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Summary  

High-resolution NMR spectroscopy has, during the last two decades, had an increasing impact 
in biological and biochemical research. Rapid advances have led to improvements in sensitivity 
and dispersion of the spectra and have allowed more detailed assignment and monitoring of 
endogenous biochemical molecules. One of the latest implementations has been a technique 
known as high-resolution magic angle spinning (HR-MAS) NMR spectroscopy which has made 
it possible to obtain high-resolution proton spectra of intact tissue and cells. Simultaneous 
detection of a large number of metabolites by NMR spectroscopy has been successfully applied 
to investigate disordered metabolism for a numerous of diseases and toxic processes.   
 
The objectives in the present work have been to evaluate different 1H NMR spectroscopy 
protocols as analytical tools in eye research, and further use these protocols to extract and 
interpret information on metabolic changes in the eye induced by external pathological stimuli. 
Special focus has been paid to changes in the lens and the development of cataracts.  
 
The 1H NMR spectra of intact lenses and eye tissue extracts in present thesis showed an 
extensive picture of NMR detectable metabolites. In addition to the detailed analysis of extracts 
from cornea, lens and aqueous humour, this work has created a basis for implementation and 
interpretation of HR-MAS 1H NMR spectroscopy on intact lens tissue.  
Several significant changes in the metabolic content in cornea, aqueous humour, and lens after 
alkali-burns to the eye were detected, and showed how careful 1H NMR spectroscopy analysis 
of tissue extracts provided new information (quantitative and qualitative) on the metabolic 
reaction pattern in the anterior eye segment in relation to eye alkali-burn injuries.  
 
HR-MAS studies on lenses exposed in vivo to different ultraviolet-B doses did not reveal any 
dose-response relationship for the metabolic changes. However, significant concentration 
changes for most of the observed metabolites seven days post exposure demonstrated that close-
to-threshold UVB radiation had great impact on the metabolites in the lens. Further time 
dependency studies of metabolic changes in rat lens after UVB radiation showed that significant 
changes in metabolite concentrations were subsequent to lens opacity development.  
Long-term steroid treatment (36 days) seemed to have greater impact on the metabolic changes 
compared to the UVB-induced changes 24 hours after UVB radiation. Even though no obvious 
cataract was detected after the combined treatment of steroids and UVB radiation, significant 
changes were observed for several metabolites. 
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 1. Background    

1. Background 
 

1.1 The eye 
The eye is a specialised organ for photoreception, the process by which light energy 

from the environment produces changes in photoreceptors in the retina, the rods and 

cones. Those wavelengths capable of stimulating the receptors of the human eye are 

between 400 and 700 nm (the visible spectrum). The changes in the photoreceptor cells 

result in nerve action potentials which are subsequently relayed to the optic nerve and 

then to the visual cortex in the brain, were the information is processed and appreciated 

as vision. The structures in the eye are based on these basic physiological processes. 

Some parts of the system are necessary for focusing and transmitting the light onto the 

retina, for example the cornea, lens and ciliary body (Fig. 1.1). The iris regulates the 

amount of light entering the eye. Other parts are necessary for nutrition and support of 

the eye tissue for example the aqueous humour (AH), the tear film and the choroid (a 

thin vascular coat between sclera and retina). The eye is a unique organ because it is 

relatively unprotected and is constantly exposed to radiation, atmospheric oxygen, 

environmental chemicals and physical abrasion. Each of these factors results in 

generation of reactive oxygen species that may contribute to ocular damage and disease. 

A good and healthy metabolism in the eye is necessary to maintain the vital functions 

[1]. 
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Figure 1.1 Anatomy diagram of the human eye showing the major components of the horizontal section.   
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Cornea 

The cornea is transparent and is the main light refracting element in the eye, providing 

2/3 of the eye's focusing power. The cornea is composed of five distinct anatomic 

layers; the outermost epithelial layer, the basal lamina underlying the epithelium, the 

stroma which comprises about 90 % of the thickness, the Descemet's membrane and the 

innermost endothelium. The major structural components are collagen and 

proteoglycans (12 – 15 % and 1 – 3 % of the wet weight respectively). In addition there 

are other noncollagenous structural proteins, soluble proteins, glycoproteins and lipids.  

Being an avascular tissue, the nutritional needs of the cornea are met by the tear film 

(the source of the atmospheric oxygen) and the AH (the major source of glucose) [2].  

 

The cornea's ability to transmit light is a function of how the cells and matrix 

components are organized within the tissue to minimise the refractive index disparity.  

This regular arrangement is highly dependent on the state of hydration, metabolism and 

nutrition of the corneal stroma [2]. When the stroma swells it loses its transparency [3]. 

Thus maintaining the osmotic balance is essential for the cornea [4, 5].  

Corneal epithelium is the major centre of oxidative metabolism. In addition it provides 

an essential function in protecting the cornea from damage by noxious and infectious 

agents [6]. The properties of the corneal epithelial surface are sustained by continuous 

renewal finely balanced between epithelial proliferation, differentiation and cell death. 

Studies of corneal wound healing, e.g. after alkali-burn damage [7, 8], have yielded 

useful information for the understanding of the maintenance of corneal epithelial 

functions.  

 

Another important task for the cornea in general is to protect the underlying eye tissue 

from damaging ultraviolet radiation (UVR) [9]. Ultraviolet-C (UVC) rays at 

wavelengths over a range of 100 - 290 nm is completely absorbed by the cornea. Eighty 

per cent of exposed UVB rays at wavelengths over a range of 290 - 320 nm are 

absorbed in the cornea epithelium. Additionally, 34% of exposed UVA radiation over a 

range of 320 - 400 nm is absorbed in the cornea and the remainder passes through it 

[10]. 
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Aqueous Humour 

Aqueous humour (AH) is a transparent fluid located in the anterior and posterior 

chambers of the eye (Fig. 1.1). AH is secreted from the ciliary body/epithelium into the 

posterior chamber, and it is generally believed that the metabolic composition of AH is 

mostly regulated by active transport [11]. It then circulates through the pupil into the 

anterior chamber. The main portion of AH leaves the eye through the trabecular 

meshwork into Schlemm's canal. The remainder escapes through the sclera. In human 

eyes the rate of AH formation is about 2 – 3 µl/min [12]. AH supplies nutrients and 

oxygen to and removes metabolic wastes from the anterior intraocular tissues such as 

the cornea, lens and trabecular meshwork. It maintains intraocular pressure (IOP) for 

normal optical function of the eye, and facilitates the local immune response during 

inflammation and infection together with protection against oxidative damage [1]. 

 

The AH is composed predominantly of electrolytes and low molecular weight 

compounds with some protein. To et al. [11] have reported that among the most 

abundant metabolites are urea, glucose, lactate and ascorbate. However, other 

metabolites may also be present in relative high concentrations like inositols, citrate and 

some amino acids (paper I). The concentrations of several components differ 

significantly from plasma levels, for example the protein content of AH which is very 

low (about 1/500 of plasma) and ascorbate concentrations that reach levels 50 times 

higher than those in the blood plasma [11]. Ascorbate is considered to be an important 

antioxidant for instance in protecting the eyes against photo-oxidative damage [13, 14]. 

Unpublished studies from our laboratory have revealed a significant decrease in 

ascorbate in AH after moderate in vivo UVB irradiation of rabbit eyes [15]. It has also 

been suggested that the high ascorbate level in AH may protect cornea against 

ulceration and perforation following experimental alkali burns [16, 17]. Further roles of 

different metabolites in AH are discussed in paper I.  

 
Lens 

The lens plays an integral part in the focusing of light onto the retina. By changing its 

shape the focal power of the eye is changed, allowing an individual to focus on objects 
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at varying distances (accommodation). To perform its function the lens must be 

transparent, flexible and possess a relatively high refractive index.  

The lens is a cellular, avascular organ surrounded by a strong and elastic collagenous 

capsule. Beneath the capsule the lens is made up predominantly of elongated fibre cells 

formed by the differentiation of epithelial cells that line the anterior surface of the lens. 

During differentiation, fibre cells lose their cytoplasmic organelles and begin to express 

lens-specific proteins known as crystallins. The high concentration of crystallins (up to 

40% in the human lens nucleus and 50% in the rat lens nucleus) is responsible for the 

high refractive index in the lens, and the breakdown of organelles probably enhances the 

transparency in the central part of the lens. The disadvantage of not having organelles is 

that damage to these cells cannot always be repaired. Lens growth continues throughout 

the lifetime with new fibre cells being laid on top of existing fibre cells. The older 

primary fibre cells are compressed inward, forming a central “nuclear region” of the 

mature lens. Thus, the cells in the centre of the lens contain protein molecules that are as 

old as the individual. Maintenance of this architecture requires refined mechanisms not 

only for nourishment but also to control cell volume and protect against oxidative 

damage [1]. 

 

1.2 Alkali-burn injuries in the eye 
Wide use of chemicals in the home and workplace makes toxic exposure, and thus the 

potential of injuries, unavoidable. In the U.S. alone ~ 22 500 cases of chemical eye 

burns were reported by the U.S. Consumer Protection Safety Commission in 1978 [18]. 

In Norway chemical injuries to the eyes seem to affect all age groups and both sexes, 

the most severe cases tend to occur to men during their working years, and alkali 

chemicals are the most frequent cause of injury [19]. Some common caustic solutions 

are calcium hydroxide (lime and cement) and sodium hydroxide (cleaners) in industry 

and ammonium hydroxide (fertilisers) in farming.  

Alkali burns to the eye are among the most disastrous of ocular injuries and are usually 

more destructive than acid burns. Alkali damages the eye by increasing the hydroxyl ion 

concentration beyond the limits of protein stability. This leads to saponification of the 

lipid cellular membranes and allows the alkali agents to rapidly penetrate the ocular 
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tissue. Unlike acids, which tend to cause self-limiting injury, alkalis promote their own 

penetration of the eye [20].  

 

Characteristically, severe alkali-burns result in blinding corneal opacification and limbal 

ischemia which inhibits wound healing. The ciliary body may also suffer from ischemic 

damage and under such conditions nutrient metabolites might be deficient in the 

anterior segment of the eye [21]. 

One of the most serious complications after alkali burn to the eye is ulceration, which 

can occur within weeks of the initial injury and progress to corneal perforation, 

commonly causing irreversible blindness. To prevent ulceration, a multitude of 

medications are used to promote collagen synthesis, inhibit the enzyme collagenase, and 

enhance epithelization [22]. Extensive studies on wound healing [7] and enzymatic 

changes after alkali-burn [23, 24] have lead to a better insight into the different repair 

mechanisms and the development of corneal ulceration. However, basic knowledge of 

the immediate biochemical and physiological changes in the anterior segment of the eye 

after severe burning is also important for developing rational approaches to acute 

treatment and therapeutic regiments. In Paper I in the present thesis, the immediate 

alkali-induced changes of the water-soluble metabolites in cornea, AH and lens were 

investigated.  

 

1.3 Cataracts 
Cataracts are a leading cause of visual impairment and blindness, and an ever-increasing 

health problem with the aging of the world population. In US approximately 1.35 

million cataract surgeries are performed annually at a cost of more than $3 billion. In 

Norway over 45.000 cataract surgeries are preformed annually in public hospitals. The 

prevalence of cataracts approximately doubles with each decade after the age of 30 [25]. 

 

Since the beginning of the 20th century, research on chemical composition and 

metabolism of the lens has been conducted to better understand the existence and 

maintenance of lens transparency [26]. However, the mechanisms that initiate the 

cataract development still remain unclear. Cataracts are considered to be a multifactoral 
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disease [25] and among possible risk factors are: metabolic disorders, toxic agents, 

trauma, UVR, nutritional deficiencies, smoking, alcohol and hereditary factors.  

 

A cataract in its broadest definition is opacity in the lens that disturbs vision. The 

opacity might occur everywhere in the lens, but the common types are cortical, nuclear, 

and sub-capsular cataract. In the normal lens, densely packed crystallines exist in a 

highly ordered arrangement to maintain lens transparency. Any abruption or irregular 

changes in the protein arrangement may result in loss of transparency contributing to the 

development of a cataract. Irregular changes might be protein aggregation, membrane 

degeneration, fluctuations in protein distribution or phase separation, all resulting in 

local changes of refractive index. For further reading, the great variety of metabolic 

insults that can cause cataracts has been described in detail by Harding and Crabbe [27]. 

 

UVR and cataracts 

The investigation of UVR as a risk factor for cataracts has received considerable 

attention the last decade. Depletion of the stratospheric ozone will lead to UV exposure 

of higher intensity [28], and even if the risk for cataract development from UVR was 

relative low, the effect could be significant because nearly everyone is exposed. Several 

epidemiologic research reports have indicated an association between UVR and cataract 

formation [29-31]. UVR may cause temporary or permanent impairment to the lens 

depending on the dose. The wavelength range shown to be most harmful to the lens is 

UVB light in the region 300 to 305 nm [32, 33]. Therefore, to study the recovery pattern 

after UVR damage it is important to establish threshold UVR doses [33, 34], where 

doses below threshold only cause temporary cataractogenesis.     

 

There are multiple mechanisms through which UVR damages the lens and contributes 

to cataract formation. Absorbed UVR photons excite lens molecules, creating free 

radicals and other reactive oxygen species (e.g. 1O2, O2
-⋅, H2O2 and ⋅OH), which 

increase the oxidative stress on the lens. This might induce damage to the DNA, 

proteins and lipids. Proteins are one of the major targets for photo-oxidation [35]. The 

major chromophoric amino acid present in proteins is tryptophan. However other amino 

acids like tyrosine, phenylalanine, histidine, cysteine and cystine also contribute to the 
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absorption of UV light [36]. The generated excited sites of the amino acids in the 

proteins may react with other proteins and form cross-links and aggregates. The anterior 

part of the eye contains several metabolites like GSH [37], taurine [38] and ascorbate 

[39] that function as antioxidants. The lens also contains UV scavengers that absorb 

damaging light [40].  

