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SUMMARY

Small GTP-binding proteins are molecular switches that serve as important

regulators of numerous cellular processes. In animal and plant cells, the Rho family

of small GTPases participate in e.g. organisation of the actin cytoskeleton, production

of reactive oxygen species through the NADPH oxidase complex, regulation of gene

expression. The three most extensively studied subgroups of the Rho GTPase family

are Cdc42, Rho and Rac. One of the mechanisms by which animal Rac and Cdc42

GTPases regulate actin filament organisation is through activation of the ARP2/3

complex, a multimeric protein complex which induces branching and

nucleation/elongation/polymerisation of actin filaments. Activation of the ARP2/3

complex by Rac and Cdc42 is mediated through the proteins WAVE and WASP,

respectively.

In a search for Ras-like GTPases in Arabidopsis, we identified a family of genes with

similarity to Rac GTPases. Screens of cDNA and genomic libraries resulted in the

finding of 11 genes named ARACs/AtRACs. Genes encoding Rho, Cdc42 or Ras

homologues were not identified. Expression analysis of AtRAC1 to AtRAC5 indicated

that AtRAC1, AtRAC3, AtRAC4 and AtRAC5 are expressed in all parts of the plant,

whereas AtRAC2 is preferentially expressed in root, hypocotyl and stem.

The AtRAC gene family can be divided into two main groups based on sequence

similarity, gene structure and post-translational modification. AtRAC group II genes

contain an additional exon, caused by the insertion of an intron which disrupts the C-

terminal geranylgeranylation motif. Instead, group II AtRACs contain a putative motif

for palmitoylation. Phylogenetic analyses indicated that the division of plant RACs

into group I and group II occurred before the split of monocotyledonous and

dicotyledonous plants. Analyses of the genes neighbouring AtRAC genes revealed

that several of the plant RAC genes have been created through duplications.

The restricted/tissue-specific expression pattern of AtRAC2 led us to do a more

detailed expression analysis of this gene. A 1.3 kb fragment of the upstream

(regulatory) sequence of AtRAC2 directed expression of GUS or GFP to developing

primary xylem in root, hypocotyl, leaves and stem. In root tips, the onset GUS

staining or GFP fluorescence regulated by the AtRAC2 promoter slighty preceded the

appearance of secondary cell walls. In stems, GUS staining coincided with thickening
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of xylem cell walls. Transgenic plants expressing constitutively active AtRAC2

displayed defects in the polar growth of leaf epidermal cells, indicating that AtRAC2

may be able to regulate the actin cytoskeleton. Surprisingly, an AtRAC2 T-DNA

insertion mutant did not show any observable phenotypes. GFP fusion proteins of

wild type and constitutively active AtRAC2 were both localised to the plasma

membrane. The data suggest that AtRAC2 is involved in development of xylem

vessels, likely through regulation of the actin cytoskeleton or NADPH oxidase.

The role of RAC GTPases in regulation of the actin cytoskeleton in plants is well

documented. However, although the ARP2/3 complex had been identified in

plants/Arabidopsis, the mechanisms regulating this complex were unknown. Through

database searches, we identified three Arabidopsis genes, AtBRK1, AtNAP and

AtPIR, which encoded proteins with similarity to subunits of a protein complex shown

to regulate the activity of WAVE1 in mammalian cells. T-DNA inactivation mutants of

AtNAP and AtPIR displayed morphological defects on epidermal cells undergoing

polar expansion, such as trichomes and leaf pavement cells. The phenotypes were

similar to those observed for ARP2/3 complex mutants, suggesting that AtNAP and

AtPIR act in the same pathway as the ARP2/3 complex in plants. The actin

cytoskeleton in atnap and atpir mutants was less branched than in wild type plants;

instead, actin filaments aggregated in thick actin bundles.

Finally, we have recently discovered a small gene family encoding putative WAVE

homologues. In mammalian cells, Rac activates WAVE1 through binding to PIR121

or Sra1 (the mammalian homologues of AtPIR). The discovery of a putative WAVE

regulatory complex as well as putative WAVE homologues in Arabidopsis suggests

that plant RAC GTPases regulate organisation of the actin cytoskeleton during polar

growth at least partly through the ARP2/3 complex, using an evolutionarily conserved

mechanism.
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ABBREVIATIONS

ABA abscisic acid

Abi2 Abelson interactor 2

ABP actin binding protein

ARP actin-related protein

Cdc42 cell division cycle 42

CRIB Cdc42/Rac-interactive binding

EVH1 Ena/VASP homology 1

GAP GTPase-activating protein

GBD GTPase-binding domain

GDI GDP dissociation inhibitor

GEF GDP/GTP exchange factor

IAA indole acetic acid

IP3 Inositol-3-phosphate

JNK jun N-terminal kinase

MAPK mitogen activated protein kinase

Nap Nck-associated protein

NPF nucleation promoting factor

PIR121 121F-specific p53 inducible RNA

PtdIns(3,4)P2 = PIP2 phosphatidylinositol-3,4-diphosphate

PtdIns P-K phosphatidylinositol monophosphate kinase

Rac Ras-related C3 botulinum toxin substrate

Ras rat sarcoma viral oncogene homologue

Rboh respiratory burst oxidase homologue

Rho Ras homologous

RIC RAC/ROP-interactive CRIB motif-containing protein

Rop Rho of plants

ROS reactive oxygen species

Scar suppressor of cAMP

SH3 Src homology 3

SHD Scar homology domain

Sra-1 specifically Rac1-associated protein
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INTRODUCTION

Structure and function of Rho GTPases in animal and plant cells

The Ras superfamily of small GTPases

Proteins using guanosine triphosphate (GTP) as a co-factor constitute a large and

diverse group of proteins found in all organisms studied to date. GTP-binding

proteins are central components in several aspects of cellular functions, such as

translation (EF-Tu), cytoskeletal structure (tubulin) and signal transduction

(heterotrimeric G proteins and small GTPases).

A subgroup of the GTP-binding proteins are the Ras superfamily of small GTPases,

which are small, monomeric GTP-binding proteins with molecular masses of 20-40

kDa. About 25 years ago, the Ras genes Ha-Ras and Ki-Ras were the first small

GTPases to be identified, first in sarcoma virus (Chien et al., 1979; Shih et al., 1978)

and subsequently in human carcinomas (Parada et al., 1982; Santos et al., 1982).

Other similar, but distinct gene families were discovered throughout the 1980s,

leading to the classification of the Ras superfamily into five families; the Ras, Rho,

Rab, Arf/Sar and Ran families (reviewed by Takai et al., 2001). The subgroups of

small GTPases have important and, to some extent, overlapping functions in the cell;

Ras GTPases regulate gene expression and transduce signals from cell membrane

receptors; Rho GTPases regulate both cytoskeletal reorganisation and gene

expression; members of the Rab and Arf/Sar family GTPases function in intracellular

vesicle trafficking, whereas Ran GTPases have been implicated in transport of

proteins and mRNA across the nuclear envelope.

Rho GTPases

The first Rho (short for ras homologous) family gene was isolated from the mollusc

Aplysia (Madaule and Axel, 1985). Subsequently, Madaule and co-workers (1987)

cloned the S. cerevisiae genes RHO1 and RHO2, and found RHO1 to be and RHO2
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not be necessary for cell viability. At the same time, other research groups identified

a class of proteins with a molecular weight of 21-24 kDa as substrates for ADP-

ribosylation by type D botulinum toxin from the bacterium Clostridium botulinum

(Banga et al., 1988; Ohashi and Narumiya, 1987) and showed that these proteins

were able to bind GTP (Bokoch et al., 1988; Morii et al., 1988). The protein substrate

was identified as rho (Narumiya et al., 1988; Quilliam et al., 1989) and the site for

ADP-ribosylation was found to be an asparagine residue (Sekine et al., 1989).

Members of the Rac subfamily were first identified from human cells, and shown to

be substrates for ADP-ribosylation by type C3 botulinum toxin (Didsbury et al., 1989).

This property led the authors to name the proteins rac (short for ras-related C3

botulinum toxin substrate). A third member of the Rho protein family, Cdc42, was

discovered in Saccharomyces cerevisiae as the target of mutation in cdc42 mutant

cells, which are unable to form buds during cell division, resulting in large,

multinucleate cells (Johnson and Pringle, 1990). Since then, a total of twenty

mammalian Rho proteins have been described; Rac (three isoforms), Rho (three

isoforms) and Cdc42 (one isoform) are the best characterised members of the family

in mammalian cells (Etienne-Manneville and Hall, 2002). Some of the best known

functions of Rho GTPases and the mechanisms regulating their activity in metazoan

cells are summarised below.

Mechanism and regulation of Rho GTPase activity

Similar to other Ras superfamily GTPases, Rho GTPases are molecular switches

that cycle between two conformational states: a GTP-bound, "active" state and a

GDP-bound, "inactive" state. An intrinsic GTPase activity hydrolyse GTP to GDP

(Bourne et al., 1990)(Fig. 1).
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Figure 1. Regulation of Rac GTPase activity. GAP, GTPase-activating protein; GEF, GDP

exchange factor; GDI, GDP dissociation inhibitor; Pi, inorganic phosphate. Modified from

Takai et al. (2001).

When a cell receives an appropriate stimulus, it creates a signal that stimulates

dissociation of GDP from the inactive GTPase. Due to much higher concentration of

GTP as compared to GDP in the cell, GTP quickly occupies the nucleotide-binding

site of the GTPase. The binding of GTP induces a structural change in the GTPase,

enabling it to interact with downstream effectors (Bishop and Hall, 2000). Rho

proteins are prenylated at their C-terminus; upon activation the prenyl group is

exposed and inserted into a target cell membrane (Adamson et al., 1992). Two

classes of Rho protein mutants have been instrumental in functional studies of the

Rho GTPases. Constitutively activated mutants (usually G12V or Q61L for

mammalian Rho GTPases) are GTPase deficient, whereas dominant negative

mutants (usually T17N) are unable to exchange GDP with GTP.

Dissociation of GDP from the GDP-bound GTPase is stimulated by a group of

regulators called guanine exchange factors (GEFs) (Kjøller and Hall, 1999). The main

class of metazoan Rho GEFs contains a Dbl-homology (DH) domain and a pleckstrin

homology (PH) domain. Proteins containing DH domains appears to be absent in

plants (Yang, 2002). Recently, a new family of proteins showing Rho GEF activity is

represented by Dock180 in mammalian cells, Myoblast City (MBC) in Drosophila and

CED-5 in C. elegans. Dock180 proteins promote nucleotide exchange on Rac and
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Cdc42 as a complex with another protein, ELMO (Braga, 2002). The Arabidopsis

genome contains a single Dock180 homologue, SPIKE (SPK1), which will be

discussed later.

The intrinsic GTP-hydrolysing activity of Rho GTPases is enhanced by GTPase-

activating proteins (GAPs) (Moon and Zheng, 2003). Thus, RhoGAPs acts as

negative regulators, shutting down the signal to downstream effectors. All known

RhoGAPs contain a conserved protein fold where an arginine residue, the 'arginine

finger', is central for GAP activity. Upon binding a Rho GTPase, the arginine finger of

the RhoGAP enters the GTPase active site and stabilises the transition state of GTP

hydrolysis (Rittinger et al.,1997a, Rittinger et al. 1997b) .

In their unactivated state, Rho GTPases are bound by a third class of regulatory

proteins, Rho GDP dissociation inhibitors (RhoGDIs) (Olofsson,1999). RhoGDIs

appear to extract GDP-bound Rho GTPases from cell membranes and inhibit their

spontaneous GDP↔GTP exchange activity, maintaining a cytosolic pool of inactive

Rho GTPases. The precise role of RhoGDIs is still poorly understood.

Biological functions of (metazoan) Rho GTPases

For Rho, Rac and Cdc42, over 60 effector proteins have so far been identified

experimentally in metazoa (Etienne-Manneville and Hall, 2002). The large number of

target proteins participating in a number of signal transduction pathways places the

Rho GTPases as central regulators of several cellular processes.

