carbonates to create an eutectic interphase to promote

CO2 diffusion out of the particle during calcination.

• Synthetic Ca-based sorbents could also be investigated. These sorbents, reported

by Cabot Superior MicroPowders, have just recently received publicity due to very

stable multi-cycle performance compared to natural limestones and dolomites.

The cost of raw materials for producing artificial dolomites is considerably lower

than for the zirconium-based sorbents.

• Furthermore, it is recommended that heat exchange to the regenerator is in-

vestigated. Indirect heating is required for pure CO2 to be released from the

regenerator, this calls for design of high-temperature heat exchangers.
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Appendix A: Derivation of the

shrinking core model

A.1 Shrinking unreacted core

For a spherical particle, a generalized mathematical model has been developed for the

reaction:

A(g) + bB(s)←→ P (s) (A.1)

where in this case A is CO2, B is CaO, P is CaCO3 and the stoichiometric coefficient

b is equal to unity. The calcined dolomite particle contains inert MgO and the follow-

ing derivation is made considering a calcined dolomite particle. Calcined dolomite is

referred to as dolomite, for convenience. A schematic drawing of a shrinking unreacted

core for dolomite is shown in Figure A.1

Figure A.1: Shrinking core of dolomite

The three resistances to reaction, described by Levenspiel [73], are treated sepa-

rately.
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Appendix A: Derivation of the shrinking core model

External mass transfer

Whenever the resistance of the gas film controls, the driving force will be constant.

− 1

4 · π ·R2
p

· dNB

dt
= b·kg · (CAg − CAs) (A.2)

where kg is the external mass transfer coefficient (m3 gas/m2 external particle/s), CAg

and CAs are gas concentrations in the bulk and at the particle surface (mole/m3 gas),

respectively, and Rp is the radius of the particle (m). The situation is illustrated in

Figure A.2 .

Figure A.2: Concentration of gas phase reactant versus radial position when gas film
is the controlling resistance.

The decrease in volume or radius of unreacted core accompanying the disappearance

of dNB moles of solid is given by

−dNB = −b · dNA = −ρB · dVdolomite = −ρB · d(
4

3
π · r3

c) = −4π · ρB · r2
cdrc (A.3)

where rc is the radius of the unreacted core (m) and ρB is the molar density (mole

CaO/m3 dolomite). Inserting this into Eq.(A.2), and expressed by the partial pressure
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of reactant gas

− 1

4 · π ·R2
p

· dNB

dt
= −ρB · r2

c

R2
p

· drc

dt
= b·kg · (CAg − CAs) =

b · kg

R · T · (PAg − PAs) (A.4)

−drc

dt
=

R2
p · b · kg

R · T · ρB · r2
c

· (PAg − PAs) (A.5)

Intra-particle diffusion control

An illustration of the situation when resistance to diffusion through the ash/product

layer is rate controlling is shown in Figure A.3 .

Figure A.3: Reacting particle when diffusion through the product layer is the con-
trolling resistance

Both the reactant A and the boundary of unreacted core move inwards to the center

of the particle. Shrinking of unreacted core is assumed to be much slower than the flow

of A towards the unreacted core, and thus the unreacted core behaves as if it was

stationary. The rate of reaction of A at any instant is given by its rate of diffusion to

the reaction surface

−NA

dt
= 4π · r2 ·QA = 4π ·Rp

2 ·QAs = 4π · rc
2 ·QAc = constant (A.6)

Flux of A within the product layer is expressed by Ficks’s law for equimolar counter

diffusion:
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QA = De ·
dCA

dr
(A.7)

where De (m3 A/m core /s) is the effective diffusivity of A. Combining Eq.(A.6) and

Eq.(A.7) we obtain for any r

−NA

dt
= 4π · r2 · dCA

dr
(A.8)

Integrating from RP to rc

−NA

dt
·
∫ rc

Rp

1

r2
dr = 4π ·De ·

∫ CAc=0

CAg=CAs

dCA (A.9)

or

−NA

dt
· ( 1

rc
− 1

Rp
) = 4π ·De · (CAs − CAc) =

4π ·De

R · T · (PAs − PAc) (A.10)

Using the relationship given by Eq.(A.2), −dNB = −b · dNA, and solving for rc

−drc

dt
=

b ·De

R · T · ρB · r2
c · ( 1

rc
− 1

Rp
)
(PAs − PAc) (A.11)

