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Abstract

We have studied the critical properties of three-dimensional U(1)-symmetric lattice gauge
theories. The models apply to various physical systems such as insulating phases of
strongly correlated electron systems as well as superconducting and superfluid states of
liquid metallic hydrogen under extreme pressures. This thesis contains an introductory
part and a collection of research papers of which seven are published works and one is
submitted for publication.

Paper I: Critical properties of the 2+1-dimensional compact abelian Higgs model with
gauge charge q = 2 are studied. We introduce a novel method of computing the third
moment M3 of the action which allows us to extract correlation length and specific heat
critical exponents ν and α without invoking hyperscaling. Finite-size scaling analysis of
M3 yields the ratio (1 + α)/ν and 1/ν separately. We find that α and ν vary along the
critical line of the theory, which however exhibits a remarkable resilience of Z2 criticality.
We conclude that the model is a fixed-line theory, which we propose to characterize the
zero temperature quantum phase transition from a Mott-Hubbard insulator to a charge-
fractionalized insulator in two spatial dimensions.

Paper II: Large scale Monte Carlo simulations are employed to study phase transitions
in the three-dimensional compact abelian Higgs model in adjoint representations of the
matter field, labeled by an integer q, for q = 2, 3, 4, 5. We also study various limiting
cases of the model, such as the Zq lattice gauge theory, dual to the 3D Zq spin model, and
the 3D xy spin model which is dual to the Zq lattice gauge theory in the limit q → ∞. In
addition, for benchmark purposes, we study the 2D square lattice 8-vertex model, which
is exactly solvable and features non-universal critical exponents. The critical exponents
α and ν are calculated from finite size scaling of the third moment of the action, and
the method is tested thoroughly on models with known values for these exponents. We
have found that for q = 3, the three-dimensional compact abelian Higgs model exhibits
a second order phase transition line which joins a first order phase transition line at a
tricritical point. The results for q = 2 in Paper I are reported with a higher lever of
detail.

Paper III: This paper is based on a talk by F. S. Nogueira in the Aachen HEP 2003
conference where a review of the results for the compact abelian Higgs model from Paper
I and Paper II was presented, as well as the results for the q = 1 case studied by F. S.
Nogueira, H. Kleinert and A. Sudbø.

Paper IV: We study the effects of a Chern-Simons (CS) term in the phase structure
of two different abelian gauge theories in three dimensions. By duality transformations
we show how the compact U(1) gauge theory with a CS term for certain values of the
CS coupling can be written as a gas of vortex loops interacting through steric repulsion.
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This theory is known to exhibit a phase transition governed by proliferation of vortex
loops. We also employ Monte Carlo simulations to study the non-compact U(1) abelian
Higgs model with a CS term. Finite size scaling of the third moment of the action yields
critical exponents α and ν that vary continuously with the strength of the CS term, and
a comparison with available analytical results is made.

Paper V: The critical properties of N -component Ginzburg-Landau theory are studied
in d = 2 + 1 dimensions. The model is dualized to a theory of N vortex fields inter-
acting through a Coulomb and a screened potential. The model with N = 2 shows two
anomalies in the specific heat. From Monte Carlo simulations we calculate the critical
exponents α and ν and the mass of the gauge field. We conclude that one anomaly
corresponds to an inverted 3D xy fixed point, while the other corresponds to a 3D xy
fixed point. There are N fixed points, namely one corresponding to an inverted 3D xy
fixed point, and N − 1 corresponding to neutral 3D xy fixed points. Applications are
briefly discussed.

Paper VI: The phase diagram and critical properties of the N -component London
superconductor are studied both analytically and through large-scale Monte-Carlo sim-
ulations in d = 2 + 1 dimensions. The model with different bare phase stiffnesses for
each flavor is a model of superconductivity which should arise out of metallic phases
of light atoms under extreme pressure. A projected mixture of electronic and protonic
condensates in liquid metallic hydrogen under extreme pressure is the simplest example,
corresponding to N = 2 with individually conserved matter fields. We compute critical
exponents α and ν for N = 2 and N = 3. The results from Paper V are presented at
a higher level of detail. For the arbitrary N case, there are N fixed points, namely one
charged inverted 3D xy fixed point, and N − 1 neutral 3D xy fixed points. We explicitly
identify one charged vortex mode and N−1 neutral vortex modes. The model for N = 2
and equal bare phase stiffnesses corresponds to a field theoretical description of an easy-
plane quantum antiferromagnet. In this case, the critical exponents are computed and
found to be non 3D xy values. Furthermore, we study the model in an external magnetic
field, and find a novel feature, namely N − 1 superfluid phases arising out of N charged
condensates. In particular, for N = 2 we point out the possibility of two novel types
of field-induced phase transitions in ordered quantum fluids: i) A phase transition from
a superconductor to a superfluid or vice versa, driven by tuning an external magnetic
field. This identifies the superconducting phase of liquid metallic hydrogen as a novel
quantum fluid. ii) A phase transition corresponding to a quantum fluid analogue of sub-
lattice melting, where a composite field-induced Abrikosov vortex lattice is decomposed
and disorders the phases of the constituent condensate with lowest bare phase stiffness.
Both transitions belong to the 3D xy universality class.

Paper VII: We consider the vortex superconductor with two individually conserved
condensates in a finite magnetic field. The ground state is a lattice of cocentered vortices
in both order parameters. We find two novel phase transitions when temperature is
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increased at fixed magnetic field. i) A “vortex sublattice melting” transition where
vortices in the field with lowest phase stiffness (“light vortices”) loose cocentricity with
the vortices with large phase stiffness (“heavy vortices”), entering a liquid state (the
structure factor of the light vortex sublattice vanishes continuously.) This transition is
in the 3D xy universality class. ii) A first order melting transition of the lattice of heavy
vortices in a liquid of light vortices.

Paper VIII: We report on large-scale Monte Carlo simulations of a novel type of a
vortex matter phase transition which should take place in a three dimensional two-
component superconductor. We identify the regime where first, at a certain temperature
a field-induced lattice of co-centered vortices of both order parameters melts, causing
the system to loose superconductivity. In this state the two-gap system retains a broken
composite symmetry and we observe that at a higher temperature it undergoes an ex-
tra phase transition where the disordered composite one-flux-quantum vortex lines are
“ionized” into a “plasma” of constituent fractional flux vortex lines in individual order
parameters. This is the hallmark of the superconductor-to-superfluid-to-normal fluid
phase transitions projected to occur in e.g. liquid metallic hydrogen.
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1 Introduction

In 1911 the fascinating phenomenon of superconductivity was discovered in mercury by
H. K. Onnes [9]. Materials in such a state exhibit exotic characteristics like zero resis-
tivity and perfect diamagnetism. Moreover, in type II superconductors with an external
magnetic field present, one observes a lattice of supercurrent tornadoes or vortices each
carrying a magnetic flux quantum [10]. In 1957 the theory of superconductivity in
ordinary metals, the BCS theory, was proposed [11]. This theory, which by many is
considered the most beautiful theory in solid state physics, explained the mechanism
of superconductivity to arise from an attractive interaction between pairs of electrons,
known as Cooper pairs, caused by interactions with the atomic lattice. In metals a large
number of electrons can pair up and form a superconducting wave function which ex-
tends over the entire sample. Hence, the superconducting state is essentially a coherent
charged condensate in which we may observe quantum phenomena on a macroscopic
scale.

Another great achievement in physics was the discovery of superfluid 4He in 1938 [12,13].
Equivalent to the vortex lattice in superconductors, superfluids exhibit a lattice of super-
fluid tornadoes when the sample is rotated. Moreover, superfluids are characterized by
a macroscopic wave function which, in contrast to superconductors, is a macroscopically
coherent charge neutral condensate.

Until recently materials have been characterized as either superconductors (with a
charged condensate) or superfluids (with a neutral condensate). A study of the phe-
nomenological Ginzburg-Landau theory for liquid metallic hydrogen alters this pic-
ture [5–8, 14]. Under extreme pressures hydrogen is predicted to form a liquid metal-
lic state in which the electrons and protons decouple and form a two-component liq-
uid [15–17]. This liquid is predicted to form two superconducting condensates, one
consisting of electron Cooper pairs and one consisting of proton Cooper pairs [18, 19].
We have found that such a system, which consists of charged particles, will exhibit su-
perconducting and superfluid properties. This is a novel phenomenon in nature, and
puts hydrogen in a new group of materials, namely superconducting superfluids.

The Ginzburg-Landau theory of a system with multiple superconducting condensates
which are individually conserved, where the application to liquid metallic hydrogen is
a special two-component case, has been studied through a lattice formulation of the

1



2 Introduction

theory [5–8]. Since charges are present the condensate order parameter fields couple to
the electromagnetic vector potential known as a gauge field. Lattice gauge theories are
studied in various areas of physics such as superconductivity, particle physics, as well as
strongly correlated electron systems [20–23]. Even though these systems exhibit com-
pletely different physics, the methods for studying model characteristics such as critical
properties and phase diagrams are the same in many cases. One example is the quark
confinement-deconfinement phase transition in quantum chromo dynamics which has an
equivalent in quantum phase transitions in strongly correlated electron systems. A two-
dimensional system of strongly correlated electrons at zero temperature can be described
by an effective lattice gauge theory in 2+1 dimensions [24–34]. In such systems the phase
transition from a normal Fermi liquid metallic state to a spin-charge separated state is
proposed to be governed by a confinement-deconfinement phase transition. The gauge
field in these systems represents strong constraints on the dynamics of the fermions, and
is not the electromagnetic vector potential.

Monte Carlo integration is a well-suited tool for studying the critical properties of lattice
gauge theories beyond all orders in perturbation theory. In the papers [1–4] we have
studied lattice gauge theories in 2+1 dimensions as effective theories for zero-temperature
quantum phase transitions in strongly correlated electron systems in two-dimensions. We
have studied the compact abelian Higgs model as well as abelian Chern-Simons gauge
theories and found profoundly rich phase diagrams for which we have mapped out the
critical exponents with corresponding universality classes. In the quest for extracting
critical exponents we have found that finite size scaling of the third moment of the
action provides asymptotically correct scaling for practical system sizes and allows us
to calculate the critical exponents α and ν. This method was applied extensively for
mapping out the phase diagram of the multi-component Ginzburg-Landau theory as
well [5–7].

The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions
is discussed with emphasis on continuous phase transitions, critical phenomena and
phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs
model are presented, and the critical phenomena are discussed. Furthermore, the multi-
component Ginzburg-Landau theory and the applications to liquid metallic hydrogen
are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme,
including the Metropolis algorithm, error estimates, and reweighting techniques. This
chapter is followed by the papers I-VIII [1–8].



2 Phase transitions

Phase transitions are found in many systems in nature. Some examples are the gas-liquid
and liquid-solid transitions in H2O, the superconducting to normal conductor transition
and the superfluid to normal fluid transition. Perhaps the simplest example of a phase
transition is the Ising ferromagnet in two dimensions, in which the local magnetization
(classical spins) can point up or down. At high temperatures the total magnetization
is zero. When temperature is decreased to the Curie critical temperature a majority of
the spins point either up or down, producing a net magnetization (shown qualitatively
in Figure 2.1, left panel). This spontaneous magnetization is responsible for breaking
the up-down symmetry in the uniaxial ferromagnet, and the critical temperature Tc

separates the ordered finite magnetization phase from the disordered phase.

Even though the underlying macroscopic theory of systems which exhibit a phase transi-
tion can be fundamentally different, it turns out that the properties of phase transitions
may qualitatively be the same. Some characteristics of phase transitions are:

• For a given system one can define an ordered phase and a disordered phase, for
which there is a value κPT of some coupling κ which separates the phases. The
coupling κ is a physical parameter, e.g. temperature or external magnetic field
strength.

• The ordered phase and the disordered phase both have a group of associated sym-
metry operations, where the symmetry group of the disordered phase is larger
than that of the ordered phase. This implies that a symmetry has been broken in
the ordered phase. However, this does not apply to systems with local symmetry,
gauge theories, because a gauge symmetry is protected by Elitzur’s theorem [35].
In these systems the gauge field becomes massive in the ordered phase.