The best characterised and a major function of Rho GTPases is to regulate the

assembly and organisation of the actin cytoskeleton (Hall, 1998). In 1992, Ridley and

Hall reported that injection of constitutively activated Rho into fibroblasts led to the

assembly of contractile actin-myosin filaments (stress fibers) and associated focal

adhesion. Injection of constitutively activated Rac and Cdc42 induced actin-rich

surface protrusion called lamellipodia and finger-like protrusions called filopodia,

respectively (Nobes and Hall, 1995; Prigmore et al., 1995; Ridley et al., 1992). There

seem to be substantial cross-talk between the different Rho GTPases; in fibroblasts,

Cdc42 can activate Rac, and Rac can activate Rho (Nobes and Hall, 1995). In other

cell types, however, Rho has opposing effects compared with Cdc42 or Rac. During

neuronal extension of neurites, Cdc42 and Rac promote neurite outgrowth, whereas
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Rho inhibits neurite extension (Luo et al., 1996). Similarly, in macrophages, Cdc42

and Rac promote membrane protrusions and anchoring of the cell to its substrate,

and Rho is responsible for loosening of cell adhesions and membrane retraction at

the rear end of the moving cell (Aepfelbacher et al., 1996; Allen et al., 1997). An

important class of Rac and Cdc42 effectors in these processes is the p21-activated

kinases (PAKs), which are serine/threonine kinases whose activity is stimulated by

the binding of active Rac and Cdc42 to their Cdc42/Rac-interactive binding (CRIB)

domain (reviewed by Bokoch, 2003). Rho GTPase-regulated organisation of the actin

cytoskeleton is important in a number of cell type specific processes, such as

selection of bud site in yeast cells, cellular polarity during embryogenesis,

establishment of cell asymmetry in epithelial cells and phagocytosis in macrophages

(Etienne-Manneville and Hall, 2002). There is also increasing evidence that Rho

GTPases are involved in regulation of microtubules (Cau et al., 2001; Palazzo et al.,

2001).

Besides regulating the actin cytoskeleton, Rho GTPases also contribute to a number

of other processes. Studies on cell cycle progression have shown that Rho, Rac and

Cdc42 each contribute to G1 progression in fibroblasts (Olson et al., 1995). Rac

stimulates G1 progression in T cells through activation of the JNK mitogen-activated

protein (MAP) kinase cascade after antigen stimulation of T cells (Cantrell, 1998).

Rac proteins regulate production of reactive oxygen species (ROS) in leukocytes

such as neutrophils through activation of the NADPH oxidase complex (Bokoch and

Knaus, 2003). The NADPH oxidase complex consists of a catalytic, membrane-

associated flavocytochrome b558, constituted of the subunits gp91phox and p22phox,

and the cytosolic components p47phox and p67phox. The generation of ROS

contributes to killing of phagocytosed bacteria. Rac interacts with at least one of the

subunits, p67phox, but the mechanism for Rac-mediated activation of the NADPH

oxidase complex is not fully understood (Bokoch and Diebold, 2002). In addition,

ROS produced by NADPH oxidase are believed to act as signal molecules,

regulating redox-sensitive signalling proteins (Nimnual et al., 2003; Sulciner et al.,

1996).

Rho GTPases are also involved in many stages of vesicular trafficking (Symons and

Rusk, 2003). Some of these processes, such as macropinocytosis and phagocytosis,

involve regulation of the actin cytoskeleton, whereas other processes, such as
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clathrin-mediated endocytosis and certain exocytotic pathways are at least partly

regulated through other mechanisms.

The RAC/ROP GTPase family in plants

With the completion of the Arabidopsis genome sequencing project (The Arabidopsis

genome initiative, 2000), we now have a fairly good overview of the protein families

that are present in plants. A search for small GTP-binding proteins in the Arabidopsis

genome sequence resulted in identification of 93 proteins, classified within four of the

five small GTPase families known in metazoa: 57 Rab GTPases; 21 Arf GTPases; 11

Rho GTPases; and 4 Ran GTPases (Vernoud et al., 2003). A discussion of the Rab,

Arf/Sar and Ran GTPase families is beyond the scope of this thesis (for general

reviews on GTP-binding proteins in plants, see Ma, 1994; Bischoff et al., 1999; Yang,

2002; Vernoud et al., 2003. For recent reviews on Arabidopsis Rab GTPases, see

Rutherford and Moore, 2002; on Ran GTPases, see Rose et al., 2004).

Research on RAC/ROP GTPases in plants date back to 1993, when Zhenbiao Yang

and John Watson reported the cloning of a RAC-like GTPase from garden pea which

they called Rho1Ps (Yang and Watson, 1993). Since then, several research groups

have turned their attention to this exciting protein family, and more than 50 research

papers and reviews on plant RAC/ROP GTPases have been published to date. As a

result, a considerable body of evidence points towards a role for RAC/ROP GTPases

as central regulators of a number of important processes in plant cells, such as

organisation of the actin cytoskeleton, pathogen responses and hormone responses

(Fig. 2). Some of the suggested functions of RAC/ROP GTPases are described

(below).
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Figure 2. Overview of known functions of RAC/ROP GTPases in plants. GAP, GTPase-

activating protein; GEF, GDP exchange factor; GDI, GDP dissociation inhibitor; PtdIns PK,

phosphatidylinositol monophosphate kinase; RIC, RAC/ROP interactive CRIB motif-

containing protein; WAVE, WASP family verprolin-homologous protein. Modified from

Yang (2002).

A majority of the studies on RAC/ROP GTPases in plants have been done on

Arabidopsis thaliana. The RAC/ROP family in Arabidopsis is constituted by eleven

members (Winge et al., 1997; Winge et al., 2000). The strucure and evolution of the

Arabidopsis RAC/ROP family is discussed in Paper I and II. Different research

groups have given different names to the same genes, leading to confusion in the

nomenclature of the gene family. Table 1 summarises some of the names that have

been used on Arabidopsis RAC/ROP GTPases.

Table 1. Nomenclature of the Arabidopsis RAC/ROP GTPase family, modified from Yang,

2002.                                                                                                                                       
aAtRAC/Arac            AtRAC1      AtRAC2      AtRAC3      AtRAC4      AtRAC5      AtRAC6      AtRAC7      AtRAC8      AtRAC9   AtRAC10  AtRAC11
bROP                         ROP3         ROP7         ROP6         ROP2         ROP4         ROP5         ROP9         ROP10       ROP8      ROP11       ROP1
cAt-Rac/AtRac                                               AtRac1                                             AtRac2                                                                                          
dAtROP                                                           AtROP4                         AtROP6                                                                                                            
aWinge et al., 1997; Winge et al., 2000
bLi et al., 1997; Yang, 2002
cKost et al., 1999; Lemichez et al., 2001
dBischoff et al., 2000; Molendijk et al., 2001                                                                                                                                                              
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Proteins regulating plant RAC/ROP activity

GTPase activating proteins (GAPs)
The Arabidopsis genome appears to encode three distinct families of RAC/ROP-

specific GTPase activating proteins (GAPs), based on sequence similarity and

domain composition (personal observations).

The first Rac/RopGAPs were identified in yeast two-hybrid assays as proteins binding

a constitutively active mutant of LjRac2, a Lotus japonicus homologue of AtRAC2

(Borg et al., 1999). In vitro GAP activity assays performed with one of the three

GAPs, LjRacGAP1, induced GTPase activity in LjRac2. The Rac/RopGAP family in

Arabidopsis has six members (Wu et al., 2000). Rac/RopGAPs contain a conserved

CRIB domain immediately N-terminal to the GTPase-activating domain,. This domain

combination is unique for plants. The CRIB domain is believed to facilitate the

formation of or stabilise the transitional state between RAC/ROP-GTP and

RAC/ROP-GDP (Wu et al., 2000).

An uncharacterised family of putative plant RAC/ROP-specific GAPs contain an N-

terminal pleckstrin homology (PH) domain (Winge, 2002). PH domains are 100-120

amino acid protein modules with the ability to bind phosphoinositides, and are found

in various proteins, amongst others Rac/Rho GEFs (Lemmon et al., 2002). In

Arabidopsis, three genes (At4g24580, At5g12150 and At5g19390) encode proteins

with an N-terminal PH domain, followed by a Rac/RopGAP domain (Brembu,

personal observations). Presently, no functional data exist on these proteins.

A single gene (At5g61530) in Arabidopsis represents the third type of RAC/ROP

GAP-like proteins. The protein is smaller than the two other types of plant RAC/ROP

GAPs, and contains no conserved domains or motifs besides the putative GAP

domain.

Guanine exchange factors (GEFs)
As mentioned earlier, the most common type of metazoan RhoGEFs, which contains

PH and Dbl domains, does not exist in plants. However, an Arabidopsis protein called

SPIKE1 has similarity to the other known class of RhoGEFS, Dock180 (Qiu et al.,

2002). The spike1 mutant dies at seedling stage and has severe morphological
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defects, probably due to altered organisation of the microtubule cytoskeleton. This is

somewhat surprising, since RAC/ROP GTPases in plants mainly have been

implicated in regulation of actin cytoskeleton, as discussed below. SPIKE may be a

specific regulator of RAC/ROP coupled to regulation of microtubules.

GDP dissociation inhibitors (GDIs)
RhoGDIs are well conserved between animals and plants. Three RhoGDIs are

present in Arabidopsis. Physical interaction between RhoGDI and RAC/ROP has

been shown in Arabidopsis (Bischoff et al., 2000) and tobacco (Kieffer et al., 2001)

using yeast two-hybrid assays and co-immunoprecipitation. No functional data has

been published on plant RhoGDIs.

RAC/ROP regulation of polar cell growth
The first functional data published on plant RAC/ROP GTPases suggested a role in

cell polarity. Expression of AtRAC3 in Schizosaccharomyces pombe resulted in

small, round cells compared with the elongated appearance of wild type cells, the

AtRAC3 expressing cells also showed diffuse actin staining (Xia et al., 1996). Since

then, plant RAC/ROP proteins has been shown to take part in regulation of polar

growth in a number of cell types.

Polar tip growth in pollen
Polar tip growth in pollen has become an attractive model system for the study of

RAC/ROP-dependent regulation of the actin cytoskeleton, as well as other cellular

processes controlled by RAC/ROPs (Gu et al., 2003; Zheng and Yang, 2000). In the

course of fertilisation, pollen tubes elongate by highly polarised growth termed tip

growth in order to deliver the sperm to an ovule, in a process with similarity to axon

guidance in animal cells (Palanivelu and Preuss, 2000). Tip growth is characterised

by directed delivery of Golgi vesicles to a defined site in the cell membrane where the

vesicles fuse with the plasma membrane. Lin et al. (1996) showed that the pea

RAC/ROP GTPase was mainly expressed in pea pollen, and that Rop1Ps was

localised to the apex of the pollen. Inhibition of Rop1Ps activity by injection of anti-

Rop1Ps antibodies into pea pollen blocked growth of the pollen tube, suggesting that

RAC/ROP GTPases play a crucial role in pollen tube growth (Lin and Yang, 1997). In

Arabidopsis, at least three closely related RAC/ROP GTPases, AtRAC11/ROP1,
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AtRAC6/ROP5 and AtRAC1/ROP3, are expressed in pollen (Li et al., 1998).

Expression of dominant negative (T20N) mutants of AtRAC11/ROP1 and

AtRAC6/ROP5 inhibited pollen growth, in accordance with the antibody experiments

from pea (Kost et al., 1999; Li et al., 1999). In contrast, overexpression of wild type

AtRAC11/ROP1 and AtRAC6/ROP5 induced depolarised growth of pollen tubes.

Expression of constitutively active AtRAC11/ROP1 and AtRAC6/ROP5 mutants

resulted in even more severe depolarised phenotypes (Kost et al., 1999; Li et al.,

1999). These results suggest that RAC/ROP GTPases regulate both cell expansion

and polarity in pollen. Filamentous actin (F-actin) in pollen tubes can be divided into

two populations: cortical, longitudinally oriented actin cables extending along the

pollen tube towards the tip, and short, dynamic actin filaments immediately behind

the actin-free zone of the tip apex (Fu et al., 2001). Expression of dominant negative

ROP1/AtRAC11 in tobacco pollen reduced the short tip actin, whereas

overexpression of wild-type ROP11/AtRAC11 led to formation of a network of actin

filaments at the tip and abnormal transverse actin bands behind the tip apex,

probably as a consequence of stabilisation of tip actin filaments (Fu et al., 2001).

The upstream regulators of RAC/ROP in this process are not known, but at least

some of the downstream effectors have been identified. At-Rac2/AtRAC6 interacts

with phosphatidylinositol monophosphate kinase (PtdIns P-K). Phosphatidyl inositol

4,5 diphosphate (PIP2), the product of PtdIns P-K, also localises to the apical plasma

membrane. Furthermore, removing PIP2 inhibits pollen tube elongation (Kost et al.,

1999), suggesting that this lipid is an important messenger in pollen tip growth. A

Ca2+ gradient exists in pollen tubes with highest concentrations at the tip; this

gradient is believed to mediate exocytosis. Inositol-3-phosphate (IP3), a hydrolysis

product of PIP2, induces the release of Ca2+ from intracellular stores (Hay et al.,

1995). Thus, PIP2 may play a role in creating a Ca2+ gradient in pollen tips.