Inhibition of enzymes [41, 42] and membrane protein damage [43] are also possible 

outcomes of direct protein UV absorbtion.  

The DNA damage affects the lens cell differentiation and protein synthesis.  

Lipid peroxidation and the inhibition of oxidative enzymes alter membrane functions 

and cell metabolism that further lead to osmotic stress, hypotonic conditions, cellular 

edema, and may in the end lead to cell death [44, 45]. In such cases osmolytes play a 

crucial role in protecting the lens from permanent damage. A sketch of possible 

pathways for cellular damage in the lens induced by UVR is shown in Fig. 1.2.  
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Figure 1.2 Possible pathways for cellular damage in the lens induced by UVR (↑ increase ↓ decrease). 

Figure is adapted from Michael R. thesis, 2000 [46].   
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Despite the impressive research effort, the metabolic changes involved in these 

processes are by no means clear. Particularly, reports on UVR induced effects on the 

endogenous metabolites are scarce. Screening the multiparametric metabolic response in 

the lens after UVR might provide better insight for interpretation of the biochemical 

events described in Fig. 1.2.  

So far there is no initiating factor that explains all cataract types, but there might be 

metabolic responses that occur in all cataracts, after the initiating event. Most of the 

potential damage mechanisms described in Fig. 1.2 are not specific for UV cataract 

alone. Many of the endogenous metabolites are involved in key cellular pathways or 

have independent protective roles. Therefore, investigation of the metabolic changes 

initiated by UVR may also contribute to our general understanding of cataract 

development.  

 

1.4 NMR spectroscopy 
The first experiments and discoveries regarding nuclear magnetic resonance (NMR) 

were executed by Felix Bloch [47] and Edward Purcell [48] in 1946 and for this work 

they received the Nobel Prize in physics in 1952. Since then NMR has been a valuable 

tool for organic structure determination. NMR spectroscopy is based on the magnetic 

properties of nuclei (magnetic moment (µ) and nuclear spin (I)). Magnetic resonance 

arises from the interaction of certain nuclei with nuclear spin (I ≠ 0) and radio frequent 

(rf) energy in the presence of a strong magnetic field. Each chemically distinct atomic 

nucleus gives detectable signals which are interpreted in terms of frequencies (chemical 

shifts, δ). The appearance of a specific peak depends on the molecular environments of 

the originating nuclei. The intensities of the NMR resonances are directly related to the 

number of nuclei contributing to them, and are the basis for calculation of the 

concentrations of substances in the sample. Isotopes like 1H, 13C and 31P are by far the 

most used isotopes in NMR spectroscopy on biological materials, but a number of other 

molecules have also been studied, including 15N, 19F and 23Na.  

Many pieces of structural information can be obtained by NMR spectroscopy, including 

the spin-spin coupling pattern (multiplicity) and coupling constants (J) which are 
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important parameters in peak assignment of spectra. Nuclear Overhauser Enhancement 

(NOE) that is often used to measure intramolecular distances, and the two characteristic 

relaxation properties describing the reversion of nuclei to equilibrium: longitudinal (T1) 

and transversal (T2) relaxation. For a more detailed description of the physics that forms 

the basis of NMR spectroscopy, several introductory books are available [49, 50].  

 

Magic Angle Spinning (MAS) 

The observation of metabolites within intact tissue by 1H NMR spectroscopy is 

confounded by a number of physical factors which broaden spectral resonances, 

including dipolar couplings, chemical shift anisotropy, and bulk magnetic susceptibility 

differences. Many of these line broadening factors are reduced by spinning the sample 

at the "magic" angle θ  = 54.7° (angle between the spinning axis and the magnetic field 

B0). Both dipolar couplings and chemical shift anisotropy are scaled by the angle 

dependency (3 cos2θ - 1), which are averaged to zero at 54.7°. For the line narrowing to 

be successful the spinning-rate must be comparable with the NMR linewidth of the 

material in static conditions, and is typically ∼ 4 - 6 kHz for intact biological tissue [51]. 

Lower spin-rates may lead to unwanted spin sideband within the region of interest. 

The effect of MAS on the dipolar couplings and chemical shift anisotropy are illustrated 

to the left in Fig. 1.3. The interaction vectors (rax) between each pair of nuclei are 

averaged around magic angle (θ) by spinning the rotor.  Within the past few years, the 

development of high-resolution MAS 1H NMR in combination with line narrowing 

multipulse techniques have had substantial impact on the analysis of small intact tissue 

samples [52-56]. The MAS rotor volume may vary from about ~10µl to 100µl. Rotors 

with volume size 92µl (A) and 50µl (B) are shown to the right in Fig. 1.3  
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Figure 1.3 To the left: effect of MAS on the dipolar couplings and chemical shift anisotropy. Interaction 

vectors (rax) between the nuclei (a and x) are averaged around the magic angle (θ) by spinning the rotor. 

B0 = direction of the magnetic field. To the right: picture of zirconia HR-MAS rotors without insert 92µl 

(A) and with insert 50µl (B).  

 

1.5 NMR spectroscopy in ophthalmic research  
The development of more advanced spectrometers in the 1970’s established the 

applicability of NMR spectroscopy in metabolic studies of biological systems. Now, for 

almost three decades, high-resolution NMR spectroscopy has been utilized in metabolic 

eye research. The earliest high-resolution NMR studies of the eye done by Greiner and 

Glonek et al. used phosphorus-31 (31P) NMR spectroscopy to investigate the principal 

organophosphates on extracts and intact lenses  [57, 58] and corneas [59]. The same 

group also documented the organophosphate profile of AH and vitreous body extracts 

from porcine eyes [60]. By using 31P NMR spectroscopy the metabolic response in 

cornea to soft [61] and hard [62] contact lenses was investigated. Corneal vitamin A 

deficiencies [63] and corneal epithelial wound healing [64] have been analysed. It was 

also possible to follow up metabolic changes in the lens during development of cold 

cataract [65], upon treatment with dexamethasone [66], after UV exposure [67], and to 

investigate phosphorylated sugars in maturing rat lenses [68, 69]. Since some of the 31P 
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shifts of phosphorus containing metabolites are pH-dependent, intracellular pH values 

could be monitored non-invasively in cornea and lens [70].  

 

In comparison to 31P NMR spectroscopy, the greatest sensitivity possible in NMR 

studies of biological materials is offered by observation of protons. Proton has the 

highest sensitivity of any stable nucleus, with close to 100% natural abundance and is 

found in virtually all metabolites. This gives 1H NMR spectroscopy a great potential as 

a more complete analytic tool for complex mixtures. However, the disadvantages of 1H 

NMR spectroscopy have been the narrow chemical shift range (~ 10 ppm) combined 

with high abundance of metabolites, large signal from water which must be suppressed, 

and the potential broad resonances from lipids and proteins which have to be reduced or 

eliminated. Stronger homogenous magnetic fields, improved computers, more 

sophisticated pulse sequences (two-dimensional (2D) techniques), and development of 

advanced water suppression techniques have indeed made 1H and combined 1H and 13C 

NMR spectroscopy an important tool for identification and quantification of metabolites 

in biofluids and tissue extracts. The first medical applications showing the utility of the 
1H NMR analysis of complex metabolite mixtures involved analysis of serum [71, 72] 

and urine [73, 74]. 

Based on these pioneer studies the first one-dimensional (1D) 1H NMR analysis of the 

eye was performed on human AH [75] with a further more detailed 2D 1H NMR 

analysis on rabbit AH by Gribbestad and Midelfart [76]. The metabolic profile based on 
1H NMR spectroscopy has also been monitored for several eye tissue extracts, for 

example rabbit cornea [77], lens [78], conjunctiva and iris ciliary body [79]. Combined 

studies of 1H and 19F NMR have been performed to investigate the penetration of 

topical applied dexamethasone and dexamethosone phosphate in AH [80], cornea, and 

lens [81], with following 1H NMR studies of metabolic changes in rabbit lenses induced 

by long-term topical treatment of dexamethasone [82]. The last reported 1H NMR work 

on eye tissue extracts was the analysis of immediate changes in alkali-burned rabbit 

cornea, AH, and lens (paper I).   

Until recently only 31P NMR has been used to study the intact cornea and lens. However 

during the last decade new developments (HR-MAS) have established 1H NMR as a 

valuable tool for metabolic screening of intact tissues, and has been successfully applied 
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to investigate numerous mammalian tissues and diseased tissues such as liver [83], brain 

[84], breast cancer [53, 55], renal cortex and medulla [54], testicular tissue [85], kidney 

[52], and cervical cancer [86]. The present thesis has been focused on utilization of this 

progress in 1H NMR spectroscopy, to investigate metabolites in intact lens tissue in 

conjunction with cataract formation. The development of cataracts is a complex process 

associated with noxious influences on a number of biological pathways. 1H NMR 

provides simultaneous information on many different metabolites and may therefore be 

a powerful analytical tool for the understanding of cataractogenesis. 
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 2. Aim of the thesis    

2. Aim of the studies 

The main objective of the experimental work included in this project has been to use 

different 1H NMR spectroscopy procedures as analytical tools in ophthalmic research 

to extract and interpret information on metabolic changes in the eye induced by 

external pathological stimuli. Special focus has been paid to changes in the lens and 

cataract development. The more specific aims of this study were to:  

 

1. Utilize high-resolution 1H NMR spectroscopy on eye tissue extracts to access 

information of the immediate metabolic changes in the anterior eye segment after 

alkali-burns.  

 

2. Evaluate the potential of high-resolution HR-MAS spectroscopy to be used in 

study of intact eye tissue.   

 

3. Use HR-MAS spectroscopy to investigate possible changes in endogenous 

metabolites of intact lens tissue induced by UVB radiation, and further evaluate how 

different UVB doses make an impact on the severity of these changes.  

 

4. Monitor how UVB induced metabolic changes in the lens developed over time 

compared to the cataract development.     

 

5. Investigate how long-term treatment with dexamethasone combined with 

subsequent UVB exposure affected the metabolism in the lens compared to UVB 

radiation alone.    
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3. Experimental Aspects 

 
3.1 UVB irradiation and light scattering measurements 
The UVB doses described in paper II-VI were defined as the radiation energy per unit 

area reaching the anterior surface of the cornea. The animals were irradiated in vivo 

and the exposure time varied from 10 minutes (paper IV) to 15 minutes (paper II & 

III). All animals were kept and treated according to the ARVO Statement for the Use 

of Animals in Ophthalmic and Vision Research. When irradiation is quantified certain 

quantities such as radiance (W/m2) or dose (radiance × exposure time, Ws/m2 = J/m2) 

may be used to describe the amount of radiation.  

The degree of cataract in paper II and III was quantified with an objective light-

scatter-measuring technique developed by Söderberg [87] using a Light 

Dissemination Meter (schematic drawing published by Söderberg [87]). The light 

scattering of the lens was calibrated against the scatter readings from a commercial 

available lipid emulsion, Diazemuls (Kabi Vitrum, Sweden). Diazemuls is a licensed 

preparation of oil in water emulsion with diazepam dissolved in the oil phase. This 

allowed conversion from relative current readings of forward light scattering to 

absolute transformed Equivalent Diazepam Concentrations (tEDC). A typical value 

for a normal rat lens is about 0.1 tEDC and for a very opaque lens about 1.0 tEDC. 

Measured intensities of forward light scattering compared with photographs of 

isolated rat lenses are illustrated by Michael et al. [88]. Pictures of representative rat 

lenses analysed in paper II are shown in Fig. 3.1. The light scattering results presented 

in paper II and III are the difference in tEDC between control and exposed lenses.  
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Figure 3.1 Picture of isolated control and exposed rat lenses one week after exposure to 5 kJ/m2 UVB 

doses. Grid size 0.75 mm. Mean values for measured intensity of forward light scattering was 0.19 for 

the control (A) and 0.42 for the exposed (B) lens.  

 

3.2 Comparison of extraction methods 
For the extraction of water-soluble metabolites (e.g. amino acids and sugars) from 

biological tissue, perchloric acid (PCA) extraction has routinely been used in NMR 

studies [89, 90]. PCA extraction prevents enzymatic degradation during extraction 

while removing proteins and acidic macromolecules. PCA extraction has been widely 

used in NMR studies of water-soluble metabolites in the eye [57, 58, 77, 78, 91]. 1H 

NMR studies on brain extracts by Le-Belle et al. [92] have shown that 

methanol/chloroform (M/C) extraction revealed significant higher yields of water-

soluble metabolites compared to PCA extraction. In this project the two extraction 

methods were tested on water-soluble metabolites in rat lens tissue and compared by 
1H NMR spectroscopy. 

 

Experimental description of the extraction methods 

Frozen lenses excised from nine Sprague Dawley rats were pulverised with a 

porcelain mortar and pestle chilled in liquid nitrogen. The PCA extraction procedure 

was described in detail in paper I.  

The M/C extraction of the lenses was performed as described by Le-Belle et al [92]. 

For the M/C extraction 50µl 0.9% NaCl solution was added to the pulverized tissue, 

and then the tissue-solvent mixture was transferred to a centrifuge tube. 360µl 

methanol/chloroform in a ratio of 2:1 was then added to the centrifuge tube and the 

tissue-solvent mixture was sonicated for 15 min. After sonication, 200µl 

 15 
 



 3. Experimental Aspects   

chloroform/distilled water in a ratio 1:1 was added to the M/C tissue mixture and the 

sample was centrifuged at ~ 3000 g for 15 minutes. The supernatant (methanol and 

water) was collected for analysis of water-soluble metabolites.  

Extractions were done with pools of three lenses to get a proper signal-to-noise ratio. 

To remove water the PCA extracts were freeze dried and M/C extracts were dried at 

room temperature under a steam of nitrogen gas. 1H NMR spectra were recorded at 

25°C using a 90° pulse, acquisition time of  3.0 s and repetition delay of 5.0 s. TSP 

(sodium-3’-trimethylsilylpropionate-2,2,3,3-d4) was used as an internal quantitative 

standard. The results are given in Fig. 3.2. 

