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 Abstract 
Background 

The main objective of this thesis was to establish new insight into the motor 

control of low-threshold motor units in the trapezius muscle. Special attention was 

given to motor unit recruitment threshold related to firing behavior.  

The extensive literature on motor control mainly concerns firing behavior of 

extremity muscles. Motor control of the upper trapezius shows features that indicate 

deviations from the control scheme generally assumed to apply to muscles of the 

extremities. Knowledge of motor control of the trapezius is important in a pain 

development perspective, since shoulder/neck complaints are frequently localized to this 

muscle. 

 

Methods 
Constant amplitude contractions of 2 to 30 min duration, with amplitudes 

between ~2–7% of maximal voluntary contraction (2-7% EMGmax), were used to study 

time-dependent changes in motor unit firing. Transient force increases reaching 15-20% 

EMGmax were superimposed on some of these contractions in an attempt to induce 

motor unit substitution. Sinusoidal contraction profiles were used to study firings in 

response to dynamic contractions. Motor unit firing was studied in 10 min contractions 

with vocational (typing) tasks and mental stress. The spike-triggered averaged (STA) 

technique was used to examine motor unit potentials and their dependence on 

contraction amplitude and firing history. 

 The individual motor unit firings were recorded by intramuscular fine wire 

electrodes, while simultaneously recording the surface electromyographic (SEMG) 

signal. The Precision Decomposition technique was used to identify individual motor 

units with near 100% accuracy. 

 

Results 
The results show that some low-threshold motor units stopped firing at the end 

of the EMG-pulses while motor units with initially higher threshold were recruited or 

stayed active. The lowest threshold motor units showed only brief silent periods.  
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 The mean firing rate increased from 10.5 to 12.5 pulses per second (pps) in 

response to contraction amplitudes of <2% and >4% EMGmax, but the mean firing rate 

was the same for all motor units regardless of task and recruitment threshold given the 

same SEMG amplitude. There was a strong rate modulation in dynamic contractions. 

 STA-derived motor unit potentials indicated that motor units recruited below 

10% EMGmax had similar area at the same contraction amplitude. However, the area 

increased four-fold when SEMG amplitude increased from 1.5 to 10% EMGmax.  

Motor unit synchronization showed an average of 2.8% additional firings within 

±2 ms of the triggering motor unit, estimated by peristimulus time histograms (PSTHs).  

 A surprising finding was respiratory modulation of the firing rate at low 

contraction amplitudes. This modulation was attenuated by induced mental stress. 

 

Conclusions 
Transient force increases promote derecruitment of motor units and may be 

attributed to inactivation of non-inactivating inward currents (plateau potentials). 

Silencing of motor units can be considered a protective mechanism to reduce the 

metabolic load on low-threshold motor units. 

The similar firing rates in sustained contractions independent of task and 

recruitment threshold suggest that the duration and pattern of silent periods are the most 

important variables to investigate in relation to motor unit over-exertion and subsequent 

pain development. 

The strong rate modulation in response to dynamic contractions indicates a 

control strategy resembling that of extremity muscles. 

STA-derived motor unit potentials indicate that units recruited below 10% 

EMGmax are of similar size, thus suggesting a deviation from the Henneman size 

principle. This may be an adaptation to postural functionality. The increase in STA-

derived potentials is largely due to motor unit synchronization. This points out 

limitations for this method when quantifying motor unit size, numbers and conduction 

velocity.  

Finally, respiratory modulation of firing rate and the attenuation by mental stress 

suggest at least two different sources of autonomic input that may facilitate motor unit 

activity. 
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Background 
Reasons to study trapezius motor control 

The vast literature on motor unit firing behavior in human muscles is mainly 

derived from short duration experiments on extremity muscles. Motor unit firing 

patterns in long-duration experiments, particularly experiments mimicking natural use 

of postural muscles, have not been extensively studied.  

Some interesting observations of low-threshold motor units in the upper 

trapezius muscle indicate motor control properties that deviate from the hierarchical 

organization of firing pattern generally assumed to apply during muscle contractions of 

extremity muscles. In extremity muscles increasing contraction amplitude activates 

progressively larger motor units (Denny-Brown & Pennybacker, 1938 ; Henneman, 

1957), and motor unit firing rates traces the variations in contraction amplitude 

(Westgaard & De Luca, 2001). The deviations of the trapezius include frequent changes 

to motor unit recruitment order, periods of motor unit inactivity and differences in firing 

pattern in slow ramp contractions compared to extremity muscles (Westgaard & De 

Luca, 1999; Westgaard & De Luca, 2001). As a muscle serving postural demands, the 

trapezius is required to sustain long periods of motor unit activity (Jensen et al., 1993a). 

With a hierarchical recruitment order, low-threshold motor units in the trapezius are 

subject to high metabolic loads because the same population of motor units, according 

to the Henneman size principle, is always activated first. It has been proposed that over-

exertion of low-threshold motor units has a detrimental effect on the motor units, 

eventually leading to pain development (Hägg, 1991). This has been supported by the 

observations of ragged red fibers and moth-eaten fibers in type I muscle fibers (Larsson 

et al., 2000). These phenomena are signs of disturbed metabolic functions and are 

thought to result from excessive activation of muscle fibers. Moreover, the trapezius is 

shown to be more responsive to mental stress, in terms of elevated surface EMG, 

compared to most other muscles (Wærsted & Westgaard, 1996), with long-duration 

trains of motor unit activity observed at low activity levels in experimental conditions of 

attention demanding tasks (Wærsted et al., 1996). 

Considering these aspects, the trapezius may require different control strategies 

to that of the generally more short-duration, phasic use of extremity muscles.  
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Trapezius anatomy 

The human trapezius muscle has a complex anatomy with multi-pinnate fiber 

orientation. It is the most superficial of the upper back muscles and derives its name 

from the irregular, four-sided shape that its fibers occupy (Fig. 1A). The trapezius is a 

large, flat muscle which origin runs from the superior nuchal line, then passing to the 

ligamentum nuchae down to the level of C7, the spinous processes of vertebrae C7 to 

T12 and the supraspinous ligaments. Between C6 and T3, the origin is aponeurotic and 

covers a diamond-shaped interval which extends outwards to the edge of T1.  

             
Figure 1. Trapezius muscle (A) and muscle fiber orientation (B). (A modified from Simons et al., 1999, B 

modified from Johnson et al., 1994) 
 

Trapezius converges on the pectoral girdle and may be divided into three groups 

of fibers of different origin (Fig. 1B):1) Descending fibers: pass inferolaterally from the 

skull and cervical spine to insert systematically on the posterior border of the lateral 

third of the clavicle such that the fascicle from the superior nuchal line assumes the 

most anterior position, then fascicles from the upper and lower half of ligamentum 

nuchae, while fibers from the C6 spinous process insert on the distal corner of the 

clavicle. 2) transverse fibers: pass horizontally from the level of C7 to T1 to insert on 

the inner border of the acromion and the superior lip of the crest of the scapular spine. 
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3) ascending fibers: via a tendon into the tubercle on the medial end of the spine of the 

scapula (Johnson et al., 1994; Standring, 2005). 

 

Biomechanical actions of the trapezius 

The trapezius is involved in a large range of movements, most of them in 

synergy with other muscles. Extension of the neck is produced by bilateral contraction 

of the descending trapezius fibers, while lateral flexion of the neck is produced by 

unilateral contraction of the descending fibers. The descending trapezius fibers act to 

draw the clavicle, acromion and spine of the scapula backwards and medially and have 

only a limited capacity for upward movement of the clavicle. The elevation of the 

scapula is mainly produced by contraction of transverse fibers of the trapezius but after 

the movement has been initiated by other muscles, notably the serratus anterior. This 

motion not only permits shrugging of the shoulders, but also prevents depression of the 

shoulders when the pectoral girdle is being pulled downwards e.g. when carrying heavy 

weights in the hands. Furthermore, lateral rotation of the scapula permits rotation of the 

glenoid cavity superiorly around a point near the base of the scapular spine. This 

movement is important in abduction at the glenohumeral joint. The role of the 

ascending trapezius fibers is to move the base of the spine inferiorly and to maintain 

horizontal and vertical equilibrium of the scapula (Johnson et al., 1994). The nerve 

supply to the trapezius derives mainly from the spinal accessory nerve but also from the 

deep muscular branches of the cervical plexus (Weisberger, 1987; Kierner, 2000). 

 

Recording point structure 

The upper trapezius, which has been studied in this thesis, has a sheet-like 

appearance with mean thickness of 5 mm at the preferred electrode position (Jensen et 

al., 1994). The C7 fascicle of trapezius has 49 - 76% type I fibers (Lindman et al., 1990; 

Lindman et al., 1991). The physiological cross-section of the C7 fascicle is 2.2 cm2 

(Johnson et al., 1994), corresponding to more than 50 000 muscle fibers if mean fiber 

size is 4000 µm2 (Larsson et al., 2001). Here it must be emphasized that the number of 

fibers is a crude estimate as there are many uncertainties in this type of calculation 

(Enoka, 1995; Enoka & Fuglevand, 2001). The number of trapezius motor units and 

motor unit innervation numbers are not known. Assuming a similar range and 
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distribution of innervation numbers of type I and type II motor units as derived from 

FDI, more than 90% of the motor unit pool innervates type I fibers in the trapezius 

(Enoka & Fuglevand, 2001). 

 

Motor control principles 

Muscle force development 

The force exerted by a muscle is dependent on the number of recruited motor 

units and their discharge rate. There is large variation between muscles in terms of the 

number of motor units, motor unit size, innervation ratio, spatial distribution of muscle 

fibers, cross-sectional area of the fibers, fiber length and fiber type composition. For 

instance, small muscles tend to have lower innervation ratios (i.e. fewer muscle fibers 

innervated by the same motoneuron) than large muscles and this ratio generally relates 

to the ability of the muscle to finely grade muscle force (Enoka, 1995). The maximal 

force generated by any given motor unit depends on the number of muscle fibers 

innervated by its motoneuron and the maximal force the innervated muscle fibers can 

generate. The cross-sectional area of a muscle fiber and the force capacity per unit of 

cross-sectional area determines the maximal muscle fiber force (Enoka, 1995).  

 

Control of muscle force output 

Perhaps the best known principle in motor control is the fixed recruitment order 

of motor units in low-force and isometric contractions, progressively recruited from 

small to large motor units (Denny-Brown & Pennybacker, 1938). The proposed 

mechanism behind the orderly recruitment scheme is the difference in surface area of 

the soma and dendrites of the motoneuron, which co-varies with motor unit size 

(Henneman, 1957), known as the “Size Principle”.  

Although the size principle is generally accepted to be valid for a variety of 

muscles, deviations from the orderly recruitment pattern can occur (Nordstrom & Miles, 

1991). A number of studies have reported substitution of motor units (Kato et al., 1981; 

Sjøgaard et al., 1986; Fallentin et al., 1993; Westgaard & De Luca, 1999). The concept 

of substitution is the recruitment of higher threshold motor units to replace lower-

threshold units that have stopped firing. The mechanisms for reversal of recruitment 

threshold between motor units are not yet fully understood. Functionally it has been 
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suggested that motor unit substitution protects motor units from excessive fatigue 

during low-amplitude sustained contractions (Person, 1974). 

A possible physiological mechanism to explain increase and lowering of the 

recruitment threshold of low-threshold motoneurones is non-inactivating inward 

currents (plateau potentials) (Hounsgaard et al., 1988). Plateau potentials are suggested 

due to voltage dependent non-inactivating Ca2+ conductance, reduced K+ conductance 

(Hounsgaard & Kiehn, 1985), or by procedures that shift the equilibrium potential for 

K+ in the depolarizing direction (Schwindt & Crill, 1980), resulting in a stable 

membrane potential that is more depolarized than the resting membrane potential 

(Kiehn & Eken, 1998). A prominent indication of plateau potentials in motoneurones is 

the abrupt increase in firing rate that is lowered to a stable firing rate within a few 

seconds and the continuing activity even at lower central drives compared to that of its 

recruitment (Eken & Kiehn, 1989; Kiehn & Eken, 1998; Hornby et al., 2002). This self-

sustained activity pattern can be initiated by a transient depolarization of motoneurones 

(‘on’ stimulus) and terminates either spontaneously after a few minutes or by brief 

inhibition (‘off’ stimulus) (Kiehn & Eken, 1998). Slow motoneurones tend to have the 

onset of plateau potentials below or at the threshold for action potentials (Lee & 

Heckman, 1998). This may allow plateau-initiated low-threshold motor units in stable 

contractions to maintain firing by self-sustained activity while motor units with a longer 

continuous activation history and lower recruitment threshold are silenced. The 

inhibitory actions of, e.g. Renshaw cells could potentially act as an off stimulus 

resulting in silencing of motor units. In this scheme motor axon collaterals activate 

Renshaw cells, which then respond with an inhibitory action on the motor neuron itself 

leading to a reduction in the net excitatory input to the motor unit. Each Renshaw cell 

receives excitatory input from many homonymous and synergistic motoneurones (Katz 

& Pierrot-Deseilligny, 1998). Both excitatory and inhibitory activity is received from 

segmental pathways and descending tracts. The Renshaw cells project onto α-

motoneurones and γ-motoneurones as well as onto Ia inhibitory interneurones and other 

Renshaw cells (Renshaw, 1941; Ellaway, 1971; Hultborn et al., 1971). It is the net 

result of activation in this complex system that determines the strength of the Renshaw 

cell inhibition onto the motoneuron. 



