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ABSTRACT 
Chlorine as a chemical is widespread in industry and found in a great variety of 

processes ranging from water purification to plastic production.  In this thesis, a 

magnesium production factory was chosen as an example because it involved both 

chlorine - air separation and hydrogen –hydrogen chloride separation.   

Previously, various types of membrane materials have been tested out for their 

applicability in the chosen process.  The materials previously tested either lacked 

sufficient membrane performance or sufficient membrane stability.  As an attempt to 

improve both the membrane performance and stability, glass membranes are used in 

this thesis. 

Glass membranes are prepared from a borosilicate glass, via a phase separation 

followed by an acid leaching route.  By choosing the appropriate phase separation 

temperature and acid to glass ratio, the membrane can be produced with an average 

pore diameter of 2 nm (or 4 nm). 

However, the 2 nm average pore size is still too large to separate gases with 

separation selectivities beyond the selectivities predicted from Knudsen diffusion 

theory.  If the pores are narrowed, the selectivity may be raised while the flux 

hopefully is maintained.  The narrowing of the pores was done by a silane coupling 

to the surface OH-groups on the glass.  The silane coupling agent is of the dimethyl-

acyl-chlorosilane type, where the length of the acyl chain varies from 1 carbon up to 

18 carbons.  Glass fibres are also tested in this work, which are produced without 

phase separation and their average pore size is smaller than the surface-modified 

glasses. 

 

To be able to compare the performance of the various membranes, permeance 

measurements are performed and these measurements are evaluated by the separation 

power (product of the selectivity and the permeability of the fastest permeating 

compound).  Because of the harsh chlorine or hydrogen chloride environment, to 

which the membranes are exposed in this work, the membrane stability is at least as 

important s factor as the perm-selectivities.  To evaluate this, both short- and long-

term aggressive gas exposures are performed using a special designed durability 
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chamber.  From the combination of the perm-selectivities and the durability tests, the 

following conclusions may be drawn (evaluated at 30°C and 1 bar): 

Firstly, the pure glasses have a relatively poor stability (for chlorine gas) and the 

perm-selectivity is too low (for both separations in question).  Secondly, the C8 and 

C12 modified glass membranes have a relatively satisfactory perm-selectivity for 

chlorine separation, but the durability in chlorine is poor.  Thirdly, the long-chained 

C18 modified glass membrane has a relatively satisfactory perm-selectivity but a fair 

to low chlorine stability.  If the C18 membrane is applied in the hydrogen chlorine 

separation the perm-selectivity is a bit low, but the stability is sufficient.  However, 

this membrane is the best choice for a low temperature HCl selective membrane. 

Finally, to improve the chlorine stability, a perfluorinated version of a C10 

modification is tried out.  This membrane has excellent chlorine stability, and the 

perm-selectivity is fair.  This membrane is the best choice for a chlorine selective 

membrane. 

The stability of the fibres is comparable to that found for the pure glass tubes.  

However, the permeabilities in the glass fibres are several orders of magnitude lower 

than for the glass tubes.  The pore size in the fibre is so narrow that separation occurs 

according to a molecular sieving mechanism.  The mounting of the fibres into a lab-

sized module is tricky and the permeabilities are at the border of detection, so the 

results obtained here should only serve as trends. 
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Notation: 
A = Total surface area according to the BET-method [m2/mol] 
a = Energy fraction factor [-] 
am = Molecular cross sectional area 
A(T)  = Temperature dependent adsorption [cm3(STP)/g] 
C = Constant  
CR = Resistance coefficient [kg/(s m2)]  
c = Constant in the BJH-method. 
c = Concentration [mol/m3]  
Dab  = Diffusion coefficient [m2/s]  
dc/dx  = Concentration gradient [mol/(m3·m)] 
dp  = Average pore diameter [m] 
Ea = Activation energy [J/mol] 
E = Energy barrier for surface migration [J/mol] 
e = Probability factor [-] 
gd  = Probability factor[-] 
h  = Planck’s constant [6.63·10-34 J s] 
k = Boltzmann’s constant [1.38·10-23 J/K] 
L  = Avogadro’s constant [6.03·1023 1/mol] 
l = Membrane thickness [m]  
Ja  = Flux [mol/(m2 s)] 
Mw  = Molecular weight [kg/mol]  
N  = Molar flux [mol/(m2 s)] 
na = Amount adsorbed [mol] 
p  = Partial pressure [bar] 
P = Permeability [m3 (STP) m/(m2 bar h)] 
P/l  = Permeance [mol/(m2 Pa s) or m3 (STP) /(m2 bar h)]  
PD = Permeability decay [-] 
q  = Adsorption enthalpy [J/mol]  
Q = Partition function [-] 
R = Gas constant [8.314 J/(mol K)] 
r = Radius [m] 
r = Rate of partial desorption (or hopping rate) [mol/(m2 s)]  
S = Entropy [J/(mol K)] 
SP = Separation power [m3 (STP) m/(m2 bar h)] 
Sw = Specific surface area [m2/kg] 
T  = Temperature [K] 
t = Multilayer thickness [m] 
V = Volume [m3] 
x  = Amount adsorbed [mol/kg] 
z  = Net flux direction [m] 
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Greek letters 
α = Selectivity [-] 
∆  = Denotes a finite difference 
θ = Surface coverage [-] 
θ = Time lag [s] 
λ = Surface free mean path [m] 
v  = Average molecular velocity [m/s]  
ν = Jump frequency factor [1/s]  
νl = Molar volume of liquid condensate [m3/mol] 
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σ = Surface tension of liquid [J/m2] 
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Subscripts 
A,a  = General compound 
app  = Apparent  
d = Diffusion 
k = Kelvin 
K  = Activated Knudsen mechanism 
Kn = Knudsen mechanism 
l = Membrane outlet (low pressure side) 
i = Gas type 
m = Monolayer 
n = Integer index of pressure decrement. 
MS  = Molecular sieving 
p = Pore 
S  = Surface 
ssf = Selective surface flow 
Tot = Total 
X = Direction 
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0  = Pre exponential term 
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Superscripts 
o = Saturated 
0 = Activated compound  
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1 INTRODUCTION AND BACKGROUND 
 

1.1 Outline of the thesis 
In chapter 1 a brief introduction to membrane technology and examples of the 

widespread use of chlorine as a chemical agent is summarised and given in a separate 

section of this chapter, followed by a specific industrial example.   

Chapter 2 discusses glasses in general, theory of phase separation and the production 

of both ultramicroporous glass and hollow fibres.   

The expected transport mechanisms in porous membranes are discussed thoroughly 

in chapter 3.  In this chapter a newly developed theory of combined transport 

between the Knudsen and selective surface flows is introduced, in which the degree 

of selective surface flow, SSF, can be estimated based on the helium permeance and 

a assumption that SSF and Knudsen flows are additive.  

Characterisation of the membrane materials is of crucial importance for the 

prediction and the understanding of the membrane performance and chapter 4 

discusses the theoretical background of the applied techniques.  These includes: 

Liquid N2 adsorption /desorption, stereology (Atomic force microscopy (AFM), 

scanning electron microscope (SEM) and field emission scanning electron 

microscope (FESEM)) and Fourier transform infrared spectroscopy (FTIR). 

In chapter 5 the experimental procedures are outlined for the mentioned 

characterisation techniques and in addition the procedures for the permeance, 

sorption and gas exposure measurements are given.  

In chapter 6 the various membranes are discussed for their suitability both in the 

chlorine / air and hydrogen chloride / hydrogen separations.  These comparisons are 

based on both the membrane perm-selectivity and the durability.   

The conclusion follows where the usefulness of the material tested are discussed both 

relative to the given example and compared to other possible gas compositions.  

Finally, tasks that ought to be further investigated are suggested but for which the 

available time in this project has been too limited to pursuit.  

Parts of this thesis have been submitted as two articles for publication in Journal of 

Membrane Science. These articles are presented in appendix 1 and 2. 
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1.2 Brief introduction to membrane technology 
Membranes are a relatively new technology only a little more than a century old. 

However, the last few decades there has been a burgeoning interest in membranes for 

industrial separations. The membrane industry is still a rapidly growing industry, and 

large scale membrane processes have replaced and are replacing conventional 

separation processes. 

Membrane systems have captured the attention, and increasingly, the markets related 

to hydrocarbon processing, chemical purification, pharmaceutical and biotechnology 

processing, water desalination, and liquid-waste processing.  Membrane separation 

has in general, several advantages compared to other separation technologies 

/Mulder/: 

 Separation can be carried out continuously. 

 Energy consumption is generally low. 

 Membrane processes are easily combined with other separation processes 

(Hybrid processing). 

 Separation conditions are generally milder than competing separation 

processes. 

 Easy to scale-up. 

 Membrane properties are variable and can be adjusted. 

 No additives are required. 

 

However, there are some drawbacks: 

 Short membrane lifetime. 

 Low selectivity or flux (or combination). 

 Up-scaling is more or less linear. 

 

A membrane being a thin film, acts as a semipermeable barrier between two fluid 

phases.  The separation is possible because the membrane controls the rate of 

movement of a specific compound from one of the fluid phase into the other.  The 

two phases can be gas- gas and the process is then called gas separation, which is the 

process discussed here.  For the separation to take place, a driving force is required.  

This diving force is the difference in the chemical potential for a given component 
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and in gas separation it is manifested by partial pressure difference across the 

membrane.  /Mulder/  

 

The membranes used in gas separation can be classified according to material class, 

morphology and whether they are dense or microporous.  These classification 

parameters are also important to be able to predict and / or identify the most probable 

transport mechanism by which the membrane separates.  The transport theories are 

further discussed in chapter 3. 

Thus the glass membranes developed in this project can be classified as inorganic 

symmetric microporous membranes.  

 

1.3 Aggressive gases used in industry 
In this thesis, aggressive gases refer to chlorine (Cl2) and hydrogen chloride (HCl).  

Chlorine has the main focus in this work, but aspects of HCl separation are also 

discussed.  According to /Ullmann's; vol 8/ the total world wide capacity of chlorine 

in 1998 was 4.8·109 kg annually. It is also stated that in Western Europe, 1995: 

 Almost two million jobs were related to chlorine. 

 55% of European chemical turnover depended on chlorine. 

 85% of pharmaceuticals are made using chlorine. 

 98% of the drinking water is purified by chlorination. 

 

These numbers demonstrate the economical importance of the chlorine industry.  In 

this variety of industries there is a great potential for improvement and simplification 

of the separation processes of chlorine from other gases.  The ultimate goal of the 

current work has been to incorporate membrane technology for recovery of chlorine 

from various gas mixtures, both for economical and environmental reasons.  Special 

attention has been given to the IG Farben process for magnesium production for 

historical reasons.  A general flow-sheet of the IG Farben process for magnesium 

production is shown in figure 1 /Hagg (Sep.&Purif. Techn)./ as an example and the 

chlorine membrane module is added in figure 1. 
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Figure 1: Simplified flow sheet of the IG-Farben Mg production process with 

integrated membrane modules /Hagg (Sep. &Purif. Techn)./ 

The IG Farben process includes purification of both Cl2 and HCl gas and is thus is an 

excellent example of aggressive gas separation. Here Cl2 must be separated from air 

and HCl gas from H2.  The chlorine – air stream contains about 90% Cl2 by volume, 

and it is crucial to have most of the oxygen removed (as indicated in figure 1) before 

Cl2 is reacted with hydrogen downstream.  Likewise, excess hydrogen (about 7% by 

volume) should be recovered from the gas stream after the HCl (dry gas) is formed. 

/Ullmann's; vol 20/  For the chlorine separation a temperature around 80°C is 

preferred, but down to 30°C is acceptable.  The temperature in the gas stream after 

HCl is formed is very much higher (300-400 °C), hence the separation could 

theoretically be performed at very high temperature.  These process conditions 

indicate very clearly the demands that have to be met for an efficient membrane 

separation material; likewise it indicates that the transport mechanisms which will be 

governing the two basic separations (Cl2 – air and HCl – H2) will be very different.  

Previously, different membrane materials were tested out for their suitability in 

chlorine separation.  These materials include: Teflon®, PDMS, Fluorel®, Carbon 

molecular sieves and glass membranes.  The permeabilities and durability of these 

materials are reported by /Hägg; vol 170/, /Hägg; vol 177 / and /Eikeland et al/. 
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Based on the findings in these works the focus was set on glass membranes and 

optimization of the material for the separations in question. 
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2 PREPARATION OF GLASS 
MEMBRANES 

2.1 Glass materials in general 
Glass as a material has been known to Humans since ancient times. Glass materials 

can be formed by natural "processes" such as volcano eruptions, meteorite crashes 

and lightning.  When glass is referred to as a material, it is a collective term for an 

infinite number of different materials /Pfaender /. 

Many definitions of glass exist: "Glass is an inorganic product of melting, which 

when cooled without crystallisation assumes a solid state" or alternatively "a frozen 

liquid is called glass"/Pfaender /. 

Glass can consist of almost the entire periodical system of elements but some 

elements are more frequently present, as oxides of silicon, boron, germanium, 

phosphorous and arsenic. In the following sections the most common types of glass 

are listed and described briefly. 

2.1.1 Soda-lime glasses 

A typical composition of a soda-lime glass is 71-75 wt% SiO2 (in the form of sand), 

12-16 wt% Na2O (in the form of soda ash) and 10-15 wt% CaO (in the form of 

limestone).  

These glasses are by far the most industrially produced glasses and are used for 

bottles, jars, drinking glasses and window glass.  These glasses have several chemical 

and physical advantages such as good light transmission that makes them very 

suitable as flat glass used in windows. In addition, having a smooth and nonporous 

surface these glasses are excellent containers for food and drinks. 

These glasses have, in general, a high value of the thermal expansion coefficient; thus 

the resistance to sudden temperature changes is relatively poor. /Pfaender / 

Figure 2 gives a 2-D sketch of the lattice of SiO4 arrangements in: crystal structure, 

fused silica and sodium silicate glass /Pfaender /. 

 



Development and modification of glass membranes for aggressive gas separations 

 

7 

 
Figure 2: SiO4 lattice arrangement in: A) crystal structure, B) fused silica and C) 

sodium silicate glass.  The fourth oxygen - silicon bond is pointing towards or away 

from (alternately) the reader. /Pfaender / 

2.1.2 Lead glasses 

If a larger part of the lime in soda-lime glasses is replaced by lead oxide, the resulting 

glass is popularly called lead crystal. Such glass contains typically 54-65 wt% SiO2, 

18-38 wt% PbO, 13-15 wt% Na2O or K2O and various other oxides.  Glasses with a 

lead content less than 18wt % PbO are called crystal glass. 

These glasses are used as drinking glasses, vases, bowls or decorative items 

/Pfaender /. 

2.1.3 Borosilicate glasses 

This group has a higher percentage of SiO2 than the soda-lime and lead glasses. The 

typical composition for borosilicate glass is as follows: 70-80 wt% SiO2, 7-13 wt% 

B2O3 (boron oxide), 4-8 wt% Na2O (or K2O) and 2-7 wt% Al2O3 (Aluminum oxide).  

These glasses have a high resistance to chemical corrosion and temperature changes. 
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Pyrex® glass, used in any chemical laboratory, is an example of a borosilicate glass.  

It is also found in casserole and baking dishes /Pfaender /. 

Since the glass membranes are synthesized from a borosilicate precursor, more 

details are given in the following chapters. 

2.2 Microporous glass membranes 
 

This section discusses the theory governing phase separation and acid leaching in 

borosilicate glass. Several applications for microporous glasses are also presented. 

 

2.2.1 Phase separation 

There are two types of phase separation originating from stable and metastable 

immiscibility. 

The stable immiscibility occurs when the glass separates into two or more distinct 

phases at a temperature higher than the liquidus* temperature.  When such a phase-

separated glass is cooled, the resulting glass shows distinct regions of different 

compositions.  These manifest themselves as milkiness in the cooled glass /Lewis 

(ed.)/. 

On the other hand metastable immiscibility occurs at temperatures below the liquidus 

temperature. It is the metastable immiscibility that is important in the production of 

microporous glass membranes.  Figure 3 explains the difference between stable and 

metastable immiscibility for phase separation in the CaO-SiO2 (a) and NaO2-SiO2 (b) 

systems respectively.  

                                                 
*The liquidus temperature is the multicomponent equivalent to the melting temperature. 
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Figure 3: Phase separation in the CaO-SiO2 (a) and Na2O-SiO2 (b) systems. (data 

extracted from /Phillips and Muan/, /Kracek/, /Haller et al./ and published by /Lewis 

(ed.)/) 

2.2.2 Theory of immiscibility 

In general, if the free energy change of mixing is greater than the sum of the free 

energy for each phase isolated, then the system will tend to phase separate. Greater in 

this context means a larger negative value.   

A simplified view of this concept is that in order to get phase separation of the glass, 

the temperature has to be lower than a (system given) critical temperature, and any 

natural occurring local deviation in the composition of the glass has to be large 

enough so that an internal energy barrier is passed. 

More technically, if a binary mixture of component X and Y exists at a temperature 

above the critical temperature then a free energy composition curve as indicated in 

figure 4a) results. Here the melt will be uniform and as a single phase because of the 

balancing of the decrease in the energy of the system due to increasing order and the 

increase in energy due to disordering.  The increase in the energy due to disordering 

is temperature dependent.  As indicated in figure 4a), if an inhomogeneity Ci 
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develops in a melt of composition C0 then the change in free energy will be given as 

the gap between the tangent to the curve (tangent at C0) and the energy curve at point 

Ci.  This gap is called ∆F in figure 4a).  If ∆F is located below the energy curve then 

∆F >0 and no demixing will occur.  In general, if δ2F/δC2 >0 then ∆F>0 for all points 

on the curve. /Lewis/ 

 
Figure 4: Free energy -composition curve for a binary system; where a) corresponds 

to a temperature above the critical temperature Tc. b) indicates a typical behaviour 

below the critical temperature. c) gives the corresponding temperature composition 

curve for the same system. /Lewis (ed.)/ 
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If the temperature is reduced so that T <Tc, then the energy curve will be of the form 

presented in figure 4b).  This curve can be divided into three regions /Lewis/: 

For compositions C0<C1, C3<C0<C4 and C0>C4 then ∆F>0 and as explained above 

phase separation is impossible. 

For compositions C1<C0<C2 where C2 is the point of inflection (δ2F/δC2 =0) and C1 

is the local minimum (δF/δC =0) and if a region of inhomogeneity develops with a 

composition Ci<C5 where C5 is the intersection of the tangent at point C0 and the 

energy curve (Same argument as in 4 a), then in that case ∆F>0 and the region of 

inhomogeneity will be unstable and tends to redissolve.  On the other hand if Ci>C5 

then ∆F<0 and a change in the composition of the inhomogeneity towards that of C4 

gives a decrease in the free energy.  This means that separation is energetically 

favourable for compositions in this domain.  The phase separation in this domain 

takes place according to a nucleation and growth process.  This process is activated 

and thus needs to overcome a given energy barrier in order to happen.  This process 

is called binodal phase separation and as a result droplet type microstructures are 

formed in a continuous matrix.  

For compositions C2<C0<C3 any development of an inhomogeneity is energetically 

stable since δ2F/δC2 <0.  In this region there is no barrier in the formation of an 

inhomogeneity and any fluctuation will grow and the system tends to phase separate 

into two phases of composition C1 and C4. This is the region of spinodal phase 

separation and the resulting structure is a finely interconnected continuous one. 

If track is kept of the compositions C1, C2, C3 and C4 at varying temperatures, the 

critical temperature, Tc, is the temperature where C1 and C4 coincide. Figure 3c) 

gives the composition and temperature diagram for the binary system.  The binodal 

phase separation can then occur between C1 and C2 and between C3 and C4.  Spinodal 

phase separation will occur between C2 and C3.  

 

2.2.3 Phase separation in borosilicate glasses 

Borosilicate glasses have been known to phase separate at appropriate conditions (as 

indicated in figure 5) for a long time.  A well-known example is the Vycor process 

developed by Hood and Nordberg in the end of the 1930s for the production of high 

silica content glass via a microporous glass route.  The Vycor process thus involves 
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all the same steps in the production of microporous glass membranes, plus an 

additional sintering step.  The sintering step causes the porous structure to collapse 

and a non-porous material of high silica content is the result.  Figure 5 gives the 

phase diagram for the system Na2O-B2O3-SiO2 where the "horizontal hatched" areas 

show the immiscibility regions.  

 
Figure 5: Phase diagram for the system Na2O-B2O3-SiO2 /Schnabel and Vaulont/. 

 

The tendency of borosilicate glasses to phase separate can be controlled by the 

addition of small amounts of compounds like Al2O3.  Al2O3 is known to retard the 

phase separation considerably.  The actual reason for this effect is uncertain 

/Doremus/. 

The composition of the borosilicate used as a precursor in the production of the 

microporous glass was: 65.1%SiO2, 25.4% B2O3 and 9.4 % Na2O, which places the 

glass in the upper left of the "Vycor" immiscibility region in figure 4. 

 

2.2.4 Acid leaching 

Acid leaching is typically carried out with 3N HCl or 5N H2SO4 at a temperature of 

about 100 °C.  The leaching proceeds at a rate of approximately 1 mm/day.  The 
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leaching properties of the borosilicates can be improved by the addition of S, Sb2O3, 

ZrO2 or TiO2. /Lewis (ed.)/  

In the initial stages of leaching the H3O+ ions replace the Na+ ions and a swelling of 

the glass results.  This swelling can induce intolerable stresses in the glass and lead to 

breakage.  As the leaching proceeds the B2O3 is removed and the remaining silica 

skeleton shrinks.  

An enhanced leaching of the glass can be achieved by adding small quantities of 

P2O5, V2O5, MoO3 or WO3 to the starting glass.  These compounds are known to shift 

the immiscibility region and cause the borate rich phase to contain less silica. /Lewis 

(ed.)/ 

 

2.2.5 Applications for porous glass 

Several applications for porous glass are reported in the literature /Lewis(ed) and 

references within/: 

 Gas separation membranes. 

 Reverse osmosis membranes. 

 Resistance thermometers. 

 Substructure of highly critical magnetic superconducting materials. 

 Material for the encapsulation of nuclear waste. 

 Refractory foams. 

 Enzyme immobilisation and catalyst support. 

 

In this thesis only the gas separation application will be covered.  

Our Japanese research associates (currently at Himeji Institute of Technology, 

Himeji, Japan and at the Faculty of Maritime Sciences at the Kobe University, Kobe, 

Japan) have reported permeability results for various types of glass membranes and 

glass template silica membranes.  N2, He, CO2, CH4, C2H6, C3H8, n-C4H10 and i-

C4H10 permeabilities were measured through several different surface-modified glass 

membranes /Kuraoka et al.(2001)/ 

They have also reported the methanol vapour flux through a silica membrane 

prepared by the CVD- method (porous glass used as a template.) /Kuraoka et 

al.(1999)/ 
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Hägg has published initial results on the separation of chlorine gas from air using 

unmodified glass membranes (2 and 4 nm pore size base) and one surface-modified 

glass membrane. /Hägg/ Additional results for the perm-selectivity of chlorine over 

nitrogen in newly tested glass membranes are presented in chapter 6. 

2.3 Glass hollow fibres 
The advantage of having the glass membrane in fibre form compared to tubes or flat 

sheet form is the higher packing density (m2 membrane surface / m3 installation) for 

the fibres packed into a module than the flat sheet or tubular modules. The fibres also 

have a better ability to withstand larger pressure differences than the tubes or the flat 

sheet membranes. 

Our Japanese research associate has tested out several methods in fibre production 

and several glass materials.  Glass hollow fibres can be produced by one of two main 

routes: 

 Redrawing of glass tubes into glass fibres. 

 Fibres spun directly from the melt. 

 

The fibres were made from: 

o A silica alkaline base (77.8 mol% SiO2 and 22.2 mol% Na2O or K2O). In this 

case the membrane fibre was redrawn from a tube. The fibre was made 

ultramicroporous by ion exchange of the alkaline metal ions by H3O+.  Although 

the N2 adsorption isotherm and the thereby calculated pore size distribution 

showed no sign of larger pores, the perm-selectivity was still low.  Kuraoka et al. 

concluded that this most likely was due to micro cracks formed during the acid 

leaching (ion exchange). /Kuraoka K. et al.(1998)/ 

o A borosilicate base with or without trace amount of aluminium. Compositions 

given: 62.5 SiO2, 28.3B2O3, 9.2Na2O (all wt%) for the aluminium free and 62.5 

SiO2, 27.3B2O3, 7.2Na2O, 3.0Al2O3 (all wt%) for the one with trace amounts of 

aluminium. The fibre was redrawn from a tube as well and made 

ultramicroporous by acid leaching. No additional phase separation was performed 

but a phase separation is still likely to occur (to some extent) by cooling of the 

fibre during the redrawing process. These fibres are reported to have molecular 

sieving properties and the aluminium free fibre has a larger selectivity than the 



Development and modification of glass membranes for aggressive gas separations 

 

15 

fibre containing aluminium. /Kuraoka K. et al. (2000)/.  However, no permeation 

data are reported, hence no complete comparison can be made.  Fibres of this 

type have been tested both in the chlorine  and hydrogen chloride purification 

projects and the obtained perm selectivity results are reported in chapters 6.1.11 

and 6.2.5, respectively. 

2.4 Preparation of porous glass membranes 
Glass membranes can be manufactured with two different average pore sizes 

depending among other on the composition of the starting glass.  In general the 

methods are similar, but since only the synthesis leading to an average pore size of 4 

nm is patented, only this process will be the discussed here. 

The starting glass is a commercially available handmade glass tube from Akagawa 

Glass Co. Ltd. Japan.  These tubes come in different diameters ranging from 0.2-10 

mm and wall thicknesses from 0.03 to 2 mm.  The glass tubes used in this thesis has 

an inner diameter of 4 mm and a wall thickness of 0.5mm.  The tubes are cut in 

lengths of approximately 30cm using a hack file (30 cm is thus the length of the 

active part of the surface-modifying reactor.) 

2.4.1 Phase separation 

The glass tubes are placed in alumina tubes to prevent the glass from fusing into each 

other and to prevent them from being spatially deformed during heat treatment.  An 

excess of boron oxide (B2O3) is added as powder into the furnace in an alumina bowl 

in order to prevent any boron loss from the glass tubes during the heat treatment.  The 

temperature is then raised from room temperature to 585 ºC slowly over three hours.  

The temperature is then kept stable at 585 ºC for 72 hours.  The glass now contains 

two phases of different composition as discussed in chapter 2.2.3.  One phase is rich 

in SiO2 and the other is rich in B2O3-Na2O.  The temperature of the furnace is 

decreased slowly over three hours down to room temperature. 

However, the glass is not yet mesoporous. To obtain this the glass has to be leached 

with an acid. 
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2.4.2 Acid leaching 

The surfaces of the glass tubes are rinsed with a HF solution (4/1 ratio water / 46% 

HF).  The glass tubes are then immersed into a 1N HNO3 solution and heated to 98ºC 

and kept at that temperature for 24 hours.  The glass tubes are then rinsed with 

distilled water and the synthesis is completed. 

This acid treatment has now removed the B2O3-Na2O rich phase completely, 

resulting in a porous network of pore diameters of approximately 30nm. SiO2 

remaining in the boron rich phase after the phase separation is only slightly soluble in 

the acid, and this solubility is very pH dependent /Tanaka/.  At the optimal acid to 

glass ratio this pH dependent solubility will cause colloid-sized SiO2 particles to be 

formed in the solution with a diameter that also is strongly pH dependent.  However, 

since the solubility of the SiO2 is low the colloid particles precipitate easily on any 

available surface of the glass tube, including inside the 30 nm pores.  If the right set 

of parameters is chosen, the colloid particles that fill the original 30 nm pore will 

leave a porous network of voids between the random spaced spheres resulting in 

“new” pores with an average diameter of 4 nm /Tanaka/. 

 

2.4.3 Surface modification 

A pore of 4 nm is too large to separate gases efficiently since this is clearly in the 

Knudsen transport regime. (See chapter 3.2)  To narrow the pores, silane coupling 

surface modification is performed.  This modification involves specific reaction with 

the surface –OH groups, as shown in figure 6 /Kuraoka, K. et al. 2001/. 

 

 



Development and modification of glass membranes for aggressive gas separations 

 

17 

 
Figure 6: Conceptual drawing of the silane-coupling surface modification reaction / 

Kuraoka, K. et al. 2001/.  

  

2.4.4 Modification procedure  

The membrane is dried at 170 ºC, under vacuum, for 3 hours to remove capillary-

condensed and -adsorbed water from the pores.  The reactor is then cooled to room 

temperature. The porous glass has -OH end groups evenly distributed over all 

surfaces, both internal surfaces (in the pores) and external surfaces.  By titration of 

the glass tube with a suitable acid and indicator, the –OH density can be estimated. 

According to research performed at AIST, Kansai Japan, the average –OH density in 

a 4 nm glass membrane is approximately 5 µmol –OH groups / m2.  

The surface area of the pores in a glass tube is 200 m2/g of membrane. /Kuraoka et al. 

(2001)/. Thus the -OH density is 1mmol/g.  From the consideration of the –OH 

density it is easy to calculate that the stoichiometric amount of the silane coupling 

compound needed is approximately 2.5 mmol for a 20cm long glass membrane (outer 

diameter 5mm, and wall thickness 0.5mm).  However, since the pores are narrow and 

the diffusion times may be long, at least 200 % excess is used.  

The glass surface has a high affinity for water so it is important to use dehydrated 

grade toluene as a solvent for the modifying compound.  The reaction of the surface 
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modifying compound with the –OH sites produces HCl, which needs to be removed 

in order to achieve a high conversion in the reaction.  The acidic HCl is removed by 

adding pyridine (dehydrated grade) to the reactor 5 minutes after the reaction is 

started. The reactor is run at 110 ºC with vapour reflux for 20 hours.  After the 

reaction is completed, the reactor is cooled down and the solution removed.   

Fresh toluene is added and another 3 hour reflux at 110 ºC follows.  The membrane is 

then removed from the reactor and dried at room temperature over-night.  

As indicated in figure 6, all reactants are based on the Cl-Si(CH3)2-R template where 

R is an acyl group of varying length and all R’s tested are described in table 1. 

 

Table 1: Chemical structure for the modification used in the silane coupling 

reaction and the abbreviations used as synonyms. 

Abbreviation Silane compound 

used (R in Cl-

Si(CH3)2-R) 

Comment 

Pure 4 nm None "4 nm" refers to the average pore size 

distribution  

Pure 2 nm None "2 nm" average pore size distribution 

C1 CH3  

C8 C8H17  

C12 C12H25  

C18 C18H37  

C1+C18 CH3 and C18H37 C18 modified first and then C1 

modified 

Fibre None  

Pf-C10(4 nm) (CH2)2-(CF2)7-CF3 4 nm is the pore size of the precursor 

Pf-C10(2 nm) (CH2)2-(CF2)7-CF3 2 nm is the pore size of the precursor 
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3 TRANSPORT MECHANISMS 
Three "families" of glass membranes have been investigated in the current work: 

pure glass tubes, surface-modified glass tubes and glass hollow fibre.  These glasses 

have an average pore size distribution from 4 nm down into the sub-nanometer range, 

respectively.  The average pore distribution is important since it gives an indication 

of which transport mechanism is to be expected to be dominant for a given separation 

in a defined material.  Figure 7 generalizes the dependence of pore size and the most 

probable transport mechanism in porous membranes.  
Knudsen diffusion

Surface diffusion

Molecular
sieving

Ph Pl

 
Figure 7: Transport mechanisms for microporous membranes.  Feed or high 

pressure side is on left hand side of the figure.  

 

The mechanisms are briefly characterised as follows:  

 Knudsen diffusion; the square root of the ratio of the molecular weights will 

give the separation factor. 

 Selective surface diffusion; governed by a selective adsorption of the larger 

(non-ideal) or "chemically attractive" components on the pore surface.  In a 

mixed gas situation an additional increase in the selectivity might be 

achieved if the pores initially are so narrow that an adsorbed monolayer 

covering the internal pore walls causes the free pore entrance to be smaller 

than the diameter of the non-adsorbed molecule.  



Development and modification of glass membranes for aggressive gas separations 

 

21 

 Molecular sieving; the smallest molecules will permeate, the larger being 

retained.  For evaluation of the gas properties, reference is made to Table 2. 

  

Table 2: Various properties for selected gases /Reid/ 

Gas Lennard-Jones 

diameter, σ [Å] 

TC [K] MwA [g/mol] 

Cl2 4.22 417 70.9 

N2 3.79 126 28.0 

O2 3.47 155 32.0 

HCl 3.34 324 36.5 

H2 2.82 33.3 2.02 

 

3.1 General mass transport 
Fick's law gives the mass flux through any area perpendicular to the flow direction: 

(The general transport equations can be found in any basic textbook on transport as 

/Geankoplis/) 

A
A AB

dcJ D
dx

=−      (3.1) 

Where JA is the mass flux [mol(A)/(m2·s)], DAB is the diffusion coefficient [m2/s] and 

dcA/dx is the concentration gradient for component A over the distance x 

[mol/(m3·m)]. 

 

Fick's law can be integrated over the membrane thickness to yield the following 

expression, given that the diffusion is independent of the concentration: 

 

, 0, ,( )A memb A l A
A

D c c
J

l
−

=      (3.2) 

Where l is the membrane thickness [m] and c0,A and cl,A are the concentrations 

[mol/m3] on the inlet and the outlet of the membrane, respectively.  The DA,memb will 

vary according to which transport mechanism is dominating (as indicated in figure 7). 

