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Abstract 
 
After decades of power generating units increasing in size, there is currently a growing 
focus on distributed generation, power generation close to energy loads. Investments in 
large-scale units have been driven by economy of scale, but recent technological 
improvements on small generating plants have made it possible to exploit the benefits of 
local power generation to a larger extent than previously. Distributed generation can 
improve power system efficiency because heat can be recovered from thermal units to 
supply heat and thermally activated cooling, and because small-scale renewables have a 
promising end-user market. Further benefits of distributed generation include improved 
reliability, deferral of often controversial and costly grid investments and reduction of 
grid losses. The new appeal of small-scale power generation means that there is a need 
for new tools to analyze distributed generation, both from a system perspective and 
from the perspective of potential developers. In this thesis, the focus is on the value of 
power generation for end-users. The thesis identifies how an end-user can find optimal 
distributed generation systems and investment strategies under a variety of economic 
and regulatory scenarios. The final part of the thesis extends the analysis with a bottom-
up model of how the economics of distributed generation for a representative set of 
building types can transfer to technology diffusion in a market.  
 Four separate research papers make up the thesis. In the first paper, Optimal 
Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, 
a method for evaluation of investments in renewable power units under price uncertain-
ty is presented. It is assumed the developer has a building with an electricity load and a 
renewable power resource. The case study compares a set of wind power systems with 
different capacity and finds that capacity depends on the electricity price and that there 
under uncertain prices can be a significant value in postponing investment until larger 
projects are profitable. In the second paper, Combined Heat and Power in Commercial 
Buildings: Investment and Risk Analysis, a Monte Carlo simulation program to find the 
value and risk characteristics of combined heat and power units is presented. Using 
historical price data to estimate price process parameters, it is shown that uncertain 
prices should not be a barrier for investment, since on-site generators can adapt to 
uncertain prices and reduce the total energy cost risks. In, Optimizing Distributed 
Generation Systems for Commercial Buildings, which uses a mixed integer linear 
program, distributed generation portfolios that maximize profitability are tailored to a 
building's energy load. Distributed generation with heat recovery and thermally 
activated cooling are found profitable in an office and a health care building, using 
current generator data and energy tariffs from California. With the fourth paper, 
Distributed Energy Resources Market Diffusion Model, the analysis is taken a step 
further to predict distributed generation market diffusion. Market penetration is assumed 
to depend on economic attractiveness and knowledge and trust in the technologies. A 
case study based on the U.S. commercial sector depicts a large market for reciprocating 
engines and microturbines, with the West and Northeast regions driving market 
diffusion. Technology research and outreach programs can speed up and change the 
path of capacity expansion. 
 The thesis presents three different models for analyzing investments in 
distributed generation, all of which have benefits and disadvantages. Choice of model 
depends on the specific application, but the different approaches can be used on the 
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same problem to analyze it from different viewpoints. The cases in the thesis indicate 
that distributed generation can reduce expected energy costs while at the same time 
improve cost predictability. Further, the thesis identifies several important factors and 
potential barriers to distributed generation adoption. Analyzing distributed generation 
from the end-user perspective is important also for policy makers, because of the 
importance of estimating how the market will react to potential policy measures. The 
thesis shows that small-scale generating capacity has the potential to increase in the near 
future. Further research should increase the understanding of economic and 
environmental issues related to distributed generation, while policy makers should aim 
to construct and implement measures that make it attractive for end-users to invest in 
efficient local generating capacity. 
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Introduction 
 
Traditionally, electricity has been generated centrally in large power plants and 
transported to end-users through the grid system. In the future, the electricity system 
might consist of a combination of large central units and small autonomous power units 
distributed in the grid [1]. Distributed generation (DG), power generation close to 
electricity loads, offers end-users increased flexibility in provision of electricity as they 
can generate electricity on-site or buy from suppliers. When DG is economically 
attractive, the progress of the electricity system will be based on decisions made by a 
larger number of dispersed decision makers, as compared to the situation with the 
conventional central electricity system. Such a fundamental change in the electricity 
system creates a demand for new analytic tools and analyses to evaluate the economics 
of DG. This thesis aims to develop tools to evaluate the economics of distributed 
generation from the perspective of end-users and develop a method to predict how the 
economics for individual end-users can lead to market diffusion of the technologies.  
 The restructuring of the electricity system, which opened competition for 
electricity generation, has created a market for end-user technologies such as DG, which 
can provide lower energy costs and higher reliability. More frequent use of pricing 
schemes with incentives for end-users to change their consumption patterns has made 
DG more attractive. Technological progress has made several small-scale generation 
technologies competitive in many regions. Further cost reductions are expected as many 
of the technologies are not yet mature but have promising performances [2]. Generation 
closer to energy loads can supply electricity at high efficiency because otherwise wasted 
heat can be utilized and because grid losses can be avoided. Distributed generation can 
further provide an alternative to expensive and often controversial grid capacity 
investments. In addition, the end-user market is a potentially important market for 
renewable generation, which can be essential in the transition to a sustainable energy 
system.  
 This thesis consists of four separate papers, of which the first three apply three 
different methods to evaluate DG system economics from an end-user perspective, and 
the fourth is a bottom-up approach to predict DG market diffusion. In the first paper, 
Optimal Investment Strategies in Decentralized Renewable Power Generation under 
Uncertainty, a model for finding optimal capacity and investment thresholds for small-
scale renewables, under uncertain wholesale electricity prices, is presented. The model 
is applied to a case where a land owner can invest in small-scale wind power and shows 
how investment in different capacities and waiting for new information is the optimal 
decision for different wholesale price levels. The second paper, Combined Heat and 
Power in Commercial Buildings: Investment and Risk Analysis, analyzes the risk 
characteristics and investment value of combined heat and power (CHP) applications 
under uncertain electricity and natural gas wholesale prices using Monte Carlo 
simulation. Since a CHP system has operational flexibility, and therefore protection 
against unfavorable prices, it is expected that value can increase with price uncertainty 
and that CHP systems can reduce the energy cost risk, which is confirmed in the paper. 
The third paper, Optimizing Distributed Generation systems for Commercial Building, 
introduces a mixed-integer linear program to find optimal DG systems for building 
energy loads. In the analysis of two commercial buildings in California, DG systems 
with heat recovery and absorption cooling are profitable in all price scenarios, and have 
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a carbon emission reduction potential. In the last paper, Distributed Energy Resources 
Market Diffusion Model, the analysis is taken a step further by trying to predict how the 
economics of DG technologies will results in market diffusion under various research 
and outreach scenarios. The model is applied to the U.S. commercial building sector and 
displays a large market with a forthcoming adoption in the West and Northeast. Further 
research and outreach has a potential to speed up and also change the path of market 
diffusion of efficient DG technologies.  
 This introductory chapter is divided into four main sections. The next section 
presents the various DG technologies with current costs and performance, and provides 
an overview of the driving forces behind DG adoption and the benefits and challenges 
of increased DG market penetration. Then the third chapter gives and introduction to the 
research questions and methodologies presented in the thesis. The last chapter 
summarizes the major findings in the thesis and suggests some policy recommendations 
and areas for further work in the DG economic modeling space.  
 
 
Distributed Generation 
 
Distributed generation is broadly defined as power generation close to energy loads [1]. 
Pepermans et al. [3] have reviewed the definitions of DG currently used in the literature. 
They found that more specific definitions of DG vary widely. Some definitions focus on 
capacity as the most important characteristic of DG, however, some include generating 
units with a capacity up to ten MW while others allow for up to 100 MW. Several DG 
definitions claim that distributed generation must be connected to the low-voltage 
distribution grid, while some also allow for connection at the high-voltage transmission 
grid. Other definitions vary according to technology and some even use the term solely 
for renewable generation. After studying the various definitions, Pepermans et al. [3] 
suggest to define distributed generation as, "An electric power source that is connected 
directly to the distribution network or at the customer side of the meter." This thesis will 
generally use this definition of distributed power generation. Distributed energy 
resources (DER) is a term often used with the same meaning as DG but the International 
Energy Agency (IEA) defines DER as DG plus demand side measures. Yet another 
commonly used term is microgrid, which usually refers to two or more DG units 
connected to the grid through one common connection. Microgrids can be established to 
allow several end-users to share their load and utilize DG units together.  
 Figure 1 displays both a central and a distributed power system. In the central 
power system, power is generated at a central source and then transmitted to end-users, 
while in the distributed power system part of the energy is generated at or close to the 
energy loads. DG can be installed in industrial, commercial and residential sector as 
shown in the figure. 
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               Central Power System                              Distributed Power System  

 
 
Figure 1: Central versus distributed power system, from [4] 
 
 
Technologies and Applications 
 
This section gives an overview of the most common DG technologies, which here are 
grouped into thermal and renewable generation technologies. Other related technologies 
such as storage and solar heating are also sometimes defined as DER but do not have 
electricity generating capabilities, which is the focus of this thesis.  
 
Thermal Technologies 
 
Thermal DG is mainly based on fossil fuels but can also be based on bio-fuels - 
therefore also thermal technologies can be renewable. The reason why thermal units or 
units that are based on combustion are separated from renewable technologies is that 
they have important common characteristics. Thermal generating units can be equipped 
to recover the heat that results from combustion, and such combined heat and power 
(CHP) systems can have high total efficiencies. CHP systems can provide heat and 
power for both industrial and commercial buildings. Tri-generation systems, which can 
utilize recovered heat in absorption chillers in addition to in heat exchangers, can have a 
large potential in regions with sufficient cooling loads [2]. Thermal DG technologies 
can successfully be applied for stand-by power for customers with high reliability needs, 
such as hospitals, elevator loads and water pumping. Customers with poor load factors 
and high demand charges can use thermal DG for peak-shaving by producing at peak 
electricity load hours. Also electricity utilities use thermal technologies increasingly for 
grid support and peak-shaving, which can defer grid investments. Thermal DG includes 
the following technologies: 
 

• Reciprocating engines 

• Gas Turbines 

• Microturbines 

• Fuel Cells 

• Sterling Engines 
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Reciprocating engines (internal combustion engines) are widely used in automobiles 
and for marine transportation. Reciprocating engines are also presently the most 
common DG technology because they, as a well-developed technology, have relatively 
low costs. They are especially competitive in sizes under 1 MW but can be ordered in 
sizes up to 30 MW [1]. There are two main types of reciprocating engines: spark 
ignition and compression ignition based engines. Spark ignition units are typically 
fueled by natural gas when used for continuous operation but systems can also operate 
on bio-gas and landfill gas. Compression ignition units can operate on heavy fuel oil 
and diesel [5]. The technology of choice for most continuous power generating 
applications is spark ignited natural gas units, available in sizes from 10 kW to 7 MW.  
Reciprocating engines have many attractive characteristics: they generally have a high 
reliability, low start-up costs, they can follow electricity load well and have high part-
load efficiencies [5]. The low start-up costs make reciprocating engines the technology 
of choice for stand-by and peak shaving purposes. There are alternatives with low 
investment costs but lower efficiencies, which can be particularly suitable for such 
applications. A negative aspect of reciprocating engines is nitrogen oxide and particle 
emissions, which can deteriorate air quality, making them inappropriate in populous 
areas [6]. However, these emissions can be reduced with catalytic converters. 
 Gas turbines are commonly used for propulsion of airplanes but have also, from 
as early as the late 30s, been used for electricity generation. While they for a long time 
have been used for peak power plants, technological advances have made them an 
attractive choice also for base-load power. For sizes over a few MW, gas turbines are 
often a more cost-effective alternative for continuous operation. In addition to having 
lower installation costs in comparison to reciprocating engines in that size range, they 
can be particularly attractive for industrial purposes due to the high temperature in the 
recoverable heat. Although the overall efficiency can be high when heat is recovered, 
the electric efficiency can be slightly lower than that of reciprocating engines [1]. Gas 
turbines have higher start-up costs than reciprocating engines, which make them less 
suitable for emergency and peak-shaving use. Therefore, the main application is CHP 
for industrial purposes and commercial buildings. One of the largest benefits of gas 
turbines is that they can generate electricity with very low carbon and nitrogen dioxide 
emissions [5].  
 Microturbines represent a less mature technology than reciprocating engines and 
gas turbines, and are therefore usually not competitive on a pure cost basis. Yet, 
prospects are optimistic for microturbines because costs are expected to fall and because 
they have low emissions of nitrogen oxides, due to a low combustion temperature. 
Microturbines can have as much as eight times lower emissions than diesel engines and 
50 percent lower emissions than the best natural gas engines [5]. Microturbines are also 
attractive because they are relatively silent in operation and have higher reliability than 
reciprocating engines. The major application is for CHP in commercial buildings and 
for light industrial purposes, but they can also be used for peak shaving.  
 Fuel cells can generate electricity at high electric efficiencies (up to 60 percent) 
using hydrogen as the fuel. They are like microturbines, silent in operation and have 
very low emissions. The fuel cell technology is, however, in an early stage of 
development and costs are presently very high. Still, fuel cells are available on the 
market and systems are installed, but in 2001 the worldwide capacity was no more than 
70 MW [7]. The commercially available units are a few hundred kW but several 
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companies have launched plans to introduce household sizes in a few kW. Potential 
applications will depend on the development in equipment performance; to date 
reliability has not been validated although some tests have been promising [5]. 
 Sterling engines use an external combustion process to change the pressure of a 
gas that drives a piston to generate electricity, which makes them flexible in fuel use. 
They have their potential market in the residential and small commercial building sector. 
Models that are currently under development are in the size from 1-55 kW. Although 
they have a very high potential efficiency, available units have efficiencies comparable 
or lower than microturbines. Because of current costs the technology must overcome 
large technological hurdles before commercial applications can be commonplace [5]. 
 Table 1 displays approximate costs and performance of the thermal DG 
technologies. 
 
Table 1. Approximate costs and performance of thermal DG technologies [1], [5], [8] 

 Reciprocating 
Engines 

Gas 
Turbines 

Micro-
turbines 

Fuel Cells Sterling 
Engines 

Fuels 
 
 

diesel, 
natural/bio 

gas, oil 

natural / 
bio gas 

natural/ 
bio gas 

hydrogen natural/ 
bio gas, 

oil, 
Size Range (kW) 20-5000 + 1000- 30-200 50-1000 + 1 -55 + 
Efficiencies (%) 28-42 21-41 25-30 35-60 25 + 
Turnkey Costs ($/kW) 350-1000 650-900 1000-1300 1500-3000 - 
Heat Recovery Costs ($/kW) 200-400 100-500 200-400 200 + - 
Absorption Chiller Costs* 
($/kW) 

300-1000 250-800 400-800 300 + - 

O&M Costs ($/MWh) 5-15 3-8 5-10 5-10 - 
CO2 Emissions (kg/MWh) 500-650 580-680 ~720 430-490 low 
NOx - Emissions (kg/MWh) 0.2-10 0.3-0.5 ~0.1 0.005-0.01 low 

*Includes heat recovery 
 
Renewable Technologies 
 
The most important renewable DG technologies include 
 

• Hydropower 

• Photovoltaics 

• Wind Power 
 

Renewable distributed generation can be used to provide part or all of the electricity for 
residential and commercial buildings. Often renewables are used in rural areas without 
grid connection, but they can increasingly compete with central power generation on a 
pure cost basis. Renewable generation is typically very capital intensive but has low 
operating costs since there no fuel costs. In general, renewable generation is intermittent 
with the exception of small hydropower installations, which sometimes have some 
storage potential in small reservoirs. Hydropower is currently the most competitive 
small-scale renewable energy resource. In Norway, capacity is growing and systems 
have been found competitive at current electricity wholesale prices, without serving 
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private loads for which electricity must be purchased at end-user prices that also 
includes transmission costs [9].  
Photovoltaic (PV) systems' costs are currently too high for a wide-spread commercial 
adoption. An advantage with photovoltaics is that their production profile coincides 
with the load profile and, therefore, also peak electricity prices in summer peaking 
electricity systems. However, capacity factors are fairly low, ranging from 10 % in 
Germany to 22 % in California [1]. Despite the costs, PV capacity is growing 
exponentially due to governmental support and high electricity prices in several regions. 
Most PV potential is assumed to be in the household size range because costs are 
similar for all sizes while the competing technologies have relatively higher costs for 
small installations. The state of California recently passed a bill that intends to promote 
installations on a million rooftops, or a total of 3000 MW PV installations by 2020 [10]. 
Such investments driven by subsidies can reduce PV costs because of expected learning 
effects. Combined with the currently intense research efforts in the field, the future can 
be bright for PV.  
 Small-scale wind turbines represent another currently immature technology that 
can expect significant cost reductions the coming years. The American Wind Energy 
Association [11] expects the costs for 5-15 kW wind generators to be reduced from 
around 3500 $/kW in 2002 to 1200-1800 $/kW in 2020 and the annual production for an 
average U.S. sites to be increased from 1200 kWh/kW to 1800 kWh/kW. Slightly larger 
wind turbines are currently profitable in good sites and in regions with high electricity 
costs. Several U.S. states have net metering regulation for small renewable energy 
installations, which allows the meter to run backwards, effectively allowing electricity 
generated at low load periods displace expensive retail priced electricity purchases. In 
Norway, case studies have found currently installed wind power projects with a positive 
net present value (NPV); in several of the cases, some of the load displaces electricity 
purchases from the local utility and the remaining electricity is sold at wholesale prices 
[9]. Large wind turbines are often clustered in large wind parks and connected to the 
grid at the transmission level. Such systems would not usually be considered distributed 
generation.  
 If costs are reduced, storage technologies can enhance the economics of 
renewable energy because the electricity generated at off-peak hours can be used at 
peak-hours and smaller systems can generate a larger share of the local demand.  
 Table 2 displays approximate costs and performance of small-scale renewable 
DG technologies. For wind power and hydro power, the costs especially depend a lot on 
the size due to economy of scale in production. The installation costs for PV systems are 
the main reason why there is a slight decrease in costs with size, as PV systems are 
modular. PV systems have the lowest capacity factors because generation is limited to 
daylight hours while hydropower units can have the highest capacity factors in cases 
with abundance of running water. 
 
Table 2. Approximate costs and performance of renewable DG technologies [1], [12] 

 Hydropower Photovoltaics Wind Power 
Size (kW) 0.5+ 0.2+ 0.2+ 
Turnkey Costs ($/kW) 1000-6000 5000-9000 1000-3500 
O&M Costs ($/MWh) 0.3-4 1-4 1-9 
Capacity Factor 0.1-0.8 0.1-0.2 0.1-0.3 
Expected Lifetime (years) 30 20-30 20 
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Driving Forces, Benefits and Challenges 
 
The International Energy Agency suggests that there are five main drivers behind the 
increased interest and policy attention given to DG: electricity market liberalization, 
developments of DG technology, constraints on construction of new power lines, 
increased customer demand for reliable power and concerns about climate change [1].  
 In a liberalized power market, electricity is sold in a competitive market and 
investments in generation capacity must recover the investment costs through uncertain 
electricity prices. This contrasts with a regulated environment where the investment risk 
usually is passed on to the end-user because electricity utilities can recover their costs 
through regulated electricity tariffs. Small units with lower investment lead times can 
have less associated risk than larger units because investment strategies based on them 
can be more flexible in adapting to uncertain prices. Further, with the liberalization 
process, time varying price signals are increasingly sent directly to end-users with 
electricity rates, such as real time pricing, which can be beneficial for DG units that 
typically operate during peak hours. The restructured market also allows for new niche 
DG markets such as supplying generators for increased end-user reliability [1].  
 Improvements in power electronics have made it possible to interconnect DG 
safely and a low cost to the grid [2]. In many regions of the world, distributed 
generation technologies such as reciprocating engines, gas turbines and small scale wind 
power are currently cost-effective alternatives to central power generation [6]. Several 
immature technologies have promising efficiency and emissions performance, and 
further investments and research can make them cost-competitive in the near future. 
Historically, the most efficient electricity generating units have been the largest units, 
but currently the most efficient gas turbines, for example, are around 40 MW [13]. 
 Investments in power lines are lumpy by nature, often capital intensive and 
controversial due to health and esthetic concerns. DG can be an alternative to grid 
investments, and can be particularly beneficial under uncertain load forecasts because of 
their modularity. Several studies ([14];[15];[16]) have shown that DG can be used to 
defer investments in grid capacity thereby reducing system costs. 
 Modern power electronics can allow grid-connected DG to be utilized also after 
a grid outage, and thus, increase the reliability in electricity supply for a building with 
DG [17]. Electricity supply outages can infer large losses to certain groups of customers, 
and they will therefore often have a willingness to pay for the reliability improvements. 
 One of the largest environmental challenges facing us today is climate change, 
and the electricity sector is one of the largest emitters of greenhouse gases from the 
combustion of fossil fuels [2]. Distributed generation is important because it creates a 
market for renewable power generation, which has no operational greenhouse gas 
emissions. Further, distributed generation, which by definition is close to energy loads, 
allows for the utilization of the heat created by combustion that would be waste heat in a 
central power plant. The opportunity to use the recovered heat gives DG a high energy 
efficiency potential, and therefore an ability to reduce emissions of greenhouse gasses 
compared to central generation. DG can also improve energy system efficiency because 
there are no transmission losses; for example, in the U.S. energy system the average 
electricity grid losses are 9 percent [2].  In areas with cooling loads, absorption chillers, 
provide an opportunity to use heat also in periods and regions where heat loads are low. 
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A review of DER benefits by National Renewable Energy Laboratory [18] further lists 
the potential for voltage control and provision of ancillary services as important DER 
application and value. 
 Although distributed generation has several benefits, there are also many related 
challenges. One of the major challenges is operation of the grid with a high share of 
electricity generators outside the control of the system operator [5]. A high share of 
intermittent DG can be a particular challenge for the future reliability of the system. It 
should, however, be noted that the availability of standby generators also provides an 
additionl capacity which can be valuable under high demand periods; this was the case 
in New York in the summer of 2001 where DG generators helped avoid large outages 
[1].  
 Distributed generation can provide electricity without losses, but the effect on 
the distribution losses in the grid is more complicated. A study [19] found that low DG 
penetration usually decreases losses while a high penetration could increase losses. 
However, losses could be minimized with a high penetration if DG was sufficiently 
dispersed.  
 It is also important to realize that even though DG has a potential for a high 
efficiency when heat is recovered, the electrical efficiency for most resources are lower 
than modern central units. Therefore, improved system efficiency depends on the 
operation of DG. At the same time, central efficiency can be low at peak hours and even 
DG systems electrical efficiency can be higher than then central peaking units, 
especially when grid losses are accounted for. An increased share of DG, therefore, 
makes it even more important that the end-user see the real marginal price in the system 
because incorrect tariffs can lead to inefficient operation of the system as a whole. 
 Another challenge with DG is the fact that some of the units can lead to local 
emissions, which can be a realistic health concern. A study by Heath et al. [20] finds 
that the mass of pollutant inhaled per kWh of electricity generated can be up to a three 
orders of magnitude greater of DG units than by central Californian power stations due 
to the proximity of the generation to the population centers. The study question the 
common embrace of DG technologies that can increase public health burden. Thorough 
analysis should find balance in local and global emission concern and set regional 
emission standards. 
 Electricity utilities might see DG as competitor in supply of electricity and might, 
therefore, discourage DG, which has been seen in Japan [1]. Many countries have 
complicated connection rules which can be a barrier to DG adoption. Some countries 
have simple connection standards and several countries are currently establishing them 
to make DG adoption simpler [1]  
 Distributed generation has several benefits but also many related challenges. 
Most likely, capacity will increase in the coming years. Distributed generation market 
adoption and environmental and economic impact depend on technological progress, 
but also on research on DG system benefits and the willingness of policy makers to 
transform the knowledge of DG benefits to implementation of intelligent market design 
and energy policy.  
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Thesis Focus and Methodology 
 