 

0

2

4

6

8

10

12

14

16

Va
lin

e

A
la

ni
ne

Su
cc

in
at

e

G
SH

H
-t

au
rin

e

Ta
ur

in
e

M
-in

os
ito

l

La
ct

at
e

C
ho

lin
e

m
m

ol
/g

 w
et

 w
ei

gh
t

PCA extraction

MC extraction

 
 
Figure 3.2 Concentration of metabolites in normal rat lens from PCA extracts (n = 3) and M/C extracts 

(n = 3). TSP was used as internal standard for concentration measurements. The bars represent the SD.  

 

In contradiction to the findings by Le-Belle et al. [92], PCA extraction seemed to give 

the highest yield in lens tissue extracts (Fig. 3.2). From the analysed spectra, PCA 

extraction also showed a slightly lower background of residual macromolecules 

compared to the M/C method. Proton NMR studies on different protocols of 

lymphocyte extracts also suggested PCA as the optimum procedure for analysing 

water-soluble metabolites [93]. In the present study focusing on water-soluble 

metabolites in the eye tissue, PCA extraction seemed to be the best choice. However, 

M/C extraction enables profile analysis of both aqueous metabolites and lipids. 31P 

NMR studies of M/C on extracts of human and animal lenses have been done to 
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investigate the lipid composition [94, 95], but to my knowledge high-resolution 1H 

NMR studies on lipid composition of eye tissue have not been reported in literature.  

  
 
3.3 Absolute quantification of metabolites in NMR spectroscopy 
The fact that the area of a resonance peak is proportional to the number of nuclei, 

gives rise to an extensive use of quantitative measurement by NMR spectroscopists. 

Proton is the most sensitive nucleus to be observed by NMR due to the favourable 

gyromagnetic ratio and the natural abundance of 99.98%. The minimum concentration 

that can be detected depends upon many factors such as field strength and 

homogeneity, sample size, data collection times, and the acquisition parameters. The 

detection limit for 1H at the field strength of 11.7 Tesla (500 MHz) is between 0.05 

and 0.1mM depending on the metabolite observed. Thus the absence of a metabolite 

in an NMR spectrum only sets an upper limit on its concentration and cannot be taken 

as evidence of missing metabolites.  

As compared to enzymatic and chromatographic methods, an inherent advantage of 

NMR spectroscopy is the simultaneous detection of a large number of metabolites 

without need for purification and derivatisation of individual metabolites prior to the 

analysis. Better probes, stronger magnetic fields and more sophisticated equipment 

are also continuously challenging the detection limits. However, NMR spectroscopy 

will always be less sensitive than chromatography methods like HPCL and GC/MS. 

     

The absolute concentration of metabolites present in an extract can either be 

quantified by adding an internal standard, or by applying an external standard in a 

capillary of known concentration and volume. Alternatively the concentration of one 

of the endogenous metabolites can be assayed using other biochemical methods. Tofts 

and Wray have published a detailed description of the necessary assessments for 

quantification of metabolites by NMR spectroscopy [96]. 

 

T1 measurements of metabolites from PCA lens extract 

For a specific NMR experiment attention must be paid to the acquisition parameters 

under which the spectrum is obtained. (i) The acquisition time must be long enough to 

collect all of the free induction decay (FID) otherwise there will be truncation 

artefacts in the spectra and loss in signal-to-noise ratio. (ii) The pulses should be short 
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enough to cover the range of the chemical shifts present in the spectrum, otherwise 

the peaks near the edge of the spectrum will experience an area reduction. The pulse 

duration should not exceed 1/(4 × spectral width) which is 50 µs for a 5 kHz offset. 

Normally this is not a problem in 1H NMR spectroscopy, but can occur in nuclei with 

large frequency range like 13C. (The length of the 90° pulse in paper I was 9.68 µs.) 

(iii) For absolute quantification purposes the signals should be acquired under non-

saturation conditions. This means that the repetition time between the pulses should 

be five times the longest T1 of the peaks to be measured. It is also possible to run 

under steady state conditions (repetition time < 5 x T1), and then do T1 corrections 

afterwards. The T1 values for protons in water-soluble metabolites are normally 

between one and two seconds. However, it was of interest to measure if this was the 

case for the metabolites analysed in paper I.   

 

Experimental description  

Lens extract from one adult New Zealand albino rabbit were used. The PCA 

extraction was performed as described in paper I. The NMR spectra were obtained 

with a Bruker AVANCE DRX500 spectrometer operating at 500 MHz for protons. 

The 1H spectra were recorded at 25°C using a 5 mm NMR tube, no spinning. Proton 

spectra were acquired using a 90° pulse and a spectral width of 5000 Hz. A standard 

inversion recovery sequence was used (180x° – τ – 90x° - FID) with acquisition time 

of 2.28 s and repetition delay of 10 s. Each spectrum corresponded to the sum of 96 

FIDs. The time interval (τ) between the 180 and 90 degree pulses increased from 10 

ms to 10 s, and 24 data points were acquired for T1 computation. The T1 results are 

shown in Table 3.1.  

 

 

 

 

 

 

 

 

 18 
 



 3. Experimental Aspects   

Table 3.1 Longitudinal relaxation times (T1) of a representative selection of metabolites extracted from 

rabbit lens, freeze dried and re-dissolved in D2O.  The relaxation time for TSP was determined 

separately in D2O.  

 

ppm  Metabolite T1 value (sec) 
0 TSP 3.4 
1.02 valine 1.0 
1.33 lactate  2.1 
1.46 alanine 1.7 
1.92 acetate 1.2 
2.35 glutamate 1.5 
2.41 succinate 2.0 
2.67 hypo-taurine 1.3 
3.30 scyllo-insitol 2.2 
4.06 myo-inositol 1.8 

 

 

The T1 values for the metabolites in the lens extracts seemed to vary between 1.0 to 

2.2 s. Based on the total repetition delay of 9 s in paper I, most of the observed 

metabolites were allowed a proper relaxation between the pulses. However, the 

internal standard showed surprisingly high T1 value of 3.4 s. and was partially 

saturated. The T1 relaxation process is described by the derived Bloch equation (3-1): 

  

)1()( 1
0

T
t

z eMtM
−

−=    (3-1) 

 

were Mz is the steady state magnetization, M0 is the equilibrium magnetization, t is 

the repetition delay (τ) and T1 the relaxation time. From the equation TSP has only 

been allowed a total relaxation of 93%. This correction factor was not used when 

calculating the metabolite concentrations published in paper I. 

 

3.4 HR-MAS spectroscopy of intact lenses 
 
The CPMG pulse sequence 

Baseline distortions caused by the immobile protons of macromolecules like lipids or 

proteins can be attenuated by spin-echo methods to reveal low molecular weight 

metabolites. This is based on much faster spin-spin relaxation (small T2 values) for 

the immobile protons compared with the mobile protons (high T2 values). A normal 
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Hahn spin-echo sequence [90x°- τ -180y°- τ - FID] gives rise to spin-spin coupling 

related phase modulation of the resonances which complicates the spectrum and its 

quantification. The Carr-Purcell-Meiboom-Gill (CPMG) sequence [90x° - (τ -180y°-τ) 

n - FID] however, eliminates spin-diffusion, corrects for offset effects of imperfect 90° 

angles and minimises phase modulation [97]. The value of τ should be << 1/J to 

prevent spin diffusion to occur. Total spin-echo time in the range 100 - 150 ms is 

usually sufficient to attenuate the broad resonances. For the 1D HR-MAS spectra 

present in paper II - IV a CPMG sequence was used where the delay τ was set to 1 ms 

and n = 72 loops, giving an effective echo time of 144 ms. In addition a selective 

presaturation pulse was applied to enhance the water suppression. Fig. 3.3 illustrates 

the effect of the CPMG sequence on the broad baseline resonances.    

 

 
Figure 3.3 Representative MAS 1H NMR spectra of intact rat lens tissue illustrating the effect of the 

rotor spin rate and the use of the T2 filtering pulse technique (CPMG) with an effective echo time of 

144 ms.  

 

TSP as an internal standard 

For the quantification of metabolites investigated by HR-MAS in paper II-IV it was 

difficult to use conventional methods with TSP as an internal standard. Firstly, the 

volume of standard solution added to each lens in the MAS rotor varied because of 

variations in the individual lens volume. When sealing the rotor containing the lens it 

was important to avoid air bobbles due to paramagnetic line broadening effects. Some 

liquid leakage in this process was unavoidable and total control of added TSP was 
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therefore difficult. Secondly, TSP possesses an aliphatic chain that can interact with 

serum albumin or lipids [98] and therefore might be unsuitable as internal standard for 

some biofluids (e.g. blood) and intact tissues. This did not seem to be a problem for 

the PCA tissue extracts and AH samples investigated in paper I, where TSP was used 

as internal standard.  

Other internal standards like formate  [98] and fumarate were considered. However, it 

was difficult to find a suitable reference that did not overlap with the endogenous 

metabolites in the lens, and the problem of adding the substrate to the rotor will still 

remain.   

Another aspect regarding the use of TSP as a concentration standard is the relative 

long relaxation time (T1 = 3.4s). This may be unfavourable when it is important to 

obtain sufficient S/N in low concentrated samples, with quantitative measurements 

within a reasonable amount of time [99]. 

 

T2 measurements of metabolites from intact lens tissues 

To investigate the relative differences in metabolite concentration between exposed 

and non-exposed lenses, measuring peak intensities versus noise ratios was found to 

be a suitable method (paper II and III). The same principle was used in paper IV only 

absolute peak intensities were used directly for comparison. The quantification 

methods utilised in paper II-IV was possible because all spectra were acquired and 

processed under identical conditions.  

Quantification of the metabolites was based on the T2 filtered spectra (CPMG). When 

interpreting the CPMG spectra for relative changes it was important that the 

metabolites had the same T2 in normal and cataractous lenses. Cheng et al. [100] have 

shown that in some brain diseases consistency of metabolite T2 relaxation cannot be 

assumed. If this is the case, some metabolites might be underrepresented due to short 

T2. The T2 values were examined for the 125 hrs post-irradiated lenses in paper III, 

and assumed to be representative for all the cataract experiments investigated in paper 

II-IV (Table 3.2). 

 

Experimental description  

Lenses from three six-week-old Brown Norway rats were used in this study. The 

lenses were prepared as described in paper III. One eye was exposed to 15 kJ/m2 UVB 

radiation the contra lateral served as control. The rats were sacrificed 125 hrs post 
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exposure and lenses were removed. T2 relaxation times of selected metabolites in the 

intact lenses were measured by HR-MAS 1H NMR spectroscopy on a BRUKER 

Avance DRX600 spectrometer (14.1 Tesla, Bruker BioSpin GmbH) operating at 600 

MHz for protons. The spectra were recorded at 4°C using a 4 mm HR-MAS 1H/13C 

probe. The spinning rate was 5 kHz. The spectra were acquired using a CPMG 

sequence as described above. The interpulse delay (τ) was 944.5 µs (rotor 

synchronized 180° pulses). Each spectrum corresponded to the sum of 96 FIDs. For 

the T2 determination 32 data points were used which were acquired with 2τn varying 

from 32 – 1973 ms. Acquisition time was 2.5 s and the repetition delay 5.5 s. The 

relaxation evolution were analysed using the OriginLab 6.1 (MicroCal software, 

Northampton, U.S) program on a PC. The line fit model of the CPMG amplitudes was 

based on the equation (3-2), derived from Bloch equation, assuming a mono-

exponential decay. 
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Table 3.2 Transversal relaxation times (T2) for different metabolites in intact rat lens present in 

milliseconds (ms). 

 

 

 

  T2 exposed (n = 3) T2 control (n = 3) 
ppm Metabolite ms ± SD ms ± SD 
4.18 p-choline  538 ± 63 476 ± 18 
4.06 m-inositol 248 ± 58 247 ± 22 
3.42 taurine 585 ± 66 540 ± 98 
2.57 GSH 321 ± 27 326 ± 6 
2.41 succinate 242 ± 17 217 ± 7 
2.35 glutamate 400 ± 27 395 ± 12 
1.47 alanine 405 ± 66 351 ± 37 
1.33 lactate 421 ± 15 424 ± 55 
1.04 valine 342 ± 59 311 ± 64 

 

The characteristic T2 values are summarised in Table 3.2. The transversal relaxation 

processes for the metabolites were well described by a mono-exponential decay (r2 > 

0.96) and similar reports on brain metabolites also revealed mono-exponential 

properties [84], [53]. Attempts to describe a bi-exponential decay of the amplitudes 
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did not produce a significant better linefit. Further studies with a higher density of 

data points are needed to detect possible bi- or triple-exponential properties. 

No significant differences in the T2 values were observed between normal and 

cataractous lenses and it was assumed that this was the case for all the analysed 

changes present in paper II-IV. It should be mentioned that absolute quantification 

based on CPMG spectra require T2 correction of the peak intensities based on 

accurate T2 measurement of the respective metabolites. 

 

3.5 Identification of the metabolites in NMR spectroscopy 
The complex mixture of metabolites in biofluids and tissue requires careful analysis 

for identification of the individual metabolite contributions to the NMR spectra. 

Detailed information on different components is often hidden under unresolved 

multiplet groups exhibiting complex lineshapes and considerable spectral overlap.     

In order to exhibit proper assignments of complex 1H NMR spectra application of 2D 

NMR experiments are required.   

The development of multidimensional NMR methods and stronger magnetic fields 

has greatly improved the potential of extracting information from complex mixtures 

such as crude tissue extracts. The most common 2D experiments for assignments of 

low-concentration metabolites are proton homonuclear correlated spectroscopy (H,H-

COSY) and 2D J-resolved (JRES) (dispersion of the chemical shift and coupling 

constant data in two orthogonal frequency domains)  experiments. However, 

overlapping resonances may still occur and additional 2D H,C-correlated experiments 

can be helpful to overcome these problems. Even though the sensitivity for 

heteronuclear correlation methods has been dramatically increased by the introduction 

of inverse-detected experiments like HSQC, HMQC and HMBC, it has been only 

scarcely used in metabolic studies of biological samples. In some pioneering reports 

heteronuclear 2D NMR have played a crucial role in providing considerable 

information on the chemical shifts of observable biomolecule resonances [54, 89, 90, 

101, 102].    