 

The permeance, P/l, for a given gas type (A) is defined by: 
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AA

A

JP
l p∆

=       (3.3) 

Where P/l is the permeance (also referred to as permeability flux) [mol/(m2 Pa s) or 

m3(STP)/(m2 bar h)] and  pA is the partial pressure difference of "A" across the 

membrane [bar]. 

 

3.2 Knudsen Flow 
The Knudsen flow is characterized by the mean free path of the molecules being 

wider than the pore size /Geankoplis/.  Thus collisions between the molecules and the 

pore walls are more frequent than intermolecular collisions.  The "classical" Knudsen 

equation is: 

, 3
p

Kn A A

d
D v=

8 48.5
3

p
p

A A

d RT Td
Mw Mwπ

= = ⋅   (3.4) 

Where dp = average pore diameter [m], Av = average molecular velocity [m/s], Mw = 

molecular weight [kg/mol], and T = temperature [K]. 

Previously, a lower limit for the significance of the Knudsen mechanism was set to dp 

> 20 Å.  However, recent findings of /Gilron and Soffer/ indicate that the Knudsen 

mechanism can be significant for pore sizes as small as dp~5Å.  The Knudsen flow in 

this region takes slightly different form as indicated in the following expression 

derived as transport through a series of constrictions /Burggraaf/: 

,
8 exp( )a

A K p
A

ERTD d
Mw RTπ

∆
−d= g    (3.5) 

Where gd is the probability that a molecule can make a jump in the right direction, 

given the jump length is dp and the velocity is Av . 

They have also demonstrated the influence of varying pore diameter through a single 

pore, yielding a resistance in series model for the transport. 

 

3.3 Surface diffusion 
The mechanism of surface diffusion is disputed and several different approaches have 

been proposed in the literature. Theories ranging from viewing the low surface 
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coverage adsorbed gas as a 2D gas, through a hopping model into a more "liquid 

like" sliding layer theory. Which of the mechanisms is dominating the surface 

diffusion coefficient will be influenced by a number of factors including the 

homogeneity of the surface, the temperature vs. the adsorption enthalpy and the 

surface concentration, cs./Gilliland et al. 1974/. 

All three regimes can be described by a 2D analogue of Fick's law (given here for a 

single component): 

,
s

x s s
dcJ D
dx

=−      (3.6) 

Where Jx,s= is the flux (evaluated as molecules crossing a hypothetical line in the 

surface perpendicular to the direction x) [mol/(m s)], Ds is the surface diffusion 

coefficient [m2/s] and dcs/dx is the surface concentration gradient in the x-direction 

[mol /(m2·m)]. 

An important feature about surface transport is that is not necessary for the molecule 

to hit the pore entrance in order to be transported according to this mechanism.  

Molecules also hitting the external surface will contribute as indicated in figure 8 

/Burggraaf/.  This approach is similar to water in a sink where, if the plug is removed, 

all the water is going down the drain and not only the water directly above the drain 

inlet.  

 
Figure 8: Schematic model of gas permeation in microporous membranes. The flux 

consist of two contributions: Direct hit of the pore entrance and adsorption on the 

external surface./Burggraaf/  

 



Development and modification of glass membranes for aggressive gas separations 

 

24 

3.3.1 2D-gas model 

 

According to /Gilliland 1974/ the following expression may be used to determine if 

the surface transport is dominated by the 2D-gas model: 

/ 1/q RT a<       (3.7) 

Where q is the adsorption enthalpy [J/mol] and a is an energy fraction factor.  The 

energy barrier for surface migration, E, is then defined as: 

E a q=      (3.8) 

Figure 9 gives a visualisation of various energy barriers for surface 

migration./Dacey/. 

 
Figure 9: Energy barriers for surface migration on: A complicated but uniform 

surface (upper halve) and a heterogeneous surface. /Dacey/ 

 

The 2D-gas is characterised by a surface mean free path, λs, inversely proportional to 

the surface concentration, cs, and this λs value can be much larger than the spacing 

between adjacent surface sites. 

If the cs is low then a random walk diffusion of independent molecules can be 

expected and the Ds would be given as: 
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21
4s sD νλ=      (3.9) 

Where υ is a jump frequency factor (This factor has a temperature dependence 

according to Arrhenius law, υ=υ0·exp(-aq/(RT)) [1/s]. 

 

 

3.3.2 Site-to-site hopping model 

If the q/RT part of eq. (3.7) is increased then λs will no longer be controlled by 

collisions between adsorbed molecules. As q/RT increases, λs decreases and becomes 

equal to the spacing between adjacent sites and a hopping mechanism is observed. 

A more detailed description is given by / Weaver and Metzner / based on the 

following assumptions: 

 The adsorbed gas and gas phase are in thermodynamic equilibrium. 

 Adsorbed molecules migrate over the surface by small hops. 

 These hops have a random direction. 

This yields the following expression: 

2 2
222

w r
A z z

SN r λ πρ
λ

πτ
∂ ∂
∂ ∂

⎡ ⎤− +⎢ ⎥⎣ ⎦=     (3.10) 

Where: NA is molar flux [mol/(m2 s)], Sw= Specific surface area [m2/kg], ρ= density 

of the material [kg /m3], τg= tortuosity [-], λ= mean average jumping distance [m], r= 

Rate of partial desorption (or hopping rate) [mol/(m2 s)] and z= net flux direction 

[m]. 

 

The partial desorption rate or the hopping rate, can according to /Glasstone et al/, be 

expressed as: 

 
,0 a hmE

R Ts

w

c Q kTr e
S Q h

⎛ ⎞⎟⎜ ⎟⎜− ⎟⎜ ⎟⎟⎜ ⋅⎝ ⎠=  (3.11) 

Where Q and Q0 are the partition functions for the non-activated and activated 

species, respectively, k is Boltzmann’s constant [1.38·10-23 J/K], h is Planck’s 

constant [6.63·10-34 J·s] and Ea,hm= activation energy for surface migration [J/mol] 
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3.3.3 Liquid-like sliding layer model 

If the surface concentration is increased, the chance of a molecule hitting another 

molecule increases and this interaction will bear some similarity to diffusion in a 

liquid.  Thus, the region of the sliding layer prevails. 

Based on the given assumptions /Gilliland et al. 1958/: 

 Thermodynamic equilibrium between the gas and adsorbed phase. 

 No shear stresses between the adsorbed layer and the gas phase. 

 

The following equation was derived: 

 
1

2

2

2

pappA

p
R w

RTN x dp
A C S l p

ρ

τ ∫=  (3.12) 

Where: x = amount adsorbed [mol/kg], CR= resistance coefficient [kg/(s m2)] and l is 

the membrane thickness [m]. 

 

3.4 Molecular Sieving 
Molecular sieving is the dominating transport mechanism when the pore size is 

comparable to the molecular dimensions, 3-5 Å. The dimensions of a molecule are 

usually described with either the Lennard-Jones radii (Table 2) or the Van der Waals 

radii.  For separation by molecular sieving, this is not a satisfactory way of giving the 

molecular size; a shape factor should also be included /Singh and Koros/. This can be 

understood by viewing oxygen and nitrogen molecules as two fused spheres with 

different projected diameters parallel or perpendicular to the covalent bonding (i.e., 

the bonding between the atoms in O2 and N2). Consider a pore with a diameter of 3.8 

Å, here an oxygen molecule may pass through the pore independent of it rotation.  

However, nitrogen may or may not then pass the pore depending on how the 

molecule rotates; this explains the increase in the selectivity in favour of O2 /Singh 

and Koros/. 

The sorption selectivity has little influence on the separation when molecular sieving 

is considered. An Arrhenius type of equation is still valid for the activated transport, 

but attention should be drawn to the pre-exponential term, D0. From the transition 

state theory this factor may be expressed as shown in equation 13 /Glasstone et.al./: 
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,2
0 exp a dSkTD e

h R
λ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
     (3.13) 

Where k and h are Boltzmann’s and Planck’s constants, respectively; Sa,d is the 

activation entropy for diffusion. This means that a change in entropy will have a 

significant effect on the selectivity when molecular sieving is considered. Singh and 

Koros have discussed this thoroughly /Singh and Koros/. The flux may be described 

as in equation 14 where Ea,MS is the activation energy for diffusion in the molecular 

sieving media. 
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The sorption will in this case have little influence, and thus the selectivity for 

separation will increase with increasing temperature because of the increased 

diffusion rate of the permeating component. Likewise, it will become more difficult 

for the larger molecule to pass the narrow slit when the temperature increases. 

3.5 Combined mass transfer 
If the selective surface flow (SSF) and the Knudsen flow is assumed to be additive in 

the glass membranes and helium gas are assumed to be solely transported by 

Knudsen flow the following expression may be derived: 
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Where J is the permeance [m3(STP)/(m2 bar h)], αKn,i/j is the selectivity based on the 

Knudsen flow [-] and αi/j is the (total) selectivity [-]. From the general Knudsen 

transport mechanism theory the αKn,i/j is given as the square root of the inverse ratio 

of the molecular weights. 

This means that based on the assumptions used it is possible to derive an expression 

for the degree of contribution from SSF to the overall transport 
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Where ψ is the degree of SSF which is equal to JSSF/JTot [-] 
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4 MEMBRANE CHARACTERISATION 
 

4.1 Background 
The pore size distribution in a porous membrane is of fundamental interest.  Different 

methods for pore size determination based on different physical properties of the 

porous membrane exist.  As given in /Burggraaf/, these can be summed up in the 

following figure: 

 

 
Figure 10: Methodology for membrane characterization. /Burggraaf/ 

 

Since the various methods are based on different physical parameters, the obtained 

pore size should be expected to differ. 
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Two different methods are selected for the pore size distribution determination:  

 N2 adsorption / desorption at 77 K 

 Stereology (microscopy): Due to the small pore size of the glass membranes 

various methods were tried, including scanning electron microscopy (SEM), 

atomic force microscopy (AFM) and field emission scanning electron 

microscopy (FESEM). 

For the general understanding of the different glass membranes, the Fourier 

transform infrared spectroscopy (FTIR) spectrum was recorded. The IR-spectrum is 

believed to be important in the validation of the surface stability of the surface-

modified glass membrane.  

4.2 N2 adsorption /desorption 
The measurement of N2 adsorption/desorption isotherms has the advantage of being 

non-destructive at least for powders.  Membranes would not be destroyed in the sense 

that only a small amount of sample is necessary to perform the measurement.  The 

measurement is easy to perform, but the analysis and interpretation of the measured 

isotherms may be difficult.  

Adsorption may be defined as an enrichment of one or several components in an 

interfacial layer /Sing/.  The intermolecular forces involved in adsorbing a 

component to a surface are the same as those responsible for condensation of 

vapours.  These forces include attractive dispersion forces, short-range repulsive 

forces and specific molecular interactions (e.g. polarization, dipole/ dipole and dipole 

/quadropole).  If the formation of a chemical bond between the absorbent and the 

absorbate occurs, a so-called chemisorption has taken place.  This is an almost 

irreversible process, and it is not useful in determining the pore size distribution. 

When desorption is taking place, it may follow a different path from the adsorption; a 

hysteresis curve results.  Many adsorbents with high surface area are porous and it is 

useful to distinguish between internal and external surface area. 

For porous membranes in gas separation, the internal surface and the pore 

distribution is important.   
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The IUPAC, /Sing/ recommends the following classification of porous material: 

 Macropores: pores with widths exceeding 50 nm. 

 Mesopores: pores with widths between 2 and 50 nm. 

 Micropores: pores with widths smaller than 2 nm. 

 

The monolayer capacity is an important parameter in adsorption and it is defined as 

the amount of adsorbate needed to cover the surface with a complete monolayer.  

This is closely related to the surface coverage, θ, which is defined as the ratio of the 

amount adsorbed to the monolayer capacity.  The surface area of the absorbent can be 

calculated from the monolayer capacity if the effective area of one molecule in the 

monolayer is known. 

The majority of adsorption isotherms may be classified into one of the six general 

types shown in figure 11. 

 
Figure 11: Types of physisorption isotherms /Sing/ 

 

Of these isotherms, no.2 and no.4 are important in this work.  The point “B” marked 

on isotherm 2 and 4 is taken as the completion of the monolayer.  Isotherm no.2 is 
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easily fitted to the BET-equation (equation 4.1), and the region below the point B is 

used to obtain the correct constants in the BET-equation.  

The hysteresis given in isotherm no IV in figure 11 is often subdivided to belong to 

one of the four general shapes indicated in figure 12. 

 
Figure 12: Types of hysteresis loops /Sing/ 

 

The hysteresis appearing in the multilayer range of adsorption isotherms is usually 

associated with capillary condensation.  The shapes of these hysteresis loops can be 

associated with the pore shape at least to a certain extent. H1 in figure 12 is 

associated with agglomerates, H2 is associated with “ink bottle” pores, or porous 

network.  Type H3 and H4 are associated with slit like pores, where the H4 is 

characteristic for micropores. 
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The Brunauer-Emmett-Teller or BET method has become the most widely used gas 

adsorption isotherm for the determination of the surface area of porous material 

/Sing/. 

The BET-equation is given as follows (in its linear form): 
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    (4.1) 

Where na is the amount adsorbed at the relative pressure p/p0 and a
mn  is the 

monolayer capacity.  According to the BET theory, C is a constant that can be related 

to the enthalpy of adsorption of the first adsorbed layer.  However, /Sing/ states that it 

is now generally accepted that the C-value can be used to characterize the shape of 

the isotherm but that the C-value is at best an indication of the magnitude of the 

adsorption enthalpy.  A high value of C (~ 100) is associated with a sharp bend in the 

isotherm, thus making the determination of the point “B” trivial.  However, if C is ~ 

20 the point “B” cannot be identified as a single point.  If p/na (p0-p) is plotted versus 

p/p0 and a linear curve results, then equation 4.1 is obeyed and the measurements can 

be described by the BET-theory.  The range of linearity is restricted to a limited part 

of the isotherm, usually for p/p0 values in the 0.05 –0.30 range.  The calculation of 

the surface area requires the knowledge of the average coverage area of a N2 

molecule in the complete monolayer. Then the BET-area can be calculated according 

to: 

( ) a
s m mA BET n L a= ⋅ ⋅      (4.2) 

  

Where As(BET) is the total surface area according to the BET-theory [m2/mol], L is 

Avogadros constant, 6.02·1023 [mol-1] and am is the molecular cross sectional 

area[m2].  am has the value of 0.162 nm2 for close-packed N2 molecules at 77K./Sing/ 

 

The pore size distribution is the distribution of pore volumes with respect to pore 

size.  This calculation usually involves a number of assumptions such as pore shape, 

mechanism of pore filing, the validity of the Kelvin Equation etc. 

The Kelvin Equation is given as follows: 
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Where r1 and r2 are the principal radii of curvature for the liquid meniscus in the pore 

[m], σlg is the surface tension of the liquid condensate [J/m2] and υl is the molar 

volume of the liquid condensate [m3/mol]. 

If the shape of the pores is assumed to be cylindrical then the principal radii (defined 

in eq. 4.3) are equal, leading to: 

1 2

1 1 2

kr r r
+ =  (4.4) 

 

Where rk is the Kelvin radius [m]. 

Equation 4.3 substituted into eq. 4.4 and solved for rk gives the following expression: 
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 (4.5) 

 

Of course the multilayer thickness of the adsorbed layer has to be taken into account, 

thus the radius of the pore can be expressed as: 

rp=rk + t (4.6) 

 

Where t is the multilayer thickness [m]. 

 

The pore size distribution is usually calculated from the desorption branch of the 

isotherm.  If cylindrical open ended pores are considered, then the change in the 

different layers according to eq.7 can be sketched as a function of relative pressure as 

done in figure 13.   
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Figure 13: Schematic representation of the assumed desorption mechanism in the 

Barrett, Joyner and Halenda, BJH,-theory.  Showing the thinning of the physical 

adsorbed layer for three pores over the first three pressure decrements. /Barrett, E 

et.al./ 

 

In figure 13, the relative pressure (P/P0)1 differs infinitesimally from unity so 

substantially all pores are filled with liquid.  The largest pore has a radius of rp1, and 

upon its surface is a physical adsorbed layer of thickness t1. Within this physically 

adsorbed layer the inner capillary has an effective capillary radius equalling rk from 

which the evaporation occurs as the relative pressure, (P/P0), is lowered. 

By summing up the incremental decreases (n steps) in the thickness of adsorbed layer 

a volume desorption distribution may be obtained/Barrett et.al./.  This volume 

distribution method is known as the BJH-method.  Only the working equation is 

given here: 
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Where Rn=1 is defined by the following expression: 
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The constant c is defined by the following ratio: 

 ( ) /p r pc r t r−=  (4.9) 
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Vpn is the pore volume [m3], Vn is the observed degassed volume at a given relative 

pressure decrease [m3], pr is the average pore radii [m] and A is the average area for 

desorption in an emptied pore [m2]. 

Thus by using equations 8 and 9, the desired plot of Vpn vs. rp, the pore size 

distribution is produced. 

 

4.3 Stereology (Microscopy) 
Stereology can be defined as a kind of “inspection” method to “look” at the surface 

and to count and measure the dimensions of the pores from images of the surface.  

One of the greatest advantages of various stereological analysis is that they are easy 

to perform.  Unfortunately the method also has some severe drawbacks: 

Firstly, no distinctions are made between transport active pores and dead end pores. 

Secondly, since the surface under inspection is only a small fraction of the total 

membrane surface it is crucial to find a representative patch.  This will be very 

important in determining an average pore size distribution.  

4.3.1 Scanning electron microscope 

Instead of using visible light to inspect surfaces, it is possible to use electrons (which 

are both particles and waves according to the particle wave dualism in quantum 

mechanics).  The advantage of using an electron wave is that it has a much shorter 

wavelength and thus a better spatial resolution than visible light.  As a rule of thumb, 

the smallest distinguishable detail on the surface is roughly half of the wavelength of 

the radiation used.  This means that the resolution of a regular scanning electron 

microscope, SEM, is in the range of 5 nm.  They come in three different operational 

modes: Regular, Field emission scanning electron microscope (FESEM) and 

transmission electron microscope TEM.  In this work the Regular SEM and FESEM 

have been used. 

A SEM operates according to the following principle, as indicated in figure 14. 
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Figure 14: Principal sketch of a SEM /Skoog/  

 

The electrons are generated by the electric gun or filament as seen on top in figure 

14.  This particular filament is the main difference between SEM (Thermo ionic 

source) and FESEM (cold cathode). The cold cathode electron source enables the use 

of a lower accelerating voltage in the FESEM and thus a lesser need of metallization 

of the specimen /Burggraaf/.  This is a great advantage since the metallization might 

bury interesting surface morphology such as the pores. 

The electron beam is focused on the specimen using a set of magnetic lenses, as 

illustrated in figure 14.  As the electron beam strikes the specimen, it would interact 

with it and cause an ionization of the specimen.  Many types of electrons emitted 

from or interfering with the sample exist.  This is illustrated in figure 15: 
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Figure 15: Different electrons available for detection in SEM and related techniques. 

/Einarsrud/ 

 

One form of electron or other secondary phenomenon emitted from the sample 

according to figure 15, is detected with the appropriate detector and the result is 

transmitted to a computer.  Thus by letting the beam scan the surface systematically, 

an image of the surface is obtained.  Depending on the type of detections (according 

to figure 15) different characteristics of the sample can be highlighted.  The use of 

the characteristic X-radiation, upper right in figure 15, is of special importance since 

it enables the chemical composition of the sample to be determined by the elemental 

analysis option.  The principle of the detection is as follows: /Einarsrud/ 

X-rays can originate from two distinct mechanisms when electrons interfere with the 

sample: 

1. Retardation of the electrons in the electrostatic field around the atomic nucleus 

generates a continuous spectrum of wavelengths, i.e. retardation radiation.    

2. Characteristic X-ray radiation is emitted when an exited element (atom) relaxes to 

the ground state or a lower energy state. 

Only the second mechanism is element specific and thus the one discussed here.  In 

the cases where the primary electrons have sufficient energy they can eject electrons 

from the K, L or M shell as indicated in figure 16. 
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Figure 16: Schematic overview of a energy level diagram. /Einarsrud/ 

 

When the exited atom returns to the ground level electrons from a higher orbital will 

replace the lost electron.  The energy difference between the orbitals is then emitted 

as a photon with a specific wavelength in the X-ray region of the electromagnetic 

continuum.  Since the energy levels in figure 16 are element dependent, the emitted 

x-ray radiation will be characteristic for that element.  Thus this characteristic x-ray 

can be used both in qualitative and quantitative chemical composition analysis. 

However, since the incoming electrons from the SEM are highly focused, a pattern of 

analysis has to be chosen which may be a point, a line or a limited area. 

The lightest elements, i.e. hydrogen, helium and lithium have characteristic peaks 

outside the regular x-ray detection area and they can therefore not be detected. 

 

4.3.2 Atomic force microscope 

Atomic force microscopy is one technique among the scanning probe microscopy 

(SPM) “family”. In AFM a microscopic tip is allowed to interact with a small part of 

the surface that is investigated.  The AFM have some great advantages compared to 

SEM techniques, which include /Burggraaf/: 
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 AFM has a higher resolution 

 AFM is non-destructive 

 AFM requires no sample pre-treatment  

 AFM spectroscopy is performed at atmospheric pressure. 

 

The main components in the AFM are given in figure 17. 

 
Figure 17: Schematic overview of the main components in SPM with AFM on the 

right hand side. /Magonov/ 

 

It is important that the tip (cantilever) is able to move freely over the surface and thus 

a too-bulky surface may cause the cantilever to get jammed on the surface. If that 

happens the cantilever will break and it must be replaced. 

AFM spectroscopy is mainly performed in two different modes: The contact mode 

and the tapping mode.  In both modes the surface is scanned with a sharp probe and 

the difference is whether the probe is in physical contact with the sample (contact 

mode) or oscillating from a distance of a few nanometres towards contact with the 

surface (tapping mode) 

As indicated in the upper right corner of figure 17 (zoomed in), a fine tip is attached 

to the cantilever that scans the surface with a given constant force.  The interaction 

between the tip and the sample causes an extremely small change in the lever 

position that is measured by laser interferometry.  The output from the laser 

interferometry thus provides an image of the topography of the sample.  The 
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oscillation amplitude in the tapping mode can be adjusted by the user to fit soft 

material and to give high resolution images.  

  

4.4 IR spectroscopy 
Generally it is the chemical bonding in a molecule that absorbs IR (Infra Red)-

radiation.  For this absorption to occur it is necessary that a difference in the dipole 

moment of the two atoms sharing the chemical bond exists. This means that diatomic 

symmetrical molecules like N2, O2 or Cl2 do not absorb in the IR region but simple 

unsymmetrical molecules like HCl do.  The absorption of IR-radiation is only 

possible when the frequency of the radiation is in resonance with the natural 

vibrations of the bounds in the molecule.  This natural frequency is determined by 

which kind of atoms are connected by the bond and only slightly influenced by the 

other atoms in the distance of more than two bond lengths (meaning that couplings 

over long distances have little effect.).  Different types of vibrations are identified in 

figure 18.  

 
Figure 18: Vibration modes that are IR active. “+” indicates motion of the atom out 

of the paper plane towards the reader. /Skoog/ 

 

Not all of these vibrations lead to separate bands in the IR-spectrum because the 

corresponding intensity may be too low to detect or other bands from other chemical 
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groups in the molecule may interfere.  The spectrum usually consists of two separate 

areas: The ”fingerprint” area (frequencies from 400 cm-1 to 1500 cm-1) and the 

”Group band” area (frequencies from 1500 cm-1 to 3500 cm-1).  I.e. two isomeric 

compounds like 1-butanol and 2-butanol would have identical spectra in the group 

band range and different spectra in the fingerprint range.  Good identification 

frequencies are those that do not change much in frequency as their chemical 

environment changes.  As an example the C=O frequency is identified as an intense 

peak around 1600 cm-1-1700 cm-1 both in ketones and acids. Tables of characteristic 

frequencies are available in any book about IR spectroscopy, i.e. /Skoog/ or 

/Silverstein/ 

 

An IR-spectrum can (in theory) be acquired in two different modes: 

 One frequency at a time (typical double beam accessory). 

 All frequencies measured instantaneously (Fourier Transform Infra Red 

spectroscopy, FTIR). 

Because of the much shorter sampling times required by FTIR it is almost solely in 

use.  In the following only FTIR will be discussed.  A typical FTIR instrument 

consists of a moving mirror assembly as indicated in figure 19:   

 
Figure 19: Moving mirror assembly in a FTIR /Skoog/. 

 

As can be seen from figure 19, all the mirrors are semitransparent and a tree beam 

systems exists.  This tree beam system consists of a laser system used to measure the 

exact position and speed of the moving mirror, a white light system to measure the 

exact location of the Zero retardation and of course the IR system /Skoog/.  The IR 
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beam consists of all frequencies and interferes with the sample.  After the IR-beam 

has interfered with the sample an interferogram, as indicated in figure 20, is 

measured in the time continuum: 

 
Figure 20: Typical IR time continuum interferogram detected by a FTIR instrument. 

The largest peak in the middle corresponds to zero retardation.  /Skoog/ 

 

This interferogram, which is a plot of the intensity vs. time, is then Fourier 

transformed and a familiar intensity vs. wave number (or frequency) results. 

 

In general, there are several modes of use developed for samples of varying nature.  

For dense material the following methods can be used to obtain a spectrum: 

 Standard transmittance measurements. Requires, of course, that the sample is 

at least partially IR-transparent.  

 KBr tablet method.  This is also a transmittance measurement but the sample 

can be less IR-transparent than what is required by the standard method.  This 

method is capable of measuring powder samples. 

 Diffuse reflectance measurement.  This is, at the name indicates, a reflective 

method. The method is excellent for powder samples. 

 (Horizontal) Attenuated Total Reflectance, HATR, measurement. Another 

reflective method that can be used for both solids and powder. 

Since SiO2- glasses are IR-opaque below 2000 cm-1 the standard transmittance 

method is hard to use for qualitative purposes.  In this work the HATR technique has 

been used.  The HATR technique is very simple to perform once it is properly 
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calibrated and aligned. There is no need of sample preparation if the surface is flat 

and clean from contaminants.  Figure 21 shows a sketch of a typical HATR accessory  

 
Figure 21:  Principal sketch of a HATR-accessory. /Perkin Elmer/ 

 

Various mirrors reflect, as given in figure 21, the IR-beam originating from the 

instrument, until it enters a ZnSe-crystal.  Inside the crystal, the beam is totally 

internally reflected at each of the crystal surfaces (an odd number of times in total).  

However, it has been shown that the IR-beam extends a bit outside the surface, in the 

range of several µm or a few wavelengths, before it re-enters the crystal /Skoog and 

Perkin Elmer/.  Thus if a solid IR-opaque sample is brought in close contact with the 

crystal, an IR-spectrum could be obtained.  To ensure close proximity between the 

sample and the crystal, it is of importance that the sample is either in powder form or 

uniformly plane.  The IR beam then continues towards the detector.  
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5 EXPERIMENTAL 
 

5.1 N2 adsorption 
The apparatus used in the N2 adsorption measurements was a Belsorp 28 

manufactured by Bel Japan Inc.  This instrument has the ability to run three samples 

simultaneously.  The sample holder for this apparatus is sketched in figure 22.  

 

 
Figure 22: Portable and separable sample holder for adsorption measurements. 

 

As indicated in the figure, the sample holder is separable at the junction in the 

middle.  This makes it easier to place the sample in the sample holder (drawn in the 

lower part in figure 22).  The junction is sealed with a double set of Viton® o-rings.  

The valve is of great importance in order to keep an inert atmosphere with a defined 

gas pressure in the sample compartment.  This is of crucial importance when the 

mass of the outgassed sample is to be determined, since the sample holder then had to 

be disconnected from the apparatus and weighted on a standard lab balance. 

5.1.1 Procedure 

A sample holder without a sample, was evacuated for approximately 5 minutes 

(Ptot<1 mmHg (<1.33 mbar)) and then filled with 1 bar of helium.  The valve 

indicated in figure 22 is then closed and the sample holder was disconnected from the 

evacuation line and weighed.  The mass is determined by a balance with accuracy in 
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the 0.1 mg range.  The method required approximately 0.5 g of sample, which 

correspond to ca. 3 cm of glass tube. The sample holder is dismantled at the junction, 

and the sample is added. The sample holder was then re-connected.  As indicated in 

figure 23, the sample was connected by an Ultra-torr ® coupling to the preheat 

treatment line of the Belsorp 28 (the right hand part of figure 23, marked with (41)). 

 

 

Figure 23: Flow sheet of the Belsorp 28. /Bel Japan/ 

 

The preheat treatment was according to the following scheme: The sample was 

evacuated and heated to 80ºC (during 2 hours, rate= 25 ºC/h) and then kept at this 

temperature for 5 hours.  The sample was cooled to room temperature at the same 

rate.  Helium was fed into the sample holder up to 1 bar and the valve shown in 

figure 22 was closed.  The sample holder with the degassed sample was weighed and 

the sample mass calculated.  The holder was connected to the N2-adsorption part (left 

hand side of figure 23) and the valve was opened upon the PC software request.  The 

Belsorp 28 has a well-regulated level system for keeping the liquid N2 level almost 

constant, which is important for reproducible isotherms.  This system is not included 

in the figure but it consists of a reservoir tank for liquid N2 and a precise level sensor.  

The apparatus is automatically controlled by a PC and the factory standard setup has 

been used in the measurements reported here.  The PC software has options where 
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the user can make a best fit of the BET isotherm to the measured isotherm and, for 

mesoporous material, to calculate the pore size distribution according to the BJH 

method.   

5.2 Stereology analysis 

5.2.1 Scanning Electron Microscopy 

The method for mounting the specimens is identical for all the different SEM-

techniques, except for the transmittance-SEM and is depending on the electric 

conducting ability of the specimen.  It is crucial to ensure that excess electrons at the 

surface of the sample are efficiently drained, thus preventing a charge build-up that 

causes the SEM image to lose contrast. If the sample is an electric insulator, as with 

glass, then it is best to coat the sample with a gold layer.  This was done in the field 

emission scanning electron microscopy (FESEM) tests but not in the standard SEM. 

 

Trained personnel were hired to capture the FESEM images.  The author was not 

present during the analysis, so the choice of mounting technique and other 

optimizations are uncertain.   

 

Procedure 

The regular SEM images were obtained the following way, using a Hitachi S-3500N 

apparatus: 

Small pieces of the glass membranes, approximately 10mm2/piece, were glued with 

carbon glue onto the sample holder.  The samples had either the concave and convex 

side of the surface facing up.  The carbon glue is electrically conductive, thus it 

helped to ensure both that the sample was spatially fixed during the subsequent 

evacuation and that the sample was sufficiently grounded to prevent charge build-up. 

The glue was hardened for 24 hours after mounting before the measurement was 

performed.  In order to obtain a detailed and high quality SEM image, several 

parameters must be optimized simultaneously, including the contrast, the hue, the 

astigmatism, the accelerating voltage, the working distance, the proper pressure and 

detector choices (see figure 15) and the sample tilt angle.  The best image often 
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results from a series of optimizations corresponding to a series of increasing 

magnifications. 

The elemental analysis was performed on the sample while it was evacuated inside 

the SEM.  To analyze the surface, or in this case the pores, a specific sample pattern 

must be specified.  A single point sample was chosen in this work.  

5.2.2 Atomic Force Microscopy 

AFM needs virtually no sample preparation as long as the sample can be spatially 

fixed.  Although in practice, flat samples of a size of a few mm2 are generally 

recommended.   

The images were obtained the following way with a Nanoscope III from Digital 

Instruments, using the contact mode (in air): 

The sample was fixed with the convex side pointing upwards from the sample holder 

using tape with glue on both sides.  The sample was a small fraction of a cylinder 

wall and the corresponding cylinder length was carefully aligned with the tapping 

direction of the AFM.  This was necessary otherwise the tip may get jammed on the 

surface.  A PC controlled the AFM with software that automatically tried to optimize 

the parameters that influence the image quality.  This optimization seemed to yield 

fair quality pictures at moderate to high magnifications.  However, the AFM is very 

sensitive to vibrations and the current setup is judged to be insufficient.   

To perform the AFM analysis the author got help from a trained person, but the 

author was present to influence the process of finding an interesting patch of the 

sample.  

5.3 FTIR spectroscopy 

A Perkin-Elmer  Universal ATR (attenuated total reflectance) has been used in 

these measurements.  This work discusses the use of HATR only.  In general if 

spectra from different samples are to be compared it is important that the samples 

have identical concentrations or that a peak in the spectra of the various samples used 

is unchanged and can serve as an internal standard.  The choice of a suitable peak is 

difficult, especially since the peak intensities in the reflectance spectra are different 

from the transmittance spectra /Skoog/.  In general, the best way of obtaining 

reproducible spectra from the HATR technique is to ensure that the sample is 
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powdered and evenly distributed over the whole measuring crystal.  To ensure a 

reproducible penetration depth of the IR-beam, a gentle constant force should be 

applied to the sample. 

However, the sample as a whole could not be powdered since that would ruin it as a 

future membrane, thus only a small piece was available to be powdered.  This was 

not sufficient to cover the whole measuring crystal so the spectra obtained here 

should only be used for indicative analysis purposes.   