Chemical reaction control

The reaction between CO2 and the CaO in the calcined dolomite is very temperature

sensitive and the reverse calcination reaction must also be considered. The equilibrium

constant of the reaction is defined as KE =
kf

kr
= 1

PAe

− 1

4π · r2
c

·dNB

dt
= − b

4π · r2
c

·dNA

dt
= b·(kf ·CAc−kr·CP ) = kf ·b·(CAc−

CP

KE
) =

k · b
R · T ·(PAc−PAe)

(A.12)

Since the progress of reaction is unaffected by the presence of any product layer, the

rate is proportional to the available surface of the unreacted core. Inserting −dNB =

−4π · ρB · r2
c · drc

−drc

dt
=

b · k
ρB ·R · T

· (PAc − PAe) (A.13)

where k is a first-order rate constant for the surface reaction (m3 gas/m2 core dolomite/s),

defined by k = k0 · e
Ea
R·T
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Combination of resistances

After deriving the individual resistances, we now combine Eq.(A.5), Eq.(A.11) and

Eq.(A.13) and eliminate the intermediate partial pressures of PAs and PAc, to give an

overall reaction rate equation

−drc

dt
=

b
ρB ·R·T · (PAg − PAe)

1
k

+ rc·(Rp−rc)
Rp·De

+ r2
c

R2
p·kg

(A.14)

It is desirable to express this rate in terms of conversion. For a spherical particle

we have the following relationship between the radius of shrinking core, rc, and the

conversion:

X = 1− (
rc

Rp

)3 (A.15)

The radius of the unreacted core is then given by

rc = Rp · (1−X)(1/3) (A.16)

and

−dX = 3 · ( rc

Rp

)2 · 1

Rp

· drc (A.17)

This can be inserted into Eq.(A.14), and solved with respect to conversion directly

dX

dt
=

3
Rp
· (1−X)2/3 · b

ρB ·R·T · (PAg − PAe)

1
k

+ Rp·[(1−X)1/3−(1−X)2/3 ]
De

+ (1−X)2/3

kg

(A.18)

Finally, the unit consistency of Eq.(A.18) is carefully checked by introducing ra-

dius, external surface area and volume of the whole dolomite particle and at the core

boundary. By using A=CO2 and B=CaO, one can write:
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b [=] mole CaO
mole CO2

De [=] m3 gas
m core · s

k [=] m3 gas
m2 core · s

kg [=] m3 gas
m2 dolomite · s

PA

R·T [=] mole CO2

m3 gas

Rp [=] m dolomite

X [=] m3 reacted
m3 dolomite

(1-X)2/3 [=] m2 core
m2 dolomite

Rp · [(1-X)1/3-(1-X)2/3]=rc · (1- rc

Rp
) [=] m core

ρB [=] mole CaO
m3 dolomite

Inserting into Eq.(A.18):

dX

dt
[=]

1
m dolomite

· m2 core
m2 dolomite

· mole CaO
mole CO2

· m3 dolomite
mole CaO

· mole CO2

m3 gas

1
m3 gas

m2 core · s

+ m core · m core · s
m3 gas

+ m2 core
m2 dolomite

· m2 dolomite · s
m3 gas

=

m2 core
m3 gas

m2 core · s
m3 gas

=
1

s
(A.19)

The units of the rate constant (k) and diffusivity (De) are for convenience written as

m/s and m2/s respectively.
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A.2 Conversion dependent effective diffusivity

Zevenhoven et al. [74] introduced a conversion dependent effective diffusion constant

to a shrinking core model for sulfidation of limestone and dolomite. The conversion

dependent diffusivity accounts for the fact that intra-particle transport of mass and

heat is strongly affected by the progress of conversion, with the build-up of a solid

product layer. The following relationships are given:

Vpore + Vpl

De

=
Vpl

Dpl

+
Vpore

Dpore

(A.20)

where V is volume fraction

product layer volume fraction = (1− ε0) ·X = Vpl (A.21)

porosity = ε0 = Vpore (A.22)

Unreacted solid volume fraction = (1− ε0) · (1−X) = 1− Vpore − Vpl (A.23)

The diffusion of gas with a diffusion coefficient Dmol inside a porous structure, with

porosity ε and tortuosity τ , is given by:

1

Dmol+Kn

=
1

Dmol

+
1

DKn

(A.24)

and

Dpore = Dmol+Kn ·
ε0
τ

(A.25)

DKn = 97 · rav · (
T

MCO2

)
1
2 (A.26)

where DKn is Knudsen diffusivity for an average pore radius rav. Dmol+Kn is the com-

bined molecular and Knudsen diffusivity in the gaseous phase inside the porous solid.