• The phase transition is either continuous, meaning that the order parameter van-
ishes continuously at κPT, a first order transition where the order parameter van-
ishes discontinuously (see Figure 2.1), or a Kosterlitz-Thouless phase transition.
In continuous phase transitions critical phenomena are observed and the behavior
at these phase transitions can be set in a classification scheme called universality
classes.

3



4 Phase transitions

κκPT

O

κκPT

O

Figure 2.1: The order parameter O as a function of some coupling κ for a continuous
phase transition (left panel) and a first order phase transition (right panel). The mag-
netization order parameter for a two-dimensional lattice of uniaxial (Ising) ferromagnets
as a function of temperature is an example of a continuous phase transition.

2.1 Free energy

Phase transitions are observed in statistical mechanical systems, and are a result of
collective effects which depend on the elementary interactions in the system. The system
Hamiltonian H describes these interactions through potential energy and kinetic energy
terms. Temperature is included in the system through the partition function

Z =

∫
DΨ exp(−S), (2.1)

which involves the integral over all states Ψ of the system, where the action S is given
by S = βH and the coupling β is inverse temperature β = 1/T . The Helmholtz free
energy F (T ) is defined through Z = exp[−βF (T )], and provides a measure for the
energy in the ordered and the disordered state. Moreover, F (T ) relates these states to
the temperature, and to the elementary interactions through the internal energy U(T ),

F (T ) = U(T ) − TS(T ) (2.2)

where S(T ) is the entropy. The internal energy U(T ) is the thermal average of the
system Hamiltonian. From (2.2) we find that the free energy is minimized by maxi-
mizing the entropy of the system and minimizing the internal energy. However, since
the internal energy is minimized by ordering the system and the entropy is maximized
by disordering the system, there is a order-disorder competition. The outcome of the
competition is determined by the temperature. For temperature T = 0, F (T ) is min-
imized by minimizing U(T ) and hence ordering the system. At high temperatures the
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system minimizes the Helmholtz free energy by gaining entropy, and the system is in
the disordered state. In many systems, in between these temperature regimes a phase
transition temperature TPT exists where the system changes from ordered to disordered.
However, phase transitions are collective effects, and for the internal energy U(T ) to
win the order-disorder competition it is required to have a certain amount of neighbors
to interact with. For one-dimensional systems there are only two nearest neighbors to
interact with, which is insufficient to produce a globally ordered state. Consequently,
one-dimensional systems are always in the disordered state at temperatures T > 0 .

2.2 Symmetry breaking

In general, the elementary interactions in a physical system can be described fully by the
action S. The dynamics are prescribed by a set of evolution equations which follow from
varying the action with respect to different degrees of freedom. A symmetry group then
corresponds to a set of transformations on the space-time coordinates or the degrees of
freedom, which leave the action and thus also the evolution equations invariant.

The two-dimensional Ising model with N spins is given by the action

SIsing = βJ0

∑

〈i,j〉

σiσj (2.3)

where β = 1/T is the inverse temperature, J0 > 0 is the ferromagnetic coupling, 〈i, j〉
denotes the sum over nearest neighbors, and the field σi ∈ ±1 represents Ising spins on
each lattice site i. Throughout this document we set the Boltzmann constant kB = 1 and
~ = 1. Flipping every spin in the system with the symmetry operation σi → σ̃i = −σi

leaves the action (2.3) invariant. This global discrete symmetry operation (Z2) is broken
spontaneously at the Curie temperature where the magnetization M defined by the
thermal average M = 1

N 〈
∑

i σi〉β becomes finite.

An example of a model with a global continuous symmetry (U(1)) is the three-dimensional
xy model with the action

S3Dxy = −βJ1

∑

〈i,j〉

cos(θi − θj) (2.4)

with the continuous phase fields θi defined on a lattice. The action is invariant under
the symmetry operation θi → θ̃i = θi + χ performed on all lattice sites. At the critical
temperature all the phases align spontaneously in one direction and the symmetry is
broken.

In models with local symmetries (gauge symmetries) the connection between phase tran-
sitions and symmetries is more subtle. The lattice London superconductor model

SLondon = βJ2

∑

i,µ

[− cos(∆µθi −Ai,µ) + (∆ ×Ai,µ)2] (2.5)
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with a local U(1) symmetry is invariant under the (local) gauge transformation θi → θ̃i =
θi +χi and Ai,µ → Ãi,µ = Ai,µ +∆µχi, where ∆µ is the lattice difference operator. The
theory is the charged version of (2.4). According to Elitzur’s theorem the expectation
value of any quantity which is not invariant under a gauge transformation, such as
〈cos(Ai,µ)〉β , is zero for all couplings (unless one explicitly introduces a gauge fixing
term in the theory), and hence a local symmetry cannot be sponaneously broken [35].
Therefore, in the lattice London superconductor model the phases θi will not align
spontaneously at the phase transition. However, at the critical temperature, the phases
and the gauge field conspire to produce a gauge field mass, which is exactly the inverse
of the magnetic penetration depth of the superconductor. This phenomenon is known
from particle physics as the Higgs mechanism.

Continuous symmetries are related directly to conservation laws of the physical system
through Noether’s theorem. Noether’s theorem states that for every continuous symme-
try transformation of a system there is a conservation law. Hence, when a continuous
symmetry is broken spontaneously by a phase transition, the corresponding conserva-
tion law is violated. Moreover, according to the Hohenberg–Mermin–Wagner theorem
models in d ≤ 2 dimensions with continuous symmetry cannot have a broken symmetry
at finite temperature [36, 37].

2.3 Continuous phase transitions

Phase transitions where the order parameter goes to zero in a continuous manner are
called continuous, or second order phase transitions (see Figure 2.1). In contrast to a
first order phase transition, where two distinct ordered and disordered phases coexists at
the phase transition, the ordered and disordered phases in continuous phase transitions
are not distinguishable at the critical point.

At continuous phase transitions critical phenomena are observed. The hallmark of crit-
ical phenomena is that a correlation length in the system goes to infinity at the critical
point. A general scaling Ansatz for the decay of a correlation function Γ(r) in a d-
dimensional critical system is

Γ(r) =
1

rd−2+η
G(r/ξ) (2.6)

where G(x) is typically a rapidly decaying function such as G(x) ∼ e−x, ξ is the correla-
tion length, and η is the anomalous scaling dimension. At the critical point ξ → ∞ and
Γ(r) exhibits power law decay. The correlation length ξ which essentially distinguishes
the size of the regions which are correlated in the system, will then extend to all length
scales. The system is thus scale invariant at the critical point.
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Table 2.1: Critical exponents for different physical quantities. Here, h is a (magnetic)
field which couples linearly to the order parameter.

Quantity Symbol Power law Temperature regime
Specific heat CV ∝ |T − Tc|

−α T < Tc and T > Tc

Order parameter M ∝ |T − Tc|
β T < Tc

M ∝ h|h|(1−δ)/δ T = 0
Susceptibility χ ∝ |T − Tc|

−γ T < Tc and T > Tc

Correlation length ξ ∝ |T − Tc|
−ν T < Tc and T > Tc

Correlation function Γ(r) ∝ 1/rd−2+η T = 0

Third moment of the action M3 ∝ |T − Tc|
−(1+α) T < Tc and T > Tc

2.3.1 Critical exponents

A characteristic feature of critical phenomena is that a number of quantities diverge with
power law behavior close to the critical point. One example is the specific heat CV (T )
which in the vicinity of a critical temperature Tc follows the power law

CV ∼ |T − Tc|
−α (2.7)

where α is the critical exponent of the specific heat. A list of physical quantities and the
corresponding critical exponents are given in Table 2.1 [38].

In the early 1970’s Kenneth Wilson introduced the renormalization group which pro-
vided methods for calculating critical exponents [39]. Furthermore, he found that they
should depend on the spatial symmetries, the symmetry of the order parameter and
the symmetry and range of interactions, but not on the detailed form and magnitude
of interactions. This established the concept of universality classes. All the transitions
in the same universality class have the same critical exponents. The critical exponents
α and ν for some models are listed in Table 2.2. Through dimensionality and scaling
analysis one finds relations between critical exponents and the dimensionality d of the
physical system, known as hyperscaling relations. One such relation is

2 − α = νd. (2.8)

Hyperscaling applies quite generally to transitions that are fluctuation dominated [38],
and reduces the number of independent critical exponents in a universality class to two,
e.g. β and ν.1 However, hyperscaling is known to be violated above a critical dimension
in spin models and systems with long-range interactions due to the presence of dangerous
irrelevant variables [40].

1The critical exponent of the order parameter β (see Table 2.1) should not be confused with the
inverse temperature coupling β = 1/T .
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Table 2.2: The Critical exponents of the specific heat α and the correlation length ν for
different models.

Model α ν
3D Heisenberg [41] −0.1336(15) 0.7112(5)
3D xy [42] −0.0146(8) 0.67155(27)
Inverted 3D xy [42] −0.0146(8) 0.67155(27)
3D Ising [43] 0.1115(37) 0.6308(10)

2.3.2 Third moment of the action and finite size scaling

At the critical point the singular part FS of the Helmholtz free energy F = FA + FS,
where FA is analytic at the critical point, was postulated by Widom [44] to scale as

FS = |τ |2−αΦ±(h/|τ |∆) (2.9)

where τ = (T − Tc)/Tc is the reduced coupling, Φ+ and Φ− are analytical scaling
functions above (+) and below (−) Tc respectively, ∆ is a scaling exponent and h is a
scaling field which is zero at the critical point. The non-analytic part of the specific heat
CV is given by

CV ∝
∂2FS

∂T 2
∝ |τ |−α. (2.10)

The hallmark of a critical point is that the correlation length ξ diverges. For a finite
system of size L × L × L the correlation length is limited by L so that ξ → L at the
critical point. Through (2.10) and the power law behavior of ξ around the critical point
(see Table 2.1), the specific heat can be related directly to the system size, and at the
critical point CV ∝ Lα/ν . By measuring CV at the critical point as a function of system
size one can calculate the ratio α/ν. This is known as finite size scaling. However,
finite size scaling of CV provides a measure for the ratio α/ν, and not individual values
of α and ν. Moreover, from benchmark studies of finite size scaling of CV for various
models we have found that it is difficult to achieve asymptotically correct scaling of this
quantity [2].

A problem arises if α < 0, as in the 3D xy model (see Table 2.2). With increasing system
size L the peak in CV will increase. However, since CV ∝ L−|α|/ν at the critical point,
this overall increase will eventually not scale with L. Thus, CV exhibits a finite cusp
which does scale, superposed on a large regular background which eventually will not.
Quite typically, impractically large system sizes are needed to eventually distinguish
corrections to scaling from actual scaling in CV , particularly so when α < 0.

It would be advantageous to bring out the scaling more clearly relative to confluent
singularities, or corrections to scaling. In References [1, 2] we suggest a method to
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1/T

∂3FS

∂β3

L−1/ν

L(1+α)/ν

Figure 2.2: The generic shape of the third derivative of the free energy ∂3FS

∂β3 around the

critical point. The peak to peak height scales as L(1+α)/ν , and the peak to peak width
scales as L−1/ν .

achieve this by taking one further derivative of the free energy with respect to the
coupling constant as follows

∂3FS

∂T 3
∝
∂3FS

∂β3
∝ |τ |−(1+α), (2.11)

where β = 1/T . The generic shape of ∂3FS

∂β3 is shown in Figure 2.2. For finite size scaling

we relate the third derivative of the free energy (2.11) to the system size through the
power law behavior of ξ (see Table 2.1). At the critical point the peak to peak height
scales as L(1+α)/ν , whereas the peak to peak width scales as L−1/ν . Consequently, by

measuring one quantity, namely ∂3FS

∂β3 , as a function of system size we may extract two
critical exponents. Moreover, this method provides as a test for the hyperscaling relation
(2.8).