12 

A motoneuron action potential normally activates all muscle fibers it innervates. 

Therefore, the force output of the particular motor unit depends on the summed force 

generated by the innervated muscle fibers. Whether the motor unit is activated or not 

depends on its recruitment threshold relative to contraction amplitude. The recruitment 

of a motor unit is determined by intrinsic properties of the motoneuron and the net sum 

of all excitatory and inhibitory input of both central and peripheral origin to that neuron. 

In this way, a command signal from the CNS to the motoneuron pool may activate some 

motor units while others remain silent. The same signal may also result in different 

firing rates between motoneurones in the same pool determined by different 

susceptibility to excitation (De Luca & Erim, 1994). Under normal circumstances the 

firing rate of motor units is between 8 and 30 pulses per second (pps). At the lowest 

firing rates each motoneuron action potential results in a single twitch contraction of the 

innervated muscle fibers. At higher firing rates there is a temporal summation of 

twitches producing greater force than that of a single twitch. At still higher firing rates 

the muscles enters a state of unfused tetanus before eventually reaching totally fused 

tetanus where single twitches are no longer apparent. Motoneuron firing rates above that 

which gives totally fused tetanus (~30-40 pps) has no additional force generating effect 

(Freund, 1983). The maximum maintained firing rate in slow-ramp contraction of limb 

muscles is between 15 and 35 pps, which is the firing rate necessary to use the full 

contractile capacity of the muscle fiber (Freund, 1983). Under certain conditions, e.g., 

when rapid contractions are required or in some ballistic movements, short duration 

bursts of firing rates as high as 120 pps has been observed (Tanji & Kato, 1973; 

Desmedt & Godaux, 1978). Doublets (50 pps or higher firing rates) have been observed 

in extensor digitorum communis (EDC) during finger tasks and computer mouse work 

(Søgaard et al., 2001). Presumably this is to rapidly exert the required force in a given 

task, although it has been suggested that, at least in cat intercostal muscles, initial 

doublets is not always functionally important (Kirkwood & Munson, 1996).  

Provided the firing of individual motor units is not synchronized the movement 

of the muscle is smooth even a low force levels. As the degree of synchronization 

increases, as is the case in some pathological conditions (Datta et al., 1991) or during 

fatiguing contractions (Kleine et al., 2001), the movements become increasingly jerky. 

Some degree of synchronization is always present dependent on task performed (Sears 
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& Stagg, 1976; Bremner et al., 1991a). For instance, synchronization was found to be 

greatest during finger extension and on motor units acting on adjacent fingers; least 

during finger flexion and on muscles acting on widely separated fingers. Furthermore, 

motor units acting on medial fingers were more synchronized than units acting on 

lateral fingers (Bremner et al., 1991b). A likely source of synchrony between motor 

units in distal extremity muscles is shared input to motoneurones from branched axons 

(Kirkwood & Sears, 1974; Sears & Stagg, 1976; Bremner et al., 1991b). The most 

important possibly from widely divergent monosynaptic projections from motor cortical 

cells (Farmer et al., 1993).  

 

Pain development 

The most common location for chronic muscle pain is the shoulder and neck 

region (Andersson et al., 1993; Simons et al., 1999; Ashina et al., 2003). The 

physiological mechanisms causing pain have been the target of many investigations and 

the factors proposed to be responsible for muscle pain development are numerous. 

Reduced level of ATP and ADP (Larsson et al., 1988) as well as insufficient peripheral 

circulation in the trapezius has been identified as potentially important factors for pain 

development (Larsson et al., 1990; Larsson et al., 1994). One of the most popular 

hypothesis to link the development of pain in the trapezius to motor activity is the 

Cinderella hypothesis (Hägg, 1991). This hypothesis is based on the Henneman size 

principle. It implies that the same low-threshold motor units are always recruited first 

during a contraction and keep firing until total muscle relaxation, resulting in excessive 

strain on these motor units. Thus, the metabolic load on individual motor units could be 

detrimental to the innervated muscle fibers, resulting in excessive fatigue, structural 

damage and subsequent pain development. The finding of ragged red fibers and moth-

eaten fibers in type I muscle fibers is argued to indirectly support this hypothesis 

(Larsson et al., 2000). These fibers show mitochondrial dysfunctions thought to result 

from prolonged activation of a selected population of motor units. 

The individual projects of the present thesis were not designed to determine the 

cause of trapezius muscle pain. However, if over-exertion of low-threshold trapezius 

motor units is a cause for shoulder pain, it is important to understand the motor control 

scheme that is applied to the trapezius, in particular that which promotes silent periods 



14 

and substitution of motor units. Furthermore, assuming the substitution phenomenon is 

indeed important for the development of muscle pain, knowledge about the motor 

control scheme may be utilized e.g. in an ergonomic perspective to reduce the 

prevalence or even prevent the development of muscle pain in the shoulder and neck 

region. 

 

Mental stress responses 

Psychological stress has been identified as a risk factor for musculoskeletal 

disorders in many epidemiological studies (Theorell et al., 1991). Psychosocial 

problems at work as a risk factor for complaints are more common in the shoulder and 

neck region than for other body regions (Westgaard et al., 1993). The trapezius muscle 

exhibits low-level spontaneous muscle activity that tends to increase in experimental 

situations with induced mental stress (Wærsted & Westgaard, 1996). Trapezius is one of 

the most responsive muscles to mental stress in terms of an elevated electromyographic 

(EMG) activity (Wærsted & Westgaard, 1996). Laboratory studies with induced mental 

stress have shown that low-threshold motor units can be active even in the absence of 

physical demands (Lundberg et al., 2002). Furthermore, the motor response to stress is 

dose-dependent so that a higher stress level is associated with higher muscle activity 

(Wærsted et al., 1994). The muscle activity observed in surface EMG (SEMG) 

recordings with induced mental stress has shown low amplitude which has been 

attributed to sustained motor unit activity (Wærsted et al., 1996). Sustained motor unit 

firing is required for the over-exertion of single motor units according to the Cinderella 

hypothesis. Thus mental stress may be linked to the development of pain through 

prolonged invariant motor unit firing patterns.  
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Objectives 
The main objective of this thesis is to establish new insight into the control of 

low-threshold motor units of the upper trapezius muscle. 

 

The project focused on the following operative aims: 

1. Document methods that induce time-dependent changes in recruitment and 

derecruitment of low-threshold motor units. 

2. Determine contraction profiles that induce substitution of motor units. 

3. Characterize motor unit firing patterns in dynamic contractions. 

4. Describe motor unit firing patterns in response to induced mental stress. 

5. Suggest possible sources of excitatory input to trapezius motoneurones. 

 

Methods and materials 
Study samples 

A total of 24 healthy subjects, 10 males and 14 females volunteered for these studies. 

The age ranged from 20 to 56 years. The experiments were carried out according to the 

Declaration of Helsinki and each subject read and signed an informed consent form 

approved by the local Institutional Review Board. 

 

Intramuscular EMG-signal recording and analysis 

In all studies the Precision Decomposition technique (LeFever & De Luca, 

1982; De Luca & Adam, 1999) was used to identify motor units. This technique uses 

template matching, template updating, firing probabilities and superposition resolution 

to identify the individual firing times of motor units with up to 100% accuracy 

(Mambrito & De Luca, 1984). Three representations of the motor unit potentials are 

obtained by the use of a specialized quadrifilar wire electrode. The electrode was 

constructed by placing four 50-µm nylon coated nickel-chrome alloy wires (‘Stablohm 

800A’, California Fine Wire Co, Grover Beach, CA, USA) in a 27-gauge needle. The 

wire bundle was cut transversely, exposing only the cross-section of the wires. A hook 

was formed approximately 1 mm from the exposed end of the wire. The needle was 

inserted to a depth of approximately 10 mm at a location approximately 10 mm medial 
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to the midpoint of a line between the C7 spinous process and the acromion. The needle 

was removed and the wire bundle remained lodged in the muscle. Three pairs of wires 

were chosen as the differential input to the amplifiers. 

The analysis relies on establishing templates of the three representations of each 

motor unit. The electrical potentials of each motor unit summarize linearly to establish 

the interference EMG picked up by the electrodes. The signals were band-pass filtered 

from 1 to 10 kHz and all EMG signals were stored on a digital recorder (DATaRec-

A160, Racal-Heim Systems GmbH, Bergisch Gladbach, Germany). The signals were 

subsequently reconverted to an analog form and digitized at a sampling rate of 50 kHz 

on a PC. The Precision Decomposition analysis performs an automated, template-

matching process, whereby the templates of individual units are summed with the 

appropriate time delay to generate a waveform that in the best possible way matches the 

recorded signal. The result, in terms of firing rate statistics and the decomposition of 

individual examples of complex waves, is then inspected visually and by several utility 

programs to ensure that the final results are valid. The automatic mode is much faster 

but less accurate than the operator assisted mode and in most cases operator interaction 

is required for 100% accuracy. 

The Precision Decomposition analysis is, to our knowledge, superior to any 

other system for analysis of trains of motor unit potentials existing at the time of 

experimentation. Most other systems rely on a single recording of action potentials, 

which are then differentiated on the basis of a height-window discriminator after 

filtering. Commercially available systems will provide acceptable data over short 

recording periods and/or very low force levels, but cannot follow individual units in a 

complex recorded waveform over time. 

A typical 30 minute recording consists of up to 100 000 individually recognized 

motor unit firings. The task of identifying individual motor units in this amount of data 

is too time-consuming unless the data is of good quality and most of the decomposition 

is done automatically. This necessitates a controlled experimental environment. Field 

studies are difficult due to movement-sensitive intramuscular recording electrodes and 

the need to accommodate rather bulky recording equipment. Therefore all experiments 

were carried out in a laboratory, and in cases of vocational task procedures an office 
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workplace was built to fit with the equipment while still allowing for natural movement 

and postures.  

 

SEMG and force estimates 

The SEMG signal was detected by using an active differential electrode with 

two circular recording surfaces (6 mm in diameter, 20 mm inter-electrode distance). The 

electrode was positioned with the medial recording area 20 mm lateral to the midpoint 

of the line between the C7 spinous process and the acromion (Jensen et al., 1993b). The 

SEMG signal was band-pass filtered at 10-1000 Hz. The root-mean-square (RMS) 

detected SEMG signal was averaged at a time resolution of 0.2 s. 

Force developed by the trapezius cannot be reliably detected due to the complex 

interaction of the muscles controlling shoulder movement. The muscle force output was 

therefore estimated by use of the RMS value of the detected trapezius SEMG signal. 

The SEMG signal was calibrated as a percentage of the RMS-detected EMG activity at 

maximal voluntary contraction (% EMGmax). The force was controlled through visual 

feedback on a screen placed directly in front of the subject. A force profile appeared on 

the screen, and the subjects traced the profile with their own overlapping RMS-detected 

SEMG signal. 

 

Recruitment threshold 

Initial motor unit recruitment thresholds were determined as the SEMG 

amplitude at the onset of a train of motor unit firings during ramp contractions. All 

constant amplitude contractions also started with a slow ramp of approximately 1% 

EMGmax /s inclination before leveling out at the predetermined level. Some motor units 

were recruited during voluntary brief increases of the force (EMG pulses). When 

applicable, recruitment threshold was further checked for consistency by comparing 

initial threshold with threshold determined in ramp contractions following a brief period 

of reduced SEMG amplitude at the end of the constant amplitude contractions. 

Recruitment threshold of the motor units were determined separately for each 

procedure. 
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Experimental protocols 

Ramp force profiles were presented to the subject to investigate motor unit firing 

behavior in augmenting contractions. The ramp contraction ranged from 10% EMGmax 

within 3 min (0.055% EMGmax/s) to 100% EMGmax within 25 s (4% EMGmax/s). 