Particle properties used for calculating diffusivity are listed in Table A.1.
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Table A.1: Input parameters for diffusivity calculation

Parameter Description Value Comment

τ
Tortuosity

factor
5

For catalyst a factor
of 3 is often used.
Presumably higher
for porous dolomite

ε0 Porosity 0.5

Based on complete
calcination of

dolomite and a loss
on ignition of ∼46%

rav Pore radius 10· 10−9 m Assumption

Combining the above equations:

De = De(X) = Deff,0 ·
1 + AX

1 +BX
(A.27)

A = 1−ε0
ε0

, Deff,0 = Dpore = ε0
τ
·Dmol+Kn and B = A·Dpore

Dpl

The molecular gas diffusivity can be calculated from the semi-empirical equation

given by Reid and Sherwood [96]:

DA−I = 1.858 · 10−7 ·

√
T 3 · ( 1

MA
+ 1

MI
)

P · σ2
AI · ΩD

(A.28)

where A denotes CO2 and I denotes inert gas, P is pressure (atm), M is the molar

weight of the gases, σAI is a constant in the Lennard-Jones potential function and ΩD

is the collision integral. The following correlations are used for the calculations:

σAI = 1/2 · (σA + σI) (A.29)

εAI/k = [εA/k · εI/k]0.5 (A.30)

ΩD = 0.88224 · (kT/ε)−0.73695 + 0.56241 (A.31)
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Table A.2: Lennard-Jones parameters for pure gas compounds

Compound σ [A] ε/k [K]

H2 2.827 59.7
CO2 3.941 195.2
CO 3.69 91.7
H2O 2.641 809.1
Ar 3.542 93.3

Gas film diffusion constant

The mass transfer coefficient, kg, between a single sphere and the surrounding gas is

well described by a set of dimensionless groups

Shsingle =
kg · dp

D
= 2 + 0.6 · (Rep)

0.5(Sc)0.333 (A.32)

where D is the gas diffusivity (m2/s), dp is the particle diameter (m), Rep is the particle

Reynolds number and Sc is the Schmidt number. The dimensionless numbers are

defined as:

Rep =
ρg · U · dp

µ
(A.33)

Sc =
µ

ρg ·D
(A.34)

where ρg is the gas density (kg/m3), U is the gas velocity (m/s) and µ is the gas

viscosity (Pa · s). A correlation for calculating gas viscosity is found in Appendix C.2.

Note that Eq.(A.32) is valid for a single sphere dispersed in a gas stream.
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Arctic dolomite

B.1 Response curves

The conversion-temperature curves as function of time are shown below. Experimental

conditions are found in Table 3.6 in chapter 3.3.

Figure B.1: Temperature and conversion of sorbent as a function of time for sample
Kin-Dolo1.
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Figure B.2: Temperature and conversion of sorbent as a function of time for sample
Kin-Dolo2.

Figure B.3: Temperature and conversion of sorbent as a function of time for sample
Kin-Dolo3.
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Figure B.4: Temperature and conversion of sorbent as a function of time for sample
Kin-Dolo4.

Figure B.5: Temperature and conversion of sorbent as a function of time for sample
Kin-Dolo5.
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B.2 Numerical solution: MATLAB scripts

Figure B.6: Solving procedure for obtaining best-fit parameters.

The m-script-file, expression.m, is given below:

function [derivert] = expression(tid,x,T1,Pe1,xobs,k0,E,sz,De0,n_CO2f,n_argon,n)

T=T1;

Pe=Pe1;

% Solid properties

Diameter=[175 250 250 250 250].*10^(-6); % particle diameter [m]

Rad=Diameter./2;

x_caO=0.32; % weight fraction CaO in dolomite

x_inert=0.2; % weight fraction MgO (inert) in dolomite

RHO_dolom=2870; % density of dolomite supplied from producent

RHO_dolo=RHO_dolom*(1-0.46); % density of calcined dolomite (MgO*CaO) [kg/m3 ]

RHO_CaO=RHO_dolom*x_caO/56*1000; % molar density of CaO in calcined dolomite [mol/m3]

RHO_CaCO3=RHO_dolom*x_caO/100*1000; % molar density of CaCO3 in dolomite [mol/m3]
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RHO_bulk=1480; % bulk density of dolomite (measured experimentaly) [kg/m3]

Eps_b=0.5; % Voidage of bed (approximate)