 

Procedure 

Two different approaches were tried: 

1. Spectra obtained directly of the membrane material: A background spectrum 

with an empty measuring crystal was recorded.  Then a piece of the sample 

with an area of ca. 10 mm2 was placed directly on top of the measuring 

crystal without applying any force.  This was not enough sample to cover the 

entire surface, but it should be sufficient to give a qualitative spectrum of the 

membranes.  

2. Spectra obtained from glass plates.  These glass plates, ca. 15x25x1 mm, were 

treated almost like the glass tubes, meaning they were acid leached, surface 

modified and chlorine exposed, but they were not phase separated (meaning 

that boron will be present to a larger extent in the glass plates than in the glass 

tubes)  :  A background spectrum with an empty measuring crystal was 

recorded.  Then a plate was placed directly on top of the measuring crystal 

and a constant force applied (46 [no unit given by the producer]).  In chapter 

6 the spectra obtained by using the plates are clearly marked in the 

corresponding figure captions  

  

5.4 Permeance measurements 
In general there are two different approaches for measuring the permeance 

[m3(STP)/(m2 bar h)] (or the permeability[m3(STP) m/(m2 bar h)] if the thickness can 

be determined) for a gas through a membrane./Mulder/  The simplest approach is to 

apply a pressure, above atmospheric pressure, on the high-pressure side of the 

membrane and then measure the flux of gas penetrating the membrane.  This flux can 
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be measured by a bubble flow meter or if more accuracy is desired, by a mass flow 

meter.  The second alternative is a closed set-up (as the permeation apparatus in 

figure 24) where the low-pressure side of the membrane is evacuated using a vacuum 

pump.  The permeance is then calculated from the linear steady state pressure 

increase on the vacuum side as the test proceeds (a derivation of how the permeance 

can be calculated from the stable pressure increase for the closed set-up is found in 

appendix 3). 

 

5.4.1 Pure gas permeances 

In the case of the aggressive gases studied in the current project, the bubble (or mass 

flow) method is not a desired setup because:  

1. It is more susceptible to gas leakages since a higher pressure is needed on the 

high pressure side of the membrane to obtain the same pressure gradient as in 

the closed set-up.  

2. It would require a continuous disposal handling procedure for the aggressive 

gases. 

3. The moisture from the ambient air can back-diffuse into the apparatus, react 

with the chlorine or hydrogen chloride and lead to very harsh corrosive 

conditions. 

These disadvantages are more easily controlled in the closed vacuum set-up where 

the gas can be let out in a batch process and the apparatus can be filled with dry 

nitrogen if it is to be left idle for a longer period, thus minimizing the corrosive attack 

on the apparatus.  Another advantage of the closed setup is that it is possible to cover 

several orders of magnitude of permeances by simply allowing the test time to 

increase.  Contrarily to what is the case by using a mass flowmeter, there is no need 

for changing to a lower scaled pressure transducer as the permeance slows down. 
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Figure 24: Flow-sheet of the closed set-up permeance apparatus used for pure gas 

measurements in this thesis. 

 

In such a closed set-up it is important that the pressure transducers are of high 

quality, meaning that they have small errors and can sustain the aggressive 

environment.  Both the MKS 121AA (0-5000 mbar range) used on the high pressure 

side, Php in figure 24, and the MKS Baratron 626 (0-100 mbar range) used on the low 

pressure side, Plp in figure 24 meet these requirements.  It is of vital importance that 

the deviation in the linearity of the response of the permeance pressure transducer is 

as low as possible in terms of obtaining a reproducible permeance in successive runs.   

This rig was designed and built by the MEMFO research group prior to this project 

was started. 

A detailed analysis of the experimental errors in the permeation apparatus are given 

in appendix 3. 

 

Membrane module design  

The only drawback in the closed permeance set-up is that the module in which the 

membrane is to be mounted has to be vacuum proof.  This was in particular a 



Development and modification of glass membranes for aggressive gas separations 

 

53 

problem in designing a suitable module for testing the brittle glass membrane.  A 

sketch of the first useable module designed is drawn in figure 25:  

 
Figure 25: “Original” module design for the permeability measurements 

 

The silicone rubber gaskets used in the module was a problem since the silicone 

rubber deteriorates after relatively short time exposures to chlorine or hydrogen 

chloride.  A new and improved module was designed as shown in figure 26. 
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Figure 26: Detailed sketch of the module developed for the permeance 

measurements. 
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The advantage of using an extra Pyrex® glass tube into which the glass membrane is 

glued is that the wall thickness of the extra Pyrex® tube will be greater compared to 

the wall thickness of the glass membrane.  The glass membranes are synthesized 

from hand-drawn glass tubes where the deviation in the diameter is much larger than 

in the factory made commercial Pyrex® glass.  This causes the Teflon® ferrules in 

the Swagelok® union to be vacuum-tight against the glass at a much lower applied 

force than if a smaller diameter union should have been used directly with the 

membrane.  

The glue used is Araldite® AV 138M with the hardener HV 989.  This glue has 

excellent wetting abilities for both glass types and the glue is also stable against the 

aggressive gases, for temperatures up to 80°C over long time.  The glue forms a gas-

tight seal when hardened, which is highly important when it shall be used in 

permeance experiments. 

Procedure for pure gas permeance measurements 

Before a glass membrane was used for the first time, it must be conditioned by 

heating under vacuum up to 80°C.  This temperature must be kept for two hours.  

This conditioning procedure was required because of slightly different reasons for the 

pure and surface-modified membranes: The pure microporous glass is hygroscopic, 

so adsorbed water will be present in the pores (the membrane was rinsed with water 

after the acid leaching to remove excess acid and water will adsorb from the ambient 

air during storage).  This causes some pores to be (partial) plugged, thus the 

permeance will be lower than it needs to be.  The surface-modified membranes have 

excess organic vapours (mostly toluene) in the pores originating from the surface 

modification procedure, and water is also adsorbed from the ambient air during 

storage, thus giving a lower than expected permeance and poorer stability. 

 

After the regeneration procedure and prior to each new gas tested, the membrane was 

evacuated overnight (at least 12 hours) at a vacuum pressure below 1 mbar.   

 

All the valves indicated in figure 24 are ball valves (Whitey Ball 33 series valve, 

Whitey is a sub-division of Swagelok®) and they were all semi-automatically 

operated by a pneumatic system which was controlled by a computer using the 

LabView program.  LabView was also used to log the pressures from the two 
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pressure transducers (indicated in figure 24) each second and to save the pressure 

data into a computer file.     

A measurement started by creating a new log file in LabView, which then 

automatically closed all the valves.  The high pressure tank was filled with the 

desired test gas up to the desired test pressure (plus 10% extra because the small 

flashes caused by the gas filling the volumes between V2 and V3, between V3 and 

the module and the high pressure side of the module).  The test was started by 

opening V2 and then V3 (figure 24).  After a sufficient test time (experience based) 

the logging was stopped and the apparatus evacuated. 

The pressure data file created by LabView was then further analyzed in Matlab.  For 

the Matlab analysis three scripts were written to be able to: 

1. Plot the vacuum pressure as a function of the elapsed experiment time. From 

this plot the start and end points of the time range in which the pressure 

increase was linear has to determined.  (A linear pressure increase 

corresponds to steady state permeance through the membrane.  This is 

actually only correct in the start of an experiment because as time elapses the 

pressure on the high pressure side is decreasing and the pressure on the low 

pressure side is increasing, thus leading to a decrease in the driving force 

across the membrane.  This will cause the vacuum pressure vs. time to deviate 

from the straight line at higher vacuum pressures and longer times, giving a 

typical S-shaped curve.) 

2. Calculate the slope dp/dt.  This was done in Matlab by a linear least-square 

best fit of the logged pressure data in the linearity region determined in step 

one.  Information about the membrane area and the test temperature must then 

be entered so that the program could calculate the permeance [m3(STP)/(m2 

bar h)].  In many cases this was all the information the test performer 

required, but if the time-lag was wanted step 3 was also required. 

3. Determine the time-lag from the transient state at the start of a permeance 

measurement.  The only additional information required to be able to perform 

these calculations was to determine the stable base line (or start line). The 

time-lag is then the cross point between an extrapolation of the best fit found 

in step 2 and the base line.  
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The equations for determining the permeance in a closed set-up, copy of the Matlab 

script and estimations of the errors in the apparatus are given in appendix 3. 

In the cases where several pressures of one gas were measured, the membrane was 

evacuated for at least one hour between each measurement and the permeance 

measurements were always performed in sequence, starting with the lowest pressure 

and ending with the highest. 

 

In the cases where the permeance is measured at several temperatures for a specific 

gas, the membrane is evacuated for at least two hours after the temperature has 

stabilized on the new level. 

 

5.4.2 Permeance measurements with simultaneous UV –
radiation of the glass membrane tubes 

Since the reason for trying a combination of permeance measurement with 

simultaneous UV-radiation is not obvious, a brief explanation follows: 

Chlorine is known to be quite a “reactive” reagent, and as documented in chapter 6, 

effort has been put into proving the various materials to be chlorine stable.  UV-

radiation shorter than a specific wavelength (492 nm, estimated from the chlorine- 

chlorine bound energy) has the ability to break the chlorine -chlorine bound in 

chlorine gas into two chlorine radicals. This is summed in equation 5.1: 

 2 2Cl h Clν+ → i  (5.1) 

The chlorine radical is believed to have a significantly larger reaction rate with the 

membrane material than chlorine gas (Given identical process conditions).  If the 

chlorination reaction ceases before the transport properties are too damaged, then the 

original surface modifying compound could be used despite some deterioration of the 

material. 

 

The UV radiation catalyzed chlorination setup is drawn schematically in figure 27.  

The module used in these experiments is slightly altered from the module drawn in 

figure 26. 
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In addition to what is drawn in figure 27, a sheet of aluminium foil was wrapped 

around the module and used to shield the environment from the UV-radiation and to 

focus as much radiation as possible on the membrane surface. 
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Figure 27: Experimental setup of the chlorine exposure with UV-radiation. 

 

Reaction procedure 

Prior to the gluing, the length of the Pyrex® glass had to be adjusted so that the 

active membrane area was aligned with the UV-transparent Silica glass region of the 

module as indicated in figure 27.  

The membrane module was turned 60° each 1/6 of the total exposure time to ensure 

the most homogeneous radiation exposure over the whole active membrane area.  

This combined test started as a regular permeance test but after approximately 1000 

seconds the aligned UV-source was switched on. The absolute pressure on the low-

pressure side was then typically 7 mbar. 
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5.4.3 Permeance measurements of the glass fibres 

The permeance measurements of the fibres are quite tricky and believed to be less 

accurate than the measurement performed with the tubes due to several factors that 

are heavily entangled: 

 The fibres were relatively short. They were approximately 10 cm in length 

and had an outer diameter of 0.05mm.  This led to a small active membrane 

area per fibre.  

 Small membrane areas have a low flux and thus the leakage of the cabinet 

limited how small fluxes could be measured.  

 Gluing of several fibres into a module was difficult since the fibres tend to 

cluster, thus leading to a narrow hole between them from which the glue 

seems to be more easily drained. 

 Using small droplet of glue to seal of the dead end of the fibre was also 

difficult since the capillary forces of the glass-glue interface were so strong 

that the droplet of glue could actually migrate against the gravitational force. 

 Build-up of static charges during the gluing process did in the worst case lead 

to a fibre bundle that was impossible to mount into the module.  

Mounting procedure 

As an attempt to minimize the effects described above, the following procedure was 

implemented:  As for the membrane tubes, the 8mm outer diameter Pyrex glass tube 

was used as a fibre bundle template.  However, in order to prevent the fibres from 

clustering during the glue hardening process, the gluing was performed in two stages: 

1. The glass tube was glue sealed at one end and left to harden over-night. 

2. The following day three holes were drilled through the glue seal.  A fibre was 

thread through each hole and a new rim of glue applied to seal the old seal and 

the fibre.  The dead end of each fibre was sealed individually by dipping the 

end into the glue.   

In some cases the glue drop migrated up the fibre during the hardening process and in 

those cases the end had to be glued over again.  From this point on, the procedure 

was identical to the “tube measurement” permeation procedure. 
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5.4.4  Mixed-gas permeation test 

To be able to analyze the mixed gases, a modification of the permeation equipment is 

necessary.  Figure 28 gives a sketch of the set-up for mixtures: 
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Figure 28: Mixed-gas permeation set-up. 

 

In figure 28 the valve V7 is of particular interest, since it allows the low pressure tank 

to be shut down during the permeation test thus, decreasing the fill-up time of the 

low-pressure side 20-folds.  

The low-pressure transducer used in this setup was a 1000 mbar MKS 121AA 

transducer. Since the set-up was “loosing” gas through the spectrophotometer (Cl2 

Anl. in figure 28) and through the retentate, it was necessary to apply as high 

pressure as possible.  The spectrophotometer used was a Sigrist, Sipro 2001 process-

photometer.  To handle the chlorine waste, three strong alkaline solutions were 

prepared (approximately 1 Molar NaOH) through which the gas was bubbled. 
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Procedure 

The apparatus was evacuated for at least 2 hours between each test. 

The gases were mixed in the high pressure tank using a simple additive partial 

pressure approach, (The mole fraction of each component was assumed equal to the 

partial pressure of that component).  Chlorine was always added first.  The 

measurement started by closing all valves (except the two three ways valves, V10 

and V11) followed by the opening of valvesV2, V3 and V7.  The valve V8 was used 

to set the cut rate (the ratio of the permeate flow over the feed flow).  The flow rate 

was rather difficult to set to a low enough level to obtain any significant cut rate thus 

the cut rate in the experiments was close to 0 (lower than 0.1).  However, the smallest 

stable retentate flow possible was used.  Since it took ca. one hour to perform the 

permeation recording and another hour to fill the low pressure side, the retentate was 

analyzed first.  In order to speed up the filling of the low-pressure side and to save 

gas, the valve V7 was closed after the recording of the permeation test.  This 

increased the filling rate of the low-pressure side by a factor of 20.  As the low-

pressure indicator indicated that the low- pressure side was at atmospheric pressure 

the stream to the analyzed was changed to measure the permeate.  After a stable 

readout of the analyzer was achieved, that for low chlorine contents took hours, a 

final high retentate flow (volumetric flow at least one magnitude higher than 

previously used) was measured.  This last measurement was taken as a measure for 

the real feed composition.  

5.5 Sorption measurements 
The sorption of a gas on a material can in general be determined by two main 

methods: /Mulder/ 

 An accurate balance can be used to measure the weight increase during the 

sorption process and thus by plotting the mass increase as a function of time, 

the sorption isotherm is obtained.  This is known as the gravimetric method.   

 The sorption can be calculated from the pressure decrease in the sorption 

chamber after the initial gas flash.  This is known as the volumetric method. 
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Because the aggressive gases are believed to possibly be ruining the balance in the 

gravimetric method, the simpler volumetric set-up has been chosen.  Figure 29 gives 

the flow scheme of the single chamber adsorption set-up used in this thesis. 
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Figure 29: Flow scheme of the apparatus for the adsorption measurements 

 

In the adsorption set-up or during an adsorption measurement there are some 

important factors to be aware of: 

 The volumes of the of the sample cell, the pressure transducer, the tubes and 

valves have to be carefully volume calibrated in order to be able to calculate 

the adsorption properly.(detailed procedure given in appendix 4.1) 

 The pressure transducer should be kept inside the temperature-regulated 

chamber in order to avoid unnecessary temperature gradients. 

 The valve tagged as V4 in figure 29 should be of very high quality.  This valve 

is the barrier between the sample and the rest of the world and a leak here can 

erroneously be interpreted as an adsorption. 

 The amount of sample used has to be adjusted in relation to the available 

sample cell volume so that the resulting pressure decrease from the adsorption 

will be detectable on the pressure transducer.   

 Long enough desorption times must be applied and the evacuation time 

should, as a rule of thumb, be at least twice the expected time it takes to obtain 

a stable adsorption measurement. 
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The sample chamber is made from high quality steel consisting of a volume of 17 

cm3 that can be easily accessed through a Svagelok® ¾” VCR (metal gasket face seal 

fitting) blind nut. 

5.5.1 Single point adsorption measurement 

The sample was evacuated at least overnight prior to each test.  The maximum 

pressure test available in the set-up is a consequence of the pressure range of the 

pressure transducer.  The flash resulting from having the sample chamber evacuated 

and the vis-à-vis volume (the volume of the tube, including the pressure transducer 

between V4 and V5 in figure 29) at the maximum detectable pressure gave a 

maximum test pressure of approximately 50 % of the maximum pressure.  In the 

current set-up this meat that 3 bar was the maximum test pressure. 

The equations used in the calculation of the sorption coefficient are given in appendix 

4.2 and an estimation of the total apparatus error is given in appendix 4.3 

 

5.5.2 Isotherm measurements 

The adsorption isotherm has been measured, first starting with the lowest test 

pressure and adding on points without evacuation between them.  When all the points 

on the adsorption isotherm were measured, the sample was evacuated for at least two 

days.  This evacuation was done for two reasons:  Firstly, the error of measurement 

was propagated during the series so it was important to reset the errors.  Secondly, 

the determination of the start point of the adsorption (i.e. the pressure calculated from 

the flash calculation) required that the pressure reading was absolute, thus the 

pressure transducer output should be readjusted to zero. 

The points on the desorption branch was obtained by starting with the highest 

pressure and then subtracting flashes (i.e. applying a vacuum or a lower than test cell 

pressure on the volume of the tube, including the pressure transducer between V4 and 

V5 in figure 29)      
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5.6 Diffusion coefficient estimation 
Estimations of the total diffusion coefficient can be obtained by two different 

methods:  

1) The diffusion can be calculated from the following well known equation /Mulder/: 

 P D S⋅=  (5.2) 

Where P= permeability [m3(STP)m/(m2 bar h)], D is the diffusion coefficient [m2/h] 

and S is the sorption coefficient [m3(STP)/(m3 bar)].  

Thus the diffusion coefficient can be calculated as the ratio between P and S at a 

given pressure and temperature. 

2) The diffusion can be estimated from the time-lag in the start of the gas permeation 

measurement.  Figure 30 gives a brief sketch of how this is done /Mulder/. The θ-

value obtained from the plot, relates to the diffusion according to equation 3 

/Mulder/: 
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θ =  (5.3) 

Where θ is the time-lag [s] and l is the membrane thickness [m]. 
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Figure 30: Time-lag measurements in gas permeation measurements /Mulder/. 
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5.7 Membrane gas exposure in durability chamber 
In order to save run time on the permeance equipment, a durability chamber was 

designed by the MEMFO research group.  In this chamber the membrane can be 

stored under a controlled specific atmosphere.  Although there might be a difference 

in the response of the membrane upon a static exposure in the durability chamber 

compared to a dynamic long-time permeance test, this would at least give important 

information about the chemical stability of the membrane material.  Figure 31 gives a 

sketch of the durability chamber used. 
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Figure 31: Sketch of the durability chamber. 

 

The relative large chamber volume of three litres is chosen to ensure that the gas 

atmosphere would not change significantly even in the cases where the membrane is 

reacting with the gas.   

Gas exposure procedure 

A membrane for which the permeances for nitrogen and at least one other inert gas 

have been measured was placed in the durability chamber.  A thin film of grease 

(Molycote® BG 87) was evenly distributed on the glass edges indicated in figure 31 

before they were squeezed together by a clamp.  The chamber was then mounted in 

the permeance apparatus replacing the indicated membrane in figure 24.  Since the 

chamber only had one inlet, the high pressure connection to the module was sealed.  

This allowed the inspection of the degree of vacuum during evacuation by the low-
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pressure transducer. It also ensured that the correct pressure was applied in the 

exposure through the reading of the high-pressure transducer. 

After the chamber was sealed, the surrounding equipment was evacuated and the 

diaphragm valve opened very slowly.  The chamber was evacuated for at least 12 

hours before the exposing gas was slowly fed into the chamber until the desired 

pressure was reached.  After shutting the valve on the chamber, the surrounding 

apparatus was emptied for gas and the chamber was disconnected from the apparatus.  

The outlet valve on the chamber was sealed with a blind nut and the chamber was 

placed in a vented heating cabinet for a given period of time. 

When the desired test period had ended the durability chamber was connected to the 

permeation apparatus as described in the previous section and the surrounding 

equipment was emptied of air.  Since chlorine and hydrogen chloride are poisonous 

gases, it was important to ensure that the gas was not vented into the atmosphere 

during evacuation.  This was ensured by keeping the rate of evacuation low (narrow 

opening of the diaphragm valve) and simultaneously dissolving the effluent chlorine 

or hydrogen chloride from the vacuum pump in water by use of a water jet pump.  

The chamber was evacuated over night and when opened the membrane was 

immediately mounted into the module (figure 26) and coupled onto the permeance 

apparatus.  The membrane was evacuated for at least 24 hours before the first 

permeation test after the exposure was performed.  
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6 RESULTS AND DISCUSSION 
The process of obtaining chlorine or hydrogen chlorine stable materials is iterative, 

and the results from the various measurements are reported in the order in which the 

materials were received from our Japanese partners.  Tables summarising the results, 

are given for each membrane material. 

In the chlorine stability evaluation, this table includes the following variables: the 

permeance for N2, the O2/N2 selectivity, the Cl2/N2 selectivity, the N2 permeability 

decay and the Cl2 exposure time.   

For the evaluation of material stability towards chlrine, the table includes the 

following variables: permeance for N2, H2/N2 selectivity, HCl/H2 selectivity, N2 

permeability decay and HCl exposure time.   

The detailed experimental results are given in corresponding appendices. 

6.1 Chlorine - air separation 
The main focus of this thesis has been on chlorine – air separation since this was a 

successor of previous project work, as explained in chapter 1; ”Introduction and 

background”. 

6.1.1 Unmodified glass membrane 4 nm average pore size 

As explained in chapter 2.4, “Preparation of porous glass membranes” glass 

membranes can be produced with two different pore sizes, and both can be pore 

tailored by surface modifications. 

On the unmodified 4 nm glass tube, extensive characterisation techniques have been 

applied, both to obtain a basic understanding of the material and to characterise the 

pores. 

Stereology images 

Figure 32 shows the field emission scanning electron microscopy, FESEM, photo of 

the pure 4 nm glass membrane surface. 
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Figure 32: FESEM photo of the pure 4 nm glass surface. 

The corresponding atomic force microscopy, AFM, picture is given in figure 33. 

 
Figure 33: AFM picture of the pure 4 nm glass surface.  

 

Elemental analysis was successfully performed using a SEM instrument, but standard 

SEM images could not be obtained of the 4 nm glass tube.  The chemical 

composition is discussed at the end of the section.  
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The FESEM of the unmodified 4 nm glass is shown in figure 32.  Compared to the 

scale indicated in the bottom of the FESEM image, a 4 nm pore would have a length 

corresponding to 2% of the distance of any to closest point on the small squared scale 

line. The pores may not be visible in the image at first glance, but a pore entrance 

will exist wherever three (or more) spheres meet.  The porosity can be estimated by 

counting the number of pore entries on a randomly chosen patch corresponding to a 

given area, i.e. 0.25 µm2.  The pore counting started by selecting a random patch  and 

this selected patch of the picture was magnified using the zoom function in the MS 

Paint computer program.  The pores were then manually counted.  An estimate based 

on a random patch in figure 32 yielded a porosity of approximately 600pores/µm2 

(1.8%, if the pore entries are assumed to be circular with a diameter of 4 nm).  This is 

13.3 times lower than the estimate based on the liquid N2 absorption measurement on 

the unmodified 4 nm glass tube performed by AIST Kansai.  The underestimation 

from the FESEM-determination could be (partly) explained by the following factors: 

1. The estimation was based on the assumption that an average representative 

patch of the FESEM picture chosen at random also is a random part of the 

glass tube as a whole.  So even if the picture does not show any significant 

structure deviation, it is only a minute fraction compared to the surface used 

in the adsorption measurement.  Ca. 1µm2 surface area is shown in the 

FESEM picture compared to the 4 cm2 of outer external sample area 

measured on in the adsorption measurement.  This means that the chosen 

random patch may deviate from the “average patch”.  The fact that the 

FESEM image is a projection of the topology of the surface, may cause some 

pore entries to be buried under the uppermost colloid particles (the particles 

that are most bright white in figure 32). 

2. The counting of the pores leads to the inevitable question of whether there are 

none, one or several pores starting in the regions where more than three 

colloid spheres collide, resulting in a shadowed slit-like pattern (upper left 

corner in figure32).  In the present estimate, a conservative approach has been 

chosen, that only on the short-ends of the slit a pore starts. 

3. Although the selected patch of the picture was magnified using the zoom 

function in the MS Paint computer program (this would of course only 

increase the size of the picture and not the resolution or information in the 
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image), it is hard to “keep on track” when counting the pores. A further 

increase of the magnification by the FESEM would perhaps make it easier to 

determine which are pore entries and which are not.  This would however 

make the search for the average patch even harder.  

 

The AFM picture in figure 33 is of a rather low quality, which is partly due to the 

lack of an anti-vibration table.  Even minor vibrations from the floor (for example 

somebody walking) would cause disturbances in the AFM-pictures.  Another effect 

causing the blur in the picture, is the high magnification (x240 000) combined with a 

curved sample that has a surface roughness comparable in magnitude with the current 

magnification.  

Ideally, a new picture should be captured using a properly aligned instrument, but 

since the information gained from an AFM picture is assumed to be identical to the 

information acquired by the FESEM picture this was not followed up further. 

However, if an estimation of the porosity should be made from figure 33, the 

problem would be what to “do” with the relatively large black area in the middle of 

the image.  The problem would be the same as discussed for the FESEM image, 

namely to find a representative patch, and of cause to decide where three (or more) 

colloid particles actually meet.  Thus, if the numbers of pores in the “black hole” are 

estimated from the curvature of the circumference of the “hole”, or alternatively the 

area of the “black hole” is subtracted from the area of the total image, it would yield 

a porosity of 100 pores / µm2 and 60 pores / µm2, respectively.  Compared to the 

FESEM estimated porosity, the AFM estimated porosity is an order of magnitude 

lower.  Almost needless to say, this estimate is very small compared with the liquid 

N2 adsorption calculations.  

 

By elemental analysis performed using the regular SEM, the pure 4 nm glass tube 

was analyzed to consist of (Expressed as atomic percent):  

69.1% O, 3.00% Al and 27.9% Si.   

This is a bit different than measured by our Japanese research associate; they have 

determined the pure glass to consist of:  

Na2O=0.21, B2O3=2.94, SiO2=96.5 and Al2O3=0.13 (in wt%) (Additionally, traces of 

Fe2O3 may occur) 
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This composition transformed into atomic percent yields: 66.3% O, 0.05% Al, 

0.014% Na, 1.69% B and 31.8% Si. 

The reason for the discrepancy in the composition may be that the elemental analysis 

was performed on a single point randomly chosen on the glass surface.  Thus there is 

no guarantee that the “average” point was found.   

FTIR with HATR accessory spectrum 

The horizontal attenuated total reflectance IR-spectrum of the pure 4 nm glass 

membrane is given in figure 34. 

 
Figure 34: HATR FTIR spectrum of 4 nm glass membrane. 

 

In this spectrum, there are four peaks which are assigned to the following 

fundamental vibrations: /Silverstein/: 

1390 cm-1 can be associated with the HO- in the plane deformation vibration 

frequency.  If any boron still is present after the acid leaching, the B-O vibration is 

also found in this range. 

1063 cm-1 (including the shoulder at 1150 cm-1) are the Si-O-Si chain coupled stretch 

frequencies. 

917 cm-1 is assigned to the Si-OH stretch vibrator frequency (or Si-OB) 
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The peak at 800 cm-1 is identified as a Si-O-Si chain stretch frequency. 

 

All these adsorption bands are in agreement with the expected chemical composition 

and known physical structure of the pure 4 nm glass.  

 

Permeance measurement 

Detailed permeance data are given in appendix 5-1 and a sum-up table only is 

presented here.  The permeability decay is calculated according to the following 

equation:  

 
exposure

before after

before

P P
l lPD P tl

−

⋅
(t)=  (6.1) 

Where: PD(t) is the permeability decay  as a function of time [s-1] (In this work 

measured using nitrogen gas), P/l is the permeance [m3 (STP)/(m2 bar h)] and texposure 

is the chlorine exposure time [s].  

In the captions of the tables for the permeance results, it is indicated whether the tests 

are performed using the old module or the new module (as described in section 

5.4.1).  The reason for emphasising this is that the membrane seemed to be 

discoloured to a much larger extent during chlorine exposures in the old module.  

This discolouration was most severe near the silicone rubber gaskets, thus it is 

possible that it is caused by degradation products from the gasket.  No obvious 

quantifiable measure of this effect has been detected on the perm-selectivities 

measured by either module.  

 

Table 3: Permeance results for pure gases on the pure 4 nm glass membrane at 

30°C. (Tests performed with old module). 

Parameter Value [Unit] 

P/lN2  0.1871 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.81 [-] 

αCl2/N2 1.2 [-] 

PD(t) 3.8 [10-5/s] 

Cl2 exposure time 3050 [s] 
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Compared to the corresponding theoretical Knudsen flow selectivities of 0.93 and 

0.63 for oxygen relative to nitrogen and chlorine relative to nitrogen, respectively, the 

results from table 3 indicate that the O2/N2 selectivity is lower than that predicted 

from the theoretical Knudsen value.  The reason for this increase in the expected N2 

permeance or decrease in expected O2 permeance is unclear.  The increase in the 

Cl2/N2 selectivity in table 3 compared to the theoretical Knudsen value indicates that 

the surface selective flow is making a significant contribution to the total transport, 

even in the pure glass. 

The “large” permeability decay is an indication that the chlorine stability for the pure 

4 nm glass membrane is seemingly poor, but this large permeability decay may to a 

large extent be due to adsorbed chlorine in the pores. The selectivity is too low to be 

of any commercial interest.  No further tests were carried out with the pure 4 nm 

glass membrane. 

6.1.2 Unmodified glass membrane 2 nm average pore size  

As explained in chapter 2.4, the first logical step to optimize the perm-selectivity of 

the membrane was to decrease the average pore size.  The pore sizes of pure glass 

can be made as narrow as 2 nm and this section discuss this membrane. 

Pore size distribution from N2 adsorption 

N2 adsorption and desorption measurements have been performed for the pure 2 nm 

(expected pore size).  Figure 35 shows the resulting pore size plot, based on the BJH 

method and calculated from the desorption branch.  The adsorption isotherm and 

BET-plot are given in appendix 6-1and 6-2, respectively. 
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Figure 35: pore size distribution of the “2 nm” pure glass membrane. 

 

There are four important aspects to be discussed about the pore size distribution in 

figure 35;  

1. The believed average pore diameter of 2 nm is an underestimate and a better 

estimate is 3 nm (2·1.6).  However, according to our Japanese research 

associate, this membrane has the smallest average pore size that the phase 

separation and acid leaching process can create. 

2. The pore size distribution shows a tail up to Rp ~ 7 nm.  The tail is undesired 

since it may cause problems in optimising the perm-selectivity of the 

membrane.  If the transport is modelled to consist of two independent and 

additive contributions from the Knudsen flow and the surface flow, then the 

optimal membrane will consist of a narrow pore with a large internal pore 

surface.  In such an optimal pore the contribution of the Knudsen flow could 

be minimized and the total selectivity would be given by the surface flow 

selectivity alone.  However, in reality the tail of the pore size distribution will 

cause the average pore size to be smaller than necessary in order to obtain a 
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desired selectivity and thus leading to a lower permeability than it would have 

been in an ideal porous membrane without a pore size distribution. 

3. The pore distribution has a shoulder at Rp ~ 1.2 nm.  This is not believed to 

cause any problems in the perm-selectivity optimization.  

4. The small peak at Rp ~ 20 nm is expected and is originating from the pore size 

of the mesoporous phase separated glass, as explained in chapter 2.4.2.  These 

large pores are not believed to be empty throughout the membrane, but rather 

filled with the colloidal silica particles to some extent.   

Permeance measurements 

More detailed permeance data, including some indication about the pressure and 

temperature dependencies for this material, is given in appendix 6-3. 

The measured permeances and stability evaluations are summed up in table 4. 

Table 4: Permeance results for pure gases for the pure 2 nm glass membrane at 

30°C. (Tests performed with old module). 

Parameter Value [Unit] 

P/lN2 0.0915 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.96 [-] 

αCl2/N2 2.4 [-] 

PD(t) * 5.3 [10-5/s] 

Cl2 exposure time * 7660[s] 

* This membrane has been exposed to chlorine gas at two different pressures (1 and 3 

bar) and four temperature levels (30, 60, 80 and 90 °C). 

 

The results in table 3 and 4 can be compared by means of the separation power which 

is defined in equation 6.2: 

 
2 2 2Cl Cl ,NSP=P αi  (6.2) 

Where SP is the separation power [m3(STP)m/(m2 bar h)], PCl2 is the chlorine 

permeability [m3(STP)m/(m2 bar h)] and αCl2,N2 is the chlorine / nitrogen selectivity  

[-] 

By inserting the corresponding values from table 3 and 4, the 4 nm glass has a SP 

1.35·10-4 [m3(STP)m/(m2 bar h)] and the 2 nm glass has a SP of 2.58·10-4 

[m3(STP)m/(m2 bar h)], respectively. 
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If the previously mentioned theory stating that the Knudsen and surface flows are 

additive in the glass membranes are correct, this means that in order to double the 

separation power by reducing the pore diameter by half, two scenarios are possible: 

 

1. The total specific membrane area is equal for the two membranes since the 

basic Knudsen flow equation, equation 3.4, states that the Knudsen diffusion 

coefficient is linear with the pore diameter. 