The third derivative of the free energy (2.11) is related to the action S = βH through the
partition function Z given in (2.1) such that F = −β−1 lnZ. Defining the n’th moment
of the action for inverse temperature β as the thermal averageMn(β) = 〈(S−〈S〉)n〉β/V
we find that [2]

∂3FS

∂β3
∝

1

V
〈(S − 〈S〉)3〉β = M3(β), (2.12)

where V is the volume of the system. In Reference [2] we perform benchmark tests of
this method for extracting critical exponents α and ν through finite size scaling analysis
with Monte Carlo simulations of several models. The simulations of the 2D eight-vertex,
the 3D xy, the Ising, and the Ising (Z2) gauge models give values for α and ν which
are in good agreement with the established values for the critical exponents of these
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models. The method provides asymptotically correct values for α and ν for practical
system sizes.

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T = 3.13
T = 2.00
T = 0.67

|Qq|

2
β

m
2 0
G
−

1
A

(q
)

Figure 2.3: Monte Carlo simulation measurements of G−1
A (q) (defined in (2.13)) as a

function of the discrete wave vector Qq for the 2-component London superconductor
studied in References [5, 6] with U(1) gauge symmetry. For each temperature T = 1/β
we have plotted 2

βm2
0
G−1
A (q) measured from systems of size L = 8, 12, 20, 32. The data

collapses to a smooth curve. Here, the bare mass m0 is the low temperature limit of the
gauge mass. Following the scaling Ansatz in (2.14), for temperature T = 3.13, which is
above the critical point Tc = 2.7(8), the values clearly goes to zero as Qq → 0, yielding
mA = 0. For temperatures lower than Tc the data points go to a finite value as Qq → 0,
and the gauge field i massive. For the lowest temperature T = 0.67 the gauge mass is
close to the asymptotic value m0.

2.3.3 Gauge theories

As was mentioned in Section 2.2 a gauge symmetry is protected by Elitzur’s theorem.
In theories where the gauge fields are coupled to massive scalar (Higgs) fields, the gauge
field can develop a (Higgs) mass (which is a global quantity) at the critical point. The
gauge field mass is defined through the Fourier transform of the gauge field correlation
function GA(q) = 1

V 〈A(q) ·A(−q)〉 such that [45]

GA(q) =
2/β

q2 + Σ(q)
. (2.13)

Close to the critical point we use the following Ansatz for Σ(q) proposed by Kajantie et
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Figure 2.4: The Higgs mechanism in the 2-component London superconductor from
Reference [6] with equal bare phase stiffnesses. For each temperature the gauge mass is
found by a fit of the function G−1

A (q) shown in Figure 2.3 to the Ansatz (2.14).

al. [45]

Σ(q) = m2
A + C|q|2−η + O(|q|δ), (2.14)

where mA is the gauge mass, C is a constant, η is the anomalous scaling dimension
defined in (2.6) and δ > 2−η . From the definition B ≡ ∆×A the gauge mass is identified
as the inverse magnetic penetration depth λ. Renormalization group arguments yield
η = 4 − d at a charged fixed point [46]. Thus, in the limit q → 0 in d = 3 dimensions
the equations (2.13) and (2.14) define the gauge mass such that

m2
A = lim

q→0

2

β
G−1
A (q). (2.15)

Taking this limit requires samples of the gauge field propagator for large system sizes for
a given coupling β. Such measurements are shown in Figure 2.3. The gauge field mass
can then be extracted by a fit to the Ansatz (2.14). Figure 2.4 shows the gauge mass
found from such fits which are performed for 76 temperatures across a charged phase
transition. This is a clear evidence of the Higgs mechanism.

2.4 First order phase transitions

The liquid-solid phase transition is an example of a first order phase transition. First
order phase transitions are characterized by a jump in the order parameter at the tem-
perature T = TPT, as sketched in the right panel of Figure 2.1. Like continuous phase
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transitions, the phase transition separates a symmetric high-temperature phase (disor-
dered) and a low-temperature phase where a symmetry is broken (ordered) [47]. How-
ever, at a first order phase transition the ordered and disordered phases coexist and
unlike continuous phase transitions there is no diverging length scale which leads to
scale invariance and critical phenomena. The Helmholtz free energy is given by

F (T ) = U(T )− TS(T ), (2.16)

where the value of the internal energy U(T ) can be that of the ordered phase UO(T )
(with T ≤ TPT) or that of the disordered phase UD(T) (with T ≥ TPT). Decreasing the
temperature from the disordered phase, the internal energy will jump from UD(TPT) to
UO(TPT) 6= UD(TPT) at the phase transition. Over the phase transition the entropy of
the system S(T ) has a discontinuity (a jump ∆S) such that the Helmholtz free energy
is continuous at the phase transition. The change in internal energy, which equals
Q = TPT∆S, is the latent heat which is transferred out of the system. However, exactly
at the phase transition F (TPT) remains unchanged if the system, or parts of it, changes
between the two phases. This phenomena of coexisting phases is a hallmark of a first
order phase transition.



3 Models and applications

3.1 The compact abelian Higgs model

Lattice gauge theories in 2+1 dimensions serve as effective theories for strongly correlated
fermion systems in two spatial dimensions at zero temperature. Phase transitions in such
three-dimensional models then correspond to quantum phase transitions in a system at
zero temperature in two spatial dimensions. A central issue is whether such systems
of strongly correlated fermions can suffer quantum phase transitions from Fermi-liquid
metallic states to states where the quasi-particle concept has broken down and given way
to singular Fermi liquids [48] or electron-splintered states [49, 50]. Such quantum phase
transitions may be related to confinement-deconfinement transitions in 2+1 dimensional
compact gauge theories. This fact has resulted in focused attention on effective gauge
theories of matter fields representing charge doped into Mott-Hubbard insulators, cou-
pled to fluctuating gauge fields representing strong constraints on the dynamics of the
fermions on the underlying lattice on which the models are defined [24–34]. Moreover,
such models in 2+1 dimensions have been studied as toy models in particle physics [51].

The gauge fields in these models represent strong correlations of the lattice fermions,
and the gauge fields are therefore compact. This implies that the gauge fields are 2π
periodic, thus each gauge field component is defined in the domain [−π, π). Com-
pact U(1) gauge theories in 2 + 1 dimensions support stable topological defects in the
form of monopole configurations, and it has been suggested that the unbinding of such
monopoles, a confinement-deconfinement transition, may be relevant for phenomena
such as spin-charge separation in strongly correlated systems [30, 31, 34, 52, 53]. Note
that confinement here refers to the confinement of test charges in the problem, not of
topological defects of the gauge field (which are space-time instantons, and will hereafter
be referred to as ”monopole” configurations).

3.1.1 Action

In the papers [1–3] we have studied the abelian U(1) Higgs model with a compact gauge
field [54] (Ginzburg–Landau theory with a compact gauge field) coupled minimally to a

13



14 Models and applications

U(1) bosonic matter field through the gauge charge q [55–57]. The model is defined by
the partition function given by the following functional integral

Z =

∫ π

−π

Dθ

∫ π

−π

DA

× exp



β

∑

j,µ

[1 − cos(∆µθ(j) − qAµ(j))] + κ
∑

P,µ

[1 − cos(εµνλ∆νAλ(j))]





(3.1)

where εµνλ is the completely antisymmetric tensor. Moreover,
∑

j,µ denotes a sum over
the sites of the lattice, while

∑
P,µ denotes a sum over the plaquettes of the lattice.

In (3.1), θ(j) is the phase of a scalar matter field with unit norm representing holons,
∆µ is the forward lattice difference operator in direction µ, while Aµ(j) is the compact
fluctuating gauge field enforcing the on-site constraints reflecting the strong correlations
in the problem. In this formulation of the theory we consider the London-limit, where
amplitude fluctuations of the matter fields are neglected.

The model (3.1) turns out to have an extremely rich phase diagram in d = 3 dimensions.
The phase diagram is shown in Figure 3.1. Since the gauge field is compact, the phase
diagram is highly dependent on the value of the gauge field charge q. In the case q = 0
the matter field decouples completely from the gauge field, and we are left with a 3D xy
model and pure Maxwell gauge theory. The former has one critical point of the 3D xy
universality class, while the latter is always in the confined state [54]. When q = 1, no
local order parameter exists for the model, and there is no ordinary continuous phase
transition. A confinement-deconfinement transition via Kosterlitz-Thouless monopole
unbinding has been discussed [58–60], but conclusive evidence of this has yet to be
provided. We have focused on the critical properties of the model with q ≥ 2, and
considered q = 2 in detail. In the latter case, the model (3.1) arises as a special limit
of a model of two types of bosons living on the sites and the links on a two-dimensional
square lattice where the compact gauge field takes care of a local constraint on the
number of bosons [61, 62]. For this case we have found that the model clearly exhibits
criticality, separating a confined phase from a deconfined phase, with varying critical
exponents, indicating a fixed line theory [1–3]. The deconfined Higgs phase corresponds
to a fractionalized charge insulator in the original model, whereas the confined phase
reflects a conventional Mott insulator [61,62]. As expected, in the limiting cases β → ∞
and κ→ ∞ we find critical exponents α and ν corresponding to the 3D Ising and 3D xy
universality classes respectively. In the case q = 3 charge is fractionalized in such a way
that the excitations carry charge e/3, and the situation is reminiscent of the ν = 1/3
fractional quantum Hall effect [63]. This case is particularly interesting because of the
existence of a tricritical point where, for values of κ below this point, the transition
changes from second order to first order. When q = 4, 5 the entire line separating the
two phases is critical.
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Figure 3.1: The phase diagram of the compact abelian Higgs model in d = 3 dimensions
for gauge charges q = 2, 3, 4, 5, from Reference [2]. For q = 3 the phase transition is
of first order for κ < κtri (indicated with a thick line). The other lines indicate second
order phase transitions. For q = 2 the critical exponents vary continuously along the
critical line, indicating a fixed line theory.

3.1.2 Dirac strings and magnetic monopoles

The critical properties of the model (3.1) are governed by its elementary excitations
which are topological defects in the form of Dirac strings and magnetic monopoles. These
objects are stable with respect to a gauge transformation. In the Villain approximation,
replacing the cosine terms by periodic quadratic parts, the model may be written in
terms of the topological defects as [55]

Z = Z0

∑

{J}

∑

{Q}

δ∆·J(j),qQ(j) exp


−4π2β

∑

j,k

(
J(j) · J(k) +

q2

m2
Q(j)Q(k)

)
D(j − k;m2)




(3.2)
where m2 = β/κ, and the Green’s function D(j;m2) is given by

(−∆2 +m2)D(j − k;m2) = δj,k. (3.3)

Here Z0 is the partition function for massive spin waves. This is an analytic function,
and will not contribute to the critical properties of the theory. The integer Dirac string
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field J(j) represents topological currents as closed loops and open strings. The integer
field Q(j), given by the local constraint ∆ · J(j) = qQ(j) in (3.2), is the monopole
charge on the lattice site j. Every open string of the field J(j) terminates on a magnetic
monopole. The constraint implies that the number of Dirac strings entering (exiting) a
single positive (negative) magnetic monopole is exactly q.