This section introduces the four papers and the methodologies that have been used in the 
analyses. The focus in the first three papers is on modeling investment strategies and 
economic value of distributed generation to end-users, whereas the fourth paper 
additionally models the relationship between the economic value for potential adopters 
and actual market diffusion. In a restructured market, the value of distributed generation 
is based on uncertain future electricity prices, and for thermal technologies, also 
uncertain fuel prices. Wholesale prices of electricity, in a restructured market, are set in 
the market place in the same way as prices of most other commodities, such as the 
common DG fuel natural gas. 
 The first paper, Optimal Investment Strategies in Decentralized Renewable 
Power Generation under Uncertainty, presents a method for evaluation of investments 
in renewable DG under price uncertainty, for a building owner with an electricity load 
and a renewable power resource. The owner of the building has a deferrable opportunity 
to invest in one power generating unit. It is assumed that the developer's objective is to 
maximize the profits from the renewables. A set of alternative power units, with 
different capacities and costs are compared for this analysis. The distributed power that 
is produced displaces local electricity load when they coincide, and the surplus 
electricity is exported to the grid. Increase in generator capacity means more power 
generation and a lower investment cost per kW, but at the same time, a larger share of 
the electricity is exported and thus valued at the lower export price. Since small units 
can produce most of the electricity at times when it is valued at the retail price, capacity 
choice is not straightforward and the capacity that maximizes NPV can be a function of 
the electricity price. With an uncertain and growing price it can be beneficial to wait for 
larger projects to be profitable. The problem is to find the price triggers, at which it is 
optimal to invest, and in which capacity to invest. The long-term electricity price is 
modeled as a geometric Brownian motion, a simple stochastic process commonly used 
for financial applications, and price process parameters are estimated from Nord Pool, 
the Nordic electricity market. 
 The paper uses real options methodology, a method to evaluate investment under 
uncertain market prices. The methodology has been developed from pricing methods for 
valuing stock options [21]. A stock option gives the holder the option to buy an 
underlying asset at a given price, the exercise price. European options only allow the 
owner to exercise the option at a specific time, while American options allow the owner 
to exercise the option anytime within over a given time horizon. Holders of a European 
option will exercise it if the asset price is over the exercise price while the holder of an 
American option only will exercise it if it has sufficient return. An opportunity to invest 
in a generating plant can be viewed upon as an American option with an infinite horizon 
if a concession is not setting a time limit on construction. The discounted value of the 
power plant is the underlying asset and the investment cost is the exercise price. 
Because DG developers usually can postpone the investment and because the 
underlying price that determines the value of the project follows a stochastic process, 
real option analysis provides a useful framework for evaluating DG investments. The 
use of a simple stochastic process, such as Brownian motion, allows for closed form 
solutions to the investment timing problem. In the paper, future electricity prices are 
estimated from the electricity forward markets. A forward market allows producers and 
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consumers of electricity to agree on prices for delivery in the future. Therefore, forward 
markets provide a risk-adjusted price forecast and historic data can indicate price 
volatility. For an introduction to the real option literature, the text books Dixit and 
Pindyck [21] and Trigeorgis [22] are good starting points. For further readings on 
stochastic price processes applied to energy commodities see Clewlow and Strickland 
[23]. 
 Thermal DG profitability depends on stochastic fuel prices as well as electricity 
prices. Thermal generation technologies are different from renewables because they 
have operational flexibility, meaning that the power output levels can be controlled. 
With uncertain prices, flexibility usually has a value and such equipment can therefore 
be beneficial. As a simple illustration, every hour of operation of a DG plant can be 
viewed upon as a European option to generate electricity. The electricity price is the 
underlying asset, and the sum of the natural gas price and the operational costs 
represents the exercise price. The value of the plant is then simply the integral of all 
European options over the lifetime. Since operation can be viewed upon as options, it is 
natural to hypothesize that the value, as with financial options, increase with uncertainty 
and that DG, as financial options, can hedge the building cost risks. For most 
commercial buildings, the electricity tariff structure often includes a demand component 
that is proportional to the maximum electricity load over a month or a shorter period. 
Therefore, hourly operation is not independent of operation in other hours and operation 
levels must be found by optimization or by choosing the best of a set of alternatives. 
Still, operation has operational flexibility, since operation will depend on the stochastic 
prices. Another real option method for evaluating investments under uncertain prices is 
to use Monte Carlo simulation. In Monte Carlo simulation of stochastic prices, random 
numbers are drawn from a distribution to estimate price changes. Simulations of price 
paths are performed a number of times, and in each time step operational decisions are 
made and used to estimate profitability. After the simulations are completed, 
distributions of the plant profitability can be found. A strength of Monte Carlo-based 
methods is that they can be applied to more sophisticated price processes and models, 
for which there exist no closed form solution. For a broad introduction to Monte Carlo 
simulation with applications to finance, see the text book by Glasserman [24], and for 
applications to modeling energy prices see Clewlow and Strickland [23].     
 The second paper, Combined Heat and Power in Commercial Buildings: 
Investment and Risk Analysis, uses Monte Carlo simulation of the electricity and natural 
gas price to determine value and risk characteristics of investments in CHP systems. 
While the first paper considers the option to invest, this paper considers the option to 
operate, and it values the investment as a sum of the value of the options to operate. The 
analysis is from a developer’s perspective, who would decide to invest based on a NPV 
criterion, that is invest in the project with the highest positive NPV with the required 
rate of return. Both electricity and natural gas prices are modeled as two correlated 
mean reverting processes, a process where it is assumed that prices have a tendency to 
revert back to a long-term average if they drift over the equipment lifetime. A set of 
alternative CHP systems with different capacity are compared in the analysis. On-site 
generation has operational flexibility, and will therefore operate when expected income 
is larger than expected cost. It is assumed that the building electricity consumption is 
subject to a daily demand charge and that on-site generators only can satisfy the local 
load, thus there are no exports to the grid. Operation levels are found as the level of a set 
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of discrete alternatives, which maximize profits for every time step and in every 
simulation. The results from the case study reveal that both investment value and 
standard deviation of the investment increase with uncertainty in the electricity price 
and that CHP has a potential to reduce building energy cost risk. The optimal size is 
sensitive to demand charges and energy costs.  
 A shortcoming of the real option analyses, both the one based on a closed form 
solution and the one based on Monte Carlo simulation, is that they only compare a 
discrete set of investment options. For an end-user who wants to invest in distributed 
generation systems there may be many different combinations of power generating 
equipment. Optimization or mathematical programming is concerned with finding the 
maximum or minimum of an objective function, often given constraint on the variables 
in the objective function. In linear programming, the objective function and constraints 
are linear while in integer programming the variables can only hold certain integer 
values. Uncertainty can be included in optimization programs by including price 
scenarios and probabilities. For an introduction to mathematical programming a good 
starting point can be the text book by Bertsimas and Tsitsiklis [25]. 
 The model presented in the paper Optimizing Distributed Generation Systems 
for Commercial Buildings finds optimal systems and operation of distributed generation 
systems. Because DG units are sold in discrete capacities and because the operation 
levels of the generators are discontinuous the chosen methodology is mixed-integer 
linear programming. Several units with various cost and performance are considered for 
investment and the program can chose a combination of units as the optimal generating 
portfolio. The objective function in the model is to maximize annual benefits of DG 
systems. Important constraints are that displaced energy loads must be lower than the 
building load and that generators must produce within upper and lower limits if turned 
on. The model is applied to simulated load data for a health care and an office building 
in California. Important factors for distributed generation profitability under various 
price and regulatory assumptions are identified in the paper. With time-of-use (TOU) 
electricity prices with monthly demand charges, the ability to reduce demand charges 
can be a critical factor for the profitability of generating systems. In all modeled price 
scenarios, DG systems with heat recovery are profitable and have carbon emission 
reducing potential. 
 The first three papers have shown how individual end-users can evaluate 
investments in distributed generation. From a policy maker point of view it is essential 
to have an understanding of how DG economic attractiveness for the various building 
classes relates to actual technology diffusion. Different end-users will have different 
expectations of return on investment and different knowledge and trust in a new 
technology, which complicates prediction of DG diffusion. New technologies are 
usually diffused into the market with a slow initial adoption followed by an exponential 
growth and a later decline due to market saturation. Such S-curved market diffusion 
cannot be explained by economic attractiveness alone, but are due to the spread of 
technology knowledge and trust by word-of-mouth and sometimes outreach programs. 
The fourth paper, Distributed Energy Resources Market Diffusion Model, presents a 
model that can be used to predict market diffusion of distributed generation. The model 
is applied to a case to predict diffusion of distributed generation in the U.S. commercial 
building sector under different technical research and technology outreach scenarios. 
The work has focused on the most promising technologies in a short and medium term, 
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reciprocating engines and microturbines. Distributed generation market diffusion is 
assumed to depend on a combination of economic attractiveness and the knowledge 
about the technology in the market. Economic attractiveness is modeled with a bottom-
up approach using a mixed-integer optimization program to find optimal systems, 
operation and profitability for a number of representative buildings. Optimal systems 
are found in five building types, two sizes and in four regions to account for differences 
in building characteristics, energy markets and climate. Technology knowledge can be 
spread by word-of-mouth and by information programs. Technology diffusion is 
predicted in two scenarios: a baseline scenario and a program scenario where additional 
research improves technology performance and stronger outreach programs increase the 
level of technology knowledge. The case shows that DG systems can be a profitable in 
for several building types and regions of U.S., and that DG adoption can increase 
substantially with continued technology research and outreach. 
 
 
Thesis Conclusions and Recommendations 
 
The first three papers in the thesis analyze investments in DG from the perspective of 
the end-user. The first paper, Optimal Investment Strategies in Decentralized Renewable 
Power Generation under Uncertainty, uses real options methodology to evaluate 
investments in wind power turbines of different sizes under uncertain electricity prices. 
Uncertain prices make it attractive to wait for a higher price in the market than the NPV 
break-even price. In the case study, wind turbines can displace electricity at a retail 
price, that includes both wholesale prices and transmission costs, and sell excess 
electricity at a lower wholesale price. The results suggest it is optimal to wait for 
significantly higher prices than the net NPV break-even price due to uncertainty and 
price growth. The optimal capacity choice depends on the current market price, 
expected price growth and price volatility because it can be valuable to wait for larger 
capacities to be more profitable. Reductions in price volatility will shrink the price 
levels where waiting is optimal. The model shows that developers of renewable DG 
may have incentives to postpone investment considerably to wait for larger units to be 
more profitable than the smaller units. Regulation that sets time limits on DG subsidies 
and the concession to install DG or that allows for net metering might give incentives to 
invest earlier.  
 The second paper, Combined Heat and Power in Commercial Buildings: 
Investment and Risk Analysis, uses Monte Carlo simulation to evaluate the value and 
risk characteristics of investments in CHP systems. The analysis suggests that 
uncertainty in wholesale prices should not be a barrier for investment in CHP because 
both the value and the CHP energy costs potential can increase with increased 
electricity price volatility. Value increases with uncertainty because CHP generators can 
adapt to the uncertain prices by changing operation levels; the on-site generators can 
benefit from high prices while they shut down when prices are low and thereby capture 
only the upside of the price volatility. Further, a large share of CHP value comes from 
transmission and distribution charges which often are more predictable than wholesale 
prices. A high correlation in the electricity and natural gas prices leads to a low standard 
deviation in the simulated NPV of the CHP systems; a reduction in the price correlation 
can increase the standard deviation in the NPV and expected NPV, because of 
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operational flexibility, and decrease the total building energy costs standard deviation. 
The analysis has shown that CHP units both can decrease expected energy costs and 
standard deviation under several electricity price parameter scenarios. Demand charges 
and transmission and distribution costs are important for choosing the size of on-site 
generating systems.  
 In the third paper, Optimizing Distributed Generation Systems for Commercial 
Buildings, optimal DG system are found with a mixed-integer linear program. The case 
study, based on San Francisco energy rates and climate, find DG to be profitable in a set 
of price scenarios for both a health care and an office building. Cooling technologies are 
found to be attractive in the temperate climate and with the high electricity tariffs. The 
DG systems can reduce carbon emissions compared to central generation. In the paper, 
the sensitivity in profitability to monthly demand charges shows that they can be of vital 
importance for DG profitability. Monthly demand charges are potentially risky for DG 
developers because the case of an unexpected outage in q peak electricity demand hour 
can lead to great losses. Therefore, demand charges can be barriers to DG development. 
The current tariff structure was created before widespread DG adoption and has 
assumed that buildings have predictable load profiles over the month. Distributed 
generation installation can make demand for utility electricity much more variable, 
therefore the tariff structure needs a review to make sure it gives the right incentives for 
adoption of efficient DG.  
 The first three papers introduce three different methods to evaluate DG 
investments, all of which have their benefits and disadvantages. The closed form real 
option method has the benefit of suggesting the timing of the investment, the Monte 
Carlo method can evaluate risk characteristics of an investment and are able to 
incorporate complex stochastic processes, while the optimization program can find the 
optimal combination of units. The different methods fit different problems and a main 
challenge lies in finding the correct method for each problem. If Monte Carlo simulation 
was applied to the renewable DG investment, risk characteristics of the investment 
could also be added. Monte Carlo analysis can also be applied to value the investment 
option by least squares Monte Carlo simulation, which includes a calculation of the 
expected NPV at different price levels [24]. Optimization would not be necessary in the 
wind turbines analysis because only investments in wind turbines were possible. The 
closed form real option method could be applied to the CHP problem, but only with a 
simpler price process assumption. The Monte Carlo and the optimization program are 
applied to similar problems and an investment evaluation could include both methods. 
The major drawback with the optimization program is that optimization programs only 
find optimal system based on maximization of the profits and will not report a next-best 
solution that can have a very close solution in terms of expected value and much more 
favorable risk-characteristics. For further work, more sophisticated simulation and 
optimization programs that allows for investment in several periods could be 
constructed, both least squares Monte Carlo simulation methods and multistage 
optimization programs. Although there will exist very many strategies for investment 
over many periods, a set of qualitatively different strategies compared with Monte Carlo 
methods and few systems with investment option only in a few stages for the 
optimization program could provide a DG developer with additional knowledge for 
choice of investment strategy.  
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The fourth paper, Distributed Energy Resources Market Diffusion Model, suggests a 
way of modeling how distributed generation can diffuse into markets under various 
technology research and outreach scenarios. The model is applied to the U.S. 
commercial market and the results depict a large and diverse market where both optimal 
installed capacity and profitability varies significantly across regions and building types. 
The technology diffusion model suggests that the West region will take the lead in on-
site installations, and that the Northeast and Midwest regions will follow, while the low 
electricity costs in the South makes it impossible for on-site generation to compete with 
utility purchases. The analysis further describes a market in an early stage, where 
research and information outreach can shape the future. Technology research has the 
potential to increase distributed generation adoption and revolve technology adoption to 
a more efficient alternative. Outreach programs and marketing can speed up adoption.  
 This thesis develops three models for valuation and finding investment strategies 
in DG and one model for predicting DG market diffusion. The case studies show that 
DG can have a high economic value to end-users, and that DG can have beneficial risk 
characteristics. Several factors that are important for DG economics and potential 
barriers to DG adoption are identified in the thesis. Knowledge of how DG is seen from 
an end-user standpoint is as important for policy makers as it is to the end-users 
themselves. The case with market diffusion commercial building sector shows a large 
DG potential in the U.S. commercial building sector. An important challenge for further 
research is to develop models that analyze system benefits of distributed generation. 
Combined with an increased understanding of system benefits of DG, further research 
should suggest tariff structures, subsidies and taxes that give DG developers incentives 
to develop DG systems that improve the electricity system's environmental impact and 
reduce system costs.  
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Abstract 

This paper presents a method for evaluation of investments in decentralized renewable 
power generation under price uncertainty. The analysis is applicable for a building 
owner with an electricity load and a renewable resource that can be utilized for power 
generation. The owner of the building has a deferrable opportunity to invest in one local 
power generating unit, with the objective to maximize the profits from the opportunity. 
Renewable electricity generation can serve local load when generation and load 
coincide in time, and surplus power can be exported to the grid. The problem is to find 
the price intervals and the capacity of the generator at which to invest. Results from a 
case with wind power generation for an office building suggests it is optimal to wait for 
higher prices than the net present value break-even price under price uncertainty, and 
that capacity choice can depend on the current market price and the price volatility. 
With low price volatility there can be more than one investment price interval for 
different units with intermediate waiting regions between them. High price volatility 
increases the value of the investment opportunity, and therefore, makes it more 
attractive to postpone investment until larger units are profitable. 
 
Keywords: Distributed generation, renewables, small-scale wind power, investment 
appraisal, real option valuation 
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1. Introduction 
 
With increasing emissions and rising volatile oil prices, both large-scale and small-scale 
renewable power generation will be key ingredients in the electricity future. In the past 
decade there has been a trend towards liberalizing electricity markets, which has created 
exchanges for spot trading and financial markets. Driven by electricity market 
liberalization and cost improvements for small-scale power units, the future electricity 
system can include significant generation at end-users. This change increases the 
demand for market-based valuation and decision support tools for generation capacity 
for electricity customers. The following will present a method for finding optimal 
investment strategies in decentralized renewable power generation with an uncertain 
future electricity price, from the perspective of the developer. Finding optimal 
investment strategies includes finding both the optimal capacity and the timing of the 
investment. The setting of the analysis is in a liberalized power market with a market for 
trading electricity on spot and forward contracts (contracts for delivery in the future). 
The methodology can be applied to all types of decentralized renewable power 
generation, including wind power, photovoltaic power and hydropower. These 
technologies share some important properties such as the high initial investment cost 
and the intermittent uncontrollable power generation.  
 Distributed generation has many potential system benefits, such as reducing 
power losses from the grid, deferring grid capacity investments, reducing emissions and 
reducing the costs of electricity generation [1]. Much of the present literature on 
investment in distributed generation (e.g. [2] and [3]) takes the utility and societal 
perspective and focuses on wider system benefits. This paper instead takes the 
perspective of a building owner who wants to maximize private profits, with a building 
that consumes electricity and has a renewable resource available. We compare different 
systems and find optimal timing for renewable power generation under electricity price 
uncertainty. The investment model developed is based on the real option literature, and 
uses the text book by Dixit and Pindyck [4] as the main reference. The real options 
methods can be used to find the value of flexible investment strategies under uncertainty, 
such as being able to postpone an investment, value that is not included in a now-or-
never investment evaluation. Another recommended reference is the textbook by 
Trigeorgis [5]. 
 In the model, we assume that the plant is metered hourly in such a way that the 
electricity generated from a local power generating unit will displace electricity bought 
from the grid, and excess electricity can be sold back to the grid. Displaced electricity is 
valued at a retail price (including grid tariffs and taxes), and exported electricity is 
valued at a price close to the wholesale price. The model we develop can also be applied 
to cases with different metering regulations such as net metering, where the retail price 
is received also for the generated power that does not coincide with the building load.  
In a situation with hourly metering, the time correlations between generation, 
consumption and prices are important for the profitability of the power generating unit 
because displaced electricity and exports are valued at different prices. At the same time, 
power generation that is positively correlated with the electricity price variations will 
have a higher value. This can for example be the case for wind power in Norway 
because both wind speeds and spot prices are highest during the winter months. 
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 We assume the owner of the plant can choose between different discrete capacity 
choices up to a maximum capacity, which is constrained by resource availability or 
regulation. With a low installed capacity a large portion of the power generation will be 
for building consumption, which has the retail electricity price value, but small units 
typically have a high investment cost per kW. Larger systems have a lower investment 
cost per kW but the added generation can for a large part be exported, and hence, is only 
valued at the export price that is lower than the retail price. Therefore capacity choice is 
not straightforward. The optimal capacity is the capacity with the highest net present 
value. However, the optimal capacity can vary with the electricity price, and therefore, 
with time.  
 We derive an expression for the net present value of each investment alternative, 
using the price information from the forward market which directly reveals the value of 
future delivery of electricity.  The long-term electricity price is assumed to be uncertain, 
while all other inputs are modeled deterministically. We assume capacity choice is a 
choice between mutually exclusive capacities, and we derive a method for valuing the 
investment opportunity for each capacity. If an investment opportunity for any capacity 
is worth more than the expected net present value, investment is postponed. Investment 
is optimal when the most valuable investment opportunity has the same value as the 
expected net present value of the underlying project. We illustrate the model using an 
example with small-scale wind power alternatives for an office building in Norway.  
 The paper is organized as follows; in section 2 we present our stochastic long-
term electricity price process, and in section 3 we show how we model the expected net 
present value of the investment in power generating units. Section 4 introduces 
valuation under uncertainty and shows how to find optimal investment thresholds and 
capacity choice under uncertainty. Section 5 presents the input data used for the analysis, 
and section 6 presents the results from the wind power example, which together with the 
limitations and potential applications of the research, are discussed in Section 7. 
 
 
Nomenclature 
 
Indices 
h   Time (h) 
i   Power generating unit considered in preliminary analysis (1..N) 
j    Power generating unit considered for investment under uncertainty (1..M)  
m    Indifference point where two net present value function of different  
  power units have the same value 
t    Time (y) 
 
Endogenous Variables and Constants 

jA    Constant in option value function  

1B   Constant in option value function around an indifference point  

2B   Constant in option value function around an indifference point  
( )jF S    Value of the investment opportunity before investing in plant j ($) 

DiG   Annual power generation that displaces electricity load for unit i (MWh/y) 
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EiG    Annual power generation that are exported for unit i (MWh/y) 

DiK    Correction factor for the annual average price of displaced electricity for  
  unit i  

EiK    Correction factor for the average price of exports for unit i  
( )NPV S  Net present value of the most profitable capacity ($) 

, ( )Di tP S  Annual effective price of displaced electricity load for unit i ($/MWh) 

, ( )E i tP S  Annual effective export price for unit i ($/MWh) 
S   Electricity start price adjusted for short-term deviations ($/MWh) 

( )jV S    Value of unit j after investment and in perpetuity ($) 

jZ    Optimal investment interval for power generating unit j ($/MWh) 

,Di hg    Hourly substituted electricity load for unit i (MWh) 

,Ei hg   Hourly power generation for exports for project i (MWh) 
( )inpv S   Net present value of investment in power generating unit i ($) 

u   Control decision (invest or wait) 
( )iv S   Present value of a power plant during the lifetime of one unit ($) 

,i tx    Annual cash flow for project i ($/y) 

jz    Optimal investment threshold for power plant j ($/MWh) 
*z    Lowest price at which investment is optimal ($/MWh) 
1β    Positive solution to quadratic equation from differential equation 

2β    Negative solution to quadratic equation from differential equation 

tε    Normally distributed random continuous process with a mean of zero and 
  a standard deviation of one  

iΘ    Simplifying variable in the equation for the annual cash flow ,i tx  

jϒ    Simplifying variable in equation for ( )jV S  

iΦ    Simplifying variable in equation for the annual cash flow ,i tx  

jΩ    Simplifying variable for the equation for ( )jV S  
 
Input Data 

iC   Capacity of the power plant i (kW) 

iD   Hourly electricity load (kWh) 

iI    Turn-key investment cost for power generating unit i ($) 

iO    Annual operation and maintenance costs of power generating unit i ($/y) 

0S    Electricity start price adjusted for short-term deviations at time of   
  analysis ($/MWh) 

iT   Expected lifetime of power generating unit i (y) 

,i hg    Hourly power generation for power generating unit i (MWh) 
r    Risk-free nominal interest rate (1/y ) 
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hs    Hourly historic spot price ($/MWh) 
s    Annual average historic spot price ($/MWh) 
α    Expected annual risk-adjusted growth in the electricity price (1/y) 
γ    Grid tariff ($/MWh) 
δ    Value added tax   
λ    Supplier mark-up ($/MWh) 
σ    Annual volatility in the electricity price (1/y) 
 
 
2. Stochastic Long-Term Electricity Price Process 
 
The choice of price description is important in an investment analysis. Stock prices are 
often described by random walk models where price changes are independent of the 
current price and, therefore, independent of historical movements. The most commonly 
used model is Brownian motion with a deterministic growth factor and a random term 
that depends on stock volatility. A typical characteristic of commodity prices is that they 
have a tendency to revert around a long-term average cost of generation. Therefore, 
prices that deviate from the long-term average cost will have a higher probability of 
moving towards the long-term average than away from it. The mean reversion can be 
due to varying renewable generation, such as in the hydropower dominated Nord Pool 
market in the Nordic countries, or due to mean reversion in fuel prices. Models that take 
this property into account are called mean-reverting models. Lucia and Schwartz [6] 
have studied the prices in the Nordic electricity market using one- and two-factor 
models. In the one factor models, the prices are assumed to follow a mean reverting 
process. In the two factor models, the short term variations in the prices are assumed to 
follow a similar process, and the long-term variations are assumed to follow arithmetic 
or geometric Brownian motion. The two factor models have the better fit to the data. 
However, Schwartz and Smith [7] argue that when considering long-term investments, 
the long-term factor is the decisive factor. Similarly, Pindyck [8] claims that when 
considering long-term commodity related investments, a geometric Brownian motion 
description of the price will not lead to large errors. Although using a geometric 
Brownian motion to model price dynamics ignores short term mean reversion, an 
investment in a renewable power generating unit should be regarded as a long-term 
investment, where the short-term mean reversion has minor influence on values and 
investment decisions. Especially in Nord Pool where the mean reversion in prices is 
driven by precipitation, prices are assumed to revert to normal levels after dry and wet 
years. A stochastic description of short-term deviations is more important for 
investments in power units with an operational flexibility such as natural gas units. 
Motivated by this, and due to the simple solutions obtainable for geometric Brownian 
motions, we assume the long-term electricity prices follow a geometric Brownian 
motion, where the change in price over a small time interval is written as 
 
 dS Sdt Sdzα σ= +  (1) 
 
where α  is the annual risk-adjusted growth rate and σ  is the annual volatility. The last 
term, tdz dtε= , is the increment of a standard Wiener process, where tε  is a normally 
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distributed random continuous process with a mean of zero and a standard deviation of 
one. See for example [4] for a rigorous discussion about price processes.  
 The parameters of Eq. 1 are estimated from forward contracts with a long time to 
maturity, where the price is set ahead of time and, therefore, includes a risk-premium. 
Thus, Eq. 1 represents the risk-adjusted long-term price dynamics. An advantage of 
using a risk-adjusted price process is that the resulting cash flows can be discounted 
using the risk-free interest rate. Equation 1 says that the current long-term price level is 
known, but future values are log-normally distributed. Even though information arrives 
over time with changes in futures and forward prices of electricity, future prices are 
always uncertain. 
 We are using annual cash flow estimates in which spot prices vary each hour 
over a year, hence seasonal variations do not have to be taken into account in the price 
model. With the above price description, the risk-adjusted expected future price is found 
by integrating Eq. 1, since the expectation of the second term in Eq. 1, dz , is zero the 
expected price is given as 
 
 0[ ] t

tE S S eα=  (2) 
 
where 0S  is the initial price adjusted for short-term deviations.  
 
 
3. The Value of Decentralized Renewable Power Generation 
 
We assume the owner of the property with the renewable resource has available N 
different generators of different size - indexed i, from 1 to N.  In the analysis we set a 
maximum capacity on the generator, even though we allow for sales back to the grid.  
The maximum capacity can be due to a limited space for a wind turbine, a limited space 
on a roof top for photovoltaics and due to limitations in water inflow for hydropower. 
Further, the concession to build a turbine can specify an upper limit to the developer due 
to bounds on the intermittent capacity a decentralized grid can handle, due to esthetic 
concerns or noise. The value of each generator, which depends on the amount of load 
that is displaced, is modeled assuming that the developer only invests in one unit. Only 
one unit is considered at a time because we study investments in small decentralized 
units, where a developer will invest in one larger unit instead of investing in two smaller 
units because of the reduced investment cost per kW with size. Hence, choice of unit is 
assumed to be between mutually exclusive projects within a size range. Since we are 
interested in the value of the generating units at different market prices, we need to find 
the net present value of the units as a function of the electricity start price. In the 
calculation, it is necessary to adjust for seasonal and daily correlations between the 
expected electricity load, power generation and spot prices. 
 
3.1. Modeling Electricity Load, Power Generation and Electricity Prices 
 
In a situation with hourly metering, the time correlation between electricity load, power 
generation and prices is important for the profitability of the investment. First, if 
electricity is usually generated at the same time as the electricity load is high, a large 
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share of the generated electricity will be valued at the end-user price, which includes 
grid tariffs and taxes, as opposed to the lower export price. Second, if electricity is 
usually generated at times when the electricity price is high, a large share of the power 
generation will be valued at a higher price than the annual average spot price. All three 
parameters have seasonal and daily variation patterns, and are correlated through the 
influence of varying weather. A simple approach to take into account the correlation, 
and in accordance with the discussion in [9], is to find the annual cash flows from 
available historical hourly data. In the following, at least one year of hourly data for the 
electricity price, climate data to estimate power generation (wind, radiation or water 
inflow) and the electricity load is available. If less than a year of hourly historic data is 
available, one must construct approximate data using available historic data and profiles 
or simulate the data. 
  