Another group of RAC/ROP effectors likely to be involved in pollen tip growth are the

RAC/ROP-interactive CRIB motif-containing proteins (RICs) (Wu et al., 2001). RICs

are small proteins characterised by a conserved CRIB domain, but share little

sequence homology outside of this domain. Overexpression of Arabidopsis RICs in

pollen produced distinct phenotypes, implying distinct roles for various RICs; both

elongation, radial growth and polarisation were differentially affected (Wu et al.,

2001). RICs will likely be explored as putative RAC/ROP effectors in cellular
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processes in the years to come. The Arabidopsis genome does not encode any PAK-

like, CRIB domain-containing kinase (Brembu, personal observation).

Root hair development
Root hairs are epidermal root cells that develop into exceptionally polarised

structures extending laterally from the root. The initial growth phase is characterised

by diffuse growth, where expansion is driven by turgor pressure and occurs across

the entire cell surface. The root hair elongates further via tip growth (Carol and Dolan,

2002). RAC/ROP proteins are localised to the initial site of root hair formation, hence

they are thought to participate in initiation of root hair outgrowth (Molendijk et al.,

2001; Jones et al., 2002). Brefeldin A (BFA), an ARF1 GEF inhibitor, inhibits early

localisation of RAC/ROP, indicating that ARF GTPase(s) regulates this process,

through a yet unknown mechanism (Molendijk et al., 2001). During elongation,

RAC/ROP proteins localise to the root hair tip. Furthermore, expression of

constitutively active mutants of AtRop4/AtRAC5, AtRop5/AtRAC3 and ROP2/AtRAC4

all resulted in depolarised growth of root hairs, whereas expression of dominant

negative ROP2/AtRAC4 inhibited root hair tip growth (Molendijk et al., 2001; Jones et

al., 2002). Ca2+ gradients and organisation of actin cytoskeleton are both affected in

root hairs expressing constitutively active mutants of AtRop4/AtRAC5,

AtRop5/AtRAC3 and ROP2/AtRAC4. Thus, RAC/ROP proteins appear to control tip

growth in root hairs through regulation of actin cytoskeleton and Ca2+ gradients in

root hair tips, similar to what has been observed in pollen. A recent publication

proposes a (gp91phox) NADPH oxidase homologue as a putative RAC/ROP effector

responsible for the creation of Ca2+ gradients in root hairs (Foreman et al., 2003). In

Arabidopsis, the NADPH oxidase AtRbohC is mutated in the root hair defective2

(rhd2) mutant, which has stunted roots and root hairs, and shows defective uptake of

Ca2+. Reactive oxygen species produced by AtRbohC/RHD2 is believed to activate

hyperpolarisation-activated Ca2+ channels in order to facilitate Ca2+ influx. NADPH

oxidases in plants are further discussed in a later section.

Polar growth in developing tissues
In addition to pollen and root hairs, other cell types also show polar growth during

certain phases of development. Polar cell expansion during organ development
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occurs in two phases: an early phase in which cell expansion can occur in both

longitudinal and radial or lateral directions, and a late phase involving only elongation

(Fu et al., 2002). Expression of AtRop4/AtRAC5 and AtRop5/AtRAC3 lead to

isotropic growth of epidermal cells (Molendijk et al., 2001). Expression of

ROP2/AtRAC4 results in altered morphology of leaf epidermal cells called pavement

cells (Fu et al., 2002). In wild type plants, pavement cells expand by both polar tip

growth and diffuse growth to produce mature cells with extended lobes. Enrichments

of cortical F-actin is observed at the lobe tips during elongation in the early phase of

polar expansion, suggesting a role for actin in this process. In constitutively active

ROP2/AtRAC4 expressing pavement cells, cortical F-actin is delocalised during the

early expansion phase, and expansion is rather uniform over the cell surface,

producing cells without lobes (Fu et al., 2002). The results suggest that

ROP2/AtRAC4 and possibly other RAC/ROP GTPases regulate polar lobe expansion

by activating the assembly of cortical F-actin in discrete regions of the cell cortex.

RAC/ROP and production of ROS through NADPH oxidases
When challenged by a pathogen, plants rapidly produce reactive oxygen species

(ROS), reminiscent of the oxidative burst in neutrophils (Levine et al., 1994). With the

cloning of a family of genes in Arabidopsis that encoded homologues of the

mammalian gp91phox (Keller et al., 1998; Torres et al., 1998), a link between

RAC/ROP GTPases and ROS production was quickly suspected. However,

homologues of the other, cytosolic components of the complex have not been found

in plants. The Arabidopsis thaliana respiratory burst oxidase homologues (AtRbohs)

contain an additional N-terminal domain containing two Ca2+-binding EF-hand motifs,

so Ca2+ is probably important in the regulatory mechanism of Rbohs. Several reports

from the last few years show that RAC/ROP is an important activator of NADPH

oxidases in plants, and that RAC/ROP-induced ROS production is central in defence

responses, as well as root hair growth (Foreman et al., 2003) and transcriptional

activation (Baxter-Burrell et al., 2002). The mechanism by which RAC/ROP GTPases

regulate NADPH oxidases is, however, unclear.
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RAC/ROP, NADPH oxidases and plant defence responses
The role for RAC/ROP GTPases as activators of ROS production through NADPH

oxidase during defence responses is well documented (Agrawal et al., 2003).

Expression of constitutively active mutants of the rice RAC protein OsRac1 (an

AtRAC7 homologue) or human Rac in rice soybean suspension cultures resulted in

elevated levels of ROS production, whereas expression of dominant negative

mutants reduced ROS production (Kawasaki et al., 1999; Park et al., 2000).

Moreover, addition of the NAPDH oxidase inhibitor diphenylene iodonium (DPI) to

constitutively active OsRac1-expressing rice cells abolished ROS production,

indicating that NADPH oxidase is indeed the source of ROS generation (Kawasaki et

al., 1999). Transgenic rice plants expressing constitutively active OsRac1 show

increased resistance against virulent races of rice blast fungus (Magnaporthe grisea)

and bacterial blight (Xanthomonas oryzae), whereas dominant negative OsRac1

expressing plants delays and reduces the defence responses to avirulent pathogen

races (Ono et al., 2001). These results support a role for OsRac1 in pathogen

defence responses. Expression of Gα, a subunit of the heterotrimeric G protein, is

induced by pathogen infection. The Gα defective dwarf1 (d1) mutant has a strongly

impaired defence response. Interestingly, expression of constitutively active OsRac1

in d1 mutants restored pathogen resistance (Suharsono et al., 2002). Thus, a signal

pathway from heterotrimeric G protein via OsRac1 to NADPH oxidase appears to

mediate pathogen-induced ROS production in rice. Curiously, transforming single

barley cells with GFP-tagged, constitutively active mutants of three barley RAC/ROP

genes resulted in increased susceptibility of the transformed cells to the fungal

pathogen powdery mildew (Blumeria graminis)(Schultheiss et al., 2003). The

contradiction between these results may be caused by different functional properties

of the investigated RAC/ROP proteins or differences in the responses against the

pathogens used in the studies.

H2O2-mediated regulation of gene expression
Work by Baxter-Burrell and colleagues (2002) revealed a role for RAC/ROP proteins

in regulation of gene expression, with hydrogen peroxide (H2O2) as a second

messenger. A mutant Arabidopsis line disrupted in the RAC/ROP GTPase activating

protein RopGAP4 showed increased response to oxygen deprivation, but reduced
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tolerance to anoxic stress. Furthermore, RopGAP4 expression was induced by O2

deprivation. After a series of experiments, the following model was proposed. Upon

oxygen deprivation, i.e. during flooding, one or several unidentified RAC/ROP

GTPases are activated, and induce NADPH oxidase activity. H2O2 is produced and

operates as a second messenger, inducing expression of alcohol dehydrogenase

(ADH), which switches metabolism to anaerobic ethanolic fermentation. RAC/ROP

signalling is attenuated through negative feedback by H2O2-stimulated transcription

of RopGAP4.

In rice, RAC-mediated production of H2O2 during defence responses appears to

activate transcription of defence-related genes (Ono et al., 2001; Suharsono et al.,

2002).

Synthesis of secondary cell walls
Expression of the cotton RAC GTPase GhRac13 (an AtRAC2 homologue) is highly

induced during transition from primary to secondary cell wall synthesis in cotton fibers

(Delmer et al., 1995). At the same time, H2O2 production increases strongly.

Expression of constitutively active or dominant negative GhRac13 in soybean or

Arabidopsis cells resulted in activation or suppression of ROS production,

respectively (Potikha et al., 1999). These results imply that GhRac13 may be

involved in develpomental control of cotton fibers via H2O2 production. Recently,

Kurek and co-workers (2002) showed that the cotton cellulose synthases GhCesA1

and GhCesA2 are activated by dimerisation via a redox-regulated zinc-finger domain.

Considering the GhRac13 expression pattern, it is tempting to speculate that

secondary cell wall synthesis is induced through RAC/ROP-mediated activation of an

NADPH oxidase.

RAC/ROP GTPases and plant hormone responses
Results are emerging which links RAC/ROPs to hormone responses.

Abscisic acid (ABA)
Plant water homeostasis is maintained by ABA, which trigger closure of stomatal

pores in response to drought stress (Himmelbach et al., 2003). AtRac1/AtRAC3 is

highly expressed in guard cells (Lemichez et al., 2001). Expression of constitutively
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active AtRac1/AtRAC3 inhibited ABA-induced stomatal closure in wild type

Arabidopsis, whereas expression of dominant negative AtRac1/AtRAC3 caused

stomatal closure both in wild type and the abscisic acid insensitive1 (abi1) mutant

(Lemichez et al., 2001). Thus, AtRac1/AtRAC3 activity is down-regulated by ABA,

probably leading to disruption of the actin cytoskeleton in guard cells, which causes

stomatal closure. Another negative regulator of ABA responses in Arabidopsis is

ROP10/AtRAC8 (Zheng et al., 2002). ABA downregulates ROP10/AtRAC8

expression in root tips. Disruption of ROP10/AtRAC8 leads to enhanced ABA

responses. Similar to AtRAC3, expression of constitutively active and dominant

negative ROP10/AtRAC8 results in reduced and enhanced ABA responses,

respectively. The mutant phenotype is observed in a number of tissues, suggesting

that ROP10/AtRAC8 may be a more general negative regulator of ABA-induced

responses compared to AtRAC3.

Auxin
The phytohormone indole acetic acid (IAA) regulates a number of cellular processes,

and contributes to many aspects of plant development (Leyser, 2002). Using tobacco

protoplasts, Tao and co-workers (2002) showed that overexpression of AtRAC1,

AtRAC3, AtRAC10 and AtRAC11 stimulated auxin-responsive expression. Protein

assays also indicated that RAC/ROP proteins were activated by auxin. Furthermore,

expressing constitutively active or dominant negative mutants of the tobacco NtRac1

(highest similarity to AtRAC1/AtRAC6/AtRAC11) activated or suppressed auxin-

induced gene expression, respectively. RAC/ROP GTPases therefore seems to

participate in a signal pathway from auxin leading to expression of auxin-responsive

genes.

Involvement of RAC/ROP in cell proliferation
The shoot meristem is responsible for all of the aboveground organs that are formed

during the lifespan of a plant (Clark, 2001). The CLAVATA protein complex is

required to maintain the balance between cell proliferation and organ formation at

shoot and flower meristems in Arabidopsis. CLAVATA1, a receptor kinase, was used

to isolate other components of the protein complex. One of the subunits was a 25

kDa protein that was recognised by an anti-RAC/ROP antibody, suggesting that a
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RAC/ROP protein is part of the CLAVATA signalling complex (Trotochaud et al.,

1999). The role of RAC/ROP may be to relay a signal from the CLAVATA complex to

regulate gene expression, possibly through a MAP kinase cascade.

Immunolocalisation using an anti-RAC/ROP antibody detected high amounts of

RAC/ROP proteins in meristems, consistent with a role for RAC/ROP GTPases in

regulation of meristem activity (Li et al., 2001).

Regulation and dynamics of the actin cytoskeleton

Actin

Actin microfilaments constitute a fundamental element of the cytoskeleton in

eukaryotic cells, the other two main components being microtubuli and intermediate

filaments. Actin microfilaments are polymers of actin, an evolutionarily conserved

protein with a size of about 42 kDa. Actin exists either as monomers (G-actin) or as a

polymeric filament (F-actin). When F-actin decorated with myosin subfragment 1 is

viewed in an electron microscope, it appears arrowhead-shaped (Moore et al., 1970).