3.1.3 Confinement-deconfinement phase transition

In the absence of matter fields, compact U(1) gauge theories are known to be perma-
nently confined in d = 2 + 1 [54]. This can be measured through the Wilson loop which
is a non-local gauge invariant order parameter [56, 64]. In the confinement phase the
Wilson loop decays with an area law, implying a linearly confining attraction between
test charges, whereas in the deconfinement phase it decays with a perimeter law. The
Wilson loop has proven itself to be very useful in the absence of dynamical matter fields
to distinguish confined from deconfined phases, but is rendered useless by the presence
of them [65]. Hence, the Wilson loop and the related Polyakov loop, are no longer useful
order parameters for the model (3.1). Vestergren and Lidmar have suggested a large
Wilson loop order parameter for the case where the matter field is present [66,67]. From
the dual formulation (3.2) we turn to the continuum formulation for convenience and
define the winding number M as

M =

∫

S

J · dS (3.4)

where J is the continuum Dirac string field and the surface S forms a cross section of
the system. Let us define the closed path C on the entire perimeter of S. Then the order
parameter is given by

W̃ =

〈
exp

(
i

∮

C

A · dr

)〉
=

〈
exp

(
i

∮

S

B · dS

)〉

=

〈
exp

(
2πi

q

∮

S

J · dS

)〉
=

〈
exp

(
2πi

q
M

)〉 (3.5)

since the flux quantum is Φ0 = 2π/q and hence fractional for q ≥ 2 [66]. In the decon-
finement phase magnetic monopoles are confined in dumb-bell configurations of neutral
pairs bound together by q flux lines. In the confinement phase the flux lines condense
and percolate through the entire system. This implies that the large Wilson loop decays
with an area law in the confinement phase (like the ordinary Wilson loop), but in the de-

confinement phase the dumb-bell configurations will cancel out W̃ on average [66]. This
makes the large Wilson loop a suitable confinement-deconfinement order parameter for
the model (3.1).
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3.2 N-component Ginzburg–Landau model

Under the extreme conditions of pressures around 400 GPa hydrogen H2 is predicted
to dissociate into a metallic fluid of electrons and protons at low temperature [17, 68].
This system is projected to have superconducting phases with one protonic and one elec-
tronic superconducting condensate [15,18,19], which can be represented by two complex
scalar matter fields minimally coupled to one gauge field in a Ginzburg–Landau the-
ory [5–8, 14, 69, 70]. Since electrons cannot transform into protons and vice versa, the
matter field components are individually conserved and there are no Josephson tunneling
terms. Moreover, such a model may serve as an effective theory for easy-plane quan-
tum antiferromagnets [71–73]. Furthermore, multicomponent Ginzburg–Landau theories
apply to multiband superconductors [74, 75] like MgB2 where there are two order pa-
rameters corresponding to Cooper pairs made up of electrons living on different sheets
of Fermi surface. In that case however condensates are not independently conserved and
the U(1) × U(1) symmetry is broken to U(1) (see Appendix E in Reference [6]). We
have focused on N -component Ginzburg–Landau theories where Josephson tunneling is
forbidden by symmetry [5–8].

3.2.1 Liquid metallic hydrogen

The phase diagram of hydrogen has not yet been explored completely by experiments.
For sufficiently high densities it is generally assumed that hydrogen will form a metallic
alkali-like crystal [16,76–78]. A schematic phase diagram is presented in Figure 3.2. For
low densities experiments [79, 80] show a H2 liquid-solid phase transition line with a
positive decreasing slope. In Reference [15] this line is predicted to have a negative slope
for higher pressures. This prediction is supported in a paper Bonev et al. [68] where
they also claim to have found evidence of a first order liquid-liquid phase transition from
a molecular to a dissociating fluid and predict a triple point at around 300 GPa and
400 K where, above this pressure, the solid is expected to melt into a metallic liquid.
A predicted key feature for this metallic liquid at low temperature is the coexistence
of superconductivity of proton-proton and electron-electron Cooper pairs [15, 18, 19].
Furthermore, they predict that a metallic quantum fluid will exist at pressures near 400
GPa. High pressure experiments at 320 GPa and 100 K show that hydrogen is then in
the insulating solid phase and from these measurements it is predicted that hydrogen
will become metallic at around 450 GPa [81]. Hence, there is some consensus about the
fact that hydrogen will form a metallic state, but it is still not clear at what pressure
it will happen. From high temperature, high pressure shock experiments a conducting
fluid state of hydrogen is reported at 140 GPa and 2600 K [82]. Experiments with
laser-driven shock waves in a hydrogen sample pre-compressed in a diamond anvil cell
produce a conducting fluid state at pressures around 70 GPa with temperatures around
4000 K [83].

To reach the metallic dissociated electron-proton fluid phase at pressures of around 400
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Figure 3.2: A schematic phase diagram of hydrogen. Green line: For pressures up to 44
GPa a molecular hydrogen liquid-solid transition has been proven experimentally [79,80].
Blue line: The predicted continuation of the liquid-solid phase transition line [15, 68].
Red line: The insulator to metallic transition line. Black line: A liquid-solid phase
transition to a metallic alkali-like crystal state. It is not clear at what pressure this state
will form.

GPa for low temperatures is technically extremely demanding. The high pressure physics
group at the Lawrence Livermore National Laboratory, USA, led by C. Yoo create a
high pressure environment in diamond anvil cells (Figure 3.3). Such experiments are
also conducted by a group at the Carnegie Institution of Washington, USA, led by R.
Hemley, a group at Harvard University, USA led by I. F. Silvera and a group at Cornell
University, USA led by A. L. Ruoff. Being optically transparent, diamond anvil cells
are well suited for e.g. optical spectroscopy. Moreover, X-ray measurements, NMR and
calorimetry can be performed in these devices. The main limitation in this experimental
setup is that the diamonds break at high pressure due to crystal imperfections. However,
quite recently great progress has been made at the Carnegie Institution of Washington,
USA, in sputtering and microlithography techniques for the production of large single
crystal diamonds1 (Figure 3.4) [86]. This enables the production of large perfect single
crystals with good control of the shape of the crystal. High pressure environments for
hydrogen at about 450 GPa at low temperatures may therefore be relatively close to
experimental realization.

1The production of large single crystal diamonds at the Carnegie Institution of Washington, D.C.,
USA was reported in a National Science Foundation (NSF) press release May 16 2005 [84] and in a press
release from the Carnegie Institution of Washington the same date [85].
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Figure 3.3: The membrane diamond anvil cell (DAC) designed at the Lawrence Liver-
more Laboratory. Hydrogen is confined between two diamonds. Pressure is applied to
the diamonds by injecting inert gas inside a flexible membrane causing it to expand.
The membrane expansion applies force to the DAC pistons, and the pressure between
the diamonds increases. With this setup the pressure can be controlled very precisely.
Credit: Lawrence Livermore National Laboratory, University of California, USA.

3.2.2 Action

We have investigated the phase diagram of a Ginzburg–Landau theory of N individually
conserved bosonic matter fields, each coupled to one and the same U(1) non-compact
gauge field in 3 dimensions with no Josephson coupling terms between order parameter
components, with and without an external magnetic field [5–8]. The model is defined

by N complex scalar fields {Ψ
(α)
0 (r) | α = 1, . . . , N} each representing superconducting

condensates, coupled through the charge e to a fluctuating gauge field A(r), with the
action

S =

∫
d3r

[
N∑

α=1

|(∇− ieA(r))Ψ
(α)
0 (r)|2

2M (α)
+ V ({Ψ

(α)
0 (r)}) +

1

2
(∇×A(r))2

]
, (3.6)

where M (α) is the mass of condensate species α. The potential generally contains terms
like

V ({Ψ
(α)
0 (r)}) =

N∑

α=1

a(α)|Ψ
(α)
0 |2 +

N∑

α=1

N∑

η=1

b(α,η)|Ψ
(α)
0 |2|Ψ

(η)
0 |2

+
∑

α6=η

c(α,η)(Ψ
(α)
0 )∗Ψ

(η)
0 + . . .

(3.7)

where a(α), b(α) and c(α) are real numbers. Assuming that the individual condensates

are conserved, the potential V ({Ψ
(α)
0 (r)}) must be a function of |Ψ

(α)
0 (r)|2 only, and

c(α,η) = 0 for every α and η.
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Figure 3.4: A five carat diamond laser cut from a 10-carat single crystal produced by
a high growth rate chemical vapor deposition process produced by researchers at the
Carnegie Institution of Washington, D.C., USA. Credit: Carnegie Institution.

3.2.3 Vortex loops and Abrikosov lattice

The critical properties of the model (3.6) are governed completely by the fluctuations
of the topological excitations at the critical point. Each condensate is represented by a

complex field Ψ
(α)
0 (r) which can be expressed with an amplitude and a phase, Ψ

(α)
0 (r) =

|Ψ
(α)
0 (r)|eiθ(α)(r). For each condensate Ψ

(α)
0 (r) the topological defects are vortex loops

originating from an integer of 2π windings of the phase θ(α)(r), defined as
∮

C

∇θ(α)(r) · dl = 2πn(α) (3.8)

where C is a path around the vortex core and n(α) is the winding number. This object
is stable with respect to a gauge transformation. For any vortex configuration defined
by (3.8), there will be a mathematical singularity in ∇θ(α)(r) at the origin. To avoid
this singularity the amplitude of the order parameter is defined to go to zero at the

origin [38]. For each condensate Ψ
(α)
0 the Ginzburg–Landau parameter ξ

(α)
GL is defined as

ξ
(α)
GL =

√
~2

2M (α)a
(α)
0

|τ |−1/2 (3.9)

where a(α) = a
(α)
0 τ , a(α) is defined in (3.7), and τ is the reduced mean field temperature.

The parameter ξ
(α)
GL reflects how the amplitude goes to zero and therefore defines the

size of the vortex core for every condensate species α.

If we vary (3.6) with respect to the gauge field A we obtain the equation for supercurrent

J =

N∑

α=1

[
ie

2M (α)

{
Ψ

(α)
0

∗
∇Ψ

(α)
0 − Ψ

(α)
0 ∇Ψ

(α)
0

∗}
+ e2

(
|Ψ

(α)
0 |2

M (α)

)
A

]
. (3.10)

Let us consider a vortex where the phase θ(η)(r) has a 2π winding around the vortex core,
while other phase fields do not have nontrivial windings around the core. Expressing A
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from (3.10), and integrating along a path around the vortex core at a distance larger
than the magnetic penetration length λ, we obtain an expression for the magnetic flux
encompassed by the path given by

Φ(η) =

∮
A · dl = Φ0

|Ψ
(η)
0 |2

M (η)

[
N∑

α=1

|Ψ
(α)
0 |2

M (α)

]−1

, (3.11)

where Φ0 = 2.07 · 10−15Tm2 is the flux quantum. In the case N > 1 a single vortex
of flavor η will therefore carry fractional flux. Furthermore, such a vortex has a log-
arithmically divergent energy [5, 6, 70]. Only a composite vortex where all the phase
fields θ(α)(r) have 2πn winding around the same vortex core carries integer flux and has
finite energy. The composite vortices are responsible for the magnetic properties of the
system at low temperatures while thermal excitations in the form of loops of individual
fractional-flux vortices are responsible for the critical properties of the system in the
absence of an external field. In N = 1-component Ginzburg–Landau theory in finite ex-
ternal magnetic field the ground state is a hexagonal Abrikosov vortex lattice of vortices
with unitary flux Φ0. Equivalently, in the N > 1-component case with finite external
magnetic field the ground state is an Abrikosov vortex lattice of composite vortices with
flux Φ0 [6–8, 14].

We study the model (3.6) on a d=3 dimensional cubic lattice with lattice constant
a = 1. In the lattice formulation the differential operator ∇ becomes a forward difference
operator ∆ such that

∇µΨ
(α)
0 → ∆µΨ

(α)
0 (r) = Ψ

(α)
0 (r + uµ) − Ψ

(α)
0 (r) (3.12)

where uµ is the unit vector in direction µ and r is defined in every lattice point. Fur-
thermore, a lattice equivalent of the definition of the vortex winding number (3.8) must
be provided. The vortices are defined on the dual lattice points. A suitable definition of
the winding number on the lattice is

∑

2

(∆µθ
(α) − eAµ)−π,π = 2πn(α) (3.13)

meaning that the sum around a single plaquette on the lattice must be taken in such a
way that on each link in direction µ the quantity ∆µθ

(α) − eAµ must be forced into the
primary interval [−π, π) by adding integers of ±2π. By this definition gauge invariance
of the topological objects is fulfilled. Moreover, since the vortices are defined on the
dual lattice points, the problem with a singular vortex origin in the continuum model
is avoided by construction. This way the lattice works as a natural ultraviolet cutoff in
the system.