In interpretation of spectra from biofluids and tissues with limited S/N ratio it is 

however possible, to address most of the metabolite contributions by comparing 

traditional homonuclear 2D experiments with earlier reported shift resonances. In 

some cases it may be necessary to do additional spiking of the samples. The non-
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destructive nature of NMR has also made it possible to confirm some assigned 

metabolites with chromatography methods after the NMR spectroscopy [93, 103].  

Examples of earlier NMR studies on biological systems are: brain metabolites [103, 

104], lipid and metabolite analysis of lymphocytes [93, 105], membrane lipids with 

special solvent systems [106], breast cancer tissue [55], intact human cell line [107], 

AH [76], cornea and lens extracts [77, 78] and testicular tissue [85].  

 

All the 1H NMR assignment work present in this thesis is based on literature search 

together with 2D COSY and JRES techniques. Attempts with 2D hetronuclear 

experiments like HSQC did not reveal any additional information due to low S/N 

ratio. Representative 2D spectra from HR-MAS experiments on rat lenses are given in 

Fig. 3.4-6. By comparing these data with reported assignments performed under the 

same physiologically relevant conditions (pH, temperature, solvent), detailed 

information on the contributing peaks in 1H NMR spectra was obtained. Some 

metabolites also needed additional spiking to confirm their identity. The established 

chemical shift values for HR-MAS experiments on rat lenses, with reference to 

relevant shift values in literature, are given in Table 3.3.  
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Table 3.3 Chemical shift assignments from the HR-MAS 1H NMR spectra of rat lens. Singlet, s; 

doublet, d; triplet, t; quartet, q; double doublet, dd; multiplet, m; not detected, ND; 

glycerophosphocholine, GPC; glycerophosphoethanolamine, GPE; reduced gluthatione, GSH; 

phospho-choline, p-choline. (a) Williker et al. [90] (b) Garrod et al. [54] (c) Nicholson et al. [101] (d) 

Podaniy et al. [108] 

 

Label Metabolite  Literature (δ 1H) This work Label Metabolite  Literature (δ 1H) This work
1 Acetate β-CH3 1.91 (s) a 1.92  14 Lysine γ-CH2 1.47 (m) b 1.49 
        δ-CH2 1.70 (m) b 1.69 
2 Alanine β-CH3 1.46 (d) c 1.47    β-CH2 1.90 (m) b 1.92 
  α-CH 3.76 (q) c 3.79    ε-CH 3.02 (t) b 3.03 
        α-CH 3.75 (t) b 3.76 
3 Betaine CH3 3.26 (s) b ND       
  CH2 3.89 (s) b 3.92  15 Myo-inositol C5H 3.28 (t) b 3.27 
        C1, 3H 3.53 (dd) b 3.53 
4 Citrate  2.52 (dd) a 2.55    C4, 6H 3.62 (t) b 3.62 
   2.69 (dd) a 2.71    C2H 4.06 (t) b 4.08 
           
5 Glutamine β-CH2 2.15 (m) a 2.13  16 Phe-alanine β-CH 3.13 (dd) b 3.13 
  γ-CH2 2.46 (m) a 2.46    β’-CH 3.26 (dd) b 3.26 
  α-CH2 3.71 (t) a 3.79    α-CH 3.98 (dd) b 4.00 
        C3,5H ring 7.32 (m) b 7.32 
6 Glutamate β-CH2 2.06 (m) a 2.08    C2,6H ring 7.40 (m) b 7.41 
  γ-CH2 2.34 (m) a 2.35       
  α-CH2 3.77 (t) a 3.78  17 P-choline N-CH2 3.59 (m) a 3.60 
        O-CH2 4.15 (m) a 4.18 
7 Glycine  α-CH 3.54 (s) c 3.55    N(CH3)3 3.21 (s) e  3.22 
           
8 GPC N-CH2 3.67 (?) a 3.69  18 Succinate  2.39 (s) a 2.41 

  O-CH2 4.32 (?) a 4.34       
      19 Taurine N-CH2 3.25 (t) a 3.25 
9 GPE N-CH2 3.29 (?) a 3.18    S-CH2 3.41 (t) a 3.42 
  O-CH2 4.11 (?) a 4.12       
      20 Threonine γ-CH3 1.32 (d) b 1.33 
10 GSH Glu 2 3.77 (t) d 3.79    β-CH 4.26 (m) b 4.26 
  Glu 3 2.15 (m) d 2.16     α-CH 3.58 (d) b 3.58 

  Glu 4 2.53 (m) d 2.57       
  Glu 4 2.55 (m) d 2.57  21 Tyrosine          β-CH 3.02 (dd) a 3.05 

  Gly 2 3.79 (s) d ND    β’-CH 3.20 (dd) a 3.21 
  Cys 2 4.56 (dd) d 4.59    α-CH 3.89 (dd) a 3.98 
  Cys 3 2.92 (dd) d 2.94    C3,5H ring 6.89 (d) a 6.89 
  Cys 3 2.95 (dd) d 2.95    C2,6H ring 7.19 (d) a 7.18 
           
11 Hypo-taurine N-CH2 2.64 (t) a 2.65  22 Valine γ-CH3 0.97 (d) b 0.98 
  S-CH2 3.36 (t) a 3.36    γ-CH3 1.02 (d) b 1.04 
        β-CH 2.28 (m) b 2.27 
12 Lactate β-CH3 1.32 (d) c 1.33    α-CH 3.61 (d) b 3.62 
  α-CH 4.11 (q) c 4.12       
           
13 Leucine δ’-CH3 0.94 (d) b 0.95       
  δ-CH3 0.96 (d) b 0.97       
  β-CH3 1.70 (m) b 1.71       
  γ-CH2 1.66 (m) b 1.65       
  α-CH 3.70 (t) b ND       
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Figure 3.4 A representative JRES MAS 1H NMR spectrum of a normal rat lens (δ 2.9 – 4.3 ppm). Spin 

rate 5000 Hz. The assignment numbers are given in Table 3.3. 
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Figure 3.5 A representative JRES MAS 1H NMR spectrum of a normal rat lens (δ 0.8 – 2.75 ppm). 

Spin rate 5000 Hz. The assignment numbers are given in Table 3.3. 
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Figure 3.6 Partial (δ 4.9 - 0.7 ppm) 1H- 1H COSY MAS NMR spectrum of a normal rat lens with the 

skyline one-dimensional projection of a CPMG spectrum. Spin rate 5000 Hz. Unknown, (U). The 

assignment numbers are given in Table 3.3.  
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4. Results and Discussion  

4.1 Paper I  
Analysis of immediate changes of water-soluble metabolites in alkali-burned 

rabbit cornea, aqueous humor and lens by high-resolution 1H NMR spectroscopy 

 

The aim of this study was to use high-resolution 1H NMR spectroscopy to access 

information of the immediate metabolic changes in the anterior eye segment after 

alkali-burn. Previous studies of alkali-burn injuries have focused on wound healing 

and enzyme activity, investigated mainly on the long-term changes. Less attention has 

been paid to the immediate metabolite changes that occur. These changes might be 

crucial for the later development of biochemical healing processes.  

 

By using high-resolution 1H NMR spectroscopy on the eye tissue PCA extracts, it was 

possible to simultaneously detect and quantify many different metabolites without 

demanding chemical derivatisation methods. In addition to 2D NMR experiments and 

earlier reported NMR assignments of complex biological extracts [89, 101, 109], 

previous 1H NMR spectroscopy work from our laboratory on metabolic analysis of 

cornea [77], aqueous humour  [76] and lens  [78] was used as a platform for peak 

assignments of the obtained 1H NMR spectra.  

A total of 22 different metabolites were quantified in cornea, AH and lens (Fig. 2-5, 

paper I), varying in concentration from 0.02 to 23.47 mmol/kg wet weight. Observed 

concentrations of lactate and glucose in cornea corresponded well with previous 

findings [110]. The most prominent metabolite in all three eye tissues was lactate, 

which showed an overall increase after alkali-burn. This might indicate an ischemic 

process [21]. Significant change in lactate concentration was observed as far in as the 

lens, indicating that alkali-burn causes rapid metabolic alteration deep into the 

anterior segment of the eye. Hypo-taurine, a precursor of taurine, decreased 

significantly in cornea. Taurine’s functions, both as osmolyte and antioxidant, [111] 

might be affected by the decrease of hypo-taurine. The most significant changes in 

concentrations were found in AH with significant increase in succinate, creatine, 

scyllo-inositol and myo-inositol, and a significant decrease of citrate. Also ascorbate 

showed a non-significant decrease in AH. Previous studies have demonstrated the 
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benefit of ascorbate and citrate in the treatment of alkali-burns in the eye, reducing the 

amount of corneal damage [16, 17, 112]. The increase in inositol concentrations may 

reflect a destruction of cell membranes [113]. However it has been shown that inositol 

may also function as an osmoregulator [114, 115].  This paper showed that 1H NMR 

spectroscopy was well suited to provide both quantitative and qualitative information 

on changes in metabolite concentrations in damaged tissues. Thus 1H NMR 

spectroscopy might be helpful to evaluate and understand the biological alterations 

due to external noxi like alkali-burns.   

   

4.2 Paper II 
Metabolic changes in rat lens after in vivo exposure to ultraviolet irradiation: 

measurements by high-resolution MAS 1H NMR spectroscopy  

 

The aim of this study was to implement HR-MAS 1H NMR spectroscopy as an 

analytical tool for use on intact lenses, and apply the technique to investigate changes 

in the metabolic profile of intact rat lenses after in vivo UVB radiation. Despite the 

many experimental studies of UVR and cataract development, the metabolic changes 

involved in this process are not clear. In this study it was of interest to investigate if 

endogenous metabolite alterations followed dose response relationship similar to that 

reported for lens opacity and UVB exposure.    

 

Previous experiments in our laboratory have found 1H NMR spectroscopy to be very 

useful in the monitoring of metabolic profiles in tissue extracts (paper I). However, 

analysis of extracts requires relatively large amounts of biological tissue, are time 

consuming, and may change the chemical composition of the sample. The present 

paper introduced for the first time high-resolution 1H NMR spectroscopy on intact 

lens tissue. The obtained HR-MAS 1H NMR spectra were of high quality comparable 

to those from lens tissue extracts in paper I. Carefully assignment analysis based on 

2D NMR experiments and previous assignment studies of extracts  [78, 90, 101, 104] 

and intact tissue  [54] were done, and it was possible to identify more than 30 

different metabolites in the spectra. Sixteen metabolites qualified to quantitative 

measurements; taurine, hypo-taurine, tyrosine, phenylalanine, valine, glycine, 

 29 
 



 4. Results and Discussion   

glutamate, alanine, myo-inositol, p-choline, betaine, succinate, GSH, ATP&ADP, 

AMP and lactate (Fig. 3, paper II).  

The mean forward light scattering increased with increasing UVR dose. It was shown 

that near-threshold UVB doses lead to a general significant decrease in water-soluble 

metabolites, one week after exposure. However no dose-dependent changes in the 

metabolites were observed.  

The general decrease in metabolite concentrations in the lens might indicate a leakage 

of water-soluble metabolites due to membrane damage caused by UVB radiation. 

Hightower et al. [116] have shown that UVR induces changes in membrane 

permeability which further lead to osmotic stress. In the lens particularly taurine and 

myo-inositol are involved in the osmotic regulation [114, 115], and in the present 

paper taurine, hypo-taurine and myo-inositol are among the metabolites with the 

largest decrease in concentration.  

GSH, which is involved in protection of oxidative damage and cell membrane 

transport, showed a significant decrease between 20 and 50%. This was supported by 

earlier studies on lens epithelial cells, showing that the GSH level stabilised 15 to 

20% below normal level when exposed to oxidative stress [117]. 

A significant reduction in ATP and ADP combined with an increase in AMP 

indicated that lenticular damage or stress result in increased energy demands. Similar 

responses in energy metabolism have been reported for other experimental stressors 

such as calcium deprivation [118], steroid treatment [66, 119] and galactose-induced 

cataract [120].  

 

This study demonstrated the potential of HR-MAS 1H NMR spectroscopy as an 

analytical tool for use on intact lenses. The fact that some metabolites decreased more 

than others implicates their different roles in protection of the lens against UVB 

radiation, and illustrates the complexity of this process and the effect on the metabolic 

changes.  
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4.3 Paper III 
Time dependency of metabolic changes in rat lens after in vivo UVB irradiation 

analysed by HR-MAS 1H NMR spectroscopy 

 
In paper II it was suggested that the lack of dose-dependent changes in the metabolites 

might be explained by repair processes during the first week after UVB radiation.  

The aim of this study was to investigate the time-dependent metabolic changes 5 to 

625 hrs after UVB radiation. Knowledge of the metabolic profile in the lens at 

different stages in the cataract development may contribute to a better understanding 

of how the metabolism is influenced by UVB exposure. 

 

As shown in paper II the non-destructive technique, HR-MAS spectroscopy, made it 

possible to obtain high-resolution 1H NMR spectra of intact rat tissue. In this study 

pigmented rats were exposed to threshold UVB doses comparable to the experiments 

on albino rats in paper II. The observed increase in light scattering in the lens after 

UVB radiation was transient, showing a maximum at 25 hrs post exposure. However, 

the major changes observed in the metabolic profile peaked after a 125 hrs latency 

time, showing that the irradiation impact on the metabolic profile did not follow the 

same time-dependency as the development of light scattering. The only significant 

change observed at an earlier stage was a decrease in ATP/ADP 5 hrs after UVB 

radiation. The peak changes in the endogenous metabolite concentrations at 125 hrs 

post exposure support previous observations that the lens is more vulnerable to 

additional UVB attacks a certain time after exposure [121]. The delayed time 

response of the concentration changes indicate that initial changes in the lens 

epithelium [45, 122] might induce additional biochemical changes to the bulk of the 

lens at a later stage. Both light scattering and the metabolite concentrations seemed to 

converge back to normal after 625 hrs. 

