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Abstract— High-bandwidth tracking control is desirable in
many nanopositioning applications, including scanning probe
microscopy. Typical nanopositioner designs have several sources
of uncertainty which can degrade control performance, and
even induce instability. Salient uncertainties are in the control
gain and the resonant frequencies of the mechanical structure.
The control gain varies due to hysteresis and creep which result
in a control gain that is dependent on the offset, range, and
form of the driving signal, as well as actuator temperature and
age. The resonant frequencies change due to payload mass. In
order to maintain performance in the presence of moderately
changing dynamic response, a model reference adaptive control
(MRAC) scheme is proposed and implemented. The details of
implementing a working MRAC will be discussed. Most notably,
a novel augmentation of the parameter identification scheme in
the form of a special pre-filter, will be shown to be necessary
to obtain parameter convergence, and thus also stability in the
case of the MRAC scheme. Experimental results are presented
to assess the performance.

I. INTRODUCTION
Nanopositioning is typically associated with scanning

probe microscopy (SPM), and its many applications. Some
application task typically require general reference trajectory
tracking, i.e., for manipulation, fabrication, and lithography.
In order to improve throughput in such settings, high band-
width control is required [1]–[3]. As the dynamic response
of typical positioning systems employed has a fair amount
of uncertainty, both inherently and due to the specific ap-
plication, the control laws used also need to have sufficient
robustness. Although the dynamic response is uncertain, it
is dominantly linear and can be well described by linear
ordinary differential equations for specific operating points.
These systems should therefore be amenable to adaptive
control schemes, which in principle can provide higher
and more consistent performance than standard robust static
control schemes.

The standard indirect model reference adaptive control
(MRAC) framework [4] is used in this work in order to
develop a complete adaptive control scheme for a nanoposi-
tioning device of common design. As will be demonstrated,
there are some important considerations to be made with
regards to how to choose the plant model, how to tune the
control law, and how to obtain parameter convergence for
the adaptive law. The resulting control scheme is believed
to be a well performing MRAC. The experimental results
should therefore be indicative of the performance that can be
expected applying MRAC to this particular type of system.

The main novelty presented is a special pre-filter needed
in order to obtain parameter convergence.
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II. SYSTEM DESCRIPTION AND MODELING

The devices in the system used for the experiments are
fairly typical of systems used for motion control in general.
The system consists of a positioning mechanism, which
is a custom-designed serial-kinematic piezoelectric stack-
actuated nanopositioning stage, as well as the necessary
instrumentation, including anti-aliasing and reconstruction
filters, a piezo voltage amplifier, a capacitive displacement
sensor, and a standard hardware-in-the-loop (HIL) system.
The HIL system is used to implement the control scheme,
and simply described, it is a computer fitted with digital-to-
analog (DAC) and analog-to-digital (ADC) converters.

In this section a plant model which includes the dynamics
for the nanopositioning stage, as well as the dynamics of
the anti-aliasing and reconstruction filters, is presented. A
more complete model would also include the amplifier and
sensor dynamics, and the time-delay incurred by the zero-
order-hold (ZOH) elements in the DAC and ADC. The
attainable sampling speed was fast enough for the phase-
lag due to the ZOH elements to be insignificant within the
bandwidth of the controller, and the amplifier and sensor
dynamics is faster than what is possible to represent when
using the attainable sampling speed. A very high-order model
would also introduce stability and performance issues due
to numerics and computational complexity. The plant model
presented here is the model which has the highest practically
obtainable accuracy for this system. A diagram of the plant
model is found in Fig. 1.

A. Mechanical Model

The nanopositioning stage used in this work is shown in
Fig. 2. It is a serial-kinematic motion mechanism, designed
such that the first vibration mode is dominant and occurs
in the actuation direction (piston mode). The simplified
free body diagram for the mechanism is displayed in the
inset image in Fig. 2, and by this model the corresponding
second-order differential equation to describe the dynamics
of the displacement wx (where subscript “x” indicates the
x-direction) is given by

mxẅx(t)+ cxẇx(t)+ kxwx(t) = fx(t) ,

where mx (kg) is the mass of the sample platform, as well as
any additional mass due an attached payload, cx (N s m−1)
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Fig. 1. Plant model.
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Fig. 2. Serial-kinematic nanopositioning stage.

is the damping coefficient, and kx (N m−1) is the spring
constant. The applied external force from the piezoelectric
actuator fx (N) is

fx(t) = βua(t)+dh(t) ,

where β (N V−1) is the effective control gain of the actuator
from voltage to force, and ua (V) is the applied voltage. The
actuator will introduce hysteresis and creep when driven by a
voltage signal. It is a reasonable assumption to consider this
behavior as a bounded disturbance added to the input [5],
represented by the term dh.