2. The limiting step in the surface flow is the “collection of the molecules” on the 

“external” surface according to figure 8. 

 

Our Japanese research associate has published specific surface area and pore volume 

for the 4 nm pure glass /Kuraoka et al. 2001/.  For the pure 4 nm glass, the specific 

surface area is 162.0 m2/g and the pore volume is 0.143 cm3/g. If these values are 

compared with the data given in figure 34, (specific surface area of 185.0 m2/g and 

the pore volume is 0.137 cm3/g), the first argument is favoured. 

The nitrogen permeability decay after chlorine exposure calculated for this material is 

rather large, indicating that the material is unstable.  However, the chlorine exposure 

was performed in steps of increasing temperature, thus the reaction rate is expected to 

have been much higher during the elevated temperature intervals.  Detailed exposure 

times and exposure temperatures are given in appendix 6-3.  

 

6.1.3 C1 surface-modified glass membrane 

The first surface-modified membrane to be tried out was the one with C1.  The 

modification is based on the 4 nm pure glass tube, and after the modification the 

actual effective pore size is believed to become close to that of the pure 2 nm glass.  

Permeance measurements 

To test the stability of this material, both short-time and long-time chlorine exposures 

have been performed. 

Table 5 and 6 sums up the permeance results measured on this material. (Two 

different samples) 
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Table 5: Permeance results for pure gases for the C1 surface-modified glass 

membrane at 30°C, short chlorine exposure. (Tests performed with new 

module). 

Parameter Value [Unit] 

P/lN2 0.0288 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.97 

αCl2/N2 2.6 [-] 

PD(t) 3.2 [10-5/s]  

Cl2 exposure time 3 600 [s] 

 

 

Table 6: Permeance results for pure gases for the C1 surface-modified glass 

membrane at 30°C, long chlorine exposure. (Tests performed with new module). 

Parameter Value [Unit] 

P/lN2 0.0484 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.94 [-] 

αCl2/N2 3.1 [-] 

PD(t) 0.019 [10-5/s] 

Cl2 exposure time 86 400[s] 

More detailed permeance data for this material is given in appendix 7 

 

If the results from table 5 and 6 are compared, it can be seen that the permeation 

decay is still significant even after a prolonged chlorine exposure.  Comparison of 

table 5 and 6 with table 4 reveals that the C1modified membrane is comparable with 

the pure 2 nm membrane both in perm-selectivity and durability. 

Combined chlorine permeance and UV radiation measurements 

As an attempt to speed up the decay, which is believed to be due to chlorine reacting 

with the glass surface or the surface modification compound, the membrane was 

exposed to UV-radiation during an ordinary permeance measurement. This attempt is 

based on the following assumptions: 
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UV-radiation shorter than a specific wavelength (492 nm, estimated from the 

chlorine- chlorine bound energy) has the ability to break the chlorine -chlorine bound 

in chlorine gas into two chlorine radicals. This can be summed in equation 3: 

 2 2Cl h Clν+ → i  (6.3) 

The chlorine radical is believed to have a significantly larger reaction rate than 

chlorine gas (Given identical process conditions). 

Table 7 reports the results of the 1 hour combined chlorine exposure and UV-

radiation reaction. 

 

Table 7: Combined permeance and UV reaction (1 hour) for pure gases for the 

C1 surface-modified glass membrane results at 30°C. (Tests performed with 

UV- module). 

Parameter Value [Unit] 

P/lN2 0.0265[m3 (STP)/(m2 bar h)] 

αO2/N2 1.0[-] 

αCl2/N2 (Initial, before the UV-source was 

switched on) 

2.8[-]. 

PD(t) 0.76[10-5/s] 

Cl2 exposure time 4500[s] (Reaction time included) 

αO2/N2 (After reaction) 0.97 

αCl2/N2 (After reaction) 2.7 

 

The permeability decay after 1 hour combined UV and chlorine exposure is 

comparable to that found in tables 5 and 6, and the perm-selectivity is not 

significantly altered.  As a second test, the reaction time was increased to 6 hours on 

the same membrane sample. 
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Table 8: Combined permeance and UV reaction (6 hours) results for pure gases 

for the C1 surface-modified glass membrane at 30°C. (Tests performed with 

UV- module). 

Parameter Value [Unit] 

P/lN2 0.0248[m3 (STP)/(m2 bar h)] 

αO2/N2 0.97[-] 

αCl2/N2 (Initial, before the UV-source was 

switched on) 

2.7[-]. 

PD(t) 0.75 [10-5/s] 

Cl2 exposure time 22 100 [s] (Reaction time included) 

αO2/N2 (After reaction) 0.95 

αCl2/N2 (After reaction) 2.9 

 

There are two interesting aspect to discuss concerning the results reported in table 7 

and 8: 

 The permeability decay is constant during the combined exposure meaning 

that the permeability decay is independent of the reaction time.  This is taken 

as an indication that the combined exposure follows a different reaction rate 

law than the regular chlorine exposures since all regular chlorine exposures 

shows a decrease of the value of the permeability decay as a function of the 

exposure time.  

 The membrane seems to maintain its selectivity towards the measured gases. 

Thus the surface flow ability of the surface is not ruined by the treatment. 

 

6.1.4 C8 surface-modified glass membrane 

Permeance measurement 

Table 9 sums-up the perm-selectivity and stability measurement for the C8 modified 

glass membrane: 

 

 



Development and modification of glass membranes for aggressive gas separations 

 

79 

Table 9: Permeance results for pure gases for the C8 surface-modified glass 

membrane at 30°C. (Tests performed with old module) 

Parameter Value [Unit] 

P/lN2 0.00175[m3 (STP)/(m2 bar h)] 

αO2/N2 1.3[-] 

αCl2/N2 9.4[-] 

PD(t) 12 [10-5/s]* 

Cl2 exposure time 6 950 [s] 

* The membrane was very discoloured  

More detailed permeance data for this material is given in appendix 8. 

 

The membrane became very discoloured during the permeance measurement. A 

colour change of the membrane may be associated with a chemical change of the 

glass surface.  However, the reaction with chlorine could be between the sealant and 

chlorine, depositing products on the glass surface only.  In that case the value of the 

permeability decay will be an overestimate.  

Ideally, a second membrane sample should have been tested, but since the membrane 

perm-selectivity does not seem to be much improved compared to the other material 

tested, this membrane was not further investigated.  

6.1.5 C18 surface-modified glass membrane 

Permeance measurements, pure gases 

Reviewing the specific surface areas and pore volumes reported for this material, the 

pores are almost blocked with this long surface modifying compound./K.Kuraoka et 

al./  Based on the assumption that the surface diffusion and Knudsen (both the 

activated and the classical) flows are additive, the selectivity of this membrane is 

expected to be high and the permeance low, which is indeed the case of the results 

given in the following tables. Table 10 gives the results from short-time chlorine 

exposure using the old module.   
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Table 10: Permeance results for pure gases for the C18 surface-modified glass 

membrane at 30°C. Short chlorine exposure. (Tests performed with old 

module). 

Parameter Value [Unit] 

P/lN2 0.00255[m3 (STP)/(m2 bar h)] 

αO2/N2 1.7[-] 

αCl2/N2 24 [-] 

PD(t) 12 [10-5/s] 

Cl2 exposure time 1850 [s] 

More detailed permeance data for this material is given in appendix 9-1. 

 

Table 11 reports the long-term chlorine exposure of the C18 using the old module. 

 

Table 11: Permeance results for pure gases for the C18 surface-modified glass 

membrane at 30°C.  Long chlorine exposure* (Tests performed with old 

module). 

Parameter Value [Unit] 

P/lN2 0.00452[m3 (STP)/(m2 bar h)] 

αO2/N2 1.2 [-] 

αCl2/N2 12.1 [-] 

PD(t) 0.079 [10-5/s] 

Cl2 exposure time* 1 209 600[s] 

* Exposure performed in the durability chamber. 

 

The results reported in table 11 do not comply with those in table 10; the permeance 

is a bit too high and the selectivities are too low.  One possible reason for is deviation 

is that the surface modifying compound (dimethyl-octadecyl-chlorosilane) comes in 

solid form as a powder, which is highly hygroscopic.  A reaction with ambient water 

is devastating because OH from water can substitute the chlorine in the surface 

modifying compound. 

To gain a better understanding of the differences between the modules, a medium-

term exposure test performed with the new module is given in table 12. 
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Table 12: Permeance results for pure gases for the C18 surface-modified glass 

membrane at 30°C.  (Tests performed with new module). 

Parameter Value [Unit] 

P/lN2 0.00194[m3 (STP)/(m2 bar h)] 

αO2/N2 1.2 [-] 

αCl2/N2 21 [-] 

PD(t) 0.63 [10-5/s] 

Cl2 exposure time 86 400[s] 

 

No obvious change in the membrane performance is seen by changing the modules, 

but the membrane in the new module became much less discoloured.  

As initially expected the permeance of this material is low and the selectivity is 

relatively high.  However, the chlorine stability seems to be too low. 

 

Knudsen flow in C18 modified glass membrane 

To investigate the validity of the assumption that helium gas is transported according 

to the Knudsen flow theory, additional helium permeance tests have been performed 

on the C18 membrane.  Based on the Knudsen flow transport theory discussed in 

chapter 3.2, two different modes of Knudsen transport exist, yielding the diffusion 

coefficient given in the equations 3.4 and 3.5.  Given Fick’s law (equation 3.1) 

integrated over the membrane thickness and substituting the ideal gas law for the 

concentrations yield: 

 

 ,( )A Knudsen
A A

D
J p

RTl
∆=  (6.4) 

Where: DA(Knudsen) is the Knudsen diffusion coefficients [m2/s] according to the 

equations 3.4 or 3.5. 

If equation 3.4 (classical Knudsen diffusion) is substituted into equation 4, the 

following temperature dependence for the permeance may be derived: 
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Thus, if the permeance is plotted as a function √1/T, a straight line with the slope KKn 

should be obtained and the line should pass through the origin.  Figure 36 gives the 

corresponding least-square fit for helium according to a classical Knudsen regime in 

the C18 membrane. 
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Figure 36: Least-square fit for helium according to a classical Knudsen flow in the 

C18 membrane. 

 

According to figure 36 this is no typical classical Knudsen behaviour, thus a fit 

according to the activated Knudsen mechanism was tried out.  If equation 3.5 is 

substituted into equation 6.4 the following temperature dependence for the 

permeance may be derived: 
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The consequence of equation 6.6 is that if activated Knudsen is obeyed, then a plot of  

ln(√T·permeance)versus the reciprocal temperature should yield a straight line with a 
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slope equal to -∆Ea/R and a constant (the crossing point of the line with the y-axis) 

equal to ln(KK). Figure 37 gives the corresponding least-square fit for helium 

according to an activated Knudsen regime in the C18 membrane. 
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Figure 37: Least-square fit for helium according to an activated Knudsen flow in the 

C18 membrane. 

 

Thus it is obvious from the regression coefficient in figure 37 that the fit of the 

experimental permeances to the activated Knudsen mechanism is perfect.  This 

means that the helium transport in the C18 modified glass membrane is according to 

the activated Knudsen mechanism. 

 

Combined UV and chlorine reaction 

As for the C1 modified membrane described in section 6.1.3, the combined UV and 

chlorine reaction was tried out to investigate if also for the C18 modified membrane 

the permeability decay will come to an end given the chlorination was completed.  A 

chlorination substitution reaction of the surface modification hydrogen (or the "end-

methyl" group) in the C18 surface modification is believed to occur during the 

chlorine exposure, leading to almost plugging of the pores.  The effect of this 

plugging is what is measured as the permeability decay. Examples of different types 

of attack points for the chlorine substitution is indicated as underlined atoms or 

groups in figure 38: 
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Figure 38: Surface-modified glass membrane with different possible chlorine 

reaction sites. 

 

As a first test a short time (10 minutes) test was tried out and the results of this 

attempt is reported in table 13. 

Table 13: Combined permeance and UV reaction (10 minutes) results for pure 

gases for the C18 surface-modified glass membrane at 30°C. (Tests performed 

with UV- module). 

Parameter Value [Unit] 

P/lN2 0.000230 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.1[-] 

αCl2/N2 (Initial, before the UV-source was 

switched on) 

35[-]. 

PD(t) -1.8[10-5/s] 

Cl2 exposure time 8600[s] (Reaction time included) 

αO2/N2 (After reaction) 0.93 

αCl2/N2 (After reaction) 0.94 

 

Although the permeance for nitrogen is actually increased after the treatment, leading 

to negative permeability decay, both the oxygen nitrogen and the chlorine nitrogen 

selectivities have decreased to below unity.  One possible explanation may be that the 

surface diffusion contribution to the total transport is lost.  When the chlorine reacts 

with the surface modification it occupies some of the surface sites permanently 
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(process known as chemisorption), which can effect the surface diffusion regardless 

of which detailed surface diffusion mechanism it follows: In the hopping mode, when 

chlorine molecules associated with the neighbouring sites have to “jump over” the 

reacted chlorine and thus significantly increases the spacing between neighbouring 

free sites.  This will significantly decrease the number of molecules having enough 

energy to sustain the jump. 

For the liquid-like condensed layer, the fixed chlorines may act as “anchors” 

retarding the sliding layer process. 

 

Since there was actually a negative permeation decay for the 10 minute exposure test 

a longer, 6 hour combined exposure test, was performed and the results from this test 

is reported in table 14.  

Table 14: Combined permeance and UV reaction (6 hours) results for pure 

gases for the C18 surface-modified glass membrane at 30°C. (Tests performed 

with UV- module). 

Parameter Value [Unit] 

P/lN2 0.000251 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.5[-] 

αCl2/N2 (Initial, before the UV-source was 

switched on) 

45[-]. 

PD(t) 2.2 [10-5/s] 

Cl2 exposure time 21 600 [s] (Reaction time included) 

αO2/N2 (After reaction) 0.93 

αCl2/N2 (After reaction) 0.86 

 

The permeability decay in this case is very high, especially when the relatively long 

exposure time is taken into consideration.  As can be estimated from figure 39, giving 

the plot of the low pressure side pressure versus time during the combined exposure, 

the chlorine flux is deceased by two orders of magnitude. 
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Figure 39: The low pressure side pressure versus time during the combined UV and 

chlorine exposure.    

 

In figure 39, the times for switching the UV-source on and off are indicated.  An 

interesting fact to be seen from figure 39 is that the reaction is consuming chlorine 

faster than what is provided through the membrane as the reaction develops, causing 

a minimum in the figure.  This is interpreted as the reaction being limited by access 

to chlorine gas and in order to improve this, a special low surface coverage C18 

modified glass membrane was tried in a subsequent test.  The preparation of this 

membrane type is slightly different than the regular procedure described in section 

2.4.4, namely that the capillary-condensed water is removed under vacuum at 400°C 

rather than the normal 170°C.  This will cause some of the surface -OH groups on the 

glass surface to condense into water and an oxygen bridge to form according to the 

following reaction: 
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The results of the 6 hour combined UV and chlorine reaction for the low surface 

coverage C18 membrane is given in table 15. 

 

Table 15: Combined permeance and UV reaction (6 hours) results for pure 

gases for the C18 surface-modified glass membrane (Low surface coverage) at 

30°C. (Tests performed with UV- module). 

Parameter Value [Unit] 

P/lN2 0.000928 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.5 [-] 

αCl2/N2 (Initial, before the UV-source was 

switched on) 

22[-]. 

PD(t) 4.2 [10-5/s] 

Cl2 exposure time 23 400 [s] (Reaction time included) 

αO2/N2 (After reaction) 0.73 

αCl2/N2 (After reaction) 0.23 

 

The times for switching the UV-source on and off are indicated in figure 40 which 

gives the pressure at the low pressure side versus time.  

 

 
Figure 40: The low pressure side pressure versus time during the combined UV and 

chlorine exposure.  
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As can be seen from figure 40, the membrane is now able to deliver gas fast enough, 

so that the reaction itself is rate determining.   

However, as table 15 indicates, the permeation decay for the low surface coverage 

C18 membrane is large (taken into consideration the relatively long reaction time 

used) and the chlorine nitrogen selectivity drops two orders of magnitude whereas the 

nitrogen permeance is decreased by 98 %.  

 

The membrane characteristics indicate that the transport is changed from being a 

surface flow membrane, to becoming a molecular sieving membrane.  The 

substitution of groups, as shown in figure 38, may cause different effects depending 

on where the attack is occurring,  i.e. if a hydrogen atom is substituted by a chlorine 

atom then the surface modification will become spatially bigger, causing the pores to 

be more filled (and possibly more compacted in the surface-modified layer).   

FTIR with HATR accessory spectroscopy 

The use of glass plates as substitute for the actual membrane tubes in the IR HATR 

spectroscopy has both advantages and disadvantages.  The advantages include: 

 The glass plates ensure that the contact between the HATR measuring crystal 

and the glass plate is good. 

 The glass plates are less porous than the tubular membranes and they are 

therefore less brittle and can withstand a applied pressure, thus a constant 

force can be applied on the glass plate squishing it onto the measuring crystal 

and leading to better reproducibility in the spectra  

The major disadvantage is: 

 Since the HATR is most likely to detect the outer surface and not the inside of 

the pores and there is a possibility that the reaction rate with the gasses and 

the surface or surface modification may be overestimated on the planar 

surface than in the narrow pores due to the lack of steric hindrance on the 

outer surface.  

 

Figure 41 gives the FTIR HATR spectra of the: A) acid leached glass plate, B) Glass 

plate chlorine exposed for 9 weeks at 30°C and 1 bar, and C) Glass plate UV- and 

chlorine exposed for 1 hour. 
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Figure 41: FTIR HATR spectra of borosilicate glass plates: A) Acid leached, B) 

Chlorine exposed for 9 weeks at 30°C and 1 bar C) UV- and chlorine exposed, 1 

hour. 
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Figure 42 gives the FTIR HATR spectra of the: A) unexposed C18 modified glass 

plate, B) C18 modified glass plate UV- and chlorine exposed for 1 hour 

 
Figure 42: FTIR HATR spectra of surface-modified glass plates: A) C18 modified 

glass plate, B) UV- and chlorine exposed, 1 hour, C18 modified glass plate.  
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The FTIR spectra given in figure 41 A) and B) are identical, except for a change in 

the intensity for the small peak at 2300cm-1.  If the spectra in figure 41 are compared 

to the spectrum of the 4 nm unmodified glass membrane, obtained in figure 34, it is 

obvious that the two glasses are not chemical identical.  However, the interpretations 

of the peaks are similar, and the following fundamental frequencies are identified 

from the spectra in figure 41 A): 

The band at 780 cm-1 is identified as a Si-O-Si chain stretch (possibly confounded by 

the vitreous boron oxide, B2O3 ). The 985 is possibly the Si-OH stretch (slightly low) 

(may be confounded with the Si-OB stretch) the frequency and the peak at 1140 cm-1 

is the Si-O-Si chain coupled stretch frequency (possibly confounded by the vitreous 

boron oxide, B2O3).  The small peak at ~2300 cm-1 is possibly an overtone of the 

1140 band.  

The fact that the unexposed spectrum figure 41 A) and the spectrum of the chlorine 

exposed sample, figure 41 B) are identical is taken as an indication that the chlorine 

has not chemically reacted with the glass (at least not to any extent detectable by the 

FTIR).  Any chlorine gas adsorbed on the surface is not detectable by IR since 

chlorine does not possess a permanent dipole moment.   

 

If the UV- and Cl2 exposed glass spectra, figure 41 A) (or B)) and C), respectively, 

are compared, three aspects need to be discussed:  

1.  A new peak is appearing in the spectra of the UV- and Chlorine exposed 

glass, figure 41 C) at 1233 cm-1    

2. The tree remaining peaks have their peak positions shifted towards lower 

wavenumbers. 

3. The relative intensities of the tree remaining peaks are changed as shown in 

table 16. 
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Table 16: Relative peak intensities in FTIR spectra of glass plate before chlorine 

exposure, after chlorine exposure and after combined UV- and chlorine 

exposure.   

Spectra \Peak ~1230 cm-1 ~1140 cm-1 ~980 cm-1 ~780 cm-1* 

Before exposure  

Figure 41 A) 

- 1.17 1.89 1 

Chlorine exposed  

Figure 41 B) 

- 1.25 1.78 1 

UV- and Chlorine exposed 

Figure 41 C) 

1.96 1.74 1.89 1 

* The peak at 780 cm-1 is the reference peak in the relativity calculations. The peak 

intensities are estimated solely by the peak height 

 

The new peak at 1233 cm-1 in figure 41 C) is the most intense in the whole spectrum, 

but the association of the peak to a fundamental frequency is a bit uncertain. 

However, as a working hypothesis, it is assumed that chlorine has reacted with the 

surface HO-groups of the glass and formed >Si-O-Cl.  In that case the fundamental 

frequency will be shifted towards a lower wavenumber because chlorine has a larger 

molecular mass than hydrogen (can be derived from a simple harmonic oscillator 

approach).  Chlorines does under normal circumstances only adsorb below 700 cm-1.  

The chlorination reaction is leading to the decrease in peak intensity of the 1140, 980 

and 780 cm-1 peaks, possibly because a certain amount of IR-active bounds previous 

detected are lost during the combined UV-and chlorine reaction.  The appearance of 

the peak at 1230 cm-1 may then be due to the decreasing of the confounding Si-O-Si 

coupled chain stretch frequency, revealing the vitreous boron oxide peak normally 

found at 1260 cm-1.  Even though the theory introduced here might be erroneous, the 

large difference between the chlorine exposed glass and the UV- and chlorine 

exposed glass leave no doubt that the glass has reacted with chlorine during this 

treatment.  The normal chlorine exposure seems to be much less reactive than the 

combined exposure which indeed was the purpose of the combination.  
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The spectra of the C18 modified glass plates as given in figure 42 A) and B) are 

almost identical to the corresponding spectra recorded for the pure glass (figure 41 A) 

and C) ). However, two aspects of the spectra in figure 42 need to be discussed:  

1. The expected C-H aliphatic stretch peak at ~2900 cm-1 is absent. 

2. The new peak at 1230 cm-1, found in the pure glass plate spectrum in the case 

of combined UV- and Chlorine exposure, do not appear in the corresponding 

C18 modified glass plate test.  

 

The absence of the expected C-H aliphatic stretch peak at ~2900 cm-1 may be due to 

the problem with the surface modifying agent being a bit too old as discussed on page 

80, thus leading to a lesser degree of surface modification than expected.  This means 

that the surface modifying compound is not detected by the IR since the surface 

concentration may be below the detection limit.  

The absence of the peak at 1230 cm-1 may be explained by the hypothesis of chlorine 

preferably substituting onto the OH- groups on the glass surface, because the surface 

modification reaction uses surface OH groups of the glass, thus making them 

inaccessible to the chlorine radicals formed during the combined UV- and chlorine 

exposure.  The chlorine radicals might react with the surface modifying compound, 

but this is not detected, since the surface modifying compound was not detected as a 

whole.  However, if the reaction occurs in the surface modifying compound this may 

lift the IR- focal point up from the glass surface leading to the decrease in the 

reflectance as found in figure 42 B). 

 

6.1.6 C18 and C1 surface-modified glass membrane 

One significant contribution to the relatively large permeance decay for the C18 

modified glass membrane, may originate from chlorine reacting with unreacted OH 

group on the glass surface.  The reason for this may be that the number of free 

surface OH group is especially high in the case of this long-chained surface 

modification because of spatial hindrance in the middle of the pore (this can be 

pictured as wheel spokes starting at the rim and ending on the hub where the number 

of spokes per area are higher than at the rim.).  As an attempt to improve this, the 

membrane was first modified by C18 and then subsequently a C1 modification was 
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performed.  The C1 modification is assumed to modify in between the C18 

modification leading to fewer free surface –OH groups.  

Table 17 gives the pure gas permeances and selectivities for this membrane. 

 

Table 17: Permeance results for pure gases for the C1+C18 surface-modified 

glass membrane at 30°C. (Tests performed with old module). 

Parameter Value [Unit] 

P/lN2 0.000818[m3 (STP)/(m2 bar h)] 

α O2/N2 1.1[-] 

α Cl2/N2 11[-] 

PD(t) 6.0 [10-5/s] 

Cl2 exposure time 3 600 [s] 

More detailed permeance data for this material is given in appendix 10-1 

 

The nitrogen permeance, as reported in table 17, is low for the C1+C18 membrane.  

This is expected since the C1+C18 surface modification can be viewed as a stuffed 

C18 modification.  The more filled pores may be the reason for the lowering of the 

selectivities compared to the C18 modification, since to much fill pores may slow 

down the SSF contribution to the overall transport.  

If the permeability decay in table 17 is compared with the permeability decays in 

table 3, 5 and 10, it is relatively clear that the stability is slightly improved by the 

addition of C1.  A long-term static chlorine test was performed to investigate whether 

the improvement in the stability is still significant after prolonged exposure times.  

Table 18 sums up the results for this long-term static chlorine exposure.  
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Table 18: Permeance results for pure gases for the C1+C18 surface-modified 

glass membrane at 30°C. Long-term exposure (Tests performed with old 

module). 

Parameter Value [Unit] 

P/lN2 0.000774 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.2 [-] 

αCl2/N2 n/a[-] 

PD(t) 0.13 [10-5/s] 

Cl2 exposure time 432 000 [s] 

More detailed permeance data for this material is given in appendix 10-1 

The long-term stability of the C1+C18 modification is at least as stable as the pure 

C18 modification.   

 

6.1.7 C12 surface-modified glass membrane 

The difference between the C8 and the C18 is rather large, so the C12 falls as a 

natural midpoint in the stability and perm-selectivity evaluations. 

Permeance measurements 

The results of the permeance measurements are summarized in table 19: 

Table 19: Permeance results for pure gases for the C12 surface-modified glass 

membrane at 30°C (Tests performed with old module). 

Parameter Value [Unit] 

P/lN2 0.00580 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.3 [-] 

αCl2/N2 7.2 [-] 

PD(t) 12 [10-5/s] 

Cl2 exposure time 6 600 [s] 

More detailed permeance data for this material is given in appendix 11 

 

The perm-selectivity for this material is good, but the stability is the worst found.  

The reason why this membrane has the poorest stability is not easy to interpret. 
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However, one possible reason may be that this modification length has many 

attachment sites for the chlorination, as indicated in figure 38, but the pores are still 

not filled completely, so in this membrane neither the lack of attachment point nor 

spatial hindrance are limiting the decay.  

 

6.1.8 Sum-up of the results on the aliphatic surface-modified 
glass membranes 

Since experimental results have been presented for seven different materials, this 

chapter sums up the perm-selectivities and stabilities for all of them.  Table 20 lists 

the perm-selectivities and the stability for the membranes tested so far  

Table 20: Permeance results for pure gases for the surface-modified glass 

membrane at 30°C. Short chlorine exposures. 

Parameter Pure 

4 nm 

Pure 2 

nm 

C1 C8 C18 C18+C1 C12 

P/lN2 [m3 

(STP) /(m2 

bar h)] 

0.187 0.0912 0.0288 0.00175 0.00255 0.000818 0.00580 

αO2/N2 0.81 0.96 0.97 1.3 1.7 1.1 1.3 [-] 

αCl2/N2 1.2 2.4 2.6 9.4 24 11 7.2 [-] 

PD(t) [10-

5/s] [s] 

3.8 5.3 3.2 12 12 6 12  

Cl2 exp. 

time [s] 

3050 7660 3600 6950 1850 3600 6 600  

 

If the perm-selectivity is evaluated by the separation power, as given in equation 6.2, 

the following order is obtained ranged from best to poorest: C18, pure 2 nm, C1, 

C12, pure 4 nm, C8 and C1+C18.  Simultaneously, the stability must be as good as 

possible meaning that the permeability decay should be as low as possible.  Since the 

chlorine exposure times varied in the experiments and the permeability decay is most 

likely an exponential function of the exposure time, the permeability decays can not 

be directly compared.  However, if the perm decay rate (permeability decay divided 
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by the exposure time) is plotted versus the exposure time in a log-log plot, then the 

comparison is relatively straightforward as given in figure 43: 
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Figure 43: The permeability decay rate as a function of the chlorine exposure time 

for the chlorine exposed surface-modified glass membranes   

 

Figure 43 also includes the long term chlorine exposures.  For those membranes that 

several points are known, then is it possible to calculate the slope and intersection 

with the ordinate axis for a line connecting these points. The most stable membrane 

in figure 43 is then the one with the lowest value for the intersection and most 

negative slope.  For the pure 4 nm glass, pure 2 nm glass and C8 surface-modified 

membranes only one point is determined, and an average slope is assumed for 

comparison purposes.  The stability plot indicates that the most stable membrane is 

the C1 followed by the pure 4 nm glass, C1+C18, C18, pure 2 nm glass (This 

membrane was chlorine exposed at higher temperatures), C8 and C12.   

As an attempt to improve the stability and hopefully the perm-selectivity, 

perfluorinated surface modification was tried out as discussed in the next section. 

  

6.1.9 Perfluorinated C10 surface-modified glass membrane (4 
nm base) 

Based on knowledge from other materials investigated for their durability in chlorine 

separation, it is quite clear that the Teflon® and Fluorel® are stable towards both 

chlorine and hydrogen chloride gases.  This is not surprising since the C-F bounds 
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have a higher enthalpy (489 KJ/mol) than the C-Cl bounds (339 KJ/mol) /Aylward 

and Findlay/ and fluorine is more electronegative than chlorine.  In search of a 

suitable surface modifying compound, it was necessary to find a long “fully” 

fluorinated silane.  The (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) 

dimethylchlorosilane, Cl-Si(CH3)2-(CH2)2-(CF2)7-CF3, was the best suited compound 

commercially available.  Compounds with all, or a majority, of their hydrogen 

substituted with fluorine are called perfluorinated in the common naming system, 

(however, this is not according to current rules of the IUPAC). 

This modification is abbreviated as Pf-C10 later on in this thesis.   

Pore size distribution from N2 adsorption 

Figure 44 and 45 gives the pore size distribution in the Pf-C10 (4 nm base) before 

and after long-term chlorine exposure, respectively. 

 
Figure 44: Pore size distribution plot for the Pf-C10 4 nm base surface-modified 

glass membrane. Unexposed sample 
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Figure 45: Pore size distribution plot for the Pf-C10 (4 nm base) surface-modified 

glass membrane. Long-time chlorine exposed sample. 

 

The corresponding adsorption isotherms and BET-plots are given in appendix 12-1 

and 12-2 for the unexposed and the long-time chlorine exposed samples, respectively. 

 

The pore size distributions given in figures 44 and 45 are, by all means, identical for 

pore radii greater than 2 nm.  However, below 2 nm the peak shape is different.  The 

peak of the exposed sample has a narrower maximum peak than the unexposed 

sample and the unexposed sample has a shoulder in the pore size distribution for the 

smallest pore radii.  A theory consistent with these observations may be that the 

chlorine exposure causes the smallest pores to be filled by adsorbed chlorine that is 

not removable at the preheat temperature used, or that the chlorine is chemically 
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bound in the smallest pores, thus shifting the average pore to a higher value.  One 

complicating matter is that the exposed and the unexposed samples are two different 

samples measured at the same time, and not the same sample measured before and 

after the chlorine exposure.  This means that the values obtained for the total Vp and 

Sp should be used as indications only, since the actual porous network may differ 

significantly between the two samples.   

 

Elemental analysis 

One motivation for performing the elemental analysis is to investigate how easy it is 

to identify the surface modification.  Table 21 gives a comparison of the element 

distribution of the theoretical base glass and the Pf-C10 membrane (before and after 

chlorine exposure).  

Table 21: Element composition of the Pf-C10 surface-modified glass compared 

to the reference glass. All values are atomic percent.  

↓Membrane \ Element→ C O F Al Na B Si 

Reference glass 

(Theoretical composition) 

 66.3  0.050 0.150 1.70 31.8 

Unexposed PF-C10 4.30 66.7 3.10    25.9 

Exposed PF-C10 (42 days 

@ 1 bar 30 °C) 

2.80 64.3 2.30 0.200   30.4 

 

It is indeed interesting to see that no elemental chlorine could be detected, even after 

long-time chlorine exposure.  However, it is believed that the capillary forces are 

more favourable for chlorine condensation inside the pores and possibly increased 

chlorine reactivity, than on the outer surface of the glass.  
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FTIR with HATR accessory spectroscopy  

 

 
Figure 46: FTIR HATR spectra of Pf-C10 surface-modified borosilicate glass plates: 

A) unexposed sample, B) Chlorine exposed for 9 weeks at 30°C and 1 bar.  
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Contrary to what was experienced for the C18 modified glass plate, the 

perfluorinated surface glass, figure 46 A), is actually showing a small C-H stretch 

peak at 2950 cm-1 (this is not surprising since each surface modifying molecule 

contains 4 C-H bounds).  A more intriguing fact about the spectra in figure 46 A) is 

that the strong –CF2- stretch in the 1350-1120 cm-1 is not readily detected.  However 

the relative intensities of the three peaks at 1139, 984 and 781 cm-1 are shifted 

compared to the values calculated for the pure glass plate in table 16.  Table 22 gives 

a comparison of the relative intensities of the untreated, unexposed Pf-C10 modified 

and chlorine exposed Pf-C10 modified (9weeks@ 1bar and 30 °C) glass plates. 