To study critical phenomena in the model (3.6) we use the phase-only approximation

Ψ
(α)
0 (r) = |Ψ

(α)
0 | exp[iθ(α)(r)] where |Ψ

(α)
0 | is constant for every α ∈ [1, . . . , N ], i.e.

we freeze out amplitude fluctuations of each individual matter field. The model we
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study is therefore the generalization to arbitrary N of the frozen-amplitude one gap
lattice superconductor model also known as the London superconductor model [87].
The charged phase transition from a superconductor to a normal conductor is governed
by a vortex loop phase transition for which the vortices interact through a screened
potential [20,21]. The phase-only approximation is valid under the assumption that the
amplitude of the order parameter fields, whose square gives the density of Cooper pars,
varies insignificantly compared to the fluctuations in the phase at the critical point. For
a charged phase transition, which is characterized by short-range vortex interaction, this
requirement is met by considering systems where the size of the vortex core is smaller
than the lattice spacing whereas the magnetic penetration depth λ is larger than the
lattice spacing. Hence, in charged phase transitions the phase-only approximation is
only valid for type II superconducting condensates where κ = λ/ξGL is large.

The superconducting state emerges when phase coherence of the Cooper pair condensate
field sets in. The phase transition from a type II superconductor to the normal state is not
driven by the vanishing of the order parameter amplitude. Amplitude fluctuations are a
measure of thermal dissociation of Cooper pairs, not of destruction of superconductivity
which is defined via long range phase coherence. Moreover, the amplitude of the order
parameter is finite across the superconducting phase transition [6, 20, 21]. The phase
transition is driven by thermally excited transverse phase fluctuations or vortex loops
[21, 88]. Below, we identify one charged mode and N − 1 neutral modes in the N -
component model (3.6). The critical fluctuations of the charged mode are dominated by

the condensate Ψ
(η)
0 with the largest bare phase stiffness |Ψ

(η)
0 |2/M (η). Consequently the

charged critical sector of the model (3.6) is governed by transverse phase fluctuations

in Ψ
(η)
0 alone, and the phase-only approximation for this condensate is valid only if

Ψ
(η)
0 is a large κ type II superconducting condensate [6]. Moreover, the N − 1 neutral

vortex modes interact through a long range potential. Generally there are N −1 neutral
superfluid phase transitions which are governed by proliferation of long range interacting
neutral vortex modes. Therefore, the phase transitions described below, where neutral
modes appear, do not significantly depend on whether the corresponding condensates
are type I or type II [6]. This can be seen from the following argument. Let us consider
the general N > 1 case where the bare phase stiffnesses of each condensate are very
different. At the lowest critical temperature Tc1 the critical fluctuations are dominated
by the condensate with the lowest bare phase stiffness. Around Tc1 the gauge field
is massive due to the Higgs mechanism which came into play at the highest critical
temperature. Hence, the phase transition at Tc1 is a neutral critical point dominated
by fluctuations of the condensate with the lowest bare phase stiffness, the phase only
approximation is valid and does not depend on whether this condensate is type I or
type II. The behavior of the field with the lowest bare phase stiffness above Tc1 is not
of interest, it is only the remaining fields with higher critical temperatures that matter.
We can apply the same argument for all the N − 1 neutral critical points, and hence we
may use the phase-only approximation with confidence for the corresponding condensate
fields.
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3.2.4 Neutral and charged modes

In the phase-only approximation the model (3.6) can be rewritten in terms of one charged
vortex mode which couples to the gauge field A and N−1 neutral vortex modes. Before
we proceed further, it is useful to give another form of the action2 [6]. For brevity let
us introduce the bare phase stiffness of the matter field with flavor index α defined as

|ψ(α)|2 = |Ψ
(α)
0 |2/M (α), and write the action (3.6) as

S =

∫
d3r





1

2Ψ2

(
N∑

α=1

|ψ(α)|2∇θ(α)(r) − eΨ2A(r)

)2

+
1

2
(∇×A(r))2

+
1

4Ψ2

N∑

α,β=1

|ψ(α)|2|ψ(β)|2
(
∇[θ(α)(r) − θ(β)(r)]

)2



 ,

(3.14)

where

Ψ2 ≡

N∑

α=1

|ψ(α)|2. (3.15)

The first term in (3.14) represents the charged mode coupling to the gauge field A, and
the remaining terms are the N − 1 neutral modes which do not couple to A. In this
formulation it is important to keep in mind that the identification of charged and neutral
modes does not imply that the upper terms in (3.14) decouple from the lower terms,
they are still coupled through the phase variables θ(α)(r).

3.2.5 Dual formulation

The identification of charged and neutral modes can be seen very clearly in the dual
formulation of the action (3.6), which is explained in detail in Reference [6] (see especially
Appendix B). Starting from the lattice formulation of (3.6) with lattice constant a = 1
and system size L × L × L in the phase-only approximation and introducing inverse
temperature β = 1/T , the action reads

S =
∑

r

{
−β

N∑

α=1

|ψ(α)|2
3∑

µ=1

cos[∆µθ
(α)(r) − eAµ(r)] +

β

2
[∆ ×A(r)]2

}
. (3.16)

To be able to handle the cosine we use the Villain approximation [89] which essentially
approximates the cosine with a harmonic potential which is periodized by the introduc-
tion of a new integer valued field. This shifts the critical temperature, but it does not

2See Appendix A in Reference [6] for a detailed description of the identification of charged and
neutral vortex modes.
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alter the topological excitations of the model or critical properties like critical exponents.
In the Villain approximation the partition function reads

Z =

∫ ∞

−∞

DA
N∏

γ=1

∫ π

−π

Dθ(γ)
N∏

η=1

∑

{n(η)}

exp(−S)

S =
∑

r

[
N∑

α=1

β|ψ(α)|2

2
(∆θ(α) − eA + 2πn(α))2 +

β

2
(∆ ×A)2

]
,

(3.17)

where n(α)(r) are integer vector fields ensuring 2π periodicity, and the lattice position
index vector r is suppressed. For N = 1 it has been shown that thermal fluctuations in
this model excite topological defects in form of closed vortex loops [87]. At the critical
temperature the system undergoes a vortex loop proliferation phase transition [21,88,90].
In the vortex representation the partition function is [5, 6]

Z =
N∏

α=1

∑

{m(γ)}

δ∆·m(γ),0e
−SV

SV = π2
∑

r,r′

∑

α,η

m(α)(r)D(α,η)(r − r′)m(η)(r′),

(3.18)

where the integer vector fields m(α)(r) are defined on the dual lattice and represent
vortex segments originating from 2π windings in the corresponding phase fields θ(α)(r).
Here, δx,y is the Kronecker-delta, and the discrete Fourier transform [91] of the vortex
interaction potential is

D̃(α,η)(q) = 2β|ψ(α)|2
[
|ψ(η)|2/Ψ2

|Qq|2 +m2
0

+
δα,η − |ψ(η)|2/Ψ2

|Qq|2

]
, (3.19)

where Ψ2 is given by (3.15). Here, the bare mass m0 is the inverse bare screening length

given bym2
0 = e2Ψ2, and |Qq|

2 =
∑3

µ=1(2 sin(qµ/2))2 is the Fourier representation of the
lattice Laplace operator, where qµ = 2πnµ/L with nµ ∈ [1, . . . , L]. Note that in (3.18)
the vortex segments are constrained with ∆ · m(α) = 0 for every flavor α ∈ [1, . . . , N ]
on every dual lattice site. This restricts all the integer vortex fields to form closed loops
individually.

In the trivial case e = 0 the action (3.6) reduces to pure Maxwell theory which has
no phase transition and N decoupled 3D xy models. The vortex representation of the
interaction potential reduces to

D̃(α,η)(q) = 2β|ψ(α)|2
δα,η

|Qq|2
, (3.20)

which is essentially the discrete Fourier transform of the Coulomb interaction. More-
over, (3.20) is exactly the vortex loop interaction matrix of N decoupled neutral 3D xy
theories.
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The discrete Fourier transform of the vortex interaction matrix (3.19) clearly reflects the
existence of neutral and charged vortex modes in the theory. The first term in (3.19)
is a Yukawa screened potential, this identifies the charged vortex mode. The second
term mediates long range Coulomb interactions between vortex fields and identifies the
neutral vortex modes. If N = 1 the latter cancels out exactly and we are left with the
well studied vortex theory of the Ginzburg–Landau model which has a charged fixed
point for e 6= 0 [46, 92]. For N ≥ 2 (3.18) is the theory of vortex loops of N flavors
interacting through a long range Coulomb potential with an additive screened part.

The above vortex system may be formulated as a continuum field theory [5,6], introduc-
ing N complex matter fields φ(α)(r) (one for each vortex species), minimally coupled to
dual gauge fields h(α)(r). This generalizes the dual theory for N = 1 in Reference [90].
The dual theory reads

Sdual =

∫
d3r

[
N∑

α=1

(
m2

α|φ
(α)(r)|2 + |(∇− ih(α)(r))φ(α)(r)|2 +

(∇× h(α)(r))2

2β|ψ(α)|2

)

+
e2

2β

(
N∑

α=1

h(α)(r)

)2

+
∑

α,η

g(α,η)|φ(α)(r)|2|φ(η)(r)|2

]
.

(3.21)

Here we have written the model back in the continuum formulation, and we have added
chemical potential (core-energy) terms for the vortices, as well as steric short-range
repulsion interactions between vortex elements. In the N = 1 case, an RG treatment of

the term e2

2βh2 yields

∂e2

∂ ln l
= e2, (3.22)

and hence this term scales up, suppressing the dual vector field h [5, 6]. The N = 1
charged theory in d = 2 + 1 therefore dualizes into a |φ|4 theory and vice versa [92].

Correspondingly, for N ≥ 2, (3.22) suppresses
∑N

α=1 h(α), but not each individual dual
gauge field. For the particular caseN = 2, assuming the same to hold, the suppression of∑2

α=1 h(α) yields that h(2) = −h(1) and we end up with a gauge theory of two complex
matter fields coupled minimally to one gauge field, which was also precisely the starting
point. Thus the theory is self-dual for N = 2 [72, 73]. Generally, the dual and the
original version of the action describes the same system and the same partition function.
This means that they must give the same energy-dependent critical exponents such as
α and ν.

3.2.6 Critical phenomena and phase diagram

Elitzur’s theorem [35] states that a (local) gauge symmetry cannot be spontaneously
broken. This implies that no local order parameter can be defined in a model described
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Figure 3.5: Phase transitions in the N -flavor London superconductor with different bare
stiffnesses of the N order parameter components in zero magnetic field [6]. There are N
critical points. The green line is the gauge field mass mA in units of m0, where m0 is
defined in (3.19). At the highest critical temperature the system becomes superconduct-
ing (SC) via a phase transition in the inverted 3D xy universality class. At the lower
transitions the system develops neutral superfluid (SF) modes in the superconducting
state via a series of N − 1 phase transitions, all in the 3D xy universality class.

by a locally gauge invariant action. Hence, probing the phase transition of the charged
vortex mode, which is associated with a local gauge symmetry, requires measurements
of gauge invariant quantities. To map out the critical properties of the model for N = 2
and N = 3 we use Monte Carlo simulations to measure the specific heat critical exponent
α and the correlation length critical exponent ν through the third moment of the action
[2, 5–7] (see Sections 2.3.2 and 4.7). Moreover, we measure the gauge field mass mA

which is the inverse of the London magnetic penetration depth λ and therefore a gauge
invariant quantity (see Section 2.3.3) [5, 6]. For finite magnetic field and N = 2 we
measure the structure factor of the composite Abrikosov lattice as well as the vortex
co-centricity. The latter essentially probes the amount of composite vortices in the
system. Furthermore, in Reference [8] we sample the superfluid density through the
helicity modulus. The critical properties of the action (3.6) are described thoroughly in
References [5–8], the main results are presented here.