Accordingly, the ends of the filament have been named the "barbed" and the

"pointed" ends. Furthermore, actin binds ATP in complex with Mg2+. G-actin is almost

exclusively associated with ATP (Rosenblatt et al., 1995). Upon actin polymerisation,

ATP becomes hydrolysed; however, this process is not directly coupled to the

addition of the actin monomer to the filament, but takes place after a time lag (Carlier,

1990).

Actin filaments are highly dynamic structures, capable of elongation and rapid

shortening through regulation of polymerisation and depolymerisation. Association

and dissociation of actin monomers can take place at either end of the filament, but

the former predominantly occurs at the barbed end and the latter at the pointed end.

This property results in polarity of actin filament elongation, the barbed end being the

rapidly growing end. As a consequence, actin monomers added to the barbed end

move progressively towards the pointed end. This phenomenon is called

"treadmilling" (Wegner, 1976).
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The actin protein family in Arabidopsis consists of eight expressed members, and can

be further subdivided into a vegetative and a reproductive class, based on their

sequence and expression patterns (McDowell et al., 1996; Meagher et al., 1999).

Actin-binding proteins

Actin binds a large number of diverse protein classes collectively called actin binding

proteins (ABPs). These proteins have varying properties; some classes bind G-actin,

others bind F-filaments, and still others bind both G-actin and F-actin. ABPs can also

be divided into classes that promote filament assembly or disassembly. Below is a

brief review of the most common ABPs that have been found in plants (Meagher and

Fechheimer, 2003).

Profilin
Profilins are small globular proteins that bind monomeric actin. Profilin promotes the

exchange of ADP for ATP (Goldschmidt-Clermont et al., 1991), and also inhibits the

hydrolysis of ATP bound to actin (Ampe et al., 1988). The effect of profilin on actin

polymerisation is somewhat complex: on one hand, profilin can inhibit actin

nucleation by keeping the free monomer concentration low, but on the other hand, it

can promote polymerisation by transporting monomers to the fast-growing barbed

ends of filaments. The Arabidopsis genome contains five profilin-encoding genes,

designated PRF1 to PRF5 (Christensen et al., 1996; Huang et al., 1996). Similar to

actins, the Arabidopsis profilin family can be divided into a vegetative and a

reproductive class based on sequence and expression patterns. Antisense

suppression of PRF1 and closely related members of the vegetative profilin resulted

in dwarfed plants with reduced cell elongation compared to wild type. In contrast,

overexpression of PRF1 produced plants with longer roots and root hairs, supporting

a role for profilins in cell elongation (Ramachandran et al., 2000).

Actin depolymerising factor (ADF)/cofilin
ADFs accelerate the rate of actin filament turnover by increasing the rate of

depolymerisation at the pointed ends of filaments (Carlier et al., 1997). In presence of
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both ADF and profilin, the rate of filament turnover is further enhanced because the

two proteins act at each end of the filament; profilin adding ATP-actin to the barbed

end and ADF dissociating ADP-actin from the pointed end (Didry et al., 1998). The 12

members of the Arabidopsis ADF family vary in length from 130 to 140 residues.

Expression analysis of three maize ADFs revealed that the genes seems to have

expression either in vegetative or reproductive tissues (Jiang et al., 1997; Lopez et

al., 1996). In metazoa, ADF is negatively regulated by phosphorylation of an N-

terminal serine by LIM kinase. LIM kinase is in turn activated by Rac (Arber et al.,

1998; Yang et al., 1998). No plant homologues of LIM kinase have been identified,

but calmodulin-like domain protein kinase(s) (CDPK) have been found to

phosphorylate Ser-6 in maize ADF3 (Allwood et al., 2002). Expression of

constitutively active NtRac1 in tobacco pollen increases the ratio of phosphorylated to

unphosphorylated ADF, indicating that RAC/ROP GTPases negatively regulates ADF

activity in both plants and metazoa, although the ADF phosphorylation enzyme is

different (Chen et al., 2003). Since the calmodulin-like domain of CDPKs is believed

to bind Ca2+, RAC/ROP regulation of CDPKs probably involves release of Ca2+.

Capping protein
Capping protein (CP) binds with high affinity to the barbed ends of filaments and

prevents loss and addition of actin monomers (Casella et al., 1986; Cooper and

Schafer, 2000). CP is a heterodimeric protein consisting of an α and a β subunit, both

subunits appear to exist as single copy genes in the Arabidopsis genome.

Biochemical analyses of AtCP suggest that it has comparable properties with its

metazoan homologues (Huang et al., 2003).

Formin

Formins are actin-nucleating proteins with the ability to stimulate de novo

polymerisation of actin filaments (Wallar and Alberts, 2003; Zigmond, 2004b). They

are conserved throughout the eukaryota, and are recognised by the presence of the

highly conserved formin homology 2 (FH2) domain. In vitro, FH2-domains form

dimers which bind G-actin and induce nucleation at the barbed end (Pruyne et al.,

2002). The FH2 is usually coupled on its N-terminal side by a proline-rich region
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called the formin homology domain 1 (FH1)(Wasserman, 1998). FH1 binds profilin,

SH3 domains and WW domains (Macias et al., 2002), and is necessary for FH2

activity in vivo; actually, the FH1-FH2 region functions as a constitutively active

formin when expressed in a cell (Evangelista et al., 2002). Profilin has been shown to

be essential in vivo for a number of formin-dependent processes in metazoan cells

(Severson et al. 2002), probably by increasing the local concentration of G-actin. A

subgroup of metazoan formins also contain a GTPase binding domain (GBD), which

binds Rho family GTPases (Evangelista et al., 1997; Watanabe et al., 1997). Binding

of a Rho GTPase to the GBD releases an autoinhibitory interaction, thereby

activating the formin (Li and Higgs, 2003). Formin stays associated during filament

elongation, and thus protects the filament from capping (Zigmond et al., 2004b).

Since formins induce de novo actin polymerisation, they produce unbranched actin

filaments which assemble into actin bundles.

The formin family appears to be expanded in plants compared to animals; the

Arabidopsis genome encodes 21 putative formins (Deeks et al., 2002d), whereas

only 9 genes encoding formins so far have been identified in mammalian genomes

(Li and Higgs, 2003). The plant formins all contain an FH2 domain and most of them

also carry a FH1 domain. However, none of these proteins have a GBD, indicating

that plant RAC GTPases do not participate in formin regulation, at least not directly

(Deeks et al., 2002). Based on amino sequence similarity and domain composition,

plant formins can be divided into two subfamilies (Deeks et al., 2002). Type I plant

formins (in Arabidopsis constituted by AtFH1 to AtFH11) generally contain an N-

terminal signal peptide or membrane anchor followed by a hydrophobic region that

probably serves as a transmembrane domain (Cvrckova, 2000; Deeks et al., 2002).

The N-terminal part of type II plant formins (in Arabidopsis constituted by AtFH12 to

AtFH21) contains no known protein domains. Overexpression of the Arabidopsis type

I formin AtFH1 in tobacco pollen tubes induces the formation of actin cables

throughout the cytoplasm (Cheung and Wu, 2004). Moreover, overexpression of

AtFH1 leads to growth depolarisation and growth arrest of pollen tubes, as well as

deformation of the plasma membrane at the pollen tip apex. These results suggest

that formins are important regulators of actin polymerisation in plants.
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The Arp2/3 complex

During the last ten years, the Arp2/3 complex has emerged as an important initiator

of actin polymerisation. The ARP2/3 complex was first identified in Acanthamoeba as

a protein complex binding to profilin (Machesky et al., 1994), and appears to be

conserved in all eukaryotes (Machesky and Gould, 1999). The complex consists of

seven different subunits (Machesky et al., 1994; Mullins et al., 1997). Two of the

subunits, Arp2 and Arp3, belong to the family of actin-related proteins (Arps) and are

predicted to share the same protein fold as actin, although the amino acid sequence

is divergent from that of conventional actins (Kelleher et al., 1995). ARPC1 contains

seven putative WD40 motifs that may be involved in protein-protein interaction

(Welch et al., 1997). The other four subunits, ARPC2, ARPC3, ARPC4 and ARPC5,

are novel proteins without any described protein domains.

An important feature of the Arp2/3 complex is the ability to nucleate actin filaments

and promote polymerisation at the filament's barbed end (Mullins et al., 1998). The

Arp2/3 complex binds both to the sides and pointed ends of actin filaments, but

kinetic and microscopic experiments indicate that activated Arp2/3 complex

preferentially nucleates branches along the sides of pre-existing filaments (Amann

and Pollard, 2001; Carlsson et al., 2004). At the side of a "mother" filament, the

Arp2/3 complex will nucleate a new "daughter" filament at an angle of 70° (Mullins et

al., 1998). In motile eukaryotic cells, the ARP2/3 complex is central in the formation

of the highly branched actin filament structures at the leading edge of lamellipodia

(Svitkina and Borisy,1999). Cryo-EM reconstruction of Arp2/3 complex at the branch-

point between the mother and daughter filament (Volkmann et al., 2001) and an X-

ray crystal structure of bovine Arp2/3 complex (Robinson et al., 2001) has provided

more details on the mechanism by which the Arp2/3 complex initiate branching of

actin filaments. The Arp2/3 complex appears to become attached to the side of the

mother filament via bridges between the subunits ARPC1, ARPC2 and ARPC5 and

three actin subunits. Arp2 and Arp3 constitute the two first subunits of the daughter

filament. In the inactive crystal structure, the Arp2 and Arp3 subunits do not bind

ATP. Furthermore, Arp2 and Arp3 are oriented in such a way that filament nucleation

is impossible. Activation of the Arp2/3 complex by binding of ATP and one of several

nucleation promoting factors (NPFs, discussed below) is believed to induce a
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structural change which brings Arp2 and Arp3 into a conformation resembling the

barbed end of an actin filament.

A common feature of the Arp2/3 complex in all eukaryotic cells is that most of the

subunits are encoded by genes present in only one copy in the genome (Higgs and

Pollard, 2001). In humans, only the Arp3 and the ARPC1 subunits are encoded by

two genes, whereas in yeast, there is only one gene for each subunit. Similarly, in

Arabidopsis, the ARPC1 is the only subunit encoded by two genes (Le et al., 2003; Li

et al., 2003; Mathur et al., 2003).

The Arp2/3 complex and formins both have actin nucleating activity. However, there

are important differences between these two actin nucleation activators (Zigmond,

2004a). First, formins produce actin bundles, whereas Arp2/3 produces a highly

branched network of filaments. Second, formins are able to nucleate actin filaments

at a new site. In contrast, Arp2/3 requires an existing filament on which to nucleate a

new branch. Third, formins bind the barbed end of actin filaments, thereby protecting

them from capping proteins. Arp2/3, on the other hand, binds the pointed end of

filaments, leaving the barbed ends susceptible to capping. These differences imply

that formins and the arp2/3 complex have distinct, though probably connected roles

in regulation of actin dynamics.

Mutational analyses of Arp2/3 complex subunits have been performed in yeast,

Drosophila, C. elegans, mouse and Arabidopsis (reviewed by Vartiainen and

Machesky, 2004). Disruption of Arp2/3 subunits in budding yeast showed that

ARPC1 and Arp2 are essential for viability. Mutants of the other subunits show

varying degrees of growth defects (Winter et al., 1999; Morrell et al., 1999). Loss-of-

function mutations of two Arp2/3 subunits in Drosophila, Arp3 and ARPC1, produce

identical phenotypes. Although both subunits appear to be essential for viability, only

a subset of actin structures is affected in the mutants. Among the observed

phenotypes are defects in the early embryo and in the central nervous system

(Hudson and Cooley, 2002). In Arabidopsis, Arp2, Arp3 and ARPC2 and ARPC5

mutants have recently been characterised by several groups (Mathur et al., 2003a;

Mathur et al., 2003b; Le et al., 2003; Li et al., 2003; El-Din El-Assal et al., 2004). All

mutants show similar phenotypes, characterised by aberrant cell shapes caused by

misdirected cell expansion. The most striking phenotype is the development of

trichomes with reduced size and irregular shape. A previous screen for trichome

mutants identified eight complementation groups showing this phenotype, collectively
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called "distorted" mutants (Hülskamp et al., 1994). Arp2, Arp3 ARPC2 and ARPC5

are defect in the "distorted" mutants wurm (wrm), distorted1 (dis1) , distorted2 (dis2)

and crooked (crk), respectively (Mathur et al., 2003a; Mathur, et al. 2003b; Le et al.,

2003; El-Din El-Assal et al., 2004). The mutants display defects in the organisation of

actin cytoskeleton, such as aggregation of filaments.