 

Table 22: Relative IR-peak intensities of the untreated, unexposed Pf-C10 

modified and chlorine exposed Pf-C10 modified (9weeks@ 1bar and 30 °C) glass 

plates. 

Spectra \Peak ~2920 cm-1 ~1140 cm-1 ~980 cm-1 ~780 cm-1* 

Before exposure pure glass 

Figure 41 A) 

- 1.17 1.89 1 

Unexposed Pf-C10 glass 

Figure 46 A) 

0.28 1.17 1.39 1 

Chlorine exposed Pf-C10 

glass Figure 46 B) 

1.16 1.66 1.66 1 

*The peak at 780 cm-1 is the reference peak in the relativity calculations. The peak 

intensities are estimated solely by the peak height. 

 

The decrease of the relative intensity of the peak at 980 (assigned to the Si-OH 

stretch) for the unexposed Pf-C10 glass plate compared to the pure glass plate in 

table 22, can be explained by the fact that the surface modification reaction is using 

surface OH-groups, thus the concentration of them will decrease when the surface is 

modified, hence the decrease in the relative intensity.   

 

However, it is more difficult to explain the relative intensities calculated from the IR-

spectrum of the chlorine exposed Pf-C10 glass plate.  One explanation might be that 

adsorbed chlorine in the surface modification is masking the glass structure below.  If 
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this layer is thick enough, only a minute fraction of the IR-radiation is penetrating, 

leading to the loss in the characteristic peak ratios since the sizes of the peaks is 

approaching the detection limit of the instrument.  

Permeance measurements 

The initial permeance results for the perfluorinated surface-modified glass membrane 

are summed up in table 23: 

Table 23: Permeance results for pure gases for the Pf-C10 surface-modified 

glass membrane (4 nm base) glass membrane at 30°C (Tests performed with 

new module) 

Parameter Value [Unit] 

P/lN2 0.00796 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.2 [-] 

αCl2/N2 2.6 [-] 

PD(t) 1.5 [10-5/s] 

Cl2 exposure time 3 600 [s] 

More detailed permeance data for this material is given in appendix 12-3. 

 

If the results in table 23 are compared with those in table 19 (C12 membrane), then it 

can be seen that the nitrogen permeability and the oxygen /nitrogen selectivity are 

comparable, whereas the chlorine/nitrogen selectivity is significantly lower.  The 

stability seems to be significantly increased. All these observations are easily 

explained, if the transport is assumed to consist of two additive contributions from 

surface and Knudsen flows:  The pore size of the Pf-C10 membrane is obviously 

somewhere between the C8 and the C12 membrane, so it is logical for the nitrogen 

and oxygen to have similar permeances in these three materials since the Knudsen 

flow permeance, which is pore size dependent, has a significant contribution on the 

total permeance for these gases.  For chlorine however, the effect of the 

perfluorinated surface modifying compound is a lower chlorine attraction (this was, 

after all one reason for choosing this modifying compound), thus a decrease in the 

chlorine permeation results. 
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The permeances, selectivities and permeability decay after the long-term chlorine 

exposure of the Pf-C10 membrane are given in table 24. 

 

Table 24: Permeance results for pure gases for the Pf-C10 surface-modified 

glass membrane (4 nm base) glass membrane at 30°C, long-time chlorine 

exposure*. (Tests performed with new module). 

Parameter Value [Unit] 

P/lN2 0.00650 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.3 [-] 

αCl2/N2 3.6 [-] 

PD(t) 0.0026 [10-5/s] 

Cl2 exposure time 3 682 800 [s] 

* Test performed in the durability chamber 

 

More detailed permeance data for this material is given in appendix 12-3. 

If the permeability decay in table 24 is compared with those obtained by the other 

membranes it is clear that the stability of the Pf-C10 (4 nm base) is superior 

compared to the other materials, but the perm-selectivity is very low. 
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6.1.10 Perfluorinated C10 surface-modified glass membrane (2 
nm base)  

Although the Pf-C10 (4 nm base) had superior stability towards chlorine gas 

compared to all other materials tested, the perm-selectivity was rather poor.  As an 

attempt to increase the perm-selectivity the 2 nm glass was used as base material for 

surface modification. 

In order to prove whether the Pf-C10 (2 nm base) is the proper choice of membrane 

material or not, comprehensive research was performed on this membrane.  

Including: 

 Pore size distribution from N2 adsorption  

 Permeability measurements 

o Pure gases 

 Knudsen flow regime determination 

o Mixed gases  

 Sorption measurements 

o Nitrogen and oxygen adsorption 

o Chlorine adsorption 

 Adsorption / desorption isotherms (given as a Henry’s Law 

equivalent  versus absolute pressure) 

 Adsorption / desorption isotherms (given the “normal” way: 

sorption versus relative pressure 

 Adsorption temperature dependence 

 Estimation of the degree of SSF(Requires the combination of  the permeances 

and sorption ) for N2, O2 , He, HCl, Cl2, Xe, CO2, H2, SF6, CO and R22 

(CHF2Cl) 

 Diffusion coefficient determinations (Estimated two ways: From D = P/S and 

from the time-lag, θ) 
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Pore size distribution from N2 adsorption 

Figure 47 shows the pore size distribution plot for the Pf-C10 (2 nm base) surface-

modified glass membrane. 

 
Figure 47: Pore size distribution plot for the Pf-C10 (2 nm base) surface-modified 

glass membrane.  

 

The corresponding adsorption isotherm and the BET-plot are given in appendix 13-1 

and 13-2, respectively.  

If the pore size distribution plots in figure 44 and 47 are compared, they are more or 

less identical for pore sizes wider than 2 nm.  The 2 nm base membrane has a more 

distinct shoulder at ca. 1.8 nm than the 4 nm base membrane.  As is the intention, the 

peak in the pore size distribution in figure 47 is shifted towards a narrower pore size 

than in figure 44.  As discussed in the 2 nm pure membrane section, the pore volumes 

are more or less constant in the 2 and 4 nm base membrane, leading to a doubling of 

the separation factor in the 2 nm membrane compared to the 4 nm membrane.  Here 

the difference between the pore volumes is larger and this will most probably not 
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lead to that great an increase in the separation power. However, if the 2 nm base 

membrane is compared to the pure 2 nm membrane in figure 35, it is clear that the 

tail of in the distribution is heavily reduced in the Pf-C10 modified membrane 

compared to the pure 2 nm membrane.  The lack of the tail in the pore size 

distribution may lead to an increase in the separation factor so it is difficult to predict 

which effect will be the strongest. 

 

Permeability measurements, pure gases 

The measured permeances, selectivities and permeability decay for the Pf-C10 (2 

nm) membrane are reported in table 25. 

Table 25: Permeance results for pure gases for the Pf-C10 surface-modified 

glass membrane (2 nm base) at 30°C (Tests performed with new module). 

Parameter Value [Unit] 

P/lN2 0.00576 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.3 [-] 

αCl2/N2 5.7 [-] 

PD(t) 1.8 [10-5/s] 

Cl2 exposure time 7 000 [s] 

More detailed permeance data for this material is given in appendix 13-3 

 

The performance and stability seem to be very promising for this membrane.   

Compared to the reported permeances for the C12 modification, in table 19, it can be 

seen that the permeances are more or less identical, but the stability is an order of 

magnitude better.  

In order to better evaluate the long-term stability, a static chlorine exposure was 

performed using the durability chamber.  The results of this test are reported in table 

26. 



Development and modification of glass membranes for aggressive gas separations 

 

108 

 

Table 26: Permeance results for pure gases for the Pf-C10 surface-modified 

glass membrane (2 nm base) at 30°C.Long exposure* (Tests performed with new 

module). 

Parameter Value [Unit] 

P/lN2 0.00496 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.4 [-] 

αCl2/N2 9.4 [-] 

PD(t) 0.0085[10-5/s] 

Cl2 exposure time 5 441 000 [s] 

* The exposure was performed in the durability chamber. 

 

The membrane stability seems to be very promising, so the permeances for many gas 

types were measured at 30° to be able to get a better picture of the membrane 

performance.  These results are presented in the “Estimation of the degree of SSF” 

section on page 118. 

 

Knudsen flow 

As for the C18 membrane, a fit of the helium permeances as a function of the 

temperature was tried, according to both the classical and the activated Knudsen 

mechanisms.  From these fits, it is clear that the temperature dependence is by far 

best explained by an activated Knudsen mechanism.  The fit according to the 

activated Knudsen mechanism is given in figure 48. 
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Figure 48: Least-square fit for helium according to activated Knudsen mechanism in 

the Pf-C10 (2 nm) membrane. 

 

If the equation for the regression line in figure 44 is compared with the equation 

obtained in figure 36 it is evident that the activation energy is 50% lower than for the 

18 membrane. 

 

Mixed gas permeation measurements 

As an evaluation of the selectivities obtained for the Pf-C10 membrane, a few 

screening mixed gas experiments have been performed. The results of these 

experiments are given in table 27.   



Development and modification of glass membranes for aggressive gas separations 

 

110 

Table 27: Mixed gas permeation tests for the Pf-C10(2 nm) surface-modified 

glass membrane. 

% Cl2 in 

feed 

Feed 

pressure 

[bar] 

permeate 

pressure 

[bar]* 

%Cl2 in 

retentate 

% Cl2 in 

permeate 

Permeance* 

[m3(STP)/ 

(m2 bar h)] 

α Cl2/N2 

based on 

eq. 6.7 

0, pure 

N2 

3.7 - - - 0.0106 - 

18 4->3.8 1 18.1 29.7 0.0135 1.9 

57 3.8->3.4 1 57.2 82.4 0.0244 3.5 

90 4->3 1 91.1 97.7 0.0308 5.8 

100, pure 

Cl2 

3.8 - - - 0.0388 - 

      Pure gas 

based: 3.7 
*The permeate pressure was 1 bar during the flow composition analysis.  However, the permeances 

are measured with vacuum on the low-pressure side. 

 

Where the selectivities are calculated according to the following equation: 

 

 2 2

2
2 2 2

, ,

, ,

/
/

Cl perm N perm
Cl

N Cl ret N ret

y y
x x

α =  (6.7) 

Where y is the permeate mole fraction [-] and x is the retentate mole fraction [-]. 

 

The mixed gas permeation tests show that an increase in selectivities compared to the 

pure gas case may be expected for feeds richer than ca. 60 vol% in chlorine.  The 

relatively low pure gas selectivity reported in table 26, compared to the reported 

value in table 25, is assumedly due to long-term storage in a desiccator in the mean 

time. (The membrane was also used in the degree of SSF measurements reported in 

the section after the following.)   

Sorption measurements 

When the transport in a membrane is to be classified /identified, it is of crucial 

importance to measure the adsorption.  Adsorption measurements will enable the 
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diffusion coefficient to be determined and possibly to identify which of the SSF 

mechanism theories is best fitted by the performed experiments.  

 

Nitrogen and oxygen adsorption 

The results of the nitrogen and oxygen measurements are given in table 28. 

Table 28: Nitrogen and oxygen adsorption on the Pf-C10(2 nm) glass membrane 

at 30 °C 

Gas type Test pressure [bar] Adsorption 

[sccm/(g bar)] 

Comment 

N2 1.00 0.0732  

N2 1.04 0.0789  

O2 1.48 0.0872  

O2 0.938 0.0887  

O2 0.688 0.0877 Additive isotherms 

O2 0.999 0.0764  

N2 0.995 0.0820 Stored in N2 atmosphere 

for 14 days after this 

test. 

N2 1.04 0.0879  

N2 0.983 0.0930  

N2 1.58 0.0670 New regeneration prior 

to this test. 

N2 1.21 0.0779  

O2 1.37 0.0881  

O2 1.02 0.0834  

 

Chlorine adsorption 

The chlorine adsorption was measured as a sequence of flashes (the first column of 

table 29).  This means that no evacuation of the sample was performed between the 

subsequent runs.  To keep track of systematic deviations in the pressure transducer, 

the apparatus and the sample were evacuated (pressure >1mbar ) for a minimum of 

24 hours after the highest pressure level of the increasing pressure series.  After 

resetting the zero level of the pressure transducer, two new flashes were performed.  
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The results from these measurements are given in italic font in the bottom rows (first 

column) of table 29.  The subsequent desorption measurements are given in the 

second column in table 29.  

 

Table 29: Chlorine gas adsorption on the Pf-C10(2 nm) at 30 °C; first run. 

Adsorption  Desorption  

Pressure [bar] Adsorbed[cm3(STP)/(g 

bar)] 

Pressure [bar] Desorbed 

[cm3(STP)/(g bar)] 

0.0315 16.4 2.89 3.67 

0.0920 12.9 2.13 3.93 

0.209 10.0 1.68 4.11 

0.348 7.25 1.15 4.31 

0.465 6.79 0.811 4.42 

0.689 6.42 0.565 4.28 

0.956 5.85 0.377 3.75 

1.41 5.09 0.232 2.25 

1.89 4.66   

2.88 3.97   

3.82 3.52   

    

2.10 4.17   

3.37 3.60   

The measurements were repeated to examine the stability and reproducibility of the 

measurements.  The second run was performed the same way as the first and the 

results are reported in table 30. 
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Table 30: Chlorine gas adsorption on the Pf-C10(2 nm) at 30 °C; second run 

Adsorption  Desorption  

pressure [bar] Adsorbed 

[cm3(STP)/(g bar)] 

pressure [bar] Desorbed 

[cm3(STP)/(g bar)] 

0.0305 13.5 2.92 3.70 

0.138 10.6 1.86 3.92 

0.281 9.55 1.47 4.09 

0.449 8.60 1.07 4.33 

0.707 7.80 0.719 4.51 

1.07 6.96 0.512 3.73 

1.47 6.03 0.320 2.45 

2.98 4.26 0.205 (-7.0·10-5 mol)* 

3.84 3.99 0.15 (-5.5·10-5 mol)* 

    

2.11 4.32   

3.35 3.68   

* The last two desorption results are given in moles because accumulated errors in the calculations 

otherwise causes the results to be negative This is a consequence of the calculation method that 

sequentially subtracts the amount desorbed from the previous result obtained.  It is possible to 

calculate the desorption the other way around, but the problem is then to determine the starting 

desorption level. 
 

The results presented table 29 and 30 are plotted in figure 49 and 50, respectively, to 

ease the readability of the results. 
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Figure 49: Adsorption and desorption (first run) at 30°C given as [cm3(STP)/(g bar)] 

as a function of pressure. 
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Figure 50: Adsorption and desorption (second run) at 30°C given as [cm3(STP)/(g 

bar)] as a function of pressure. 
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The adsorption given in the unit [cm3(STP)/(g bar)], can be compared to the Henry's 

law constant and it is clear from figures 49 and 50, that the rate of adsorption 

monotonically decreases as a function of the applied pressure.  This behavior can be 

explained if the glass surface is believed to consist of specific adsorption sites that 

may have different potential (adsorption) energies (characteristic for a heterogeneous 

surface).  In that case the most energy-favorable sites will fill first, and the energy 

released by adsorption will decrease as a function of the degree of the surface 

coverage. 

For the desorption branch the same energy argument can be used, namely that the 

most energy-favorable adsorption sites will be desorbed at the end of the desorption 

process, and at the same time, the surface coverage will of course decrease as the 

desorption continues, thus leading to a smaller number of desorpable molecules. 

This feature is known as localized sorption. 

The traditional way of reporting sorption of condensable gases is as sorption versus 

the relative pressure, which is done in figure 51 and 52. 
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Figure 51: Adsorption and desorption at 30 °C given as [cm3(STP)/g] as a function 

of the relative pressure. First run. 
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Figure 52: Adsorption and desorption at 30°C given as [cm3(STP)/g] as a function of 

the relative pressure. Second run. 

 

A very interesting trend in figure 51 and 52 in is that contradictory to the "normal" 

situation the desorption branch is lower then the adsorption branch, which is also 

believed to be due to the localized sorption theory. 

Temperature dependence of the chlorine adsorption 

To be able to obtain a hint of the “strength” of the adsorption, adsorption enthalpy 

estimation has been performed.  This enthalpy can be calculated from the adsorption 

temperature dependence which is believed to follow an Arrhenius equation: 

 

 0( )
aE

RTA T A e⋅=  (6.8) 

Where A(T) is the temperature dependent adsorption [sccm/g], A0= pre-exponential 

factor (or temperature independent adsorption) [sccm/g], Ea = energy of adsorption 

(adsorption enthalpy)[J/mol], R= ideal gas constant [8.314 J/(mol K)], T = 

(absolute)temperature [K].   

 

This equation can be linearized by taking the logarithm of each side of the equation; 

thus leading to the following expression: 

 0
1ln( ( )) ln( )aEA T A

R T
+=  (6.9) 
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If equation 9 is compared to the general equation for a straight line: y = ax + b 

Then if equation 8 is valid, a plot of ln(A(T)) vs. 1/T will yield a straight line with a 

slope equal to Ea/R and an intersection point with the y-axis equal to ln(A0) 

This is attempted in figure 53: 
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Figure 53: Arrhenius plot of the temperature dependence for chlorine adsorption on 

the Pf-C10 (2 nm) glass membrane, measured at 1.2 bar. 

 

From the least-squares linear fit in figure 53, Ea/R=2733.9, which rearranges to yield 

Ea = 22.73 kJ/mol.  Thus the best fit of the temperature dependence of the chlorine 

adsorption experiment yields the following result:  

 
2733.9

4( ) 6.163 10 TA T e−⋅ i=  (6.10) 

This equation has a regression coefficient as high as 0.986, which is very high 

compared to the expected experimental errors that can be estimated to be 

approximately 10%. 

The adsorption enthalpy is in good agreement with the tabulated heat of condensation 

for chlorine at 1 bar of 20.4kJ/mol. /Perry’s/ 

The corresponding HCl results are reported on page 137. 
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Estimation of the degree of SSF 

In section 3.5, based on the assumption that Knudsen and Surface flows were 

additive, the degree of surface selective flow (SSF) on the total transport was 

derived: 

 

, /

2 1/
1 i

i
tot i He

Mw
ψ

α
−
i

=       (3.16) 

 

Where ψ is the degree of SSF which is equal to (J)SSF/(J)Tot [-] 

However, this derivation is based on the classical Knudsen mechanism and, as it has 

been shown previously in the “Knudsen flow” part of this session, the transport is 

much better described as activated Knudsen.  This means the constant in the 

numerator has to be modified by a factor that equals
, ,( )a i a HeE E

i RT

He

g e
g

− −

⋅ .  However, this 

factor will not be included because of two reasons: 

1. The intention of deriving the expression was to be able to predict the degree 

of surface selective flow from parameters that are easy to determine in 

practical experiments.  The difference in the energy of activation according to 

the activated Knudsen flow will be very hard to obtain for gases other than 

helium and perhaps hydrogen, since it will be confounded with the activation 

energy of surface diffusion. 

2. The activation energy for the Pf-C10 (2 nm) base membrane is only 50% of 

the activation energy in the C18 membrane.  This indicates that neglecting the 

activated Knudsen contribution for the Pf-C10 membrane will have a smaller 

influence than in the C18 membrane.  

Table 31 provides the necessary information to be able to calculate the degree of 

SSF according to equation 3.16. 
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Table 31: Permeances, selectivities, molar masses and adsorption for pure gases 

measured on the Pf-C10 (2 nm) surface-modified glass membrane at 30 °C. 

Gas type  Permeance 

[m3 (STP)/ 

(m2 bar h)] 

Selectivity [-] 

(Helium 

reference) 

Molar 

masses 

[g/mol] 

Adsorption 

[Sccm/g] 

Tc  

[K] 

N2 0.00858 0.546 28.0 0.0975 126 

O2 0.0103 0.656 32.0 0.192 155 

He 0.0157 1   4.00 0(calibr. gas) 5.3 

HCl 0.0315 2.00 36.5 6.12 324 

Cl2 0.0402 2.56 70.9 5.85 417 

Xe 0.0105 0.669 131 0.504 290 

CO2 0.0239 1.55 44.0 1.36 304 

H2 0.0222 1.42 2.02 0.0114 33.3 

SF6 0.0110 0.701 146 0.783 318 

CO 0.00874 0.557 28.0 0.0971 133 

R22 

(CHF2Cl) 

0.0309 1.97 86.5 4.45 396 

 

Figure 54 is showing the measured adsorption in the Pf-C10 surface-modified glass 

membrane for some gases as function of the degree of SSF, Ψ.   
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Figure 54: The adsorption as a function of the degree of SSF. 
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By a closer inspection of figure 54, two phenomena seem to be present 

simultaneously: 

Cl2, HCl, and R22 are clustering in the upper right corner of the diagram, and seem to 

be best described by a linear dependence.  This is plotted in a least-square fit in figure 

55 with He as reference. 
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Figure 55: Least-square fit (linear) of selected parts of the data from figure 50. 

 

As it can be seen in figure 55, the regression coefficient is fairly high (0.913) taken 

into account that two independent experiments are involved in obtaining the relation.  

(The helium gas was not measured, but serves as a reference both in the adsorption 

measurements and the evaluation of the degree of SSF.)  The following dependency 

may be derived for these gases:   

6.22ad ψi=       (6.11) 

Where: ad is the adsorption as a function of the degree of SSF, corresponding to a 

best fit of data. 

From the slight curvature trend of the remaining gases in figure 54, an exponential fit 

was tried and the corresponding least-square fit is given in figure 56. 
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Figure 56: Least-square fit (exponential) of the remaining parts of the data from 

figure 54. 

 

Figure 56 indicates that the guess of an exponential behavior seems to be very good.  

Thus from the least-square fit in figure 56, the relationship as is given in equation 

6.12 is obtained: 

 ( )5.34940.0146ad e ψi=  (6.12) 

An explanation of the two different adsorption behaviours found vs. the degrees of 

SSF (ψ), may be that Cl2, HCl and R22 experience such strong interactions with the 

membrane that these gases are condensed on the pore surface and thus follow the 

"sliding layer" mode. This is further supported by the fair agreement between the 

measured heat of adsorption and the heat of condensation. The other gases have less 

interaction with the pore surface, and are thus transported by the 2D- gas and / or the 

hopping mode.  For these gases, it should be remembered that the exponential 

contribution from the activated Knudsen mechanism was omitted.  This means that 

the magnitude of the exponent may be too high. 

A question to be raised: What is causing the greater affinity for the chlorine, 

hydrogen chloride and R22 on the glass surface?  The first guess one may have is that 

the polarity of the gases is important.  This is not the only factor involved because 
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then the CO gas should not been situated at such a low degree of SSF and having so 

low adsorption.   

The second guess may be that the electronegativity of the atoms in the gas is 

important.  This does seem to have a greater influence on the degree of SSF, but 

since fluorine is the most electronegative element and the SF6 gas belongs to the 

lower branch of figure 54, this can not be the complete explanation. 

A third guess would be that the ease of condensability (adsorption) could be 

estimated from the critical temperature of the gases (values given in table 31).  As 

shown in figure 57, the critical temperature could be used as a measure for the degree 

of SSF but it will give no new information about why the three gases exhibit a 

different transport mechanism. It seems as if the element chlorine is an important 

factor in explaining the belonging of Cl2, HCl and R22 to another mode of SSF than 

the other gases.  The reason for why a chlorine atom is important is not known. 
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Figure 57: Least-square fit of the critical temperature versus the degree of SSF. 

 

A consequence of the obtained linearity in figure 57 is the opportunity to predict the 

selectivities, relative to helium, from the molecular weight and critical temperature 

and only induce a 3% error.  This could potentially save a lot of experiments 

required, if other gas selectivities (than those measured here) are wanted. However, 

since the least-square fit seems to be poorer as the critical temperature is increased, 

the obtained relation should not be used for gases with a critical temperature 

exceeding 350K.  As a verification of this theory, additional gas selectivities have 
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been measured (with gases that have not been used in obtaining the relation) and the 

result is plotted in figure 58. 
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Figure 58: Predicted versus measured selectivities (helium reference) for the Pf-

C10(2 nm) surface-modified glass membrane.  

 

As can be seen from the regression coefficient in figure 58, the ability to predict the 

selectivity for gases, with a critical temperature below 350K, within 4 % accuracy 

(forced through zero) is taken as a support for the “selectivity theory”. However, if 

the upper bound is challenged by trying to predict the selectivity for propane (Tc 

370K), the deviation becomes very large.  The measured selectivity is 1.8 whereas 

the predicted is 3.0. 

. 

Diffusion coefficient determinations 

As described in chapter 5.6 the diffusion coefficient can be determined by two 

different methods, namely from the well known:  

 P D S⋅=  (6.13) 

Where P= permeability [m3(STP)m/(m2 bar h)], D is the diffusion coefficient [m2/h] 

and S is the sorption coefficient [m3(STP)/(m3 bar)].  

Thus the diffusion coefficient can be calculated as the ratio between P and S at a 

given pressure and temperature. 
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The diffusion can also be estimated from the time-lag at the start of the gas 

permeation measurement. The θ-value obtained from permeation measurement, 

relates to the diffusion according to /Mulder/: 

 
2

6
l
D

θ =  (6.14) 

Where θ is the time-lag [s] and l is the membrane thickness [m]. 

 

Figure 59 gives a comparison of the diffusion coefficient obtained by the time-lag 

method vs. the calculated diffusion from the P/S ratio.  
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Figure 59: Comparison of diffusion coefficients obtained by the time lag vs. the P/S-

ratio methods. 

Initially one would expect the values obtained for the diffusion coefficient to be the 

same regardless of measuring method, thus the function of the regression line should 

be y = x.  The reason for the discrepancy between the two values is not obvious. 

However, it should be noted that D is calculated from P/S at 1 bar from measured 

permeability and sorption values, while the D from the time-lag is estimated from the 

low-pressure side in the permeance apparatus.  
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6.1.11 Glass hollow fibre 

The glass fibres are produced in fewer steps than the tubular membranes as discussed 

in chapter 2.3.  The phase separation step lacks, leading to much smaller pore sizes 

by ion exchange of the sodium ions with protons during the acid leach.  This means 

that both the pore size and the porosity is different than in the tubular membranes. 

Permeance measurements 

The permeance results are presented in table 32 and 33 for the short and long-term 

chlorine exposures, respectively. 

 

Table 32: Permeance results for pure gases for the glass hollow fibre membrane 

at 30°C. (Tests performed with new module). 

Parameter Value [Unit] 

P/lN2 0.00239 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.76 [-] 

αCl2/N2 0.020[-] 

PD(t) 0.48[10-5/s] 

Cl2 exposure time 96500[s] 

More detailed permeance data measured for this material is given in appendix 14-1 

 

Since the fibres are produced by a different route where no extra phase separation is 

included, it is expected that the average pore size is smaller in the fibre than in any of 

the surface-modified membranes.  This can easily be seen in the chlorine / nitrogen 

selectivity that is in favour of the N2 molecule, which has the smallest kinetic 

diameter. This indicates activated Knudsen, molecular sieving or a combination of 

the two mechanisms.   
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Table 33: Permeance results for pure gases for the glass hollow fibre membrane 

at 30°C. Long exposure*. (Tests performed with new module) 

Parameter Value [Unit] 

P/lN2 0.0301[m3 (STP)/(m2 bar h)] 

αO2/N2 0.61[-] 

αCl2/N2 0.054[-] 

PD(t) 0.021[10-5/s] 

Cl2 exposure time 4 690 600[s] 

* The exposure was performed in the durability chamber. 

 

The stability of the fibre seems to be at least as good as the average surface-modified 

glass membrane.  As discussed in the experimental section, there are many pitfalls in 

the preparation of the fibre module and some of them may, at least partly, explain 

why there is an order of magnitude difference in the initial nitrogen permeance 

reported.  

To investigate whether the fibres could be applied in chlorine separation at higher 

temperatures, screening tests have been performed at 80 °C.  This is reported in table 

34. 

Table 34 Permeance results for pure gases for the glass hollow fibre membrane 

at 30 and 80 °C.  (Tests performed with new module) 

Parameter Measured at 30 °C Measured at 80 °C [Unit] 

P/lN2 0.000299 0.000249 [m3 (STP)/(m2 bar h)] 

αO2/N2 0.44 0.82 [-] 

αCl2/N2 0.22* 0.70* [-] 

PD(t) 0.31 0.14 [10-5/s] 

Cl2 exposure 

time 

170 000 190 000 [s] 

* The selectivity is most likely lower, because the self leak rate of the apparatus is equal to the 

pressure change in the chlorine measurement (the raw data can be found in appendix 14-1) 
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If the pressure changes used to calculate the chlorine permeabilities in table 34 are 

compared to the corresponding self leak rates (appendix 14-1), then it is questionable 

whether the chlorine measurements are statistical significant (keep in mind that the 

accuracy of the equipment is ~7 % and that there are additional uncertainties in the 

trickiness of the fibre mounting into module).  This means that the chlorine 

permeances are overestimates and that the chlorine / nitrogen selectivities are 

underestimates. 

The detection problem arises since the available membrane fibre area in the module 

is too small.  In order to improve the detection a new approach for mounting the 

fibres into a module should be sought.  A possible mounting procedure is suggested 

in appendix 14-3 (the method has not been tested yet).  If a module with a 

significantly increased (two orders of magnitude or more) membrane area could be 

prepared, then mixed gas experiments should be performed to validate whether the 

fibres are suitable in the chlorine air /separation or not.  

6.1.12 Sum-up for the chlorine air separation  

To be able to better evaluate and sum-up the different materials described in the 

chlorine – air separation, a Robeson plot is given in figure 60.  In this plot the 

materials with the highest separation factor will be the ones at the upper-most right in 

the plot./Robeson/ 
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Figure 60: Robeson plot for the materials in the Chlorine –air separation, the air is 

modelled as nitrogen. Measured at 30 °C and 1 bar, pure gases. 

 

From figure 60, it can be concluded that the best membranes are: C18, pure 2 nm 

glass, C1, C12 and the exposed Pf-C10(2 nm).  The fibre is nitrogen selective, 

presumably a molecular sieving mechanism, and it can therefore not be directly 

compared to the other materials. 

However, it has been shown in the previous sections that the stability of the materials 

vary considerably; hence a plot of the average nitrogen permeability decay rate as a 

function of the chlorine exposure time is given in figure 61.  In this plot, if a line is 

drawn connecting the values given for the different membranes, the most stable 

material will have the most negative slope and simultaneously the lowest y-axis 

crossing point.  
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Figure 61: The average permeability decay for nitrogen after chlorine exposure as a 

function of the exposure time. 

 

From the stability plot in figure 61, it can be concluded that the perfluorinated 

materials are the most chlorine-stable and that the C12 membrane has the worst 

stability.  

If the information on the separation properties and stability are combined, it is 

evident that the Pf-C10 (2 nm) is the best combined choice for a chlorine selective 

membrane.   

However, it should be mentioned that the fibres should not be excluded because of 

several reasons:   

1. The available membrane area is small in the current set-up leading to very 

low permeances at the border of detection of the permeance rig. 

2. The fibres are nitrogen selective, so even if the permeances are low, there 

may be gas compositions in other processes differing from the given example, 

where the fibres are the best choice.  Membrane process simulations may 

reveal for which compositions the fibres are the best choice. Such simulations 

may also reveal if a combination of the fibres and tubes are preferable for 

some conditions.  

3. Even in the cases were the fibre is not directly comparable to the tubes in the 

perm-selectivity, it should be noted that the packing density (membrane area / 

module volume) in a fibre module is usually much higher than in a tubular 

module, and that the process economy is largely dependent on the number of 
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modules required.  Another argument in favour of the fibre is that the 

production of the fibres is simpler, involving fewer steps, making the fibre 

less costly than the Pf-C10 surface-modified membrane. 

The fibre is separating according to a molecular sieving mechanism (or an activated 

Knudsen, the governing equations are almost identical, equation 3.5 and 3.13) and 

the selectivity and permeance may not be that vulnerable to an increase in 

temperature.  For temperatures above about 80°C, the glue is not recommended, 

since it is not guaranteed to be temperature stable beyond this value.  One possible 

solution of the sealant problem, as proposed by our Japanese research associate, is to 

use molten glass as a sealant.  However, currently this method has a severe drawback 

since the available sealant glass and the fibre have such large differences in the 

thermal expansion coefficient, which would induce intolerable stresses leading to the 

breakage of the fibre.  One possible, but very impractical solution might be to never 

cool the module down after it is produced.  

Another, yet unexplored, approach is to use mixed matrix membranes (Organic 

inorganic hybrids where the organic polymer phase is continuous).  This approach 

will require a lot of additional research in order to optimise both materials in the 

hybrid and the interface between them, but if successful, the mounting of the 

membrane could easily be based on existing flat-sheet mounting technology. 

 

Some comments are also necessary about the sealing of the membrane (tubes or 

fibre) into a module.  If a surface-modified Pf-C10 (2 nm) membrane is chosen, then 

the process temperature should be kept low in order to maintain a high degree of 

surface flow present in the membrane.  Screening tests on a C18 membrane indicate 

that the chlorine permeance decreases by 50 % by increasing the temperature from 30 

to 80°C, although no nitrogen permeances were recorded so the selectivity is 

unknown (appendix 9-3).  In the pure 2 nm glass, the chlorine permeance also drops 

by 50% by increasing the temperature from 30 to 90 °C and the chlorine / nitrogen 

selectivity drops by 40% (appendix 6-3).  This adds up to that the temperature must 

be kept low in order to maintain the highest possible separation power.  Evaluation of 

the stability of the glue in chlorine environment has revealed the glue to be stable (for 

one week) up to 90 °C. Thus the Araldite® glue used in this thesis seems to be usable 

as a sealant. 
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The glass membrane tubes used in this work had a wall thickness of 0.5 mm which is 

too thick to be commercially viable.  However, the Japanese glass template producer, 

Akagawa Hard Glass Co. Ltd., produces glasses with wall thicknesses down to 0.03 

mm and corresponding diameter down to 0.2 mm.  Thus the permeances can easily 

be increased by a factor of 17 and simultaneously the module pacing density 

increases as the tube diameter is reduced.  Combined, this will increase the 

commercial potential of the membrane tubes significantly. 