Sinusoidal profiles were used to explore motor unit firing behavior in contractions with 

anticipated rate modulation. The sine-wave contractions were of 1 min duration with a 6 

s period (frequency 0.17 Hz) and with SEMG amplitude varying between ~2 and ~6% 

EMGmax. Dynamic contractions were performed using staircase profiles. The staircase 

procedure consisted of contractions increasing from 1 to 10% EMGmax in steps of 2 or 

5% EMGmax. Between each step the contraction was maintained at constant amplitude 

for 1 or 2 minutes. In long-duration constant amplitude contractions with brief increases 

in the force every minute, a continuously updating bar-plot was used for feedback 

instead of a set force profile. The duration of these experiments lasted from 5 to 30 min. 

The contraction amplitude was held around 5% EMGmax. Bar-plot feedback was also 

used for low-force constant amplitude contractions of 2 min duration. Here, the 

amplitude was chosen so that only a few motor units were detected, typically at ~2% 

EMGmax. The subjects were allowed at least 2 min rest between each procedure. 

 

Vocational tasks 

Vocational tasks consisted of three different typing conditions; standard typing, 

typing with stress and typing with (an ergonomically) poor position. All trials lasted 10 

min. The subject was placed in front of a personal computer (PC) and asked to type a 

text, placed next to the monitor, using a standard keyboard. Chair height, back 

inclination and table height was individually adjusted to allow an optimal ergonomic 

posture for the subjects, with arms resting on the tabletop with a 90˚ angle maintained at 

the elbow. This posture was used in the first trial with normal (“standard”) typing and in 

the second typing condition with pressure on performance. In the second typing 

condition a monetary reward was offered to perform 10% faster than the standard typing 

task while maintaining the same or improved error rate. In the third typing condition the 

table top was elevated 10 cm and the keyboard positioned at the edge of the tabletop, 

eliminating the possibility of resting the arms on the tabletop. Subjects were not given 
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feedback on contraction amplitude in experiments dealing with vocational tasks. Rest 

periods of at least 2 min were allowed between each trial.  

  

Mental stress test 

The mental stress test consisted of a complex, attention-demanding two-choice 

reaction test presented on the computer screen. An open (“frame”) and a solid (“brick”) 

quadrangle were placed in a square pattern, and an alphanumeric suggestion on how to 

move the brick to superimpose on the frame was given (Westgaard & Bjørklund, 1987). 

The subject responded by pressing one of two keys, “correct” or “wrong”, by the right 

or left index finger. A new position of the “brick” and “frame” in the square pattern and 

a new suggestion then appeared. The execution of the test was self-paced, but the 

subject first carried out the test for 2 min at a steady pace while attempting to maintain a 

low failure rate. On the basis of this performance the subject was offered a small 

monetary reward to perform 10% faster with the same or lower failure rate for 10 min. 

Feedback provided on the computer screen informed the subjects about the response 

speed (very slow, slow, OK, fast, or very fast) and whether the answer was correct 

(Wærsted et al., 1994). 

 

Heart rate and respiration frequency 

Heart rate and respiration frequency were recorded to indicate the level of 

mental stress in the reaction test and the typing experiments with induced stress. These 

recordings were also included in the non-stress protocols for comparison purposes. 

An elevated heart rate and respiratory frequency in the induced stress procedures 

compared to procedures without stress would be regarded as evidence for successfully 

induced stress.  
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Summary of results 
Heart rate and respiration recordings 

Heart rate and respiratory frequency reflected the low level of physical strain in 

these experiments. The mean values of heart rate and respiratory frequency in the 

different procedures of 10-min duration ranged from 60 to 75 beats per min (BPM) and 

0.3 to 0.35 Hz, respectively (Fig. 2B and C). The procedures with monetary rewards to 

generate pressure on performance succeeded in establishing the intended condition of 

moderate stress during the mental stress test (relative to the constant-force procedure) 

and in typing with stress (relative to standard typing and typing with poor posture). The 

heart rate was about 5 BPM elevated in the two stress conditions (mental stress vs. 

constant-force contractions, p=0.06; typing with stress vs. the two typing procedures 

without stress, p<0.01). Likewise, mean respiratory frequency was elevated in the 

conditions with stress relative to reference conditions; however, the respiratory response 

was more variable and was not significantly different to the corresponding reference 

conditions. The elevated heart rate and respiratory frequency were maintained 

throughout the two tasks with induced stress. Respiratory frequency was also elevated 

in the first min of the standard typing task, potentially indicating an early stress 

component also for this procedure. However, there was no corresponding elevation of 

heart rate, indicating that the stress responses were specific to the procedures with 

imposed stress. The group median SEMG values were below 5% EMGmax for all 

procedures, also indicating a low biomechanical load (Fig. 2A). 
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Figure 2. First min, last min and full recording median values of SEMG (A), respiratory frequency (B) 

and heart rate (C) for five 10-min procedures; constant amplitude contractions (constant amplitude), 

imposed mental stress with minimal body movement (mental stress), typing in ergonomically good 

position (standard typing), typing with money reward for improved performance (typing with stress) and 

typing with elevated table and no arms support (typing with poor posture). Last min values only include 

motor units recorded for a minimum of 5 min. 

 

Paper I: 

Isometric contractions below 10% EMGmax of 5, 10 and 30 min duration and 

with transient voluntary increase in SEMG level were used in this study. An effect of 

transient force increase is a marked depression in motor unit firing rate observed 
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immediately after the intermittent increase in SEMG (Fig. 3). The firing rate depression 

outlasted the force increase by up to 10 s. 

 
Figure 3. SEMG response (A) and motor unit firing pattern (B) of 11 consecutive contractions, aligned at 

start of force increase. Black line shows average level. Gray lines show motor unit firing pattern for each 

contraction. Periods of no motor unit activity are excluded when calculating average firing rate. Note the 

dip in firing rate whilst the SEMG remains at or above the initial level. 
 

Low-threshold motor units recruited at the beginning of long-duration contractions were 

observed to stop firing while motor units of initially higher threshold stayed active (Fig. 

4). Derecruitment of motor units coincided with the end of the EMG pulses. The periods 

of no firing (silent periods) of derecruited motor units lasted from a few seconds to 

several minutes. Re-recruitment of motor units was generally linked to planned or small 

spontaneous EMG pulses.  
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Figure 4. SEMG response (A) and firing pattern of 4 motor units (B) to show threshold reversal between 

motor unit 1 and 4. 
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Paper II: 

Motor unit firing behavior in constant-amplitude contractions was compared to 

firing behavior in vocational activities requiring arm movement. Mental stress was 

introduced to examine whether this induced higher firing rates than voluntary 

contraction at similar SEMG amplitude. Sinusoidal and staircase force profiles were 

used to explore firing behavior in dynamic contractions. 

The firing rate in constant amplitude contractions increased from 10.5 to 12.5 

pps when SEMG increased from <2% to >4% EMGmax (Fig. 5). There was no consistent 

difference in firing rate between constant amplitude contractions and firing rate in 

vocational tasks at the same SEMG level. The introduced mental stress did not increase 

firing rate relative to procedures without mental stress.  

 
Figure 5. Motor unit firing rate as a function of motor unit recruitment threshold. Motor units were 

classified by threshold into three groups, <2, 2-4 and >4% EMGmax, and firing rates in contractions with 

SEMG amplitude in the same amplitude ranges determined. Vertical dashed lines delineate SEMG 

amplitude groups. Three main procedures are identified with circles (constant amplitude), squares (all 

variations of typing) and triangles (mental stress). For each procedure, open symbols show mean firing 

rates with SD of motor units with threshold <2% EMGmax, semi-filled symbols show mean with SD for 

motor units with threshold 2-4% EMGmax and filled symbols mean with SD for motor units with threshold 

>4% EMGmax. The number of motor units contributing to the statistics is indicated above the error bars. 
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Motor units with different recruitment threshold converged to near identical firing rates 

after a few min of firing within the same experiment. New motor units were recruited in 

repeated oscillations of sinusoidal contractions. Finally, bursts of high frequency firing 

were observed in dynamic contractions. 

 

Paper III: 

Materials from other study purposes were used including that from paper II. 

Spike-triggered averaged (STA) technique was used to examine motor unit potentials 

and their dependence on contraction amplitude and firing history. Peristimulus time 

histograms were constructed to estimate motor unit synchrony. The area of STA-

derived motor unit potentials showed a strong linear increase for increasing SEMG 

amplitudes up to 14% EMGmax (Fig. 6). Motor units with different recruitment threshold 

had similar area of the STA-derived potential at the same SEMG amplitude.  

 
Figure 6. Scatter plot with regression lines of STA area (calibrated as %EMGmax s) versus SEMG 

amplitude of all STA-derived motor unit potentials.  Potentials derived from procedures with straps 

providing resistance to attempted shoulder elevation (circles and grey line) and contractions without 

shoulder resistance (triangles and black line) are shown. 

 

Motor unit synchrony accounted for on average 2.8% additional firings within ±2 ms of 

the triggering motor unit (Fig. 7). Most of the increase in area with increasing SEMG 
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amplitude seems to be due to motor unit synchrony and should be taken into 

consideration when applying this method on motor units presenting wide potentials. The 

area of a motor unit firing alone was ~0.02% EMGmax s. The mean STA-derived area at 

5% EMGmax was 0.06 % EMGmax s. With 2.8% synchronization of firings, ~70 motor 

units are required to compensate for this increase. Simulation experiments indicate a 17-

fold increase in average rectified value (ARV) from 1 motor unit firing at 10 pps to 70 

motor units firing at 12.5 pps. The SEMG amplitude generated by 70 motor units is 

~3.4% EMGmax. If the average area of the 10 lowest threshold motor units is used, the 

equivalent SEMG amplitude is ~4.4% EMGmax. 

 
Figure 7. Peristimulus time histogram of motor unit firings (A) and normalized amplitude of region with 

elevated probability of firing in the PSTH histograms, quantified by the cumulative sum (cusum) 

technique determined from the inflections of the cusum plot above the PSTH histogram (B).  

 

Paper IV: 

Materials from previous studies were analyzed for frequency content of firing 

rate modulation. Mean firing rate was close to 10 pps with respiratory modulation of 

peak firing rates ranging from 2-5 pps for continuously firing motor units. All motor 

units in low-level (2-3 %EMGmax), constant-amplitude contractions showed respiratory 

modulation of firing rates at ~0.30 - 0.35 Hz (Fig. 8A, and cf. Fig. 2B for median 

respiratory frequency). Motor units near recruitment threshold showed strong 

modulation. At higher contraction amplitudes the modulation was reduced. Respiratory 

modulation of firing rates was much reduced in experiments with mental stress and 

typing even for low SEMG amplitudes. Firing rate modulation at double the respiratory 
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frequency was observed for some motor units (Fig. 8B). For most motor units the peak 

firing rates were observed midway between inspiration and expiration, but motor units 

with peak firing between expiration and inspiration were common. Figure 8A is an 

example of an experiment where both phases were simultaneously recorded. No motor 

units were firing in phase with expiration.  

 
Figure 8. Time plots of firing rate modulation of three motor units (top traces) and upper chest movement 

with SEMG amplitude (bottom traces, black and grey lines respectively). Selected time periods of two 

constant amplitude contractions (A and B) show specific features in firing pattern; opposite phase 

modulation of motor unit firing was observed (A), as was firing rates of double the respiratory frequency 

(B). 
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Discussion 
This thesis provides a comprehensive description of trapezius motor unit firing 

behavior in low-amplitude contractions. The experiments have pointed out control 

strategies of the trapezius as a postural muscle that differ from extremity muscles. 

Attention is given to motor unit recruitment threshold as a reference for firing behavior. 

Furthermore, a novel respiratory modulated input to trapezius motoneurones has been 

characterized. The results are discussed with reference to the hypothesis of motor unit 

over-exertion causing development of shoulder- and neck pain. 

 

Adaptations to postural functionality 

Muscles with a postural function have a high proportion of type I muscle fibers, 

e.g., around 87% for the soleus muscle (Johnson et al., 1973). In the same study, 

approximately 54% of the fibers in the trapezius were found to be of type I. Another 

study found that the fraction of type I fibers was 58% for females and 67% for men in 

the descending I portion of the trapezius, close to the recording site used in our study, 

(Lindman et al., 1990; Lindman et al., 1991).  In soleus, FDI and triceps brachii, the 

innervation ratio of type I fibers is smaller than of type II fibers (Enoka & Fuglevand, 

2001). FDI type I muscle fibers comprise approximately 50% of the fibers (Dennett & 

Fry, 1988) while the motoneuron pool innervates 84% type I fibers. If this skewed 

distribution is valid also for other muscles, and with type I fibers comprising over 50% 

of the muscle fibers in the trapezius, most, if not all fibers activated below 10% EMGmax 

in the trapezius are type I.  