The first step in the analysis is to find the hourly power generation. For renewable 
power, this means converting historic climate data into expected electricity generation. 
For wind power this means historic wind speed data, for photovoltaic units, radiation 
data, and for hydropower, water inflow data. Manufacturers of generating units can 
usually supply a power curve that gives the relationship between energy inflow and 
power output. Using the hourly climate data as input to the power curve gives the 
expected hourly power generation profile ,i hg . With time series of the hourly expected 
power generation and the hourly expected load, hd , we are able to find estimates of the 
annual displaced electricity load and the annual exported electricity. We find the annual 
displaced electricity for each unit as 
 

 
8760 8760

, ,
1 1

min( , )D i Di h h i h
h h

G g d g
= =

= =∑ ∑  (3) 

 
where ,Di hg  is the hourly displaced electricity load for unit i. Similarly, the exported 
electricity for each unit can be found as       
 

 
8760 8760

, ,
1 1

max( ,0)Ei E i h i h h
h h

G g g d
= =

= = −∑ ∑  (4) 

 
where Eig is the hourly exported electricity for unit i. 
 The effects on profitability from the time correlation between load, price and 
power generation are gathered in two scalar parameters for each project i. One 
parameter adjusts the average wholesale price for displaced load compared to the annual 
average price, and a second parameter adjusts the average price of exported electricity. 
The factors will vary with the capacity of the unit. For example, in a power system like 
the Nordic, with high electricity prices, high electricity loads due to electricity driven 
heating and higher wind speeds in the winter, a small unit will primarily export 
electricity in the summer at low prices while a larger unit will export a larger share in 
the winter season at a higher price.  
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The factor for adjusting the price for displaced electricity load is given as the ratio 
between the value of the displaced load on an hourly spot price and the value using the 
annual average price  
 

 

8760

,
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 (5) 

 
where hs  is the hourly spot price and s  is the average annual spot price. The 
corresponding factor for adjusting the price that exports receive is given with a similar 
formula 
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      (6) 

 
If more than one year of data is available one should use the full time series.  
 We are now able to find the annual average received price for displaced 
electricity and export price as a function of the annually average wholesale price. The 
end-user electricity price consists of several different parts, typically the wholesale price 
of electricity, taxes and grid tariffs. We assume a simple general description  
 
 , (1 ) (1 )t

Di t DiP K Seα δ γ δ λ= + + + +  (7) 
 
where DiK  is the adjustment factor for the average wholesale price, S  is the annual 
average long-term market price, δ  is the value added tax, λ  is a supplier mark-up and 
γ  is the grid tariff. The average electricity price relevant when exporting to the grid is 
assumed to be 
 

,
t

E i t E iP K Seα λ= −                                                    (8)                           
 
where EiK  is the adjustment factor for the average effective wholesale price and the 
supplier mark-up, λ , is assumed to be the same as when electricity is imported.  
 
3.2 Now-or-Never Investment Evaluation 
 
With the given price description, the annual income from owning each power producing 
unit, i, can be calculated as 
 
 , , ,( ) t

i t Di Di t E i E i t i i ix S G P G P O SeαΦ Θ= + − = +  (9) 
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where iO  is the annual operation and maintenance costs. The constants in Eq. (9) are 
abbreviated by iΦ  and iΘ  to simplify the equation. 
 The present value of the investment is the sum of all expected benefits less 
operational costs in the project life time. It is modeled as a function of the long-term 
annual average electricity price the first year 
 

 ( )

0
( ) ( ) (1 ) (1 )

T t rt rT r Ti i
i i i i iv S Se e dt e e S S

r r
α αΦ ΘΦ Θ ϒ Ω

α
− − − −= + = − + − = +

−∫       (10) 

 
The constants in Eq. (10) are abbreviated by iϒ  and iΩ  to simplify the equation. The 
net present value for each project is the present value of the benefits less the operational 
and investment cost  
 
 ( ) ( )i i inpv S v S I= −  (11) 
 
Only projects that maximize the net present will be considered for investment. Different 
projects have the highest net present value at different start prices, thus the maximal net 
present value is a function of the start price at the time of investment, and is given as 
 
 ( ) max( ( ), 1.. )iNPV S npv S i N= =  (12) 
 
where j=1..M projects will be a part of the upper net present value function. An investor 
contemplating to invest now will choose the project with the highest positive net present 
value at the current price. This is the static net present value approach, or the 
Marshallian [4, p. 145] approach, to investment decisions.   
 
 
4. Investment under Uncertainty 
 
If the owner of the property with the renewable resource has the exclusive right to 
invest, and if the price is expected to rise and/or there is uncertainty about future prices, 
there can be an added value associated with postponing the investment in a 
decentralized power system. The value of this option to postpone is not included in a 
static net present value analysis and can therefore affect the investment decision. First, 
if the electricity price is expected to rise, there is a positive value in postponing the 
investment if the discounted value of the future net present value is higher than the one 
today. Also, if there is uncertainty about the future price there can be a value in waiting 
because waiting will reveal new price information, and the developer always has the 
option to invest if the price moves in a favorable direction and the ability to not invest if 
the price is not favorable. Lastly, there can be uncertainty about which capacity is most 
profitable, because the optimal capacity can be a function of the start price. By waiting, 
the developer can get new price information and invest in the most profitable generator.  
 When we consider postponing the investment, we could potentially consider a 
strategy consisting of investing in a sequence of units. For example, first buy a small 
generator, and if the price goes up, a larger generator. However, in this analysis we 
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assume that the units are mutually exclusive, and that there can only be one system on 
the site at the same time. This might be the case for wind turbines if there is limited 
space to site a turbine, or a developer only has concession to build one turbine. 
Photovoltaic systems, on the other hand, are typically modular, and capacity could be 
added at a later stage. However, for all types of decentralized units, installation costs 
and reductions in costs per kW with size can be a barrier to investment strategies that 
involve more than one phase.  
 Another consideration when a project is postponed is that also the reinvestment 
in a subsequent unit is postponed. We assume the most valuable investment opportunity 
on the occupied land is to build subsequent power generating units in perpetuity. After a 
generator is taken out of operation, one will usually have the option to invest in any of 
the units that can be considered. However, since one often will not build a small project 
(because the opportunity to invest in a large project is more valuable than investing in a 
small), and for analytic simplicity, we assume the only investment opportunity left after 
a project dies is to invest in the largest project available. It is also important to 
understand that the only decision we model is the initial, hence what happens after a 
project goes out of operation is just an estimate of the value at that time, and what is 
most important is that it is that same for both projects. 
 
4.1 Mathematical Model Description 
 
We have M projects from which to choose - the generators that maximize net present 
value for different electricity start prices given by Eq. (12). We further denote the value 
of the investment possibility in the largest project ( )MF S  and the investment price 
threshold for the largest project zM. The value functions, which represent the expected 
value of the first project and all later reinvestments, have two branches as functions of 
the start price. At the first branch, the expected price growth during the lifetime of the 
investment is not large enough to expect to reinvest in the large turbine immediately. 
This region is from S  equals zero to T

MS e zα−= , and the value function is the sum of 
the present value of the first project and the expected present value of the option to 
reinvest in the large project  
 
 ( ) ( )rT T

j j j MV S S e F Seαϒ Ω −= + +  (13) 
 
From the start price T

MS e zα−= , reinvestment in the large project is expected to happen 
immediately after the project dies; the value function is given as the discounted value in 
perpetuity less the investment cost for all later investments in perpetuity 
 

 ( ) ( )
( ) 1

rT TM M M
j j j rT

IV S S e Se
r r e

αΦ Θϒ Ω
α

−= + + + −
− −

 (14) 

 
The two branches of the value functions meet tangentially at T

MS e zα−= .  
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To find the value of the investment opportunities and the optimal investment thresholds, 
we first analyze each unit or strategy individually, and then afterwards choose the unit 
or strategy that is the most profitable. We assume the investment opportunity in project j, 

( )jF S , yields no cash flows up to the time the investment is undertaken. By using the 
Bellman's principle of optimality, with no cash flow from the investment opportunity 
and in continuous time, the value of the investment opportunity can be stated as [4, p. 
105] 
 

 { }1( ) max( *[ | , ])
1j t j t dt tu

F S E F S S u
rdt +=

+
 (15) 

 
where u is the control variable, here to invest or to wait, and *E  denotes risk-adjusted 
expected value which must be used since we use the risk-free interest rate. By 
multiplying with 1 rdt+ and rearranging the equation, the investment opportunity can be 
written 
 
 ( ) *[ ]j jrF S dt E dF=  (16) 
 
Expanding Fj (S), using Ito`s lemma [4, p. 151] and taking the risk-adjusted 
expectations, leaves us with the following differential equation 
 

 2 21 ´́ ´ 0
2 j j jS F SF rFσ α+ − =  (17) 

 
The differential equation is written independently of time; it only depends on the current 
start price in the market. A solution of the differential equation is 1( )j jF S A S β= , where 
Aj is a constant to be determined, and β1 is given by the positive solution of the 
quadratic equation resulting from substituting the solution into the differential equation. 
To find the constant, Aj, and the optimal investment thresholds, jz , we need two 
boundary conditions for each project [4, p. 183]. The first states that when it is optimal 
to invest, the investment opportunity must equal the expected net present value of the 
underlying project 
 
 ( ) ( )j j j j jF z V z I= −  (18) 
 
The second says that the value of the investment opportunity and the net present value 
of the underlying project must meet tangentially at the investment threshold price 
 
 '( ) '( )j j j jF z V z=  (19) 
 
The value of the investment opportunity approaches the net present value of the project, 
and will be equal for all higher prices than the optimal investment threshold. 
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Now we can find optimal investment thresholds, jz , for each project, which can be on 
any of the two value function branches, given in Eq. (13) and Eq. (14), for the smaller 
projects but only on the higher branch for the largest alternative because one expects to 
invest in it forever if expected price growth is positive or zero. If there is only one 
relevant capacity (M=1) the solution is completed and one will invest for all prices 
over Mz . With more than one mutually exclusive strategy, we will not choose a project, 
if another project has a higher option value. Choosing it means that opportunity to 
invest in the more valuable project is lost [10]. It is, therefore, optimal to wait until the 
price reaches a trigger level z* from below 
 

 
* min

s.t. ( *) max ( *) 1..

jj

j jj

z z

F z F z j M

=

= ∧ =
 (20) 

 
This can be interpreted as waiting for start prices below the lowest price trigger, jz , 
where the option to invest in that generator is worth more than the option to invest in 
any of the other projects. If the lowest threshold price satisfying Eq. (20) is * Mz z= , the 
solution is completed and investment is optimal in the largest project for all higher start 
prices, and waiting is optimal for all prices below it.  
 However, if * Mz z≤  there can be an intermediate solution, where a smaller 
project is optimal for some prices and one or more larger projects are optimal for higher 
prices. Investment in the project, j, that is optimal for the lowest prices will then be 
optimal in a region from ,1jz to ,2jz  where ,1 *jz z= . 
 The curve that consists of the value function with the highest value, can exhibit a 
kink where two electricity generating units of different sizes have the same value. 
Around this kink there is uncertainty about which project is optimal to invest in, and 
therefore, the opportunity to invest in both can be worth more than investing in one of 
the projects. The intuition behind this can be understood by imagining a simple 
description of price uncertainty for a following period, where the price in the next 
period can go up or down. In this situation, the developer will invest in the large project 
if the price goes up, and in the small project if the price goes down. The discounted 
value of investing in the optimal project in the next period can be worth more than 
investing now.  
 There can hence be new waiting regions around the indifference point, from 

,2jz until 1,1jz + . Investment in the largest project will be optimal for all values over zN,1. 
Now the solution consists of a set of one or more investment intervals, ,1 ,2[ , ]j j jZ z z= .  
 The value of the investment opportunity, ( )mF S , around each indifference point, 
m, is found using the same method as for individual projects. Hence, it is the solution to 
the differential equation in Eq. (17). Décamps, Mariotti and Villeneuve [11] have shown 
that the boundary conditions are also similar, but now investment can be optimal either 
if the price drops or grows. Both at the upper and at the lower investment price triggers, 
the investment opportunity must have the same value as the value function, and the 
value of the investment opportunity must meet the two value function tangentially at the 
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 price triggers [11, p. 9]  
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  (21) 

 
A solution to the differential equation that satisfies the boundary conditions is 

  
 1 2

1 2( )mF S B S B Sβ β= +    (22) 
 
where 2β  is the negative solution to the quadratic equation resulting from substituting 
Eq. (22) into Eq. (17) and 1B  and 2B are constants to be determined. The four unknown 
parameters can be found from the four equations. There is no analytic solution, thus the 
solution must be found using numerical methods. The solution to the investment 
problem is now to invest in one or more investment price regions in one or more of the 
projects.  
 
 
5. Model Parameters 
 
In this section we present the model parameters used to model a case study of a wind 
turbine investment for an office building in Norway. The analysis requires price 
parameters, building electricity load and different wind turbine characteristics.  
 The Nordic countries have a well-functioning spot and financial market called 
Nord Pool. Since we want a representation of a long-term price that is not sensitive to 
short-term deviations, we base the price parameters relevant for the investment 
decisions on the forward contract with the longest time (three years) to maturity. The 
volatility parameter, σ , that represents the uncertainty in prices is found as the historic 
annual standard deviation of price changes of this contract, the solid line in Figure 1. 
Because Nord Pool only has contracts for up to three years ahead we used contracts 
traded between two parties, over-the-counter (OTC) contracts, to find an estimate for 
price growth from contracts with a longer time to delivery. In early December 2005 the 
2008 contract sold at 40.9 $/MWh. OTC contracts for 2009 are traded at 41.14 $/MWh 
and for 2010 at 41.31 $/MWh. This corresponds to a risk-adjusted price growth of 0.5 
percent. In Figure 1, the expected price growth with the upper and lower 66 percent 
confidence bound is plotted for the next 10 years.  
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Figure 1. Historical prices of the Nord Pool three-year-ahead forward contract until late 
2005 and projected prices with the upper and lower 66 percent confidence intervals until 
2015 
 
The relevant current start price is found by discounting the price forward contracts back 
to the current year with a price growth of 0.5 percent. The estimated price parameters, 
end-user price adders and the assumed risk-free nominal interest rate are presented in 
Table 1, and are considered representative for a Norwegian setting.  
 
Table 1. Base case data used in the analysis 

Parameter Unit Value 
S0 $/MWh 40.5 
α 1/y 0.005 
σ 1/y 0.103 
r 1/y 0.05 
δ  0.25 
γ $/MWh 35 
λ $/MWh 2 

 
For the electricity load we have one year of hourly data for an office building with a 
maximum load 99 kW and an annual load of 293 MWh. The hourly load, in the upper 
panel of Figure 2, shows that there is a significant seasonal variation in consumption 
due to the fact that electricity is used for heating purposes, which is common in Norway. 
The middle panel of Figure 2 shows the hourly wind power output; there is a large 
variation also in the power generation. In the winter and fall the wind power output is 
larger. In the lower panel, Figure 2 displays the 2002 Nord Pool spot price. Because 
prices also are higher in winter and fall, there seems to be a positive correlation between 
load, generation and prices to be determined by the parameters DiK and E iK . 
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Figure 2. Office electricity load, wind power generation for the 250 kW unit, and Nord 
Pool spot prices in 2002 
 
We assume the developer can choose among six different turbines with capacity from 
25 to 250 kW and costs shown in Table 2. We have assumed a significant drop in 
investment costs per kW for wind turbines from 25 to 250 kW. 
 
Table 2. Wind turbine data 

i Ci  
(kW) 

Ii/Ci 
($/kW) 

Oi/Ii 
(1/y) 

T 
(y) 

1 25 2500 0.02 25 
2 50 2200 0.02 25 
3 100 2000 0.02 25 
4 150 1900 0.02 25 
5 200 1800 0.02 25 
6 250 1700 0.02 25 
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6. Model Results 
 
The first step in the investment analysis is to find the amount of displaced electricity 
load and how much electricity is exported for each turbine. Figure 3 shows the 
quantities of displaced and exported electricity from generation units with different 
capacities. From this, it can be seen that the generated power from the 25 kW turbine is 
used almost solely for its own load. When the size of the turbine is increased an 
increasing share of generation is exported. 
 

 
Figure 3. Annual displaced and exported electricity for the six turbines of different 
capacities 
 
The correlation between load, generation and prices for the different turbines are 
captured by the values of DiK and EiK . They are found using the data displayed in 
Figure 2. They show that the average prices received for displaced load and exports 
varies significantly with size. Displaced load receives a price that is on average 103 
percent of the average price. Generation for exports shows a larger variation because the 
price is adjusted from 89 percent of the average price for the 25 kW to 103 percent for 
the 250 kW turbine. The small turbine receives a low export price because most exports 
occur at summer time and at times of the day when there is a low electricity load, 
namely at off-peak hours. As the capacity increases, electricity is also exported at peak 
hours because the turbine generates more electricity. 
 
Table 3. The factors that decide the relationship between the annual average price and 
the average price of displaced and exported electricity 

i DiK  E iK  
1 1.032 0.885 
2 1.041 0.958 
3 1.036 1.018 
4 1.034 1.026 
5 1.033 1.028 
6 1.032 1.029 
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Now, we have all the data we need to find the expected net present value of the six 
different turbines. The current long-term start price is estimated to be 40.5 $/MWh. The 
three smallest turbines, the 25 kW, the 50 kW and the 100 kW units all have positive net 
present values. The net present value is highest for the 50 kW turbine, as can be seen in 
Figure 4. In a now-or-never deterministic net present value analysis the building owner 
would invest in the 50 kW turbine now because it has the highest positive net present 
value.  

 
Figure 4. Static net present value analysis at current market price of 40.5 $/MWh 
 
However, we also have the option to postpone the investment and we consider 
postponing the investment because we know that the electricity price can change. 
Therefore, we are interested in the net present value as a function of the start price. 
Figure 5 plots the net present value as a function of the start price for the six turbines 
under consideration. Each of the six linear lines in Figure 5 corresponds to the net 
present value of one of the six projects from Table 2. An increase in project size, results 
in a steeper net present value function. The 50 kW project has the net present value 
break-even at the lowest price, 32 $/MWh. However, the largest project has the highest 
net present value for high prices because the export price is high enough to recover the 
investment cost of the additional capacity and the largest project has the lowest 
investment costs per kW and produces the most electricity. Someone considering an 
investment on a now-or-never basis would choose the project with the highest positive 
net present value at the current start price. Only two turbines, the 50 kW and the 250 
kW turbines, are ever optimal. For all other turbines, another turbine is worth more at all 
start prices.  
 As indicated above, to invest in the 50 kW turbine, even when it maximizes net 
present value, is not necessarily the optimal solution under uncertainty and price growth. 
It might not have sufficient return on investment to justify investment, and in addition 
the investment opportunity in a larger project can be worth more. At a price of 47.5 
$/MWh the upper net present value exhibits a kink, where investment in the 50 kW unit 
maximizes net present value for lower prices and the 250 kW unit for higher prices. 
Therefore, there is uncertainty about in which turbine to invest in at this price. A net 
present value analysis that does not allow the investment to be postponed will ignore 
these points. 
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Figure 6 shows the solution when the investor has the possibility to postpone the 
investment. Because only the 50 kW and the 250 kW turbines maximize net present 
value at any prices they are the only two turbines considered. The solid lines are the 
expected net present value functions of the investment in the two different projects in 
perpetuity. Note that they are no longer linear on the lower branch because they include 
the option to invest in the largest project after a unit has been taken out of operation, and 
the option value is not a linear function of the start price. The upper dashed line is the 
value of the option to invest. With the base case data, it is never optimal to invest in the 
50 kW turbine, because the investment opportunity of the larger turbine is more 
valuable for all start prices. The optimal strategy is to wait for start prices under 61 
$/MWh, and invest in the 250 kW turbine for all higher prices.    

 
Figure 5. Net present value as a function of the long-term electricity start price, S, for 
the six wind turbines 

 
Figure  6.  The value of the investment opportunity F(S) and the expected net present 
value of the 50 and 250 kW turbine after investment 
 
Less uncertainty about the level of future prices reduces the value of the investment 
opportunity. This is because there is a lower probability of high prices, and therefore, a 



 19

lower value associated with waiting. Figure 7 shows the solution with an uncertainty 
parameter reduced from 0.103σ =  to 0.04σ = . The investment opportunity in the 250 
kW unit is no longer more worth than investment in 50 kW for all start prices. Now, we 
have one interval from 1,1 38.5z =  $/MWh to 1,2 43.7z =  $/MWh where investment is 
optimal in the 50 kW turbine and a second interval for all prices above 2,1 50.4z =  
$/MWh where investment is optimal in the 250 kW unit. For all other start prices, it is 
optimal to wait for new price information. 
 Figure 8 shows the optimal investment intervals for the two turbines with 
changing values of the uncertainty parameter, σ . As expected, increased uncertainty 
leads to optimal investment at higher threshold prices. The intermediate waiting region 
gets larger and larger until only investment in the 250 kW turbine is optimal at 

0.046σ = .  

 
Figure 7.  Value of the investment opportunity F(S) and expected net present value of 
the 50 and 250 kW turbine after investment with a reduced price uncertainty ( 0.04σ = ) 
 

 
Figure 8. Investment and waiting regions as a function of price volatility and long-term 
electricity start price 
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7. Discussion 
 
With the provided example we have presented a method for analysis of investment in 
decentralized renewable power generation under uncertainty, when the investor can 
choose between mutually exclusive capacities and chose investment timing to maximize 
benefits. As expected the method results in a recommendation to postpone the 
investment beyond the net present value break-even price because of price uncertainty. 
Also the optimal investment decision varies with the start price. For each capacity that 
is ever optimal there is a price region where investment is recommended. For the largest 
capacity the investment threshold is a trigger price where investment is optimal for all 
higher prices. The results reveal intermediate waiting regions similar to [11] and [12]. 
This paper does not, however, assume that the projects have an infinite lifetime. 
Studying a sequence of investments in perpetuity reduces the intermediate waiting 
region and the values at stake, because the capacity choice is not as irreversible, 
considering that one can choose another capacity at the end of the current projects 
useful life. In terms of the graphs in Figure 4 and Figure 5, the kink in the net present 
value functions is gentler. Only considering the value in the lifetime will be the same as 
assuming that one can invest only once in perpetuity. It would lead to higher investment 
thresholds and could fail to realize that investing in a small project can be optimal if one 
can invest in a larger project later. Further, the model only analyses a discrete number of 
capacities. This is realistic for most cases; there are usually a limited number of fairly 
cost effective offers to compare for investment and units do not usually come in a 
continuous range of capacity. The results regarding capacity choice with more sizes to 
choose between, would not necessarily be very different, as there still can be a kink in 
the net present value function where a large unit sized for exports cuts off the net 
present value function for a smaller unit sized to mainly satisfy the load. This indication 
is supported in Figure 5 by the fact that some turbines are never optimal. 
  
We have assumed that the option to invest is perpetual, which is natural if the investor 
owns the property with the renewable energy resource. If the investment opportunity 
has a limited lifetime, the analysis is identical within the lifetime, but when the 
opportunity expires the decision rule is to choose the capacity that maximizes net 
present value, and invest in it as long as it is positive.  
 The method we used is a simplified method. First, we use a relatively simple 
model of price uncertainty, although it is justifiable for long-term projects. Second, we 
assume that after a project dies only the option to invest in the largest project is 
available. In reality, the option to invest in any project is available. Therefore, the model 
can fail to give accurate results if the value of the investment opportunity in the largest 
project is not important at the price ranges relevant for choosing between two smaller 
projects. If a preliminary analysis reveals such a situation, a smaller project can be used 
instead of the largest. Similarly if the price is expected to decline, one can compare 
other investment sequence. It is possible to find the accurate optimal row of investment 
based on the expected price, and optimize a sequence of different projects in perpetuity. 
However, estimates of all of the input parameters more than a lifetime ahead is bound to 
be uncertain and taking it into account would probably complicate the analysis more 
than it would improve it. When we assume that one can only invest in the large project 
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after the lifetime of the first, at least both strategies have the same value after they are 
taken out of operation, which is important for a fair comparison of the different turbines. 
 As we assume that the investment decision is a choice between mutually 
exclusive projects, we do not allow for modular investments in the model. In cases 
where capacity is considered to be added in many phases, one will have many different 
strategies to choose from. A method could be to compare some discrete strategies and 
compare them within this framework. Yet, transaction costs for adding capacity in many 
phases can be high both due to the actual construction and due to new investment 
analysis and market monitoring. Adding the capability to the model would increase the 
number of investment strategies considerably and, therefore, complicate the analysis 
significantly. For many applications the investment in different capacities is truly 
mutually exclusive (e.g. in the case of wind turbines, when there is a limited area, and 
building more than one plant is not possible because of the required distance between 
turbines). Regulation can potentially also reduce the number of installations allowed. 
 The results are based on one example of a customer with only one year of hourly 
data for consumption and wind speeds. Given these limitations however, the data sets 
are general enough to provide some insight into the problem. Further, the price 
parameters, based on Nord Pool financial data, are always only approximate. No 
contracts with a time to maturity over three years are sold in the market, such that good 
risk-adjusted price forecast for a long period is not possible.  
 The model does not include inflation in future investment costs and operation 
and maintenance cost nor income tax effects, subsidies or a turbine construction time. 
Including these additions to the model is straightforward, but was not done here to make 
the equations simple. In a real application of the model one would also model electricity 
generation for the different turbine alternatives more accurately. One would have a 
specific power curve for each turbine and analyze the wind speeds at different heights.     
 Some of the distributed renewable technologies are immature and reductions in 
investment costs are expected. We have assumed a constant investment cost over time. 
To allow for a reduction would complicate the model because of the time dependency 
and would increase the value of postponing the investment. This expected reduction in 
costs can be a further reason to postpone an investment.  
 We do not analyze uncertainty in the climatic data because we assume that their 
average values will not change significantly in the future, and yearly variations will 
even out over the lifetime. Hence, the analysis assumes the developer maximizes profits 
and is not scared by annual variations in the cash flow. Very often there will be publicly 
available climate data for a nearby location that the local data can be compared to. If the 
developer has good climate data there will hence not be a reason to wait for new 
information. Of course, if there are insufficient climatic data measurements available, 
making it difficult to assess their distribution accurately, such measurements are worth 
paying and/or waiting for. A method to analyze risk specifically is to simulate the price, 
power generation and load as stochastic processes, and calculate risk measures such as 
standard deviation of return or electricity costs and value-at-risk (the maximum 
simulated loss or electricity cost within a confidence level, typically 95 percent). In a 
risk-perspective, the cost risk is what matters for many developers, and the cost risk can 
be lower with renewable generation because most of the costs are initial costs, hence the 
price risk is less. Awerbuch [13] claims that investors often undervalue renewable 
generation because of the potential reductions in portfolio cost risk from renewables.  
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It should, however, be noted that there can be uncertainty in the regulation (political 
risk), for example in whether green tags that credit renewable generation or carbon 
taxation will be introduced, and that it can be important but difficult to quantify and 
incorporate in a model. Although there is uncertainty in other parameters, the price 
uncertainty is likely to be a dominating uncertain factor.  
 Among proponents of distributed generation, there is a desire to allow for net 
metering over a longer period, effectively letting the owner of the generator receive the 
higher end-user price for all generated electricity. This is the case in many states in the 
U.S. for example. It increase the value of the investment in renewable distributed 
generation and would make capacity choice simpler if, as is often the case, electricity 
generation that exceeds the annual load would have no value. Under such regulation one 
would chose the size that generates the amount closest to the annual electricity load. 
Then one could use this model with one alternative. But if there is an upper limit on 
capacity, and a larger turbine can be sized also for sales back to the grid, capacity choice 
is not necessarily straightforward. 
 