Denoting the deflection yd = wx, the transfer function for
the nanopositioning stage is

Gm(s) =
yd

ua
(s) =

b0

s2 +a1s+a0
=

b0

s2 +2ζ ω0s+ω02 , (1)

where b0 = β/m (m s−2 V−1), a0 = k/m (s−2), a1 = c/m
(s−1), ζ = c/2

√
mk (-), and ω0 = 2π f0 =

√
k/m (s−1).

The frequency response for the x-axis is recorded in two
configurations, with and without a payload of approximately
15.7 g attached, using bandwidth-limited white noise excita-
tion. The responses are displayed in Fig. 3. The model (1)
is fitted to the frequency response data using the MATLAB
System Identification Toolbox, and the resulting parameter
values are presented in Table I. The response of the model (1)
using these parameters is also displayed in Fig. 3 for com-
parison.

TABLE I
IDENTIFIED PARAMETERS FOR THE MODEL (1), FOR TWO PAYLOAD

CONFIGURATIONS, USING FREQUENCY RESPONSE DATA.

1) With payload on sample platform
b0 1.97·106 µm/s2V b0/a0 0.109 µm/V
a0 18.1·106 1/s2 f0 677 Hz
a1 127 1/s ζ 0.0149 -

2) Without payload on sample platform
b0 2.33·106 µm/s2V b0/a0 0.107 µm/V
a0 21.9·106 1/s2 f0 744 Hz
a1 131 1/s ζ 0.0140 -

B. Anti-Aliasing and Reconstruction Filters

The anti-aliasing and reconstruction filters, Wa(s) and
Wr(s) respectively, are second-order Butterworth filters, and
are chosen to be identical, Wr(s) = Wa(s), for convenience.
They have a transfer function of the form

Wa(s) =Wr(s) =
ωc

2

s2 +
√

2ωcs+ωc2
, (2)

where ωc is the cut-off frequency.
As the cut-off frequency ωc for the anti-aliasing and

reconstruction filters used in the experimental setup is user
programmable, the filters provide an extra degree of freedom
for the control law tuning. The filters can be used to attenuate
excitation of non-modeled high-frequency dynamics, as well
as quantization and sensor noise. The cut-off frequency
selection can also to some degree improve the nominal
closed-loop sensitivity response and robustness properties,
given that the cut-off frequency ωc is below the Nyquist
frequency.

C. Complete Plant Model

The plant model for the system presented in Fig. 1 is

yp

up
(s) = Hp(s) =Wa(s)Gm(s)Wr(s) .

The usage of this model for the design of the MRAC will
not provide good performance with respect to the closed-loop
sensitivity function, as it will have a finite non-zero DC-gain.
Due to external disturbances, such as the ones introduced
by the hysteresis and creep non-linearities, and in order to
reduce the impact of model uncertainty, it is advisable to
add integral action to the controller [6]. The response of the
closed-loop sensitivity function at lower frequencies will then
improve, and the DC-gain will be zero. This can be done by
augmenting the system with an integrator, implemented as
part of the control scheme. The plant model used is thus

Gp(s) =
1
s

Hp(s) . (3)

The overall model order is np = 7.
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Fig. 3. Measured frequency response and model response, for the two
payload configurations, and corresponding model fits.
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Fig. 4. Relative change in low-frequency gain b0/a0 for the piezoelectric
actuator due to the input voltage amplitude (when using a 10 Hz sinusoid).

D. Model Uncertainty

The uncertainty in the nanopositioner dynamics is due to
specific user applications, as well as inherent properties in
the actuator and mechanical structure.