STA derived motor unit potentials extracted from trapezius motor units recruited 

below 10% EMGmax, indicate they are of similar size, regardless of recruitment 

threshold (paper III). This is assuming the size of surface action potentials is correlated 

with the size of the motor units and that the STA-derived potentials are representative 

for the source potentials. Simulation experiments, based on the estimated initial size of 

motor units from our recording site, and firing rates at different contraction amplitudes, 

determined in paper II, indicate that many motor units are active at low contraction 

amplitudes. In paper III it is estimated that approximately 70 motor units are active at 

5% EMGmax. The firing rates stay low in sustained contractions. There is only a small 
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increase in mean firing rate from ~10 to ~12 pps in contractions with SEMG amplitude 

increasing from <2 to >4% EMGmax (paper II). Thus, the main contribution to force 

increase in the trapezius in slowly augmenting contractions is recruitment of new motor 

units. Taken together, these motor control features are likely adaptations to sustain the 

long-duration, low-amplitude contractions of the trapezius muscle. 

 

Trapezius motor unit firing rate features 

Previous studies have described a number of features regarding trapezius 

motoneuron firing behavior. The typical firing rate of trapezius motor units recruited at 

low contraction amplitudes is 10-15 pps. The onset of motor unit firing in constant 

amplitude contractions is often characterized by an initially higher firing rate that is 

slightly reduced to a stable firing rate. The firing rate is relatively stable in constant 

amplitude contractions and with little, if any, firing rate modulation in response to slow 

(<3% EMGmax/s) variations in force (Westgaard & De Luca, 2001). However, trapezius 

motor units are sensitive to abrupt changes in the SEMG level. In staircase contractions 

when the contraction amplitude is abruptly increased by ~2% EMGmax, motor units 

increases firing rates slightly. If the new level is maintained the firing rate stabilize at a 

moderately higher level. Motor units that are recruited at the abrupt force increase have 

higher firing rates than active units, but all motor units converge to a common firing 

rate during the static part of the contraction profile (paper II). A relatively high 

modulation of firing rates (5-10 pps) is also observed in sinusoidal contractions tracing 

changes in SEMG with 6s cycles, corresponding to contraction rate of change of ~3% 

EMGmax/s (paper II). In ramp contractions with rates of rise 1% EMGmax /s or more, 

trapezius motor units show increasing firing rate modulations with early recruited motor 

units showing higher firing rates than later recruited units, resembling the onion skin 

pattern observed for distal muscles such as the FDI (Westgaard & De Luca, 1999). 

Transient decreases in SEMG during constant amplitude contractions may be 

accompanied by a transient decrease in motor unit firing rate, and in some situations 

silencing of motor units (Westgaard & De Luca, 1999). When new motor units are 

recruited, a short dip in the firing rate of some, but not all, of the already active units are 

often observed. This indicates a reciprocal inhibition or some form of competitive 

interaction that affects selected motor units. 
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Post-pulse depressions of firing rate 

A consistent observation of motor unit firing behavior in the present study was 

the depression of firing rate immediately after a voluntary brief increase in SEMG 

amplitude. The depression of firing rate outlasted the activity-time of new motor units 

recruited during the EMG pulses by several seconds and was maintained on average 4 s 

after the SEMG were back at pre-pulse level. The slow recovery of pre-pulse firing rate 

level suggests that a mechanism other than the all-or-nothing behavior of plateau 

potentials is involved. A slow withdrawal of inhibitory activity could partially explain 

the slow recovery of firing rate. Recurrent inhibition by Renshaw cells is a system that 

acts strongest on low-threshold motor units (Hultborn et al., 1988) and is more 

developed in proximal than distal muscles (Katz et al., 1993). The effect of recurrent 

inhibition is a reduction of net excitatory input to motoneurones and thereby sudden 

increase in firing rate. Once the firing rate is reduced, the effect of the inhibition is also 

reduced. However, inhibitory systems are not known to be effective for many seconds 

in a manner that can explain the post-pulse depression of firing rate alone. Altered 

membrane properties and prolonged afterhyperpolarization would increase the 

interspike interval, thereby decreasing the probability of firing in response to a constant 

excitatory drive. At present the cause of the prolonged depression in post-pulse firing 

rate is unknown. 

During the SEMG pulse many additional motor units are recruited that can 

potentially exert inhibitory action on already active motor units through e.g. the 

Renshaw system. In some situations, low threshold motor units are completely silenced 

when new motor units (with higher recruitment threshold) are recruited during the EMG 

pulse. In paper I it is shown that motor unit silent periods are induced by transient 

increases in SEMG. Thus, force variation in either direction seems to promote silent 

periods. 

Inactivation of plateau potentials was suggested as a contributor to silent periods 

(cf paper I). The sudden increase in firing rate during the transient force increase may 

initiate a strong Renshaw inhibition that could act as off-stimuli for plateau potentials, 

effectively increasing their activation threshold and thus completely silence motor units 

that are close to recruitment threshold. Conversely, re-activation of plateau potentials 

may reduce motor unit threshold to below the static contraction level and trigger re-
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recruitment of the same motor unit. Motor units with recruitment threshold close to the 

static SEMG activity level have longer and more frequent periods of inactivity than the 

lowest threshold motor units. Conceivably, if the recruitment threshold relative to the 

static EMG level is too large, the motor unit is not silenced by inactivation of plateau 

potentials. The silencing of motor units generally occurred 3 min or later into the 

experiments, which indicates there is also a dependence upon firing history. 

 

Trapezius firing pattern compared to extremity muscles 

The control scheme governing a muscle is in general adapted to the motor tasks 

the muscle frequently participate in (Loeb, 1985). The firing pattern of the trapezius 

muscle differs from the firing pattern of extremity muscles in several ways. There is a 

tendency for greater rate modulation in distal than in proximal muscles and new motor 

units are recruited over a larger force range in proximal than distal extremity muscles 

(Kukulka & Clamann, 1981; De Luca et al., 1982). It has been shown that the firing 

behavior of the FDI during isometric and slowly augmenting contractions (force-rate of 

increase up to 1% EMGmax /s) is sensitive to changes in the muscle activity and with 

lower firing rate of new motor units compared to already active units (Westgaard & De 

Luca, 2001). In trapezoidal contractions the firing pattern of FDI motor units with 

different recruitment threshold resembles the appearance of an onion skin pattern, i.e. 

the lowest threshold motor units consistently exhibit the highest firing rates (De Luca et 

al., 1982). If this was the case also during the sustained activity patterns of the trapezius 

muscle, the risk of motor unit over-exertion and damage would be higher. 

The trapezius, as a postural muscle, must be able to tolerate sustained long 

duration contractions (Jensen et al., 1993a; Thorn et al., 2002), whereas the FDI is 

normally involved in short-duration phasic contractions in fine control of the fingers. 

The differences in the motor control schemes between the trapezius and FDI in low-

amplitude contractions may thus indicate an adaptation to the functional tasks of 

different muscle groups. 

 

Motor input to upper trapezius 

The motor input to the trapezius muscle derives from the spinal accessory nerve  

(XI) (Weisberger, 1987) but also from the cervical plexus (Kierner et al., 2001). It 
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appears that the upper trapezius is predominantly innervated by the spinal accessory 

nerve, while the lower parts may receive its innervation from the cervical segments of 

the spinal cord. The spinal accessory nerve is part of the special visceral motor column 

together with the motoneurones contributing to the glossopharyngeal (IX) and vagus 

(X) nerves, constituting the nucleus ambiguus. The preganglionic autonomic neurons of 

the nucleus ambiguus, located in the medulla, innervate among other organs the 

esophagus, heart and the respiratory system. The glossopharyngeal and vagus cranial 

nerves are predominantly autonomic mixed nerves containing both sensory and motor 

nerves. They transmit sensation from the pharynx and upper airways and taste from 

parts of the tongue and oral cavity. The glossopharyngeal nerve transmits information 

from the neck such as e.g. blood pressure and blood oxygen saturation, while the vagus 

nerve transmits information from the respiratory, cardiovascular and gastrointestinal 

organs. The parasympathetic motor fibers of the glossopharyngeal nerve innervate the 

parotid salivary gland and the stylopharyngeus which raises and dilates the pharynx. 

The rest of the voluntary muscles of larynx and pharynx are controlled by the vagus 

nerve. This nerve also innervates internal organs of the neck, thorax and abdomen 

(Kandel et al., 2000).  

The spinal accessory nerve thus shares a common developmental origin and 

relatively close location in the brainstem and medulla with cranial nerves that, among 

other organs, control the respiratory system. This may be of importance when 

considering the respiratory modulation seen in trapezius motor units. 

The noradrenergic locus coeruleus (LC) neurons are activated by (but not 

limited to) stressful stimuli. In monkeys LC activity was found to correlate with 

performance in visual discrimination tasks requiring focused attention (Aston-Jones et 

al., 1999). Neurons from the LC project to broad areas of the CNS, such as cerebral 

cortex, cerebellum and brain stem, and with rich innervation of the spinal cord 

motoneurones in some species (Holstege & Kuypers, 1987). The neurons show 

extensive collateralization where each terminal axon forms multiple presynaptic 

varicosities that may act in a diffuse hormone-like manner (Stricker & Zigmond, 1986). 

Other noradrenergic neurons originating from lateral tegmentum and dorsal medullary 

cell groups innervate, among other regions, primary motor and visceral nuclei in the 

brain stem. These innervations include cranial nuclei such as motor trigeminal, fascial, 
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hypoglossal, vagus and nucleus ambiguus (Björklund & Lindvall, 1986). These nuclei 

have no LC innervations. In rats noradrenergic fibers in the spinal cord are found in 

specific regions of the spinal grey matter, including around large motoneurones in the 

ventral horn especially at cervical and lumbar levels (Westlund et al., 1983). LC 

neurons facilitate motoneuron activity (Chan et al., 1986) and may thus be at least 

partially responsible for stress-related activity observed in trapezius motoneurones.  

 

The relevance to development of shoulder- and neck pain 

Contraction level from 1-10% EMGmax is representative for the range of 

trapezius activity in common daily living (Westgaard et al., 2001; Holte & Westgaard, 

2002). Changes in trapezius muscle morphology, especially in the descending portion of 

the trapezius, have been attributed to work-related exposures (Lindman et al., 1990). 

These changes include enlarged type I fibers as well as ragged red fibers and moth-eaten 

fibers (with dysfunctional mitochondria) thought to result from prolonged and repetitive 

use of low-threshold motor units. 

In the present thesis it is shown that many motor units are active at low-

amplitude contractions (i.e. <10% EMGmax). It is furthermore argued that these motor 

units are of similar size based on the STA derived potential. It is also known that 

recruitment of new motor units depress the firing rate of already active motor units 

(Westgaard & De Luca, 2001). Thus, moderate variation in contraction amplitude could 

easily bring about changes in the activity pattern of motor units in the trapezius, in 

particular, brief increases in force promote silencing / substitution of motor units. 

However, it seems that if the recruitment threshold of a motor unit is much lower than 

the static activity level (in the order of ~5% EMGmax), silencing of motor units are less 

likely to occur. Silencing and substitution of motor units have been proposed as a 

mechanism to protect motor units from excessive fatigue during low-amplitude 

sustained contractions (Person, 1974). 

The trapezius shows strong response to mental stress in terms of elevated SEMG 

amplitude and recruitment of motor units (Wærsted & Westgaard, 1996). Elevation of 

heart rate was used as an indicator of successfully induced mental stress (paper II). In 

the mental stress procedures the heart rate was increased by ~5 beats per min. There was 

no significant increase in firing rate in procedures with induced mental stress compared 
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to procedures without mental stress at the same SEMG level. In the two-choice reaction 

test there was virtually no biomechanical requirement for motor unit activity, yet for 

several subjects many motor units were firing during the 10 min time course of this 

procedure. It is likely that a number of these motor units were recruited by the induced 

mental stress factor. Thus, even though the mean firing rate did not increase, mental 

stress has the effect of recruiting additional motor units. The different respiratory 

modulation led to the argument that stress may activate another excitatory input 

different from that operating in voluntary contractions. The noradrenergic pathways are 

a candidate system to modulate trapezius firing behavior during stress. Trapezius motor 

units normally have stable mean firing rates in static and slowly augmenting 

contractions with rate of rise <3% EMGmax /s. The added load of stress-induced motor 

units increases the overall SEMG level thereby increasing the distance between the 

recruitment threshold and SEMG level of the lowest threshold motor units (SEMG level 

representing the net excitatory input to the motoneuron pool). When the difference 

between recruitment threshold and the SEMG-level increases, the excitatory drive to the 

motor units outweighs the inhibitory mechanisms that could potentially silence their 

activity. The effect of stress could thus be less frequently occurring silent periods of the 

lowest threshold motor units.   

Respiratory modulation of firing rate is much reduced in motor units in the 

mental stress experiments despite low contraction amplitude. In paper IV, it is 

suggested that the attenuation of the firing rate modulation is due to a state change in 

the segmental cord inter-neuronal network that includes suppression of the Renshaw 

system of interneurons; i.e., LC noradrenergic neurons are shown to have this effect 

(Fung et al., 1987). Consequently, the inhibitory action that could trigger substitution or 

silent periods of motor units may be less frequently occurring.   