 
8. Conclusions 
 
Motivated by the restructuring in the electricity sector, we have presented a market-
based tool for project evaluation under uncertainty for investments in decentralized 
renewable power generation, where the developer has the option to postpone the 
investment and can choose the capacity among discrete projects. Optimal investment 
strategies in decentralized renewable power generation depend on several factors, 
including electricity load, climatic data and electricity prices. We have assumed that the 
factor that is the most uncertain is the future electricity price, and have, therefore, 
included a price uncertainty description in the model. Our analysis based on data from 
the Nord Pool financial market, with an expected growth in the electricity price and an 
evident uncertainty in forward prices, suggesting that the optimal investment decision is 
to invest at a price considerably over the net present value break-even price. The 
optimal strategy is to invest in different capacities at different prices ranges. Increased 
price volatility increases the investment price thresholds, and can increase the value of 
the investment opportunity for larger projects so much that the only optimal strategy is 
to wait until investment in the largest project is optimal. 
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Abstract 
 
Combined heat and power (CHP) systems can generate electricity locally and recover 
heat to satisfy building heating loads, thereby providing energy at high efficiencies. An 
investment in combined heat and power is attractive if the net present value is positive. 
At the same time, potential developers will also consider the investment's risk 
characteristics. Because energy prices are volatile, a deterministic modeling framework 
will not be capable of evaluating the investment risk or the ability of on-site generation 
to respond to uncertain prices. We present a model with Monte Carlo simulation of 
CHP value under uncertain future wholesale electricity and natural gas prices, which 
are simulated as correlated mean-reverting processes. On-site generation has low start-
up costs, and will operate only when expected savings exceed costs because electricity 
and natural gas can be purchased from the local utility. This flexibility in providing 
energy can be valuable under price uncertainty. The results confirm that CHP systems 
can reduce expected energy costs and can be particularly attractive under uncertain 
wholesale prices because of the ability to hedge energy costs. An increase in the price 
volatility increases the value of CHP, both in terms of the expected net present value 
and in the ability to reduce short-term energy cost uncertainty. Also, a reduction in the 
correlation factor between the electricity and natural gas price, and a lower mean-
reversion rate increases the system’s value and leads to more predictable energy costs 
with CHP. Savings on peak demand charges and transmission charges are important 
for CHP profitability, but when they are increased, the uncertainty in the energy costs 
and the CHP system's role as a hedge to uncertainty is dampened. The sizing of the 
system is closely related to the level of both the volumetric energy costs and the demand 
charges. Thus, simple sizing rules, such as sizing distributed generation systems to heat 
loads, should be avoided.   
 
Keywords: Combined heat and power, risk analysis, investment appraisal, real option 
valuation 
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1. Introduction 
 
Increased use of combined heat and power (CHP), the concurrent generation of heat and 
power, can be an important part of developing a more efficient power system than the 
system used today. With increasing concern about climate change and a steep global 
rise in the demand and price for petroleum products, the need for energy efficiency is 
more urgent than ever. Combined heat and power systems have the potential to improve 
system energy efficiency because of the proximity to heat loads, which allows for the 
utilization of heat that would otherwise be wasted, and because some grid losses are 
avoided as electricity is generated on-site [1]. This paper will address the major 
economic considerations for an owner of a commercial building, which is connected to 
both an electricity grid and a natural gas grid because owners of such buildings usually 
have the opportunity to invest in CHP units. The model used in this analysis will help 
determine the appropriate capacity of the CHP system the commercial building owner 
should invest in, based on the net present value and risk characteristics of the 
investment. With on-site generators, electricity can be bought from the grid or produced 
locally, and heat from the local generators can be recovered to satisfy local heat loads 
and will, therefore, replace the direct combustion of natural gas. In addition, the on-site 
generators have the potential to reduce demand charges. In the following paper, we will 
present a model and a case study that estimate the expected net present value and 
identify some economic risk characteristics of different CHP systems using Monte 
Carlo simulation.  
 Any investment has some economic risk because of uncertainty in the 
parameters that determine profitability. In this paper, we assume the most important 
uncertain parameter for a CHP-developer is the uncertainty in future wholesale energy 
prices. Because energy prices are uncertain, they can be a barrier to on-site generation if 
developers lack a good understanding of the associated risks and the systems ability to 
respond to uncertainty. However, combined heat and power systems can respond to 
uncertainty because they have flexibility in the choice of output levels and low start-up 
costs. We analyze the investment value of four alternative CHP systems with different 
sizes, using Monte Carlo simulation of the future energy prices. For each investment 
alternative, the net present value and the standard deviation in the simulations are 
calculated. Economic risk is, however, often related to shorter time horizons than the 
expected 20 year lifetime of CHP units, and what is important for many developers is 
the risk related to total energy costs. Therefore, we also calculate the first-year total 
costs, with and without CHP-systems, and report both the standard deviation and the 
highest costs within a 95 and a 99 percent confidence level. 
 Base case electricity price process parameters are estimated from New England 
ISO prices and the natural gas parameters from Henry Hub prices. To make the analysis 
more general, we also simulate the net present value and the first-year energy costs with 
changes in the electricity price process parameters and the transmission and distribution 
costs, all of which can change over time and are market specific. 
 Electricity and natural gas prices are modeled as two correlated mean-reverting 
stochastic processes, where the commodity prices are assumed to revert to a long-term 
average if the price drift away from it. We assume the building is on a time-of-use 
(TOU) electricity tariff and a flat natural gas tariff that varies monthly with stochastic 
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and seasonal variations in the wholesale prices. Further, the building electricity 
consumption is subject to a daily demand charge. Optimal operation of the system is 
found by choosing the best strategy among a number of pre-defined alternative 
operation levels. The alternative operation levels have different discrete targets in 
reducing peak demand, utility electricity purchases and in recovering heat. The 
presented case study shows that this flexibility in operation can be attractive, because 
CHP systems can adapt to uncertain prices and reduce energy cost risk. The net present 
value of on-site generators can increase with uncertainty because they can be 
programmed to operate only under favorable prices, which makes it possible to catch 
the upside of price uncertainty while not suffer correspondingly from the downside. 
 The remainder of the paper is organized as follows: the next section presents the 
energy price model and, pre-defines operation levels and shows how the net present 
value and first-year energy costs are calculated. The third presents the parameters, and 
section 4 presents the results. Section 5 discusses the chosen approach and section 6 
concludes the analysis. 
 
 
Nomenclature 
 
Indices 
i  Demand reduction level (kW) 
j  Year (y) 
k  Month in year 
l  Day type (Week Day, Weekend Day) 
m  Hour of day          
s  Simulation number 
t  Months from investment  
 
Subset 
H   Demand metered hours  
 
Variables 
AC   First-year total energy costs (including investment cost when CHP is  
  installed) ($) 

, , ,j k l mG   Natural gas price including a distribution charge ($/MMBtu) 

,W j kG   Monthly average natural gas wholesale price ($/MMBtu) 
NPV   Expected net present value of investment ($) 
AC   Expected first-year energy costs ($) 

, , ,D i k l mP  Minimum generation to reduce demand by demand reduction target (kW) 

, , ,M i k l mP  Maximum generation constrained by capacity or electricity load (kW) 

, , ,Qi k l mP   Generation level matched to the heat load (kW) 

, , ,Di k l mQ  Heat utilized at minimum generation level to reduce peak demand by  
  target (kWh) 

, , ,M i k l mQ  Heat utilized at maximum generation level (kW) 
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, , ,Qi k l mQ  Heat utilized at generation level matched to the heat load (kWh) 

, ,Di k lR   Reductions in demand charges (kW) 

, , ,j k l mS   Electricity price including volumetric transmission charges (kWh) 

,W j kS   Monthly average electricity wholesale price ($/MWh) 

, , , ,Di j k l mZ  Operational profits at minimum operation level that reduce peak demand  
  by target ($) 

, , ,M j k l mZ  Operational profits at maximum operation level ($) 

, , ,Q j k l mZ  Operational profit at generation level matched to heat load ($) 

, , ,V i j k lZ   Daily maximum volumetric profit for peak demand reducing target ($) 

, ,j k lZ   Daily maximum total profit including demand reduction and volumetric  
  profits ($) 

X tV   Variance of electricity price process 

Y tV   Variance of natural gas price process 

X tW   Stochastic process for electricity price 

Y tW   Stochastic process for natural gas price 

tX   Natural logarithm of the monthly wholesale electricity price ($)  

tY   Natural logarithm of the monthly wholesale natural gas price ($) 
 
Parameters 
C  Electric capacity (kW) 

GiD   Demand reduction target (kW) 

,M k lD   Peak daily demand in demand metered hours (kW) 

, ,E k l mL   Electric load (kW) 

, ,Q k l mL   Heat load (kW) 
M   Maintenance Cost ($/kWh) 
N   Number of simulations 

minP   Minimum output level 
T   Equipment lifetime 
X   Logarithm of the long-term average wholesale electricity price ($/MWh) 
Y   Logarithm of the long-term average natural gas wholesale price   
  ($/MMBTU) 

Fa   Annuity factor for investment cost 

Sb   Stand by tariff ($/kW) 

,k ld   Daily demand charge  ($/kW) 

Sf   Fixed monthly electricity charge ($) 

Gf   Fixed monthly natural gas tariff ($) 

S kk   Monthly electricity price deterministic variation factor 
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G kk   Monthly natural gas deterministic variation factor 
nk,l  Number of day types in month  

, ,S k l mp   Adjustment factor to find time-of-use (TOU) prices from monthly  
  average price 

, ,  S k l mu   Electricity transmission and distribution tariff ($/MWh) 
 G ku   Natural gas distribution tariff ($/MWh) 

α   Heat-to-power ratio 
X tε   Normally distributed variable used in electricity price process 

Y tε   Normally distributed variable used in natural gas price process 
µ   Electrical efficiency 
γ   Efficiency of natural gas boilers 

Xκ   Mean-reversion parameter for the electricity price process (1/y) 

Yκ   Mean-reversion parameter for the natural gas price process (1/y) 

Xσ   Annual volatility of electricity price (1/y) 

Yσ   Annual volatility of natural gas price (1/y) 
ρ   Correlation factor between electricity and natural gas 
 
 
2. Model Description  
 
2.1 Energy Wholesale Price Processes 
 
In an investment appraisal of CHP, the future energy prices are important factors. 
Because of the uncertainty in future energy prices, we want to model the wholesale 
price of electricity and natural gas as stochastic processes. The theory of modeling 
stochastic prices has for the most part been developed with an application to stock 
prices. Commodity prices have a number of characteristics that make them different 
from stock prices. Stock prices have been modeled successfully using random walk 
models, such as geometric Brownian motion, which is the underlying process assumed 
in the commonly used Black-Scholes model for pricing stock options [2]. Commodity 
prices, however, often experience a mean-reverting effect in the price, a tendency of the 
prices to move back to a long-term average production cost after price deviations. The 
explanation for this effect is that when prices are high, producers with higher production 
costs will enter the market, which together with a reduced demand will put downward 
pressure on the price. Similarly, when the price is low, high cost producers exit the 
market putting upward pressure on the price. Therefore, mean-reversion has been well 
supported by empirical studies of energy prices [3].  
 Over a long time period, there will also be uncertainty about which level the 
prices will revert to, for example because some resources are exhaustible and due to 
potential technology improvements. Schwartz and Smith [4] have presented an example 
of a two-factor model where the short-term price variations are modeled as mean-
reverting process, and the long-term price variations are modeled as a Geometric 
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Brownian motion. In this type of model, the price can typically be volatile in the short 
run, and revert around a long-term price that is less volatile. A one-factor random walk 
model without a mean-reversion effect must be parameterized on long-term price 
changes to avoid a significant probability for extremely high prices. Commodity prices 
are commonly modeled using the logarithm of the price to avoid the probability of 
negative prices.  
 Every commodity market is different due to the character of the traded 
commodity. Electricity, for example, cannot be stored and must be consumed at the 
same time as it is produced. Electricity that is purchased in peak hours is, therefore, 
expensive because it must be produced from units with few operating hours, units that 
typically have a low efficiency and thus low capital costs. This effect leads to a pattern 
of price variation with the demand variation. It can also lead to price spikes in periods 
with particularly high demand or supply outages. This property can be modeled as a 
mean-reverting process with a deterministic price pattern. In electricity markets with a 
reliance of intermittent renewable energy sources, such as wind power or hydropower, 
there can be a climate driven supply variation that creates mean-reversion in prices. The 
Nordic market, Nord Pool, with its high portion of hydropower shows a mean-reversion 
in prices due to variations in wind and precipitation. In electricity markets where natural 
gas is the price formative energy source, there can be a mean-reversion due to the 
correlations to the mean-reverting oil price. Patterns of demand and supply can also lead 
to seasonal and daily variation patterns in the price that are to so some extent 
predictable. Therefore, it can be advantageous to normalize the price with a 
deterministic seasonal factor to make the probability for high prices higher in peak 
periods.  
 Natural gas can be stored at a cost-effective price, which makes it cheaper to 
satisfy demand at peak periods and makes the price less volatile. However, natural gas 
prices are correlated to volatile oil prices because of substitution opportunities in some 
industrial processes, which will transfer volatility to the natural gas market. While 
storage avoids daily price variation, there can be seasonal demand patterns that storage 
does cannot fully smoothen.  
 The choice of stochastic price processes further depends on the modeling cases 
they are applied to. For the approach in this paper, where the value and risk of combined 
heat and power is modeled, it is important to capture monthly uncertainty in prices 
because combined heat and power units are able to respond to such price changes, and 
because monthly variations are important for the risk-characteristics of the investment. 
For models with a shorter time horizon, for example, where the goal is to optimize 
operation, and the building is on an electricity tariff with frequent price changes, a 
smaller time step should be chosen, and prices-spikes should be considered to be 
incorporated in the model. In this paper, it is assumed that the commercial building is on 
a time-of-use (TOU) electricity rate that is constant within the month, which makes it 
unnecessary to model short-term variations. A simple approach, which captures the 
major dynamics of the price processes, is to model the natural logarithms of the energy 
prices as two correlated mean-reverting price processes with deterministic seasonal 
variations. Long-term price uncertainty is not included in the model, to keep the price 
models simple enough to interpret the different parameters. 
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Under these assumptions, changes in the natural logarithm of the wholesale electricity 
price, tX , can be modeled as [5] 
 
 ( )X t X XX X X t Wκ σ∆ = − ∆ + ∆  (1) 
 
where xκ is the mean-reversion parameter, X , is the logarithm of the long-term average 

electricity price, xσ is electricity price volatility and X X tW tε∆ = ∆  is an increment of a 
Wiener process. The price deviations are normally distributed with a standard deviation 
of one, ~ (0,1)X t Nε . 
 The changes in the natural logarithm of the wholesale natural gas price, tY , are 
given by a similar correlated process [5] 
 
 2( ) 1Y t Y X Y YY Y Y t W Wκ ρσ ρ σ∆ = − ∆ + ∆ + − ∆  (2) 
 
where yκ is the mean-reversion parameter, Y is the logarithm of the long-term average 

natural gas price, Yσ is electricity price volatility and Y Y tW tε∆ = ∆  is an increment of 
a Wiener process, and (0,1)Y t Nε . The variance of the logarithm of the electricity 
price is given as [2] 
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And for the natural gas price as  
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Note that the variances of this processes, increase with time and converge to a level that 
depends on the volatility and the mean-reversion parameter.   
 The actual wholesale prices are found as the product of the monthly adjustment 
factor, S kk , and the exponential of the natural logarithm of prices less half the variance 
of the electricity price 
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where the time indices are changed from months from start date to years and months.  
The natural gas price is calculated in the same manner 
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Now we have two correlated price processes for the electricity and the natural gas price. 
To estimate the price process parameters a simple approach outlined in [2] is followed. 
First, the seasonal parameters, S kk , and, G kk , are found as the average monthly deviation 
from the annual average price. Then, the mean-reversion parameters are found by 
regression of discrete version of the price processes to historical prices. The volatility is 
found from the standard errors of the regression and the correlation is simply the 
historical correlation factor. See for example [3] for more on estimating price process 
parameters. 
 
2.2 Energy Tariff Structure 
 
In addition to the wholesale price, a commercial building customer is charged a 
transmission and distribution tariff and often a demand charge. There are three main 
volumetric tariff structures, flat tariffs, TOU tariffs and real-time tariffs. In this work, 
we assume that the customer is on a TOU electricity tariff with an on-peak and an off-
peak period. The difference between the on-peak and off-peak price, is calculated as the 
ratio between the average wholesale price and the average price in the two respective 
periods. We further assume that the electricity tariff includes a transmission and 
distribution adder, , ,S k l mu , which is different in the on-peak and off-peak period. The 
volumetric electricity tariff can hence be written as  
 
 , , , , , , , ,j k l m S k l m Wj k S k l mS p S u= +  (7) 
 
where , ,S k l mp  is a factor to adjust the average wholesale price to the TOU periods. Also 
the natural gas tariff is assumed to include a distribution adder, G ku ; both the natural gas 
wholesale price and the distribution adder are constant within the month 
 
 , , , ,j k l m W j k G kG G u= +  (8) 
 
 In the U.S., peak demand charges are commonly based on the monthly 
maximum average electricity demand over thirty or fifteen minutes [6]. This charge 
leaves the CHP developer with an outage risk, because it cannot be guaranteed that the 
generators are available every peak hour of the month. In addition, it gives no incentives 
to run a CHP unit to reduce demand after an outage in a peak period, because the 
monthly demand charge is already high. In New York, the Consolidated Edison utility 
has developed a stand-by tariff for distributed generation with a monthly stand-by 
charge for a contract demand and a daily demand charge [7]. The case study in this 
paper is based on a simplified version of this demand tariff structure. 
 
2.3 Alternative Operation Levels 
 
With the given tariff structure, a commercial building with an installed CHP system can 
reduce energy costs by generating electricity for own consumption, using recovered heat 
to displace heat that is normally provided by natural gas fueled boilers, and by reducing 
daily demand charges. If the building electricity consumption was not subject to 
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demand charges, optimal operation could be found independently every hour as the 
operation level that maximized hourly profits. However, with daily demand charges, the 
building can in addition to reducing utility purchases reduce daily demand, and 
reductions in the demand depends on how the units are operated in all demand metered 
hours. Hence, operation every hour is dependent on operation in the other hours if 
demand is to be reduced. Optimal operation can be estimated with an optimization 
program, but optimal operation depends on the energy prices, which vary in each 
simulation, the optimization program would have been run for every time step. Running 
an optimization program in every time step of a simulation program with hundreds of 
time steps and that must be run thousands of times to get good result distributions, 
would require a long unpractical computation time. 
 To find optimal operation, we therefore pre-define a set of different strategies, of 
which the CHP operator will chose the one that maximizes daily profits. First, we define 
a set of discrete reduction targets in daily demand, GiD , for the demand metered hours. 
The set of demand reduction targets can for example be from zero kW to the capacity 
with steps of 10 kW. The demand reduction targets, combined with the expected load 
profile, are used to find the minimum operation each hour that leads to the 
corresponding expected demand reduction. After defining the demand reduction targets, 
we find optimal hourly operation for each of the demand reduction strategies. Then, the 
strategy that gives the highest daily profit is chosen. We define three hourly operation 
states 
 

, , ,Di k l mP : Generation at the minimum output that is compatible with the peak demand 
reduction target 
 

, , ,M i k l mP : Generation at the maximum output constrained by the electricity load and 
system capacity 
 

, , ,Qi k l mP : Generation at the minimal electrical output that can satisfy the building heat 
load 
 
The three hourly operation levels are also found prior to simulation, with an 
optimization program or spreadsheet calculations. The minimum output level must be 
higher than the electricity load, , ,E k l mL , less the new maximum demand for each demand 
reduction target. The operation level must also be within the allowed operation range 
and can be found from 
 

 

, , , , , ,

, , , , , ,

, , , min , , ,

min
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where ,M k lD  is the maximum demand for each day type, minP , is the minimum output 
and,C , is the  generator capacity.  
 The maximum hourly output, , , ,M i k l mP , must be lower or equal to the electricity 
load and within the allowed operation range 
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 (10) 

 
The lowest electrical output where as much as possible of the building heat load, , ,Q k l mL , 
is satisfied by heat recovery is the electrical output level given by 
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 (11) 

 
For each of the three operation levels, , , ,Di k l mP , , , ,M i k l mP  and , , ,Qi k l mP ,we find the 
corresponding amount of heat that can be utilized for building heating needs, 

, , ,Di k l mQ , , , ,Mi k l mQ  and , , ,Qi k l mQ . The heat that can be utilized at the different operation 
levels is the minimum of the available recovered heat and the heat load 
 

 
, , , , , , , ,
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 (12) 

 
whereα is the heat-to-power ratio.  
 The actual demand reduction target might be infeasible to achieve because of 
minimum and maximum operation levels, and because of the shape of the load profile. 
For example if the load is 100 kW in one hour and 45 kW in all other demand metered 
hours, demand cannot be reduced with 70 kW if generators can only operate over 50 
kW. Therefore, a variable that corrects the actual reduction in demand resulting from 
the various targets, , ,Di k lR , is introduced. It can be calculated as the previous maximal 
demand less the maximal demand with the demand reducing strategies 
 
 , , , , , , , ,max( )Di k l M k l E k l m Di k l mm H

R D L P
∈

= − −  (13) 
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2.4 Simulating Net Present Value 
 
With the alternative pre-defined operational levels, the corresponding heat supply and 
the expected demand reductions, the value of every operational strategy can be 
calculated with Monte Carlo simulation of the wholesale prices. The value calculations 
are carried out in every simulation run because they depend on the simulated energy 
prices, and the strategy with the highest value is chosen. 
 First, we find the most profitable hourly operation level for each demand 
reducing goal, i . For each alternative operation level, the hourly volumetric profits, 

, , , ,Di j k l mZ , , , , ,M i j k l mZ  and , , , ,Qi j k l mZ  are given as saved electricity purchased less additional 
natural gas purchases plus the natural gas savings due to heat recovery less operational 
costs 
 

 
, , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , , ,

( / ) /

( / ) /

( / ) /

Di j k l m Di k l m j k l m j k l m Di k l m j k l m

M i j k l m M i k l m j k l m j k l m M i k l m j k l m

Qi j k l m Qi k l m j k l m j k l m Qi k l m j k l m

Z P S G Q G M

Z P S G Q G M

Z P S G Q G M

µ γ

µ γ

µ γ

= − + −

= − + −

= − + −

 (14) 

 
where µ  is the electric efficiency and γ  is the efficiency of the alternative method of 
providing heat using natural gas boilers and M is the operational costs. The daily 
volumetric profit, , ,V j k lZ , for each demand reducing target, i, is the sum of the hourly 
profits from the most profitable operation level each hour 
 
 , , , , , , , , , , , , , , ,max( , , )V i j k l Di j k l m M i j k l m Qi j k l m

m
Z Z Z Z= ∑  (15) 

 
The daily profit, is the most profitable demand reduction strategy, which is the sum of 
savings on peak demand charges and volumetric savings 
 
 , , , , , , , ,max( )j k l Di k l k l V i j k li

Z R d Z= +  (16) 

 
The net present value is the discounted daily profits multiplied by the number of days 
for each day type less the investment cost 
 

 
, , ,

(1 )

j k l k l
k l

j
j

Z n
NPV IC

r
= −

+

∑∑
∑  (17) 

 
where ,k ln is the number of day types per month, I  is the investment cost per kW 
installed capacity and r  is the interest rate. 
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Net present value and operation will vary in every simulation run. The expected net 
present value is simply the average value in the simulations 

 [ ]
s

s

NPVE NPV
N

= ∑  (18) 

where N  is the total number of simulations and, sNPV , is the net present value in 
simulation s . 
 
2.5 Building Energy Cost Calculations 
 
Total energy costs (including capital costs when CHP is installed), are calculated for the 
first year. The first-year energy costs in every simulation run is the sum of electricity 
and natural gas purchases, fixed costs, stand-by contract demand charges, daily demand 
charges and capital costs 
 

 
, , , , , , , , , , ,

, , , ,

( / )

( max( ) ) 1

k l E k l m j k l m Qk l m j k l m
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∑ ∑∑
 (19) 

 
where Sf  is fixed monthly electricity costs, Gf  is fixed monthly natural gas costs, Sb  a 
standby charge based on maximum monthly demand and Fa , the annuity factor, is given 
as 
 

 (1 )
((1 ) 1)

T

F T

r ra
r
+

=
+ −

 (20) 

 
The expected first-year energy cost after the simulations is the average simulated value 
 

 [ ]
s

s

ACE AC
N

= ∑  (21) 

 
where SAC is the simulated value in simulation s . 
 
 
3. Model Parameters 
 
Electricity price process parameters, are estimated from New England ISO prices in the 
period from May 1999 to January 2003, while the natural gas price parameters were 
estimated from Henry Hub prices from the same period (see Table 1). The prices have 
been strongly correlated in the period due to the high natural gas fired electricity 
capacity installed in New England and because most of the peak power capacity is 
based on natural gas. Both the electricity and the natural gas price have a strong mean-
reversion and a high volatility.  
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Table 1: Energy Price Process Parameters  
0X  

($/MWh) 
X  

($/MWh) 
Xκ  

(1/y) 
Xσ  

(1/y) 
0Y  

($/MWh) 
Y  

($/MWh) 
Yκ  

(1/y) 
Yσ  

(1/y) 

ρ  

3.73 3.61 3.13 0.41 1.31 1.35 1.69 0.39 0.82 
 
Table 2 shows the energy tariffs that are used in the analysis. The electricity charges are 
based on a TOU rate while the natural gas charges are flat within the month. On-peak 
hours are from 8am to 8pm on non-holiday weekdays and off-peak the remaining days. 
There are monthly fixed costs in addition to the variable costs. 
 
Table 2: Assumed energy tariffs 

   On-Peak Off-Peak Monthly 
Electricity TOU-factors* ($/MWh) 1.14 0.91 - 
 T&D ($/MWh) 65 45 - 
 Demand Charge ($/kW) 0.4 - - 
 Standby 

Charge** 
($/kW) - - 3 

 Fixed Cost ($) - - 150 
Natural Gas      
 Dist. Cost ($/MMBTU) 3 3 - 
 Fixed Cost ($) - - 50 

*   To be multiplied with the monthly average wholesale prices to find TOU wholesale prices 

** Charged monthly, based on the maximum building electricity load 
 
Only one type of unit is considered for investment, but in systems with one, two, three 
or four generators of 60 kW are considered, which gives alternative installed capacities 
of 60 kW, 120 kW, 180 kW and 240 kW (see Table 3 for generator specifications).  
 