Users will typically need to position payloads of various
masses, and therefore the resonant frequencies and the effec-
tive control gain of the mechanical structure will change ev-
ery time a new payload is attached [7]. This is demonstrated
by inspecting the frequency responses for the two payload
configurations in Fig. 3, and the corresponding parameter
values for the model (1) in Tab. I. As can be seen from Fig. 3,
the response of the first vibration mode is well approximated
by the second-order model (1) using the identified parameters
in Tab. I, for both payload configurations. It is evident that
there exist higher order modes in the system, and the second
and third vibration modes are clearly visible in Fig. 3. These
higher order modes have very small magnitude responses in
comparison to the first, and they have shapes and directions
that will make them difficult to control using the mounted
actuator, thus the only practical solution is to avoid exiting
these modes by limiting the bandwidth of the control law.

The majority of nanopositioning designs use piezoelectric
actuators, which will have inherent variations in the effective
control gain β due to changes in actuator temperature, offset
voltage, displacement range, as well as due to depolarization
of the piezoelectric actuator [8]–[10]. The hysteresis and
creep non-linearities present in all piezoelectric actuators are
the main contributors to the change in effective gain, and
this is directly dependent on the offset voltage and input
voltage amplitude, or displacement range. The dependence
on input voltage amplitude is shown in Fig. 4, where the
relative change of the low-frequency gain b0/a0 is recorded
as a function of the amplitude (when using a 10 Hz sinusoid.)
The relative change of the gain is found to be over 90% at
an amplitude of 100 V compared to the gain at 100 mV.

To assess the nominal robustness of the proposed control
scheme, the uncertainty of the mechanical model is taken
into account as a multiplicative perturbation to the positioner
dynamics,

Ḡm(s) = Gm(s)(1+δm(s)∆m(s)); |∆m( jω)| ≤ 1 ∀ ω . (4)

The uncertainty weight δm(s) is determined experimentally
for the two payload configurations, and incorporating the
uncertainty of the effective gain, an overbounding uncertainty
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Fig. 5. Open-loop uncertainty weight δm(s), for the two payload configu-
rations and an overbounding approximation.

weight is found and shown together the experimentally
determined uncertainties in Fig. 5.

III. CONTROL SCHEME DESCRIPTION
As the only measurement available in the system is the

displacement of the sample platform, a control scheme
for the system must use output-feedback. Readily available
adaptive control schemes for output-feedback includes model
reference adaptive control (MRAC) [4], L1 adaptive output-
feedback control [11], and adaptive observer backstepping
[12]. MRAC and adaptive observer backstepping can provide
asymptotic output tracking. L1 adaptive output-feedback
control provides an disturbance observer adapting to the
discrepancy between the plant output and a reference model,
and the stability and performance will depend on the choice
of reference model and a low-pass filter which is non-
trivial to find in general. Adaptive observer backstepping is
dependent on non-linear damping terms, which can lead to
impractically large actuation forces, and also yields unwieldy
control laws for higher order system models. The MRAC
scheme was deemed to be the most feasible choice. The
control law and adaptive law is decoupled, such that they
can be designed separately. The design procedures for the
control law and adaptive law are also fairly straight forward.

A. Model Reference Adaptive Control
The MRAC scheme consists of a control law and an

adaptive law, that can be designed independently and then
combined using the certainty equivalence principle [4]. A
MRAC scheme can generally be implemented in direct and
indirect form. The main difference is that for the direct form,
the controller parameters are estimated directly, whereas
for the indirect form, the plant parameters are estimated
and subsequently mapped to the control parameters. The
chosen plant model order is np = 7, which for the direct
case requires 2np = 14 parameters to be estimated. As only
three plant parameters, b0, a1, and a0, are uncertain and
require estimation, employing an indirect MRAC reduces the
complexity and computational requirements of the parameter
identification significantly. In addition, experience suggests
that parameter convergence is much more difficult to achieve
with a larger number of estimated parameters.

B. Control Law
The MRAC objective is to make the plant output yp

perfectly track the output of a reference model ym. The
general model reference control law is summarized below.
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The plant model can be expressed as

yp

up
(s) = Gp(s) = kp

Zp(s)
Rp(s)

.