Nucleation promoting factors (NPFs): activators of the Arp2/3 complex
During the last few years, a number of different activators of the Arp2/3 complex has

been discovered (reviewed by Higgs and Pollard, 2001; Weaver et al., 2003). These

include the WASP/WAVE family proteins (Machesky et al., 1999; Rohatgi et al.,

1999); ActA from the intracellular pathogenic bacterium Listeria monocytogenes

(Welch et al., 1998); the cortactin family proteins (Uruno et al., 2001; Weaver et al.,

2001); and the yeast type I myosins, Abp1p and Pan1p (Duncan et al., 2001;

Evangelista et al., 2000; Goode et al., 2001; Lechler et al., 2000). To date, NPFs

have not been reported in plants. Blast searches did not lead to the discovery of any

plant proteins with similarity to the known NPFs, with the possible exception of a

small family of putative WAVE proteins (Brembu et al., unpublished results; see also

results and discussion). Since the WAVE/WASP family is the most extensively

studied group of NPFs, I will focus on these proteins.

Identification of WASP/WAVE proteins
As the name implies, The WASP/WAVE protein family can be divided into two

groups: the Wiskott-Aldrich Syndrome proteins (WASP) and the WASP family

Verprolin-homologous protein (WAVE). WASP was identified as the target of

mutation in Wiskott-Aldrich Syndrome, a rare, X-linked disease which is

characterised by eczema, bleeding and recurrent infections (Derry et al., 1994).

Expression analysis show that WASP is expressed exclusively in hemapoietic cells,

hence the restricted defects in the syndrome. The other member of the WASP group

in mammals, neural WASP (N-WASP), is expressed more widely than WASP and is

especially enriched in brain and nerve cells (Miki et al., 1996). The first WAVE group

protein was identified in a database search for WASP-like proteins (Bear et al.,

1998). In mammals, the WAVE group appears to consist of three members, WAVE1

to WAVE3.
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Domain composition and function of WASP/WAVE
As shown in Fig. 3, WASP and WAVE proteins share two main regions of homology:

a central, proline-rich region, and a C-terminal module containing a verprolin-

homology (V), a central (C) and an acidic (A) region, collectively called the VCA

region (see also Fig. 7)(Miki et al., 1996). The proline-rich region binds several SH3

domain-containing proteins as well as profilin (Caron, 2002; Finan et al., 1996). The

VCA region is essential for actin binding and activation of the Arp2/3 complex

(Machesky et al., 1999; Rohatgi et al., 1999; Yarar et al., 1999). The V region binds

G-actin, whereas the A region appears to be the main site of Arp2/3 complex binding

(Marchand et al., 2001). Upon binding the Arp2/3 complex, the C region forms an

amphipathic helix that is required for activation (Panchal et al., 2003). Binding of the

VCA region enhances the affinity of Arp2/3 complex for the side of an actin filament

and promotes the formation of a quaternary complex of VCA, an actin monomer,

Arp2/3 complex and an actin filament. A subsequent activation step promotes the

nucleation of a daughter filament from the side of the mother filament (Higgs and

Pollard, 2001). Furthermore, actin filaments increase the affinity of the VCA region for

the Arp2/3 complex, implying that nucleation by filament-bound Arp2/3 is favoured

over that by free Arp2/3 (Marchand et al., 2001).

N-WASP

WAVE1

EVH1 Basic GBD Proline-rich VCA

SHD

PIP2

WIP Cdc42 SH3 Profilin
Actin Arp2/3

Basic Proline-rich VCA

Profilin
Actin Arp2/3

Abi      HSPC300

?

SH3

Figure 3. Domain structure of mammalian WASP and WAVE proteins, and interacting

proteins and molecules. HSPC300 and Abi are components of a WAVE regulatory protein

complex (Eden et al., 2002) and interacts with WAVE (Gautreau et al., 2004; Innocenti et al.,
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2004). The HSPC300-binding site in WAVE is unknown. Abbreviations: EVH1, Ena/VASP

homology 1; GBD, GTPase-binding domain; PIP2, phosphatidylinositol-3,4-diphosphate;
SH3, Src homology 3; SHD, Scar homology domain; WIP, WASP interacting protein.

Modified from Takenawa and Miki (2001).

The N-terminal parts of WASP and WAVE proteins are quite divergent (Fig. 3, see

also Fig. 8). At the N-terminal end, WASP proteins contain a domain similar to the

Ena/VASP homology 1 (EVH1) domain. EVH1 domains generally recognise and bind

specific proline-rich sequences, and are found in many proteins involved in re-

organisation of the actin cytoskeleton (Ball et al., 2002). Both WASP and N-WASP

EVH1 domains interact with WASP interacting protein (WIP), which also binds actin

(Ramesh et al., 1997; Volkman et al., 2002). The corresponding region in WAVE

proteins constitutes a unique domain called the Scar homology domain (SHD).

Although no proteins have been reported to interact with SHD, recent studies indicate

that a leucine zipper-like motif in the SHD is important in localisation of WAVE at the

tips of filopodia in the growth cone of neuronal cells (Nozumi et al., 2003). WASP

proteins also contain a CRIB domain, positioned next to the proline-rich region, that

binds Cdc42 with high affinity (Abdul-Manan et al., 1999; Rudolph et al., 1998).

Regulation of WASP activity by Cdc42 and PIP2
Under resting conditions, WASP and N-WASP are maintained in an inactive state

through autoinhibition; the VCA region is masked by binding of the CRIB domain to

the amphipatic helix of the C region (Miki et al., 1998; Panchal et al., 2003). Activated

Cdc42 will bind to the CRIB, directly competing with the VCA region. A small region

of basic residues immediately N-terminal to the CRIB domain binds

phosphatidylinositol-4,5-diphosphate (PIP2). Current models suggest a mechanism

of cooperative activation of WASP and N-WASP by Cdc42 and PIP2, as shown in

Figure 4. Binding of Cdc42 to the CRIB displaces the C region, whereas binding of

PIP2 to the basic region will displace the A region, thereby releasing the VCA and

activating the Arp2/3 complex (Blanchoin et al., 2000; Prehoda et al., 2000; Rohatgi

et al., 2000).
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Figure 4. Regulation of WASP activity. In the inactive state of WASP, the central (C) region

of the VCA domain interacts with the GBD domain, and the acidic region interacts with the

basic region adjacent to the GBD. Cooperative binding of active Cdc42 to the GBD and of

PIP2 to the basic region exposes the VCA domain, resulting in Arp2/3 complex activation.

Abbreviations: EVH1, Ena/VASP homology 1; GBD, GTPase-binding domain; PIP2,

phosphatidylinositol-3,4-diphosphate. Inspired by Takenawa and Miki (2001), and Ridley and

Cory (2002).

Regulation of WAVE activity by a regulatory protein complex, Rac and Nck
The WAVE proteins lack a CRIB domain (Fig. 3), suggesting that they are neither

binding any Rho GTPases directly nor being regulated by autoinhibition. In

accordance with these presumptions, WAVE is constitutively active in vitro

(Machesky et al., 1999). The WAVE proteins contain a basic region, similar to WASP

and N-WASP. Although PIP2 has not been shown to bind this region in WAVEs, it is

required for Arp2/3-mediated actin polymerisation from WAVE2 (Suetsugu et al.,

2001). Eden and co-workers (2002) purified a WAVE1-containing protein complex by

column chromatography and immunoprecipitation, and identified the other proteins in

the complex as PIR121, Nap125, HSPC300 and Abi-2 (Abelson interactor). This

protein complex is unable to stimulate actin polymerisation, indicating that WAVE1 is

inactive. Interestingly, when active Rac or the SH3 domain-containing adapter protein

Nck was added to the inactive WAVE1 complex, PIR121, Nap125 and Abi-2

dissociated from HSPC300-WAVE1, which regained the ability to activate the Arp2/3

complex (Fig. 5). Thus, WAVE1 appears to be kept inactive through interaction with a

regulatory protein complex, and its activation by Rac is indirect rather than direct,
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through the binding and dissociation of the regulatory complex by Rac. The role of

HSPC300 in WAVE1-mediated activation of the Arp2/3 complex is still uncertain. In a

similar experiment, Soderling and colleagues (2002) identified a novel Rac GTPase

activating protein, WAVE-associated RacGAP protein (WRP), which binds to WAVE1

through its SH3 domain. WRP is able to inhibit Rac in vivo, suggesting that WRP

functions as a signal terminator of Rac.

Recently, the molecular architecture of the mammalian WAVE complex was resolved

(Gautreau et al., 2004; Innocenti et al., 2004). Interactions between Sra-1, Nap1, Abi-

1, WAVE2 and HSPC300 were studied using in vitro cotranslation of the different

subunits followed by specific immunoprecipitations (Gautreau et al., 2004) or tandem

mass spectrometry (Innocenti et al., 2004). Abi and Nap appear to constitute the core

of the WAVE complex. Sra-1 is a peripheral subunit interacting with Nap, whereas

WAVE interacts with Abi through its' SHD domain, as well as with HSPC300. The

proposed architecture of the WAVE complex is shown in fig. 5.

Receptor
Stimulus

Rac1

GDP

PIR121
Nap1

Abi2 GTPWAVE1

HSPC

Actin filament

ARP2/3 complex

Proteolysis

VCA

VCA

Figure 5. Modulation of WAVE activity by a regulatory protein complex and Rac. Inactive

WAVE1 is part of a regulatory complex consisting of Abi2, Nap1, PIR121 and HSPC300.

Active Rac1 binds PIR121, leading to dissociation of the PIR121-Nap1-Abi2 subcomplex

from WAVE1-HSPC300. The uncomplexed WAVE1 is able to activate the ARP2/3 complex,

leading to actin polymerisation. The indicated interactions between the different WAVE

complex subunits are based on results by Gautreau et al. (2004). Dictyostelium mutants for

PIR121 contain highly reduced amounts of WAVE, indicating that free active WAVE is rapidly

degraded through a proteolytic mechanism (Blagg et al., 2003). Abi2, Abelson interactor 2;

Nap1, Nck-associated protein 1; PIR121, 121F-specific p53 inducible RNA; WAVE1, WASP

family verprolin-homologous protein 1. Modified from Ridley and Cory (2002).
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Subunits of the WAVE regulatory complex
Prior to the publication by Eden et al. (2002), experiments performed in several

organisms already indicated a role for the different subunits of the WAVE1 regulatory

complex in organisation of actin cytoskeleton. Unfortunately, no common

nomenclature for the subunits exists, neither within nor between species. For clarity, I

will use the protein names employed by Eden et al. (2002) in combination with the

names used in the specific experiment. Table 2 summarises the nomenclature of the

WAVE regulatory complex subunits.

Table 2.  WAVE regulatory complex nomenclature in H. sapiens, Drosophila, and C.
elegans
Standardised names in
this thesis

H. sapiens Drosophila C. elegans

WAVE WAVE, SCAR WAVE, SCAR SCAR, GEX-1
PIR121 PIR121, Sra-1,

CYFIP, SHYC
CYFIP, Sra1 GEX-3

Nap Nap, Nap125,
HEM

Kette GEX-2

HSPC300 HSPC300 HSPC300 HSPC300
Abi Abi Abi Abi

Nap/HEM-like proteins were first identified in human tissue (Hromas et al., 1991), and

later in mouse, Drosophila and C. elegans (Baumgartner et al., 1995). Vertebrates

appear to have two copies of Nap (Nck-associated protein)/Hem proteins.

Nap1/HEM-2 was also cloned in a screen for proteins binding to the SH3 domain of

human Nck (Kitamura et al., 1996). A similar screen for proteins binding to human

Rac1 also identified Nap1 (Kitamura et al., 1997). However, in vitro experiments

indicated that binding of Nap1 to Rac1 is indirect rather than direct. Another screen

for Rac1-associated proteins identified a protein closely related to PIR121, called

p140Sra-1 (140 kDa Specifically Rac1-associated protein), as well as HEM-2/Nap1

(Kobayashi et al., 1998). The association between Sra-1 and Rac1 is localised to the

N-terminal 400 residues. Sra-1 also appears to interact with actin (Kobayashi et al.,

1998) as well as profilin II (Witke et al., 1998).