Table 3: Generator Data (from [8]) 

C  
 (kW) 

minP  
(kW) 

T  
 (y) 

I  
($/kW) 

M  
 ($/MWh) 

µ  
 

α  

60 30 20 1360 18 0.29 1.72 

 
The building energy loads have been simulated with DOE-2, an energy load simulation 
program developed at Ernest Orlando Lawrence Berkeley National Laboratory, for a 
7200 m2 office building with climate data from Boston. The office building has a 
maximum electricity demand of 320 kW, an annual electricity consumption of 1 105 
MWh and an annual heat consumption of 465 MWh. Figure 1 shows the pre-simulated 
electricity and heat load for the Boston office building for January and August, for week 
days and weekend days. The heat load is many times higher in the winter, while the 
electricity load is higher in the summer due to the use of electricity for space cooling. 
Weekend days have a lower electricity usage and most of the consumption is in the first 
half of the day. Additional parameters used in the analysis includes the efficiency for 
converting natural gas to heat,γ , through heat exchanges of 0.8 and the discount rate, r , 
of 8 percent. 
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Figure 1. Pre-simulated energy loads for the Boston office 
 
 
4. Simulation Results 
 
Figure 2 shows the historical New England ISO electricity prices and the Henry Hub 
natural gas prices in the period from May 1999 to January 2002 and one sample of 
simulated monthly prices for the next twenty years. The strong correlation between the 
electricity and the natural gas price from the historical data is carried through in the 
example simulated future prices. Also, the strong tendency of the prices to revert back 
to a long-term average is clearly visible in the simulated paths. Note that the figure only 
shows one price path for each of the energy prices; in the simulation of the net present 
value and the first-year energy costs, 20,000 price path simulations are carried out. 
 

 
Figure 2. Historical and sample simulated electricity and natural gas prices 
 



 15

4.1 Base Case Results 
 
In Figure 3, the base case results, from the simulations of the net present value, for the 
four considered systems can be seen. The 120 kW system has the highest expected net 
present value and the 240 kW system the lowest. Notice that the standard deviation of 
the net present value increases with capacity. None of simulation runs resulted in a 
negative net present value for any of the alternative systems. The explanations for the 
fairly low standard deviation in the net present value are that the uncertain wholesale 
prices are just a portion of the tariffs, that there is a high correlation between the 
electricity and natural gas price and the that there is a strong mean-reversion in the 
prices. The figure shows that CHP systems are attractive for the office building with the 
assumed parameters.  

 
 

Figure 3. Simulated net present value of the four considered CHP installed capacities 
 
Some building owners might care more about the standard deviation in the total cost 
than about the standard deviation of the net present value of the investment. A company 
might also be more concerned with cost risk over shorter periods than the 20-years 
expected lifetime of CHP units. Figure 4 shows the expected total energy costs and 
standard deviation the first year, without a CHP system installed and with the four 
alternative systems. The building has an expected energy cost of $ 158 935, with a 
standard deviation of 3.14 percent the first year. All four CHP-systems results in a lower 
expected first-year cost but only the 60 kW system results in a lower standard deviation. 
On the one-year horizon, the 240 kW system has a higher expected value than the 60 
kW unit because electricity price is initially higher than the long-term average and the 
natural gas price is initially lower than the long-term average. 
 The expected costs and the standard deviation of the first-year cost does not tell 
the full story of the CHP associated costs risks, because two systems can have the same 
expected costs and standard deviation, while one can have a larger probability for a 
particularly high cost. Figure 5 shows the highest one-year energy costs, including the 
investment costs, of the four investment alternatives and for the building without CHP, 
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within a confidence level of 95 and 99 percent. It can be seen that all four CHP systems 
result in lower maximum costs within both confidence levels. The 120 kW has the 
lowest costs and the240 kW the highest costs of the systems in both confidence levels.  
 

 
Figure 4. Simulated energy costs including capital costs for the first year with and 
without CHP 

 
Figure 5. Highest first-year energy cost within 95 and 99 percent of simulations 
 
4.2 Sensitivity to Uncertainty in the Electricity Price 
 
The volatility in the electricity price is rarely constant, and it also differs between 
markets. Therefore, we simulate the net present value with an electricity price volatility 
that has been increased by a factor of 1.5 (from 0.4 to 0.6 annually). The effect of the 
increased price volatility is that both the expected net present value and the standard 
deviation are increased for all projects (see Figure 6). The increased net present value 
with volatility option characteristics of operation of CHP and show that operation levels 
are adjusted with the price levels. However, the changes in the profitability are minor, 
which can be explained by the fact that both the electricity and the natural gas price 
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process have a high mean-reversion factor. A high mean-reversion parameter means that 
it is unlikely that the price stays far away from the long-term average for a long period, 
the result being that price deviation even out over the life of the CHP units. The increase 
in profitability can again be explained by the operational flexibility. 
 

 
Figure 6. Expected net present value and standard deviation in simulated values with an 
increase in the electricity volatility of a factor of 1.5 compared to the base case 
 
As expected, the first-year energy cost standard deviation increases with uncertainty 
from 3.14 to 4.49 percent (see Figure 7). With the higher electricity price volatility, all 
CHP systems results in a lower first-year standard deviation in energy costs. Note that 
with the higher price volatility, the standard deviation in energy costs is reduced with 
size, which means that the largest systems has the most predictable energy costs but the 
120 kW unit still has the lowest expected first-year energy costs. 
 

 
 

Figure 7. First-year energy costs with an 1.5 factor increase in electricity volatility from 
the base case 
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4.3 Sensitivity to the Price Correlation Factor 
 
The New England ISO electricity prices and the Henry Hub natural gas prices have been 
highly correlated in the period we used to estimate the price process parameters. In the 
future, and in other electricity markets with a lower reliance on natural gas, the prices 
might be less correlated. Figure 8 shows the net present value of the four alternative 
systems with a halved correlation factor of 0.41, versus 0.82 previously. The figure also 
shows the base case solution as the hollow squares. The main change in the results is 
that the standard deviation is increased. This is an expected effect because natural gas 
fueled generators base their profitability on the spark spread, the difference between the 
electricity and the natural gas price, which will be more volatile when the processes are 
less correlated. Somewhat more surprisingly, the net present value of all projects 
increase, something that can be attributed to the flexibility in operation of the generators. 
The generators can be turned off when the profitability is low; they can catch the upside 
of the increased spark spread volatility while they do not suffer from the downside 
because they can be turned off to purchase electricity and natural gas from the grid. 
Also with a reduced correlation in the energy prices, the 120 kW unit is the most 
profitable. 
 

 
Figure 8. Net present value of the four alternative investments with a halved correlation 
between electricity and natural gas prices compared to the base case results 
 
For the first-year total cost of supplying energy to the building, the effect of the reduced 
correlation on standard deviation is the opposite as the standard deviation of the first-
year costs is reduced for all alternatives (see Figure 9). This is an expected effect, 
because it is now more likely that the wholesale prices move in a different direction, 
thereby smoothing out each others volatility's effect on cost variation. Interestingly, the 
three smallest systems reduce standard deviation in the first-year costs, while only the 
smallest system did so with the base case correlation. This result indicates that CHP 
units are better for hedging energy costs when the correlation between the natural gas 
and electricity price is lower. Also in the one-year horizon, the 120 kW unit has the 
lowest total building energy costs, but in this case it also has the lowest standard 
deviation in costs. 
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Figure 9. First-year energy costs including investment costs with a halved correlation 
factor between the electricity and natural gas price compared to the base case 
 
4.4 Sensitivity to the Electricity Mean-Reversion Rate 
 
A lower mean-reversion rate implies that the price is pushed towards the long-term 
average price at a lower rate when it is above or below it. In Figure 10, the model is run 
with an electricity mean-reversion parameter for the electricity price that is reduced by a 
factor of 0.5, from 3.16 to 1.58. Also with a reduced mean-reversion factor the expected 
net present value is increased, most likely because there is a higher probability for very 
high prices. The standard deviation increases significantly because the prices can stay 
far away from the long-term average price for longer periods. Again, there is a similar 
shift in both net present value and standard deviation for all units, and the 120 kW unit 
is the most profitable. 
 

 
Figure 10. Simulated net present value for the four CHP systems with an electricity 
mean-reversion rate that has been reduced by a factor of 0.5 compared to the base case 
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The reduction in the mean-reversion parameter leads to an increase in the expected first-
year energy costs, as seen in Figure11. This is most likely due to the fact that the 
electricity price is slightly higher than the long-term average initially, and the price is 
now less likely to fall towards the long-term average. The other main effect is that the 
standard deviation increases without CHP and with all CHP systems. Now, all 
considered systems lead to a lower standard deviation in energy costs and the standard 
deviation decrease with system size. Still, the 120 kW system gives the lowest expected 
energy costs. 

 
Figure 11. Simulated first-year total energy costs with an electricity mean-reversion 
rate that has been reduced by a factor of 0.5 compared to the base case 
 
4.5 Sensitivity to Demand Charges 
 
Demand charges can constitute a major share of a commercial building's energy costs. 
The level of the demand charges depends on the costs and strains on the grid system, 
and they are highly variable across regions; in the Boston area, the monthly demand 
charge  in peak hours is 24 $/kW while in Atlanta there is no demand charge at all. In 
New York that has daily demand charges for distributed generation, it can be as high as 
0.9 $/kW, depending on location and service. Units that are successful in reducing 
demand will have a potentially high net present value. Net present value has been 
simulated with a demand charge that has been increased from 0.4 $/kW to 0.5 $/kW. 
Figure 12 shows that the expected net present value increases significantly, and that the 
standard deviation is reduced for all units and to the largest extent for the largest units. 
With a higher demand charge the most profitable capacity has increased from 120 kW 
to 180 kW, and the 240 kW system has the next highest net present value. This result 
shows how important demand charges can be both for installed capacity and for 
profitability. With considerable demand charges, it is clear that the common mantra to 
size CHP systems to the heat load does not apply, because size depends on reductions in 
the demand charges. Sizing must therefore be determined by an optimization program 
or by analyzing alternative systems, as in this approach. 
 In Figure 13 the effect on first-year energy costs and standard deviation of 
increasing the demand charge from 0.4 to 0.5 $/kW can be seen. The costs increase the 
most for the alternative without CHP and for the small alternatives. The very low 
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reduction in first-year costs for the largest systems proves that the large systems are 
used effectively to reduce demand charges. All CHP systems have a higher standard 
deviation in first-year energy costs than without CHP, but the first-year profitability has 
nearly doubled for the two largest systems. An important finding from the figure is that 
on-site generation, and in particular larger systems, can be a hedge against increases in 
demand charges since the energy costs for with installed CHP systems is far less 
sensitive to the demand charge than without CHP. 

 
Figure 12. Expected net present value and standard deviation for a daily demand charge 
of 0.5 $/kW compared to the base case of 0.4 $/kW 
 

 
Figure 13. Expected first-year energy costs with a demand charge of 0.5 $/kW versus 
0.4 $/kW in the base case 
 
4.6 Sensitivity to Electricity Transmission and Distribution Charges 
 
The transmission and distribution charges do, like the demand charge, vary across 
regions due to the variations in the costs of building the grid and transmitting electricity. 
The simulated net present value with an increase in the transmission charges of a factor 
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of 1.25 is shown in Figure 14. The most profitable system is now the largest 240 kW 
system.  The standard deviations of the net present values have decreased for all 
systems because the deterministic transmission and distribution charges constitute a 
larger share of the net present value.  
 The first-year energy costs also increase both with and without CHP systems 
installed (see Figure 15). The standard deviation in first-year energy costs decreases 
with the higher transmission and distribution tariff as expected. With CHP systems 
installed, however, the results are more ambitious, as the standard deviation decrease for 
the three smallest systems while it increases for the largest 240 kW system. With the 
increased transmission and distribution tariff, all systems have a higher standard 
deviation in the first-year energy costs than without CHP. But it should be noted that the 
expected first-year cost are from 5.7 to 10 percent lower than without CHP and the 
standard deviation with CHP range from 2.95 to 3.33 percent.    

 
Figure 14. Expected net present value and standard deviation with an 1.25 factor 
increase in electricity transmission and distribution tariff compared to the base case  
 

 
Figure 15. Simulated first-year energy costs with an electricity transmission and 
distribution tariff that has been increased by a factor of 1.25 compared to the base case 
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5. Discussion 
 
In the analysis, it has been assumed that the electricity and natural gas prices follow 
mean-reverting processes where the levels the processes revert to are assumed to be 
constant. Although energy prices have been shown to fit well to mean-reverting 
processes, there will always be a possibility that the prices move to a higher or lower 
level over long periods. Including uncertainty in the level the prices revert to would 
make the investments more uncertain. Alternatively, a deterministic growth in the long-
term price could be included if that was reflected in the market expectation. Also, price 
jumps and stochastic volatility could have been included to make the price processes 
more realistic. Further work should look at how the risk characteristics will change if 
energy prices are modeled with more sophisticated price models. However, the 
presented model captures the main characteristic of the price processes and represents 
an improvement compared to deterministic analyses. 
 Different companies will care about different risk indicators. Typically, a 
company cares about the probability for bankruptcy, which for instance depends on the 
debt level. In addition, different companies will have a different required return on their 
investments. Even though the analysis does not include a company specific risk analysis, 
the Monte Carlo model will be a good starting point for most risk analyses. Further, 
there is uncertainty associated with other parameters. The sensitivity analysis showed 
that the choice of system depends to a large extent on the level of the demand charges 
and the transmission and distribution costs. Including uncertainty in these costs is not a 
challenge in a modeling sense because it can be done with scenarios with probabilities 
attached to them, but estimating the parameters might be a challenge.  
 In the U.S., demand charges are commonly based on monthly peak demand for 
commercial building electricity tariffs. It is simple to modify the model to include 
monthly demand metering, but without perfectly reliable CHP units this would come 
with uncertainty in the system's ability to reduce the demand charges. Under such 
conditions, the system availability could be modeled with a Monte Carlo simulation 
integrated with the price models.  
 In areas with cooling loads, adding absorption chillers to the on-site generators 
can be profitable. Including absorption chillers in potential system configurations, 
would also make the system more flexible because recovered heat can be used for both 
heating and cooling at times with both a space cooling and a hot water load. Absorption 
cooling can be included in the model in a way similar to heating, with alternative 
operational decisions, but it would make the model significantly larger as there would 
be many more operating states to consider. Previous work has focused on the ability of 
renewable energy sources to reduce cost uncertainty [9]. The presented model could 
also be expanded to include renewable energy sources by using a set of production 
profiles each month, such as an average, a low and a high power generation day. 
Although renewable resources can reduce the volumetric costs very successfully, and to 
some extent the demand charges, they would not reduce natural gas costs unless thermal 
renewable systems are installed. Thus, there will still be energy cost uncertainty for 
buildings with renewable energy sources, even though a large share of the costs are 
capital costs, which can be made predictable with fixed interest rates. Analyzing the 
effect of including renewable energy resources is nonetheless an interesting research 
topic for future work.  



 24

6. Conclusion  
 
We have presented a Monte Carlo simulation model for evaluation of investments in 
CHP systems, for commercial buildings, with stochastic electricity and natural gas 
prices. The energy prices have been modeled as mean-reverting processes, where the 
prices are assumed to be pushed back towards a long-term average if they drift away 
from it. The model has been applied to four alternative CHP system investments, with 
capacities of 60, 120, 180 and 240 kW, for a Boston office building with pre-simulated 
energy loads. The building was assumed to be on a TOU-tariff structure with a standby 
contract demand charge and daily demand charges based on the maximum daily demand. 
The price model parameters were estimated with New England ISO prices and Henry 
Hub natural gas prices, which were volatile, highly correlated and had a strong mean-
reversion in the data period. Under this wholesale energy price environment and with 
the assumed tariff structure, CHP systems are attractive investments. The net present 
value of the investment is positive for all considered systems, but the 120 kW system 
has the highest net present value. Standard deviation in the net present value increases 
with the size of the CHP system. Only the 60 kW system results in a lower standard 
deviation in the total first-year costs, but all systems have lower maximum one-year 
costs within 95 and 99 percent of the simulations. The sensitivity analysis shows that 
the value of CHP increases with a lower correlation factor, a lower mean-reversion 
factor and with increasing uncertainty in the electricity price. The reason for this, is that 
the operational flexibility in the CHP units makes it possible to operate the systems only 
when the price conditions are favorable, which means they will catch the upside of the 
increased uncertainty but not suffer correspondingly from the downside because 
electricity and natural gas can be bought from the market. In a more uncertain energy 
cost environment, the trend seems to be that the CHP systems result in lower first-year 
energy cost volatility. These results indicate that potential developers of CHP in 
commercial buildings should not be frightened by uncertainty in energy wholesale 
prices. Rather, high price uncertainty can be a reason to invest in CHP to hedge the 
annual energy costs. In addition, it should be noted that in this case, and generally for 
U.S. tariffs, the wholesale prices are a minor constituent of the electricity tariff. Both 
higher demand charges and transmission and distribution charges, which are modeled as 
constants, lead to larger systems being optimal than with the base case parameters. This 
shows that the tariff structure can play an important role in finding the optimal size of 
the systems. 
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Abstract 
 
Important factors for distributed generation profitability are identified using a mixed 
integer linear model with simulated load data for a healthcare and an office building in 
California. Under the assumed time-of-use (TOU) electricity prices, with monthly peak 
demand charges, the installed distributed generation system's ability to reduce demand 
charges can be a critical factor for profitability. Systems with lower reliability than 
promised can infer large losses to the developer, which makes demand charges a 
potential barrier to wide spread distributed generation adoption. In a variety of natural 
gas and electricity price scenarios, the optimal decision is to install distributed 
generation units with heat recovery and absorption chillers. The benefit maximizing 
solution reduces a building’s carbon emissions in most price scenarios. The introduction 
of a carbon tax can reduce emissions further. In competition with natural gas-fueled 
equipment, both the break-even cost and the installed capacity of photovoltaics is 
reduced in both buildings. The healthcare building has the highest return on capital. 
High discount rates favor small base load generation systems with heat recovery. 
 
 
Keywords: Distributed generation, combined heat and power, thermally activated 
cooling, photovoltaics, mixed integer linear programming 
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1. Introduction  
 
Technological progress for small power producing units and an increased focus on 
efficient and renewable power production can force a change where distributed 
generation (DG) becomes an important part of the future energy system. The focus in 
this paper is on the economic potential of distributed generation in commercial 
buildings. Customers with electricity, heating and cooling loads can invest in generating 
units to satisfy part of their loads. Many technologies can be used on-site, including gas 
turbines, reciprocating engines, fuel cells, wind turbines and photovoltaics. All 
technologies installed locally have the potential to reduce grid losses and costly grid 
investments [1]. Renewable technologies have the highest potential to reduce carbon 
emissions, but also, natural gas-based units with heat recovery can serve end-use loads 
at a higher efficiency than a central system, and thus, reduce emissions. Also, 
absorption cooling can offset expensive peak load electricity and reduce the peak load 
in systems with summer cooling peaks. This work tries to identify the decisive factors 
for investment profitability, preferred technology type and potential barriers to 
distributed generation development in commercial buildings. 
 The model, presented in this paper, finds the optimal combination of distributed 
generation units given a building’s energy load profiles, energy prices and available 
technologies. The model is used as a framework for analyzing how two commercial 
buildings, an office and a healthcare building, can install optimal generation portfolios 
under different economic and policy scenarios. It is assumed that the building currently 
satisfy heat loads by natural gas combustion and cooling loads by a central electrical 
cooling system. It is also assumed that the customers have access to both a natural gas 
distribution system and a location for both natural gas-based systems and photovoltaics. 
Alternative technologies have different characteristics such as capacity, investment cost, 
efficiency, operation cost, operation flexibility and expected lifetime. The investment 
alternatives are interrelated because the available electricity, heating and cooling loads 
are dependent on the installed equipment. It is a well-accepted rule to invest in the 
alternative that maximizes net present value. However, because the alternative 
technologies have different expected lifetimes the net present value cannot be compared 
directly. Therefore, the model maximizes equivalent net annual benefit of the 
investment over a given time horizon. 
 Many factors affect the optimal solution, and potentially particularly important 
factors are the electricity and natural gas price forecasts.  Some selected price scenarios 
and their effect on the solution is presented. For example, the paper tries to answer at 
which investment costs photovoltaic systems (which are an immature technology with 
expected future reductions in investment cost) can compete with buying electricity from 
the grid and with natural gas fueled equipment. Further, building emissions, 
corresponding to a range of carbon taxes, are compared to emissions without distributed 
generation. This analysis assumes time-of-use (TOU) prices where peak demand 
charges, which are charged based on the maximum monthly building electricity load in 
TOU-periods, can constitute a considerable amount of the energy bill. A generator’s 
ability to reduce demand charges, therefore, depends on its reliability. A natural 
question to answer is how sensitive the investment decision is to the systems ability to 
reduce demand charges. Various developers of distributed generation will have different 
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expectations for return on capital and the sensitivity to the assumed discount rate shows 
how the optimal systems vary. 
 The second section of the paper presents the investment model, and the third 
section presents the model parameters and the scenarios used. In the fourth section, the 
results from solving the model in the scenarios for the healthcare and the office building 
are given. The fifth section concludes the analysis and suggests some areas for further 
work in modeling the economic attractiveness of distributed generation in commercial 
buildings.   
 
Nomenclature  
 
Indices 
i    Distributed generation (DG) unit  
j   Time period      
k  Season (Winter, Spring, Summer, Fall) 
l   Day type (Weekday, Weekend day, Peak day) 
m    Hour of day  
t  Time-of-use period (Off-peak, Part-peak, Peak, All) 
 
Subsets 
NG    Natural gas-based units of i 
PV   Photovoltaic units of i 
 
Variables 

jB   Annual benefits 
EV     Equivalent net annual benefits 

jO   Annual operational costs 

, , , ,i j k l mP   Electricity production from unit   

, , ,C j k l mP   Displaced electricity purchases from absorption cooling 

, , ,D j k l mP   Expected reduction in electricity load for monthly demand charges 

, , ,E j k l mP  Electricity production from all units 

, , ,Q j k l mP  Recovered heat that satisfies building heat load 

, ,D j k tR   Expected reduction in peak demand  
 
Integer Variables 
xi   Number of purchased units of DG equipment  
yi,j,k,l,m   Number of units running at each time step 
 
Parameters 
Ci   Capacity  

,k tD   Maximum load in time-of-use periods 

0kG    Initial wholesale natural gas price 

,R j kG     Retail natural gas price 
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,W j kG     Wholesale natural gas price 
H   Study horizon 

iI   Investment cost 

, ,E k l mL   Electricity-only load 

, ,C k l mL   Cooling load in electricity units (assuming central electric cooling system) 

, ,Q k l mL   Heat load 

,D k lN     Number of day types in each season 

MN    Months in season 

YN   Number of years in each forecast period 

F iO    Annual fixed operational costs 

V iO    Variable operational costs 

0 , ,k l mS   Initial wholesale electricity price    

, , ,R j k l mS  Retail electricity price 

, , ,W j k l mS  Wholesale electricity price   
Ti   Lifetime 

SU   Electricity price adder for transmission and distribution 

GU   Natural gas price adder for distribution 

,k mV   Solar production as ratio of capacity  

ia   Annuity factors for investment costs 

Ha   Annuity factor for discounted cash flows 

,k td    Demand charges 

jf   Discount factor 
r   Discount rate 

Sα   Annual growth in electricity price 

Gα    Annual growth in natural gas price 

Cβ    Coefficient of performance (COP) for absorption cooling process 

Eβ    COP for central electric chillers 

Gβ    COP for natural gas-based heating 

Qβ    COP for heat exchanger 

Qiγ    Heat-to-power ratio 

C iγ    Heat-to-power ratio for cooling (zero if absorption chillers are not  
  installed) 

iθ    Generator's ability to reduce demand charges  

Cθ    Absorption chiller's ability to reduce demand charges  
λ   Minimum generator operation level (percentage of capacity)  

iµ   Electric efficiency 
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2. Investment Model 
 
The objective of the investment model is to maximize the net economic benefit of 
installing distributed generation equipment. Since different units have different lifetimes, 
the model's objective function is the net equivalent annual benefit over a study horizon. 
Economic benefits of distributed generation in commercial buildings come from serving 
local electricity, heat and cooling loads. Buildings with distributed generation can serve 
electricity loads by purchasing electricity from the grid or by generating on-site. It is 
assumed the buildings in the study have installed gas boilers to serve building heat loads, 
thus heating loads can be met by direct combustion of natural gas or by waste heat from 
combined heat and power units. Further, it is assumed that the buildings have a central 
electric chilling system. Cooling loads can, therefore, be met by electricity purchases 
from the grid or by absorption chillers that utilize recovered heat to provide cooling.  
 There are a number of potential DG technologies. These include reciprocating 
engines, gas turbines, fuel cells, photovoltaic power and wind turbines. Thermal 
technologies can be equipped with or without a heat exchanger and an absorption chiller. 
In addition, units come in a variety of sizes and have different characteristics such as 
electrical efficiency, investment cost, operational costs, heat rates and lifetime. In the 
analysis, it is assumed that electricity cannot be exported, therefore, the local load that 
on-site generators can serve is limited; the energy loads vary significantly throughout 
the day and natural gas-based units have a limited operation range. Because of these 
characteristics, the benefit maximizing DG system can be a combination of units (e.g. a 
combination of base load and peak-load units). Hence, finding the optimal system is an 
optimization problem. Since units come only with discrete capacities, the problem is 
implemented as a mixed integer linear program. A price forecast period of 20 years is 
used and modeled as four five-year periods. To represent variation in prices and 
building loads, four seasons with three day types with hourly data are used. The winter 
season is November, December and January, spring February to April, summer May to 
July, and fall August to October. Day types are weekdays, weekends days and peak 
days. Peak days have the average hourly load of the monthly three non-holiday 
weekdays with the highest electricity load. Weekdays have the average hourly load of 
the remaining non-holiday weekdays. Weekend days have similarly the hourly average 
loads of weekend days of the months in each season.   
 Three load types are modeled: electricity-only, cooling and heat load. 
Electricity-only load is the electricity load less the electricity that is used for cooling, 
while cooling is the electric cooling load when the central cooling system is used, and 
the heat load is the sum of space and water heat load. 
 