It is assumed that Rp(s) and Zp(s) are monic polynomials.
The polynomial Zp(s) is also Hurwitz, and is of degree mp.
In addition, the degree np of Rp(s), the relative degree n? =
np−mp of Gp(s), and the sign of the high-frequency gain
kp are known.

The reference model
ym

r
(s) =Wm(s) = km

Zm(s)
Rm(s)

consists of the monic Hurwitz polynomials Zm(s) and Rm(s)
of degrees qm and pm, respectively, where pm = np, and the
relative degree nm

? = pm−qm = n?.
The control law, as shown in Fig. 6, is given by

up = θ1
T α(s)

Λ(s)
up +θ2

T α(s)
Λ(s)

yp +θ3yp + c0r

where

α(s) = [snp−2,snp−3, ...,s,1]T for np ≥ 2
α(s) = 0 for np = 1

and
Λ(s) = Λ0(s)Zm(s)

is a monic and Hurwitz polynomial of degree np−1. Thus,
Λ0(s) is a monic and Hurwitz polynomial of degree n0 =
np−1−qm. The control law parameter vector is

θc = [θ1
T,θ2

T,θ3,c0]
T

and should be chosen such that the closed-loop complemen-
tary sensitivity function matches the reference model, i.e.,

yp

r
(s) = T (s) =Wm(s) =

ym

r
(s) .

With the above control law, the closed-loop complementary
sensitivity is given by

T =
c0kpZpΛ2

Λ[(Λ−θ1
T

α)Rp− kpZp(θ2
T

α +θ3Λ)]
= km

Zm

Rm
. (5)

By choosing

c0 =
km

kp
, (6)

(5) can be written as the Bézout identity

θ1
T

αRp + kpZp(θ2
T

α +θ3Λ) = ΛRp−ZpΛ0Rm

which again can be expressed as

Sθ̄c = p (7)

where θ̄c = [θ1
T,θ2

T,θ3]
T

and S is a (2np − 1) × (2np − 1)
Sylvester matrix that depends on the coefficients of the
polynomials Rp, kpZp and Λ, and p is a (2np− 1) vector
with the coefficients of the polynomial ΛRp−ZpΛ0Rm.

Having learnt the uncertain plant parameters θ of Gp(s)
and chosen a reference model Wm(s) and an output filter
1/Λ(s), the control law parameters θc is determined by using
the parameter mapping θ → θc defined by (6) and (7).

C. Adaptive Law

The indirect MRAC scheme requires the application of a
normalized adaptive law, which is necessary for the stability
properties of the indirect MRAC scheme, according to The-
orem 6.6.2 in [4]. Normalization ensures boundedness of the
measured signals used in the adaptive law.

Applicable (normalized) adaptive laws include the gradi-
ent method based on either instantaneous or integral cost
functions, and the least-squares method [4]. These three
methods were implemented and assessed, and for the system
at hand all three methods provided reasonable parameter
convergence, given that the signals used were carefully pre-
filtered. The gradient method based on the integral cost
function behaves similarly to the least-squares method, but
with the added benefit of user selectable convergence rate,
and was therefore chosen to be used in the MRAC scheme.

1) Integral Adaptive Law: It is assumed that the measured
response z of the system can be described using a vector
of model parameters θ appearing affinely with a vector of
known signals, ϕ , called the regressor

z = θ
T

ϕ . (8)

The objective is to find an estimate of the vector of parameter
values, θ̂ . By computing the estimated response

ẑ = θ̂
T

ϕ

the estimate error ε can be formed as

ε =
z− ẑ
m2

where m2 is a normalization signal (defined below). The
estimate of the parameters is obtained by minimizing the
cost-function

J(θ̂) =
1
2

∫ t

0
e−κ(t−τ)

ε
2m2 dτ , (9)

where a forgetting factor κ > 0 is introduced to discount past
data in order to achieve exponential convergence. Applying
the gradient method, ˙̂

θ =−Γ∇J(θ̂), to find the minimum of
(9) results in the recursive expressions

˙̂
θ =−Γ(Rθ̂ +Q) , θ̂(0) = θ̂0

Ṙ =−κR+
ϕϕT

m2 , R(0) = 0

Q̇ =−κQ− zϕ

m2 , Q(0) = 0



where Γ= ΓT > 0 is the adaptive gain, and the normalization
signal m2 is constructed as

m2 = 1+ns
2 , ns

2 = α0ϕ
T

ϕ , α0 > 0 .