 

Unresolved issue; SEMG power vs. intramuscular EMG activity 

In paper I it was consistently observed that the firing rate of motor units showed 

a depression in firing rate in the down-phase of, and for a short period immediately after 

transient EMG pulses, despite the fact that the SEMG-level was higher than, or equal to 

the SEMG-level before the transient increase (cf. Fig. 3). The depression of firing rate 
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while SEMG is back at pre-pulse level therefore constitutes a mismatch between motor 

unit activity and the simultaneously recorded SEMG amplitude. 

This mismatch could be due to “fill-in” by other motor units detected by the 

much larger detection territory of the SEMG electrode compared to the relatively few 

motor units detected by the intramuscular electrodes. However, a fill-in motor unit was 

never detected in any of the instances where this could apply. Such selection bias with 

the intramuscular electrode is possible but seems less likely as the explanation for the 

mismatch in signal powers. 

Increase in membrane potential due to increase in Na+-K+ -pump activity during 

the post-pulse period could explain the mismatch in signal power since each motor unit 

would then contribute more to the SEMG signal. Transient enlargement of the M-wave, 

termed pseudofacilitation, has been demonstrated in human voluntary 3 s isometric 

contractions of the abductor pollicis brevis (McComas et al., 1994). In the same study 

(but in biceps brachii under ischemic conditions) it was found that the enlargement 

commenced after ~2 s when the motor point was stimulated at 10 Hz. In these 

experiments the enlarged potentials gradually returned to initial size over several min 

after cessation of the stimuli. 

Another possibility is changes in motor unit synchronization and amplitude 

cancellation effects. In simulation experiment amplitude cancellation reached 85% 

using 40 motor units (paper III). The number of motor units and the duration of the 

action potential is the most profound factors influencing amplitude cancellation (Keenan 

et al., 2005), the trapezius motor units  presenting relatively wide potentials. In 

simulation experiments motor unit synchronization increases EMG amplitude and 

decreases force steadiness (Yao et al., 2000), although not to a major extent (Keenan et 

al., 2005). Conceivably, the SEMG amplitude could show increased amplitude caused 

by synchronous firing of motor units. STA derived motor unit potentials immediately 

before and after the SEMG pulse showed no change in the area of the potentials. 

However, the triggering motor unit may contribute as little as 25-30% of the STA-

derived potential (paper III) which lowers the sensitivity to detect changes in the source 

potential. 

Since the subjects control their force output based on feedback of the RMS-

detected signal, enlargement of the surface representations of the motor units, whether 



36 

caused by enlarged membrane potential or due to less cancellation, would maintain the 

SEMG-level while firing rate decreases. If so, the true representation of the net 

excitatory drive would be reflected by the firing rate of the motor units, rather than the 

SEMG-level.  

The possible reasons for the mismatch in signal power is at present only 

speculations as our data cannot be used to falsify or confirm the above mentioned 

factors. 
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Conclusion 
The results presented in this thesis characterize trapezius motor unit firing 

behavior in sustained, long-duration, low-amplitude contractions typical of daily living.  

It appears this muscle has control strategies to cope with different types of activity 

patterns, and has anatomical features well adapted to meet postural demands. 

 

Anatomy 

Trapezius muscle fibers active below 10% EMGmax are indicated to be of similar 

size, thus deviating from the Henneman size principle. A relatively high number of 

motor units seem to be active at low contraction amplitudes (~70 motor units at 5% 

EMGmax). This organization may be advantageous to be able to sustain contractions of 

long duration, typical of postural functionality. 

 

Firing pattern 

The firing behavior of the trapezius in sustained, long-duration, low-amplitude 

contractions is characterized by relatively invariant firing rates to different motor tasks, 

with only a small increase in firing rate in response to increased contraction amplitude. 

Motor unit silent periods and threshold reversals are frequently occurring. These 

findings supplement previous studies that suggest a different control strategy in the 

trapezius muscle compared to extremity muscles in sustained low-amplitude 

contractions.  

There is strong modulation of firing rates in response to dynamic contractions, 

suggesting a control strategy resembling that of extremity muscles. The trapezius may 

thus adopt control strategies depending on specific demands. 

 The voluntary excitatory drive to trapezius motor units appears to be modulated 

by autonomic input, with respiratory modulation of the firing rate observed in low-

amplitude contractions. The modulation was attenuated in experiments with induced 

mental stress indicating at least two different sources of pre-motor input. The additional 

pre-motor input from autonomic pathways contributes to the excitatory input to 

trapezius motoneurones, thereby facilitating low-threshold trapezius motor unit activity. 
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Relevance to pain development 

In a pain development perspective, the most important variables to investigate in 

relation to over-exertion of single motor units seems to be the duration and pattern of 

substitution and silent periods. An earlier publication showed substitution of motor units 

in response to brief reductions in excitatory drive. In the present thesis it was shown that 

brief increase in force promotes motor unit silent periods and threshold reversals 

between motor units in long-duration, low-amplitude contractions. Thus, motor unit 

substitution can be induced by force variation in either direction. 

Motor units with recruitment threshold near the static SEMG-level presented the 

longest silent periods. It appears that as the distance between recruitment threshold and 

the static SEMG-level increases, the frequency and duration of silent periods decreases. 

 

STA method 

 This thesis also address important methodological considerations when applying 

STA to quantify motor unit size, the number of motor units and muscle fiber conduction 

velocity, especially for motor units presenting wide action potentials. The STA-derived 

motor unit potentials show a 4-fold increase with increasing contraction level for motor 

units recruited below 10% EMGmax. This increase is to a major extent attributed to 

motor unit synchronization. Thus, due caution should be employed when comparing the 

size of STA-derived potentials extracted at different contraction amplitudes. 
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ABSTRACT 

The study aimed to characterize respiratory modulation of trapezius motor unit firing 

in low-amplitude contractions. Feedback-controlled, constant amplitude contractions 

with shoulder elevation, tasks with mental stress and typing were performed, 

representing presumed different activation modes of trapezius motoneurons. Single 

motor unit activity was recorded by a quadrifilar fine-wire electrode. A surface 

electrode simultaneously recorded surface electromyographic (SEMG) activity. 

Contraction amplitudes ranged from 1 to 10% of the SEMG signal at maximal 

voluntary contraction (1-10% EMGmax). All motor units recorded in low-amplitude 

(<3% EMGmax) contractions with shoulder elevation showed firing rate modulation 

(2-5 pulses per s) at the respiratory frequency. Respiratory firing rate modulation was 

markedly reduced or not observed in constant amplitude contractions >3% EMGmax. 

Respiratory modulation was not evident in the SEMG signal, presumably because 

respiratory phase varied between motor units. Most motor units had peak firing rates 

at the transition from inspiration to expiration, but peak firing rate at the transition 

from expiration to inspiration or at the first harmonic frequency was also observed. 

Respiratory modulation of firing rates was significantly reduced for same contraction 

amplitude in experiments with mental stress. We conclude that both central 

respiratory drive and peripheral afferent input may contribute to the respiratory 

modulation of firing rates; however, respiratory modulation of lumbar motoneurons in 

paralyzed cats points to a central source of the excitatory input. We suggest the 

reduction in respiratory modulation of motor activity with mental stress is due to a 

state change in the interneuron network of the trapezius motor nuclei.



 3

INTRODUCTION 

In the recent past, there has been considerable interest in the motor control of the 

trapezius (e.g., Thorn et al. 2002; Zennaro et al. 2003), motivated by musculoskeletal 

pain research since shoulder pain often is located to this muscle (Simons et al. 1999). 

Ergonomic and occupational research has focused on the biomechanical role of upper 

trapezius as a lifter and stabilizer of the scapula, providing a platform for arm 

movement (e.g., Vasseljen and Westgaard 1997; Jensen et al. 1998). However, 

trapezius contributes in motor tasks other than arm movement: it participates in the 

control of head posture and is described as an auxiliary respiratory muscle with a 

habitual inspiratory activity pattern among chest breathers (Schleifer et al. 2002). 

Chest breathing implies that intrapleural inspiratory pressure is generated with a 

significant contribution from expansion of the upper rib cage. The trapezius is 

innervated by the spinal accessory (XI) nerve. Trapezius motoneurons derive from the 

special visceral group of neurons together with, among others, motoneurons of the 

facial motor nuclei and nucleus ambiguus, innervating laryngeal and pharyngeal 

muscles (Kandel et al. 1991). 

There is controversy regarding the role of trapezius as an auxiliary respiratory 

muscle. Most texts on respiratory control present trapezius as a muscle with an 

inspiratory function on the basis of functional anatomy considerations, i.e., upward 

expansion of the rib cage through a lifting action on the clavicle (Campbell 1968; 

Zemlin 1997). This function is, however, poorly documented by objective measures in 

normal breathing. Other researchers disregard a respiratory action of trapezius 

(Basmajian and De Luca 1985). It was recently shown that trapezius has a clear 

expiratory function in demanding vocalization tasks such as operatic singing 

(Pettersen and Westgaard 2004).  
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Low-level, spontaneous trapezius muscle activity is often observed in nominal 

resting situations, indicating that the membrane potential of low-threshold 

motoneurons is maintained close to threshold also in situations without purposeful 

shoulder or head movement. Trapezius motor activity tends to increase in situations 

with stress and can be difficult to silence except by use of biofeedback measures 

(Bansevicius et al. 1997). In previous studies we have documented motor control 

features of trapezius that distinguish this muscle from extremity muscles (Westgaard 

and De Luca 2001; Westad et al. 2003; Westad et al. 2004).  The aim of the present 

study is improved insight into pathways that provide excitatory input to trapezius 

motoneurons at low contraction levels, with emphasis on respiratory modulated and 

stress-induced muscle activity. The frequency content of trapezius motor unit activity 

patterns in quiet breathing is described. Respiratory modulation of firing rates is 

observed during low-amplitude contractions and is characterized in relation to 

respiratory phasing, contraction amplitude and motor task. 

 

MATERIAL AND METHODS 

Motor unit recordings collected for other study purposes were analyzed for frequency 

content of firing rate modulation (Westad et al. 2003; Westad et al. 2004). This 

includes trapezius electromyographic recordings from 20 healthy subjects, 9 males 

and 11 females, age ranging from 20 to 57 yrs. Experimental procedures and methods 

are described in detail in the above listed papers; here the description of methods and 

procedures is limited to those aspects relevant for the present study. The experiments 

were carried out according to the Declaration of Helsinki. Each subject read and 

signed an informed consent form approved by the local Institutional Review Board 

prior to participating in the study. 
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Experimental procedures 

Simultaneous electromyographic recordings by surface and intramuscular electrodes 

were performed. The SEMG signal was calibrated in technical units (µV) and in 

percent of the RMS-detected EMG activity at maximal voluntary contraction 

(%EMGmax).  

Feedback-controlled, constant amplitude contractions of two to 30 min 

duration were analyzed. All feedback-controlled contractions were carried out with 

the subject seated and straps placed over the shoulders to provide resistance to the 

attempted movement of elevating the shoulders. Shoulder elevation was performed 

bilaterally, with EMG data collected from the left trapezius. Contractions were carried 

out at low amplitude (typically ~2% EMGmax of 2 min duration) to observe motor unit 

firing patterns near threshold for recruitment and at higher amplitude (typically 4-6% 

EMGmax of 10 min duration) to observe firing patterns in sustained contractions with 

stable firing. The contraction amplitude was determined in brief trial contractions to 

ensure that a suitable number of motor units with stable firing could be recorded.  

Motor tasks mimicking muscle activation in daily living, such as motor activity in 

typing and trapezius motor response to mental stress were also carried out (Westad et 

al. 2004). Contraction amplitudes varied from 1 to >10% EMGmax, the higher 

amplitudes were observed in typing tasks and were maintained for periods up to a few 

minutes duration. In the experiments focusing motor response to mental stress, the 

subject was placed in front of a personal computer (PC) to perform a complex, 

attention-demanding reaction test presented on the computer (Westgaard and 

Bjørklund 1987). Elbows rested on the tabletop and the only body movement required 

was finger pressure on one of two buttons. The execution of the test was self-paced, 
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but the subject first carried out the test for 2 min at a steady pace while attempting to 

maintain a low failure rate. In the recorded experiment a small monetary reward was 

offered if the subject performed 10% faster without increasing the failure rate. 