Like in paper II a general decrease in the water-soluble metabolite concentrations was 

observed after UVB radiation. Significant decrease in osmolytes like taurine and myo-

inositol indicated a loss of homeostasis and osmotic stress [116]. Michael et al. [44] 

observed that UVB radiation induced apoptosis in the lens epithelial cells, and other 

studies have reported a relationship between apoptosis and extrusion of organic 

osmolytes [123]. Previous studies have also shown that osmotic and oxidative stress 

caused an increased efflux of lenticular organic phosphate compounds [124, 125] 
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including p-choline that revealed a significant decrease 125 and 625 hrs after UVB 

radiation in present study.  

Also the level of betaine, known as a dominating osmolyte in placenta and renal 

medulla [126], fell significantly 125 hrs post exposure. So far, no osmolytic activity 

has been reported for betaine in the lens [126], but betaine may have other roles such 

as stabilising effects on macromolecules [127]. Our laboratory is the first to report a 

biological response of betaine concentration in the lens.  

Phenylalanine was the only metabolite that showed a significant increase. Valine and 

alanine showed a non-significant increase 125 hrs post exposure.  

 

Like in paper II the diverse response of the metabolites implicated their different role 

in the lenticular damage and repair processes after threshold doses of UVB radiation. 

This study emphasized the strength of HR-MAS spectroscopy in screening 

multiparametric responses in intact lens tissue to drugs or pathophysiological stimuli.  

 

4.4 Paper IV 
High-resolution magic angle spinning 1H NMR spectroscopy of metabolic 

changes in rabbit lens after treatment with dexamethasone combined with UVB 

exposure 

 
The purpose of this study was to investigate metabolic changes in the rabbit lens after 

combined treatment with dexamethasone and UVB exposure, using HR-MAS 1H 

NMR spectroscopy to analyse intact lens tissues. Cataract formation is a well 

established side effect of long-term treatment with steroids. However, cataract 

formation is a multifactorial process and it was of interest to investigate if short-term 

UVB radiation had additive effects on the metabolic changes in the lens.  

 

The spectra were acquired from a section of each rabbit lens containing both cortical 

and nuclear parts, giving an average metabolic profile of each lens. Signals from more 

than 15 major metabolites were assigned (Fig. 1, paper IV), including glucose, 

sorbitol, sorbitol-3-phosphate and scyllo-inositol that were not detectable in rat lenses 

in paper II and III. However, glucose was only detected in the rabbit lenses after long-

term treatment with dexamethasone combined with a subsequent UVB exposure. 

 32 
 



 4. Results and Discussion   

High levels of glucose in the lens may lead to activation of aldose reductase [128, 

129] and concomitantly polyol accumulation [130].  

In addition a significant concentration decrease in GSH, myo-inositol, scyllo-inositol, 

choline, lactate and valine, and an increase in alanine were detected after the 

combined treatment. Further 2D spectral interpretation (Fig. 2, paper IV) also 

revealed a large decrease in taurine and an increase in sorbitol and sorbitol-3-

phosphate. However, this was not exactly quantifiable due to severe spectral overlap. 

In experimental diabetic conditions taurine depletion has been observed in response to 

the accumulation of sorbitol within the lens [131]. It has also been shown that polyol 

accumulation induced myo-inositol release from the lens epithelial cells [132]. Thus, 

the observed depletion in taurine and inositols in the present paper might indicate an 

osmotic compensation in response to the accumulation of sorbitol.  

Regarding the observed decrease of the vital lens antioxidant GSH [133] in the 

combined treatment, it has previously been suggested that glucocorticoid activity is 

responsible for loss in lenticular GSH [134] thereby leading to cataractogenesis   

[135].  

 

For UVB irradiation alone, only glutamate and lactate showed significant changes. 

The metabolic state of the lens was affected more profoundly by long-term steroid 

treatment than by short-term UVB exposure. However, Pescosolido et al. [82] did not 

find any change in lenticular lactate concentration after long-term dexamethasone 

treatment of rabbit eyes. This might indicate that the decreased lactate concentration 

in present study was caused by the UVB radiation. Reduced lactate level might be due 

to inactivation of glycolytic enzymes after UVB exposure [41, 42].  

This study showed that high quality spectra can be obtained from small lenticular 

sections. By implementing improved sectioning techniques, HR-MAS spectroscopy 

should enable future work to investigate the metabolites from different parts of the 

lens. 
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5. Concluding remarks 

The 1H NMR spectra of both eye tissue extracts and intact lenses in this thesis show an 

extensive picture of NMR detectable metabolites. In addition to the detailed analysis of 

AH and tissue extracts from cornea and lens, this work has created a basis for 

implementation and interpretation of HR-MAS 1H NMR spectroscopy on intact lens 

tissues, and provided a future platform for the investigation of intact eye tissues in 

general. The analysis of endogenous metabolites of intact tissues from the anterior eye 

segment might enable new bridges to be constructed between ophthalmic biochemistry 

research and conventional histopathology. The metabolic profiles obtained in vitro may 

also be important for future applications and interpretation of 1H NMR spectroscopy in 

vivo.  

 

Differences in the metabolic content in cornea, AH, and lens after alkali-burns to the 

eye were established in paper I. This showed how careful 1H NMR spectroscopy 

analysis of tissue extracts provided new information (quantitative and qualitative) on the 

metabolic reaction pattern in the anterior eye segment in relation to eye alkali burn 

injuries. The peak assignments of the NMR spectra obtained in these extract 

experiments were also important for the subsequent investigation of intact lens tissues 

in paper II-IV.   

 

In the HR-MAS studies in paper II-IV particular attention was paid to metabolic 

alterations occurring by the development of lens opacities and cataracts. The T2 values 

of water-soluble metabolites in the lens did not change significantly in opaque lenses, 

making the T2 filtering CPMG pulse technique reliable in relative quantitative analysis 

of normal and cataractous lenses.   

  

In paper II the close-to-threshold UVB doses did not reveal any dose-response 

relationship for the metabolic changes. However, the significant decrease in 

concentration for most of the observed metabolites seven days post exposure 

demonstrated that moderate UVB radiation had great impact on the metabolites in the 

lens.    
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Studies of time dependent impact of UVB radiation in paper III showed that changes in 

metabolite concentrations were delayed compared to the development of lens opacities. 

Most of the significant changes seemed to converge back to normal values 625 hrs (26 

days) after exposure.  

 

No clear cataract was detected after long-term steroid treatment combined with UVB 

exposure in paper IV. However, significant changes were observed for several 

metabolites. Long-term steroid treatment seemed to have greater impact on the 

metabolic changes in the lens than short-term changes induced by UVB radiation. For 

some metabolites the induced changes seemed to be additive. Paper IV also illustrated 

how 2D experiments aid the extraction of information in crowded regions of the spectra 

with high degree of overlap.  
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6. Future perspectives 

A detailed 1H NMR assignment study of metabolites in the lipid fraction from M/C 

extracts of the lens should be performed. Unpublished 1D 1H NMR spectra of the 

lipid fraction from our lab revealed several unassigned peaks, but also broad 

resonances from macromolecules that need to be suppressed.   

 

The application of multivariate statistical methods may be helpful to extract additional 

biological data in complex parts of the spectra that is not revealed by visual 

inspection. Data reduction of NMR spectra and pattern recognition techniques are 

widely used in metabolite studies, an approach comprised by metabonomics [51, 136, 

137].  

Analysis based on multivariate methods of NMR spectra from intact eye tissue should 

be done to see if it is possible to extract further information on metabolite changes.  

 

The studies in paper II should be extended to higher and lower UVB doses with 

concomitant time-dependent studies of the metabolic profile, to investigate if 

threshold doses for the metabolic changes in the lens might exist.  

 

The metabolic analysis in present thesis was confined to the whole lens (paper I-III), 

or a part representative for the whole lens (paper IV), and has not been directed 

towards possible local variations in the lens. It is believed that most of the UVB 

radiation is absorbed in the anterior part of the lens. Thus metabolites present in the 

anterior part are more exposed to UVB radiation than metabolites in the posterior part. 

In addition proteins [138, 139] and enzymes  [140, 141] are not homogenously 

distributed within the lens. In special cases it is possible that analysis of the whole 

lens would fail to detect significant changes. Thus in the future, biochemical 

comparisons made by HR-MAS 1H NMR spectroscopy should be done on different 

sections of the lens. The spectra of small lenticular sections from rabbit lenses in 

paper IV showed that this should be possible.   

 

The application of 1H NMR spectroscopy on intact eye tissues also opens for analysis 

of other physical properties like compartmentation or diffusion of water and small 

metabolites. The relaxation parameters T1 and T2 provide information on the 
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interaction between water/metabolites and macromolecules like proteins and lipids. 

Several relaxation and diffusion studies have been performed both on normal and 

cataractous lenses [142-147]. However HR-MAS spectroscopy opens new 

possibilities to similar investigation of small metabolites within the lens [56]. 

Combined with regional analysis it should be possible to monitor mobility of the 

metabolites within their respective localisations and how they may be affected by 

different pathological conditions.   

 

One of the future aims should also be to perform absolute quantification of the 

metabolites in intact tissue by using HR-MAS NMR spectroscopy.  

 

It would be interesting to do comparative metabolite analysis of albino versus 

pigmented, and young versus old rats, and further compare the metabolic profile of 

eye tissues in animal models to human tissues. 
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Abstract 
 
Purpose: The lens ability to protect against, and repair ultraviolet radiation (UVR) 

induced damages, is of crucial importance to avoid cataract development. The 

influence of UVR-induced damage, and repair processes on the lens metabolites are 

not fully understood. Observation of short- and long-term changes in light scattering 

and the metabolic profile of pigmented rat lenses after threshold UVR exposure might 

serve to better understand the protective mechanisms in the lens. By using high 

resolution magic angle spinning (HR-MAS) 1H NMR spectroscopy it was possible to 

investigate the metabolites of intact rat lenses.  

 

Methods: Brown-Norway rats were exposed to 15 kJ/m2 UVB irradiation. One eye 

was exposed and the contra lateral served as control. The rats were sacrificed 5, 25, 

125, and 625 hrs post exposure and the lenses were removed. The degree of 

cataract was quantified by measurement of lens forward light scattering. Thereafter, 

proton NMR spectra from intact lenses were obtained and relative changes in 

metabolite concentrations were determined.  

 

Results: The light scattering in the lens peaked at 25 hrs post-exposure and 

decreased thereafter. The lowest level of light scattering was measured 625 hrs after 

exposure. No significant changes in concentration were observed for the metabolites 

5 and 25 hrs post-exposure except the total amount of adenosine tri- and 

diphosphate (ATP/ADP) that showed a significant decrease already 5 hrs after 

exposure. At 125 hrs the lens concentrations of lactate, succinate, phospho-choline, 

taurine, betaine, myo-inositol, and ATP/ADP showed a significant decrease (p < 

0.05). Phenylalanine was the only metabolite that revealed a significant increase 125 

hrs post exposure. At 625 hrs most of the metabolic changes seemed to normalise 

back to control levels. However, the concentration of betaine and phospho-choline 

were still showing a significant decrease 625 hrs after UVB irradiation. 

 

Conclusion: The impact of UVB irradiation on the metabolic profile did not follow the 

same time dependency as the development of cataract. While the light scattering 

peaked at 25 hrs post-exposure, significant changes in the endogenous metabolites 

were observed after 125 hrs. Both the metabolic changes and the light scattering 
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seemed to average back to normal within a month after exposure. Significant 

decrease in osmolytes like taurine, myo-inositol and betaine indicated osmotic stress 

and loss of homeostasis. This study also demonstrated that HR-MAS 1H NMR 

spectroscopy provides high quality spectra of intact lenses. These spectra contain a 

variety of information that might contribute to a better understanding of the metabolic 

response to drugs or endogenous stimuli like UVB irradiation.   
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1. Introduction 
The cataractogenic effect of ultraviolet radiation (UVR) has been known since the 

beginning of the 20th century (Widmark, 1901). In addition, several epidemiological 

studies have implicated UVR as one of the environmental factors in human cataract 

formation (Zigman et al., 1979; Taylor et al., 1988; Cruickshanks et al., 1992; West et 

al., 1998). Considerable effort in clarifying the biochemical mechanisms in the lens 

tissue caused by UVR exposure has been undertaken, in hopes to avoid or delay the 

progression of lens opacification.  

UVR damage in the lens is complex. Absorbed UVR photons excite lens molecules 

and create free radicals which increase the oxidative stress on the lens (Spector, 

1995; Rose et al., 1998). This induces changes varying from modulated DNA 

syntesis (Andley et al., 1996), loss of ion homeostasis (Hightower et al., 1999) and 

accumulation of chromophores (Truscott et al., 1994; Dillon et al., 1999), to 

crystalline aggregation (Andley and Clark, 1989) and membrane damage (Kochevar, 

1990; Hightower et al., 1994a). In the end UV irradiation might lead to epithelial cell 

death (Li and Spector, 1996; Michael et al., 1998a). Despite the impressive research 

effort the metabolic changes involved in these processes are by no means clear. 

Severity of the lens damage is dependent on the UVR dose and it is assumed that 

UVR doses above a certain threshold level cause permanent damages to the lens 

(Pitts et al., 1977). Previous studies of lens damage after in vivo exposure to 

threshold doses of UVB irradiation (280 – 315 nm) found that the spatial organization 

of lens fibres was largely reversible eight weeks after (Michael et al., 2000). However, 

studies on morphological events alone are not enough to understand the biochemical 

mechanisms of the repairing processes. Ayala et al (Ayala et al., 2000) have 

suggested that opacities might develop due to an imbalance between damage and 

repair mechanisms in the lens. Results from our laboratory indicated that time 

dependent changes in the water soluble metabolites might differ from the light 

scattering changes in the lens caused by UVB irradiation (Risa et al., 2004). 