 

6.2 Hydrogen chloride – Hydrogen separation 
Based on the results obtained in the chlorine separation evaluations, it was decided to 

focus on fewer materials in hydrogen chloride / hydrogen separation.  This was based 

on the assumption that dry hydrogen chloride gas seems to be less aggressive 

(reactive) than chlorine gas.  

All permeation measurements reported for HCl /H2 were obtained using the new 

module 

6.2.1 C18 surface-modified glass membrane (Low surface 
coverage) 

As explained in section 6.1.5, a different preparation route was implemented for the 

precursor glass, leading to condensing surface OH groups.  This will lead to fewer 

reaction sites on the membrane surface and possibly a more stable membrane. 

Permeance measurements 

Table 35 and 36 sum up the results obtained for the HCl / H2 separation using the 

C18 (Low surface coverage) surface-modified glass membrane. 
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Table 35: Permeance results for pure gases for the C18 (low surface coverage) 

glass membrane at 30°C.  

Parameter Value [Unit] 

P/lN2 0.00106 [m3 (STP)/(m2 bar h)] 

αO2/N2 1.7 [-] 

αHCl/N2 21[-] 

αHCl/H2 4.6[-] 

PD(t) 4.3[10-5/s] 

HCl exposure time 3 600[s] 

The raw-data can be found in appendix 9-2. 

 

The initial durability seems to be better for hydrogen chloride than the durability 

reported for chlorine in table 10.  Another issue to be addressed is that despite the 

relatively high HCl/ N2 selectivity, the corresponding HCl /H2 selectivity is over four 

times lower.  This is due to the (activated)Knudsen and surface diffusion being 

additive. For hydrogen the degree of SSF is low (the degree of SSF in this membrane 

is assumed to follow the same general trends as the Pf-C10(2 nm) membrane in 

figure 49) so Knudsen flow prevails.  The Knudsen flow is most favourable for the 

lightest molecules, since the diffusion coefficient is proportional to the square root of 

the inverse molecular weight of the gas. The permeance of HCl is high because of 

surface diffusion.  In general, a conceptual plot of the selectivity as a function of the 

pore size, as given in figure 62, can be constructed for a membrane where HCl is 

transported according to a surface diffusion mechanism. 
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Figure 62: Conceptual plot of the hydrogen / hydrogen chloride selectivity as a 

function of the pore diameter.  Most probable transport regimes indicated by 

numbers in the bottom of the figure. 

 

In figure 62, the most probable transport mechanisms are the following: 

1. For pore sizes larger than approximately 10-7 m, bulk flow with no selectivity 

prevails. 

2. Knudsen flow is starting to become important, but still not dominating, 

meaning that the selectivity is increased towards the theoretical value, of 4.3 

given as the root of the inverse ratio of the gases molecular weight. 

3. Classical Knudsen with a constant selectivity of 4.3. 

4. The selectivity is decreasing as the contribution of the surface flow is 

becoming more important. 

5. Surface flow of HCl is causing the selectivity to reverse and approach a 

minimum.  Thus, tailoring the pore size is of crucial importance in order to 

obtain the highest possible reversed separation factor. 

6. Even more narrow pores are causing the contribution from the activated 

Knudsen mechanism to become more dominant and the selectivity will again 

be in favour of hydrogen.  

7. Combination of activated Knudsen and molecular sieving.  



Development and modification of glass membranes for aggressive gas separations 

 

134 

8. Molecular sieving; the pore size of the membrane is smaller than the kinetic 

diameter for HCl, but larger than the kinetic diameter for hydrogen.  

 

Table 36 gives the results of the medium-time exposure tests performed on the C18 

(low surface coverage) surface-modified glass membrane. 

Table 36: Permeance results for pure gases for the C18 (low surface coverage) 

glass membrane at 30°C. (Medium exposure time). 

Parameter Value [Unit] 

P/lN2 0.000896[m3 (STP)/(m2 bar h)] 

αO2/N2 1.7[-] 

αHCl/N2 34[-] 

αHCl/H2 6.5[-] 

PD(t) 0.070[10-5/s] 

HCl exposure time 86 400[s] 

 

The membrane performance evaluated by the separation power, according to 

equation 6.1, is actually improved after the long-term exposure by 20 % (SP short time = 

0.0049 and the SP medium time = 0.0058)   

The stability of the C18 modification seems to be much better in contact with HCl 

than for chlorine (tables 10 and 11).  This is not surprising since a chlorine 

substitution reaction with the glass most likely involves a substitution reaction of 

chlorine with one hydrogen or acyl group as indicated in figure 38.  This reaction will 

produce HCl as a product and the process is most likely thermodynamically 

spontaneous at low temperature.  Appendix 15 gives an example of calculating the 

spontaneity for a simple chlorination and a hypothetical HCl substitution in methane.  

In this appendix it is shown that a substitution chlorination reaction of methane to 

tetra-chloromethane, is thermodynamic spontaneous for almost all temperatures using 

chlorine as a reagent, whereas the use of HCl as a reactant is not spontaneous at any 

temperature. 

It is assumed that the exact thermodynamic data for the surface modification in the 

glass will be very hard to obtain, therefore the actual stabilisation temperature can not 

be estimated. 
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The results obtained that the HCl does not attack the hydrocarbon at any temperature, 

does not include “acid –reactions” of the HCl, i.e. the HCl may react with the surface 

OH-groups or adsorbed water. 

 

6.2.2 C1+C18 surface-modified glass membrane 

Since it was found in the chlorine separation evaluations that the Cl2 / N2 selectivity 

was greatest for this membrane type, it would be interesting to investigate if this is 

the case for the HCl/H2 selectivity as well.  

Permeance measurements 

Table 37: Permeance results for pure gases for the C1+C18 surface-modified 

membrane at 30°C. Short-time exposure. 

Parameter Value [Unit] 

P/lN2 0.00587[m3 (STP)/(m2 bar h)] 

αO2/N2 1.3[-] 

αHCl/N2 5.0[-] 

αHCl/H2 2.1 [-]  

PD(t) 0.83[10-5/s] 

HCl exposure time 4 700 [s] 

The raw-data can be found in appendix 10-2. 

By comparison of the selectivities reported in table 36 and 37, it is seen that the 

selectivity is lower by a factor of 2 in the C1+C18 membrane, compared to the low-

surface coverage C18 membrane.  However the permeance is increased by a factor of 

4. 

6.2.3 Pf-C10 surface-modified glass membrane 

Permeance measurements 

Ideally, based on the experience from the chlorine permeance measurements the 

optimum Pf-C10 membrane would be based on the 2 nm average pore size glass.  

However, the 2 nm base sample prepared for this purpose was unusable since the 

permeance was at least a magnitude too high and unstable (repeating the 

measurement of a particular gas would yield a different result).  Luckily, a sample of 
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the 4 nm base was available and showing reasonable perm-selectivities.  The results 

of the short time exposure are given in table 38.  

Table 38: Permeance results for pure gases for the Pf-C10 surface-modified 

membrane at 30°C. Short-time exposure.  

Parameter Value [Unit] 

P/lN2 0.0115[m3 (STP)/(m2 bar h)] 

αO2/N2 1.1[-] 

αHCl/N2 1.6[-] 

αHCl/H2 0.62[-] (0.23, classic Knudsen theory) 

PD(t) 4.0[10-5/s] 

HCl exposure time 2 100[s] 

Some additional pressure dependencies are given in the results summary in appendix 

12-3. 

If the measured selectivity for HCl / H2 is compared to figure 62, it is clear that 

region 4 prevails (dominating Knudsen transport but surface diffusion is starting to 

be important).  However, despite the pores being too large, valuable information may 

be obtained regarding the HCl stability of the perfluorinated surface modifying 

compound.  

 

Table 39: Permeance results for pure gases for the g the Pf-C10 surface-

modified membrane at 30°C. Long-time exposure. (Tests performed with new 

module) 

Parameter Value [Unit] 

P/lN2 0.0106[m3 (STP)/(m2 bar h)] 

αO2/N2 1.1[-] 

αHCl/N2 2.0[-] 

αHCl/H2 0.8[-] 

PD(t) 9.8·10-4[10-5/s] 

HCl exposure time 8 208 000[s] 

*The exposure was performed in the durability chamber. 

Additional experimental results can be found in appendix 12-3 
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The permeability decay reported in table 36 is the lowest found in this research, but 

the selectivity is of course much too low. It is expected that a 2 nm base 

perfluorinated membrane would have reversed, and possibly greater in magnitude, 

selectivity.  One possible solution of obtaining the highest possible selectivity would 

be to use a longer chained perfluorinated surface modifying reagent.  Sadly, there is a 

problem in getting a longer chained silane because the C10 chain is the longest chain 

commercially available.  An inquiry to the Norwegian sales representative (Chiron) 

for the German especially chemicals company Gelest, revealed that in order to get a 

perfluorinated C18 equivalent specially synthesised, a cost of about 40 000Nok have 

to be spent in order to obtain the necessary 5g.  This amount of money by far exceeds 

the available funding in this project.  However, the stability of the C18 modification 

is much better in HCl than in Cl2, as proven in table 32 and 33 compared to table 11 

and 12.  A detailed economic analysis of all operational and installation costs would 

have to be evaluated in order to determine how much cheaper a shorter-lasting 

membrane would be to have the same economical potential as a longer-lasting 

membrane. 

6.2.4 Pf-C10 (2 nm) surface-modified glass membrane 

Sorption measurements 

The HCl adsorption measurements given in table 40 are performed by the same 

procedure as the chlorine measurements reported in chapter 6.1.9. 
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Table 40: Adsorption and desorption for HCl gas on the Pf-C10(2 nm) at 30 °C 

Adsorption  Desorption  

Pressure [bar] Adsorption 

[cm3(STP)/(g bar)]

Pressure [bar] Desorption 

[cm3(STP)/(g bar)] 

0.0615 27.1 2.89 2.79 

0.175 16.6 2.01 3.17 

0.328 11.8 1.62 3.92 

0.460 9.74 1.02 4.45 

0.882 6.16 0.715 5.85 

1.06 4.88 0.453 7.27 

1.53 3.28 0.269 9.13 

3.00 2.82 0.173 12.0 

3.92 2.69 0.113 18.5 

  0.0815 20.8 

  0.0588 23.7 

2.14 3.74   

3.5 2.79   

 

Figure 63 and 64 gives the adsorption and desorption as a function of the pressure 

and the relative pressure, respectively.  
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Figure 63: Adsorption and desorption as a function of the pressure for HCl gas 

 

It is very interesting to compare the trends of the desorption branch in figure 63 with 

the similar curves for chlorine gas given in the figures 49 and 50.  Contrary to what 

were experienced for chlorine in figures 49 and 50 the adsorption and desorption 

rates follow each other for HCl gas.  

One plausible explanation for this may be that the sorption site association (that was 

strong for chlorine) is not present for the polar HCl gas on the polar glass. The HCl 

experiences a stronger (polar-polar interaction) potential, which levels of the 

differences in the weaker (polar- induced dipole) potential experienced by the 

chlorine molecules. As a consequence the adsorption and desorption for HCl is 

independent of the surface coordinates, a phenomenon known as delocalized 

adsorption.   



Development and modification of glass membranes for aggressive gas separations 

 

140 

HCl adsorption 

0
2
4
6
8

10
12
14

0 0,02 0,04 0,06 0,08 0,1

Relative pressure [-]

So
rp

tio
n 

[c
cm

/g
]

adsorption
isotherm
desorption
isotherm

Figure 64: Adsorption and desorption as a function of the relative pressure for HCl 

on the Pf-C10 (2 nm) membrane. 

  

Also, for HCl, the desorption branch is lower than the adsorption branch but the 

deviation seems to be smaller compared to the deviation experienced for chlorine. 

Temperature dependence for the HCl adsorption 

The adsorption enthalpy for HCl is fitted to equation 6.8 in figure 65. 
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Figure 65: An Arrhenius plot of temperature dependence for the HCl adsorption on 

the Pf-C10(2 nm) glass membrane (P=1.8 bar) 

 

According to figure 65 and equation 6.8, the following temperature dependence for 

the HCl adsorption can be determined: 
14471.4

2( ) 1.402 10 RTA T e−⋅ i=     (6.15) 
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The adsorption enthalpy is then 14.471 kJ/mol. 

The adsorption enthalpy is in fair agreement with the tabulated heat of condensation 

for hydrogen chlorine at 1 bar of 17.6kJ/mol. /Perry’s/ 

This indicates that the HCl is in a “condensed” state when adsorbed on the glass 

membrane surface and thus that the most likely transport mechanism is the sliding 

layer flow. 

6.2.5 Glass hollow fibre 

Permeation measurements 

As discussed previously, the mounting of the fibres into the module is tricky and may 

possibly lead to a greater variance in the results.  Table 41 reports the long-term HCl 

exposure of the fibres. 

Table 41: Permeance results at 30°C for pure gases on the hollow glass fibres  

Parameter Value [Unit] 

P/lN2 5.89·10-5[m3 (STP)/(m2 bar h)] 

αO2/N2 1.7[-] 

αHCl/N2 0.37[-] 

αHCl/H2 0.0082[-] 

PD(t) 0.026[10-5/s] 

HCl exposure time 530 900[s] (Dynamic exposure) 

αHCl/H2 (after exposure) 0.072[-] 

The raw-data can be found in appendix 14-2. 

 

It should be noted that the mounting of the fibres had to be redone after the first 

exposure because the breakage of some of the fibres during the exposure test.  This 

means, that the error in the permeation measurements after the exposure may be 

different than before exposure and the error in the reported permeation decay is 

possibly larger than “normal”. 

A temperature dependency run was performed with a new sample to investigate if the 

fibres may be suitable at elevated temperatures.  These results are reported in table 

42.  
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Table 42: Permeance results for pure gases for the hollow glass fibre at 30 and 

80 °C. 

Parameter Measured at 30 °C Measured at 80 °C [Unit] 

P/lN2 0.000229 0.000255 [m3 (STP)/(m2 bar h)] 

αHCl/N2 0.25 0.75 [-] 

αHCl/H2 0.024* 0.089 [-] 

PD(t) 0.16 0.29 (at 80 °C) [10-5/s] 

HCl exposure 

time 

183 000 110 500 [s] 

*The selectivity is possibly lower, because the self leak rate is equal to pressure 

change in this measurement.  

The raw data can be found in appendix 14-2.  

 

Two aspects should be discussed about the results in table 42: 

1. The HCl / H2 selectivity at 30 °C is too high, since the self leak rate is 

identical to the measured pressure change determined in this test.  However, 

the leak rate at 80 °C was not determined, so it is possible that the HCl / H2 

selectivity at 80°C also is too high. 

2. The increased temperature is seemingly worsening the separation slightly.  As 

can be seen from the drop in the selectivities (the H2 / N2 selectivity is 11 and 

8.5, at 30 and 80 °C, respectively) whereas the hydrogen permeance is 

approximately kept.  This is not surprising since the molecular sieving is an 

activated transport, involving a threshold energy needed to be surmounted in 

order for a molecule can pass the obstacle (equation 3.14).    

These aspects sum up to that the fibres have not been ruled out as a feasible option 

for the H2/HCl separation, but a more stable mounting solution for the fibres into a 

module, as suggested in appendix 14-3, should be sought.  
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6.2.6 Sum up of the HCl / H2 –separation 

As for the chlorine separation a Robeson equivalent plot /Robeson/ for the HCl /H2 

separation has been prepared.  Figure 66 gives this plot: 
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Figure 66: Robeson plot for the HCl /H2 separation. Pure gases permeabilities at 30 

°C 

 

According to the process used as an example in this thesis, the feed contains ca. 93% 

(vol.) of HCl and the temperature can be as high 300°C.  From the Robeson plot in 

figure 66 it is quite clear that none of the surface-modified glass membranes are very 

suitable to use in this process  

A comparison of the stability of selected glass membranes is given in figure 67. 
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Figure 67 A comparison of the average permeability decay for nitrogen after 

chlorine exposure (black symbols) or hydrogen chloride exposure (grey symbol) as a 

function of the exposure time. 

 

As can be seen from the stability plot given in figure 67, the stability of all the 

glasses is more or less identical and comparable to the stability of the perfluorinated 

glass experienced in the chlorine separation.  Based on this, the optimum membrane 

would be the one found most suitable from the Robeson plot (figure 66). Thus, the 

most suitable surface-modified glass membrane in the HCl / H2 separation seems to 

be the low-surface coverage C18 glass membrane.   

In the current separation, the temperature should be as high as possible, preferably up 

to 300 °C.  The glue can not sustain that high temperature and as discussed for the 

surface-modified glass membranes in the chlorine separation, the SSF- transport is 

believed to decrease as a function of the temperature.  In order to keep a large 

separation power, it is necessary to keep the temperature low.  This means that it is 

questionable whether the surface-modified membranes are suitable at all for the HCl / 

H2 separation.  

The fibre is H2 selective and as the temperature is raised to 80° C, the hydrogen 

permeance is only slightly decreased, whereas the selectivity drops significantly as 

documented in table 42.  However, the HCl permeance is on the border of detection, 

so the actual separation factors might be higher.  The detection may be improved by 

using a larger membrane area module as described in section 6.1.11. 
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7 CONCLUSION 
Chlorine / air separation 

Both pure glasses (including the fibre) and surface modified glasses have been tried 

out for their suitability in chlorine / air separation.  

The pure glass tubes (4 and 2 nm average pore sizes) have too wide pores and 

therefore their perm-selectivities are too low, but their chlorine durability is 

acceptable. 

The fibre separate according to a molecular sieving mechanism.  The mounting of the 

fibres into the module is tricky, and the variance in these measurements is larger than 

for the glass tubes.  This means that the perm-selectivity for this membrane is not 

directly comparable to the other membranes tested.  However, the chlorine 

permeability is reduced by a factor of 10 000 and the reversed selectivity(N2/Cl2) is 

only 27.  The chlorine permeabilities performed at both 30 and 80 °C lacked enough 

statistical accuracy to detect any flow beyond the leak rate of the cabinet, (oxygen 

/nitrogen selectivity is constant from 30 to 80 °C). This means that the chlorine 

permeances are an overestimates whereas the selectivity are most likely 

underestimates.  Larger area modules should be produced in order rise the chlorine 

permeance above the leak rate of the cabinet.   However, to find the possible 

compositions where the fibres could be an alternative to the chlorine permeating 

glass tubes, detailed process simulations would be required.   

Among the five different aliphatic surface modifications (C1, C8, C12, C18 and 

C1+C18) initially tried out for their suitability in chlorine / air separation, the 

preferable order judged by the separation factor was: (ranged from best to worst) 

C18, C1, C12, C8 and C1+C18. 

The membrane stability is also of vital importance in order to find the best suitable 

material.  Based on the perm decay rate (permeability decay divided by the exposure 

time) the following order was obtained (best to worst): C1, C1+C18, C18, C8 and 

C12.  Neither of the materials had entirely satisfactory stability, and a perfluorinated 

surface modification (based on a C10 chain, called Pf-C10) was tried out on both the 

4 and 2 nm pore size pure glasses.  This material was superior in stability and 

compatible in perm-selectivity (when used on the 2 nm glass).  The Pf-C10(2nm) has 

a nitrogen permeability of 1.46·10-6 m3(STP) m /(m2 bar h) and chlorine / nitrogen 
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selectivity of 9.4.  Currently the membrane tubes come with a 0.5 mm wall thickness, 

but according to the template glass producer wall thicknesses down to 0.03 mm is 

available. 

 

Hydrogen / Hydrogen chloride separation 

Fewer materials were tested in the H2 / HCl separation than in the Cl2 / air separation, 

and the choice of materials tested in the H2 / HCl separation were based on the 

experience gained in the Cl2 / air separation.  The following surface-modified glass 

membranes were tested: C18 (low surface coverage), C1+C18, and Pf-C10(4nm). 

 

The stability of all glasses is almost identical and comparable to the stability of the 

perfluorinated glass experienced in the chlorine separation.  Based on this, the 

optimum membranes would be those found most suitable, judging by the separation 

power. Thus, the most suitable surface-modified glass membrane in HCl / H2 

separation seems to be the low-surface coverage C18 glass membrane.  This 

membrane has a hydrogen permeability of 2.44·10-6 [m3 (STP) m / (m2 bar h)] and 

hydrogen chloride / hydrogen selectivity of 4.6 at 30°C.  If the temperature is raised, 

the separation is expected to soon flip, and to become H2 selective due to loss of 

surface flow. 

 

The fibre is H2 selective with a hydrogen permeability of 8.38·10-8 [m3 (STP) m / (m2 

bar h)] and hydrogen /hydrogen chloride selectivity of 38 at 30°C.  As the 

temperature is increased to 80 °C, the hydrogen permeability drops by 10% whereas 

the hydrogen / hydrogen chloride selectivity drops from 38 to 11. However, as in the 

chlorine permeances in the chlorine separation, the HCl permeability is on the border 

of detection, so the actual separation factors might be higher.   
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FURTHER WORK 
Several approaches should be pursued (valid for both separations in question) in 

further research. 

 Since inorganic membranes in general are difficult to mount into modules, a 

mixed matrix membrane (MMM) approach should be investigated.  Two 

approaches seem to be of particular interest:  

o Crushed surface modified glass tubes mixed into a perfluorinated 

rubber like Viton®, in search for a chlorine or hydrogen chloride 

selective material. 

o Crushed glass hollow fibres mixed into a perfluorinated glassy 

polymer (like Teflon® or Hyflon®), in search for a chlorine or 

hydrogen chloride retaining material. 

 The experienced detection problems when measuring the permeances in the 

fibres may be prevented if longer fibre length can be acquired and the 

mounting technique proposed in appendix 14-3 is successful.  If the 

membrane area can be increased by a factor of more than 100, mixed and pure 

gas permeation experiments for both separations should be tried out. 

 Simulations should be performed in search for the optimum module 

combination (the simulated process should not be limited to the specifications 

of the process example used here).  Simulation of whether a combination of 

both chlorine selective and chlorine retaining (or hydrogen chloride selective 

and retaining) modules in the same process could be feasible for a specific 

feed compositions at given process conditions. 

 A longer perfluorinated silane chain (C18 chain) used as a surface-modifying 

agent may show improved perm-selectivities.  This perfluorinated silane does 

not exist commercially, thus it would have to be special synthesised at a 

rather high cost. 
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Glass membranes for purification of aggressive gases.  

Part I: Permeability and stability. 
Arne Lindbråthen and May-Britt Hägg* 

Norwegian University of Science and Technology, NTNU 

Department of Chemical Engineering 

N-7491 Trondheim, Norway. 

 

Abstract   
Chlorine gas is an aggressive chemical used in various industries.  Standard 
separation processes, or purification of chlorine, are energy demanding and 
complicated. This work focuses on the use of glass membranes as an alternative to 
the existing separation methods. Three families of glass membranes were considered: 
pure glass tubes (pore diameters (2 – 4 nm), surface modified glass tubes (pore size 
~1-2 nm), and glass fibres (pore size < 1 nm). Membrane performance for the gases 
Cl2, N2, O2 was measured, as well as membrane stability towards chlorine exposure 
over time. A perfluorinated surface modified glass membrane showed the overall best 
performance and stability with a selectivity of ~9 for the gas pair Cl2 – N2 and a 
permeance of 3.45 [10-9 mol/(m2 Pa s)].  It was however proved that longer acyl 
chains for the surface modifying component, will increase separation performance (a 
selectivity for Cl2-N = 11 and permeance of 6.86[10-9 mol/(m2 Pa s)] was achieved).  
Thinner capillary glass tubes of the same kind are available which will increase these 
permeances by a factor of 17. The selectivity is expected to increase for increased 
chain length of the perfluorinated compound, as documented in the current work. 
Hollow glass fibre membranes (not surface modified) are also promising candidates 
for the chlorine separation.  A more detailed discussion of the governing transport 
mechanisms through the glass membranes is presented in part II of this paper. 

 

Keywords: Glass membranes, permeability, UV-radiation, stability and chlorine gas 

 

Introduction 
Aggressive gases refer to chlorine (Cl2) and hydrogen chloride (HCl) in the current 

work.  Chlorine has the main focus in this paper, but aspects of HCl separation are 

also discussed.  According to Ullmann's encyclopedia of industrial chemistry [1] the 
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total world wide capacity of chlorine in 1998 was 4.8·109 kg annually. It is also stated 

that in Western Europe, 1995: 

 

 Almost two million jobs were related to chlorine. 

 55% of European chemical turnover depended on chlorine. 

 85% of pharmaceuticals are made using chlorine 

 98% of the drinking water is purified by chlorination 

  

These numbers demonstrate the economical importance of the chlorine industry.  In 

this variety of industries there is a great potential for improvement and simplification 

of the separation processes of chlorine from other gases. In the current work, chlorine 

– air separation has been studied, as well as (although to a less extent), HCl – 

hydrogen. The ultimate goal of this work is to incorporate membrane technology in 

process industry where these gases are in mixtures and need to be separated. The Cl2 

- air is often in a mixture at moderate temperatures (30°C-80°C), while a HCl – H2 

mixture may at times be present after a reactor, hence the temperature can be very 

high (300°C-400°C).  These process conditions indicate clearly the demands that 

have to be met for a high efficiency, durable membrane material; likewise it indicates 

that the transport mechanisms which will be governing the two basic separations (Cl2 

– air and HCl – H2) will be very different.  Previously, different membrane materials 

have been tested for their suitability in the chlorine gas separation.  The 

permeabilities and durability of the materials are reported by Hägg [2, 3 and 4] and 

Eikeland et al [5].  Based on the findings in these works, the focus was set on glass 

membranes in order to further optimise the separation properties of this material for 

the gases in question. 

 

 

Preparation of the glass membranes 
The tubular glass membranes (5 mm OD and 4mm ID) tested in the current work are 

produced by phase separation of a commercial sodium borosilicate glass (Akagawa 

Hard Glass, Osaka - Japan).  Glass membrane can be produced with diameters as 

small as 0.2 mm and wall thickness 0.03 mm according to producer. For the current 

work, the thicker and larger ones were found to be easier to handle. The glass 
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membrane is formed by phase separation by heating the glass tubes to temperatures 

over 500°C for several days. When the phase separation is completed, the glass 

consists of two phases with different compositions; one rich in silica and one in 

boron.  In the subsequent acid leaching, the boron rich phase is removed. The 

solubility of silica is however limited in the acid, hence the remaining silica in the 

phase where boron now is leached out, precipitates as colloidal sized particles on the 

silica rich phase (i.e. on the remaining network) of the glass.  The glass / acid ratio is 

an important parameter which determines the diameter of the colloidal spheres and 

thereby indirectly the pore size of the membrane. (The membrane pore is the space 

between the randomly placed colloidal spheres.)  If appropriate glass to acid ratio 

(less than 100 ml acid/g glass) [6] and phase separation temperature is chosen, a glass 

membrane is obtained with a peak at diameters 2 or 4 nm in the pore size distribution.  

These pore diameters are too large to achieve any significant separation factors 

beyond the Knudsen selectivities.  In order to optimise the membrane performance, 

several chemical components of different chain lengths were tested as surface 

modification agents to tailor the pore size and thus improve separation. This process 

involves a site-specific reaction with the -OH surface groups inside the pores of the 

glass membrane [7].  This is shown in figure 1 a and b. For surface modification both 

organo silane compounds with different chain lengths of the acyl groups as well as a 

perfluorinated compound were tested. The components with longer acyl lengths will 

reduce the pore size. When the organo silane compounds are exposed to chlorine, a 

reaction will take place, and the surface modifying components become chlorinated. 

The pore size will thus be further reduced with the large chlorine atoms attached to 

the chain. This can be documented as reduced flux for the permeating chlorine gas. 

This chlorination reaction may be used as part of the pore tailoring, and is then 

important to control. If the surface modifying compound is wrongly chosen, the pores 

may become completely blocked due to this chlorination reaction.  It was also tested 

out if the reaction could be speeded up by exposing the membrane to UV-radiation. 

The theory is that UV-radiation shorter than a specific wavelength (492 nm, 

estimated from the chlorine- chlorine bond energy) has the ability to break the 

chlorine-chlorine bond, hence giving two chlorine radicals (eq.1).  The resulting 

chlorine radicals have a faster reaction rate in the substitution reaction than that of the 

chlorine gas. 
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2 2Cl h Clν+ → i      (1) 

It has been documented that perfluorinated compounds are very stable towards 

chlorine [5]. By using such compounds as surface modifying agents, no substitution 

reaction will occur, and no reduction in flux can be observed. 

From what is explained above, it can be understood that tailoring of the pore size for 

an optimised separation of the gases in question may have different approaches and is 

quite challenging. To understand and document how this can be done, is the main 

focus for the research reported in the current article, towards the goal of designing a 

stable, optimised membrane for the separation and purification of aggressive gases. 

a)  

b) 

H

HH

CH3

Si

Si
CH3O

Si

O

O H

H

Surface modification

OH group at the suface of the glass
 (unreacted during surface mod.)

Bulk glass
 

Figure 1: a) Principles of the surface modification. [7] 

 b) Details of how the surface modifying compound is attached.  
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Transport mechanisms 
Three families of glass membranes were investigated in the current work: pure glass 

tubes (for reference), surface modified glass tubes and hollow glass fibres.  These 

materials have an average pore size distribution from 4 nm down into the sub-

nanometer range, respectively.  The average pore diameter for each glass membrane  

gives an indication of which transport mechanism can be expected to be dominant for 

the given gas mixture.  Figure 2 generalises the dependence of pore size and the 

transport mechanisms in microporous membranes.  
K nudsen d iffus ion

S urface d iffus ion

M olecu la r s iev ing

 
Figure 2: Transport mechanisms in microporous membranes 

 

The mechanisms are briefly characterised as follows:  

 Knudsen diffusion; the square root of the ratio of the molecular weights will 

give the separation factor. 

 Selective surface diffusion (or flow, SSF); governed by a selective adsorption 

of the larger (non-ideal) components on the pore surface.  For a mixed gas an 

increase in selectivity may be observed if the adsorbed monolayer covering the 

internal pore walls restricts the free pore entrance so that smaller non-adsorbed 

molecules cannot pass through. 
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 Molecular sieving; the smallest molecules will permeate, the larger being 

retained. 

The preferred transport mechanisms for the gas separations in question, would be a 

selective surface diffusion for chlorine when Cl2-air is considered, and molecular 

sieving for H2-HCl. The microporous surface modified glass membranes should thus 

be suitable for Cl2-air separation, while the hollow glass fibres with an average pore 

size < 1nm should be suitable for H2-HCl separation.  This conclusion is based on 

knowledge of the average pore sizes of the membranes, and on evaluation of the gas 

properties; see Table 1. The molecular size, shape and critical temperature (Tcrit) are 

of special importance as a large non-ideal molecule with high critical temperature 

will more easily condense in the pore and may be transported according to a selective 

surface flow.  Hence the pore size, process conditions, and physical properties of the 

relevant gases must be in focus for the optimised membrane separation.  

  
Table 1: Some physical properties for the selected gases [8] 

Gas L-J diameter, σ[Å] MA [g/mol] PCrit [Bar] TCrit [K] 

Cl2 4.22 70.91 77.1 417 

N2 3.79 28.02 33.9 126.2 

O2 3.47 32.00 50.8 154.8 

HCl 3.34 36.49 83.2 324.6 

H2 2.82 2.016 13.0 33.3 

 

Fick's law gives the mass flux through an area perpendicular on the flow direction: 

a
a ab

dcJ D
dx

=−      (2) 

where Ja is the mass flux [mol/(m2 s)], Dab is the diffusion coefficient [m2/s] and 

dca/dx is the concentration gradient for component a over the length x [mol/(m3·m)]. 

Fick’s law integrated and applied for a membrane, yields dx = l (membrane 

thickness), and dca = concentration difference over the membrane.  The Da,b will vary 

according to which transport mechanism is dominating (as indicated in figure 2). 

The permeance P/l for a given gas (a) is defined by: 
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 aa

a

JP
l p∆

=  (3) 

Where P/l is the permeance (also referred to as permeability flux) [mol/(m2 Pa s)] and 

 pa is the partial pressure difference of  component “a” over the membrane [Pa]. 

 

Knudsen Flow 

Knudsen flow takes place when the mean free path (λ) of the molecules is larger than 

the pore size.  A lower limit for the significance of the Knudsen mechanism has 

usually been set at dp > 20 Å [9].  The classical Knudsen equation is: 

 , 3
p

Kn a a

d
D v=

8 48.5
3

p
p

a a

d RT Td
M Mπ

= = ⋅   (4) 

Where dp = average pore diameter [m], av = average molecular velocity [m/s], Ma = 

molecular weight [g/mol], and T = temperature [K]. 