This method has the properties ε,εns, θ̂ ,
˙̂
θ ,P ∈ L∞,

ε,εns,
˙̂
θ ∈ L2, and limt→∞ | ˙̂θ | = 0. The method has the

formal property that if the regressor ϕ is persistently exciting
(PE), and ns,ϕ ∈ L∞, then θ̂ will converge exponentially
to θ , and for Γ = γI, the convergence rate can be made
arbitrarily large by increasing the value of γ .

A piecewise continuous signal vector ϕ : R+→Rn is said
to be PE in Rn with a level of excitation α0 > 0 if there exist
constants α1,T0 > 0 such that

α1I ≥ 1
T0

∫ t+T0

t
ϕϕ

T dτ ≥ α0I, ∀t ≥ 0 .

For linear single-input-single-output systems, such as the one
at hand, a PE regressor vector is obtained if the input signal
up is sufficiently rich. In brief, an input signal is sufficiently
rich if it contains more frequency components than half the
number of unknown parameters [4].

Lastly, to avoid pure numerical differentiation when esti-
mating parameters of an linear differential equation of degree
n, the output z and regressor vector ϕ should be filtered [4],
[13] by a filter with relative degree n f

? ≥ n.

IV. DESIGN CHOICES

A. Control Law
Assuming good knowledge of the plant model Gp(s), there

are two main design choices with regards to the control law,
which is the choice of the reference model Wm(s) and the
output filter 1/Λ(s). The main limiting factor in determining
these filters, is the uncertainty of the plant model, which for
the system at hand is due to non-modeled high-frequency
dynamics. The control law from Section III-B can also be
expressed in terms of the feed-forward filter

C(s) =
c0Λ(s)

Λ(s)−θ1
T

α(s)

and feedback filter

F(s) =−θ2
T

α(s)+θ3Λ(s)
c0Λ(s)

,

i.e., the control law can be written as

up =C(s)(r−F(s)yp) .

The complementary sensitivity function for a set of nominal
plant parameter estimates can then be found as

T (s) =
C(s)Gp(s)

1+C(s)F(s)Gp(s)
.

Since T (s) =Wm(s), the stability criterion

‖F(s)Wm(s)δm(s)‖∞ < 1 (10)

can be used to choose Wm(s) and 1/Λ(s) to obtain robustness
against uncertain dynamics.

For simplicity, the reference model Wm(s) was chosen to
be a seventh-order Butterworth filter with cut-off frequency

TABLE II
CONTROL LAW PARAMETER TUNING.

ωc 2π·1100 rad/s
ωm 2π·900 rad/s
ωl 2π·900 rad/s
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Fig. 7. Nominal response of the complementary sensitivity function and
the sensitivity function.

ωm, i.e., qm = 0 and pm = 7, and since the plant model Gp(s)
does not have any zeros, the polynomial Λ(s) should be of
degree np−1 = 6, and the zeros of Λ(s) was chosen to have
a Butterworth pattern with radius ωl .

The plant model includes the reconstruction and anti-
aliasing filters, Wr(s) and Wa(s), both having the user-
programmable cut-off frequency ωc. As already noted, in-
cluding these filters as an extra degree of freedom in the
tuning of the controller, the filters can be used to improve the
nominal tuning of the closed-loop sensitivity and robustness
properties, and to attenuate quantization and sensor noise,
given that ωc is below the Nyquist frequency.

The nominal tuning of the control law depends on the
choice of ωm, ωl , and ωc. As the plant is open-loop stable,
and since it is augmented with an integral state, the perfor-
mance in terms of the sensitivity function

S(s) =
1

1+C(s)F(s)Gp(s)

of the nominal closed-loop system is improved by choosing
a bandwidth as high as possible for the reference model
Wm(s) and the output filter 1/Λ(s), i.e., choosing ωm and
ωl as high as possible. The choice of ωc is not as straight
forward, as there can be found an optimal value which
minimizes ‖S(s)‖∞. By a course grid search over ωm, ωl , and
ωc, evaluating (10) when using the nominal parameters for
the two payload configurations from Tab. I, an approximate
optimal value for ωc, and the approximate highest bandwidth
for Wm(s) and 1/Λ(s) without violating (10) was determined,
and the result is shown in Tab. II. The nominal frequency
responses of the complementary sensitivity function T (s) and
the sensitivity function S(s) using the parameters in case 1)
in Tab. I are shown i Fig. 7. As can be seen, the expected
bandwidth is approximately 90 Hz.