Transcriptome analysis of cells treated with the DNA-damaging agent doxorubicin

shows that PIR121 (121F-specific p53 inducible RNA) expression is highly induced

by the treatment, suggesting that PIR121 might be a p53-induced gene involved in

apoptosis (Saller et al., 1999). However, the mechanisms behind the induction of
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PIR121 and the possible effects of higher PIR121 expression in apoptosis are

unknown. Yet another role for PIR121 was discovered with the finding of interaction

between the two PIR121 proteins (called CYFIP1 and CYFIP2) with the fragile X

mental retardation protein (FMR-1), an RNA-binding protein associated with

polysomes as part of a messenger ribonucleoprotein (mRNP) complex (Schenck et

al., 2001). PIR121/Sra-1 is conserved throughout the metazoa, however, only

vertebrates seem to have two genes encoding PIR121-like proteins. Moving the

focus from human cells to Drosophila, Schenk and colleagues (2003) found that loss

of PIR121 function leads to defects in axon growth, branching and pathfinding in the

neural system, similar to the phenotypes of FMR1 and Rac1 mutants in Drosophila.

Genetic interaction studies of PIR121, FMR1 and Rac1 indicates that PIR121 acts as

a Rac1 effector that antagonises FMR1 function (Schenck et al., 2003). By analogy to

the WAVE1 regulatory complex in mammals, PIR121 in Drosophila may bind and

inhibit FMR1 activity. Active Rac1 will bind PIR121, and release active FMR1.

In parallel with the work on PIR121/CYFIP, the lethal Drosophila mutant kette, which

also has defects in axonal patterning of the central nerve system, was identified. The

Kette gene encodes the Drosophila homologue of Nap/HEM. Expression of

constitutively active and dominant negative Rac1 mutants in neuronal cells of wild

type embryos phenocopies the kette mutant. However, expression of constitutively

active Rac1 in kette mutants partially rescues the mutant phenotype, suggesting an

antagonistic relationship between Nap/Kette and Rac1 (Hummel et al., 2000).

Bogdan and Klämbt (2003) recently studied the relationship between Nap/Kette and

the WAVE and WASP proteins. The Nap/Kette protein antagonises WAVE function,

but surprisingly, it appears to activate WASP-dependent actin polymerisation. The

SH3-containing protein Abi, which is also present in the WAVE1 regulatory complex

(Eden et al., 2002), interacts both with Nap/Kette and WASP, suggesting that it

operates as a linker between Nap/Kette and WASP.

Mutant analyses in C. elegans also suggest a critical role for Nap and PIR121 in

embryogenesis. The GEX-2 and GEX-3 (gut on exterior) genes, the mutation of

which leads to defects in cell migration and organisation during embryogenesis, were

identified as homologues of PIR121 and Nap, respectively (Soto et al., 2002). A third

gex mutant, gex-1, is mutated in the C. elegans WAVE homologue (Soto, M.C.,

Brownwell, D., Priess, J., Mello, C.C., "The C. elegans WAVE homolog GEX-1 acts
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with the Arp2/3 complex to regulate cell movements", poster at the 14th biennial

international C. elegans Conference, 2003).

All of the subunits constituting the WAVE1 regulatory complex have been found in

the mycetozoan Dictyostelium. Surprisingly, Discoideum cells defect in PIR121

function contain very small amounts of intact WAVE/Scar protein, suggesting that

active WAVE/Scar is rapidly degraded through an unknown mechanism (Blagg et al.,

2003). This result is confirmed by two groups using RNA interference to study cell

morphology in Drosophila S2 cells (Kunda et al., 2003; Rogers et al., 2003). Both

groups investigated the effects of RNAi depletion of proteins involved in actin

regulation. RNAi down-regulation of two Arp2/3 complex subunits (ARPC2 and

ARPC4), WAVE/Scar, Nap/Kette, PIR121 and Abi all resulted in a similar phenotype

with stellate cell shape, consistent with the theory that these proteins participate in a

common pathway. Furthermore, WAVE/Scar protein is absent in cells expressing

RNAi of Nap/Kette, PIR121 and Abi, similar to the observations by Blagg et al.

(2003).

A recent publication presents an alternative model for the role of the WAVE

regulatory complex in controlling WAVE activity (Steffen et al., 2004). Murine Sra-1

co-immunoprecipitated with Nap1, Abi-1 and WAVE2, as well as with constitutively

activated Rac1. Nap1 and Sra-1 were shown to be translocated to the tip of

lamellipodia upon microinjection of constitutively activated Rac1 into cultured cells.

Furthermore, RNAi ablation of Nap and Sra-1 resulted in highly reduced formation of

lamellipodia; neither overexpression of WAVE2 nor microinjection of constitutively

activated Rac1 rescued this phenotype. These results support a model in which Nap1

and Sra-1 stay associated with WAVE2 upon activation by Rac1 and are essential

components of a protein complex necessary for formation of lamellipodia (Steffen et

al., 2004). WAVE1 and WAVE2 may be differentially regulated; the same could be

the case for PIR121 and Sra-1. These differences might explain the discrepancies

between the results by Eden et al. (2002) and Steffen et al. (2004). WAVE1 is

continuously distributed along the leading edge, whereas WAVE2 and WAVE3 are

localized at the initiation sites of microspikes on the leading edge and at the tips of

elongating filopodia (Nozumi et al., 2003), illustrating the differences between the

WAVE family members. Fig. 6 shows a model illustrating the findings by Steffen et al.

(2004).
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Figure 6. Alternative model for regulation of WAVE activity, based on the results by Steffen

et al. (2004). In this model, the WAVE regulatory complex stays intact upon activation by

Rac1, and is essential for activation of the ARP2/3 complex by WAVE. Abi1, Abelson

interactor 1; Nap1, Nck-associated protein 1; Sra-1, specifically Rac1-associated protein;

WAVE2, WASP family verprolin-homologous protein 2.

The function of HSPC300, the small protein associated with WAVE1, has not been

studied in metazoa. In maize, three brick mutants have epidermal leaf cells without

lobes, similar to what is observed for the Arp2/3 complex mutants in Arabidopsis.

Local enrichments of cortical actin are found in wild type cells at developing lobes. In

the brk mutants, this diffuse actin is absent (Frank and Smith, 2002; Frank et al.,

2003). The BRK1 gene encodes a HSPC300 homologue, indicating that this protein

is important for proper activation of the Arp2/3 complex, at least in plants.

To summarise, WAVE/Scar proteins appear to exist as part of a regulatory protein

complex in unstimulated cells. The other subunits of the regulatory complex are

Nap/Kette/GEX-3, PIR121/Sra-1/CYFIP/GEX-2, Abi and HSPC300/BRK1. The

regulatory complex functions not solely to keep WAVE inactive; it also protects

WAVE from rapid degradation and might also be important for correct intracellular

localisation of WAVE. Upon stimulation, activated Rac or Nck bind to PIR121,

thereby dissociating the regulatory complex. Active WAVE stays associated with

HSPC300 and activates the Arp2/3 complex, which leads to increased actin

polymerisation and branching of actin filaments, producing the driving force for cell

locomotion or morphogenesis. In order to avoid excessive actin filament nucleation of

the constitutively active, uncomplexed WAVE, a yet unknown proteolytic system

degrades WAVE, halting further activation of Arp2/3 unless more WAVE protein is
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produced and released from its regulatory complex. In an alternative model, the

WAVE regulatory complex is important for activation of WAVE and stays associated

with active WAVE.

AIMS OF THE STUDY

The major aim of this study was to increase the knowledge about the structure and

function of RAC-like GTPases in plants, using Arabidopsis thaliana as a model

system. In order to do these studies, we wanted to clone the entire RAC/ROP gene

family in Arabidopsis and perform functional anlyses on selected genes. We also

wanted to investigate possible effectors of RAC/ROP GTPases.
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RESULTS AND DISCUSSION

Cloning of a family of RAC/ROP GTPases in Arabidopsis (paper I)

In an effort to identify Ras-like proteins in plants, degenerate PCR-primers previously

used in amplification of Ras GTPases in a number of metazoan organisms were

employed for low stringency RT-PCR, with Arabidopsis cDNA as template.

Sequencing of cloned PCR products identified six RAC/ROP-like GTPases (AtRAC4,

7, 8, 10 and 11, and ATR2a, which was later identified as AtRAC3)(Paper I, Fig. 1).

Interestingly, no genes with similarity to Ras-like genes were found. A mixed probe of

AtRAC4 and AtRAC10 were used to screen an Arabidopsis cDNA library, and

resulted in the cloning of full-length cDNAs encoding five RAC GTPases, named

Arac1 (AtRAC1) to Arac5 (AtRAC5) (Paper I, Fig. 3), as well as a partial cDNA

(Arac6/AtRAC6). Thus, including cDNA clones and sequenced PCR products, ten

RAC/ROP-like GTPases were identified. This was the first major investigation of the

RAC/ROP gene family in Arabidopsis. Analysis of the amino acid sequence encoded

by the full length cDNA clones suggested that the plant RAC/ROP proteins have a

secondary structure similar to Ras proteins (Paper I, Fig. 4). The amino acid

sequence of the Arac proteins and other plant Rac proteins was compared with

metazoan Rho family GTPases. The plant Rac proteins were found to constitute a

subfamily more related to Rac and Cdc42 than to Rho GTPases (Paper I, Fig. 5).

Analyses of Arac1 to Arac5 expression in tissues at selected developmental stages

were performed. Due to the generally low expression levels of Arac genes, RT-PCR

was used. Arac1, Arac3, Arac4, and Arac5 were expressed in all tissues examined

(Paper I, Fig. 6, Fig. 8A and C). In contrast, Arac2 appeared to be preferentially

expressed in roots and stems (Paper I, Fig. 7 and Fig. 8B). RT-PCR studies by Li et

al. (1998) on AtRAC1, AtRAC3, AtRAC4 and AtRAC5 confirmed these results.

Promoter studies of AtRAC3 (Lemichez et al., 2001) and AtRAC4 (Li et al., 2001)

also indicate that these two genes are ubiquitously expressed.
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Genomic analysis of the RAC/ROP GTPases in Arabidopsis (paper II)

The complete Rac gene family in Arabidopsis thaliana, consisting of eleven members

(AtRAC1 to AtRAC11), was presented (Paper II, Fig. 1). Based on amino acid

similarity and genomic structure, the AtRAC gene family can be divided into two

groups; group I consists of AtRAC1 to AtRAC6, AtRAC9 and AtRAC11; group II is

constituted by AtRAC7, AtRAC8 and AtRAC10. Group II AtRAC genes have an extra

exon at the 3' end, which is probably the result of the insertion of an intron in the last

exon of an ancestral RAC gene (Paper II, Fig. 2A). While the group I AtRAC proteins

all have a C-terminal consensus motif for geranylgeranylation, the group II AtRACs

appear to lack this motif. Instead, they contain a cystein-containing motif, suggesting

that they may be subject to a different C-terminal modification (Paper II, Fig. 2B).

Indeed, work by Lavy et al. (Lavy et al., 2002) show that the group II AtRACs likely

are palmitoylated. Clones of nine AtRAC genes were isolated from a genomic library

made from the Landsberg erecta ecotype, and the genomic structure was

characterised (Paper II, Fig. 4). Comparison of the genomic sequence of AtRAC

genes from the Landsberg and Columbia ecotypes (the latter was sequenced by the

Arabidopsis genome sequencing project (The Arabidopsis genome initiative, 2000)

revealed great variation in the number of polymorphisms and indels; AtRAC5

contains no polymorphisms, whereas AtRAC2 has about one single nucleotide

polymorphism (SNP) per 50 bp (Paper II, Fig. 3, Table 1). The polymorphism

frequency may be correlated to expression levels, through transcription-coupled DNA

repair (Hanawalt, 1989). AtRAC2 has low expression levels compared with the other

AtRAC genes, and may therefore be more prone to accumulation of polymorphisms

due to reduced transcription-coupled DNA repair.

The evolution of RAC/ROP GTPases in plants (paper II)

In order to study the evolution of the plant RAC gene family, the genes flanking the

different AtRAC genes were compared (Paper II, Fig. 7). Several of the AtRAC genes

were created as part of large duplications, as neighbouring genes have (at least

partly) conserved positions. These duplications appear to have occurred at different
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points of time during evolution. Gene pairs created by duplication include AtRAC1

and AtRAC6, AtRAC4 and AtRAC5, and AtRAC8 and AtRAC10.