However, recent findings of Gilron and Soffer [9] indicate that the Knudsen 

mechanism can be significant for pore sizes as small as dp ~5Å.  The Knudsen flow 

in this lower region takes a slightly different form as indicated in equation 5. This 

equation is derived as transport through a series of constrictions, and using a 

resistance in series model, hence indicating an activated Knudsen diffusion, '
,Kn aD : 

'
,

8 exp( )a
Kn a p

a

ERTD d
M RTπ

∆
−d= g    (5) 

where gd is the probability that a molecule can make a jump in the right direction 

given the jump length is dp and the velocity is av . In the current work, permeance 

measurements were performed at different temperatures for the membrane with the 

most narrow pore size (≤ 1 nm) in order to check if the inert gases were transported 

according to classical or activated Knudsen diffusion.  Helium was used as a 

reference gas - this is further discussed in the results.  

 

Surface diffusion 

The mechanism of surface diffusion is disputed and several different approaches have 

been proposed in the literature. Theories are ranging from viewing the surface 

diffusion at low surface coverage of adsorbed gas as a 2D gas, through a hopping 
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model and further to a model where the adsorbed gas condenses into a liquid like 

“sliding layer”. Which of the mechanisms is dominating, will be influenced by a 

number of factors such as: homogeneity of the surface, the temperature vs. the 

adsorption enthalpy and the surface concentration, cs.[10].  All three regimes may be 

important to consider as well as pore size, pore structure and surface coverage. The 

three regimes can be described by a 2D analogue of Fick's law (equation 2, given for 

a single component, a). The flux, Ja, is then evaluated as molecules crossing a 

hypothetical line in the surface perpendicular to the direction x. The surface diffusion 

coefficient is then denoted Ds and dcs/dx the surface concentration gradient in x-

direction. When separation is strongly influenced by surface diffusion, it is called 

selective surface flow (SSF). This will often be the situation when large non-ideal 

gases are present in a gas mixture. Further details on the three regimes of surface 

diffusion are discussed in Article II of the current work; “Adsorption measurements 

and diffusion coefficient estimations.” 

 

Molecular Sieving 

Molecular sieving is the dominating transport mechanism when the pore size is 

comparable to the molecular dimensions, 3-5 Å. For the glass membranes 

investigated, this would mean the hollow fibres. The dimensions of a molecule are 

usually described with either the Lennard-Jones radii (Table 1) or the Van der Waal 

radii.  A shape factor should also be included [11].  

The sorption selectivity has little influence on the separation when molecular sieving 

is considered. An Arrhenius type of equation is still valid for the activated transport, 

but attention should be drawn to the pre-exponential term, D0. From the transition 

state theory this factor may be expressed as shown in equation 6 [12]: 

,2
0 exp a dSkTD e

h R
λ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠
     (6) 

Where k and h are Boltzmann’s and Planck’s constants, respectively; Sa,d is the 

activation entropy for diffusion. A change in entropy will thus have a significant 

effect on the selectivity when molecular sieving is considered. This is thoroughly 

discussed by Singh and Koros [11]. The flux may be described as in equation 7 where 

Ea,MS is the activation energy for diffusion in the molecular sieving media. 
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⎟⎟⎠

⎞
⎜⎜⎝

⎛ −
⋅

⋅
∆=

RT
E

D
lRT

pJ MSa
a

,
0 exp     (7) 

The selectivity for separation will increase with increasing temperature because of 

increased diffusion rate for permeating component, while the larger ones are being 

retained.   

Experimental 

 
Permeance measurements.  

The glass membranes were glued (using Araldite® AV138M) into a Pyrex® glass 

tube (8 mm OD, 5 or 6 mm ID). The Pyrex tube was then connected to the module 

with a Swagelok® 8mm union and the module closed using a dismantle-able glass 

slit coupling on the top of the module. The feed pressure could be varied between 1 

to 5 bars, and was monitored by a MKS 121AA (5000 mbar) pressure transducer. The 

permeance was measured as pressure increase with a MKS Baratron 626 (100 mbar) 

pressure transducer on the vacuum side of the membrane. The closed set-up made it 

easy to keep track of the poisonous gases (Cl2, HCl) at all times. 

Detailed measurements of adsorption and diffusion coefficients were also performed; 

these results are presented and discussed in detail in Article II of the current work. 

 

Durability of membranes 

For measuring the durability of the glass membranes, they were exposed to pure 

chlorine gas over various length of time. The membranes were placed in a closed 

temperature regulated glass chamber which was filled with pure chlorine gas. The 

temperature was kept at 30 °C and pressure at 1 bar. The change in membrane 

properties was measured as change in flux before and after exposure. The chamber 

had the possibility of combining UV radiation with chlorine exposure of the 

membrane. 
 

Results and discussion 
Pure glass membranes (tubes and a hollow fibre) and glass membranes surface 

modified with different acyl-trichlorosilane, were investigated for their chlorine gas 

separation performance and stability.  Different surface modifying components were 
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investigated for their ability to tailor the pores of the membrane (reduce the pore 

diameter to < 1 nm), and their stability towards the aggressive gases Cl2 and HCl. To 

evaluate the performance (flux and selectivity) and the stability of the material 

towards chlorine gas, permeance was measured before and after varying exposure 

times. 

 

Separation performance of the membranes 

The economic potential for membrane application in the industry is closely related to 

the stability of the materials and required membrane area. The required area is a 

consequence of the trade-off between selectivity and permeance for a given material. 

If the permeance of one gas is plotted vs. the selectivity of a corresponding gas pair, 

the materials with the highest selectivity and permeance simultaneously, will cluster 

in the upper right corner of the diagram. This would be the best membrane judged by 

performance alone.  This type of plot is often referred to as Robeson plot [13].  

Figure 3 shows such a trade-off curve for all the glass membranes tested in the 

current work: tubes with or without surface modification and hollow fibres, with 

chlorine / nitrogen selectivity given as function of permeance [mol/(m2 Pa s)]. It 

should be remembered that the glass membranes measured are tubes with an outer 

diameter OD = 5 mm, and wall thickness 0.5 mm. According to producer, the 

membranes can be delivered as tubes with diameter 0.2 mm and wall thickness 0.03 

mm. With reference to the results reported here, this means an increase in 

performance times 17.  For an industrial scale membrane module, the thinner 

capillary glass tubes with the higher performance will most likely be used. 

The pure glass tubes had two different average pore sizes of 4 nm (here referred to as 

“Glass 1”) and 2 nm (here referred to as “Glass 2”) respectively. For the surface 

modified glass membranes the notation C1, C8, C12 and C18 refers to the chain 

length of the acyl part in the surface modifying compound (the R-group as shown in 

figure 1a). "Pf"-as a prescript indicates that the chain is perfluorinated. C1+C18 

refers to a membrane that was first modified with C18 and subsequently with C1.  

Most of the surface modified glass membranes tested were based on “Glass 1” (4 nm 

average pore size).  In figures 3 and 5 the surface modified glasses are identified with 

the alias names as explained here. (For conversion of permeance given as [mol/(m2 

Pa s)] to [m3(STP)/(m2 bar h)], multiply with 7.937·106) 
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Figure 3: Selectivity of Cl2/N2 vs. chlorine permeance  mol/(m2 Pa s)  for various glass membranes.  

The symbols identify different modifying components used for pore tailoring (see text). Pure gases, 

measured at 30 °C and 1 Bar 

 

Figure 3 demonstrates that the fibres separate the gas mixture according to a different 

transport mechanism than the other membranes, showing a selectivity of αCl2/N2 = 

0.037 (lower left corner). The fibres were expected to separate according to a 

molecular sieving mechanism. This is consistent with the observed separation factor 

being below the theoretical Knudsen selectivity for the chlorine/nitrogen pair 

(αKn,Cl2/N2 = 0.63); i.e. the smallest molecule, N2, is permeating faster than the larger 

Cl2 (see Table 1). For all the other surface modified membranes chlorine is the fastest 

permeating component (consistent with a selective surface flow, SSF mechanism as 

explained in the section on transport mechanism).  

With reference to figure 3 it can be seen that the membranes modified with the longer 

acyl chains (C8 to C18) show the highest selectivities ( ~ 11 for C18). The permeance 

of chlorine is 6.86 [10-9 mol/(m2 Pa s)] and a selectivity equal to 11. This would mean 

116 [10-9 mol/(m2 Pa s)] for a 0.2 mm diameter glass tube with wall thickness 0.03 

mm.  Also the perfluorinated Pf-C10 (Glass 2) should be noted, having a selectivity 
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of ~ 6 and a chlorine permeance of 4.13 [10-9 mol/(m2 Pa s)]. The separation 

performance for the Pf-C10(Glass 2), is improved after chlorine exposure (9 weeks at 

30°C and 1 bar), and the new test results are indicated as “Pf-C10(Glass 2)exp.” in 

figure 3.  The exposed Pf-C10(Glass 2) now has a selectivity of ~ 9 and a chlorine 

permeance of 3.45 [10-9 mol/(m2 Pa s)]; hence the exposure has had a positive effect. 

This is believed to be caused by a more efficient selective surface diffusion of 

chlorine after exposure due to minor changes in the pore modification.  

The chlorine permeances for the pure glasses (glass 1 and 2) are high, 27.7 and 29.6 

[10-9 mol/(m2 Pa s))], respectively, with corresponding selectivities of 1.2 and 2.6.   

Although the chlorine permeance is high, the selectivity is too low for these pure 

glasses to be of interest.  The other materials fall somewhere between the two 

extremes described here.  

For the C18 membrane, (the membrane with the most narrow pores) additional tests 

were performed within the temperature range (30°C-70°C). This was done to 

investigate how the inert gases in the mixture most likely were transported through 

the membrane. The mechanism would obviously be according to Knudsen diffusion, 

but it was not clear whether or not it would be a classical (eq. 4) or an activated (eq. 

5) Knudsen mechanism. If this could be answered, temperature dependence of the 

separation could more easily be predicted.   

Based on Fick’s law (eq.2), flux equations for the two types of Knudsen diffusion 

could be derived. Integrating over the membrane thickness and substituting the ideal 

gas law for the concentrations, yield: 

 ,( )a Knudsen
a a

D
J p

RTl
∆=  (8) 

where Da(Knudsen) is the Knudsen diffusion coefficients [m2/s] according to equations 4 

or 5.  

If the classical Knudsen diffusion equation (eq.4) is substituted into equation 8, the 

following temperature dependence for the permeance may be derived (eq.9): 
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Thus, if the permeance is plotted as a function √1/T, a straight line with the slope KKn 

(collective term for the constants) should be obtained and the line should pass 

through origo.   

For activated Knudsen diffusion, equation 5 is substituted into equation 8, and the 

following temperature dependence for the permeance is derived (eq.10): 
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Thus, if activated Knudsen is obeyed, then a plot of ln(√T·permeance) versus the 

reciprocal temperature (1/T) should yield a straight line with a slope equal to -∆Ea/R 

and a constant (the crossing point of the line with the y-axis) equal to ln(KK).  

Helium gas was used as a reference for the inert gases, and helium permeance data 

was obtained as function of temperature.  These permeance data were least-square 

fitted according to both the classical and activated Knudsen regime in the C18 

membrane as shown in figure 4. 
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Figure 4: Fitting of the helium experimental permeances as function of reciprocal temperatures (1/T) 

to a) classical- and b) activated Knudsen flow.  
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It is obvious from the regression coefficients in figure 4 that the fit of the 

experimental permeances to the activated Knudsen mechanism is perfect (R2=0.99).  

This means that the helium transport in the C18 modified glass membrane (dp ~ 1nm) 

is according to the activated Knudsen mechanism.  Depending on the pore size and 

molecular size, other inert gases (here N2 and H2 are considered) may also be 

transported according to an activated Knudsen diffusion. This knowledge is useful for 

evaluation of the separations in question (Cl2 – N2, HCl – H2). 

 

Separation results compared to the goal 

With reference to previously documented chlorine separation results [3-6], the goal 

for performance of an industrial membrane was set to ~ 170 [10-9 mol/(m2 Pa s)] with 

a selectivity Cl2/O2 of about 20, a goal which seems to be within reach. The best 

results achieved in the current work are with a C18 surface modified glass 

membrane; wall thickness 0.5 mm; with Cl2 flux = 6.86 [10-9 mol/(m2 Pa s)] and 

selectivity for Cl2/N2 = 11. Replacing the measured glass tube (diameter outer 

diameter of 5 mm, wall thickness of 0.5) with one of diameter 0.2 mm and wall 

thickness 0.03 mm (which can be supplied according to producer), the permeance 

will increase by a factor of 17, and a permeance of 116 [10-9 mol/(m2 Pa s)] is 

achieved.  In order to increase the flux and selectivity, further investigations are 

needed for pore tailoring. The road to follow for an optimised separation, seems 

however to be clear: A perfluorinated compound with longer (and more branched) 

chain, will be tried out as surface modifying component. An increase in selectivity 

and permeability is then expected (moving towards the upper right corner in figure 

5).  It should be noted that the goal for selectivity was set for chlorine with respect to 

oxygen, which will in any case be higher than for chlorine versus nitrogen. 

A more comprehensive study of the adsorption and transport mechanisms through 

these glass membranes is presented in part II of this paper. 

 

Stability towards chlorine exposure 

In addition to good separation properties, the durability of the membrane towards 

chlorine exposure is vital. For durability measurements, a gas tight glass chamber 
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was used.  From previous research it has been documented that the flux decreases to 

various extent when the surface modified membranes are exposed to chlorine [2-4]; 

this can be documented by measuring the nitrogen flux before and after exposure, as 

indicated in table 2. Table 2 is showing the permeability decay (PD) over time 

(equation 11); this is also plotted in figure 5. The nitrogen permeability decay [-] is 

calculated according to equation 11:  

, 2 _ exposure , 2 _ exposure2 2

, 2 _ exposure2

N Before Cl N after Cl

N Before Cl

P P
l l

P
l

PD −
=            (11)  

where (P/l)N2 is the permeance of nitrogen [10-9 mol/(m2 Pa s)] measured at 30°C and 

1 bar before and after chlorine exposure respectively. 

Table 2: Nitrogen permeability decay  (PD) as function of chlorine exposure time in glass membranes 

with  or without surface modification 

Type of glass 

membrane 

Cl2 Exposure time, 

t   

PD/ t 

[s-1]·105 

Pure Glass 1 (4nm)  1.3 hour 2.4

Pure Glass 2 (2nm) 1 hour -0.74

Glass fibre (~1nm)  26 hours 0.48

Glass 1 + C1  1 hour 3.2

Glass 1 + C12 5 hours 5.5

Glass 1 + C18  0.75 hour 8.0

Glass 1 + C18  14 days  0.080

Glass 1 + (C1+C18)  5.3 hours 3.10

Glass 1 + (C1+C18)  5 days  0.13

Glass 1 + Pf-C10    42 days  0.0026

Glass 2 + Pf-C10    63 days  0.0036

C1 to C18 is an abbreviation for the acyl length of the surface modifying silane used 

Pf as a prescript indicates that the compound in perfluorinated. 

 

It is quite obvious from these results that the perfluorinated compounds are very 

stable as they hardly show any decay. It was also documented that the original 
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permeance could be completely restored by regeneration with nitrogen at higher 

temperature when perfluorinated compounds were used for surface modification. 

This was also found to be true for the pure unmodified glasses (glass 1 and 2). The 

difference between performing regeneration or not for the pure glasses is illustrated 

in table 2:  The negative value for the decay of the pure “Glass 2”, Table 2, is 

explained by the fact that this particular membrane was exposed to higher 

temperature with nitrogen regeneration before the reported measurements in the 

table. Hence, the glass membrane was very efficiently regenerated, and the 

permeability for nitrogen actually increased after the treatment; a negative PD value 

was registered.  Regeneration was not performed with “Glass 1” or the fibre, hence a 

decay is registered – some chlorine is most likely strongly adsorbed on the pore wall, 

and restricts the nitrogen permeance.  None of the acyl surface modified membranes 

regained performance after regeneration, here permanent changes due to chlorination 

had obviously occurred. Details in table 2 are depicted in figure 5 for the surface 

modified glasses.  Figure 5 illustrates that the decay in permeance is slowing down 

with increased chlorine exposure time. This is according to what should be expected 

as the reaction goes towards complete chlorination of the surface modifying agents 

(see Introduction). In figure 5 the most stable membranes are the ones closest to the 

bottom right corner. 
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Figure 5: The average permeability decay for nitrogen after chlorine exposure as a function of the 

exposure time. 

 

As can be seen from table 2 or figure 5, the C18 modified glass membrane is unstable 

towards chlorine exposure. Even after prolonged chlorine exposure tests the 

permeability decay is still significant.  A combination of UV radiation and chlorine 
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gas exposure was tested both for C1 and C18 modified membranes as a method of 

speeding up the chlorination reaction, and make the membranes stable much faster - 

results are reported in table 3.  

Comparing with the decay in table 2, the following may be observed: Chlorination of 

membrane with C1 is slightly slowed down, but the chlorination of the C1 

component is not enough to block the pore and only minor changes in the perm-

selectivity is observed from 1 – 6 hours exposure. For glass membranes modified 

with C18 it seems like the chlorination works in two steps:  The short UV exposure 

(10 minutes) causes some of the surface modifying compound to be chlorinated, and 

it is believed that these chlorinated points act like “anchors” (obstacles) for the 

surface flow layer, thus effectively stopping the SSF contribution to the total 

transport.  The permeance for chlorine goes down while nitrogen more efficiently 

goes through, and a negative decay (-1.84) is registered together with a major 

decrease in selectivity (1.3). As the reaction time is increased, the chlorination will 

effectively clog the pores, and thus decreasing the Knudsen flow contribution to the 

total transport.  This is seen as a very low chlorine permeance and large permeability 

decay, simultaneously.  

Although not yet exclusively proven, a chlorination substitution reaction of the 

hydrogen (or the end-methyl group) in the C18 surface modification, is believed to 

take place during the chlorine exposure.  (Examples of different types of attack points 

for the chlorine substitution are indicated as underlined atoms or groups in figure 1b). 
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Table 3: Results of the combined chlorine and UV-exposures. 

Modification Reactio

n time 

PD/t  

[s-1]·10-5 

Chlorine permeance * 

[10-9 mol/(m2 Pa s)] 

Selectivity Cl2/N2   

(after reaction) 

C18 6 hours 2.23 0.00760 0.27 

C18 (Low 

surface 

coverage) 

6 hours 4.20 0.000621 0.005 

C18 10 

minutes 

-1.84 0.038 1.3 

C1 1 hour 0.93 8.58 2.7 

C1 6 hours 0.77 7.64 2.9 

* The chlorine permeance is evaluated at the end of the combined UV- and chlorine 

exposure, after the UV – source was turned off. 

 
C1 to C18 is an abbreviation for the acyl length of the surface modifying silane used  
 

Some data on HCl-H2 separation 

For comparison, three glass membranes (C18, Pf-C10(Glass 2) and fibre) were also 

tested for the gas pair HCl –H2. The initial pure gas permeabilities were measured 

and durability tests performed (see table 4 for results).  For the C18 and Pf-C10(glass 

2) it was assumed that HCl would permeate according to selective surface flow, and 

H2 according to Knudsen diffusion. HCl is a significantly smaller molecule than Cl2 

(table1), and will not to the same extent be able to prevent the very small H2 

molecule from permeating.  The fibres were expected to be separating according to a 

molecular sieving mechanism. The resulting selectivities are low, and being in favour 

of H2 both in the Pf-C10(glass 2) and the fibre (αH2/HCl ~ 1.4 and 42 respectively), 

while the C18 membrane is HCl selective (αHCl/H2 = 5.9).  The pores in Pf-

C10(glass2) are obviously too large for a separation in favour of HCl. 

As table 4 indicates only initial exposure tests were performed on the Pf-C10 (glass 

2).  However, it is quite clear that the perfluorinated compound and the glass fibres 
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are stable, while the C18 is showing decay when exposed to yet another aggressive 

gas.  A perfluorinated surface modification compound with longer chain, would be 

expected to show better performance.  With respect to the registered negative 

permeation decay for PF-C10 (glass 2) shown in table 4, this membrane was 

regenerated after exposure and before last measurements, hence a negative value is 

obtained.  As discussed for pure glass (table 2), permeance may easily be recovered 

for the perfluorinated membranes by regeneration. Small changes in permeance are 

believed to be caused by some sorption of molecules to the pore walls which can 

easily be removed. The fibres were not regenerated, and are showing a small decay. 

  
Table 4: Permeability, selectivity and stability measurements in glass membranes for HCl – H2 

separation 

Membrane type HCl permeance 

[10-9 mol /(m2 Pa s)]· 

H2/HCl 

selectivity 

PD/t [s-1]·105 § 

C18 2.82 0.17 4.3 

Pf-C10 (glass 2) 1.85 1.4 -0.63* 

Fibre 0.00753# > 42 0.16 

* This membrane was regenerated after exposure 
§ According to eq. 11 
# This membrane is clearly HCl retaining and the measured permeance is at the 

detection limit of the permeance cabinet, this means that the reversed selectivity (H2/ 

HCl) is most likely higher than reported here (42) 

 

  

Conclusion 
The Pf-C10 modified membrane has so far been documented to show the best 

performance; all aspects considered.  A perfluorinated surface modifying compound 

with longer (branched) chain, is expected to increase the performance (Cl2 flux and 

selectivity). The highest obtained chlorine flux with the tubular C18 surface modified 

glass membrane (diameter 5mm, wall thickness 0.5mm) was 6.86 [10-9 mol/(m2 Pa 

s)], and Cl2/N2 selectivity 11. Diameter and thickness can according to the producer 

be reduced to 0.2 mm inner diameter and a wall thickness of 0.03 mm.  This will 

increase the flux about 17 times compared to the values reported, and hence reduce 
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required membrane area significantly. Somewhat lower flux and selectivity was 

obtained for the stable perfluorinated (Pf-C10) membrane. This compound has 

however shorter acyl length, thus the results are in agreement with what could be 

expected.  Comparing with the goals set for an industrial membrane (flux 170 [10-9 

mol/(m2 Pa s)] and Cl2/O2 selectivity 20), the goals are judged to be within reach. 

The fibres are not yet sufficiently tested for long term stability, but they are very 

interesting candidates for chlorine / air separation due to their potential for molecular 

sieving separation.  The greatest advantage of the fibres would be the very high 

packing density (membrane area / module volume).  Pure gas permeance 

measurements using the fibres in the HCl-H2 separation indicate a selectivity of in 

favour of H2 which is considered to be rather low.  Pore tailoring of the microporous 

glass membrane by using longer chain perfluorinated compounds may increase 

selectivity and flux in favour of H2.   
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Appendix 2 Reprint of article no.2 

Glass membranes for purification of aggressive gases.  

Part II: Adsorption measurements and Diffusion coefficient 

estimations.  
Arne Lindbråthen and May-Britt Hägg* 

Norwegian University of Science and Technology, NTNU 

Department of Chemical Engineering 

N-7491 Trondheim, Norway. 

 

Abstract 
In the article part I of this work durability and separation properties for several types 
of glass membranes in aggressive gas environment have been evaluated. A surface 
modified glass membrane (modified with (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) 
dimethyl chlorosilane, Pf-C10),  proved to be the best choice with respect to stability, 
permeability and selectivity.  For a better understanding of the gas separation taking 
place according to the governing mechanism, selective surface flow, the sorption and 
diffusion coefficients were investigated more closely. This is reported in the current 
paper for the gases Cl2, HCl, R22 (CHF2Cl), He, H2, N2, CO, O2, Xe, SF6 and CO2. 
Temperature and pressure range focused on were 1 – 4 bar and 30°C–45°C 
respectively, as these ranges were judged to be most interesting with respect to 
possible changes in the transport through the Pt-C10 surface modified glass 
membrane. The degree of selective surface flow, SSF, relative to the Knudsen flow is 
also discussed in this work.  When plotting the sorption coefficient vs. degree of SSF, 
there seems to be two distinct patterns:  The Cl2, HCl and R22 (all containing 
chlorine and have high critical temperatures) are described by exceptionally high 
sorption coefficients, while the other gases are best described by an exponential fit.   
The heat of adsorption for Cl2 and HCl was found to be comparable to the heat of 
condensation at the same pressure. It was assumed that the adsorption of these gases 
corresponds to the proposed “sliding liquid layer” flow described in literature, while 
the exponential behaviour of the other gases correspond to the “site to site hopping” 
or 2-D gas flow.  
 

Keywords: Glass membrane; Adsorption; Cl2; HCl; Surface diffusion. 
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Introduction 
In the current work, aggressive gases refer to chlorine (Cl2) and hydrogen chloride 

(HCl). As chlorine is an important chemical within very many industrial processes, it 

would be of great interest to develop a high performance, durable membrane for 

chlorine gas separation. This has also been the focus over many years for the research 

performed in Norway by Hägg et al. [1-3]. Based on the reported findings, the most 

stable membrane material was found to be glass membranes, surface modified with 

perfluorinated compounds. The optimisation of separation properties by pore 

tailoring of the glass membranes is reported in Part I of this article [4]. A thorough 

understanding of the transport mechanisms governing the separation of Cl2 and HCl 

in mixtures with more inert gases, were judged to be crucial for an optimised pore 

tailoring of the surface modified glass membranes – details around the transport 

mechanisms are therefore discussed in the current paper. Chlorine has the main focus 

in both articles, but aspects of the HCl separation are also discussed. A perfluorinated 

(Pf-C10) surface modified glass membrane is investigated in detail for the transport 

mechanisms. Pf-C10 is used as an acronym for the surface modifying compound 

(Heptadecafluoro-1,1,2,2-tetrahydrodecyl) dimethyl chlorosilane. Adsorption 

measurements have been performed, and diffusion coefficients estimated for the 

gases Cl2, HCl, R22 (CHF2Cl), He, H2, N2, CO, O2, Xe, SF6 and CO2 in the 

membrane. 

 

Transport mechanisms 

 
Three families of glass membranes were investigated in the current work: pure glass 

tubes, surface modified glass tubes and a hollow glass fibre; all of them reported for 

separation properties and durability in Part I of the article [4]. Only the most 

favourable perfluorinated (Pf-C10) surface modified glass membrane was 

investigated with respect to governing transport mechanisms; results are reported in 

the current article. This glass membrane has an average pore size distribution   1 nm 

when it is surface modified (based on a pure glass membrane with pore size ~2nm). 

The average pore distribution is important since it gives an indication of which 

transport mechanism can be expected to be dominant for the gas mixture. The most 

probable transport mechanisms in our glass membranes were thus Knudsen diffusion 
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and/or selective surface diffusion. These mechanisms are briefly characterised as 

follows: 

 Knudsen diffusion; the square root of the ratio of the molecular weights will give 

the separation factor. 

 Selective surface diffusion (or flow; SSF); governed by a selective adsorption of 

the larger (non-ideal) components on the pore surface. For a mixed gas an 

additional increase in selectivity may be achieved if the adsorbed monolayer 

covering the internal pore walls restricts the free pore so the smaller non-adsorbed 

molecules cannot pass through. 

The Knudsen diffusion is discussed in detail in part I and will not be covered here 

[4].  The various theories of surface diffusion are however of major interest, and are 

therefore also the focus for the current article. When process parameters like pressure 

and temperature are varying, a transition region may be observed between Knudsen 

flow and surface diffusion; hence a major change in separation properties may result. 

Surface diffusion 

The mechanism of surface diffusion is disputed and several different approaches have 

been proposed in the literature. Theories ranging from viewing the low surface 

coverage adsorbed gas as a 2D gas, through a hopping model into a more "liquid 

like" sliding layer theory exists. Which of the mechanism that is dominating the 

surface diffusion coefficient will be influenced by a number of factors, such as 

homogeneity of the surface, the temperature vs. the adsorption enthalpy and the 

surface concentration, cs.[5]. 

All three regimes can be described by a 2D analogue of Fick's law (given here for a 

single component): 

,
s

x s s
dcJ D
dx

=−      (1) 

Where Jx,s= is the flux (evaluated as molecules crossing a hypothetical line in the 

surface perpendicular to the direction x) [mol/(m s)], Ds is the surface diffusion 

coefficient [m2/s] and dcs/dx is the surface concentration gradient in the x-direction 

[mol /(m2·m)]. 

The following expression may be used to determine if the surface transport is 

dominated by the 2D-gas model: 
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/ 1/q RT a<       (2) 

Where q is the adsorption enthalpy [J/mol] and a is an energy fraction factor.  The 

factor a can be interpreted as the fraction of the adsorption energy required to loosen 

a molecule from its adsorption site.  The energy barrier for surface migration, E, is 

then defined as: 

E a q=      (3) 

The 2D-gas is characterised by a surface mean free path (or interparticle distance), λs, 

inversely proportional to the surface concentration, cs, and this λs value can be much 

larger than the spacing between adjacent surface sites. 

If the q/RT part of eq. (3.7) is increased then λs will no longer be controlled by 

collisions between adsorbed molecules. As q/RT increases, λs decreases and 

approaches the spacing between adjacent sites, and a hopping mechanism is 

observed.  If the cs is low then a random walk diffusion of independent molecules can 

be expected and the Ds will be given as: 

21
4s sD νλ=      (4) 

Where ν is a jump frequency factor (This factor has a temperature dependence 

according to Arrhenius law, ν=ν0·exp(-aq/(RT)) [1/s]). 

When cs is increased the chance of a molecule hitting another molecule increases and 

this interaction will bear some similarity to diffusion in liquid.  Thus, the region of 

the sliding layer prevails.  In this region the gas is condensed into a thin 2D liquid 

layer on the surface and the property of this layer approach those found in the 

corresponding “3D liquid”. 

The size and critical temperature of the gases in the mixture is a measure of how 

easily they condense on the pore wall and they can diffuse through the membrane 

according to a selective surface flow mechanism. For reference on the data for gases 

examined, please refer to Table 1  
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Table1: Some physical properties for the gases tested [6,7] 

Gas L-J diameter,σ [Å] MA [g/mol] PCrit [Bar] TCrit [K] 

Cl2 4.22 70.9 77.1 417 

R22 - 86.5 49.7 396 

HCl 3.34 36.5 83.2 325 

SF6 5.13 146 37.6 318 

CO2 3.94 44.0 73.8 304 

Xe 4.04 131 58.8 290 

CO 3.69 28.0 35.0 133 

O2 3.47 32.0 50.8 155 

N2 3.79 28.0 33.9 126 

H2 2.82 2.02 13.0 33.3 

He 2.55 4.00  5.30 

 

Combined mass transfer 

The process conditions for separation (pressure, temperature) as well as membrane 

pore size, and physical properties of the gases may influence which flow regime is 

governing the gas separation. It is assumed that the selective surface flow (SSF) and 

the Knudsen flow are additive in the glass membrane. Using helium as a reference 

and assuming that helium is solely transported by Knudsen flow, hence the following 

expression may be derived: 

, , ,,
, , , ,

, , ,

,, ,

, , ,

1

Kn i ssf i ssf iTot i
Tot i He kn i He
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−
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=
   (5) 

where J is the flux [mol/(m2 s)], αKn,i,j is the selectivity based on the Knudsen flow [-] 

and αTot,i,j is the total selectivity [-]. From the general Knudsen transport mechanism 

theory the αKn,i,j is given as the square root of the inverse ratio of the molecular 

weights. This means that based on the assumptions above, an expression can be 

derived for the degree of contribution from SSF to the overall transport: 
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, /

2 1/
1 i

i
tot i He

M
ψ

α
−
i

=       (6) 

Where ψ is the degree of SSF which is equal to JSSF,i/JTot,i [-] and Mi is the molar 

mass of the gas i [g/mol]. 

 

Experimental 
Permeance measurements. 

A closed experimental set-up for measurements of the poisonous and aggressive 

gases was used.  Permeance was measured as pressure increase on the permeate side 

of the membrane.  These measurements are described in detail in Part I of the paper. 

Adsorption measurements 

The adsorption tests were performed in a single chamber (volumetric) set-up as 

indicated in figure 1. 

Sample
chamber

V1

V2

V3V4

V5

Vacuum
pump

Gas
supply

TC

PAbs

HP

PAbs

LP

 

Figure 1: Flow scheme of the apparatus for the adsorption measurements. 

 

For the adsorption measurements some important factors were considered: 

 The volume of the sample cell, the pressure transducer, the tubes and valves were 

carefully volume calibrated. (see explanation in the following paragraph ) 

 The pressure transducer was kept inside the temperature-regulated chamber to 

minimize temperature gradients. 
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 The valve tagged as V4 in figure 1 must be of very high quality.  Any leakage on 

V4 can erroneously be interpreted as adsorption. 

 The amount of sample used was adjusted in relation to the cell volume, so that the 

resulting pressure decrease from the adsorption could be accurately detected with 

the pressure transducer.   

 Sufficient desorption time was always applied, i.e. the evacuation time was as a 

rule of thumb at least twice the time it took to obtain stable adsorption 

measurement. 

 

Volume calibration 

The volumes of the empty sample chamber (vol 3) and the vis-à-vis tubing (the 

volumes of the tubing between valve 4 and 5 in figure 1(vol 2) including the internal 

volumes of those valves (when closed) were carefully volume calibrated in order to 

obtain stable sorption values. The remaining volume, (vol 1) consists of all pipes, 

valves and the low-pressure transducer between the valves V1, V2 and V4    

The volume calibration was performed as follows: 

 With all valves open, the apparatus was evacuated over-night,   

 V2 was closed and the system filled with helium of ca.10mbar. 

 V1 was closed and the established pressure was accurately measured (with Pabs,LP), 

and was denoted pstart.   