B. Adaptive Law

For the adaptive law, values for the forgetting factor κ , the
normalization constant α0, and the gains Γ, must be selected.
Also, the adaptive law will theoretically provide convergence
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to the correct parameter values when using a sufficiently rich
input signal (which results in a PE regressor vector) [4],
[14]. For the system at hand, none of the three methods
provided reasonable parameter convergence without careful
pre-filtering of the signals used. Thus, a pre-filter Wp(s) must
also be selected.

The main limitation for the selection of κ , α0, and Γ is
the numerical stability of the adaptive law. If either κ or Γ

are too large, or if α0 is too small, depending on the selected
numerical integration scheme and step size, the adaptive law
can become unstable. As long as the adaptive law remains
stable, the choice of κ , α0, and Γ will not influence the mean
values of the stationary response for the estimated parameter
values. The mean values will mostly depend on the pre-filter
Wp(s). However, the choice of κ , α0, and Γ determines the
rate of adaptation and amount of averaging, and thus how
much fluctuation there will be in the estimates due to noise
and other disturbances.

The choice of the pre-filter is done considering the con-
cepts of dominantly rich signals and experiment design, as
they provide guidance on how to choose input signals that
should provide better parameter estimates under non-ideal
conditions.

The deterministic concept of dominantly rich signals [4]
provides conditions on the choice of an input signal in
the presence of non-modeled dynamics and bounded dis-
turbances, in order to obtain small biases in the parameter
estimates. Summarily, the input signal should be chosen to
excite the dominant dynamics of the system to a level that
dominates the disturbances, and have a spectral content that
avoids excitation of umodeled dynamics.

Somewhat similarly, the stochastic concept of experiment
design [15], [16], provides methods to construct input signals
of finite power that will maximize conditions on the Fisher
information matrix, which should then provide parameter
estimates with minimal variance when using measurements
corrupted by colored noise. The Fisher information matrix
in the frequency domain involves the parameter sensitivity
functions for the plant model. A finite energy signal will then
typically be optimal for some condition on the information
matrix if the spectral content is concentrated in frequency
domains where the parameter sensitivity functions of a model
have peaks. An optimal input signal in this sense should also
improve the convergence rate of the parameter estimates [17].

As designing an optimal input signal is usually not feasible
for arbitrary tracking control tasks, a practically feasible
solution is to find a pre-filter which emphasizes certain
frequency domains in the signals used in the parameter iden-
tification scheme [6], [14], [18]. In addition to provide more
optimal signals with regards to the information matrix, the
pre-filter is also beneficial since it can attenuate disturbances

and non-modeled effects; thus a more dominantly rich signal.
A heuristic approach is chosen in order to select a rea-

sonable pre-filter Wp(s). As prior knowledge of approximate
parameter values is available from frequency response data,
a nominal model reference controller (MRC) is found. Data
collected from the plant while running in closed-loop using
the MRC then provide a reasonable approximation to the
expected input signal and noise correlation when using the
MRAC. Using these data off-line, different filter choices are
tested, according to the following considerations.