Feedback provided on the computer screen informed the subjects about response 

speed and whether the answer was correct (Wærsted et al. 1994); at the same time a 

new task was presented on the screen.  For the typing procedure the subjects were 

asked to type a text, placed next to the monitor, using a standard keyboard. Three 

variations of the task were performed: with optimal posture and no pressure on 

performance, with optimal posture and pressure on performance (i.e., a small 

monetary reward if the subject performed 10% better in terms of number of words and 

with the same or fewer errors than in the first task), and finally with elevated table top 

to provoke typing at higher muscle activation levels. All trials were of 10 min 

duration with minimum 2 min rest between each trial. 

 

Physiological recordings and analyses 

The SEMG signal was detected by an active differential electrode with two circular 

recording surfaces (6 mm in diameter, 20 mm inter-electrode distance). The electrode 

was positioned with the medial recording surface 20 mm lateral to the midpoint of a 

line between the C7 spinous process and the acromion (Jensen et al. 1993). The 

SEMG signal was band-pass filtered at 10-1000 Hz, sampled at 2 kHz and the RMS-

value digitally estimated over 200 ms non-overlapping windows. The intramuscular 

EMG signal was recorded with quadrifilar wire electrodes, constructed by placing 

four 50-µm nylon coated nickel-chrome alloy wires (“Stablohm 800A”, California 

Fine Wire Co, Grover Beach, CA) in a 27-gauge needle. The wire bundle was bent 

backward at the needle tip to form a hook and was cut transversely approximately one 
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millimeter from the bend, exposing only the cross-section of the wires. The needle 

was inserted to a depth of approximately 10 mm at a location about 10 mm medial to 

the midpoint of a line between the C7 spinous process and the acromion, along the 

direction of the muscle fibers in the area under the SEMG electrode. The needle was 

removed and the wire bundle remained lodged in the muscle. Three pairs were chosen 

as the differential input to the amplifiers. The signals were band-pass filtered from 1 

to 10 kHz. All EMG signals were stored on a digital recorder (DATaRec-A160, 

Racal-Heim Systems GmbH, Bergisch Gladbach, Germany). The signals were 

subsequently reconverted to an analog form and digitized at a sampling rate of 50 kHz 

on a PC. 

The intramuscular EMG signals were resolved into individual motor unit 

firing trains using the Precision Decomposition technique (LeFever and De Luca 

1982; De Luca and Adam 1999). This technique uses template matching, template 

updating, firing probabilities and superposition resolution to identify the individual 

firing times of the motor units (Mambrito and De Luca 1984). The instantaneous 

firing rates of the motor units were obtained by inverting the time series of the inter-

pulse intervals. 

 Respiratory movement was detected by a strain gauge sensor positioned 

around the upper thoracic wall and sensing chest circumference. Electrocardiographic 

(ECG) activity was recorded by silver/silver chloride electrodes (Neuroline, 

Medicotest A/S, Denmark) placed in standard positions across the chest. Respiratory 

movement and ECG were continuously recorded (Physiometer PHY-400, Premed, 

Norway) and stored on a palmtop computer (HP 200LX, Hewlett-Packard, USA). The 

intervals between the threshold-detected R peaks (RR intervals) in the QRS complex 

were derived on a beat-by-beat basis and the instantaneous heart rate determined by 
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inverting the inter-beat intervals. In three of the experiments respiratory movement 

and heart rate were synchronized with EMG recordings by also feeding these signals 

to the digital recorder used to record the EMG signals.  

 

Frequency analysis of motor unit firing pattern 

In order to study the frequency content of the firing rate of the detected motor units, 

we first transformed the unevenly-sampled time series derived from the firing of the 

motor units in an evenly-sampled time series at 10 Hz by using cubic splines.  The 

frequency content of the motor unit firing rate time series was then studied. 

Detrending and removal of the mean value (i.e., DC component) were applied before 

estimating the frequency content of the time series. To avoid that very low frequency 

components (below 0.02 Hz) could mask rhythmic behaviors associated with motor 

unit firing rate modulation at higher frequency, a Chebyshev (type II) high-pass filter 

with transition band 0.005-0.02 Hz, 20 dB of attenuation in the stopband, and 2 dB 

maximum loss in the passband was designed. The corresponding IIR filter was 

implemented using a bilinear transformation (with prewarping) and applied to the 

motor unit firing rate time series as a non-causal filter (i.e., after filtering in the 

forward direction, the series was reversed and filtered again). Frequency analysis was 

performed to evaluate the characteristics of the motor unit firing rate time series up to 

4 Hz as well as only for the low frequency components, i.e. limiting the analysis to 

1 Hz. In the latter case, the time series were downsampled from 10 to 3 Hz (an 

antialiasing filter was applied). 

The time-frequency representation of the motor unit firing rate time series was 

estimated by using a rectangular window of 30 s, shifting it by steps of 1 s, and 

estimating the frequency content of each epoch via an autoregressive technique.  The 
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Burg method was used because it is known to provide stable estimates of the 

frequency content of a time series, is capable of resolving closely spaced rhythmic 

components, and it can be applied to relatively short time series without 

compromising the frequency resolution of the output (Proakis and Manolakis 1996).  

The Akaike technique (Marple 1987) was utilized to select the order of the model for 

each epoch. 

In addition to the time-frequency representation of motor unit firing rate time 

series, we studied their overall frequency content. The latter was estimated as the 

frequency marginal of the time-frequency representation, namely by integrating the 

time-frequency representation along the time axis. This technique is comparable with 

that of estimating the frequency content of the motor unit firing rate time series over 

the entire time interval of observation or using a fast Fourier transformation approach 

(Proakis and Manolakis 1996). However, the technique that we used in this study 

allowed us to appreciate both the changes in frequency content of the time series over 

time as well as the overall frequency components contributing to the time series. 

A similar technique was utilized to analyze the frequency content of the time 

series of the RMS values of the SEMG signal. Filtering and frequency 

transformations were designed consistently to that done for the motor unit firing rate 

time series, thus facilitating the comparison between motor unit and SEMG frequency 

content. 

In addition to the analyses described above, we studied the relationship 

between motor unit firing rate modulation and respiratory rate. Via frequency analysis 

of the motor unit data, we identified a rhythmic component of firing rate modulation 

at the frequency of the respiratory rate (whose frequency content we analyzed in a 

way similar to the one described above for the motor unit and RMS-SEMG data). 
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Thus, we investigated the phase relationship between respiratory rate and the 

rhythmic component of motor unit firing rate modulation observed at a frequency 

corresponding to the respiratory rate. Because of the non-stationarity of the motor unit 

firing rate time series, we decide to use a method previously developed by our team 

(Bonato et al. 2003) that relies on Cohen Class time-frequency transformations 

(Cohen 1995) to estimate phase relationships for time-variant signals. The technique 

leverages on a property of cross-time-frequency representations of the Cohen Class, 

namely that the ratio between imaginary and real part of a cross-transformation for a 

given frequency value provides an estimate of the phase relationship between the two 

signals under consideration (Bonato et al. 2000). Given the non-stationarity of the 

time series, this estimation technique allows one to select the intervals of stationarity 

on the cross-time-frequency representation where it is possible to identify intervals of 

coherent oscillation of the motor unit firing rate time series and the respiratory signal 

(Bonato et al. 2003). In this study, estimates of the phase ratio between the rhythmic 

component of modulation of the monitored motor unit and the recorded respiratory 

rate were derived by averaging the results of the referenced technique within intervals 

of coherent oscillation. Histograms of the estimated phase ratios were then built by 

analyzing multiple recordings to explore dominant behaviors of motor units in 

relation to respiratory phenomena. 

 

RESULTS 

Respiratory modulation of firing rates, ranging from 2 to 5 pps peak-to-peak for the 

continuous firing motor units, was observed for all of 32 trains of motor unit firings 

from 12 experiments with low-level, constant-amplitude contractions (amplitude 
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range 0.9 - 2.4% EMGmax). Mean firing rates were close to 10 pulses per second (pps; 

Westad et al. 2004). 

Respiratory modulation of firing rate is illustrated in Figure 1 for a 2-min 

contraction at constant, low amplitude (1.7% EMGmax; RMS-detected SEMG signal in 

top right panel). A motor unit, firing near threshold for recruitment, showed 

prominent modulation of firing at the respiratory frequency (Figure 1, top left). In the 

second row of Figure 1, the magnitude square of the Fourier transform of the motor 

unit train (left) and the SEMG signal (right) are displayed for wide (0-4 Hz) and low 

(0-1 Hz; inset) frequency ranges. The frequency content of the respiratory chest 

movement, at about 0.4 Hz, is shown by dashed line. The lower panels show the time-

frequency representation of the motor unit firing rate (left) and the SEMG signal 

(right) estimated as explained in the Methods section. The respiratory frequency is 

prominently and consistently present in the time-frequency representation of the firing 

rate time-series. A small peak at twice the respiratory frequency is observed. There 

are indications of oscillatory activity at respiratory frequency in sections of the SEMG 

recording, but are much reduced relative to firing rate modulation of the recorded 

motor unit. The peak at respiratory frequency does not stand out from peaks at other 

frequencies in the SEMG frequency content (second row, right).  

Contractions of 10 min duration were carried out with amplitudes ranging 

from 2.4 to 5.9% EMGmax. At low amplitudes, firing rates with 2-5 pps modulation at 

the respiratory frequency were observed, similar to the 2-min low-amplitude 

recordings. Firing rate modulation was markedly reduced in higher amplitude 

contractions (>3% EMGmax) and was in most recordings only detected through 

frequency analysis. However, three of 36 motor unit recordings showed strong 

respiratory modulation, similar to that observed in low-amplitude contractions. These 
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recordings were not distinguished with respect to contraction level (ranging from 3.7 

to 5.2% EMGmax) or recruitment threshold. 

 Figure 2 illustrates the effect of reduced respiratory firing rate modulation 

with increasing contraction amplitude. Constant-amplitude contractions of 10 min 

duration at 2.4% (A), 3.7% (B) and 5.5% (C) EMGmax are shown. Three to five motor 

units were recorded in each contraction. The plots in left column show frequency 

content of motor unit firing rates (note different y-calibration in Figure 2A); the plots 

in right column show frequency content of the SEMG amplitude modulation. Insets in 

Figure 2A and 2B show representative sections of firing rate modulation for the motor 

units with highest and lowest peak at respiratory frequency in the respective 

recordings. The plots are similarly calibrated in arbitrary units (a.u.) to allow 

comparison of plots from different panels. The highest peak (0.8 a.u., Figure 2A) 

represents a modulation of 5 pps with mean firing rate 10.1 pps. Peaks of 0.2 a.u. 

correspond to firing rate modulation of ~2 pps and are detectable by visual inspection 

of the recording. Peaks <0.1 a.u. in the frequency plots are usually not detected by 

visual inspection of the recording. Respiratory modulation of firing rates in the 

contraction at 5.5% EMGmax was barely detected in the frequency plots (Figure 2C). 

Respiratory modulation was much attenuated or absent in the SEMG signal. A weak 

peak at respiratory frequency, typical of the SEMG signal in low-amplitude 

contractions, is seen in the top right panel (see also Figure 1).  

A small peak at twice the respiratory frequency is noted in the frequency plots 

of firing rate modulation for the recording shown in Figure 2A. Analysis by time-

frequency representation showed a dynamic interaction of the respiratory-related 

frequency components, with modulation at the first harmonic frequency dominant 

about 50 s into the recording (Figure 3). Later in the contraction this frequency 
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component disappeared. The same dynamic development of frequency content was 

found for the other recorded motor units in this experiment. 

Harmonic components in frequency representations may arise from non-

sinusoidal modulation at the fundamental frequency. Three experiments with 

synchronized recordings of EMG and respiratory movement were therefore examined 

to clarify the nature of the respiratory modulation. Two 20-s sections showing chest 

movement and firing rates of three motor units were selected from each of two 

recordings (Figure 4). Firing rate modulation at double the respiratory frequency is 

observed in the top left panel, changing to dominant modulation at the respiratory 

frequency (top right). In Figure 4B firing rates were modulated at the respiratory 

frequency in most cycles, but with a tendency of a harmonic frequency component in 

the first and third breaths (left panel). The bottom motor unit, which is firing near 

threshold and has the strongest firing rate modulation, was phase-shifted relative to 

the other two motor units in most breaths, but has similar respiratory phase to the 

other two motor units in a few breaths (e.g., last breath in left panel). Firing rate 

modulation at higher frequencies (1-2 Hz) was synchronized throughout the 

recordings, consistent with the “common drive” hypothesis of command signals from 

supraspinal centers to the motor nuclei (De Luca et al. 1982; De Luca and Erim 

1994). 