A protein alignment was made of the known plant RACs together with metazoan and

mycetozoan Rac and Cdc42 (Paper II, Fig. 5). Phylogenetic trees based on this

alignment confirm that the plant RAC proteins emerge as a sister group to the

Rac/Cdc42 proteins. Searches for Rho type GTPases in lower eukaryotes such as

amoebas and slime molds reveal that whereas Rac-like proteins are found in several

of these phyla, Rho and Cdc42 has so far just been identified in fungi/yeast and

animalia (Winge, 2002). Thus, the plant RAC proteins have probably evolved from a

Rac-like ancestor. The phylogenetic analyses on protein (Paper II, Fig. 5) and DNA

sequences (Paper II, Fig. 6) confirmed that the plant RAC GTPases can be divided

into two main groups. A further division into smaller subgroups is also possible. The

group II of RAC/ROPs can be divided into two subgroups; one containing AtRAC7-

like proteins, the other containing homologues of AtRAC8 and AtRAC10. Monocot

species are represented in both of the subgroups, indicating that they originated

before the split between dicotyledons and monocotyledons. In group I, AtRAC2 and

possibly AtRAC9 constitute one subgroup; AtRAC2-like genes have been found in

conifers, suggesting that AtRAC2 belongs to an ancient subgroup. The other AtRACs

in group I belong to a subgroup that apparently have expanded in dicotyledons; thus,

some of the duplication events leading to the generation of new genes within this

subgroup probably occurred after the monocot/dicot split. A recent study on monocot

RAC/ROP GTPases (Christensen et al., 2003) supports our general conclusions.

Due to the sequencing of new RAC/ROP homologues by several genome and EST

projects, Christensen et al. (2003) were able to group AtRAC9 more firmly together

with the AtRAC2-like genes. AtRAC9 is believed to be more rapidly evolving than

other RACs, leading to its divergent sequence. AtRAC9 has very low expression

levels (Winge et al., unpublished); as mentioned for AtRAC2, this may result in

reduced transcription-coupled DNA repair, leading to a faster accumulation of

mutations.
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AtRAC2 is specifically expressed in primary xylem (paper III)

The tissue-specific expression of AtRAC2 indicated by RT-PCR prompted us to

investigate further the expression pattern of AtRAC2. A 1.3 kb fragment of the

genomic region immediately upstream of AtRAC2 including 22 bp of the AtRAC2

coding sequence was cloned in front of the reporter genes GUS and GFP5-ER, and

transgenic Arabidopsis plants carrying these gene constructions were generated by

Agrobacterium-mediated transformation (Paper III, Fig. 1A). All transgenic lines

investigated displayed similar expression patterns, albeit with varying levels of

expression. Transgenic AtRAC2:GUS plants showed GUS expression in developing

primary xylem elements in root, hypocotyl, leaves and stem (Paper III, Fig. 2).

Expression in roots first appeared in the protoxylem (Paper III, Fig. 2A); GUS staining

seemed to precede the visual appearance of secondary cell walls (Paper III, Fig. 2B).

The same expression pattern was seen when visualising GFP in AtRAC2:GFP5-ER

plants (Paper III, Fig. 3). GUS staining later appeared in metaxylem cells (Paper III,

Fig. 2B, C and D). In hypocotyls and developing leaves (Paper III, Fig. 2E), weak

GUS staining was observed. GUS staining in stems of AtRAC2:GUS plants was

restricted to developing primary xylem cells (Paper III, Fig. 2F and G). Mäule reagent,

which visualises lignin, only weakly stained GUS positive cells of stem cross-

sections, indicating that AtRAC2 expression mainly precedes lignification of xylem

elements in the stem (Paper III, Fig. 2H).

Further data supporting the results from the promoter studies recently came from the

“gene expression map of the Arabidopsis root” published by Birnbaum et al. (2003).

Using cell sorting of GFP fluorescent protoplasts from different GFP promoter lines

with cell type specific root expression, Birnbaum et al. (2003) were able to compare

gene expression in different tissues and developmental zones of the Arabidopsis

root. In the published dataset, AtRAC2 showed very low expression in most root

tissues, but had a pronounced expression peak in the stele of the root elongation and

differentiation zone. The stele includes vascular tissue; thus, the expression data for

AtRAC2 published by Birnbaum et al. (2003) confirms the observed root expression

pattern for AtRAC2:GUS. Other genes in the same dataset showing expression

patterns similar to AtRAC2 included the HD-ZIP transcription factors AtHB-8 and

REVOLUTA (REV) / INTERFASCICULAR FIBERLESS (IFL), the cellulose synthase

catalytic subunits AtCesA4 (IRX5), AtCesA7 (IRX3) and AtCesA8 (IRX1), and the
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xylem-specific cysteine proteases XCP1 and XCP2. The gene products of all these

genes have been implicated in differentiation or development of xylem. Both AtHB-8

(and REV/IFL) are expressed in the provascular tissue as well as in developing

vascular tissue (Baima et al., 1995; Baima et al., 2001). Mutation of IFL blocks the

normal differentiation of interfascicular fiber cells, which are layers of long cells

located between the vascular bundles of the inflorescence stem (Zhong and Ye,

1999). Loss-of-function mutants of AtHB-8 show no visible phenotypes, but

overexpression of AtHB-8 appears to stimulate vascular tissue differentiation, as the

number of xylem cells increases (Baima et al., 2001). AtCesA4, AtCesA7 and

AtCesA8 are all implicated in secondary cell wall synthesis. Mutation of each gene

results in collapsed xylem vessels as a consequence of reduced thickness of the

secondary cell wall, the mutants were therefore called irregular xylem (irx)(Taylor et

al., 1999; Taylor et al., 2000; Taylor et al., 2003). The xylem specific proteases are

thought to be involved in the final stage of xylem differentiation, in which the xylem

cell undergoes programmed cell death, forming an empty xylem vessel (Funk et al.,

2002; Zhao et al., 2000). The co-expression of AtRAC2 with these genes in roots

supports the observed GUS staining pattern in roots of AtRAC2:GUS plants.

Functional studies of AtRAC2 (paper III)

In an effort to resolve the function of AtRAC2, we subjected transgenic AtRAC2:GUS

plants to a number of treatments, including salt stress, osmotic stress, oxidative

stress and application of different hormones. None of these treatments led to any

observable(?) changes in localisation or intensity of GUS staining, indicating that

AtRAC2 expression is mainly developmentally regulated. Expression of several other

AtRAC genes also appears to be rather non-responsive to different treatments

(Brembu et al., unpublished results). Probably, the more detailed spatial and

temporal control of AtRAC activity is achieved on protein level, through interactions

with regulatory proteins such as GAPs and GEFs. However, the long lifetime(?) of the

GUS protein could possibly mask a reduction in GUS expression.

A T-DNA insertion mutant of AtRAC2 (atrac2-1) was obtained, and RT-PCR analysis

showed that AtRAC2 expression was absent in the mutant (Paper III, Fig. 1B). No

observable phenotypes were observed in the atrac2-1 mutant, neither in general
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morphology nor in organisation of the vascular tissue. Transgenic plants expressing

wild type AtRAC2 and constitutively activated AtRAC2 (Gly15Val) under control of the

viral CaMV 35S promoter were created (Fig. 1A). Transgenic plants overexpressing

wild type AtRAC2 did not show any notable phenotypes. Considering the low

endogenous expression levels of AtRAC2, this is somewhat surprising. AtRAC2

protein activity is perhaps buffered by increased RACGAP activity or higher levels of

RhoGDI complexing with AtRAC2. In contrast, transgenic plants overexpressing

constitutively active (CA) AtRAC2 displayed a different phenotype. Cotyledons and

rosette leaves of CA-atrac2 plants elongated faster than wild type plants, resulting in

a more elongated leaf shape of CA-atrac2 plants (Paper III, Fig. 4A and B). Scanning

electron microscopy (SEM) studies revealed that the shape of leaf epidermal cells

was changed in CA-atrac2 plants. The pavement cells of CA-atrac2 plants have a

smooth outline with highly reduced number and length of lobes compared to wild type

pavement cells (Paper III, Fig. 4C and D). The phenotype was characterised by

calculating the ratio between the area (µm2) and the perimeter (µm) of pavement

cells; cells with long lobes will have a lower ratio than cells with shorter lobes. The

ratio of cell area to cell perimeter was significantly higher in CA-atrac2 expresssing

plants compared to wild type and atrac2-1 plants (Paper III, Fig. 4E), in accordance

with the previous observations. However, cell size was not affected (Paper III, Fig.

4F).

The subcellular localisation of AtRAC2 was determined by creating transgenic plants

carrying GFP fusion constructs in which GFP was fused to the N-terminal of wild type

AtRAC2 or CA-atrac2, under control of the CaMV 35S promoter (Paper III, Fig.1A).

Both GFP-AtRAC2 and GFP-CA-atrac2 were predominantly localised to the plasma

membrane (Paper III, Fig. 5). This localisation has also been observed for the AtRAC

GTPases AtRAC3 (Bischoff et al., 2000), AtRAC4 (Jones et al., 2002; Fu et al.,

2002), AtRAC6 (Kost et al., 1999), AtRAC7 (Lavy et al., 2002; Ripel et al.,

unpublished), AtRAC8 (Lavy et al., 2002; Zheng et al., 2002) and AtRAC10 (Lavy et

al., 2002; Brembu et al., unpublished). The morphology of pavement cells expressing

GFP-CA-atrac2 was similar to that of pavement cells expressing CA-atrac2 (alone),

with reduced length and number of lobes. AtRAC2 fused to GFP therefore seems to

be functionally active.
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Plants contain evolutionarily conserved subunits of a WAVE-like regulatory
complex (paper IV)

With the sequencing of the Arabidopsis genome, it became evident that the Arp2/3

complex was conserved in plants. An ARP2 homologue had earlier been identified in

Arabidopsis (Klahre and Chua, 1999). However, no functional studies had been

performed on the Arp2/3 complex in plants. Moreover, the mechanisms regulating

Arp2/3 complex activity appeared not to be conserved in plants, as no plant

homologues of the nucleation promoting factors (NPFs) known in animals had yet

been identified. When Eden and colleagues (2002) reported the finding of a WAVE1

regulatory protein complex, we searched sequence databases for plant protein

sequences with similarity to subunits of the protein complex. Putative Arabidopsis

homologues were identified for three of the subunits: PIR121, Nap125 and

HSPC300. In maize, an HSPC300 homologue was disrupted in the mutant brick1

(brk1), which displayed epidermal leaf cells without lobes (Frank and Smith, 2002).

We therefore called the Arabidopsis BRICK1 homologue AtBRK1. The putative

Nap125 and PIR121 homologues were previously uncharacterised in plants, and

were designated AtNAP and AtPIR, respectively. The full length mRNA transcripts of

AtNAP and AtPIR were sequenced, and comparison with the genomic sequence (the

Arabidopsis Genome Initiative, 2000) showed that AtNAP has 23 exons, whereas

AtPIR has 31 exons (Paper IV, Fig. 1B and C). The AtNAP and AtPIR cDNA

sequences have some significant differences compared to the putative coding

sequence submitted by the Arabidopsis Genome Initiative (2000). AtNAP contains

four additional exons and one additional intron, whereas AtPIR has non-canonical

splicing acceptor and donor sites in intron 12. Another notable feature of AtNAP and

AtPIR is the presence of a 5' UTR intron in both genes. AtNAP and AtPIR encode

large proteins of 1396 and 1282 amino acids, respectively (Paper IV, Fig. 2). Both

AtNAP and AtPIR show moderate similarity to their metazoan homologues; AtNAP

contains 15% identical and 32% similar amino acid residues compared to human

HEM-2/Nap1, whereas AtPIR contains 28% identical and 49% similar amino acid

residues compared to human PIR121 (Paper IV, Table I). In wild type plants,

AtBRK1, AtPIR and AtNAP were expressed in all tissues studied (Paper IV, Fig. 1D).
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AtNAP and AtPIR T-DNA insertion mutants show defects in polar cell
expansion (paper IV)

We obtained putative T-DNA insertion lines from the SALK T-DNA insertion mutant

collection (Alonso et al., 2003) and from the FLAG collection at INRA-Versailles

(Bechtold et al., 1993) and verified the insertions by sequencing. The lines

SALK_014298 (atnap-1), SALK_038799 (atnap-2) and SALK_009695 (atnap-3)

contained T-DNA insertions in AtNAP exon 9, exon 20 and exon 22, respectively

(Paper IV, Fig. 1B). The line SALK_106757 (atpir-1) had a T-DNA insertion 15 bp

upstream of the second exon containing the start codon of AtPIR (Paper IV, Fig. 1C).