2.1 Mathematical Model Formulation 
 
The investment model maximizes the equivalent net annual benefits of installing 
distributed generation equipment in a building. The equivalent net annual benefit, EV , 
is a function of annual benefits, jB , operating costs, jO , investment costs, iI , capacity 
of installed equipment, iC , and annuity factors 

 ( ( ))H j j j i i i i
j i

EV a f B O a x C I= − −∑ ∑  (1) 
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where ix  is an integer variable that decides the number of units to invest in. The annuity 
factors are calculated from  
 

 (1 ) (1 ),
((1 ) 1)) ((1 ) 1))

i

i

TH

H i TH

r r r ra a
r r
+ +

= =
+ − + −

 (2) 

 
The discount factor is the sum of the annual discount factors within each period 
 

 1
(1 )

u w

j u
u v

f
r

=

=

=
+∑  (3) 

  
where r is the discount rate and the summation is from the first year in the period, 

1 ( 1)Yv N j= + − , to the last year in the period, Yv j N= ⋅ . Benefits of installing 
distributed generation come from reduced electricity purchases due to local electricity 
generation, , , ,E j k l mP , reduced electricity purchases due to utilization of waste heat to meet 
cooling loads, , , ,C j k l mP , reduction in monthly peak demand, , ,D j k tR , and reduced natural 
gas purchases due to the utilization of waste heat, , , ,Q j k l mP , and can be written as  
 

 
, , , , , , , , , , , , , , , , ,

, , ,

1( )j Dk l E j k l m R j k l m C j k l m R j k l m Q j k l m R j k
k l m G

M D j k t k t
k t

B N P S P S P G

N R d
β

= + +

+

∑∑∑
∑∑

 (4) 

 
where ,D k lN  is the number of day types in every season, , , ,R j k l mS  is the retail electricity 
price, ,R j kG  is the retail natural gas price, MN  is the number of months per season, ,k td  
is the peak demand charge and, Gβ  is the coefficient of performance (COP) of natural 
gas combustion to heating. The operational cost is the sum of natural gas purchases for 
running on-site generators and variable and fixed operation and maintenance costs, V iO  
and F iO and is given as 
 

 , , , , , ,
1( )j D k l i j k l m R j k V i i F i

i k l m ii

O N P G O x O
µ

= + +∑∑∑∑ ∑  (5) 

 
where , , , ,i j k l mP  is individual generator electrical output level and, iµ  is generator electrical 
efficiency.  
 The wholesale electricity prices have seasonal and daily variations and an annual 
growth. The electricity retail price is a function of the expected annual growth, Sα , the 
initial wholesale price, 0 , ,k l mS , and a utility adder, SU , which includes transmission costs 
and a utility profit 
 
 ( 1)

, , , 0 , , , , ,(1 ) Yj N
R j k l m E k l m S W j k l m SS S U S Uα −= + + = +  (6) 
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where , , ,W j k l mS  is the electricity wholesale price. The natural gas retail price is assumed 
to have a seasonal pattern, but no variation within the month. It is a function of the 
annual expected price growth, Gα , the initial wholesale price, 0kG , and a utility 
adder, GU , which includes transportation costs and profits 
 
 ( 1)

, 0 ,(1 ) Yj N
R j k G k G W j k GG G U G Uα −= + + = +  (7) 

 
where ,W j kG  is the effective wholesale natural gas price.  
 Reductions in utility electricity purchases each hour is the sum of generation 
over all units 
 

, , , , , , ,E j k l m i j k l m
i

P P= ∑  

 
In each time step, natural gas-fueled generators must operate between the minimum 
output level, λ , and the generator capacity or be turned off 
 
 , , , ,i j k l m iy x for i in NG≤  (8) 
 
 , , , , , , , ,i j k l m i j k l m iP y C for i in NG≤  (9) 
 
 , , , , , , , ,i j k l m i j k l m iP y C for i in NGλ≥  (10) 
 
where the integer variable, , , , ,i j k l my , determines if and how many of the units should 
operate in each hour. Both locally generated electricity and absorption cooling can serve 
cooling loads, when there is both a central cooling system and absorption chillers 
installed. The sum of generation that satisfies own electricity load and the absorption 
cooling, , , ,C j k l mP , must be less than the sum of the electricity load, , ,E k l mL , and the cooling 
load, , ,C k l mL ,  
 
 , , , , , , , , , ,E j k l m C j k l m E k l m C k l mP P L L+ ≤ +  (11) 
 
The system cannot offset more cooling from absorption chillers than the building 
cooling load 
 
 , , , , ,C j k l m C k l mP L≤  (12) 
 
The system cannot offset more heat, , , ,Q j k l mP , than the building heat load, , ,Q k l mL  
 
 , , , , ,Q j k l m Qk l mP L≤  (13) 
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Photovoltaic generation is determined by the time varying solar radiation, ,k mV   
 
 , , , , ,i j k l m k m iP V C for i in PV≤  (14) 
 
Waste heat utilization is constrained by concurrent production of electricity due to heat-
to-power production ratios 
 

 , , , , , , , , , ,
1 E

Q j k l m C j k l m Qi i j k l m
iQ C

P P Pβ γ
β β

+ ≤ ∑  (15) 

 
where Qβ  is the COP of the heat exchangers, Eβ  is central chiller COP, Cβ  is the 
absorption cooling COP and Qiγ  is the heat-to-power ratio. Waste heat can be utilized 
for cooling only if absorption chillers are installed 
 

 , , , , , , ,
E

C j k l m C i i j k l m
iC

P Pβ γ
β

≤ ∑  (16) 

 
where Cγ  is the same heat-to-power ratio, however, it is zero if absorption cooling 
equipment is not installed. 
 Since generators are not perfectly reliable, an expectation of reductions in peak 
demand is included over the time-of-use periods. Finding accurate expectations of 
reduced demand would depend on individual generator reliability and the load duration 
curve. Ability to reduce peak demand would further be reduced for each kW reduction 
because each kW reduction would require continuous generation a longer period, and in 
reality operational decisions could be changed within the billing period in the case of an 
outage at a peak hour. To account for this in a simple way in a deterministic model, one 
single expectation of generator ability to reduce demand charges is used for each 
generator. The expected reduction in hourly load, , , ,D j k l mP , which can be assumed used 
to reduce monthly demand charges is the sum over the product of each generator's 
ability to reduce demand and the production over all units, added the product of the 
absorption chillers' ability to reduce demand 
 
 , , , , , , , , , ,D j k l m i i j k l m C C j k l m

i
P P Pθ θ= +∑  (17) 

 
Expected reduction in monthly demand charges, , ,D j k tR for each TOU-period must be 
less than the initial peak demand, ,k tD , less the expected peak demand with distributed 
generation 
 
 , , , , , , , , , ,( )D j k t k t E k l m C k l m D j k l mR D L L P k t l t m t≤ − + − ∧ ∈ ∧ ∈ ∧ ∈  (18) 
 
Here, the indexes for month, k , for day type, l , and hour, m , must be a part of the time-
of-use periods, t . 
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 All decision variables must be non-negative 
 
 , , , , , , , , , , , , , , , , , , , ,, , , , , , 0 , , , ,i i j k l m i j k l m E j k l m Q j k l m C j k l m D j k l mx y P P P P P for all i j k l m≥  (19) 
 
The presented model is a modified and re-implemented version of the Distributed 
Energy Resource Customer Adoption Model (DER-CAM) developed at Ernest Orlando 
Lawrence Berkeley National Laboratory [2]. The model differs from previously 
published models because it maximizes benefits instead of minimizing costs, which 
gives better control over solution accuracy as a percentage of annual net benefits. It 
further includes a price forecast and it is, therefore, based on a seasonal load description 
instead of a monthly one, to make it possible to solve the model in a reasonable time. 
This version also includes a minimum operation level constraint and a parameter to 
reduce expectations in demand reductions. The model is implemented in GAMS, and a 
GAMS-MATLAB interface proposed by Ferris [3] was used for solving the model. 
 
 
3. Scenario Design and Model Parameters 
 
3.1 Building Energy Loads 
 
Two building types are used in the analysis: a healthcare and an office building. Data is 
generated with DOE-2, a building simulation program developed at Ernest Orlando 
Lawrence Berkeley National Laboratory, using standard building types. Climate data is 
from San Francisco, California. Table 1 shows that the buildings have different load 
profiles. The healthcare building has a far higher electricity load and higher cooling and 
heat load. The office building has the highest peak electricity load, but it is twice as 
large as the healthcare building, which means that it has lower energy intensity. 
 
Table 1. Energy load characteristics for buildings used in analysis 

 Building Type 
Property Healthcare Office 
Size (m2)  8 333 16 666 
Maximum electricity load (kW) 526.4 583.8 
Annual electricity load (MWh) 2 928.3 1 821.9 
Annual cooling load (MWh) 294.1 201.0 
Annual heat load (MWh) 1 340.3 423.2 

 
3.2 Model Parameters 
 
Table 2 shows the model parameters used in the analysis. The real before-tax discount 
rate used is 7.5 percent. Heat exchangers and boilers are both assumed to have a 
coefficient of performance (COP) of 0.8, absorption chillers 0.65 and electric chillers 4. 
Absorption cooling units have an expected reduction of monthly demand charges of 80 
percent. The minimum production level is 50 percent of rated capacity. The solar 
production data is generated using PVWATTS [4].  
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Table 2. Model parameters 
Parameter r  Qβ  Cβ  Gβ  Eβ  YN  H λ  

Cθ  

Value 0.075 0.8 0.52 0.8 4 5 20 0.5 0.8 
 
3.3 Technology Data 
 
Table 3 presents technology cost and performance data for the units that are allowed for 
investment in the analysis. Ten different units are considered: one photovoltaic module 
and nine natural gas-fueled units. Natural gas-fired reciprocating engines come in three 
capacities and three versions. They can be installed to produce electricity only, they can 
be equipped with heat exchangers, and they can be equipped with absorption chillers. In 
the latter case, they will also need a heat exchanger, effectively making them able to 
recover heat to serve both heat and cooling loads. The data shows a slightly decreasing 
investment cost per kW capacity. Adding heat exchangers and absorption chillers adds 
significantly to the costs. For natural gas-fired technologies, data for reciprocating units 
are used. Electric efficiency is higher for the larger units. All natural gas-fueled units 
have an 80 percent probability of reducing monthly peak demand, while photovoltaics 
have a 50 percent expected reduction compared to the average production profile due to 
variations in radiation. Also, absorption chillers are assumed to have an 80 percent 
probability of reducing monthly peak demand, Cθ , is assumed to be 80 percent. The 
minimum operation, λ , of all units are 50 percent of capacity.  
 
Table 3. Technology data, from [5] and [6] 

i Technology Type* 
iC  

kW 
iT  

y 
iI  

$/kW 
F iO  

$/kW 
V iO  

$/MWh 
iµ ** Qiγ  C iγ  iθ  

 Natural gas engines           
1  NG 60 20 991 0 18 0.287 - - 0.8 
2  NG 100 20 1030 0 18 0.300 - - 0.8 
3  NG 300 20 790 0 13 0.310 - - 0.8 
4  CHP 60 20 1362 0 18 0.287 2.16 - 0.8 
5  CHP 100 20 1350 0 18 0.300 2.05 - 0.8 
6  CHP 300 20 1160 0 13 0.310 1.85 - 0.8 
7  CHP-C 60 20 1851 18.9 18 

0.287 
2.16 2.1

6 
0.8 

8  CHP-C 100 20 1774 16.5 18 
0.300 

2.05 2.0
5 

0.8 

9  CHP-C 300 20 1465 12.1 13 
0.310 

1.85 1.8
5 

0.8 

 Photovoltaics          
10  PV 50 30 7600 12 - - - - 0.5 

*NG-natural gas fueled electricity production, CHP - combined heat and power, CHP-C - combined heat, power and cooling 
** Efficiency based on higher heating value (HHV) 
 
Other technology alternatives could have been considered both in terms of size and type.  
It is important to mention that microturbines represent a promising technology. They 
have the potential to increase efficiency and reduce emissions, but are currently not cost 
competitive with reciprocating engines. However, as they have lower emissions, they 
are sometimes the only option to use under emission standard regulations. They can also 
be installed in packaged units, where many units share the same heat recovery system, 
which reduce the investment cost. Fuel cells are another upcoming technology that in 
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the future could serve buildings represented in this study. For larger buildings, natural 
gas turbines would be an alternative. Different natural gas technologies will in any case 
have similar characteristics as a gas engine.  
 
3.4 Electricity and Natural Gas Price Scenarios 
 
Electricity and natural gas price forecasts are important for the profitability of 
distributed generation. For natural gas-based generation it is the spark spread, the 
difference between electricity and natural gas price, which determines profitability. For 
renewable generation, only the absolute value of the electricity price matters.  
 The electricity prices in this work are based on Pacific Gas and Electricity [7] 
rates in 2005. The volumetric part of the rate is reduced by 15 percent, as currently high 
prices are assumed to be short-term deviations after to the California energy crisis [8]. 
California Electricity Commission’s [9] forecast for the wholesale price of electricity is 
used to estimate the wholesale price and utility adder on the base case rates. For natural 
gas, we use Pacific Gas and Electricity [7] historic prices to estimate a transport and 
supplier adder for the base case. For finding an approximate base case price forecasts, 
information from the Energy Information Administration [10] and the California Energy 
Commission [9] has been used.  For both electricity and natural gas, we construct a low, 
base and high price scenario (see Table 4). Together that leaves nine different 
combinations of electricity and natural gas prices. Electricity and natural gas prices are 
usually correlated. Hence, the probability of the natural gas price going down while 
electricity prices go up is lower than the probability that they move in the same 
direction. But, no attempt to attach probabilities to the different scenarios is made. The 
purpose is solely to illustrate the effect of different energy price developments.  
 
Table 4. Natural gas and electricity price scenarios 

Scenario 
Name 

Natural 
Gas Price 
Scenario 

Electricity 
Price 

Scenario 

0G  
($/MWh) 

0S  
 ($/MWh) 

GU  
($/MWh) 

SU  
 ($/MWh) 

Gα  
(1/y) 

Sα  
(1/y) 

L-L Low Low 13.6 28 10.9 49.3 0 0 
L-B Low Base 13.6 30 10.9 49.3 0 0.015 
L-H Low High 13.6 32 10.9 49.3 0 0.03 
B-L Base Low 15.4 28 10.9 49.3 0.015 0 
B-B Base Base 15.4 30 10.9 49.3 0.015 0.015 
B-H Base High 15.4 32 10.9 49.3 0.015 0.03 
H-L High Low 17.1 28 10.9 49.3 0.03 0 
H-B High Base 17.1 30 10.9 49.3 0.03 0.015 
H-H High High 17.1 32 10.9 49.3 0.03 0.03 

 
Table 5 shows the TOU data used in the analysis from 2005 PG&E data (PG&E 2005). 
Two TOU periods exist in the winter from November to April: a part-peak period from 
8 am to 9 pm on non-holiday weekdays and off-peak at all other times. In summer, from 
May to October, there are three time periods: on-peak from 12 pm to 6 pm non-holiday 
weekdays, part-peak from 8 am to 12 pm and from 6 pm to 11 pm on non-holiday 
weekdays and off-peak period all other times. Demand charges are charged per kW 
maximum load in the same TOU periods. In addition, there is a demand charge for the 
maximum demand over all periods as seen in Table 5. 
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Table 5. Base case time-of-use (TOU) electricity price data first period 
   TOU-Period 
 Season Unit Peak Part-peak Off-peak All 
Volumetric charges       
 Winter    $/MWh - 73.92 60.38 - 
 Summer $/MWh 97.73 68.1 60.59 - 
Demand charges       
 Winter $/kW - 3.69 - 3.18 
 Summer $/kW 13.51 3.75 - 3.18 

 
3.5 Carbon Tax Scenarios 
 
A carbon tax can potentially change the optimal DG system and operation of the 
installed units. The model is solved for the two buildings with a carbon tax from 0 to 
500 $/ton, with increments of 100. The emissions from the building energy use are 
calculated assuming that electricity bought on the grid is produced by a central gas-fired 
power plant with an efficiency of 45 percent and grid losses of 9 percent, comparable to 
average losses in U.S. grid system [1]. Emissions are assumed to be directly 
proportional to the amount of natural gas that is consumed, which is assumed to be 
0.05312 kg/kWh [6]. The electricity price increases with the product of central power 
emissions and the carbon tax, hence, carbon emission costs are passed on to consumers. 
 
3.6 Photovoltaics Investment Cost Scenarios 
 
Optimal DG systems under potential reductions in investment costs for photovoltaics, 
which can be due to technological improvements or subsidies, are analyzed. The model 
is first solved assuming the developer considers only photovoltaic units, and then solved 
for photovoltaics in competition with natural gas-fired technologies for photovoltaics 
costs ranging from 1.6 $/W to 2.4 $/W, with a step of 0.2 $/W. 
 
3.7 Sensitivity to the Ability to Reduce Peak Demand 
 
Demand charges are based on the maximum monthly demand in the different TOU 
periods. Hence, the system's ability to reduce demand charges depends on equipment 
reliability and variation in renewable production. This is a risk for a distributed 
generation developer. The model is solved for both buildings with natural gas units and 
absorption chiller ability to reduce demand charges varying from 100 to zero percent 
with a step of 10 percent. 
 
3.8 Sensitivity to the Discount Rate 
 
Choice of interest rate will not only determine the level of the annual benefits, but it 
may also change the optimal system. A risky project is usually discounted with a higher 
discount rate. However, for various reasons, different businesses use different discount 
rates for projects with similar risk characteristics. Therefore, the model is solved with 
real before-tax discount rates ranging from 5 to 20 percent.  
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4. Results 
 
4.1 Base Case Results 
 
Figure 1 shows how the DG equipment produce electricity, heat and cooling in the 
reference solution for the healthcare building on a peak summer day during the first 
period. The base case solution for the healthcare building is to install a single 300 kW 
unit with a heat exchanger and absorption cooling. At off-peak hours the electricity 
production is at the minimum level because low heat and cooling loads limit production 
with heat recovery, and the spark spread is not sufficiently large to make it profitable to 
produce electricity without waste heat utilization. At peak hours, and in some of the part 
peak hours, the system produces at full capacity. Recovered heat is used for both 
serving the heat and the cooling load. Notice that recovered heat for the heat load is 
reduced as the electricity load is on its highest; all recovered heat is used for absorption 
cooling to offset demand charges at peak hours. 
 

 
Figure 1. Total electricity load, electricity only load and electricity, cooling and heat 
production for the healthcare building, first period, summer and peak day for base case 
solution 
 
For the office building, the base case solution is to install a 300 kW unit with heat 
recovery and absorption cooling in combination with a unit with only electricity 
production. Figure 2 shows how the two units operate during a peak summer day in the 
first period. The more efficient 300 kW unit operates between 5 am and 7 pm, and the 
60 kW unit operates from 7 am to 6 pm. At 5 pm, the larger unit is turned off because 
the total electricity load drops under the minimum production level. This illustrates that 
the smaller unit both has the potential to serve as a peak power unit and as a unit that 
generate at hours when the load that is too low for the large unit to generate because of 
minimum operation constraint. The way the 60 kW unit increases its output as the 
electric load increases confirms that it operates to reduce demand charges. 
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Figure. 2. Total electricity load and production scheduling for different units for the 
office building, first period, summer and peak day for base case solution 
 
That the healthcare building has a higher annual electrical load than the office building 
is reflected in the benefits of the installed equipment, since the generators in the 
healthcare building reduce electricity purchases more than in the office building (see 
Table 6). The reduction in demand charges is similar in the two buildings, but is a larger 
share of the benefits for the office building. The healthcare building has the highest net 
annual benefit. 
 
Table 6. Breakdown of annual benefits and costs in base case solution 

 Building Type 
Equivalent Annual Benefits and Costs ($) Healthcare Office 
Reduced Electricity Purchases 183 430 110 809 
Reduced Demand Charges   46 381   54 438 
Reduced Natural Gas Purchases    46 041  14 267 
Total Benefits 275 852 179 514 
   
Increased Natural Gas Purchases  169 363  91 400 
Fixed Operation and Maintenance Costs      3 630    3 630 
Variable Operation and Maintenance Costs     24 819  13 613 
Investment Costs    43 112  48 944 
Total Costs  240 924 157 587 
   
Equivalent Net Annual Benefits 34 928 21 927 

 
4.2 Electricity and Natural Gas Price Scenarios 
 
The optimal installed equipment for all nine price scenarios can be seen in Table 7. 
Units with heat recovery and absorption cooling are installed in all scenarios. The 300 
kW unit with heat recovery and absorption cooling is installed in all scenarios in both 
buildings, except in the high natural gas and low electricity price scenario in the 
healthcare building. A low natural gas price, a high electricity price, or a combination of 
both, lead to a high installed capacity. Additional capacity comes from smaller units 



 15

without any heat recovery in all cases. Installed capacity is similar in the two buildings, 
which have a similar peak electricity load.  
 
Table 7. Installed units in different price scenarios 

Price Scenario: Natural Gas - Electricity  
Building Type 

 
Installed Unit L-L L-B L-H B-L B-B B-H H-L H-B H-H 
NG-60 (kW) - - 60 - - - - - - 
NG-100 (kW) - 100 100 - - 100 - - - 
NG-300 (kW) - - - - - - 300 - - 
CHP-100 (kW) - - - - - - 100 - - 
CHP-C-300 (kW) 300 300 300 300 300 300 - 300 300 

Healthcare 
Peak El. Load 
526 kW 

Total (kW): 300 400 460 300 300 400 400 300 300 
           

NG-60 (kW) 60 - 60 - 60 - - - 60 
NG-100 (kW) - 100 100 - - 100 - - - 
CHP-C-300 (kW) 300 300 300 300 300 300 300 300 300 

Office 
Peak El. Load 
583 kW 

Total (kW): 360 400 460 300 360 400 300 300 360 
 
Net annual benefits vary significantly in the nine scenarios. Benefits for the healthcare 
building varies more than for the office building, as seen in Figure 3. Further, the 
additional installed capacity in some of the scenarios does not add much to the annual 
benefits as the base case solution is very close to optimal in all nine scenarios, for both 
buildings. This is because most of the costs are operational and not investment costs for 
natural gas-based DG units. The units have operational flexibility and can adjust 
production levels to the price conditions in the different price scenarios.  
 Base load central power generation has a higher electric efficiency than on-site 
generation and central electric chillers have a high COP. But central generation does not 
utilize the heat production from electric generators like DG with heat recovery and 
absorption cooling, and the electricity must be transmitted to the end-user with an 
energy loss. Hence, installing on-site generation can, but does not necessarily, reduce 
carbon emissions. In this analysis, DG is compared to a central power plant with 45 
percent efficiency and 9 percent energy loss from the power plants to end-use. Figure 4 
shows how the building’s carbon emissions vary assuming central electricity generation 
at 40.5 percent efficiency including grid losses. Emission reductions are largest with a 
low electricity price, in the low and base case natural gas price scenarios, because for 
high electricity prices, when the difference between the prices is large enough, less 
efficient and more polluting operation is profitable. For the high natural gas price, it can 
be seen that the relationship is not the same because, in this case, a higher electricity 
price makes more efficient operation profitable. The healthcare building is most 
effective in reducing carbon emissions and reduces emissions in all price scenarios. 
Emissions in the office building are reduced in all scenarios except in the scenario with 
a low natural gas price combined with a base case or high electricity price. 
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Figure. 3. Net annual benefits under the price scenarios for optimal and reference 
solution 
 

 
Figure. 4. Changes in building carbon emissions in price scenarios 
 
4.3 Carbon Tax Scenarios 
 
Figure 5 illustrates the effect of the carbon tax on optimal installed capacity. The 300 
kW unit with heat recovery and absorption cooling seems to be robust to a carbon tax up 
to 500 $/ton in the two buildings. Only the 60 kW unit without heat recovery in the 
office building is phased out. It unit is phased out because it cannot generate electricity 
at higher efficiencies than the assumed central system. 
 The base case installed generators reduce emissions for all levels off the carbon 
tax (see Figure 6). Both buildings reduce emissions as the carbon tax increases. The 
healthcare building is most efficient in reducing emissions by reducing emissions from 
8.5 to 9 percent. Most emission reductions comes from phasing out the inefficient unit 
from the office building, but the price signal from the carbon tax also marginally 
changes operation of the 300 kW units to be more efficient at higher tax levels. 
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Figure 5. Installed capacity under different carbon tax scenarios 
 

 
Figure 6. Relative changes in system carbon emissions under carbon tax scenarios 
 
4.4 Photovoltaic Cost Scenarios 
 
In Figure 7, it can be seen that photovoltaic systems have a break-even investment cost 
of approximately 2.4 $/W in the two buildings when only photovoltaic systems are 
considered for investment. At around 1.8 $/W for the office building and 2 $/W for the 
healthcare building highest capacity is installed When photovoltaic systems are 
considered in competition with natural gas-based technologies they have a lower break-
even cost and a lower optimal PV capacity.  
 Even for very low investment costs, the optimal system is a combination of 
photovoltaics and natural gas-based units. Natural gas-based units are invested in 
combination with photovoltaics most likely because they are more suited for reducing 
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demand charges, due to variation in solar radiation and low radiation in the morning and 
afternoon.  In the healthcare building, the 300 kW unit with absorption cooling is 
optimal in all photovoltaics cost scenarios. In the office building, the small electricity-
only unit is phased out when the photovoltaic cost drops. When the photovoltaic cost is 
at its lowest, the optimal system no longer includes absorption cooling, but rather an 
electricity-only unit and a small combined heat and power unit.  

 
Figure 7. Optimal DG portfolio with only photovoltaics systems and for photovoltaics 
in competition with gas-fired technologies 
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4.5 Sensitivity to the Ability to Reduce Peak Demand  
 
Figure 8 shows the sensitivity in the optimal solution to the systems' ability to reduce 
demand charges. Without an ability to reduce demand charges, the investment in 
distributed generation in the office building would not have been profitable. Reduction 
in demand charges is a very important factor for the profitability of the investment in 
distributed generation under assumed TOU-rates. The size of the system is reduced 
dramatically in both buildings as their ability to reduce demand charges is reduced.  
 Figure 9 shows the net annual benefits at different system abilities to reduce 
demand charges. It confirms the importance of demand charges for profitability. If the 
generators ability to reduced demand charges is half of the potential reduction, the net 
annual benefit in the office building is reduced to around a seventh. With the base case 
assumption, that the ability to reduce demand charges is 80 percent of the maximal with 
perfect reliability, there is a possibility of loosing 30,000 dollars each year if the system 
is unable to reduce demand charges in the office building. The installed system in the 
healthcare building is less sensitive to demand charges, but the base case assumption 
can infer losses if the system proves less reliable than assumed. 
 In a system with a large penetration of distributed generation, the cumulative 
stress on the grid from buildings with DG would probably be low even with outages 
because there is no systematic pattern in the outages. Further, in a building with DG that 
has already had an hour with a high level of electricity purchases, there will not be an 
incentive to reduce demand the rest of the month. Daily demand charges, instead of 
monthly, would reduce this risk, as would real time pricing without demand charges. 
 

 
Figure 8. Installed capacity for different system abilities to reduce peak monthly 
demand 
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Figure 9. Net annual benefits with different system ability to reduce demand charges 
 
4.6 Sensitivity to the Discount Rate 
 
As can be seen in Figure 10, the optimal system depends on the chosen discount rate. A 
low discount rate leads to investments in large systems with a combination of units with 
and without heat recovery. For the highest discount rate of 20 percent, the healthcare 
building installs a 100 kW unit with heat recovery. The highest discount rate at which 
investment is optimal in the office building is 15 percent; the system is a 60 kW 
combined heat and power unit.   
 Figure 11 shows the net annual benefits for different discount rates. The 
investment is marginally profitable for the office building at 15 percent while the 
healthcare building still has considerable positive cash flow at 20 percent, the highest 
interest rate considered. 
 