Investigation of the metabolic profile of the lens tissue under normal and cataractous 

conditions might contribute to our understanding of how the metabolism is influenced 

by UVB irradiation.   

The aim of this study was to investigate the time dependency of metabolic changes 

after UVB irradiation by using nuclear magnetic resonance (NMR) spectroscopy.  
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During the last two decades NMR spectroscopy has proven to be a valuable tool for 

screening the metabolic profile in both tissue extracts and intact tissues. Thus, new 

bridges have been constructed between biochemistry and conventional 

histopathology (Lindon et al., 2003). Phosphorus-31 and proton NMR are the most 

common nuclei to be used in biological investigations. Several studies using 31P or 1H 

NMR spectroscopy have been performed on lens extracts (Meneses et al., 1990; 

Greiner et al., 1994; Midelfart et al., 1996; Risa et al., 2002).  

Until recently only 31P NMR spectroscopy has been found useful studying the 

metabolic profile of intact lens tissue (Greiner et al., 1981; Kopp et al., 1981). 

However, new approaches by using high resolution magic angle spinning (HR-MAS) 

NMR spectroscopy have made it possible to obtain high resolution 1H NMR spectra 

of intact rat lens tissue (Risa et al., 2004). The principle of this method is that line 

broadening effects from dipolar couplings and chemical shift anisotropy are averaged 

to zero by rapid spinning of the sample (typically ~ 4–8kHz) at an angle of 54.7° 

relative to the static magnetic field (the magic angle). This non-destructive technique 

omits the time consuming extraction procedures that require relatively large amounts 

of tissue and might change the chemical composition of the samples. In comparison 

to 31P NMR spectroscopy, HR-MAS 1H NMR spectroscopy is more sensitive and can 

detect many more metabolites due to the natural abundance of proton in almost all 

metabolites.    

In this study HR-MAS 1H NMR spectroscopy was used to elucidate short- and long-

term changes in the metabolic profile of pigmented rat lenses after moderate UVB 

irradiation. This might serve to a better understanding of the repairing mechanisms in 

the lens after UVR exposure.    
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2. Material & Methods 
Animal experiments 

Forty seven six-week-old Norwegian Brown rats were anesthetized with 45 mg/kg 

ketamine (Ketalar, Parke-Davis, Sweden) and 10 mg/kg xylazine (Rompun Vet., 

Bayer AB Sweden) intraperitoneally. Before irradiation pupils were dilated bilaterally 

with 1% tropicamide (Mydriacyl, Alcon Sverige AB, Sweden). After another 10 

minutes, the eyes were unilaterally exposed to 15 kJ/m2 UVB radiation, peak 

wavelength 302.6 nm, for 15 min. For more detailed description see Michael et al 

(Michael et al., 1996). The rats were sacrificed by CO2 asphyxiation 5, 25, 125 and 

625 hrs after UVB exposure. Both eyes were enucleated and the lenses were 

dissected free from remnants of ciliary body and zonular fibres. The isolated lenses 

were then put in room tempered Balanced Salt Solution (BSS, Alcon), photographed, 

and lens forward light scattering was quantified by the technique described previously 

(Söderberg et al., 1990). The samples were finally frozen and stored at -80°C before 

NMR spectroscopy. All animals were kept and treated according to the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research.  

 

NMR spectroscopy 

HR-MAS 1H NMR spectroscopy was performed on a BRUKER Avance DRX600 

spectrometer (14.1 tesla, Bruker BioSpin GmbH, Germany) operating at 600 MHz for 

protons. The spectra were recorded at 4°C using a 4 mm HR-MAS 1H/13C probe. 

The temperature was calibrated using glucose as an internal thermometer (Nicholls 

and Mortishire-Smith, 2001). While still frozen, the lens sample was immersed in D2O 

in a zirconium 4 mm diameter HR-MAS rotor (92 µl). Sodium-3’-

trimethylsilylpropionate-2,2,3,3-d4 (TSP) was used as an internal shift reference 

substance (0 ppm). Samples were spun at 5000 Hz.  

Proton spectra were obtained using a one-dimensional T2-fitered sequence [90°-(τ-

180°- τ)n-acquisition] (Carr-Purcell-Meiboom-Gill spin echo pulse sequence, CPMG)  

(Meiboom and Gill, 1958) to suppress signals from lipids and macromolecules. The 

inter pulse delay τ was 1 ms and the number of loops n was 72 (giving an effective 

echo time of 2nτ = 144 ms). Spectral region was 12 ppm with 32K data points. 

Acquisition time was 2.28 s and water presaturation was done with a selective pulse 

during a repetition delay of 3.1 s. Number of scans was 512. Zero-filling to 64K was 
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used and exponential line broadening of 1.0 Hz. For peak identification purposes, 

two-dimensional spectra such as gradient selected homo-nuclear shift correlated (gs-

COSY) and J-resolved spectra were acquired, all under MAS conditions.    

Analysis of the spectra was done with special software for analysis of complex 

mixtures (AMIX, Bruker BioSpin GmbH, Germany). The spectral region 0.8 – 10 ppm 

was reduced to a resolution of 0.001 ppm/point (‘bucket’ width). By performing a data 

reduction on the NMR spectra it was possible to summarize and compare sums of 

buckets over the exact same peak regions in each spectrum. The water peak 

between 6.3 and 4.7 ppm, and the region between 3.3 and 2.6 ppm, were eliminated 

from the data reduction. Peak areas were measured using the noise region (0.3 - 

0.55 ppm) as an internal standard. The identity of samples during analysis was 

unknown to the spectroscopist.  

 

Data analysis 

Metabolite concentrations in the exposed groups were calculated relative to the 

levels in the control groups after normalization (integrated NMR peak/sample wet 

weight). The level of significance was set to 5%, and mean values were expressed 

with 95% confidence intervals. 
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3. Results 
A significant increase (p < 0.05) in light scattering was observed for all UVB exposed 

lenses. The lens light scattering peaked at 25 hrs post-exposure and decreased 

thereafter (Fig. 1). The lowest level of light scattering was measured 625 hrs after 

exposure.    

The HR-MAS 1H NMR spectra obtained from intact rat lenses were of high resolution 

quality comparable to those obtained in previous experiments with intact lens tissue  

(Risa et al., 2004) and tissue extracts (Risa et al., 2002). A representative reduced 

NMR spectrum (bucket width 0.001 ppm) of a control lens with peak assignments of 

more than 25 different metabolites is presented in Fig. 2. Due to overlap and 

insufficient signal-to-noise ratio, some of the assigned metabolites could not be 

quantified. Fourteen different metabolites were found suitable for quantitative 

analysis. These were lactate, taurine, myo-inositol, betaine, phospho-choline (p-

choline), reduced glutathione (GSH), succinate, glycine, glutamate, tyrosine, valine, 

alanine, phenylalanine, and the total amount of adenosine tri- and diphosphate 

(ATP/ADP). The measured peak regions for the respective metabolites are illustrated 

as dark areas in Fig. 2.  

Mean values of the relative concentration differences of the metabolites between 

exposed and non-exposed lenses were calculated at 5, 25, 125, and 625 hrs post-

exposure. The results are given in Fig. 3. As shown in this figure no significant 

changes in concentration were observed for all metabolites at 5 and 25 hrs post-

exposure with exception of ATP/ADP showing a significant decrease already 5 hrs 

after exposure. At 125 hrs, the lens concentrations of lactate, succinate, p-choline, 

taurine, betaine, myo-inositol, and ATP/ADP showed a significant decrease (p < 

0.05). The same tendency was observed for glycine and GSH but without reaching a 

significant level. Valine, alanine and phenylalanine peaked at 125 hrs, with 

phenylalanine increasing significantly. Tyrosine concentration was lightly increased at 

all post exposure observation points (p > 0.05). The concentration of glutamate had 

an indicative peak at 25 hrs post-exposure, but the following changes were not 

significantly different from controls for any of the observed time-points after UVB 

irradiation. At 625 hrs most of the metabolic changes seemed to normalise back to 

near-control values. However, the concentrations of betaine and p-choline were still 

showing a significant decrease 625 hrs after UVB irradiation. 
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4. Discussion 

As shown recently in our laboratory, HR-MAS 1H NMR spectroscopy has a great 

potential in analysing the metabolic profile of intact lens tissues (Risa et al., 2004).  

The detailed information on the metabolic composition was comparable to that 

acquired by NMR spectroscopy of lens tissue extracts (Midelfart et al., 1996; Risa et 

al., 2002). In the present study broad resonances from macromolecules and lipids 

with low mobility and hence short transverse relaxation time (T2) were suppressed by 

using a one dimensional T2-filtered pulse sequence with an effective spin echo delay 

of 144 ms. This allowed an enhancement in relative signal intensity of smaller 

molecules and better baseline separation of the peaks. However, as explained by 

Risa et al (Risa et al., 2004) it was difficult to use conventional quantification methods 

with TSP as internal standard. By analysing the samples under identical conditions 

and assuming that each metabolite had the same T2 in all samples, this problem was 

avoided by measuring peak intensities relative to a selected noise region and 

correcting for the lens wet weight. Relative changes could then be extracted. 

The metabolic profile of the pigmented rat lens in this study was very similar to 

previous HR-MAS studies of albino Sprague Dawley rats of the same age (Risa et 

al., 2004). The same metabolites dominated the one-dimensional proton spectra, and 

the same cross-peaks were revealed in the assignment work of the two-dimensional 

spectra. However, a comparative study of the metabolic profile of lenses from 

pigmented and albino rat eyes were not performed.      

The observed increase in light scattering from the lens after UVB irradiation was 

transient, showing a maximum at 25 hrs post exposure. The decrease in light 

scattering between 25 and 625 hrs latency showed that 15 kJ/m2 is below or close-to-

threshold dose for the pigmented rat lens (Pitts et al., 1977; Michael et al., 1996). 

Comparing the light scattering differences and changes of the metabolic profile in the 

lens, the impact of the UVB irradiation on the metabolite processes seemed to be 

delayed. This because the major changes in the metabolite concentration were 

observed first at 125 hrs post exposure. Similar to the normalisation of light 

scattering, the concentrations of most of the metabolites seemed to converge back to 

the normal level after 625 hrs.  

In earlier studies, different time intervals for repeated threshold doses of UVB 

irradiation have shown that the most severe cataract development occurred in a 

group that was allowed a 72 hrs interval between two exposures. In contrast to that, 
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the damage was the same whether the second exposure was repeated immediately, 

6 hrs or 24 hrs after. The lowest intensity of light scattering was detected in the 30 

days interval group (Ayala et al., 2000). It was suggested that photoproduct 

formation, different repair mechanisms and apoptosis might make the lens cells more 

sensitive to a second UVB exposure. In the present work, the peak change in the 

endogenous metabolite concentrations at 125 hrs post exposure supports the 

observations that the lens is vulnerable to additional UVB attacks at certain time 

intervals. The normalization of the metabolic changes after 625 hrs (26 days) 

indicates however, that the biochemical repair in the lens can occur within a month 

after irradiation. Consequently when repeated UVB exposures are separated by 30 

days, the final damage of the lens might be less than with shorter time intervals.      

Both taurine and myo-inositol are among the organic osmolytes that have been 

previously identified in the lens  (Miller et al., 2000; Cammarata et al., 2002) and their 

significant decrease 125 hrs post exposure might be explained by changes in 

epithelial membrane permeability, osmotic stress and loss of homeostasis (Hightower 

et al., 1994b). Michael et al (Michael et al., 1998a) have observed that threshold UVB 

irradiation induced apoptosis in the lens epithelial cells leading to loss of 

metabolically competent cells and disturbance of the water balance in the lens. 

Taurine is released in association with cell shrinkage and water extrusion during 

apoptosis in neurons (Morán et al., 2000). The observed decrease in taurine and 

myo-inositol indicates a possible relationship between apoptosis and extrusion of 

organic osmolytes in rat lens after UVB irradiation. Also the level of betaine, known 

as a dominating osmolyte in placenta and renal medulla tissue (Miller et al., 2000), 

fell significantly 125 hrs post exposure. So far, no osmolytic activity has been 

reported for betaine in the lens (Miller et al., 2000). In fact the lenticular role of 

betaine is not exactly known (Rao et al., 1998). Some osmolytes, especially 

methylamines like betaine, may have stabilising effects on macromolecules (Yancey 

et al., 1982). This effect is of crucial importance to the lens fibre cells which have 

limited capacity of damage repair (Spector, 1995).  

The phospholipid precursor p-choline is one of the most abundant metabolites in the 

rat lens and an important metabolite in cell membrane metabolism (Kopp et al., 

1981). Studies have shown that cataractogenic osmotic and oxidative stress caused 

an increased efflux of lenticular organic phosphate compounds, including p-choline 

(Desouky et al., 1992; Jernigan et al., 1993). Investigation of apoptotic cell death in 
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lymphoblast has revealed a decrease in p-choline during the cytoskeletal 

architectural destruction, and suggested that small molecules like p-choline may not 

be replenished as the cell prepares to die {Blankenberg et al., 1997}}. In agreement 

with earlier observations on osmotic stressed rat lenses (Jernigan et al., 1993), 

present study observed a time dependent reduction in lenticular p-choline after UVB 

irradiation.  

The delayed time response of the observed concentration changes indicate that 

initial changes in the lens epithelium (Li and Spector, 1996; Shui et al., 2000) might 

induce additional biochemical changes in the bulk of the lens at a later stage. Indeed 

it has been suggested that many of the damages associated with cataract such as 

Na/K-ATPase inhibition, drop in GSH concentration, loss of ATP, changes in water 

balance and lens protein modifications are all potential results of early changes in the 

epithelial cells and might occur in a post-insult period 1-12 days later (Hightower and 

McCready, 1992; Li et al., 1995). Histological analysis of albino rat lenses showed 

that severe damages in underlying fibre cells did not appear until seven days after 

threshold UVB exposure (Michael et al., 1998a). In present study threshold UVB 

doses was found to cause significant post-insult disturbances as late as 125 hrs after 

irradiation, starting thereafter the repair process with normalization of the metabolism.    