As was demonstrated in [18], the parameter sensitivities
of a mass-spring-damper system suggest an emphasis on a
frequency domain around the expected dominant resonant
frequency of the system; a bandpass filter. As the scheme
requires differentiation of the measured deflection, the band-
pass filter must have a relative degree equal to the highest
order of differentiation needed, so that the filters will be
proper. To provide some low-pass filtering, the relative de-
gree should be higher. Choosing only a bandpass filter W1(s)
with a narrow passband around expected resonant frequency
results in poor low-frequency gain estimation for this system,
i.e., the ratio b0/a0 is too low. Adding another bandpass filter
in parallel, with a narrow passband around the fundamental
frequency of the reference signal and a selectable gain
k2W2(s), increases the parameter identification accuracy. The
gain k2 can not be too large, as it will impact the accuracy of
parameters depending on the natural frequency and damping
coefficient, a1 and a0. The filter that is used is thus

Wp(s) =W1(s)+ k2W2(s) , (11)

where the cut-off frequencies for W1(s) is [ f l
1, f h

1 ] =
[475,900] and for W2(s) is [ f l

2, f h
2 ] = [ fr − 10, fr + 10], fr

being the fundamental frequency of the reference signal. The
filter gain was chosen to be k2 = 0.01. The chosen pre-filter
is shown in Fig. 9.

For the model (1), assuming a displacement measurement
yd , the parameter vector in the parametric model (8) is

θp = [b0,a1,a0]
T,

and the regressor vector is

ϕ = [ua,−ẏd ,−yd ]
T,

and the output of the model is z = ÿd . To account for
the known dynamics in the reconstruction and anti-aliasing
filters, determined by the cut-off frequency ωc, and in-
corporating the pre-filter, the output z and regressor ϕ is
constructed as

z(s) = s2Wp(s)yp

and

ϕ(s) = [Wr(s)Wa(s)Wp(s)up,−sWp(s)yp,−Wp(s)yp]
T,

as illustrated in Fig. 8.
Reasonable values for κ , α0, and Γ, trading-off conver-

gence rate and forgetting rate (averaging), were found as
κ = 2, α0 = 0.001, and

Γ = diag([5 ·106,5 ·101,5 ·107]) .



100 101 102 103 104 105

−150

−100

−50

0

M
ag

ni
tu

de
 (d

b)

Frequency  (Hz)

Fig. 9. Pre-filter Wp(S).

The parameter vector θ , is determined by the convolution
of the polynomials in the numerator and denominator of
Wr(s), Wa(s), and Gp(s), and the parameter mapping from
the adaptive law to the control parameters is θp→ θ → θc.

V. EXPERIMENTAL RESULTS
A. Description of the Experimental System

The experimental set-up consisted of a Dell Optiplex 760
computer equipped with a PCI-6221 data acquisition board
from National Instruments, running the xPC Target real-time
operating system for hardware-in-the-loop simulations, a
ADE 6810 capacitive gauge and ADE 6501 capacitive probe
from ADE Technologies, a Piezodrive PDL200 voltage am-
plifier, the custom-made long-range serial-kinematic nanopo-
sitioner (see Fig. 2), two SIM 965 programmable filters, and
a SIM983 scaling amplifier from Stanford Research Systems.
With the xPC Target, a maximum sampling frequency of
fs = 40 kHz was achieved for the complete MRAC scheme,
and used for all the experiments. For numerical integration,
a third-order Runge-Kutta scheme (Bogacki-Shampine) was
used. In order to achieve a higher sampling frequency, the
adaptive law and parameter mapping was implemented using
the C programming language.

B. Experiments
Four experiments were performed to assess the tracking

and parameter estimation performance. A triangular refer-
ence signal with a fundamental frequency fr = 50 Hz was
used, which is quite common for SPM applications, and it
is sufficiently rich for parameter estimation for this system.
The control bandwidth is approximately 90 Hz, thus using a
relatively high fundamental frequency should help elucidate
model discrepancies and disturbances in the system response.
First, the ability to track parameter changes is evaluated by
adding a payload of 15.7 g while the system is running. Next,
three experiments were done to find the asymptotic parameter
estimates for various configurations, as well as the stationary
tracking error.

C. Results and Discussion
The experimental results are presented in Figs. 10 and 11,

and Tab. III.
From Fig. 10 it is evident that reasonable parameter

convergence is achieved, and the adaptive law is able to track
parameter changes when the payload is added after approx-
imately 5 seconds. There are discrepancies in the estimates
compared to the values in Tab. I, especially for the b0 and a1

TABLE III
ASYMPTOTIC VALUES FOR THE ESTIMATES FOR THE PARAMETERS IN

THE MODEL (1) AND STATIONARY TRACKING ERRORS FOR THE MRAC
SCHEME FOR VARIOUS CONFIGURATIONS.