 
Figure 10. Installed capacity with different discount rates 
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Figure 11. Net annual benefits with different discount rates 
 
 
5. Conclusions and Further Work 
 
The paper has identified some major economic and regulatory issues with private 
adoption of DG by applying a mixed integer linear program to simulated data for a 
healthcare and an office building, using climate and energy price data from San 
Francisco, California. The model was solved with nine price scenarios. Systems with 
heat recovery are optimal in all scenarios, and additional absorption cooling is optimal 
in all scenarios for the healthcare building and in all, except the one with a high natural 
gas and a low electricity price, for the office building. In scenarios with a large spark 
spread, engines without heat recovery and absorption cooling are added, which results 
in higher carbon emissions. The healthcare building is most efficient in reducing 
emissions.  
 The only change in the optimal capacity for scenarios with a carbon tax from 
100 to 500 $/ton, is that a small natural gas unit, solely used for electricity generation, is 
phased out from the office building.  The office building reduces emissions from 2.5 
percent, without a carbon tax, to 5 percent, with a carbon tax of 500 $/ton, assuming the 
purchased electricity is delivered to the building at 40.5 percent efficiency. The 
healthcare building’s emission reductions are larger, ranging from 8.5 to 9 percent under 
a carbon tax. 
 If only photovoltaic systems are considered, small photovoltaic systems are 
profitable from a modular investment cost of 2.4 $/W. Larger systems are installed from 
investment costs around 1.8 to 2 $/W. In the office building, higher capacities are 
profitable at higher investment costs than in the healthcare building. This is because 
demand charges can be reduced to a larger extent since the office electricity load is 
fairly coincident with photovoltaic production. If photovoltaic systems are considered in 
competition with natural gas fired generators, the break-even investment cost is lowered 
to 2.2 $/W. For all costs from 1.6 to 2.2 $/W, smaller systems are now installed in 
combination with natural gas fueled generators with heat recovery and absorption 
cooling.  
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Distributed generation is profitable for the healthcare building with real discount rates 
up to highest used in the analysis of 20 percent. Comparatively, the office building’s 
investment is profitable only up to a discount rate of 15 percent. For high discount rates, 
the optimal decision is to install base load units with heat recovery and without 
absorption cooling.  
 The electric generator's ability to reduce demand charges seems to be a very 
important factor to the profitability of the systems. In scenarios where the natural gas-
fueled generator’s ability to reduce demand charges varied from 100 to zero percent, the 
optimal capacity in the healthcare building varied from 460 kW to 100 kW. In the office 
building, the optimal capacity changed from 420 kW to zero. Further, the base case 
solution is very sensitive to the actual ability to reduce demand charges. This is 
particularly true for the office building, where there is a potential for large annual losses 
if the system is less reliable than promised. Demand charges should be constructed to 
reflect system costs and should give correct incentives to DG adoption and operation. 
This might not be the case with monthly demand charges since they were constructed 
for buildings without DG and similar utility electricity consumption profiles most days. 
After an outage at a peak hour, the DG user has no incentive to operate even though it 
might reduce system costs.  
 Uncertainty in peak demand reductions are not very well analyzed in a 
framework of a mixed integer model with average load profiles. A systems ability to 
reduce demand charges depends on the each unit's reliability and the combination of 
installed units. Additionally, the decision maker will have the opportunity to change the 
operational strategy in the case of an outage early in a metering period. Simulation 
models that allow for random outages and dynamic decision making can be better for 
analyzing reductions of demand charge and the effect on profitability in a more realistic 
way. The approach proposed by Firestone and Marnay [11] is an example of a 
simulation approach to model the interaction of demand charges and reliability.  
 There are several potential improvements in the presented approach. For 
example, this model with average load data does not capture situations where there 
might be net cooling and heating days within the same month. Including separate 
cooling and heating days in the model would be more realistic. Using average days 
further limit the potential to value systems under real-time pricing. However, mixed 
integer optimization programs can be hard to solve, and improving time resolution can 
increase time to find a solution considerably. 
 Comparing emissions from local generation with central emissions can be 
challenging because choosing what kind of production on-site generation replaces is not 
straightforward. Rather than using an average central efficiency, another approach could 
be to use a time varying efficiency on central generation, where the systems marginal 
unit's efficiency is used in each time step.  
 Assuming deterministic prices can further undervalue DG because generators 
can produce at favorable prices and shut down at unfavorable prices. Also, the cost risk 
reducing potential of distributed generation is not well analyzed in a deterministic 
optimization framework. Two systems can have similar expected benefits but different 
risk characteristics. A simulation approach could be appropriate for analyzing DG 
energy cost hedging potential. 
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Abstract 
 
Distributed generation (DG) technologies, such as gas-fired reciprocating engines and 
microturbines, have been found to be economically beneficial in meeting commercial-
sector electrical, heating, and cooling loads.  Even though the electric-only efficiency of 
DG is lower than that offered by traditional central stations, combined heat and power 
(CHP) applications using recovered heat can make the overall system energy efficiency 
of distributed energy resources (DER) greater.  From a policy perspective, however, it 
would be useful to have good estimates of penetration rates of DER under various 
economic and regulatory scenarios.  In order to examine the extent to which DER 
systems may be adopted at a national level, we model the diffusion of DER in the US 
commercial building sector under different technical research and technology outreach 
scenarios. In this context, technology market diffusion is assumed to depend on the 
system's economic attractiveness and the developer's knowledge about the technology. 
The latter can be spread both by word-of-mouth and by public outreach programs. To 
account for regional differences in energy markets and climates, as well as the economic 
potential for different building types, optimal DER systems are found for several 
building types and regions. Technology diffusion is then predicted via two scenarios: a 
baseline scenario and a program scenario, in which more research improves DER 
performance and stronger technology outreach program increase DER knowledge. The 
results depict a large and diverse market where both optimal installed capacity and 
profitability vary significantly across regions and building types. According to the 
technology diffusion model, the West region will take the lead in DER installations 
mainly due to high electricity prices, followed by a later adoption in the Northeast and 
Midwest regions. Since the DER market is in an early stage, both technology research 
and outreach programs have the potential to increase DER adoption, and thus, shift 
building energy consumption to a more efficient alternative. 
 
Keywords: Distributed generation, technology market diffusion, research valuation 
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1. Introduction 
 
Distributed energy resources (DER), small-scale power generating technologies close to 
energy loads, are expected to become an important part of the future power system. 
Recent improvements, in particular for small-scale thermal electricity generation and 
combined heat and power (CHP) technologies, are enabling a dramatic shift from 
traditional monopolistic electricity supply to empowered, semi-autonomous self-
generation. While small-scale generators by themselves do not match the electrical 
efficiency of centralized power generation, they enable overall system energy efficiency 
to be higher once used together with CHP technologies, which allow waste heat to be 
recovered to meet heating loads.  Because of the significant effect widespread 
distributed generation (DG) adoption could have on the design and operation of building 
and utility systems, quality forecasts of DG market diffusion are vital, and developing 
them poses a major research challenge. This effort aims to develop a bottom-up model 
of economic DG adoption that can deliver reasonable forecasts of technology market 
diffusion and provide estimates of the benefits of alternative possible enhancements to 
DG equipment under different policy and economic scenarios. The method is generic in 
the sense that it allows for the inclusion of all types of DER equipment, including 
renewables, which are expected to see cost reductions and potentially increased public 
support in the future. 
 Technology introductions typically follow an S-curved pattern of diffusion with 
initial slow adoption followed by exponential growth and a later decline in the adoption 
rate [1]. This property has commonly been modelled with the use of an epidemic model 
with word-of-mouth as a driving underlying process, while other models have focused 
on the profitability for different actors as a main driver for adoption. In the Distributed 
Energy Resources Market Diffusion Model (DER-MaDiM), it is assumed that what 
determines DER market diffusion is a combination of knowledge about the technology 
and the economic attractiveness of the systems. The spread of DG knowledge is 
assumed to be spread by a central information source, here assumed to be a federal 
outreach program, and by word-of-mouth. The economic attractiveness is modelled with 
the use of the Distributed Energy Resources Customer Adoption Model (DER-CAM), 
an optimization model developed at Ernest Orlando Lawrence Berkeley National 
Laboratory (LBNL). The objective function in DER-CAM is to minimize the annual 
energy costs resulting from electricity, DG, and natural gas purchases as well as DG 
operating and maintenance (O&M) costs [2]. The program output is an idealized set of 
DER technologies to install along with operating schedules for the equipment, including 
patterns of heat recovery. Building energy loads are obtained via DOE-2, a building 
energy load simulation program developed at LBNL.  
 Although DG capacity is growing in the U.S., the market for DG is still in an 
early phase as a small share of buildings has installed DG. The developed diffusion 
model has been applied to a study to estimate DG market diffusion in the U.S. 
commercial building sector under two different research and outreach scenarios. The 
work focuses on two of the most promising technologies, reciprocating engines and 
microturbines. Optimal systems, cost and energy savings and optimal operation are 
found with DER-CAM for small and large versions of five building types: education, 
healthcare, lodging, mercantile, and office. Four regions are chosen to represent the 
diversity in U.S. climate and energy rates: Atlanta, Boston, Chicago, and San Francisco. 
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DER-CAM is solved for both research scenarios for a discrete number of years and 
annual results are found by linear interpolation between the years. DER-MaDiM 
combines the annual DER-CAM estimates of annual savings and optimal systems with 
the processes for spread of DG knowledge to estimate market diffusion. The model 
suggests there can be a significant, and possibly imminent, DG adoption in the U.S. 
There are large regional differences in DG attractiveness; in particular, DG is attractive 
in the West region, but adoption is followed also in the Northeast and in the Midwest 
regions, while there is no signs of any market potential the South. Heat recovery, 
especially with thermally activated cooling, is an essential technology for DG adoption. 
Research and outreach can play an important role in speeding up adoption, and funds 
spent on research can potentially be paid back via private savings and reduced 
emissions. 
 Section 2 presents the approach in more detail and gives further explanation of 
the external modeling tools used in the analysis. The third section explains the intuition 
and mathematical detail of DER-MaDiM. Section 4 presents the data used in the model, 
while section 5 presents results of both the DER-CAM runs and the predicted market 
diffusion from DER-MaDiM. Section 6 concludes the analysis and suggests future 
improvements in the modeling approach.  
 
 
Nomenclature 
 
Indices 
i   Results type (capacities, energy consumption, private savings)   
j   Census division          
k   Building type               
l   Building size                                 
m   Time period                                  
    
Variables 

, , ,E j k l mA   Annual existing floorspace that adopts DG 

, , ,N j k l mA   Annual net new floorspace that adopts DG 

, , ,T j k l mA   Annual total floorspace that adopts DG 

, , ,D j k l mF   Total floorspace with DG 

, , ,N j k l mF   Net new floorspace with economic potential to install DG 

, , ,T j k l mF   Total floorspace with economic potential to install DG 

, , , ,A i j k l mR   Annual change in result metrics 

, , , ,T i j k l mR   Cumulative result metrics over time 

mX  Fraction of commercial building floorspace with potential and 
installed systems 
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Parameters 
Ea    Parameter in adoption function for existing buildings  

Na    Parameter in adoption function for new buildings 

Eb    Parameter in adoption function for existing buildings  

Nb    Parameter in adoption function for new buildings 

Ec    Parameter in adoption function for existing buildings 

Nc    Parameter in adoption function for new buildings 

, , , ,i j k l md   Annual DER-CAM results 

, , ,E j k l mf   Adoption function for existing floorspace  

, , ,N j k l mf   Adoption function for new floorspace  

, , ,j k l ms    Percentage savings on energy bill 

, ,j k lz    Building size 
α    Fraction of buildings without DG that gets knowledge from  
   outreach programs 
β    Strength of the word-of-mouth process 
 
 
2. Modeling Approach and External Modeling Tools 
 
The goal of the work is to predict the likely adoption of distributed generation in the 
U.S. commercial building sector under various technology research, outreach and policy 
assumptions. A bottom-up approach is chosen, where the optimal systems and 
profitability are found for a set of representative buildings, while market diffusion 
depends on a combination of economics attractiveness and market knowledge of the 
technologies. The modeling approach can be viewed as the following three-stage 
process as shown below in Figure 1: 
 
1. Development of prototypical commercial building load profiles, with the use of the 

building energy simulation program DOE-2, specific to various representative U.S. 
locations, including data  

 
2. Collection of tariffs and DER technology cost and performance data for present and 

future years and run of the Distributed Energy Resources Customer Adoption Model 
(DER-CAM) to estimate the economic attractiveness of DG in a given building type, 
region, and in a set of the forecast years and use linear interpolation to estimate 
annual results 

 
3. Application of the Distributed Energy Resources Market Diffusion Model (DER-

MaDiM) to estimate the likely annual DG market diffusion from the modeled 
economic attractiveness for the different building types and regions 
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Figure 1.  Overview of the modeling approach 
 
 
2.1 DOE-2 Building Simulations 
 
To generate the load profiles, the widely used building energy simulation program, 
DOE-2, which was developed and is maintained by LBNL, was used. DOE-2 is a public 
domain computer program written in FORTRAN77 designed for analyses of energy 
consumption in buildings. DOE-2 estimates the hourly energy consumption in a 
building, given hourly climate data and information of the building heating ventilation 
and air conditioning (HVAC) equipment.   
 Logistically, it is impossible to simulate the broad range of buildings that 
characterize all commercial buildings in the U.S. using DOE-2 and DER-CAM. The 
data and computational demands would simply be too burdensome; therefore, judicious 
selection of representative buildings in representative locations is necessary. Based on 
the availability of weather data and a desire to include a representative range of climates 
and electricity and fuel cost environments, a set of buildings and regions is chosen for 
the analysis. The DOE-2 simulation requires the following input data given in Table 1. 
 
Table 1. Major input needed to simulate building energy loads with DOE-2 

Building 
Descriptions 

Envelope 
Descriptions 

Operational 
Characteristics 

Equipment 
Characteristics 

Building Type Vintage Average Hot Water Intensity Vintage 
Location Construction Peak Lightning Intensity System Type 
Size Insulation Peak Gas Cooking Load Plant Type 
Nr. of Floors Window to Wall Ratio Hours of Operation  
 Window Pane Type Control Strategies  
 Shading Coefficient Thermostat Set Points  
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Basic input data such as building size are obtained from the Commercial Building 
Energy Consumption Survey (CBECS) 1999 building characteristic data [3], as will be 
discussed in the parameter section. The location of the building is defined by the typical 
meteorological year (TMY) data sets derived from the 1961-1990 National Solar 
Radiation Data Base and building characteristics are taken from Huang et al. [4]. 
 
2.2 Distributed Energy Resources Customer Adoption Model 
 
This study used DER-CAM to examine the economic potential for DG in the various 
building types, regions and years. Developed at LBNL, DER-CAM is a mixed integer 
linear program (MILP) written in GAMS (General Algebraic Modeling System) 
designed to factor many variables into determining the DG investment decision that 
minimize building energy costs with a given payback constraint. The DER-CAM 
solution provides both the generating equipment and the optimal operating schedule so 
that total energy costs are minimized. Input to DER-CAM includes the site’s hourly 
end-use energy load, electricity and natural gas supply costs, and DG technology 
adoption options. DG generation technology options include photovoltaics, natural gas 
fueled reciprocating engines, microturbines, gas turbines, and fuel cells. By matching 
thermal and fuel cell generation to heat exchangers and absorption chillers, heat 
recovered from natural gas driven generators can be used to offset heating and cooling 
loads. DER-CAM output includes the optimal DG system and an hourly operating 
schedule, as well as the resulting costs, fuel consumptions, and carbon emissions. 
Figure 2 shows a high-level schematic of DER-CAM.  
  

 
Figure 2. DER-CAM schematic 
 
 
3. Mathematical Description of DER-MaDiM 
 
While the previous section found optimal DG systems, optimal DG operation and 
expected building cost reductions, this section tries to model the actual market diffusion 
of the technologies. In accordance with a study by Geroski [1], it is assumed that the 
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introduction of a technology into a market is dependent on not only the cost 
attractiveness, but also the level of knowledge and trust in the technology. 
 The introduction of a new technology in a market usually follows an S-curve. 
Two competing ways for addressing this logistic function are through epidemic models 
and probit models [1]. Epidemic models explain the introduction of new technologies 
with the means knowledge of the technology propagates to potential users. One version 
of epidemic models assumes a central source that transmits knowledge to a constant 
percentage of the potential users each year. However, the model fails to produce the 
commonly observed S-curve since growth will be largest in the beginning. A second 
epidemic model assumes that information is spread by word-of-mouth. This model 
produces an S-curve but fails to explain how the successful introduction of a new 
technology can be explained without initial installations. Geroski suggests using a 
mixed information source model with both a central source of information and a word-
of-mouth process. Probit models, on the other hand, focus on the customer 
characteristics as an explanatory factor on why some firms adopt new technologies 
before others. Customer characteristics, such as building energy profiles and local tariff 
structures, will affect the investment profitability, and therefore the decision to adopt the 
technology. 
 The model developed in this work is a combination of all three approaches. The 
central source of information is assumed to be outreach programs and research devoted 
to increase the understanding of DG, and in addition knowledge is spread by word-of-
mouth. Further, individual building characteristics and DG economic attractiveness are 
modeled directly as described in the previous sections. The fact that DG systems are 
more suitable in some buildings than others is reflected in the variability of energy bill 
savings found from the DER-CAM analysis. Hence, it is reasonable to assume that 
buildings with a higher percentage of energy bill savings are more likely to install DG. 
This assumption is implemented using a logistic adoption function where buildings with 
large savings are assumed to adopt DG at a faster rate than buildings with marginal 
savings.   
 Each year a constant fraction of buildings,α , without DG get information about 
the technologies from outreach programs. The remaining fraction of buildings gets 
knowledge by word-of-mouth. The factor that decides the strength of the word-of-
mouth process, β , is proportional to the fraction of commercial buildings with DG 
potential that has installed systems, mX . Thus, the word-of-mouth process is increasing 
in strength as more users become aware of the technology. Of the buildings with 
knowledge of DG only a fraction, which increase with percentage savings on the energy 
bill, will actually install systems. 
 Hence, the existing floorspace that adopts DG each year, m, is the product of the 
percentage of the market with DG knowledge, the adoption function for existing 
buildings, , , ,E j k l mf , and the total floorspace with DG potential, , , ,T j k l mF , less the existing  
floorspace with DG, , , ,D j k l mF , shown below  
 
 , , , 1 , , , , , , , , , 1( ) ( )E j k l m m E j k l m T j k l m D j k l mA X f F Fα β − −= + −  (1) 
 
New floorspace is added each year as new buildings are constructed. Because DER-
MaDiM does not include the vintage structure of existing buildings and no buildings 
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were phased out, new buildings were defined as the amount of gross new floorspace less 
the reduction to the existing floorspace due to retirements. New buildings adopt DG 
systems using the same process, but adoption is based on the adoption function in new 
buildings, , , ,Nj k l mf , and the new floorspace with economic potential for DG, , , ,N j k l mF , 
 
 , , , 1 , , , , , ,( )N j k l m m N j k l m N j k l mA X f Fα β −= +  (2) 
 
The upper limit of the parameters α and β, is that the sum must be lower than one, to 
ensure that less than 100 percent of buildings with DG economic potential have DG 
information. The adoption function for both existing and new buildings is a logistical 
function given as 
 

 
, , , , , ,

,
1 11 1E j k l m N j k l m

E E N N
E Nb s b s

E NE N

c c c cf f
a aa e a e− −= − = −

+ ++ +
 (3) 

 
where aE, aN, bE, bN, cE, cN, are parameters and , , ,j k l ms  is annual savings on energy bill 
from DG. Total annual floorspace that adopts DG is the sum of adoption in existing and 
new buildings 
 
 , , , , , , , , ,T j k l m E j k l m N j k l mA A A= +  (4) 
 
Net new floorspace is added to the total floorspace 
 
 , , , , , , 1 , , ,T j k l m T j k l m N j k l mF F F−= +  (5) 
 
Cumulative floorspace with DG is floorspace with DG last period added the new 
adoption 
 
 , , , , , , 1 , , ,D j k l m D j k l m T j k l mF F A−= +  (6) 
 
The fraction of buildings with DG is total floorspace with DG divided by floorspace 
with potential in U.S. commercial building sector 
 

 
, , ,

, , ,

D j k l m
j k l

m
T j k l m

j k l

F
X

F
=

∑∑∑
∑∑∑

 (7) 

 
The different result metrics (see Table 2) in each time period, are defined as the DER-
CAM results, , , , ,i j k l md , divided by building size, , ,j k lz , multiplied by the floorspace that 
actually adopts DG 

 , , , ,
, , , , , , ,

, ,

i j k l m
A i j k l m T j k l m

j k l

d
R A

z
=  (8) 
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Cumulative values over time of the different results, installed capacities, changes in 
energy consumption and private cost savings, , , , ,T i j k l mR , are given as 
   
 , , , , , , , , 1 , , , ,T i j k l m T i j k l m Ai j k l mR R R−= +  (9) 
 
Results over different dimensions are obtained by summing over the indices. For 
example, results for the U.S. commercial building sector as a whole are obtained as a 
summation over all Census Divisions, building types and building sizes that the 
floorspace is allocated to 
 
 , , , , ,T i m T i j k l m

j k l

R R= ∑∑∑  (10) 

 
  
4. Model Data 
 
Table 2 is a description of the indices used in the study. All 9 U.S. census divisions are 
modeled and five building types in two sizes. Results are reported over nine dimensions. 
 
Table 2. Description of indices used in DER-MaDiM 

  Result Dimensions Census  
Division 

Building  
Type 

Building  
Size 

 i j k l 
1 Total installed capacity New England Healthcare Small 
2 Total installed capacity, reciprocating engines Middle Atlantic Lodging Large 
3 Total installed capacity, microturbines East North Central Mercantile  
4 Installed capacity, electricity generation only West North Central Education  
5 Installed capacity with heat exchangers South Atlantic Office  
6 Installed capacity with absorption cooling East South Central   
7 Change in electricity purchases West South Central   
8 Change in natural gas purchases Mountain   
9 Annual private cost savings Pacific   

 
Table 3 displays how four cities are assumed to represent the whole U.S., in terms of 
climate and energy rates.    
 
Table 3. Mapping of four selected cities to U.S. Census regions and divisions  

Region Census Division City 
New England Boston Northeast 
Middle Atlantic Boston 
East North Central Chicago Midwest 
West North Central Chicago 
South Atlantic Atlanta 
East South Central Atlanta 

South 

West South Central Atlanta 
Mountain San Francisco West 
Pacific San Francisco 
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4.1 Building Data 
 
Figure 3 shows the total U.S. floorspace in the five buildings categories used in the 
study. As can be seen, mercantile and office buildings dominate U.S. commercial 
floorspace. However, DG possesses varying degrees of potential with varying building 
size.  
 

 
Figure 3. Total U.S. floorspace of the different building types [9] 
 
Table 4 displays the size distribution of U.S. commercial floorspace in the five building 
types. Notice that healthcare buildings have most floorspace in the largest categories 
while mercantile buildings have a particularly small share of large buildings. The 
remaining building types have more even size distributions.  
 
Table 4. Percent of commercial floorspace in building CBECS size bins [3] 

Size (m2) 
93-
465   

465-
930   

930-
2,325 

2,325-
4,650 

4,650-
9,300 

9,300-
18,600 

18,600-
46,500 

> 
46,500 

Median (m2) 233 698 1,628 3,488 6,975 13,950 32,550 60,450 
Education 3.5 4.6 9.1 18.6 22.1 15.3 13.5 13.5* 
Healthcare 6.6 5.7* 4.7 9.6 9.2 11.0 26.4 26.8 
Lodging 2.2* 6.3 9.6 25.3 16.8 11.7 17.6 10.6* 
Mercantile 8.9 10.1 20.5 9.6 14.4 17.0 4.1 15.4 
Office 10.1 8.8 12.3 9.9 16.2 14.3 13.0 15.5 
*Assumed value. Data withheld because the relative standard error was greater than 50 percent, or fewer than 20 
buildings were sampled 
 
To determine which building sizes to model in DER-CAM, a simple analysis to 
estimate the peak loads of each selected building type was conducted. The Commercial 
Building Energy Consumption Survey [3] categorizes each building type by area and 
also reports the energy intensity of each building type. The building area and energy 
intensity are used to determine the buildings sizes where peak electricity is more 
important than other characteristics. The peak load to total energy consumption ratio 
and intensity were applied to estimate the peak load of each building type in each 
building size category defined by CBECS. 
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Table 5 presents the peak load by building type and size and the selected range of 
building size for candidate small-scale DG. Small-scale DG is in the range of the 
smallest DG systems currently being installed, i.e. 100’s of kW, to the largest sites 
where reciprocating engines are still preferable to turbines, i.e. 1-2 MW. Motivated by 
this, buildings with peak demand in the range 300-2,000 kW are considered attractive 
sites for microturbines and reciprocating engines. Two buildings, one large and one 
small, corresponding to the midpoint in the smallest size bin and the largest size bin in 
the CBECS size distribution respectively, were selected for analysis in DER-CAM. The 
peak loads shown in bold indicate the minimum and maximum building sizes 
considered for each building type. Boston electricity intensity was used to define the 
two building sizes. The same building sizes are used for all regions. Table 5 shows that 
there are large differences in electricity intensity between the building types. Healthcare 
buildings have by far the highest electricity intensity while lodging buildings have the 
lowest intensity.  
 
Table 5. Commercial building size distribution with corresponding building peak load 
for Boston [3] 

Size (m2) 
93-
465   

465-
930   

930-
2,325 

2,325-
4,650 

4,650-
9,300 

9,300-
18,600 

18,600-
46,500 > 46,500 

Median 
(m2) 233 698 1,628 3,488 6,975 13,950 32,550 60,450 
Healthcare 18.25 54.75 127.75 273.75 547.5 1095 2555 4745 
Lodging 7 21 49 105 210 420 980 1820 
Mercantile 8.75 26.25 61.25 131.25 262.5 525 1225 2275 
Education 11.5 34.5 80.5 172.5 345 690 1610 2990 
Office 10.75 32.25 75.25 161.25 322.5 645 1505 2795 

 
As there is little available information of regional building size distributions, it is 
assumed that the national size distribution is valid regionally. Buildings with a peak 
electricity load in the medium-size range of 300-2000 kW, are assumed to be most 
suitable for reciprocating engines and microturbines. For buildings with a lower peak, 
DG system incurs a high investment costs and low capacity factor and are not likely to 
be cost-effective for most buildings. However, some niche markets might exist and 
some development might come from the introduction of microgrids, where neighboring 
buildings can add their loads together to become an attractive DG site. For buildings 
with a peak load over 2 MW, gas turbines can be a strong competitor to reciprocating 
engines and microturbines. In addition, some large buildings already have DG systems 
installed. At the same time, there is a potential market in some buildings where the 
investments in large gas turbines does not provide a sufficient return. Table 6 shows the 
percentage of buildings that are assumed to have DG potential by the size of the peak 
load.  
 