It has been suggested that polymerization of crystalline cleavage products causes 

the formation of water-insoluble polypeptides in the lens (Srivastava, 1988; Baruch et 

al., 2001). Therefore, proteases that further degrade the protein fragments into 

smaller peptides and amino acids might provide an important secondary defence 

against aggregation and cataract development (Taylor and Davies, 1987; Chaerkady 

and Sharma, 2004). The significant increase of phenylalanine and the increasing 

tendency of valine and alanine (p > 0.05) might be due to induction of site specific 

hydrolysis of multicatalytic proteases.  

Glutathione (GSH) has an important role in protecting protein thiol-groups from 

oxidative damage and preventing cross-linking of soluble crystallines (Reddy, 1990). 

GSH concentration has showed a rapid depletion in lens epithelium and more slowly 

in the underlying lens fibres after UVB irradiation (Hightower and McCready, 1992). 

However, the lens epithelial cells have a remarkable ability to re-establish GSH to a 

normal level (Spector, 1995). The present findings of unchanged GSH level in the 

post irradiation period from 5 to 625 hrs indicated that the lens maintained a vital 

GSH metabolism.  
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Normal GSH turnover in the lens requires high amount of energy (Reddy, 1990), 

which might be one the reasons for the significant reduction in ATP and ADP level 

post irradiation. In general, repair processes results in increased energy demand and 

as shown previously photochemical stress induces a decrease in the ATP level 

(Thomas et al., 1993; Spector, 1995).  

The ATP production in the lens continues even after severe epithelial damage 

(Spector, 1995). This is because the bulk of the lens relies on anaerobic glycolysis, 

represented throughout the lens, with lactate as the end product catalyzed by lactate 

dehydrogenase (LDH). Löfgren and Söderberg have reported that UVB irradiation 

inhibits the activity of LDH in the lens, and this might lead to energy depletion 

(Löfgren and Söderberg, 2001). The significant decrease in both lactate and 

ATP/ADP observed at 125 hrs post exposure supports these observations.  

Potential local variations in lens nucleus, cortex and epithelium were not addressed 

in the present study. HR-MAS 1H NMR spectroscopy has the potential to 

investigating the metabolic profile of very small lenticular sections. Thus, in further 

studies it might be possible to investigate separately local metabolic changes in the 

anterior, nuclear and posterior sections of the rat lens.  

In summary this study showed that the UVB irradiation impact on the metabolic 

profile of rat lens did not follow the same time relationship as the development of light 

scattering. While the light scattering peaked at 25 hrs post exposure, most significant 

changes in the endogenous metabolites were observed after 125 hrs. Both the 

metabolic changes and the light scattering seemed to average back to normal within 

a month after exposure. Most of the observed changes were concentration decrease 

of several water soluble metabolites, similar to earlier observations in albino lenses 

(Risa et al., 2004). Significant decrease in osmolytes like taurine, myo-inositol and 

betaine indicated a loss of homeostasis and osmotic stress. Our laboratory is the first 

to report a biological response of betaine metabolism in the lens. This study also 

demonstrates that HR-MAS 1H NMR spectroscopy provided high quality spectra of 

intact lens tissue and a large number of water soluble metabolites could be directly 

investigated. The results might contribute to a better understanding of the metabolic 

response to external pathophysiological stimuli like UVB irradiation.   
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Figure Legends 
 

Fig. 1. Difference in intensity of forward light-scattering between exposed and non-

exposed rat lenses 5 (n = 12), 25 (n = 12), 125 (n = 12) and 625 (n = 11) hrs after 

UVB irradiation. The UVRB dose was 15 kJ/m2. The bars represent 95% confidence 

intervals for the paired-sample mean differences. tEDC represents the transformed 

equivalent diazepam concentration.  (Michael et al., 1998b) 

 
 
Fig. 2. A representative HR-MAS 1H NMR spin-echo spectrum of an intact rat lens 

(control), reduced by the software AMIX, Bruker BioSpin to a resolution of 0.001 

ppm/point (‘bucket’ width). The dark regions represent the integrated area of the 

respective metabolites analysed. (A) High field, (B) middle field and (C) low field 

region of the obtained spectrum. The ppm values were assigned using TSP as 

reference substance at 0 ppm. Assignments: GSH, reduced glutathione; NAD/NADH, 

nicotine adenine dinucleotide; ATP/ADP/AMP, adenosine tri-/di-/monophosphate; 

UTP/UDP, uridine tri-/diphosphate.  

 

 

Fig. 3. Relative differences in metabolite concentrations between exposed and non-

exposed rat lenses 5 (n = 6), 25 (n = 6), 125 (n = 7) and 625 (n = 6) hrs after UVB 

irradiation. Data were calculated as (exposed lens – control lens)/control lens. The 

bars represent 95% confidence intervals for the mean differences.  
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Figure 3.  
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Abstract

Background

Long-term steroid treatment and UVB exposure are well known cataractogenic

factors. The purpose of this study was to investigate metabolic changes in the rabbit

lens after long-term dexamethasone treatment in combination with UVB exposure,

using High-Resolution Magic Angle Spinning Proton Nuclear Magnetic Resonance

(HR-MAS 1H NMR) Spectroscopy to analyse intact lens tissues.

Methods

Rabbits received topical doses of 0.1% dexamethasone or 0.9% saline (50 µl) four

times daily during 36 days. On day 37, the eyes were exposed to UVB radiation (2.05

J/cm2). Twenty-four hours later the animals were sacrificed, and HR-MAS 1H NMR

spectra of lens tissues were obtained.

Results

More than 15 major metabolites were assigned in NMR spectra of rabbit lenses. The

combined treatment with dexamethasone and UVB induced large reductions in the

concentration of GSH, inositols, taurine and lactate, as compared to normal lens.

Concurrently, the levels of glucose, sorbitol and sorbitol-3-phosphate were increased.

After exposure to UVB radiation only, the most significant result was a decrease in

the concentration of lactate. No lens opacities were detected.

Conclusions

HR-MAS 1H NMR spectroscopy was found to be an efficient tool for analysis of

intact lens tissues. High-resolution NMR spectra of intact lens tissue enabled

metabolic changes to be quantified. Long-term treatment with dexamethasone

combined with UVB exposure induced substantial metabolic changes, dominated by

osmolytic regulation processes and loss of glutathione.
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Introduction

Cataract formation is a well-established side effect of long-term treatment with

glucocorticoids [39]. However, the exact mechanism of steroid-induced cataract is not

known [15]. Biochemical changes such as the occurrence of glucocorticoid-protein

adducts [2] and loss of glutathione [42] have been observed within the lens in animal

experiments. From human lens protein culture studies, formation of disulfide-linked

protein aggregates have been reported following steroid treatment [3].

Cataract is a multifactorial process, so it may not be sufficient to test the

lenticular metabolic effect of a drug alone. Instead, different cataractogenic factors

should be combined [44] due to their additive or even synergistic effects [39]. Among

others, ultraviolet B (UVB) radiation is a risk factor for the development of cataract

[45]. In the rabbit lens, cataract develops following relatively low-level UVB

irradiation (1-2 mW/cm2) [16]. Thus, exposition to UVB radiation might enhance

development of cataract induced by steroids. 

By the application of NMR (nuclear magnetic resonance) spectroscopy on

biological samples, numerous metabolites can be monitored simultaneously.

Metabolic changes in the rabbit lens after treatment with steroids like dexamethasone

have previously been investigated by NMR spectroscopy, i.e. organophosphate

profiling of incubated lenses and their extracts [13] and analysis of lens extracts after

long-term topical treatment [31]. In our laboratory, 19F and 1H NMR spectroscopy

have been applied to monitor penetration of dexamethasone into the anterior segment

of the eye after short-term topical treatment, analysing tissue extracts from cornea and

lens [27]. However, tissue extraction procedures involve extensive treatment of the

samples, which might change their biochemical composition. Also, a relatively large

amount of tissue is required. Thus, analysis of intact tissue samples is preferable. Such

opportunity is provided by the application of high-resolution magic angle spinning

(HR-MAS) NMR spectroscopy. Using this technique, peak broadening effects caused

by anisotropic interactions are averaged to zero by fast spinning of the sample at a

certain angle (54.7°) between the spinning axis and the static magnetic field. As

shown previously with other tissues [1, 4, 5, 28], spectral resolution comparable to
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those obtained from liquid extracts can be achieved by means of HR-MAS 1H NMR

spectroscopy.

The purpose of this study was to investigate metabolic changes in the rabbit

lens after combined treatment with dexamethasone and UVB exposure, using HR-

MAS 1H NMR spectroscopy to analyse intact lens tissues. The feasibility of HR-MAS
1H NMR spectroscopy of intact lens tissue will be discussed.
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Materials and methods

Animal experiments

Albino rabbits (New Zealand white, body weight 2.5-3.0 kg) were divided into three

groups. In the first group both eyes of four rabbits were topically treated with 0.1%

dexamethasone (Decadron, Merck, Sharp & Dohme, Whitehouse Station, NJ, USA)

before exposure to UVB radiation (dxm/UVB group). In the second group three

rabbits were topically treated with 0.9% saline instilled to both eyes before UVB

exposure (UVB group). The third group (three rabbits) served as controls (untreated

animals). 

The eye drops were administered by application of 50 µl of either drug or

saline solution into the lower conjunctival fornix four times daily during 36 days. On

day 37, all animals in the dxm/UVB and the UVB group were anaesthetised by i.m.

injection of Rometar (Xylazinum hydrochloricum, 2%, Spofa, Czech Republic) (0.2

ml/kg body weight) and Narkamon (Ketaminum hydrochloricum, 5%, Spofa, CR) (1

ml/kg body weight) before exposure to UVB radiation. The eyes were open and the

cornea was irradiated by UVB rays using an UVB lamp (Bioblock Scientific, Illkirch,

France, wavelength 312 nm, 6 W) from a distance of 0.03 m for 10 minutes (the time

of exposure), while the rest of the eye was protected. The intensity 3.2 mW/cm2

(approx.) was achieved at this distance during the experiment. The total dose of

irradiation was 2.05 J/cm2. The intensity and dose were measured with a VLX – 3W

Cole-Parmer Radiometer with microprocessor (Vernon Hills, Ill., USA) and Cole-

Parmer UVB sensor (312 nm). Both eyes were treated in the same way. The lenses

were examined with a hand-held slit-lamp during the treatment with steroids and

immediately after the irradiation procedure. Twenty-four hours after the UVB

exposure, the animals were sacrificed using thiopental anaesthesia and lens samples

were prepared from each eye after enucleation (the lens sample from one eye in the

dxm/UVB group was lost during preparation). The samples were immediately frozen

and stored at –80°C prior to analysis by NMR spectroscopy. Animal experiments

were performed in compliance with the “Principles of laboratory animal care” (NIH

publication No. 85-23, revised 1985) and the OPRR Public Health Service Policy on

the Humane Care and Use of Laboratory Animals.
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NMR spectroscopy

The lenses were prepared for HR-MAS 1H NMR spectroscopy. A cut was made along

the lens axis (anterior-posterior), dividing the lens into two parts. A small meridional

sector of one of the halves was obtained and weighed (20-40 mg), containing the

whole radial profile with both cortical and nuclear parts of the lens. While still frozen,

the lens sample was immersed in D2O in a zirconium 4 mm 50 µl HR-MAS rotor.

TSP (sodium-3'-trimethylsilylpropionate-2,2,3,3-d4) was used as an internal shift

reference substance (0 ppm). HR-MAS 1H NMR spectroscopy was performed on a

Bruker AVANCE DRX 600 spectrometer (14.1 T, Bruker BioSpin GmbH, Germany)

equipped with a 4 mm HR-MAS 1H/13C probe. Samples were spun at 5000 Hz,

temperature 4°C.

Proton spectra were obtained using a one-dimensional T2-filtered sequence [90° – (τ –

180° – τ)n – acquisition] (spin echo, CPMG – Carr-Purcell-Meiboom-Gill) [25, 29] to

suppress signals from lipids and macromolecules. 512 transients were collected, using

a 7.2 kHz spectral region with 32K data points. The T2-filter contained delays of τ = 1

ms and n = 72 loops, giving an effective echo time of 144 ms. Acquisition time was

2.28 s, and zero-filling to 64K and an exponentially line broadening of 1 Hz was

applied to the raw data before Fourier transformation. A selective presaturation pulse

was applied to enhance the water suppression. Also, spectra were acquired using the

NOESYPR1D pulse sequence [relaxation delay – 90° – t1 – 90° – tm – 90° –

acquisition] (Bruker BioSpin GmbH), with t1 fixed at 3 µs and a mixing time tm of

100 ms. The water resonance was irradiated during the relaxation delay and tm. The

same spectral parameters and number of scans as in the T2-filtered acquisitions were

used. 

For peak identification purposes, two-dimensional (2D) spectra such as

magnitude-mode chemical shift correlated spectroscopy (COSY) and J-resolved

spectra were acquired, all under MAS conditions. Gradient selected homonuclear

COSY experiments were acquired with 64 transients, 256 time domain points in t1,

acquisition time 0.38 s and spectral width 5.4 kHz in both dimensions. The spectra

were processed with unshifted sine window functions in both directions. HR-MAS 1H

NMR spectra were assigned with the aid of these 2D experiments and by comparison
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with spectra of authentic compounds, together with reference to previous reports [7-9,

11, 14, 21, 26, 34, 37]. To analyse metabolic stability of the lens tissues during the

HR-MAS NMR spectroscopy, some samples were spun continuously overnight at 4°C

prior to a repeated acquisition. No obvious changes in lens metabolic profile were

observed.