 Figure 5 shows phase of respiratory modulation of firing rates relative to chest 

movement, based on motor unit recordings from three experiments with constant-

amplitude contractions. Most motor units had peak firing rates at the transition from 

inspiration to expiration. A smaller group presented peak firing rates at the transition 

from expiration to inspiration. A few motor units were firing in phase with peak 

inspiratory movement and none were firing in phase with expiration. 
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The effect of task condition was examined by comparing the frequency 

content of motor unit firing patterns in typing and mental stress experiments with 

frequency spectra obtained in constant amplitude contractions. Some experiments 

allowed reliable tracking of the same motor units in different tasks. Respiratory 

modulation of firing rates was much reduced in the experiments with mental stress 

and typing. The SEMG amplitude was usually low in the experiments with mental 

stress (mean 1.6%, range 0.5-2.6% EMGmax). Eleven motor units with stable firing 

were recorded. Evidence of low respiratory modulation was observed in some of the 

firing patterns, contrasting the consistent and prominent firing rate modulation in 

constant-amplitude contractions of similar low amplitude.  

Mean SEMG amplitude in typing without stress varied considerably (group 

mean 4.1%, range 1.3 to 9.1% EMGmax). Respiratory modulation of firing rates was 

rarely observed, even for contractions with very low SEMG amplitude: only three of 

50 motor units in typing without imposed stress showed unequivocal evidence of 

respiratory modulation. In typing with stress 11 motor units were analyzed and only 

one showed evidence of respiratory modulation. However, the firing pattern of motor 

units in typing tasks was quite variable at low contraction amplitudes, presumably 

adjusting to variation in force demand due to arm movement, which may mask any 

respiratory firing rate modulation. 

Frequency plots of firing rate and SEMG modulation are shown in Figure 6 

for two experiments with mental stress where motor units had stable firing patterns. 

The recordings in Figure 6A and B are from the same experiments as shown in Figure 

2A and B, and with the same motor units. The power density spectra of motor unit 

firing rate modulation in Figure 6 (left panels) show no clear indication of respiratory 

rhythm in the mental stress experiments, despite SEMG amplitudes lower than the 
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corresponding constant amplitude contractions (Figure 2A, B). Time plots of heart 

rate, SEMG and motor unit firing rates in the mental stress experiment of Figure 6B 

are shown in Figure 7. This subject adopted a nominally relaxed, seated posture. She 

received information about the task and the opportunity of a money reward two min 

before the start of the task, responding with 10 beats-per-min elevation of the heart 

rate. The motor units were already firing when the experiment started and maintained 

stable firing during the experiment, except for a silent period for two of the motor 

units. The silent periods coincided with temporary depressions in heart rate. 

 

DISCUSSION 

Trapezius motoneurons show respiratory firing rate modulation in low-level, constant 

amplitude contractions. The phase relative to chest movement is variable. Most motor 

units have peak firing rate in the transition from inspiration to expiration, but peak 

firing in the transition from expiration to inspiration is also common. SEMG activity, 

indicating force development in upper trapezius, shows little or no respiratory 

modulation. Respiratory firing rate modulation is markedly reduced when low-level 

motor activity is elicited in situations with mental stress. 

 Trapezius is frequently included as an accessory respiratory muscle with 

inspiratory phasing in the literature dealing with respiratory motor control (Campbell 

1968; Zemlin 1997). Respiratory modulation of trapezius SEMG activity with 

inspiratory phasing has been reported for “chest breathers” (Schleifer et al. 2002). 

Other scientists have failed to find inspiratory modulated trapezius muscle activity 

and consider the muscle not to have a respiratory function (Basmajian and De Luca 

1985). Conversely, expiratory phased activity pattern is observed for subjects 

performing forceful phonation as in operatic singing (Pettersen and Westgaard 2004). 
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The expiratory phased activity pattern is reduced or disappears when the breathing 

demand in phonation is lowered (Pettersen et al. 2004). Thus, trapezius may 

contribute in a respiratory capacity in different ways, but does not normally contribute 

to respiratory chest movement in quiet breathing. This is the relevant breathing 

requirement for subjects performing the light motor tasks of this study and is 

consistent with the lack of respiratory modulation in the SEMG signal. The 

respiratory firing rate modulation in low-level, constant amplitude contractions was 

therefore a surprise. Inconsistent phase association of motor unit firing patterns with 

respiratory movement and relatively large number of motor units active at low SEMG 

amplitude (Westad and Westgaard 2005) may explain the lack of respiratory 

modulation in the SEMG signal. 

Respiratory modulated trapezius motor unit firing pattern, with peak firing 

rates in the transition between inspiration and expiration or vice versa and periods 

with modulation at double the respiratory frequency suggest that the observed 

respiratory modulation is not generated in response to a task-specific central 

command signal. Both respiratory phases can be simultaneously present in the firing 

pattern, usually with one phase dominant. Sections of recordings with a dominant first 

harmonic frequency component may be a special case with balanced excitation from 

two independent, respiratory-modulated inputs with opposite respiratory phase.  

The source of respiratory modulated excitatory input to trapezius motoneurons 

is unknown. One possibility is peripheral afferent input from diverse populations of 

mechanoreceptors, sensitive to respiratory movement of either phase. However, 

respiratory modulation is reported for lumbar motoneurons in cats under strong 

respiratory drive through breathing O2-enriched air with added CO2 (Kirkwood et al. 

2002). The cats were paralyzed and artificially ventilated, i.e., without peripheral 
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afferent input to motoneurons. The central respiratory drive potential (CRDP) was 

usually locked to early expiration, but also showed variation in phase, analogous to 

the variation in respiratory phase of motor unit firing patterns in this study (cf. Figure 

4). Another study reported CRDPs in a (small) fraction of lumbar motoneurons in 

decerebrate, unanesthesized cats (Meyer-Lohmann 1974). Respiratory modulated 

firing of triceps surae spindle afferents was observed; however, this modulation 

disappeared when the fusimotor innervation was disrupted, indicating that the afferent 

respiratory modulation was due to gamma motor activity.  

Another consideration, pointing to a possible source of respiratory excitation, 

is based on developmental similarities of trapezius motoneurons to motoneurons of 

other brain stem and medullary motor nuclei. Trapezius motoneurons are located in 

the spinal accessory (XI) nucleus and derive from the group of special visceral 

neurons (Kandel et al. 1991). Motoneurons of this origin (from the trigeminal, facial, 

vagus motor and spinal accessory nuclei) control muscles involved in vegetative 

function and cognitive-behavioral expression, including control of facial expression, 

mastication, speech and upper airway resistance. Several of these motor nuclei, and 

also the hypoglossal nuclei (controlling muscles of the tongue) include motoneurons 

with respiratory modulated activity of variable phase, typically with peak firing in the 

transition from inspiration to expiration or vice versa (Huangfu et al. 1993; Merrill 

1970; Peever et al. 2001). Hypoglossal motoneurons have been studied in some detail, 

with a view to determining the location of respiratory rhythm generation (Duffin 

2004). Neurons with peak firing in the transition from inspiration to expiration (post-

inspiratory or expiratory decrementing) are considered to control airway muscle 

activity. Hypoglossal motoneurons and interneurons within the hypoglossal motor 

nuclei receive early inspiratory input from a source tentatively located to the lateral 
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tegmental field, separate from inspiratory neurons of the rostral ventral respiratory 

group (Peever et al. 2002). The inspiratory drive is to a considerable extent mediated 

through interneurons, similar to the respiratory drive to thoracic respiratory 

motoneurons (Kirkwood et al. 1993). Active inhibition of hypoglossal motoneurons 

during expiration was not detected, indicating that repolarization was due to 

disfacilitation, as was also the case for early inspiratory facial motoneurons (Huangfu 

et al. 1993). Conceivably, trapezius motoneurons may have a similar organization of 

their pre-motor input.  

The different respiratory modes of trapezius, determined by respiratory 

demand and habitual differences in breathing pattern, highlight the complex 

respiratory function of trapezius. The putative CRDPs must be weak in normal 

breathing, presumably explaining the observation of respiratory firing modulation 

only in low-amplitude contractions. Trapezius has an integrative role in postural 

control; it contributes in head movement and to positioning and stabilization of the 

shoulder in arm movement. This further argues for active inhibition locked to 

respiratory phase is less prominent in trapezius than for primary respiratory muscles 

such as the diaphragm and the intercostals (Aminoff and Sears 1971).  

CRDPs in lumbar motoneurons seem to be promoted by motoneuron plateau 

potentials (Kirkwood et al. 2002). Trapezius motoneuron firing patterns show several 

features indicative of plateau potentials (Bennett et al. 1998; Hornby et al. 2002), 

including derecruitment at a lower central drive than at recruitment (Westad et al. 

2003) and the “warm-up” phenomenon (Westad et al. 2004), all observed in constant-

amplitude contractions, indicating that plateau potentials are generally present in 

active trapezius motoneurons. 
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Respiratory modulation of trapezius motor units is much reduced in mental 

stress experiments with low contraction amplitude. The mental stress procedure 

induces autonomic (elevated heart and respiratory rate, increased blood pressure and 

decreased skin blood flow, Nilsen et al. submitted) and muscular responses 

(Bansevicius et al. 1997), the latter prominent for the frontalis and trapezius muscles 

(Wærsted and Westgaard 1996). Plateau potentials in motoneurons are promoted by 

monoaminergic pathways from the brain stem (Kiehn et al. 1996; Kiehn and Eken 

1998). These facilitate motor activity and activate the sympatho-adrenal system, 

thereby producing an autonomic arousal response (e.g., Jacobs et al. 1991; Jacobs and 

Fornal 1999). The serotonergic system is not responsive to stress-type challenges 

(Jacobs et al. 2002) while the noradrenergic locus coeruleus neurons show immediate 

elevated firing in such situations (Aston-Jones and Bloom 1981; Jacobs 1986; 

Carrasco and Van de Kar 2003). The mechanism for control of motoneuron 

excitability is unknown. It may involve control of motoneuron plateau potentials, 

which are likely activated also in constant-amplitude contractions (Westad et al. 2003; 

Westad et al. 2004). Noradrenergic input to the spinal cord also influence excitation 

of segmental interneurons, facilitating monosynaptic peripheral afferent reflexes 

(Chan et al. 1986) and suppressing the Renshaw system of interneurons (Fung et al. 

1987). 

The consistent and prominent respiratory modulation of firing in constant-

amplitude contractions indicates that the respiratory premotor input and a supraspinal 

command signal to elevate the shoulders act in synergy to activate segmental 

interneurons and motoneurons. The marked attenuation of respiratory modulation in 

the mental stress experiments indicates a competitive interaction, possibly 

representing a state change in the segmental spinal cord inter-neuronal network 
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(Burke 1999). Spinal network with different excitatory effects on motor nuclei, 

coinciding with distinct changes in animal behavior, is demonstrated for the cervical 

spinal cord of cats (e.g., Alstermark et al. 1987; Lundberg 1999) and probably exist in 

the human (Pierrot-Deseilligny 1996). Task-dependent differences in firing rate 

modulation may provide clues regarding premotor pathways providing excitatory 

input to trapezius motoneurons. 

Few examples of respiratory modulation of firing rates was observed in the 

typing experiments, but contraction amplitude was relatively high in experiments with 

stable motoneuron firing, while intermittent firing patterns were common in low-

amplitude contractions. Respiratory modulation of firing rates may thus exist in the 

typing experiments, but be masked. It may alternatively be argued the circumstances 

for trapezius motor activity in typing, supporting shoulder posture in arm movement, 

is sufficiently different to constant amplitude contractions to warrant a different state 

of spinal cord networks. Further experimentation, e.g., controlled arm movement, may 

allow further examination of this point. 

Ongoing excitatory input to trapezius motoneurons from a variety of sources, 

including respiratory modulated input of either phase, may contribute to the 

preponderance of “spontaneous” low-level trapezius motor activity. Such activity is 

observed both in laboratory (Bansevicius et al. 1997) and vocational (Vasseljen and 

Westgaard 1995) settings. 

In conclusion, we argue that respiratory modulation of low-threshold trapezius 

motoneurons in constant amplitude contractions most likely is due to respiratory 

modulated central input. The reduction in respiratory modulation of firing rate in 

experiments with imposed mental stress may be due to a task-dependent change in 
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local interneuronal networks, triggered by an arousal response mediated through 

monoaminergic influences on the motor system. 
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FIGURE LEGENDS 

 

Figure 1. Frequency content of motor unit firing pattern (left) and surface 

electromyographic (SEMG) activity (right) in a 2-min constant amplitude contraction 

at 1.7% EMGmax. The top row shows time plots of motor unit firing rate with 

respiratory modulation (left) and simultaneously recorded SEMG activity (right). 

Firing rate modulation at the respiratory frequency was confirmed in similar analyzed, 

separate recording of chest movement. Second row shows frequency plots (magnitude 

square of the Fourier transform) of firing rate (left) and SEMG activity (right). The 

frequency content is shown at two resolutions, 0-1 Hz (insets) and 0-4 Hz. In left 

panel frequency content of respiratory chest movement is shown by dashed line. 