Table 6.  Percentage of buildings assumed to have DG potential 

 Existing Buildings New Buildings 
Below DG Attractive Size Range (< 300 kW) 16 18 
DG Attractive Size Range (300 – 2,000 kW) 80 90 
Over DG Attractive Size Range (> 2,000 kW) 32 36 
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One building represents the minimum and the other represents the maximum size 
building likely to have a peak load in the 300 kW-2 MW range. Smaller buildings are 
assumed to adopt systems at the same capacity and energy consumption changes per 
floorspace as the small building and with the same percentage savings on the energy bill. 
Similarly, buildings larger than the maximum size building are assumed to adopt 
systems with a capacity and energy consumption per square meter equal to the large 
building, and have the same percentage annual savings on the energy bill. For building 
types with an intermediate size bin installed capacity, changes in energy consumption 
and the percentage savings on the energy bill is a linear interpolation between the small 
and the large building. Instead of interpolating the results, an equivalent interpolation 
where the floorspace is shared between the buildings was performed. Hence, the total 
floorspace for each building type is allocated to the two building sizes.  
 Comparisons of the peak electricity load, total annual energy use, and fuel-to-
electricity (F/E) ratio are shown in Table 7. The F/E ratio is highest for the educational 
building, followed by healthcare and lodging for all four cities. Notice the very low F/E 
ratio for mercantile buildings. 
 
Table 7. Electricity (EL) load, natural gas (NG) load and fuel-to-electricity (F/E) ratio 

  Healthcare Lodging Mercantile Education Office 
  small large small large small large small large small large 
Atlanta            
Peak EL Load kW 576 1193 460 1974 543 1230 360 1620 348 1401 
Total EL Load MWh 3446 7082 2090 9012 2562 5881 627 2871 1175 4809 
Total NG Load GJ 7057 11934 3629 15705 710 1143 2142 8997 1635 3826 
F/E Ratio   0.6 0.5 0.5 0.5 0.1 0.1 1.0 0.9 0.4 0.2 
Boston             
Peak El Load kW 557 1150 420 1804 530 1202 332 1502 349 1385 
Total EL Load MWh 3224 6591 1855 8027 2351 5413 586 2657 1100 4529 
Total NG Load GJ 9789 17188 4967 21504 1681 2867 3847 16028 2551 6094 
F/E Ratio   0.8 0.7 0.7 0.7 0.2 0.2 1.8 1.7 0.6 0.4 
Chicago             
Peak EL Load kW 584 1207 448 1925 536 1219 335 1507 350 1422 
Total EL Load MWh 3252 6656 1886 8169 2373 5466 603 2726 1123 4615 
Total NG Load GJ 9920 17270 5486 23758 1954 3406 4345 18038 2750 6533 
F/E Ratio   0.9 0.7 0.8 0.8 0.2 0.2 2.0 1.8 0.7 0.4 
San Francisco             
Peak EL Load kW 539 1112 383 1646 498 1133 304 1382 338 1342 
Total EL Load MWh 3223 6597 1828 7890 2293 5300 559 2577 1081 4457 
Total NG Load GJ 7731 12776 3324 14404 278 396 1959 8322 1650 3707 
F/E Ratio  0.7 0.5 0.5 0.5 0.0 0.0 1.0 0.9 0.4 0.2 

 
The load input to DER-CAM is given as hourly loads in three representative days for 
each month. Peak days have the average energy profile for the three non-holidays 
weekdays with the highest electricity demand, weekdays have the average load profile 
for remaining non-holiday weekdays and weekend days have the average load profile 
for weekend days and holidays. In Figure 4, the weekday profiles for the large San 
Francisco office building can be seen. Most of the seasonal variation is in cooling and 
heating. In Chicago there is typically no cooling load in the winter, as can be seen in 
Figure 5. Notice also the difference in the space heating profiles between the healthcare 
and the office building. The healthcare building keeps the same temperature during the 
whole day, and therefore needs more heating during night time hours. 
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Figure 4. January and July energy loads for the large San Francisco office building 
 

 
Figure 5. January and July energy loads for the small Chicago healthcare building 
 
4.2 Distributed Generation Technology 
 
Three gas-fired DG technology types were considered in the analysis: reciprocating 
engines, gas turbines, and microturbines. Cost and performance data for these 
technologies in 2004 are interpolated from data provided in a study by the National 
Renewable Energy Laboratory [5] with additional data provided from work done at the 
LBNL [6]. Reciprocating engines and microturbines are considered in two sizes. In 
DER-CAM, each device can be purchased in one of three packages: as an electricity 
generation unit, as an electricity generation unit with heat recovery for space and water 
heating applications or as an electricity generation unit with heat recovery for space and 
water heating applications and for cooling via an absorption chiller. Cost and 
performance data for these technologies in 2004 are summarized in Table 8.  For this 
project, heat exchangers used to convert waste heat from DG equipment to useful end-
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use heat are assumed to be 80 percent efficient, as are combustors used to convert 
natural gas to useful end-use heat. The coefficient of performance (COP) of electric 
chillers is assumed to be 5 and that of absorption chillers to be 0.7.   
 
Table 8.  2004 technology cost and performance data used in the DER-CAM analysis 

 Gas 
Turbine 

Microturbines Reciprocating Engines 

 1 MW 100 kW 250 kW 200 kW 500 kW 
Capital Costs ($/kW)      
 - Electricity Only 1403 1700 1400 900 795 
 - Heat Exchangers 1910 1980 1650 1225 1065 
 - Absorption Cooling 2137 2419 1976 1629 1339 
Maintenance Costs       
 - Fixed w/Absorption Cooling 
($/kW) 

11.9 17.1 12.8 15.9 11.0 

 - Variable ($/kWh) 0.010 0.015 0.015 0.015 0.012 
Lifetime (years) 20 10 10 20 20 
Energy Output      
 - Electrical Efficiency 0.219 0.260 0.280 0.308 0.332 
 - Heat to electricity Ratio 2.45 2.29 2.29 1.88 1.55 

 
4.3 Energy Tariff Data 
 
The 2004 electricity tariffs for electric utilities serving the four cities under 
consideration are obtained from the LBNL Tariff Analysis Project’s database of U.S. 
electricity rates [7]. The three main components of a typical electricity tariff are: 
volumetric charges, demand charges, and monthly fees. Volumetric charges are in 
proportion to the electricity consumed each month; there are often different rates for 
different times of the day. Demand charges are in proportion to the maximum power of 
electricity consumption during the month, regardless of how often the maximum rate 
occurs. There are often different rates for different times of the day, as well as 
occasionally a non-coincident rate which is applicable to all hours of the day. The 
monthly fee is a fixed charge each month.  Table 9 shows the 2004 electricity rates for 
all four cities. 
 
Table 9. Assumed 2005 electricity rates for the commercial buildings [7] 

 Atlanta Boston Chicago San Francisco 
 Summer  Winter Summer  Winter Summer Winter Summer Winter 
Volumetric 
($/kWh) 

        

- on-peak) 0.061 0.061 0.0815 0.693 0.056 0.056 0.1647 - 
- mid-peak 0.061 0.061 - - - - 0.1 0.108

3 
- off-peak  0.061 0.061 0.0594 0.56 0.0234 0.0234 0.0891 0.089

1 
Demand ($/kW)         
 - on-peak - - - - 14.24 11.23 11.8 - 
- mid-peak - - - - - - 2.65 2.65 
- non-coincident - - 24.72 11.54 - - 2.55 2.55 
Monthly Fee ($) 2750 2750 166.67 166.67 39.93 39.93 175 175 
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The 2004 natural gas rates for the regions containing the four cities of consideration 
were obtained from the AEO2005 Reference Case [8], and are shown in Table 10. The 
rate used for non-DG natural gas consumption is the average commercial rate for each 
respective region. The rate for DG consumption is the average of the commercial rate 
and the core electricity generator rate. This reflects the lower volumetric cost of natural 
gas when it is consumed in the higher quantities and more consistent rates of prime 
power DER rather than typical commercial building consumption. The AEO2005 [8] 
was also used to estimate natural gas prices for 2012 and 2024. The scaling factors used 
to convert 2004 natural gas rates to 2012 and 2022 rates are shown in Table10. 
 
Table 10.  AEO2005 natural gas rates in 2004 ($/kWh, HHV3) [8] 

 Heating Purposes For Electricity Generators 
Atlanta 0.037 0.029 
Boston 0.040 0.029 
Chicago 0.032 0.027 
San Francisco 0.032 0.029 

 
The AEO2005 Reference Case [8] is used to determine the change in electricity and 
natural gas prices in 2012 and 2022 relative to these same prices in 2004.  The change in 
each region for the two future years is represented as a scaling factor; this scaling factor 
is applied to the 2004 rates from the LBNL Tariff Analysis Project [7] to estimate rates 
for 2012 and 2022 are shown in Table 11. All components of the electricity tariff are 
multiplied by these scaling factors to obtain the future electricity tariffs used in DER-
CAM. The natural gas volumetric price for DG service is less than that for standard (i.e. 
heating, cooking) service because DG consumption is more regular throughout the year; 
infrastructure costs can be spread out over a larger volume of gas consumption. As is 
apparent from Table 11 all multipliers are below 1.0, both electricity and natural gas 
prices are expected to stay under 2004 levels in all regions and all time periods. Natural 
gas fueled DG profitability depends on the difference between natural gas and 
electricity prices, implying that falling prices do not necessarily mean less favorable DG 
market conditions.  
 
Table 11.  Scaling factors for 2012 and 2022 electricity and natural gas prices [8] 

 Electricity Natural Gas Natural gas (DG) 
 2012 2022 2012 2022 2012 2022 
Atlanta 0.89 0.95 0.82 0.92 0.80 0.93 
Boston 0.76 0.84 0.83 0.91 0.81 0.92 
Chicago 0.88 0.98 0.81 0.93 0.77 0.93 
San Francisco 0.84 0.83 0.87 0.97 0.86 0.93 

 
4.4 Technology Research Scenarios 
 
Forecasted estimates of technology cost and performance in 2004 and 2022 that reflect 
the Baseline and Program case assumptions are used to estimate the percentage 
improvements in cost and performance from 2004 to 2022. These percentage 
improvements were then applied to the 2004 technology data to obtain the 2022 data for 
both the Baseline and Program cases.   
                                                 
3 HHV refers to higher heating value. 1 kWh of natural gas contains 3,412 Btu. 
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For the Baseline case, technology improvement from 2004 to 2022 is assumed to 
progress linearly; data for 2012 are, therefore interpolated from the initial and final 
years. For the Program case, the technology is assumed to reach maturation in 2012, so 
that cost and performance data for 2022 are also used for 2012. The scaling factors used 
to convert 2004 cost and performance data to 2012 and 2022 data are provided in Table 
12. Note that microturbines are predicted to improve in electrical efficiency and capital 
cost to a much greater extent than reciprocating engines, while gas turbine improvement 
is intermediate to these two technologies. Microturbines are expected to improve the 
most because they are the least developed of the three technologies.  
 
Table 12. Scaling factors for 2012 and 2022 DER-CAM technology data 

 Gas Turbines Microturbines Reciprocating 
Engines 

2012 Baseline Case    
 - Capital Costs 0.890 0.737 0.882 
 - Maintenance Costs 0.834 0.907 0.928 
 - Electrical Efficiency 1.112 1.324 1.045 
 - Heat to Power Ratio 1.017 0.892 0.994 
2012/2022 Program Case 
 and  2022 Baseline Case 

   

 - Capital Costs 0.837 0.479 0.807 
 - Maintenance Costs 0.834 0.773 0.800 
 - Electrical Efficiency 1.215 1.389 1.080 
 - Heat to Power Ratio 1.043 0.950 1.011 

 
4.5 Technology Diffusion Parameters 
 
Table 13 summarizes the parameters that determine the spread of DG knowledge and 
adoption as a function of percentage annual savings on the energy bill. In the Baseline 
case, two percent of buildings with DG potential are assumed to get DG information 
from outreach programs, while in the Program case ten percent are reached. In both 
cases, the factor determining the strength of the word-of-mouth process, β, is at its 
maximum. The parameters determining the adoption function, which are the percentage 
of customers with DG information that actually install systems for a given cost-
effectiveness, are assumed to be equal in both cases. 
 
Table 13.  Adoption function parameters 

 α β aE aN bE bN cE cN 
Baseline Case 0.02 0.98 200 200 0.4 0.6 60 80 
Program Case 0.1 0.9 200 200 0.4 0.6 60 80 

 
Figure 6 is a plot of the adoption function for existing and new buildings. This figure 
illustrates a more aggressive DG adoption rate in new buildings. This is based on the 
assumption that when new buildings are constructed it is more likely that energy 
considerations are made, and that new buildings can be more flexible in incorporating 
DG systems. The maximum adoption rate for new buildings is 80 percent and for 
existing buildings 60 percent. Note that the percentage of all considered buildings that 
adopt systems can be much lower, because actual relative adoption is calculated as the 
product of the adoption function and the floorspace with DG knowledge.  
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Figure 6. Adoption curves for new and existing buildings where owners has DG 
knowledge 
 
 
5. Results 
 
5.1 Optimal Distributed Generation Systems for the Modeled Buildings 
 
DER-CAM is solved for the 2004, the 2012 Baseline case, the 2012 Program case and 
for the 2022 case. In the 2022 case, there is no difference between the Baseline and 
Program case as technology improvements from the baseline case have caught up with 
the program case. Four scenarios, five building types in two sizes and four regions leave 
160 different problems for DER-CAM to solve. Table 14 displays the optimal DG 
capacity found with DER-CAM for the 160 runs. DG systems are in general largest in 
San Francisco and in Boston while there in Atlanta is no optimal DG capacity in any of 
the cases. Table 15 shows the expected percentage savings in the energy bill in the same 
runs. San Francisco also has the highest savings on the energy bill for most building 
types, followed by Boston. The savings range from 4.5 to 31.8 percent of the annual 
energy costs. A comparison of Table 7 and Table 15 suggests that the most important 
indicator of DG profitability in the U.S. commercial sector is the building peak 
electricity load, as the two least attractive buildings are the two smallest and the larger 
version of both are attractive buildings for DG installations. That peak electricity load 
seems more important than energy load profiles can mean that DG is used widely to 
reduce peak demand. The large education buildings have the highest percentage savings 
on energy bill in Boston and Chicago, while the large healthcare building has the 
highest in San Francisco.  
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Table 14. Optimal installed capacity (kW) in the modeled buildings 
 Healthcare Lodging Mercantile Education Office 
 small large small large small large small large small large 
Atlanta           
2004 Both Cases 0 0 0 0 0 0 0 0 0 0 
2012 Baseline 0 0 0 0 0 0 0 0 0 0 
2012 Program 0 0 0 0 0 0 0 0 0 0 
2022 Both Cases 0 0 0 0 0 0 0 0 0 0 
Boston           
2004 Both Cases 200 1000 200 1200 0 0 0 700 0 500 
2012 Baseline 250 500 0 750 0 0 0 700 0 200 
2012 Program 250 750 250 1200 0 500 100 850 100 500 
2022 Both Cases 250 1000 200 1250 250 500 100 1100 100 750 
Chicago           
2004 Both Cases 0 0 0 0 0 0 0 0 0 0 
2012 Baseline 0 0 0 0 0 0 0 0 0 0 
2012 Program 250 250 100 750 0 0 0 600 0 250 
2022 Both Cases 250 500 100 750 0 250 0 500 0 250 
San Francisco           
2004 Both Cases 200 1000 200 1000 500 1200 0 500 0 1200 
2012 Baseline 200 1000 200 1000 500 1200 0 500 0 1200 
2012 Program 500 1000 250 1500 500 750 0 600 100 1200 
2022 Both Cases 500 1000 100 1000 500 750 0 600 100 1200 

 
 
Table 15. Percentage savings on building energy bill 

 Healthcare Lodging Mercantile Education Office 
 small large small large small large small large small large 
Atlanta           
2002 Both Cases 0 0 0 0 0 0 0 0 0 0 
2012 Baseline 0 0 0 0 0 0 0 0 0 0 
2012 Program 0 0 0 0 0 0 0 0 0 0 
2022 Both Cases 0 0 0 0 0 0 0 0 0 0 
Boston           
2002 Both Cases 13.5 14.1 11.1 16.1 0 0 0 23.2 0 14.2 
2012 Baseline 10.2 14.4 0 13.1 0 0 0 20.4 0 5.5 
2012 Program 18.7 14.9 12.3 16.7 0 9.2 12.0 29.8 13.4 13.9 
2022 Both Cases 21.0 18.4 13.4 17.5 10.3 8.6 14.9 27.3 14.2 18.2 
Chicago           
2002 Both Cases 0 0 0 0 0 0 0 0 0 0 
2012 Baseline 0 0 0 0 0 0 0 0 0 0 
2012 Program 10.8 12.1 6.7 13.0 0 0 0 17.2 0 7.3 
2022 Both Cases 10.6 10.5 5.6 13.7 0 4.5 0 13.5 0 7.6 
San Francisco           
2002 Both Cases 19.7 27.3 16.1 21.9 15.5 20.5 0 15.4 0 22.5 
2012 Baseline 19.7 28.3 15.8 23.8 15.3 20.0 0 15.4 0 22.1 
2012 Program 28.8 31.3 27.8 31.8 19.0 24.7 0 24.7 16.6 26.3 
2022 Both Cases 24.7 27.3 19.7 26.8 14.2 20.5 0 22.9 14.0 21.9 
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5.2 Predicted DG Market Diffusion 
 
Figure 7 shows the modeled installed DG capacity in U.S. commercial buildings from 
2005 to 2025. The Program case leads to an earlier and greater adoption of DG than the 
Baseline case. Cumulative capacity follows an S-curve with the highest growth in DG 
capacity around 2014. In the Baseline case, installed capacity shows exponential growth 
during the forecast period with a potential inflection point around 2025. The largest 
difference in installed capacity is in year 2019 at 11.1 GW. After 2019, growth is higher 
in the Baseline case because technology advancement is catching up to the Program 
case and because there is a larger undeveloped potential than in the Program case. 
Furthermore, observe that there is path dependence in these curves, whereby the 
difference between the Program and Baseline cases is not only a delayed development, 
but the path has also changed. This is due to two factors: first, stronger outreach 
programs create higher growth, and second, increased DG knowledge in periods where 
prices are favorable for DG can lead to an increase in capacity that will not be made up 
for later. 
 

 
Figure 7.  Cumulative installed DG capacity in U.S. commercial sector in Baseline and 
Program cases  
 
Reciprocating engines are expected to experience marginal improvements in 
performance during the forecast horizon. However, these improvements combined with 
a stronger technology outreach program and increased word-of-mouth from the 
successful implementation of microturbines leads to a higher installed capacity in the 
Program case than in the Baseline case (see Figure 8). Microturbines represent a 
promising technology with expected cost reductions and performance improvements 
over time. In the Program case, investments in microturbines are expected to grow 
rapidly from 2010 and exceed the capacity of reciprocating engines by 2017. Notice the 
difference in the diffusion curves for reciprocating engines and microturbines in the 
Program case. Reciprocating engine capacity grows fast initially, but as microturbines 
become more competitive they take a larger share of the market. However, there is still 
a market growth for both, reflected by different buildings suitability to each technology. 
For example, in the Baseline case reciprocating engines are superior to microturbines.  
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Figure 8. Cumulative installed capacity of reciprocating engines and microturbines in 
the Program and Baseline cases  
 
Electricity consumption decreases because of on-site electricity generation and the use 
of recovered heat through absorption chillers to offset electricity otherwise used for 
cooling. Natural gas consumption increases from on-site generation, but is partially 
offset by heat recovery for heating loads. Figure 9 shows that the reduction in electricity 
purchases and the increase in natural gas purchases follows the same S-curved pattern 
as installed capacity. In the Program case, 100 TWh of electricity is expected to be 
produced in commercial buildings in 2025. The largest difference in the two graphs is in 
2017 when 67 TWh are produced in the Program case and 19 TWh in the Baseline case.
 Figure 10 displays ratio of net changes in electricity purchases to net changes in 
building natural gas purchases. This ratio can be viewed upon as an efficiency metric, 
which can be compared to the central efficiency for delivery to the end-used. Combined 
heat and power systems have the potential to produce higher overall efficiencies. The 
reason for this discrepancy is that some of the recovered heat is used for cooling, which 
has a lower efficiency than direct heat use and that the generators are allowed to 
produce without any heat recovery if prices justify such operation. A considerable 
amount of the on-site generation occurs at peak hours when the efficiency is lower and 
the grid is heavily strained. In comparison to a central system, where some electricity 
will be lost under transmission and distribution, DG provides electricity on-site. The 
results represent a laissez-faire solution, exclusive of any policies to improve efficiency, 
such as a lower bound on efficiency or promotion of the use of waste heat. 
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Figure 9. Electricity produced on-site and increased natural gas consumption  
 

 
Figure 10. On-site electricity generation to increased natural gas consumption ratio 
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When buildings install DG systems they reduce their energy costs. The cumulative 
annual private cost savings from building energy use for all U.S. commercial buildings 
with DG is shown in Figure 11. In 2015 the annual savings are $2.0 billion in the 
Program case and $0.5 billion in the Baseline case. In 2025 the difference in savings is 
reduced with savings of $3.5 billion in the Program case and $2.3 billion in the Baseline 
case. 

 
Figure 11. Annual private cost savings from DG in Program and Baseline cases 
 
The U.S. consists of regions with diverse climates and energy markets. These 
differences are of major importance for DG attractiveness. As seen in Figure 12, the 
West region, which is dominated by the dense population of California and high 
electricity prices and a cooling demand, is in position to be the leader in DG expansion. 
Also, the Northeast seems to be an area suited for DG with a later, but significant, 
development. DG expansion in the Midwest is expected to be more modest, while the 
low electricity rates in the South are a barrier to any DG potential. Both the Baseline 
and the Program cases show the same regional pattern. The West and Northeast are still 
expected to develop the majority of DG capacity in the Baseline case, but toward the 
end of the forecast period. In the Midwest, DG development is delayed 10 years and is 
considerably slower.  
 In the Program case, most DG is expected in office buildings followed by 
mercantile buildings (see Figure 13). Although the total floorspace for education 
buildings is much higher than for the healthcare and lodging buildings, the installed DG 
capacity is only slightly higher in the education buildings. Healthcare buildings are 
among the most attractive for DG sites, but they constitute a relatively small portion of 
U.S. commercial floorspace. The Baseline case shows a similar, but not identical, 
pattern. Mercantile buildings are leading DG adopters until 2018 when healthcare 
buildings install more DG than both education and lodging. An explanation for this can 
be that office buildings are more suited to the improved microturbines than 
reciprocating engines. 
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Figure 12. Cumulative installed DG capacity in Census regions in the forecast period in 
Program and Baseline cases 
 
 

 
Figure 13. Cumulative installed DG capacity for building types in Program and 
Baseline Cases 



 24

 
Most of the installed capacity in both the Baseline and the Program cases comes with 
systems for heat recovery, as can be seen in Figure 14. The most common installations 
have thermally activated cooling, which also comes with a heat exchanger and can be 
used to supply both cooling and heating loads. Notice that in the Baseline case, the most 
common technology until around 2022 can be used for electricity generation only while 
this is never the case in the Program case. Although most of the installed capacity has 
the ability to recover heat, a large share of the installed capacity does not. Capacity 
without the ability to recover heat does not have a high potential efficiency (see Table 
8). The electricity-only generators profitability is reflected in the high volumetric 
electricity rates and demand charges for several utilities, probably due to expensive and, 
therefore, inefficient on-peak power and high transmission and distribution costs (see 
Table 9).  
 The sensitivity in installed capacity to the outreach parameter, α , for the 
Program and Baseline cases has been tested. The outreach parameter has the capability 
of increasing DG knowledge and thereby the fraction of building owners in the market 
who will invest according to the adoption curve given in Figure 6. Figure 15 displays 
that, according to the model, increasing DG knowledge can increase installed capacity 
significantly. Notice that both for the Baseline and the Program cases the marginal 
effect of the parameters decreases for high values since the difference between a value 
of 10 and 20 percent is small. Also, the end of the horizon the difference in a 10 and a 
20 percent value is reduced to practically nothing, because the word-of mouth process 
takes over when large fractions of the commercial floorspace has DG systems installed. 
This indicates that outreach programs can be particularly important during the 
introduction of a technology and that they can be reduced when capacity has increased.  

 
Figure 14. Cumulative installed capacity with electricity generation only, heat recovery 
and absorption cooling 
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Figure 15. Sensitivity of installed capacity to the outreach parameter α  
 
 
6. Conclusions and Further Work 
 
The results from the DER-MaDiM model suggest that there can be a large market for 
DG in U.S. commercial buildings, even with only a modest research program and little 
technology outreach. It reveals how significant an impact a stronger research program 
combined with more technology research can have on the potential to accelerate and 
increase DG investments. Investment in the research and outreach programs can be 
balanced by private savings on the energy bill. Satisfying electricity, heat loads and 
cooling loads with DG leads to a net increase in building natural gas consumption that is 
approximately double the increase in electricity production on-site. Over half of the 
installed capacity has the ability to recover heat and absorption cooling is the most 
common technology. However, a large share of the installed systems only has electricity 
generation capability. Regulation and incentives have the potential to further improve 
the environmental benefits of DG. The West and Northeast are the regions where most 
DG capacity expansion is expected. The office and mercantile buildings can play a key 
role in wide-scale DG development. 
 A weakness in the DER-MaDiM modeling approach is that the model does not 
directly allow for operational changes in the DG systems after they are installed as 
market conditions change. Similarly, the investment decision is based only on the 
energy prices in a particular year and does not include any expectation of future price 
developments. Neither the vintage structure of the existing building stock nor the 
demolition of buildings is included in the analysis, but only a fraction of the entire 
building stock is included as potential DG buildings, and most buildings have an 
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expected lifetime far beyond the analysis horizon. Competition from other DER 
technologies is included to some extent. This is accounted for by reducing the 
floorspace with DG potential, such as including a low fraction of the floorspace for 
larger buildings where gas turbines can be a strong competitor. It could also be possible 
to include more technologies, such as photovoltaic systems, directly as a competing 
technology if either they prove to be more competitive or there is a strong regulatory 
support for them. 
 Predicting market diffusion of new technologies is not straightforward, and 
finding appropriate parameters for the model is a challenge. A possible approach could 
be to base parameters on empirical data from the introduction of similar technologies 
such as energy efficiency equipment, but each technology is itself unique and has a 
unique market, which makes comparisons difficult. Another possibility is to base 
parameters on surveys of building owners knowledge of DG and their willingness to 
invest under various cost saving levels. Also, as DG capacity increases there will be 
more data available to estimate parameters for the diffusion processes. 
 Despite the inherent challenges in modeling technology diffusion, DER-MaDiM 
captures the major dynamics of technology diffusion for DG in modeling the spread of 
information from a central source and from a word-of-mouth process combined with the 
bottom-up DER-CAM approach to decide DG attractiveness for specific sites. The 
modeling approach can further be used to analyze the effect of other energy market 
policies in future studies. 
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