In zero external magnetic field with N = 2 and N = 3 complex matter field components
with well separated bare phase stiffnesses |ψ(α)| we find one charged critical point and
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T < Tc1 Tc1 < T < Tc2

Figure 3.6: Snapshots of the vortex lattice generated from Monte Carlo simulations of
the N = 3-component London superconductor model in zero magnetic field with bare
phase stiffnesses |ψ(1)|2 = 0.33, |ψ(2)|2 = 0.67, and |ψ(3)|2 = 1.33 [6]. The system
experiences three vortex loop proliferation phase transitions at the critical temperatures
Tc1, < Tc2, < Tc3. Left panel: Superconducting state with two superfluid modes.
For low temperatures T < Tc1 there are mostly small vortex loops originating from

the condensate Ψ
(1)
0 (thin red vortices). Right panel: Superconducting state with one

superfluid mode. At the charged critical point Tc1 the red vortices proliferate and form

loops at all length scales. The vortices which originate from the condensate Ψ
(2)
0 (thicker

blue vortices) appear as small loops.

N − 1 neutral critical points. This is partly based on measurements of the critical
exponents α and ν which we find to agree with 3D xy values. However, the 3D xy
universality class and the inverted 3D xy universality class have the same values for α
and ν due to duality [92]. To classify the criticalities the gauge field mass mA = 1/λ
was measured. A sketch of the results, generalized for arbitrary N and well separated
bare phase stiffnesses is shown in Figure 3.5. For high temperatures we find that the
gauge mass is zero, corresponding to λ → ∞ and hence a normal state. At the highest
critical temperature the gauge mass becomes finite through a second order vortex loop
proliferation phase transition. Hence, this is a charged phase transition in the inverted
3D xy universality class. In this phase λ is finite, corresponding to a superconducting
state. Going further down in temperature we approach N − 1 new critical points where
the gauge mass has a kink due to a vortex loop proliferation phase transition of neutral
modes. These are neutral critical points in the 3D xy universality class. At these
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transition points superfluid modes enter the system. Superfluid states arising in a system
of charged particles is a novel property of quantum fluids [5]. Vortex field snapshots from
Monte Carlo simulations of theN = 3 model in zero external magnetic field are presented
in Figures 3.6 and 3.7.

Tc2 < T < Tc3 T > Tc3

Figure 3.7: Snapshots of the vortex lattice generated from Monte Carlo simulations of
the N = 3-component London superconductor model in zero magnetic field with bare
phase stiffnesses |ψ(1)|2 = 0.33, |ψ(2)|2 = 0.67, and |ψ(3)|2 = 1.33 [6]. The system
experiences three vortex loop proliferation phase transitions at the critical temperatures
Tc1, < Tc2, < Tc3. Left panel: Superconducting state. The blue vortices proliferate in
a plasma of red vortices at the neutral critical point Tc2. At the temperature where the

snapshot is taken there are small loops of vortices originating from the condensate Ψ
(1)
0

(thick golden vortices). Right panel: Normal state. The golden vortex loops associated
with the highest bare phase stiffness proliferate at the neutral critical point Tc3, creating
a vortex loop plasma of all the vortex components.

In finite magnetic field the N = 2 model exhibits phases with no counterpart in the
N = 1 Ginzburg–Landau model [6]. This is a model for liquid metallic hydrogen where
the two condensates represent electron Cooper-pairs and protonic Cooper-pairs where
the bare phase stiffnesses are well separated due to the great difference in the mass of the
electron and proton. Let us denote the vortices originating from 2π winding in the phase
with a large bare phase stiffness |ψ(α)| as heavy vortices and the other vortex species as
light vortices. The phase diagram for a system with N = 2 and well separated phase
stiffnesses is shown in Figure 3.8. The ground state of the system in external magnetic
field is an Abrikosov lattice of composite vortices, as described in Section 3.2.3. This is
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Figure 3.8: A schematic phase diagram of different phases of vortex matter and phase
transition lines in the N = 2 model in the regime |ψ(1)| 6= |ψ(2)| in finite magnetic field
from Reference [6]. At temperatures T c

M, T 2
M, and TSLM the melting of the composite

vortex lattice, the sublattice of heavy vortices and the sublattice of the light vortices
occurs, respectively. At TLP the composite vortices decompose. In the low temperature
low magnetic field phase the system is a superconducting superfluid. Superfluidity van-
ishes upon increasing temperature above TSLM, while the magnetic field is kept low. At
TSLM the Abrikosov lattice of the light vortices melts through a vortex loop proliferation
phase transition. As temperature is increased further superconductivity is lost as well
at T 2

M and the Abrikosov lattice of heavy vortices melts [7]. Snapshots of these low field
phase transitions are shown in Figure 3.9. Starting from the superconducting superfluid
state for higher magnetic field, the system looses superconductivity as temperature is
increased beyond T c

M, and the system is in a superfluid phase. Hence, a purely superfluid
phase may arise from two charged condensates. This is a novel phenomenon with no
counterpart among known quantum fluids. At the phase transition T c

M the composite
vortex lattice melts, but the composite vortices remain co-centered. As temperature
is increased above TLP the system looses superfluidity through a vortex loop prolifera-
tion transition of the light vortices [8]. Snapshots of the vortex configurations in these
high-field phases are shown in Figure 3.10

a superconducting superfluid state. When the temperature is increased to the critical
temperature TSLM the light vortices will tear themselves off the composite vortex lattice
in a vortex loop proliferation transition while the heavy vortices remain in a lattice (see
Figure 3.9). This is a phase transition in the 3D xy universality class. In this state
the system is a superconductor. As temperature is increased further, the heavy vortex
lattice will melt in a first order phase transition at T 2

M. The system is then in the normal
state. Upon increasing temperature from the ground state in a high external magnetic
field, the composite vortex lattice will melt at T c

M while the composite vortices still are
co-centered (see Figure 3.10). The system then looses superconductivity and is in a
superfluid state. The fact that a system of charged condensates can exhibit a superfluid
state is a novel phenomenon which as no counterpart among known quantum fluids. As
the temperature is increased up to the critical temperature TLP the system undergoes a



30 Models and applications

T < TSLM TSLM < T < T 2
M T > T 2

M

Figure 3.9: Snapshots of the vortex states taken from Monte Carlo simulations of the
two-component London superconductor model in a low magnetic field taken at three
different temperatures T = 0.17 (T < TSLM), T = 0.37 (TSLM < T < T 2

M), and T = 2.38
(T > T 2

M) (see Figure 3.8) [7]. The snapshots are extracted from a small segment
(18 × 18 × 18) of the L = 96 vortex system. Left panel: Superconducting superfluid
phase. For T < TSLM the vortices are arranged in a co-centered lattice. Protonic
(red, thin) and electronic (blue, thick) vortices only perform small excursions from each
other. Middle panel: Superconducting phase. For TSLM < T < T 2

M the electronic
vortices remain in a lattice. At the critical temperature TSLM the protonic vortex lattice
melts through a vortex loop proliferation transition in the 3D xy universality class, and
superfluidity is lost. Right panel: Normal phase. For T > T 2

M superconductivity is
lost due to melting of the electronic vortex lattice at T 2

M.

vortex loop phase transition and becomes a normal fluid.

Experimental realization of liquid metallic hydrogen at low temperatures remains as
a great challenge due to the very high pressures which are required. However, the
development of techniques for producing very large single diamond crystals for diamond
anvil cells will most probably enable sufficiently high pressures [84–86]. Upon realizing
low temperature liquid metallic hydrogen the phase diagram Figure 3.8 can be mapped
out by measuring superfluidity and superconductivity. The small size of the diamond
anvil cells allows rotation of the sample which will produce a vortex lattice similar to what
is measured in superfluid helium 4He. In a finite magnetic field the Abrikosov vortex
lattice can be measured by probing magnetic susceptibility with inductive coils [93]. We
predict that such measurements on liquid metallic hydrogen in a high magnetic field will
reveal a purely superfluid phase where superconductivity is lost. This is a novel neutral
quantum fluid which arises from a charged condensate. Starting from a superconducting
superfluid phase at high fields where the composite vortices form an Abrikosov lattice, the
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T < T c
M T c

M < T < TLP T > TLP

Figure 3.10: Snapshots of vortex states for the two-component London superconductor
model in a high magnetic field taken at three different temperatures T = 0.50 (T < T c

M),
T = 0.72 (T c

M < T < TLP), and T = 0.86 (T > TLP) (see Figure 3.8) [8]. The
snapshots are extracted from a small segment (15 × 15 × 15) of the L = 120 vortex
system. Left panel: Superconducting superfluid phase. For T < T c

M the vortices are
arranged in a co-centered lattice. Protonic (red, thin) and electronic (blue, thick) vortices
only perform small excursions from each other. Middle panel: Superfluid phase. For
T c

M < T < TLP the composite vortex lattice has melted, and the composite vortices do
not stick to the hexagonal lattice which is marked at the bottom of the cube as a guide
to the eye. The electronic and protonic vortices perform stronger excursions from each
other, but essentially remain co-centered. Right panel: Normal phase. For T > TLP

the superfluidity is lost in a vortex loop proliferation transition and the electronic and
protonic vortices are no longer co-centered.

superfluid phase is found by increasing the temperature such that the composite vortex
lattice melts at T c

M and the composite vortices remain co-centered (see Figure 3.10). This
phase transition may be measured from magnetic susceptibility [93]. Upon increasing the
temperature, the next phase transition at TLP is more subtle because here the composite
vortex lattice is already melted, and the light vortices proliferate. However, this can be
measured by flux noise measurements [94]. The phase transition from a superconducting
superfluid to a superconductor at TSLM is governed by proliferation of light vortices
whereas the heavy vortices remain in an Abrikosov lattice (see Figure 3.9). Since the
heavy vortex lattice remains, flux noise measurements should be applied for probing this
phase transition as well. Upon increasing temperature the phase transition at T 2

M where
the heavy vortex lattice melts should be detectable from susceptibility measurements
[93].





4 The Monte Carlo scheme

The partition function Z introduces the temperature in a statistical mechanical model.
Through Z we are able to find expressions for measurable quantities like the specific
heat. However, the expressions involve a sum over all states of the system, and it can be
a tremendous task to evaluate them, especially in the thermodynamic limit (V → ∞).
A small three-dimensional cubic system of 10 × 10 × 10 Ising spins has 21000 ≈ 10300

states. Today, an ordinary computer can sample about 108 such states in 24 hours,
which is a very small fraction of the total number of states. To be able to evaluate the
partition function within reasonable time the Monte Carlo integration method has been
developed.

4.1 Monte Carlo integration

The expectation value 〈Q〉 of some observable Q for a system at temperature T = 1/β
with the Hamiltonian H is given by

〈Q〉 =

∫
DΨQ(Ψ)e−βH(Ψ)

∫
DΨe−βH(Ψ)

(4.1)

where the partition function Z =
∫
DΨe−βH(Ψ) is the sum over all states Ψ of the

system. Here, e−βH(Ψ) are Boltzmann weights, and e−βH(Ψ)/Z is the probability that
the system is in the state Ψ.

The Monte Carlo method for evaluating integrals such as (4.1) is based on the central
limit theorem [95]. Let us consider the following general integral

I =

∫
ddxf(x)P (x) (4.2)

where x is a vector in d-dimensions and P (x) is a probability distribution satisfying the
conditions

P (x) ≥ 0
∫

ddxP (x) = 1. (4.3)

33
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The integral (4.2) can be approximated by evaluating the average of N independent
samples of the probability distribution P (x)

X =
1

N

N∑

i=1

f(xi)

∣∣∣∣∣
xi∈P (x)

(4.4)

where the variable xi is sampled according to the function P (x). From the central
limit theorem it can be shown that independent of the distribution P (x), f(x) or the
dimension d, for large N the average X is normally distributed about I with variance
given by the unbiased estimator

Var(X) =
N

N − 1


 1

N

∑

i

f(xi)
2 −

(
1

N

∑

i

f(xi)

)2

 . (4.5)

This provides as a framework for evaluating integrals such as the expectation value in
(4.1). However, the fact that the integral (4.1) can be evaluated through an estimator
such as (4.4) does not resolve the problem of an extremely large phase space. The
concept of importance sampling resolves this.