Bottom row shows waterfall plots depicting time-frequency representations of 

frequency content in motor unit firing rate (left) and SEMG signal (right). The 

frequency spectrum is calibrated in arbitrary units (a.u.), but the same calibration 

procedure is used in all frequency analyses presented in this paper. MU: motor unit; 

PSD: power spectral density 

 

Figure 2. Frequency content of motor unit firing patterns (left) and the simultaneously 

recorded SEMG activity pattern (right) of three constant amplitude contractions 

performed at increasing amplitude from A to C (contraction amplitudes indicated in 

right panels). Three to five motor units were recorded in each contraction. Insets in A, 

B show representative time plots of sections of recording for the motor units with the 

highest and lowest respiratory modulation in C. Respiratory modulation of firing rates 

was not detected in the last experiment.  Vertical calibration bar: 5 pulses per second 

(pps); horizontal bar 5 s. 
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Figure 3. Waterfall plot showing time-frequency representation of motor unit firing 

pattern. One of the motor units with averaged frequency content shown in Figure 2A 

was selected. The other motor units in the same experiment show similar time 

development of frequency content in their firing pattern. 

 

Figure 4. Time plots of firing rate modulation for three motor units (top three traces) 

and upper chest movement (bottom trace). Two panels from each of two constant-

amplitude experiments are shown, selected to illustrate specific features in the firing 

pattern. Firing rates are low-pass filtered with cut-off frequency 4 and 1 Hz, 

respectively. Firing patterns with the higher filter setting are shown as thin-line traces 

superimposed on the thicker lines, representing firing rates with the lower filter 

setting. 

 

Figure 5. Histogram showing respiratory phase (i.e., highest firing rate) of 46 motor 

units in 3 constant amplitude experiments with synchronized recordings of motor 

units and chest movement.  

 

Figure 6. Frequency content of motor unit firing patterns (left) and simultaneously 

recorded SEMG activity pattern (right) of two contractions with mental stress (A, B). 

Recordings were from the same experiment as illustrated in Figure 2A, B. Three (A) 

and four (B) motor units were recorded. Contraction amplitudes are indicated in 

panels on right. 
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Figure 7. Time plots of heart rate, root-mean-square detected SEMG signal and firing 

rates of four motor units (marked 1 to 4), recorded in the experiment with mental 

stress shown in Figure 6B. Heart rate was continuously recorded and time intervals 

before (negative time indication) and after the cessation of the experiment is shown 

for this variable. Vertical arrows in top panel mark start and end of the experiment. 

Motor unit templates at the beginning and end of the experiment (motor units 1 to 3) 

and the start and end of a period without firing for motor unit 4, marked by asterisks, 

are shown next to the plots of firing rates. Horizontal bars in the two top panels 

indicate time intervals with no firing for motor units 2 and 4. Note temporary 

reductions in heart rate coinciding with the silent periods of motor unit firing. 
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Woodpecker Dendrocopos 
leucotos 

 1999 Stein Olle 
Johansen 

Dr. scient 
Botany 

A study of driftwood dispersal to 
the Nordic Seas by 
dendrochronology and wood 
anatomical analysis. 

 1999 Trina Falck 
Galloway 

Dr. scient. 
Zoology 

Muscle development and growth 
in early life stages of the Atlantic 
cod (Gadus morhua L.) and 
Halibut (Hippoglossus 
hippoglossus L.) 

 1999 Torbjørn Forseth Dr. scient. 
Zoology 

Bioenergetics in ecological and 
life history studies of fishes. 

 1999 Marianne Giæver Dr. scient. 
Zoology 

Population genetic studies in 
three gadoid species: blue 
whiting (Micromisistius 
poutassou), haddock 
(Melanogrammus aeglefinus) 
and cod (Gradus morhua) in the 
North-East Atlantic 

 1999 Hans Martin 
Hanslin 

Dr. scient 
Botany 

The impact of environmental 
conditions of density dependent 
performance in the boreal forest 
bryophytes Dicranum majus, 
Hylocomium splendens, 
Plagiochila asplenigides, Ptilium 
crista-castrensis and 
Rhytidiadelphus lokeus. 

 1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient. 
Zoology 

Aspects of population genetics, 
behaviour and performance of 
wild and farmed Atlantic salmon 
(Salmo salar) revealed by 
molecular genetic techniques 

 1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in 
protoplasts from Brassica napus 
hypocotyls cultivated under 
various g-forces 

 1999 Stein-Are Sæther Dr. philos. 
Zoology 

Mate choice, competition for 
mates, and conflicts of interest in 
the Lekking Great Snipe 

 1999 Katrine Wangen 
Rustad 

Dr. scient. 
Zoology 

Modulation of glutamatergic 
neurotransmission related to 
cognitive dysfunctions and 
Alzheimer’s disease 

 1999 Per Terje Smiseth Dr. scient. 
Zoology 

Social evolution in monogamous 
families: 
mate choice and conflicts over 
parental care in the Bluethroat 
(Luscinia s. svecica) 



 1999 Gunnbjørn 
Bremset 

Dr. scient. 
Zoology 

Young Atlantic salmon (Salmo 
salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the 
deep pool habitat, with special 
reference to their habitat use, 
habitat preferences and 
competitive interactions 

 1999 Frode Ødegaard Dr. scient. 
Zoology 

Host spesificity as parameter in 
estimates of arhrophod species 
richness 

 1999 Sonja Andersen Dr. scient 
Bothany 

Expressional and functional 
analyses of human, secretory 
phospholipase A2 

 2000 Salvesen, Ingrid Dr. scient 
Botany 

Microbial ecology in early stages 
of marine fish: Development and 
evaluation of methods for 
microbial management in 
intensive larviculture 

 2000 Ingar Jostein Øien Dr. scient. 
Zoology 

The Cuckoo (Cuculus canorus) 
and its host: adaptions and 
counteradaptions in a 
coevolutionary arms race 

 2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial 
econtrol of live food used for the 
rearing of marine fish larvae 

 2000 Sigbjørn Stokke Dr. scient. 
Zoology 

Sexual segregation in the 
African elephant (Loxodonta 
africana) 

 2000 Odd A. Gulseth Dr. philos. 
Zoology 

Seawater tolerance, migratory 
behaviour and growth of Charr, 
(Salvelinus alpinus), with 
emphasis on the high Arctic 
Dieset charr on Spitsbergen, 
Svalbard 

 2000 Pål A. Olsvik Dr. scient. 
Zoology 

Biochemical impacts of Cd, Cu 
and Zn on brown trout (Salmo 
trutta) in two mining-
contaminated rivers in Central 
Norway 

 2000 Sigurd Einum Dr. scient. 
Zoology 

Maternal effects in fish: 
Implications for the evolution of 
breeding time and egg size 

 2001 Jan Ove Evjemo Dr. scient. 
Zoology 

Production and nutritional 
adaptation of the brine shrimp 
Artemia sp. as live food 
organism for larvae of marine 
cold water fish species 

 2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to 
environmental changes in the 
managed boreal forset systems 

 2001 Ingebrigt Uglem Dr. scient. 
Zoology 

Male dimorphism and 
reproductive biology in 
corkwing wrasse (Symphodus 
melops L.) 



 2001 Bård Gunnar 
Stokke 

Dr. scient. 
Zoology 

Coevolutionary adaptations in 
avian brood parasites and their 
hosts 

 2002 Ronny Aanes Dr. scient Spatio-temporal dynamics in 
Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 

 2002 Mariann Sandsund Dr. scient. 
Zoology 

Exercise- and cold-induced 
asthma. Respiratory and 
thermoregulatory responses 

 2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities 
and populations in boreal 
vegetation influenced by 
scything at Sølendet, Central 
Norway 

 2002 Frank Rosell Dr. scient. 
Zoology 

The function of scent marking in 
beaver (Castor fiber) 

 2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of 
Phospholipase A2 in Monocytes 
During Atherosclerosis 
Development 

 2002 Terje Thun Dr. philos 
Biology 

Dendrochronical constructions 
of Norwegian conifer 
chronologies providing dating of 
historical material 

 2002 Birgit Hafjeld 
Borgen 

Dr. scient 
Biology 

Functional analysis of plant 
idioblasts (Myrosin cells) and 
their role in defense, 
development and growth 

 2002 Bård Øyvind 
Solberg 

Dr. scient 
Biology 

Effects of climatic change on the 
growth of dominating tree 
species along major 
environmental gradients 

 2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP 
binding proteins in cellular 
organisms.  Studies of RAC 
GTPases in Arabidopsis thaliana 
and 

 2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of 
individual variation in fitness-
related traits in house sparrows 

 2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and 
medicinal plants in Norway – 
Essential oil production and 
quality control 

 2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of 
environmental pollution in 
threespine stickleback 
Gasterosteus aculeatur L. 

 2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed 
arctic and alpine vegetation – an 
integrated approach 

 2003 Bjørn Dahle Dr. scient 
Biology 

Reproductive strategies in 
Scandinavian brown bears 



 2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal 
movement and habitat use of the 
African buffalo (Syncerus caffer) 
in Chobe National Park, 
Botswana 

 2003 Marit Stranden Dr.scient 
Biology 

Olfactory receptor neurones 
specified for the same odorants 
in three related Heliothine 
species (Helicoverpa armigera, 
Helicoverpa assulta and 
Heliothis virescens) 

 2003 Kristian Hassel Dr.scient 
Biology 

Life history characteristics and 
genetic variation in an expanding 
species, Pogonatum dentatum 

 2003 David Alexander 
Rae 

Dr.scient 
Biology 

Plant- and invertebrate-
community responses to species 
interaction and microclimatic 
gradients in alpine and Artic 
environments 

 2003 Åsa A Borg Dr.scient 
Biology 

Sex roles and reproductive 
behaviour in gobies and guppies: 
a female perspective 

 2003 Eldar Åsgard 
Bendiksen 

Dr.scient 
Biology 

Environmental effects on lipid 
nutrition of farmed Atlantic 
salmon (Salmo Salar L.) parr 
and smolt 

 2004 Torkild Bakken Dr.scient 
Biology 

A revision of Nereidinae 
(Polychaeta, Nereididae) 

 2004 Ingar Pareliussen Dr.scient 
Biology 

Natural and Experimental Tree 
Establishment in a Fragmented 
Forest, Ambohitantely Forest 
Reserve, Madagascar 

 2004 Tore Brembu Dr.scient 
Biology 

Genetic, molecular and 
functional studies of RAC 
GTPases and the WAVE-like 
regulatory protein complex in 
Arabidopsis thaliana 

 2004 Liv S. Nilsen Dr.scient 
Biology 

Coastal heath vegetation on 
central Norway; recent past, 
present state and future 
possibilities 

 2004 Hanne T. Skiri Dr.scient 
Biology 

Olfactory coding and olfactory 
learning of plant odours in 
heliothine moths. An anatomical, 
physiological and behavioural 
study of three related species 
(Heliothis virescens, 
Helicoverpa armigera and 
Helicoverpa assulta). 
 

 2004 Lene Østby Dr.scient 
Biology 

Cytochrome P4501A (CYP1A) 
induction and DNA adducts as 
biomarkers for organic pollution 
in the natural environment 
 



 2004 Emmanuel J. 
Gerreta 

Dr. philos 
Biology 

The Importance of Water 
Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

 2004 Linda Dalen Dr.scient 
Biology 

Dynamics of Mountain Birch 
Treelines in the Scandes 
Mountain Chain, and Effects of 
Climate Warming 

 2004 Lisbeth Mehli Dr.scient 
Biology 

Polygalacturonase-inhibiting 
protein (PGIP) in cultivated 
strawberry (Fragaria x 
ananassa): characterisation and 
induction of the gene following 
fruit infection by Botrytis 
cinerea 

 2004 Børge Moe Dr.scient 
Biology 

Energy-Allocation in Avian 
Nestlings Facing Short-Term 
Food Shortage 

 2005 Matilde Skogen 
Chauton 

Dr.scient 
Biology 

Metabolic profiling and species 
discrimination from High-
Resolution Magic Angle 
Spinning NMR analysis of 
whole-cell samples 

 2005 Sten Karlsson Dr.scient 
Biology 

Dynamics of Genetic 
Polymorphisms 

 2005 Terje Bongard Dr.scient 
Biology 

Life History strategies, mate 
choice, and parental investment 
among Norwegians over a 300-
year period 

 2005 Tonette Røstelien Dr.scient 
Biology 

Functional characterisation of 
olfactory receptor neurone types 
in heliothine moths 

 2005 Erlend Kristiansen Dr.scient 
Biology 

Studies on antifreeze proteins 

 2005 Eugen G. Sørmo Dr.scient 
Biology 

Organochlorine pollutants in 
grey seal (Halichoerus grypus) 
pups and their impact on plasma 
thyrid hormone and vitamin A 
concentrations. 
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