1) No payload; 50 Hz, 3 µm amp. triangle wave ref.
b0 2.79·106 µm/s2V b0/a0 0.130 µm/V
a0 21.4·106 1/s2 f0 737 Hz
a1 297 1/s ζ 0.0321 -
RMSE: 0.113 µm RMSE relative: 6.52 %
Max. error: 0.213 µm Max. relative error: 7.31 %
2) Payload; 50 Hz, 3 µm amp. triangle wave ref.
b0 2.33·106 µm/s2V b0/a0 0.131 µm/V
a0 17.8·106 1/s2 f0 672 Hz
a1 32.9 1/s ζ 0.00390 -
RMSE: 0.101 µm RMSE relative: 5.82 %
Max. error: 0.186 µm Max. relative error: 6.40 %
3) Payload; 50 Hz, 6 µm amp. triangle wave ref.
b0 2.46·106 µm/s2V b0/a0 0.144 µm/V
a0 17.1·106 1/s2 f0 657 Hz
a1 -95.0 1/s ζ -0.0115 -
RMSE: 0.282 µm RMSE relative: 8.15 %
Max. error: 0.520 µm Max. relative error: 8.94 %

parameters. The discrepancy for b0 is mainly due to the larger
driving voltage amplitude used in the experiment, compared
to the amplitude used to find the frequency response. The
discrepancy for a1 is likely due to the presence of colored
noise due to feedback and the hysteresis disturbance, since
the parameter sensitivity for the model (1) with respect to
a1 is very small, as was pointed out in [18]. The small
fluctuations in the a1 estimate is due to noise, and can be
reduced by decreasing e.g. the corresponding gain in Γ, at
the expense of slower convergence.

By inspection of case 1) and 2) in Tab. III, it can seen
that the estimates for the natural frequency and the damping
ratio is underestimated in case 1), and overestimated in case
2). This is likely due to the tuning of the pre-filter, as the
bias change, and the accuracy improves, by fine tuning of
the pre-filter to the specific configuration. Case 2) and 3)
demonstrate the ability to track the change in low-frequency
gain b0/a0 due to change in displacement range, as should be
expected by the results in Fig. 4, but there is also a noticeable
change in the estimated natural frequency and damping ratio,
which also depend on the pre-filter tuning.

As already noted in Section IV-B, the low-frequency gain
is always underestimated. This can be seen by looking at Fig.
11, where it is apparent that the system response overshoots
the reference. This can be confirmed by fixing the parameter
estimates and manually increasing the b0 estimate, in which
case the error can be reduced.

VI. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

A working implementation of a MRAC scheme has been
demonstrated, and the experimental results obtained provide
an indication of the achievable performance that can be
expected when applied to a flexible smart structure. The
main challenge was to achieve reasonable convergence for
the parameter estimation scheme, and this was demonstrated
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Fig. 11. Stationary response, with payload on the sample platform, using
a 50 Hz triangle wave reference signal with 3 µm amplitude.

to be possible by the use of a special pre-filter. One major
limitation with regards to performance is the difficulty in
having simultaneous accurate estimation of the parameters
determining the low-frequency gain and the parameters de-
pendent on the damping ratio and natural frequency of the
system. This is most likely due to the presence colored
noise due to feedback and the disturbance introduced due
to hysteresis. The disturbance due hysteresis and creep also
necessitates integral action in the controller. The suppression
of these disturbances are dependent on the achievable con-
troller bandwidth, which main limiting factor is the presence
of non-modeled and practically uncontrollable higher-order
vibration modes.

B. Future Works
The parameter estimation is very sensitive to the choice

of pre-filter Wp(s), the actual plant parameters, the chosen
control law parameters, and reference signal. To improve on

the parameter estimation performance, it might be possible
to find better choices for Wp(s), and the application of more
elaborate identification schemes, specifically tailored for
closed-loop identification such as the recursive instrumental
variable method [13], should be investigated.

In order to make the control scheme more robust in
general, well known techniques such as parameter projection
and adaptation dead-zones should be used to avoid large
parameter drift. Since integral action is added to the control
law, a suitable anti-windup scheme should also be added.
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