4.2 Importance sampling

The result above implies that in principle the estimator (4.4) can be evaluated over
a set of states Ψα which are chosen with equal probability. However, to increase the
efficiency of the evaluation we choose to sample the states Ψα according to the Boltzmann
probability distribution [96]. Then only the states which contribute significantly to the
integral (4.1) will be a part of the sum (4.4). Moreover, by choosing the states in this
way the variance (4.5) is minimized [95, 97]. This is called importance sampling. The
strategy is to pick N states such that the probability that a particular state Ψη is chosen
is

p(Ψη) =
e−βH(Ψη)

Z
. (4.6)

Then the estimator for 〈Q〉 is given by the simple expression

〈Q〉 =
1

N

N∑

α=1

Qα (4.7)

where Qα is the value of Q for a given state Ψα. This approach significantly reduces
the number of states which are required to evaluate the integral (4.1) with a low signal-
to-noise ratio. The next question is how to pick the states according to the Boltzmann
probability distribution. The Markov process takes care of this.
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4.3 The Markov process

The Markov process is the generating engine for the set of states which will be used
to evaluate (4.7). Going from a state Ψα the Markov process takes the system to a
new state Ψη in a random fashion. The probability to generate a state Ψη given Ψα

is the transition probability P(Ψα → Ψη). Such probabilities must only depend on the
properties of the current states Ψα and Ψη, and not on any other states the system has
passed through. Furthermore, the transition probabilities must satisfy the constraint

∑

η

P(Ψα → Ψη) = 1. (4.8)

In a Monte Carlo simulation the Markov process is used repeatedly to generate a Markov
chain of states. The transition probabilities of the Markov process must be chosen care-
fully such that when it is run long enough starting from any state it will eventually
produce a succession of states which appear with probabilities given by the Boltzmann
distribution. When this point is reached we say that the process has come to the equi-
librium and the system is warmed up. To be able to reach such states the conditions of
ergodicity and detailed balance must be fulfilled.

In the context of Monte Carlo integration ergodicity is the requirement that the Markov
process can reach any state of the system from any other state in a finite number of
steps in the Markov chain. This enables the Markov chain to reach the true equilibrium
and makes it possible to sample the entire phase space.

To ensure that the Boltzmann probability distribution is reached at equilibrium we
impose the condition of detailed balance. In general, at equilibrium the system must
fulfill the following condition

∑

η

p(Ψα)P(Ψα → Ψη) =
∑

η

p(Ψη)P(Ψη → Ψα) (4.9)

which means that the rate at which the system makes transitions into and out of any
state must be equal. By applying (4.8) to the sum on the left hand side of this expression
we find that

p(Ψα) =
∑

η

p(Ψη)P(Ψη → Ψα). (4.10)

However, this condition is not sufficient to reach the Boltzmann probability distribution.
Let us dwell a bit on the reason for this [96]. In Markov process theory, the transition
probability P(Ψα → Ψη) is defined as an element of the Markov matrix P. The proba-
bility that the system is in the state Ψα at a given step t in the Markov chain is denoted
wα(t). In this notation, the probability that the system is in any state at the step t+ 1
is given by

w(t+ 1) = Pw(t). (4.11)
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When the Markov process reaches an equilibrium state at t→ ∞ then

w(∞) = Pw(∞), (4.12)

which is just a restatement of (4.10). However, there is nothing prohibiting the system
from going to a dynamic equilibrium where

w(∞) = Pnw(∞), (4.13)

in which the probability distribution w(∞) rotates around a number of different values.
Consequently the system is not guaranteed to reach and remain with the desired Boltz-
mann probability distribution as t→ ∞. To avoid this feature we impose the condition
of detailed balance on the system

p(Ψα)P(Ψα → Ψη) = p(Ψη)P(Ψη → Ψα). (4.14)

Clearly, systems which satisfy this condition also satisfy (4.9). The constraint (4.14)
means that the rate at which transitions from the state Ψα to Ψη happen is the same as
the reverse. In the case of dynamic equilibrium these rates cannot be the same during
the steps t of the Markov chain because the effective transition probability matrix Pn

changes. Hence, through the condition of detailed balance (4.14) the system will come to
a stable equilibrium after a sufficient number of Markov steps. Moreover, it can be shown
that as t → ∞, w(t) will tend exponentially towards the eigenvector corresponding to
the largest eigenvalue of P, and that the largest eigenvalue of P is one [96]. In matrix
form the equilibrium condition (4.10) is

p = Pp (4.15)

which is nothing but the eigenvalue equation for the largest eigenvalue of P, namely
one, with the corresponding eigenvector p which is the desired Boltzmann probability
distribution (4.6). Consequently, as t → ∞ the probability distribution w(t) will tend
to the desired probability distribution p exponentially in Markov steps.

From the condition of detailed balance (4.14) we find that

P(Ψα → Ψη)

P(Ψη → Ψα)
=
p(Ψη)

p(Ψα)
= e−β[H(Ψη)−H(Ψα)] ≡ e−∆S . (4.16)

This leaves us with some freedom in how to choose the transition probabilities. One
method of choosing P(Ψα → Ψη) is called the heat bath update. We will focus on the
traditionally most common method called the Metropolis algorithm.

4.4 The Metropolis algorithm

The Metropolis algorithm was constructed to be able to make an ensemble of Boltzmann
distributed variables Ψα from a set of uniformly distributed numbers [98]. Two very im-
portant requirements must be fulfilled namely, ergodicity and detailed balance (4.16).
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Within the Metropolis algorithm one starts from an initial state Ψ0, and replaces iter-
atively an old state Ψω by a new one Ψν . Once the equilibrium distribution is reached,
repeated applications of the algorithm keeps the states in the same ensemble. The new
state should be generated from the old state in such a way that if fulfills the criterion of
detailed balance. The Metropolis algorithm has the following set of rules:

1. Generate (randomly) a new candidate state Ψξ.

2. Calculate ∆S = − ln[p(Ψξ)/p(Ψω)].

3. If ∆S < 0 set the new state Ψν = Ψξ.

4. If ∆S > 0 set the new state Ψν = Ψξ with probability p(Ψξ)/p(Ψω), otherwise
retain the old state Ψν = Ψω.

5. Do next iteration.

Summarizing the steps 3. and 4. we find that the probability of accepting the candidate
Ψξ is given by P(Ψω → Ψξ) = min(1, e−∆S). The reverse transition probability is
P(Ψξ → Ψω) = min(1, e∆S). This yields

P(Ψω → Ψξ)

P(Ψξ → Ψω)
=

min(1, e−∆S)

min(1, e∆S)
=

{
e−∆S

1 =
p(Ψξ)
p(Ψω) ; ∆S ≤ 0

1
e∆S =

p(Ψξ)
p(Ψω) ; ∆S ≥ 0

(4.17)

because p(Ψα) is Boltzmann distributed. This shows that the Metropolis algorithm
fulfills the detailed balance constraint (4.16).

4.5 Measurements

The Metropolis algorithm implements the concept of importance sampling. Assuming
that new states are generated such that ergodicity is fulfilled, the method fulfills the con-
dition of detailed balance and produces an ensemble of Boltzmann distributed states.
Measurements of the physical quantity 〈Q〉 can then be performed using this ensemble,
and expectation values are found from the estimator (4.7). From the central limit the-
orem we know that 〈Q〉 is normally distributed and we can calculate the variance from
(4.5).

However, the Metropolis algorithm usually produces a Markov chain with highly cor-
related successive states. To get a good estimate of an expectation value we need to
sample over many uncorrelated states. To have an idea about over how many uncorre-
lated states we have sampled, we need to know the correlation time. The correlation time
τ is a measure of how many Markov chain steps t it takes the system to evolve between
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states that are independent. Mathematically it is defined through the time-displaced
autocorrelation function

χ(t) =

∫
dt′[Q(t′) − 〈Q〉][Q(t′ + t) − 〈Q〉] (4.18)

where Q(t) is the value of the physical quantity Q for the state in step t in the Markov
chain. This function will fall off exponentially

χ(t) ∼ e−t/τ , (4.19)

which defines the correlation time τ . From Markov matrix theory [96] it can be shown
that if the quantity Q is sampled over a number of Markov steps which is much larger
than the correlation time, the estimator (4.7) is unbiased with respect to the correlations
between states.

4.5.1 Error estimates

An ideal Monte Carlo simulation would produce states where the correlation time is one.
In that case the statistical error of a simple quantity like the average is given by the
standard variance estimator for normally distributed quantities (4.5). However, often
we are interested in the error of much more complicated estimators such as correlation
functions. Moreover, in most cases τ > 1 and more sophisticated error estimates are
required. The jackknife and bootstrap methods which include dividing the Monte Carlo
data into independent blocks have proven to be excellent for error estimates in such
cases [96, 99–101].

Let the quantity Q be measured in a Monte Carlo simulation. Then the jackknife method
for finding an error estimate for the expectation value 〈Q〉 works in the following way:

1. Calculate the 〈Q〉 from the full data set

2. Divide the data into M blocks (bins) of size much larger than τ .

3. For each block m ∈ [1, . . . ,M ] take away the data from block m and calculate
〈Q〉m using all the other blocks.

4. Calculate the error of 〈Q〉 with the estimator

δ〈Q〉 =

√√√√M − 1

M

M∑

m=1

(〈Q〉m − 〈Q〉)2 (4.20)

The bootstrap method is closely related to the jackknife method, and is implemented in
the following way:
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1. Divide the the data into M blocks of size much larger than τ .

2. From the set of M blocks, pick M blocks randomly, not trying to avoid double
sampling.

3. Calculate the expectation value of Q using the new data set.

4. Repeat step 2. and 3. a large number of times, each time using an independent
set of random numbers to generate the bootstrap sample. The new expectation
values are 〈Q〉1, 〈Q〉2, . . . , 〈Q〉NB .

5. Find two values a and b such that 68% of 〈Q〉i are within the interval [a, b].

6. The bootstrap error estimate for 〈Q〉 is then δ〈Q〉 = (b− a)/2

4.6 Reweighting methods

The expectation value of quantity Q for a given temperature T can be measured from
the estimator (4.7) by implementing the Metropolis algorithm on a computer. How-
ever, thorough characterization of the properties of a system around the temperature
of a phase transition requires measurements for many temperatures, and hence many
Monte Carlo simulations. This can be computationally extremely time consuming. Fur-
thermore, each individual simulation will provide an expectation value for Q with some
statistical error, given by (4.5), and to obtain high quality expectation values for quan-
tities which include temperature derivatives, such as the heat capacity (2.10) and the
third derivative of the action (2.11), very large Monte Carlo statistics are required.
Ferrenberg-Swendsen reweighting was invented to deal with such issues. The technique
allows us to perform Monte Carlo simulations for a set of temperatures and estimate
values for the observables for temperatures close to the simulated temperatures. Some of
the basic ideas were put forward by Valleau and Card [102], but the method in common
use today was developed by Ferrenberg and Swendsen [103].