R=8.314; % Gas constant

Eps=.5; % porosity of dolomite (assumption)

tort=5; % tortuosity factor (assumption)

r_av=10.*10^(-9); % pore radius (assumption)

% Initial gas flow and solid amount

F_CO2=[2 1.6 2 1 2]; % Nl/min

F_argon=[0 .4 0 1 0]; % Nl/min

F_tot=F_CO2+F_argon; % Nl/min

m0=[10.14 10.16 10.7 10.2 10]; % inital weight of dolomite [g]

n_s0=x_caO*m0/56; % moles of CaO at t=0

n_i=x_inert*m0/40.3; % moles inert

V_bed=m0./RHO_bulk/1000; % volume of bed of solids

V_dolo=V_bed*(1-Eps_b);

% Updated gas flow

n_total=x(6:10)+n_argon; % total mol/min flow of gas out

Pt=1; % total pressure, atm

P=Pt*x(6:10)./n_total; % partial pressure of CO2, atm

% Gas phase diffusivity

epsilon_CO2=195.2; % pure CO2

chi_CO2=3.941;

epsilon_mix=(195.2*93.3)^.5; % CO2 and Argon

chi_mix=.5*(3.941+3.54);

omega_CO2=0.88224.*((1/epsilon_CO2).*T).^(-0.73695)+0.56241;

omega_mix=0.88224.*((1/epsilon_mix).*T).^(-0.73695)+0.56241;

D_CO2=0.001858.*T.^(3/2).*((1./44+1./44).^.5./omega_CO2./Pt./(chi_CO2).^2); % cm2/sec

D_mix=0.001858.*T.^(3/2).*((1./44+1./40).^.5./omega_mix./Pt./(chi_mix).^2); % cm2/sec

De=[D_CO2 D_mix D_CO2 D_mix D_CO2] ; % gas diffusity [cm2/s]

De=De(1:5)./10000; % m2/s

D_mol=De;

% Calculating Knutsen diffusion

D_kn=97.*r_av.*(T./44);

inv_Dmk=1./D_mol+1./D_kn;

D_kn=1./inv_Dmk;

% Effective diffusivity (using correlations from Zevenhoven)

A=(1-Eps)./Eps;

D_pore=D_kn.*Eps./tort;

D_pl=De0.*10^(-9); % m2/s

B=A.*D_pore./D_pl;

D_eff=D_pore.*(1+A.*x(1:5))./(1+B.*x(1:5)); % m2/s

D_eff=D_eff.*60; % m2/min

% Calculation of gas film mass transfer coefficient

n_flow=F_tot./22.414/60; % Gas flow [mol/s]

F_new=0.082057.*T.*n_flow/1; % L/s @ reaction temperature
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F_new=F_new/1000;

Area=24/10000; % cross section area of reactor m2

u_0=F_new./Area; % linear gas velocity m/s

% Dimensionless groups

RHOg=P*1.013*10^5*44./8.314./T./1000; % Gas density (average molecular weight 44 g/mole)[kg/m3]

Vis=3.5*10^(-6); % kg/m s (Assumed constant for pure CO2 at 650C)

VisKin=Vis./RHOg; % m2/s

Re=u_0.*Rad.*2./VisKin; % Reynolds number

Sc=VisKin./D_mol; % dimensionless

Sh=2+0.6.*(Re).^(.5).*Sc.^(1/3); % dimensionless

kg=De.*Sh./Rad./2; % m/s

kg=kg.*60; % m/min

P=1.013*10^5.*P;

Pe=1.013*10^5.*Pe;

% Numerator rate expression

Teller=3./Rad.*(1-x(1:5)).^(2/3).*(1./R./T./RHO_CaO).*(P-Pe).^(n/100);

% Rate of reaction

k=k0.*exp(-E.*1000/R./T);

Rx=1./k;

% Product layer diffusion

Diff=Rad.*((1-x(1:5)).^(1/3)-(1-x(1:5)).^(2/3))./D_eff; % min/m

% External mass transfer

Film=(1-x(1:5)).^(2/3)./kg; % min/m

r=RHO_CaO.*(Teller./(Film+Diff+Rx));

dxdt=r./n_s0.*V_dolo;

dn_CO2dt=n_CO2f-x(6:10)-r.*V_dolo;

derivert=[dxdt(1) dxdt(2) dxdt(3) dxdt(4) dxdt(5)dn_CO2dt(1) dn_CO2dt(2) dn_CO2dt(3) dn_CO2dt(4) dn_CO2dt(5)];
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equations

C.1 Two-phase model

Bubble phase

The molar flux of specie i at any height in the bubble phase:

β · U · dCib = kq · (Cid − Cib) · ab · εb · dz (C.1)

where ab us the interfacial bubble area per unit bubble and εb is the fraction of bed

volume occupied by bubbles.