The first intron of AtPIR contains a putative branch point sequences nine bp

upstream of the T-DNA insertion site in atpir-1; thus, the splicing efficiency is likely to

be dramatically reduced in atpir-1. The line EXM115 (atpir-2) carried a T-DNA

insertion in exon 14 of AtPIR. RT-PCR verified that AtNAP expression was absent in

atnap-1 and that AtPIR expression was highly reduced in atpir-1 (Paper IV, Fig. 1E).

All the insertion mutants for AtNAP and AtPIR that were studied displayed similar

phenotypes. Detailed analyses were done on atnap-1 and atpir-1. The most apparent

phenotype was the abnormal morphology of trichomes on leaves and stems (Paper

IV, Fig. 3 and 4), comparable to the "distorted" class of trichome mutants (Hülskamp

et al., 1994). Trichomes of atpir-1 and atnap-1 plants had reduced length but

increased diameter compared to wild type trichomes. Secondary and tertiary

branches were generally highly stunted in atnap-1 and atpir-1 trichomes, and the

overall shape of the mutant trichomes varied greatly compared to the regular and

uniform shape of wild type trichomes. Other epidermal cell types were also affected

in the mutants. The lobes of leaf pavements cells were significantly shorter in the

atnap-1 and atpir-1 mutants (Paper IV, Fig. 5A, B and C). The phenotype was

quantified by calculating the ratio between the area (µm2) and the perimeter (µm) of

pavement cells, as in paper III. The ratio was significantly higher in mutant cells

compared with wild type cells, confirming the observed phenotype (Paper IV, Fig.

5D).

The chromosomal locations of AtNAP and AtPIR were compared with the map

positions of the characterised "distorted" class of trichome mutants. AtNAP

colocalised with the gnarled (grl) mutant, whereas AtPIR was positioned close to the

map position of another mutant, klunker (klk). Seeds from the grl-247 allele were
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generously donated by Martin Hülskamp, University of Köln, Germany. Upon

crossing, atnap-1 failed to complement grl; none of the heterozygous F1 progeny

showed reversion to normal trichome phenotype. The AtNAP transcript was

sequenced in the allele grl-247, and revealed a C-T transition in the second exon,

leading to the formation of a stop codon which terminates AtNAP translation after

only sixty amino acids in grl-247 (Paper IV, Fig. 1B). Thus, AtNAP is allelic to GRL.

Although requested for more than a year, klk seeds were not provided, and we could

therefore not verify that AtPIR is allelic to klk.

AtNAP and AtPIR are involved in regulation of the actin cytoskeleton (paper IV)

Earlier studies have suggested that organisation of the actin cytoskeleton is affected

in the "distorted" mutant class (Mathur et al., 1999; Szymanski et al., 1999). atnap-1

and atpir-1 were therefore crossed with transgenic plants expressing the actin-

binding domain of mouse talin fused to yellow fluorescent protein (YFP). The talin

domain binds actin filaments, making in vivo visualisation of the actin cytoskeleton

possible (Kost et al., 1998). In wild type trichomes, the actin cytoskeleton was

organised in a fine and highly branched, cortical mesh. Actin filaments were mainly

longitudinally oriented, extending to the tips of trichome branches (Paper IV, Fig. 6A

and D). In contrast, the actin cytoskeleton in atnap-1 and atpir-1 trichomes appeared

to be less branched, instead forming thick actin cables (Paper IV, Fig. 6B, C and E).

Actin filaments were more transversely oriented in mutant trichomes. The density of

actin cables were frequently observed to be very high at branchpoints, especially

when branch growth was stunted. Thus, disruption of AtNAP and AtPIR apparently

leads to defects in the organisation of the actin cytoskeleton. As mentioned in the

introduction, mutants of Arp2/3 complex subunits in Arabidopsis also display

"distorted" phenotypes, including disturbed organisation of the actin cytoskeleton

(Mathur et al., 2003a; Mathur et al., 2003b; Le et al., 2003; Li et al., 2003; El-Din El-

Assal, 2004). Including unpublished data, seven genes have been identified whose

inactivation leads to "distorted" phenotypes. Considering the chromosmal

localization, each of the seven genes probably corresponds to one of the

DISTORTED genes (Schwab et al., 2003). As shown in Table 3, the verified and

putative DISTORTED genes encode AtNAP, AtPIR and five of seven subunits of the
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ARP2/3 complex. Furthermore, a double cross between dis1 (AtARP3 mutant) and

klk (putative AtPIR mutant) showed an additive phenotype, indicating that AtARP3

and AtPIR act in the same process (Schwab et al., 2003). Taken together, the data

strongly suggest that AtPIR and AtNAP are involved in regulation of the actin

cytoskeleton through the Arp2/3 complex.

Table 3. Molecular identity of the distorted mutants
Mutant Gene mutated At locus ID Reference
wurm AtARP2 At3g27000 Mathur et al., 2003a; Le et al., 2003
distorted1 AtARP3 At1g13180 Mathur et al., 2003a; Le et al., 2003
distorted2 AtARPC2 At1g30825 El-Din El-Assal et al., 2004
alien AtARPC4?1 At4g14510 Li et al., 20032

crooked AtARPC5 At4g01710 Mathur et al., 2003b
gnarled AtNAP At2g35110 Brembu et al. (Paper IV)
klunker AtPIR?1 At5g18410 Brembu et al. (Paper IV)
spirrig N.A. - -
1These genes map to the vicinity of the corresponding mutant allele, and T-DNA insertion mutants
show distorted phenotypes, but the genes have not been sequences in the mutant background
2Reported as unpublished results

The phenotypes of atnap-1, atpir-1 and mutants of the ARP2/3 complex are

surprisingly mild compared to corresponding mutants in metazoa. A possible

explanation could be that the large family of formins in Arabidopsis are able to carry

out most of the functions usually performed by the ARP2/3 complex. Only a subset of

cells undergoing rapid polar extension may be dependent upon proper function of the

ARP2/3 complex.

A family of putative WAVE-like proteins in plants - the missing link between
RAC/ROP GTPases and the Arp2/3 complex?

Do plant RAC/ROP GTPases regulate branching and nucleation of actin filaments

through the Arp2/3 complex? Several authors have stated that plants do not contain

proteins with similarity to WASP or WAVE proteins (Vantard and Blanchoin, 2002;

Mathur and Hülskamp, 2002; Li et al., 2003; Smith, 2003). However, low stringency

searches using conserved C-terminal VCA region resulted in the finding of a small

family of four Arabidopsis genes (At1g29170, At2g34150, At2g38440 and

At5g01730) encoding putative proteins which contained a C-terminal motif with

moderate similarity to VCA regions (residues 947-1016 in At1g29170). An alignment

of the four VCA-containing Arabidopsis proteins with human N-WASP and mouse
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WAVE1, WAVE2 and WAVE3 revealed that most of the residues believed to be

critical for proper function of the VCA region (Paunola et al., 2002; Panchal et al.,

2003) were conserved in the Arabidopsis proteins (Fig. 7).

Figure 7. Amino acid alignment of the VCA region of the Arabidopsis WAVE-like proteins,

mouse WAVE1-3 and human N-WASP. The alignment was produced with the GeneDoc

program. Amino acid residues reported to be essential for VCA activity are indicated with

crosses below the alignment.

 All of the four VCA-containing Arabidopsis proteins have an N-terminal region

(residues 1-176 in At1g29170) with similarity to Scar homology domains (SHD), as

well as a small region (residues 177-188 in At1g29170) of basic residues (Fig. 8).

Thus, these proteins are Arabidopsis WAVE homologue candidates. A fifth

Arabidopsis gene, At4g18600, encodes a protein that also contains an N-terminal

motif similar to the SHD domain, but lacks a C-terminal VCA-like region. Deeks and

Hussey (2003) also noted that At1g29170 and At4g18600 contain SHD domains, but

failed to identify the VCA region in the former protein.
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Figure 8. Amino acid alignment of the SHD domain and the adjacent basic region

(underlined) of the Arabidopsis WAVE-like proteins and mouse WAVE1-3, and the EVH1

domain of human N-WASP. The alignment was produced with the GeneDoc program.

 The Arabidopsis WAVE-like proteins have a large central region, varying from about

660 (At2g34150) to about 1700 residues (At4g18600), which lack any similarity to

other proteins. This region is also divergent within the family. Based on sequence

similarity in parts of this region, At1g29170 and At2g34150 constitute one sub-group

of the Arabidopsis WAVE-like proteins. At2g38440 and At5g01730 comprise another

sub-group, although the similarity is less prominent. Due to the large central region,

the Arabidopsis WAVE-like proteins are substantially larger than any known

WAVE/SCAR proteins (Fig. 9). Another significant difference is the lack of a proline-

rich region in the Arabidopsis WAVE-like proteins; only a short motif of 8 to 15

residues is rich in prolines. The proline-rich region in WAVE/WASP proteins is

thought to bind SH3 domains in otherwise diverse proteins. The Arabidopsis genome

appears to contain only five genes encoding proteins with putative SH3 domains

(Lam et al., 2001; Brembu, personal observations). Other proteins may regulate the

activity of the WAVE-like proteins through binding to the large central domain. It is
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also interesting to note the presence of a basic region in the Arabidopsis WAVE-like

proteins, localised next to the SHD domain as in metazoan WAVEs (Fig. 8). Although

PIP2 has not been reported to bind the basic region of WAVE proteins, it is tempting

to speculate that PIP2 might act as a regulator of WAVE activity in plants. Expressed

sequence tags (ESTs) for all the putative WAVE homologues were found in

sequence databases, indicating that all five genes are expressed.

Human
WASP

EVH1
Basic

GBD Proline
-rich

VCA

Human
WAVE1

SHD Basic Proline-
rich

VCA

At2g34150

At1g29170

At5g01730

At2g38440

At4g18600

400 800 1200 200016000
Amino acids

SHD Basic Proline VCA

Figure 9. Domain structure of the Arabidopsis WAVE-like proteins, Human WASP and

human WAVE1. Abbreviations: EVH1, Ena/Vasp homology domain 1; GBD, GTPase-binding

domain; SHD, Scar homology domain.

A model for ARP2/3-mediated regulation of actin organisation in plants

A model for regulation of actin filament branching and polymerisation by the ARP2/3

complex in plants is presented in Fig. 10. In general, the mechanism appears to be

well conserved between plants and other eukaryotic organisms (for comparison, see

Fig. 5). In unstimulated Arabidopsis cells, Arabidopsis WAVE-like proteins exist in an

inactive protein complex together with AtNAP(/GRL), AtPIR(/KLK) and AtBRK1. No

genes encoding clear homologues of Abi has been found in plants, but other proteins

may take part in the complex. A developmental or external/environmental signal
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leads to activation of AtRAC GTPases, through as yet unknown receptors. Although

no interactions between AtPIR and AtRACs have been shown, the N-terminal,

putatively Rac-interacting domain of AtPIR is relatively well conserved; thus, it is not

unlikely that an AtRAC-AtPIR interaction exists. AtRAC binding of AtPIR leads to

dissociation of the regulatory complex, releasing now active WAVE associated with

AtBRK1. The WAVE-AtBRK1 protein pair binds and activates the ARP2/3 complex,

which in turn initiates new actin filaments branching from existing filaments. No

interaction between any of the components in this model has been shown in plants,

but the mutant studies support the assumption of a functional connection between

AtNAP, AtPIR and the ARP2/3 complex. The fact that clear homologues of Abi have

not been identified in plants is puzzling, considering the central position of Abi in the

core of the WAVE regulatory complex in mammalian cells (Gautreau et al., 2004;

Innocenti et al., 2004). The highly divergent central domain of the plant WAVE

homologues indicates that a putative plant Abi conunterpart may share little similarity

with animal Abi. Homologues of other components interacting with the WAVE1

regulatory protein complex in mammalian cells, such as Nck (Eden et al., 2002) and

the GAP WRP (Soderling et al., 2002) have not been found in plants; novel, plant-

specific mechanisms for regulation of WAVE activity may well have been developed.

Receptor
Stimulus

AtRACs

GDP

AtPIR/KLK?
AtNAP/GRL

Abi-like proteins?
GTPAtWAVEs?

AtBRK1

Actin filament

Proteolysis?

VCA

VCA

ARP2/3 complex, 
including:
AtARP2/WRM
AtARP3/DIS1
AtARPC2/DIS2
AtARPC5/CRK
AtARPC4/ALI?

Figure 10. A model for regulation of the Arp2/3 complex through WAVE-like proteins in

Arabidopsis. With a possible exception of Abi, homologues of all the subunits of the WAVE

regulatory complex and the ARP2/3 complex are conserved in Arabidopsis. All characterised

mutants of the distorted class are affected in genes encoding proteins involved in this

process.
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