4.6.1 Single histogram reweighting

In order to explain the technique of Ferrenberg-Swendsen reweighting it is instructive to
present the single histogram method [104]. Let us say that we have performed a Monte
Carlo simulation of a model for the temperature T1 = 1/β1, and for each Markov step
t (Monte Carlo sweep) we have saved the energy Ht and the observable Qt to a file. In
general the expectation value of Q for a different coupling β is given by

〈Q〉β =

∫
DΨQe−βH

∫
DΨe−βH

=

∫
DΨ

(
Qe−(β−β1)H

)
e−β1H

∫
DΨ

(
e−(β−β1)H

)
e−β1H

. (4.21)
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For the Monte Carlo simulation this is given by the estimator (4.7)

〈Q〉β =
1
N

∑
tQte

−(β−β1)Ht

1
N

∑
t e−(β−β1)Ht

=
〈Qte

−(β−β1)Ht〉β1

〈e−(β−β1)Ht〉β1

, (4.22)

where N is the number of Monte Carlo sweeps. By measuring Ht and Qt at the coupling
β1 for every Monte Carlo sweep, we may in principle find the expectation value of Q at
coupling β by applying (4.22). The expression (4.22) can be expressed in terms of energy
histograms as well. The Monte Carlo measurements of the energy Ht can be arranged in
a histogram hβ1(E). Knowing that hβ(E) ∝ ρ(E) exp(−βE), where ρ(E) is the number
of states with energy E (density of states) we can reweight the histogram for another
coupling hβ(E) ∝ hβ1(E) exp(−(β − β1)E). If Q is a function of energy Q(E) we may
write the histogram reweighted expectation value as

〈Q〉β =

∑
E Q(E)hβ(E)∑

E hβ(E)
=

∑
E Q(E)hβ1(E)e−(β−β1)E

∑
E hβ1(E)e−(β−β1)E

. (4.23)

Expressing 〈Q〉β like this works when Q is a function of energy. The estimator (4.22)
works for any Q.

Note that the method of reweighting the value of Q through (4.22) and (4.23) will
eventually break down when β strays too far from β1. The Monte Carlo simulation
will typically provide an energy histogram which has non-zero values in a relatively
small energy range. The tails of the histogram usually contain very few samples. Thus,
attempting to calculate a reweighted histogram hβ(E) too far from the coupling β1

will lead to a histogram with either large statistical errors or with many bins without
samples. The method of multi histogram reweighting takes care of this and enables us
to increase the reweighting coupling range by including Monte Carlo measurements for
additional temperatures.

4.6.2 Ferrenberg-Swendsen reweighting

In the Monte Carlo simulation scheme, the probability p(E) of generating a state of total
energy E is

p(E) = ρ(E)
e−βE

Zβ
, (4.24)

where ρ(E) is the density of states and Zβ is the partition function for coupling β =
1/T sampled over all states of the system. From a Monte Carlo simulation with N
measurements of the energy E for coupling β we may estimate p(E) as p(E) = hβ(E)/N
where hβ(E) is the energy histogram for coupling β. By inverting (4.24) this implies
that the density of states is ρ(E) = [hβ(E)/N ][Zβ/ exp(−βE)]. If we perform a number
of different simulations with Ni sweeps for different couplings βi we find correspondingly
many estimates of the density of states

ρi(E) =
hβi

(E)

Ni

Zβi

e−βiE
. (4.25)
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Let us say that we perform a large number of Monte Carlo simulations for the inverse
temperature βi with Ni sweeps and sample hβi

(E) for every simulation. Then hβi
(E) is

the energy histogram averaged over all the simulations, and the exact density of states
is given by

ρ(E) =
hβi

(E)

Ni

Zβi

e−βiE
. (4.26)

To make use of the value of ρi(E) for every Monte Carlo simulation we must provide
an optimal estimator for the density of states. Each histogram hβ(E) ranges over a
relatively short energy range, but we require an estimate of ρ(E) over the whole energy
range covered by the histograms. The estimator should therefore be the weighted average

〈ρ(E)〉w =

∑
i ρi(E)/σ2

i∑
i 1/σ2

i

(4.27)

where σi is the standard error of ρi(E) and i runs over the number of Monte Carlo
simulations. Assuming that the measurements of the energy in the system are indepen-
dent, the error ∆hβi

(E) should be Poissonian [96,103]. Hence, ∆hβi
(E) = (gihβi

(E))1/2

where gi = 1 + 2τi where τi is the correlation time for Monte Carlo simulation i given
by (4.18) and (4.19). The only source of error in (4.25) is the energy histogram hβi

(E),
and hence the variance σ2

t reads

σ2
i =

gihβi
(E)

N2
i

(
Zβi

e−βiE

)2

=
giρ(E)2

hβi
(E)

, (4.28)

where we have used (4.26) in the last expression. The most optimal estimator for the
density of states is thus

〈ρ(E)〉w =

∑
i hβi

(E)g−1
i [hβi

(E)/Ni][Zβi
/e−βiE ]

∑
i hβi

(E)g−1
i

=

∑
i hβi

(E)g−1
i∑

i Z
−1
βi
g−1

i Nie−βiE
(4.29)

where we have used the expression (4.28) in the weighted average (4.27) of ρ(E). In the
last expression we have inserted for the average hβi

(E) from (4.26) which is unknown.
The expression (4.29) contains the system partition function for each coupling βi which
we do not know. We get around this by writing up the partition function through (4.29)

Zβk
=
∑

E

〈ρ(E)〉we−βkE =
∑

E

∑
i hβi

(E)g−1
i∑

i Z
−1
βi
g−1

i Nie(βk−βi)E
. (4.30)

This equation can be solved by using an iterative method such as the Newton-Raphson
method. When the partition function values are found within wanted accuracy the
density of states can be calculated through (4.29) and (4.30). Let us say that we have
sampled an energy dependent physical quantity Q(E) in the Monte Carlo simulations
for every coupling βi. Then the expectation value of the Q(E) for a coupling β in and
around the range of the set of couplings βi is

〈Q〉β =

∑
E Q(E)〈ρ(E)〉we−βE

Zβ
. (4.31)
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Figure 4.1: Specific heat from Monte Carlo simulations of the 3D xy model for a 12 ×
12×12 system performed for 40 temperatures with 40000 sweeps for every temperature.
The simple average value (4.7) with standard error estimates of the specific heat for
each simulation is indicated with squares. Ferrenberg-Swendsen reweighted values for
the specific heat for 200 temperatures with jackknife error estimates is indicated by the
triangles. Note that the reweighted data is much smoother and has smaller error bars
than the raw data.

This reweighting method, called multi histogram reweighting, assumes that the measur-
able quantity Q is a function of the energy E and provides an unbiased expectation
value estimator which involves histograms for the energy. The main advantage of this
method is that it does not require large computer memory since the Monte Carlo data
can be stored in histograms. However, similar expressions have been found for reweight-
ing quantities which do not depend directly on the energy [105]. Let Ea

i be the energy for
measurement number a (a = 1, . . . , Ni) from Monte Carlo run number i. The expression
for the partition function Zβk

becomes

Zβk
=
∑

i

Ni∑

a=1

g−1
i e−βkEa

i

∑
j NjZ

−1
βj
g−1

j e−βjEa
i

, (4.32)

which should be solved iteratively in a similar fashion as (4.30). The expectation value
of Q for coupling β is then

〈Q〉β =
∑

i

Ni∑

a=1

Qa
i g

−1
i Zβe−βEa

i

∑
j NjZ

−1
βj
g−1

j e−βjEa
i

. (4.33)

In the papers [1–8] Ferrenberg-Swendsen reweighting with the expressions (4.32) and
(4.33) has been applied to calculate the specific heat and the third moment of the
action for a number of models and for different system sizes. The Ferrenberg-Swendsen
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reweighting computer program was written by Kari Rummukainen1. An example of
Ferrenberg-Swendsen reweighting of the specific heat for Monte Carlo simulations of
the 3D xy model is presented in Figure 4.1. The method provides superior plots for
quantities like the specific heat and the third moment of the action, which become
much smoother and errors are reduces significantly compared to the expectation value
estimator (4.7), simply because Ferrenberg-Swendsen reweighting provides an unbiased
expectation value estimator which includes Monte Carlo statistics for several simulations
instead of only one and can be calculated for any coupling in the neighborhood of the
simulated coupling.
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L20
L32
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40302010
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∆β

L

Figure 4.2: Left panel: The third moment of the action from Monte Carlo simulations of
the 3D xy model for system sizes L = 12, 20, 32 published in Reference [2]. Ferrenberg-
Swendsen reweighting with jackknife error estimates has been used. Right panel:
Corresponding third moment of the action finite size scaling plot for the height between
the peaks (open circles) and the width between the peaks (filled triangles). From a
power law fit using the bootstrap method we find α = −0.01± 0.01 and ν = 0.67± 0.01,
which confirms that the system is in the 3D xy universality class.

4.7 Finite size scaling

Ferrenberg-Swendsen reweighting is an excellent tool in finite size scaling analysis. The
method provides accurate measurements of the third moment of the action (described
in Section 2.3.2) accompanied by good error estimates. Finite size scaling of the third
moment of the action is shown in Figure 4.2. The reweighted data enables accurate deter-
mination of the peak values. From power law fits with bootstrap error estimates we are

1Reference [106] is the first publication where the program developed by Kari Rummukainen was
used, and improvements of the program have been made over a decade.
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able to extract the exponents α and ν independently without invoking the hyperscaling
relation (2.8).

4.8 First order phase transitions

First order phase transitions are characterized by a jump in the order parameter. How-
ever, to distinguish a discontinuity from a continuous drop through Monte Carlo simula-
tions can be quite challenging, especially for weak first order phase transitions which are
characterized by very small order parameter jumps [22]. To circumvent these difficulties
Lee and Kosterlitz [107] devised a method based on finite size scaling to differentiate
between first and second order phase transitions.

A hallmark of first order phase transitions is that the ordered state and the disordered
state coexist at the phase transition coupling. As discussed in Section 2.4 these states can
coexist because they have the same Helmholtz free energy, and at the phase transition
the state of the system will be a mix of ordered and disordered matter. There is a
tension associated with the interface between the ordered and disordered parts, and this
gives rise to a free energy barrier ∆F between the two pure states [47]. By sampling the
action of the system one typically finds double peak histograms as in Figure 4.3, which
reflects that there are coexisting states.

The probability that an operator X has the particular value x for a system of size Ld is
given by

P (X = x) =

∑
{α|Xi=x} e−βEα

Zβ
= e−βA(x,L) (4.34)

where A(x, L) is a free energy like quantity which differs from the true free energy by a
finite additive quantity. Thus, the difference in A(x, L) between two states is the same
as for the free energy

A(x, L) −A(x′, L) = F (x, L) − F (x′, L) = ∆F (L). (4.35)

Here, x and x′ are the values of the operator X taken in the two states respectively. The
quantity X is usually the energy given by the Hamiltonian of the system. At the phase
transition F (x, L) has two pronounced double minima corresponding to two coexisting
phases at X = x1 and X = x2 separated by a maximum at X = xmax. Therefore, by
combining (4.34) and (4.35) we find that the energy gap separating the two pure states
is

∆F (L) =
1

β
ln

(
Ppure state

Pmixed state

)
, (4.36)

where Ppure state is the probability to be in one of the minima in F (x, L) and Pmixed state

is the probability to be at the maximum of F (x, L), corresponding to one of the two
peaks and the minimum between them in the energy histogram respectively (see Figure
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Figure 4.3: Coexisting phases is the hallmark of a first order phase transition. This
example is from the Z3 gauge theory benchmark Monte Carlo simulations for 32×32×32
system in Reference [2]. Left panel: At the phase transition the normalized action
S/V as a function of Monte Carlo time jumps between the two energy levels of the
ordered and disordered state. Right panel: The corresponding S/V histogram clearly
shows the coexistence of two phases. The jump in energy between the two peaks is
the latent heat of the first order phase transition. The maxima of the histogram reflect
the probability to be in either the ordered or the disordered state Ppure state, while the
minimum inbetween reflects the probability to be in a state with mixed ordered and
disordered matter Pmixed state.

4.3, right panel). Apart from a normalization factor the energy histogram reflects the
probabilities directly. If we consider the scaling of ∆F (L) it can be shown that ∆F (L) ∝
Ld−1 corresponds to a first order phase transition, whereas ∆F (L) ∝ L0 corresponds to
a second order phase transition [107]. Hence, by measuring energy histogram such as
in Figure 4.3 for many system sizes one can determine the order of the phase transition
by scaling ∆F (L) found from (4.36). A scaling with power d − 1 corresponds to a flat
interface between the two pure states in three dimensions. Hence, proper scaling in three
dimensions requires relatively large systems. The method outlined here was applied in
Reference [2] to determine the order of the phase transition in the compact abelian Higgs
model with gauge charge q = 3, which turns out to have a first order transition line which
terminates on a tricritical point.
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