Rearranging:

dCib

dz
= α · (Cid − Cib) (C.2)

α =
kq · ab · εb
β · U (C.3)

The boundary condition: Cib=Ci,in at z=0.

Integrating from z=0 to z=H (Cid is assumed to be constant throughout the column):

ln
(Cib − Cid)

(Ci,in − Cid)
= α ·H (C.4)

Cib = Cid + (Ci,in − Cid) · exp(−α ·H) (C.5)
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Dense phase

(1−β) ·U ·(Ci,in−Cid)+

∫ H

0

kq ·(Cib−Cid) ·ab ·εb ·dz = (1−εb) ·(1−εmf ) ·H ·Ri (C.6)

Substituting Eq.(C.5) into Eq.(C.6):

(1−β)·U ·(Ci,in−Cid)+kq·(Ci,in−Cid)·ab·εb·
∫ H

0

exp(−α·H)dz = (1−εb)·(1−εmf)·H ·Ri

(C.7)

Solving the integral:

∫ H

0

exp(−α ·H)dz =
1

α
· (1− exp(−α ·H)) (C.8)

Inserted into Eq.(C.7):

(1−β)·U ·(Ci,in−Cid)+kq ·(Ci,in−Cid)·ab·εb·
1

α
·(1−exp(−α·H)) = (1−εb)·(1−εmf )·H ·Ri

(C.9)

Inserting for α and rearranging:

U · (Ci,in − Cid) · (1− β · exp(−α ·H)) = (1− εb) · (1− εmf ) ·H ·Ri (C.10)

Cid = Ci,in −
(1− εb) · (1− εmf ) ·H ·Ri

(1− β · (exp(−α ·H)) · U (C.11)
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C.2 Correlations

Correlations used in the model are listed here.

Viscosity

The viscosity of the pure compound is as defined by Lydersen [97]:

µi =
bi · T 1.5

T + Si
(C.12)

where bi and Si are constants listed in Table C.1.

Table C.1: Coefficients for viscosity calculations

Compound bi [kg/m s K0.5] Si [K]

H2 0.65e-6 67
CO2 1.50e-6 220
CO 1.46e-6 110
CH4 1.00e-6 165
H2O 1.74e-6 626

An estimate of the viscosity of a gas mixture can be found by using the correlation

by Wilke [98]:

µmix =

n∑

i=1

xi · µi∑n
j=1 xi · φij

(C.13)

where

φij =
1√
8
· (1 +

Mi

Mj
)−0.5 · (1 + (

µi

µj
)0.5 · (Mj

Mi
)0.25)2 (C.14)

where M is the molar weight and xi is the mole fraction. It is claimed that this

correlation gives good estimates of gas mixture viscosities for most cases, especially

for mixtures with gases having molar weights close to each other. Another way of

estimating the viscosity of mixtures, is by assuming that there is a linear dependency

of the viscosity of mixture of the pure compounds:

µ =
∑

i

µi · xi (C.15)

An average of these two correlations has been adopted, based on comparison with the

viscosity calculated by the Ergun software (Ergun 6.0, Divergent S.A.).
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Heat capacity

The heat capacity of the pure compounds is described by:

CP,i = Ai +Bi · T +
Ci

T 2
+Di · T 2 (C.16)

The coefficients, obtained from HSC Chemistry (HSC Chemistry 6.0, Outokumpu Re-

search Oy), are listed in Table C.2.

Table C.2: Coefficients for calculation of the heat capacity

Compound A [J/mole K] B [J/mole K2] C [J K/mole] D [J/mole K3]

CH4 2.23 96.94e-3 6.11e5 -26.04e-6
CO 25.87 6.51e-3 1.11e5 1.02e-6
CO2 29.31 39.97e-3 -2.48e5 -14.78e-6
H2 25.86 4.84e-3 1.58e5 -0.37e-6

H2O 28.41 12.48e-3 1.28e5 0.360e-6
CaO 57.76 -10.78e-3 -11.51e5 5.23e-6

CaCO3 99.54 27.14e-3 -21.47e5 0.002e-6
MgO 47.49 4.65e-3 -10.34e5 -0.27e-6

MgCO3 73.35 63.95e-3 -14.50e5 0.02e-6
MgAl2O4 153.85 26.84e-3 -40.62e5 0
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