Statistical analysis

Both CPMG and NOESYPR1D HR-MAS NMR spectra were initially analysed by

principal component analysis (The Unscrambler, CAMO, Norway). However,

discrimination between treated and non-treated rabbit lenses was not different for the

two types of spectra. Thus, further processing of the 1D spectra for the purpose of

quantification was based on CPMG spectra, using software for analysis of complex

mixtures (AMIX, Bruker BioSpin GmbH). The data were reduced to a resolution of

0.6 Hz/point, omitting the spectral region downfield from 5 ppm due to low signal-to-

noise ratio. Metabolite concentrations in treated groups were calculated relative to the

levels in the untreated group after normalisation (absolute NMR peak

integrated/sample weight) [5]. Student's t test (two-tailed) was used for statistical

analysis of the data. Statistical significance was set at p < 0.05 (confidence level at

95%).
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Results

Representative T2-filtered HR-MAS 1H NMR spectra of the normal rabbit lens and

lenses exposed to either only UVB radiation or combination of UVB and steroid pre-

treatment are shown in Fig. 1. Signals from more than 15 major metabolites were

assigned in the lens spectra, including glucose, reduced glutathione (GSH), sorbitol

and sorbitol-3-phosphate, lactate, myo- and scyllo-inositol, glycine, taurine,

glycerophosphocholine, phosphocholine, choline, glutamate, acetate, alanine and

valine. Treatment with steroids in combination with UVB exposure induced more

evident changes in the spectra than did only UVB irradiation. Compared to normal

rabbit lens, substantial changes were observed in the spectral region 3.2 - 4.7 ppm of

the lens treated with dexamethasone in combination with UVB. The most obvious

was the decline of the β-amino acid taurine after this treatment (Fig. 1c). As shown in

Fig. 1, intense signals from taurine were present in normal (1a) and UVB treated

lenses (1b), represented with two triplets centred at chemical shifts (δ) 3.26 and 3.42

ppm, respectively. The results did not reveal significant difference in taurine

concentration between normal and UVB treated lenses. However, after the combined

treatment with steroids and UVB radiation, the signals from taurine were almost

invisible (Fig. 1c). 

As evident in Fig. 1, both the normal spectrum and the spectrum of UVB

exposed lens were to a large extent dominated by signals from inositols in the shift

range 3.2 - 4.1 ppm. In addition, this sugar/polyol region had signals from sorbitol and

sorbitol-3-phosphate. Myo-inositol had a triplet at 3.27 ppm, neighbouring a triplet

from taurine and singlets from choline containing compounds (choline,

phosphocholine and glycerophosphocholine) in the crowded region 3.20 - 3.30 ppm.

A double doublet at 3.54 and triplets at 3.62 and 4.06 ppm were assigned as myo-

inositol. Scyllo-inositol was represented with a singlet at 3.35 ppm. Similar to taurine,

the signals from myo- and scyllo-inositol were markedly depressed in the dxm/UVB

group. Concomitantly, numerous peaks from glucose indicated an evident increase in

its concentration after steroid/UVB treatment, while glucose signals were

undetectable in the spectra of normal and only UVB exposed lens (Fig. 1). The

accumulation of glucose and depletion of taurine and inositols is clearly demonstrated
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in the two-dimensional COSY spectra in Fig. 2, presented as contour plots for the

relevant spectral region. In the spectrum shown in Fig. 1c, the remaining small peaks

of taurine in the dxm/UVB group were hidden under peaks arising from glucose.

However, this residual amount of taurine could still be detected by two-dimensional

spectroscopy (Fig. 2). Moreover, the dxm/UVB group showed an increase in signals

from sorbitol and sorbitol-3-phosphate. In this group, the peaks in the spectral region

3.60 - 3.90 were mainly attributed to these two metabolites (Fig. 1c). In addition, the

increased signal centred at 4.29 ppm was a multiplet assigned as sorbitol-3-phosphate.

Fig. 3 shows concentration levels of different metabolites in lenses exposed

either to UVB radiation or a combination of UVB and steroid pre-treatment,

expressed relative to the concentration in normal lenses. The extent of quantification

was, however, limited in complex parts of the spectra with overlapping signals.

Regarding observed differences between normal and UVB exposed lenses, the only

significant changes (p < 0.05) were found for the concentration of glutamate and

lactate. Thus, average concentration of glutamate in the lens increased by 40%, and

lactate decreased by 35% after UVB exposure. Among the other metabolites showing

a tendency to concentration change after UVB exposure, but without reaching a

significant level, were increasing levels of alanine and the inositols, and a decrease of

GSH level (Fig. 3). 

Treatment with dexamethasone in combination with UVB exposure induced

significant changes for several metabolites as compared to normal lens (Fig. 3). The

concentration level of GSH was reduced by 54%, together with a substantial loss in

inositol levels. The mean decrease in myo-inositol was 72%, equal to the mean

reduction of scyllo-inositol. The concentration of lactate was reduced by 34%. Among

the quantifiable amino acids, the level of alanine was more than doubled (107%

increase) and the level of valine decreased by 28%. In addition, the level of choline

decreased with 49% compared to the concentration in normal lens.

Despite all these metabolic changes measured with HR-MAS 1H NMR

spectroscopy in the lenses, all lenses remained clear as assured by regular slit-lamp

examination of the rabbit eyes. No lens opacities could be detected by careful

biomicroscopy one day after the UVB exposure. 
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Discussion

The results of this study show that UVB exposure alone or combined with steroid pre-

treatment induced significant changes in the metabolic profile of rabbit lens. One of

the striking effects of combined steroid and UVB treatment was the depletion of

taurine. Taurine is the most abundant free amino acid in rabbit lens [19]. The rate of

taurine uptake in the lens is very low, which implies the presence of an endogenous

taurine-synthesising mechanism [30]. Taurine functions as an osmoregulator, ion flux

regulator and membrane stabiliser [17]. In diabetic conditions taurine is depleted,

which is considered the result of osmotic compensation in response to the

accumulation of sorbitol within the lens [30]. Moreover, taurine is assumed to be

active as an antioxidant. Reduced taurine in the lens might increase the risk of lens

protein oxidation with subsequent cataract formation [24].

The combined treatment was also shown to cause a large reduction in the

concentrations of inositols. Together with taurine and sorbitol, myo-inositol is one of

the major osmolytes in the lens [46]. Using cultured bovine lens epithelial cells,

Reeves and Cammarata [33] recognised the movement of myo-inositol from cell to

medium, as induced by intracellular polyol accumulation. This polyol-activated myo-

inositol release from the lens is a mechanism supporting our findings. Lowered myo-

inositol and taurine levels following the combined treatment in our study suggest a

change in osmotic regulation processes in the lens.

Lenses incubated with dexamethasone have shown a decrease in ATP

concentration and an increase in sugar phosphates, suggesting that dexamethasone

antagonised the cellular uptake or utilisation of glucose [13]. In the present study, the

concentration level of lenticular glucose was shown to increase considerably

following combined long-term steroid treatment/UVB radiation. Concomitantly, the

concentration of lactate decreased reaching a level similar to that measured after UVB

exposure only. In contrast, Pescosolido et al. [31] did not reveal any change in

lenticular lactate concentration after long-term dexamethasone treatment of rabbit

eyes. This implies that the decreased lactate concentration in our study possibly was

caused by the UVB irradiation. Reduced lactate level might be due to inactivation of

glycolytic enzymes after UVB exposure [22, 23, 35, 38]. 

A possible metabolic pathway of lenticular glucose is the conversion into

sorbitol. In diabetic and galactosemic conditions, glucose is funneled into the polyol
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pathway for conversion into sorbitol by activation of aldose reductase [18, 40]. Sugar

alcohols poorly permeate cell membranes, so polyols accumulate intracellularly [24].

In diabetic lens, sorbitol-3-phosphate is produced from sorbitol by a 3-phosphokinase

[20]. In the present study, sorbitol and sorbitol-3-phosphate were, on the basis of

spectrum interpretation, found to increase after the combined treatment with

steroids/UVB exposure. However, this was not exactly quantifiable due to severe

spectral overlap. The decreased inositol and taurine levels, with a concomitant

increase in sorbitol/sorbitol-3-phosphate, support previous reports [24, 31].

GSH is a vital lens antioxidant [10]. It is synthesised within the lens, and a

common feature of most types of cataracts is a decrease in the GSH level [32]. It has

been suggested that glucocorticoid activity mediated through a glucocorticoid

receptor [15] is responsible for loss of lenticular GSH, and thereby leading to

cataractogenesis [6]. In the present study, the concentration of GSH decreased

considerably after the combined treatment. An accompanying increase in oxidised

glutathione (GSSG) was not observed, which might indicate that GSH synthesis was

impaired. In fact, GSSG was not detected in any lens from treated or untreated eyes.

Under normal conditions, essentially all detectable cellular glutathione is in a reduced

state [36]. Generally, HR-MAS 1H NMR spectroscopy is an excellent method to

discriminate between GSH and GSSG in unprocessed biological tissue.

The rise in alanine in both treated groups might be induced by the UVB

radiation, as alanine is an oxidation product of tryptophan in the human lens [41].

As shown previously in studies with other biological tissues, HR-MAS 1H

NMR spectroscopy offers the ability to obtain high-resolution spectra from

inhomogeneous samples with acceptable signal-to-noise ratio (S/N) [1, 4, 5, 28]. Due

to its avascularity and the highly ordered state of its cells, the crystalline lens is a

rewarding tissue for application of the MAS technique. To our knowledge, the present

study has applied HR-MAS 1H NMR spectroscopy in the analysis of lens tissue

sections for the first time. The major advantage of the HR-MAS method is that high-

quality spectra can be obtained from intact tissue samples. In contrast to previous

reports on NMR spectroscopy of lens extracts from our laboratory and others [12, 26,

34], labour-intensive and tissue destructive extraction methods are avoided. Tissue

extractions involve possible oxidation or hydrolysis of substances, and volatile

compounds might be lost.
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As compared to enzymatic and chromatographic methods, an inherent

advantage of NMR spectroscopy is the simultaneous detection of different groups of

compounds, e.g. amino acids and glycolytic intermediates and products. In addition,

by means of the HR-MAS technique, water-soluble metabolites and lipids can be

measured in the same sample. 

Due to the non-destructive analysis in HR-MAS spectroscopy, also

compartmentalisation of metabolites within different cellular environments can be

assessed. Thus, HR-MAS NMR spectroscopy is a link to, and might be a step towards

in vivo biochemical analysis of the lens by means of NMR spectroscopy.

In this study, frozen lens samples were sectioned and then put into the HR-

MAS rotor. Efforts were made to keep the samples cooled until insertion into the

spectrometer. During acquisition of spectra the temperature of the samples was kept at

4°C after careful calibration for heating effects due to spinning of the samples. As

reported by Waters et al. [43], there might be some variation in the metabolic state of

some tissues during MAS 1H NMR experiments. Our study revealed a surprisingly

high metabolic stability of lens samples during the analysis, a favourable finding for

accomplishment of prolonged experiments with two-dimensional NMR spectroscopy.

Spectral quantification of the metabolites was based on CPMG spectra, i.e.

filtered spectra in terms of T2 relaxation. Hence, without accurate T2 measurements,

absolute quantification could not be performed. However, it was assumed that each

metabolite has the same T2 in different lenses, so a relative quantification was

performed using absolute peak integrals normalised by sample weight.

The HR-MAS 1H NMR spectra were acquired from a section of each lens. The

standardised excised samples contained both cortical and nuclear parts, so spatially

averaged metabolic profiles of the lenses were obtained. Minor inconsistencies during

this procedure might however occur, providing lens samples with a larger

inhomogeneity than desirable. Using this method, the metabolic asymmetry between

nucleus, cortex and epithelium was not taken into account. For further work, an

improved sectioning technique has been initiated to provide representative samples

from either lens cortex or nucleus. Analysis of these regions separately would

increase the benefit from HR-MAS NMR spectroscopy. Generally, spectra of good

quality can be obtained from very small lenticular sections, making HR-MAS NMR
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spectroscopy a potentially powerful tool for the study of disease or lenticular

metabolic change due to drugs or endogenous pathophysiological stimuli.

In conclusion, HR-MAS 1H NMR spectroscopy was found to be a valuable

method for investigating the metabolic state of intact lens samples. The results show

high-quality spectra with high signal-to-noise ratio from small lenticular sections.

Significant metabolic changes were detected in the rabbit lens after long-term

treatment with dexamethasone combined with a subsequent UVB exposure. The main

findings include depletion of taurine and myo-inositol, an increase in glucose and

sorbitols and a decrease in the GSH level. The metabolic state of the lens was changed

more profoundly by long-term steroid treatment than by short-term UVB exposure.

For the level of GSH, the effect of these two factors seems to be additive. The

observed metabolic changes are in agreement with those reported by other studies and

involved in the development of cataract.
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Figure legends

Fig. 1 HR-MAS 1H NMR spectra of rabbit lenses. a) Normal lens, b) lens after UVB

exposure and c) lens treated with dexamethasone in combination with UVB exposure.

Assignments: Glc, glucose; GSH, reduced glutathione; Sorb, sorbitol; Sorb-3-P,

sorbitol-3-phosphate; Lac, lactate; M-ins, myo-inositol; S-ins, scyllo-inositol; Gly,

glycine; Tau, taurine; GPC, glycerophosphocholine; PC, phosphocholine; Cho,

choline; Glu, glutamate; Ace, acetate; Ala, alanine; Val, valine.

Fig. 2 Two-dimensional 1H COSY contour plots (3.14-3.52 ppm) of rabbit lens

treated with dexamethasone in combination with UVB exposure (left) and untreated

lens (right). Corresponding one-dimensional T2-filtered spectra are shown above (all

spectra obtained under MAS conditions). Abbreviations as in Fig. 1.

Fig. 3 Changes in metabolite concentrations in rabbit lens after UVB exposure (n = 6)

and after treatment with dexamethasone (dxm) in combination with UVB exposure (n

= 7), measured as % change (± 95% C.I.) compared to concentrations in the normal

lens (n = 6). For abbreviations, cf. Fig. 1. 
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