 Valves V4 and V5 were then closed, while V2 and V3 were open, hence vol3 

could be evacuated. V2 was closed; the resulting low pressure recorded (pevac).   

 Valve V4 was opened, and a new stable pressure recorded (p1).   

 ValveV5 was opened, and a new stable pressure, (p2), recorded.   

By applying the ideal gas law, it was then possible to calculate the ratios between the 

various volumes.  The ratio between vol1 and vol2 is given by the expression: 

1

1

1
2

start

evac

p pvol
vol p p

−
=

−
     (7) 

The ratio between vol3 and vol2+ vol1 is calculated in a similar way: 

2

2 1

3
2 1

statp pvol
vol vol p p

−
=

+ −
    (8) 

This allows the ratios of all the volumes to be calculated, but an additional known 

volume is needed to calculate the absolute volumes.  This was done by inserting two 
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calibration spheres (known volume of 2.1544 cm3) into the sample chamber.  Then 

the volume of the sample chamber could be determined from the following equation: 

,3 2(1 )
2 '

cal sphereV
vol R

R

=
−

     (9) 

Where R2 and R2’ are the volume ratio without and with the calibration sphere, 

respectively. 

 

Adsorption isotherms 

The system (with the membrane sample in the chamber) was evacuated overnight 

prior to each test.  The tests were performed in the pressure range of 1 – 4 bars, and 

temperature range 30°C - 45  C. From previous documentation [4] these regions were 

found to be most interesting with respect to possible changes in transport.  

The adsorption isotherms (figure 3 and 5) were obtained by starting the 

measurements at lowest sorption pressure (here 0.1 bar), and adding new points for 

each chosen pressure increase up to 4 bars. The chamber (with membrane sample) 

was then evacuated for at least two days.  This evacuation was very important for two 

reasons: 1) The error of measurement is propagated during the measurement of 

series, hence it is important to reinitialise the system conditions.  2) In order to 

determine the exact pressure starting point for adsorption (i.e. the pressure calculated 

from the flash into the chamber) the pressure transducer output must be readjusted to 

zero. Two adsorption experiments were carried out for this purpose only, and this is 

shown as   bullet points on the adsorption curves in figures 3 and 5.  The desorption 

curve was obtained by starting at the highest pressure and then reducing the pressure 

at chosen intervals. 

 

Diffusion coefficient estimation. 

Estimations of the total diffusion coefficient can be obtained by two methods:  

1) The diffusion can be found by the following well known equation [8]: 

 P D S⋅=  (10) 

where P= permeability [mol·m/(m2 Pa s)], D is the diffusion coefficient [m2/s] and S 

is the sorption coefficient [mol/(m3 Pa)]. Thus the diffusion coefficient can be 

calculated as the ratio between P and S at a given pressure and temperature. 
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2) The diffusion can be estimated from the time-lag in the start of the gas permeation 

measurement.  Figure 2 gives a brief sketch of how this is done [8]. The θ-value 

obtained from the plot, relates to the diffusion according to equation 11 [8]: 

 
2

6
l
D

θ =  (11) 

where θ is the time-lag [s] and l is the membrane thickness [m]. 

 

Transient state Steady state

t

Qt/
(l·c)

0  
Figure 2: Time-lag measurements in gas permeation measurements [8]. (where Qt/(l·c) is the amount 

of penetrant passing through the membrane divided by the product of the membrane thickness and 

feedside concentration) 

 

Results and discussion 
Based on the findings in part I of this work [4] the perfluorinated (2 nm base) surface 

modified glass membrane was found to exhibit the best combination of performance 

and stability. Further optimisation based on perfluorinated compounds for surface 

modifications is however needed. Adsorption tests were performed with the above 

mentioned membrane to fully understand the SSF-mechanism. 



Glass membranes for purification of aggressive gases 

 

31 

 

Chlorine adsorption measurements 
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Figure 3: Adsorption and desorption isotherm (30°C) on a surface modified (Pf-C10, 2nm) glass 

membrane for chlorine as a function of the pressure. 

 

The adsorption of chlorine was measured at 30°C; results are shown in figure 3. 

The adsorption and desorption curve in this figure show an increasing deviation as 

the pressure is lowered.  This behaviour was documented by repeated experiments. 

The explanation for this deviation is most likely that the surface has preferred 

sorption sites, and that chlorine molecules at low pressure adsorb to sites with the 

deepest potentials.  This is known as “localized adsorption” [9].  During the 

desorption process, the sites associated to the shallowest surface potential will empty 

first leading to a progressively more energy demanding desorption.  By additional 

experiments at temperatures from 30° to 45°C at 1.2 bars, the heat of adsorption (Ea) 

was found to be 22.7 kJ/mol (documented in figure 4, and calculated from eq.12): 

0( )
aE

RTad T A e⋅=      (12) 
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Figure 4: Arrhenius plot of the temperature dependence for chlorine adsorption on a surface modified 

(Pf-C10, 2nm) glass membrane, measured at 1.2 bar. 

 

From the least squares linear fit (figure 4), Ea/R=2734 (see eq. 12) rearranges to yield 

Ea = 22.7 kJ/mol.  Thus the best fit of the temperature dependence of the chlorine 

adsorption yield the following equation (where ad(T) stands for adsorption):  
22700

8( ) 2.75 10 RTad T e−⋅ i=      (13) 

This equation has a regression coefficient as high as 0.986 which is very high 

compared to the expected experimental deviation that can be estimated to be 

approximately 10% [1]. These results are in good agreement with the tabulated heat 

of condensation for chlorine which is given as 20.4kJ/mol at 1 bar [6]. 

 

Hydrogen chloride adsorption 

 

The corresponding measurements for HCl at 30°C are given in figure 5. 
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Figure 5: Adsorption and desorption isotherm (30°C) on a surface modified (Pf-C10, 2nm)  glass 

membrane for HCl as a function of the pressure. 

 

Figure 5 demonstrates that the adsorption and desorption curve coincide for all the 

measured pressures of HCl. It is believed that there is no sorption site association   

present for the polar HCl gas on the polar glass surface; and this is known as 

“delocalized adsorption” [9].  The heat of adsorption, Ea, for HCl on the Pf-C10 

surface modified glass membrane, was measured to 14.5 kJ/mol, calculated from the 

values indicated in figure 5, and in the same way as for chlorine (Arrhenius plot).  
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Figure 6: An Arrhenius plot of temperature dependence for the HCl adsorption a surface modified (Pf-

C10, 2nm) glass membrane 

 

According to figure 6 the following temperature dependence for the HCl adsorption 

was determined: 
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14500
7( ) 6.25 10 RTad T e−⋅ i=      (14) 

 

The adsorption enthalpy is 14.5 kJ/mol, which is in fair agreement with tabulated 

heat of condensation for hydrogen chloride at 1 bar (17.6 kJ/mol) [6]. 

 

 

Adsorption as a function of the degree of selective surface flow 

Figure 7 is showing measured adsorption in the Pf-C10 surface modified glass 

membrane for some gases as function of degree of SSF (ψ) to overall transport.  

Equation 6 is applied in order to calculate ψ from data listed in table 2.   

 
Table 2: Permeances, selectivities and molar masses for pure gases measured on a surface modified 

(Pf-C10, 2nm)  glass membrane. 

Gas type  Permeance 

109[mol/(m2 Pa s)] 

Selectivity [-] 

Helium reference 

Molar 

masses 

[g/mol] 

Adsorption 

[µmol/g] 

N2 1.08 0.546 28.0 4.35 

O2 1.30 0.656 32.0 8.56 

He 1.98 1   4.00 0 

HCl 3.97 2.00 36.5 273 

Cl2 5.07 2.56 70.9 261 

Xe 1.32 0.669 131 22.5 

CO2 3.01 1.55 44.0 60.7 

H2 2.80 1.42 2.02 0.509 

SF6 1.39 0.701 146 34.9 

CO 1.10 0.557 28.0 4.33 

R22 

(CHF2Cl) 

3.89 1.97 86.5 198 
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Figure 7:  Adsorption as a function of the degree of SSF (ψi). 

 

By a closer inspection of figure 7 two phenomena seem to be present simultaneously: 

There is a slight curvature trend of the gases: H2, N2, O2, Xe, CO, CO2, SF6;, these are 

gases with a ψi value lower than ~ 0.8. An exponential fit was assumed for these 

gases, and the corresponding least square fit is given in figure 8.  
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Figure 8: Least square fit (exponential) for gases with ψi  < 0.8 (from figure 7). 

 

Figure 8 indicates that the assumption of an exponential behaviour seems to be very 

good.  Thus from the least square fit in figure 8 the relationship is given in equation 

15: 

 ( )5.34940.65·ad e ψi=  (15) 

Cl2, HCl, R22 are clustering in the upper right corner of the diagram, and having a ψ 

value exceeding ~0.8.  If an average adsorption value for these three gases is 

calculated, it is found that: 
____

( 2, , 22) 244ad Cl HCl R = [μmol/g] and a corresponding 

average ψ-value of 0.877.   

If the average ψ-value is substituted into equation 15, the resulting ad of 70[μmol/g] 

clearly indicates that Cl2, HCl, R22 are adsorbing according to another mechanism 

than the other gases. 

An explanation of the two different adsorption modes vs. the degrees of SSF (ψ), may 

be that Cl2, HCl and R22 experience so strong interactions with the membrane that 

these gases are condensing on the pore surface and thus follows the "sliding layer " 

mode. (Note; they all contain chlorine.) This is further supported by the fair 

agreement between measured heat of adsorption and heat of condensation.  
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The other gases are assumed to have less interaction with the pore surface, and are 

thus transported by the 2D- gas and / or the hopping mode. 

 

Diffusion coefficient determinations 

Figure 9 gives a comparison of the diffusion coefficient obtained by the time-lag 

method (eq.10) vs. the calculated diffusion from the P/S ratio (eq.11).  
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Figure 9: Comparison of diffusion coefficients obtained by the time lag vs. the P/S-ratio methods. 

 

Initially one would expect the values obtained for the diffusion coefficient to be the 

same regardless of measuring method, thus the function of the regression line should 

be y = x.  It can however be seen from the figure 9, that the diffusion coefficient 

calculated from P/S is consistently twice the value of those from timelag 

experiments. The reason for the discrepancy between the two values is difficult to 

explain. However, it should be noted that D from P/S is calculated at 1 bar from 

measured permeability and sorption values, while D from the time-lag is estimated 

from the low-pressure side in the permeance apparatus. The “time-lag D” may 

possibly be considered as an average diffusion coefficient through the membrane at 

the measured pressure difference (here the average ∆p over the membrane is 0.5 bar).  
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Conclusion 
The best surface modifying agent identified in part I of this work was the 

perfluorinated C10 modification.  This paper has focused on if adsorption 

measurements could be used to predict the degree of selective surface diffusion in the 

surface modified glass membrane, and if so, be a tool for predicting separation 

properties of specific gas mixtures.  

A comparison of the adsorption isotherms measured for HCl and Cl2 indicates that 

these to gases seem to have different surface adsorption mechanisms.  Cl2 seems to 

obey a localized sorption site mechanism, while the HCl adsorbs according to a 

delocalized sorption mechanism.  Heat of adsorption measurements indicate that both 

chlorine and hydrogen chloride are in a “liquid like” state on the surface, since the 

heat of adsorption is comparable to tabulated heats of condensation for pure 

compound at the same pressure. The localized / delocalized sorption for Cl2 and HCl 

respectively, will explain a difference in need for regeneration of the membrane when 

these two gases are considered. 

If the adsorption is plotted vs. the degree of SSF (ψ) two distinct dependencies 

emerge: The adsorption of H2, N2, O2, Xe, CO, CO2, SF6 were found to be 

exponential with ψ. The Cl2, HCl and R22 adsorption is 3.4 times higher than what 

could be estimated from an exponential behaviour, thus the Cl2, HCl and R22 are 

clearly adsorbed by a different mechanism than the other gases. This dual nature 

might be explained according to the three modes of SSF described in the literature: 1) 

The liquid like sliding layer mode, 2) the site-to-site hopping mode and 3) the 2-D 

gas mode.  Thus the Cl2, HCl and R22 is transported according to the liquid sliding 

layer mode, while the other gases are transported according to the site to site hopping 

or 2-D gas mode.  

Values for the diffusion coefficient show a good consistence between the two 

methods used for determination.  The deviation between the two methods is difficult 

to explain, but is believed to be due to the pressure differences in the methods. 
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Appendix 3 Permeance measurements 

3-1 Permeation equations. 

The high-pressure tank (on the feed side) and the low-pressure tank (on the permeate 

side) both have a volume of 1 dm3. The volumes of the tubes and valves connecting 

the pressure tanks and the volume of the membrane module are neglectable compared 

to the pressure tanks.  It is assumed that steady state permeation is achieved if 

constant gas pressures ph (the high pressure side) and pl (the low pressure side) are 

maintained at the membrane interface and that the driving force for the transport, ∆p 

= ph -pl, through the membrane is constant (i.e. ph=1 bar, pl=0.8·10-3 bar (vacuum) 

give ∆p=1 bar). The temperature is assumed constant inside the cabinet and measured 

by a temperature transducer.  Figure A.3-1 gives a principal sketch of a membrane 

connected to two equal volumes. 

V     T V     T

p1          n1 p2          n2

Mole flux

Chamber 1 Chamber 2
dn
dt

Membrane  
Figure A3-1: Principal sketch of a membrane permeation apparatus. 

 

Both chamber 1 (high pressure side) and chamber 2 (low pressure side) have a 

relatively low pressure (where p1 > p2), and the ideal gas law is used as an initial 

description the system. 

pV nRT=      (A3.1) 

Where: p = pressure [Pa], V= volume [m3], n = number of moles [mol], R = gas 

constant [8.314 J /(K mol)] and T = temperature [K] 
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When the ideal gas law is applied on chamber 2, with constant T and V, the change in 

numbers of mol of gas in chamber 2 with time, 2dn
dt

 is given as: 

dn
dt

V
RT

dp
dt

2 2=     (A.3.2) 

In permeance measurements it is custom to convert the mole change to a gas volume 

change given at standard pressure and temperature;  

Where: p0= 1.0133 bar (1 atm) is the standard pressure, and T0 =273.15 K (0°C) is the 

standard temperature. 

 

Ideal gas law is time derived, yielding; 

dt
dn

p
RT

dt
)n(dV , 2

0

0220 =       (A.3.3) 

Where: the subscript 0 indicates standard pressure and temperature conditions. 

The flux is described as a flow through a given permeation area by: 

J
dV n

dt A
= 0 2 1, ( )

     (A.3.4) 

Where: A= Membrane area [m2] 

The flux can also be modelled as: 

J P p p
l

P
l

pi
i h l i= − =( ) ∆      (A.3.5) 

This expression can be rearranged, yielding: 

P
l

J
p p

i =
−1 2

     (A.3.6) 

Combining equation 2, 3, 4 and 6 leads to the expression of the permeance P/l 

[m3(STP)/(m2 bar h)] as a function of the pressure change dp/dt: 

P
l A

VT
Tp p p

dp
dt

=
−

1 0

0 1 2

2

( )
    (A.3.7) 

If real gas behaviour is to be implemented, the pressure p1 has to be corrected (should 

use camber 1 fugacity instead).  This can be relatively easily done by implementing 

an appropriate equation of state like the viral equation.  However, brief estimations of 

the compressibility factor, Z, shows that the deviation from the ideal gas law is in the 

range of maximum 1%.  
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3-2 Matlab m-files. 

Permeance1.m: 
clear all 
 
%-------------------------------------------------- 
%  Input-values 
filpath=input('Give file name with path: ','s'); 
min=input('Give start time value: '); 
max=input('Give end time value: '); 
filnr=input('Which pressure sensor (1, 2 or 3): '); 
eval(['load ',filpath]); 
 
%-------------------------------------------------- 
% Saves filname as 'navn' 
PFlagg=0; 
N=length(filpath); 
for i=1:N, 
  if filpath(i)=='\' 
    PFlagg=i; 
  end; 
end; 
 
i=PFlagg+1; 
while i>0, 
  if filpath(i)=='.', i=0; 
  else 
    navn(i-PFlagg)=filpath(i); 
    i=i+1; 
  end; 
end; 
%-------------------------------------------------- 
% Calculations  
 
tid=0:1:(max-min);  %Creates a time vector step = 1sek, Hz=1 
 
eval(['tabell=(',navn,'((min):(max),filnr));';]); 
    %Stores data into a vector table 
 
tabell=1.*tabell;  %Transforming from volt into mbar 
    %(10mbar) 
 
 
%-------------------------------------------------- 
% Plot routine 
figure 
plot(tid,tabell); 
xlabel('sec'),ylabel('mbar'); 
 
title(navn); 
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Permeance2.m 
% Input values 
 
t1=input('Give start time for stable slope: '); 
t2=input('Give end time for stable slope: '); 
dim=input('Membrane diameter in cm: '); 
Temp=input('Give temperature in °C: '); 
 
 
 
 
%------------------------------------------------------- 
%  
 
eval(['tabell1=',navn,'((min):(max),2);']); 
trykk=tabell1(t1); 
trykk=trykk*0.5; %transforms the high pressure from volt to bara 
clear tabell1; 
 
 
 
 
 
%------------------------------------------------------- 
%  
[p,s]=polyfit(tid((t1+1):(t2+1))',tabell((t1+1):(t2+1)),1); 
avrund=polyval(p,tid((t1+1):(t2+1))); 
 
 
 
%dpdt=(tabell(t2+1)-tabell(t1+1))/(t2-t1); 
trykkl=tabell(t1+1)/1000;  %transforming mbar to bara 
%------------------------------------------------------- 
% Calculates the permeance from dp/dt 
%     
% -Transforms dp/dt from mbar per sec. to bar per hour 
%      by multiplying dpdt by 3600/1000 
dpdt=p(1,1); 
dpdt=3600/1000*dpdt; 
 
%     
%-PVol = nRT, 22.414*dn/dt = dV/dt = Vol/(RT)*22.414*dp/dt 
%dV/dt = konst/(T)*dpdt,konst = Vol*22.414/(R),Vol = 1 liter 
%konst = 0.001*22.414/0.08314 = 0.26959 
 
 
k=0.26959;    
A=(pi*dim*dim)/4*10^(-4);  % Area of the membrane 
 
PL=k*dpdt/(A*(trykk-trykkl)*(Temp+273.15))  ; 
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%------------------------------------------------------- 
% Places the figure caption 
x1=0.9*(max-min); 
y1=0.3*(tabell(max-min)-tabell(1))+tabell(1); 
yt=(y1-tabell(1)); 
x2=0.6*x1; 
y2=0.85*yt+tabell(1); 
y3=0.7*yt+tabell(1); 
y4=0.55*yt+tabell(1); 
y5=0.4*yt+tabell(1); 
 
%------------------------------------------------------- 
% Plot routine 
 
hold on; 
plot(tid((t1+1):(t2+1)),avrund,'r-') 
plot(t1,tabell(t1+1),'*',t2,tabell(t2+1),'*') 
text(x2,y1,'dpdt[mbar/s]='); 
text(x1,y1,num2str(dpdt)); 
text(x2,y2,'P/L[m^3/(m^2*bar*h)]='); 
text(x1,y2,num2str(PL)); 
text(x2,y3,'T(°C)='); 
text(x1,y3,num2str(Temp)); 
text(x2,y4,'D(cm)='); 
text(x1,y4,num2str(dim)); 
text(x2,y5,'Ph(bara)='); 
text(x1,y5,num2str(trykk)); 
hold off 
 
 
 
 
 
Permeance3.m 
 
%This script calculates the time-lag in the start of an ordinary permeation curve. 
t3=input('Give start time for stable base line: '); 
t4=input('Give end time for stable base line: '); 
[p2,s2]=polyfit(tid((t3+1):(t4+1))',tabell((t3+1):(t4+1)),1); 
baseline=polyval(p2,tid((t3+1):(t2+1))); 
avrund=polyval(p,tid((t3+1):(t2+1))); 
 
%calculation of intersection point. 
cross=(p2(1,2)-p(1,2))/(p(1,1)-p2(1,1)) 
 
hold on; 
plot(tid((t3+1):(t2+1)),avrund,'g--') 
plot(tid((t3+1):(t2+1)),baseline,'b-.') 
hold off; 
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3-3 Equipment accuracy 

In the permeability measurements, a MKS Instrument type 626A(0-10 mbar) pressure 

transducer was used on the low pressure side.  The accuracy of this transducer is 

0.15% of the measured value. On the high-pressure side, a MKS Instrument (type 

121A(0-5000 mbar)) pressure transducer with an accuracy of 0.5 % of measured 

value was used.  

The effect of variations in the temperature is estimated to be 0.3 % based on given 

accuracy for the temperature controller.   

As discussed in previous section, the deviation from ideal gas law is inducing an 

error in the order of 1 % depending on which gas measured ( and temperature and 

pressure of that gas). 

 

The main error in the calculated permeabilities is caused by variations in the 

thickness of the membrane and not by the system or permeation procedures.  

The thicknesses used for calculating the permeabilities i.e. in the Robeson plots are 

simply the average thickness stated by our Japanese research associate. Since the 

glass tubes are hand drawn, they are estimated to have a relative uncertainty of ±5% 

in the thickness. 

For the fibres, the estimation of the relative accuracy is harder, since no data are 

known for the thickness variation: However, the mounting is difficult for the fibres 

and this is believed to be causing the largest uncertainty for these measurements. 
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Appendix 4 Adsorption apparatus 

4-1 Volume calibration of sorption apparatus 

The volumes of the empty sample chamber and the vis-à-vis piping have to be 

carefully volume calibrated in order to obtain stable sorption values.  The volume 

calibration was performed as follows: 

The apparatus was evacuated over-night, and then filled with ca.10mbar of helium 

and this pressure is called Pstart.  Figure A4.1 gives a principal sketch of the three 

volumes of the apparatus needed to be volume calibrated: 

 

 

Figure A4-1: Volumes calibrated in the adsorption equipment. 

 

All valves are then closed and V2 and V3 are opened and vol 1 is evacuated, the 

resulting low pressure is then recorded and called pvak.  Valve V4 is opened and the 

new stable pressure recorded as p1.  By opening the valve (V5) the pressure p2, is 

recorded.  By applying the ideal gas law, it is possible to calculate the ratios between 

the various volumes.  The ratio between vol 1 and vol 2 is given by the expression: 

 

1

1

1
2

stat

vak

p pvol
vol p p

−
=

−
     (A4-1) 

The ratio between vol 3 and vol 2+ vol 1 is calculated in a similar way: 

 

2

2 1

2 1
3

statp pvol vol
vol p p

−+
=

−
    (A4-2) 
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This allows the ratios of all the volumes to be calculated, but an additional known 

volume is needed to calculate the volumes absolutely.  This can be done by inserting 

two calibration spheres (known volume of 2.1544 cm3) into the sample cell.  Then the 

volume of the sample cell can be determined from the following equation: 

,3 2(1 )
2 '

cal sphereV
vol R

R

=
−

     (A4-3) 

Where R2 and R2’ are the volume ratio without and with the calibration sphere, 

respectively. 

 

4-2 Sorption measurement 

In determining the adsorption, the important parts of the equipment are the sample 

chamber and the vis-à-vis piping with the pressure transducer.  These parts are 

sketched in figure A4-2 

Figure A4-2: The sample chamber and the vis-à-vis piping of the sorption apparatus 

 

The sorption can be calculated if the volume of the membrane sample is known, and 

the equipment can easily be used as a pycnometer if flashed with helium.  The sample 

volume can in that case be calculated by equation 3 (applying the new volume ratio 

and Vmembrane substituted for Vcal, sphere). 

 

The sample was evacuated at least overnight prior to each test.  The maximum 

pressure test available in the set-up is a consequence of the pressure range of the 

pressure transducer. The flash resulting from having the sample chamber evacuated 

PT

Sample chamber

Membrane

Pressure
transducer

Valve 1 Valve 2
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and the vis-à-vis volume (the volume of the tube, including the pressure transducer 

between Valve 1 and Valve 2 in figure A4-2) at maximum detectable pressure gives a 

maximum test pressure of approximately 50 % of the maximum pressure.  In the 

current set-up, this means that 3 bar is the maximum test pressure (in one single 

flash).  The principle of calculating the sorption is to divide the calculation into two 

successive steps:  First step is to calculate the “ideal” flash, treating the membrane as 

an inert body occupying a given volume.  Second step is to calculate the sorption 

from the change in the total pressure as the pressure stabilises at a new level.  In more 

detail: 

Before valve 1 is opened, the following situation applies: 

 (( ) )sc mem vac V A V feed
tot

V V P V Pn RT
− −− ⋅ + ⋅

=  (A4-4) 

Where: ntot = total number of moles [mol], Vsc = volume of empty sample chamber 

[cm3], Vmem is the volume of the membrane sample [cm3], VV-A-V is the volume of the 

piping and the pressure transducer [cm3], Pvac is the vacuum pressure [bar] , Pfeed is 

the applied pressure of the measuring gas [bar], T = temperature [K] and R is the gas 

constant [8.314 J/(K mol)] 

Then as valve 1 is opened, but “before” any adsorption takes place the total number 

of moles is preserved: 

(( ) )sc mem V A V Flash
tot

V V V Pn RT
− −− + ⋅=    (A4-5) 

Thus by combining equation 4 and 5, the following expression for the flash pressure, 

Pflash, is obtained:  

(( ) )
(( ) )

sc mem vac V A V feed
Flash

sc mem V A V

V V P V P
P

V V V
− −

− −

− ⋅ + ⋅
=

− +
   (A4-6) 

The end pressure is determined from the pressure transducer log file (evaluated by a 

Matlab script), and the adsorption is then calculated from this pressure difference: 

(( ) ) ( )sc mem V A V Flash End
ads

V V V P Pn RT
− −− + ⋅ −∆ =−    (A4-6) 

Where ∆nads is the number of moles adsorbed [mol]. 
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4-3 Accuracy 

A MKS 121A, (0- 5000 mbar) pressure transducer with a 0.5 % accuracy (relative to 

the measured value) was used.  The temperature regulator had a stability of ± 1°C. 

The balance had a precision of ± 0.00005 g which is negligible compared to other 

measurement errors.  

The density measurement was performed in the same equipment and will have the 

same errors as the sorption measurement.  

 

For absorption measurements, errors in the registered data will mainly be caused by 

possible inaccuracy in the volume estimation for tubes and sorption chamber in the 

experimental set-up (estimated to ± 5%).  The volumetric errors will have to be 

counted for twice since the error is involved in determining both the density and the 

flash. 
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Appendix 5 Pure 4 nm glass membrane 

The following tests were performed at 30 °C (old module) 

Gas Permeance 
[m3(STP)/(m2 bar h)] 

Selectivity 
(gas/N2) 

Comment 

N2 0.1907  1st parallel 
N2 0.1745  2nd parallel 
N2 0.1721  3rd parallel 
N2 0.211  4th parallel  An average of these four 

measurements is used in the 
selectivity calculations (0.1871) 

O2 0.1516 0.81 1st parallel 
O2 0.1521 0.81 2nd parallel 
Cl2 0.2205 1.18 1st parallel  Evacuated for 6 hours 

Exposed for 450 s 
Cl2 0.2330 1.25 2nd parallel, Exposed for 600 s 
Cl2 0.2710 1.45 1st parallel  Evacuated overnight 

Exposed for 500 s 
Cl2 0.2725 1.46 2nd parallel Exposed for 500 s 
Cl2 0.2727 1.46 3rd parallel Membrane exposed to 

Cl2 for 0.5 hour between the last tests 
Exposed for 500 s 

Cl2 0.2660 1.42 4th parallel  Exposed for 500 s 
N2 0.1655 0.88 1st parallel 
N2 0.1655 0.88 2nd parallel 
Total exposure time: 3500 s at 30 C. 
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Appendix 6 Pure 2 nm glass membrane 

 

Appendix 6-1: Nitrogen adsorption isotherm.  
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Appendix 6-2: Nitrogen adsorption BET plot  
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Appendix 6-3: Permeance measurements.  

The tests are reported in the order as they were performed.  Between each parallel at 

least 30 minutes long evacuation was performed and between each pressure an 

evacuation for at least 1.5 hours has been performed. (old module) 

Pressure 
[bar] 

Gas Temperature 
[°C] 

Permeance 
[m3(STP)/(m2 

bar h)] 

Selectivity 
(gas/N2) 

Comment 

1 N2 30 0.0888 - 1st parallel 
1 N2 30 0.0907 - 2nd parallel 
1 N2 30 0.0897 Mean: 0.0897 3rd parallel 
2 N2 30 0.0935 - 1st parallel 
2 N2 30 0.0936 Mean: 0.0935 2nd parallel 
3 N2 30 0.0945 - 1st parallel 
3 N2 30 0.0952 Mean: 0.0950 2nd parallel 
1 N2 60 0.0836 - 1st parallel 
1 N2 60 0.0845 Mean: 0.0841 2nd parallel 
2 N2 60 0.0848 - 1st parallel 
2 N2 60 0.0840 Mean: 0.0844 2nd parallel 
3 N2 60 0.0850 - 1st parallel 
3 N2 60 0.0856 Mean: 0.0853 2nd parallel 
1 N2 90 0.0741 - 1st parallel 
1 N2 90 0.0740 Mean: 0.0741 2nd parallel 
2 N2 90 0.0752 - 1st parallel 
2 N2 90 0.0760 Mean: 0.0756 2nd parallel 
3 N2 90 0.0755 - 1st parallel 
3 N2 90 0.0761 Mean: 0.0758 2nd parallel 
1 N2 30 0.0915 [1.02] 1st parallel 
1 N2 30 0.0924 [1.03] 2nd parallel 
2 N2 30 0.0948 [1.01] 1st parallel 
2 N2 30 0.0945 [1.01] 2nd parallel 
3 N2 30 0.0951 [1.00] 1st parallel 
3 N2 30 0.0948 [1.00] 2nd parallel 
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 The selectivities in the following tables are calculated with reference to the 

corresponding nitrogen condition in the pervious table.  The selectivities given in 

brackets refer to the internal stability of the two different 30 °C tests for each gas and 

they are calculated from the corresponding parallel of each pressure. (old module) 

Pressure 

[bar] 

Gas Temperature 

[°C] 

Permeance 

[m3(STP)/  

(m2 bar h)] 

Selectivity 

(gas/N2) 

Comment 

1 O2 30 0.0869 0.97 1st parallel 

1 O2 30 0.0863 0.96 2nd parallel 

2 O2 30 0.0883 0.94 1st parallel 

2 O2 30 0.0884 0.95 2nd parallel 

3 O2 30 0.0888 0.93 1st parallel 

3 O2 30 0.0889 0.94 2nd parallel 

1 O2 60 0.0770 0.92 1st parallel 

1 O2 60 0.0774 0.92 2nd parallel 

2 O2 60 0.0785 0.93 1st parallel 

2 O2 60 0.0786 0.93 2nd parallel 

3 O2 60 0.0789 0.92 1st parallel 

3 O2 60 0.0796 0.93 2nd parallel 

1 O2 90 0.0694 0.94 1st parallel 

1 O2 90 0.0698 0.94 2nd parallel 

2 O2 90 0.0710 0.94 1st parallel 

2 O2 90 0.0717 0.95 2nd parallel 

3 O2 90 0.0718 0.95 1st parallel 

3 O2 90 0.0715 0.94 2nd parallel 

1 O2 30 0.0865 0.96 [1.00] 1st parallel 

1 O2 30 0.0854 0.95 [1.01] 2nd parallel 

2 O2 30 0.0878 0.94 [1.00] 1st parallel 

2 O2 30 0.0880 0.94 [1.00] 2nd parallel 

3 O2 30 0,0885 0.95[1.00] 1st parallel 

3 O2 30 0,0885 0.95[1.00] 2nd parallel 
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Pressure 
[bar] 

Gas Temp. 
[°C] 

Permeance 
[m3(STP)/ 
(m2 bar h)] 

Selectivity 
(gas/N2) 

Comment Exposure 
time [s] 

1 Cl2 30 0.216 2.41 1st parallel 400 
1 Cl2 30 0.215 2.40 2nd parallel 400 
2 Cl2 30 0.218 2.33 1st parallel 200 
2 Cl2 30 0.217 2.32 2nd parallel 200 
3 Cl2 30 0.205 2.16 1st parallel 150 
3 Cl2 30 0.207 2.18 2nd parallel 150 
1 Cl2 60 0.153 1.82 1st parallel 450 
1 Cl2 60 0.153 1.82 2nd parallel 450 
2 Cl2 60 0.155 1.84 1st parallel 250 
2 Cl2 60 0.155 1.84 2nd parallel 250 
3 Cl2 60 0.153 1.79 1st parallel 180 
3 Cl2 60 0.154 1.81 2nd parallel 180 
1 Cl2 90 0.106 1.43 1st parallel 600 
1 Cl2 90 0.105 1.42 2nd parallel 600 
2 Cl2 90 0.103 1.36 1st parallel 350 
2 Cl2 90 0.103 1.36 2nd parallel 350 
3 Cl2 90 Leakage in 

sealing* 
- 1st parallel - 

3 Cl2 90 Leakage in 
sealing* 

- 2nd parallel - 

1 Cl2 30 0.133 1.48 [0.62] 1st parallel 600 
1 Cl2 30 0.129 1.44 [0.60] 2nd parallel 700 
2 Cl2 30 0.130 1.39 [0.60] 1st parallel 350 
2 Cl2 30 0.130 1.39 [0.60] 2nd parallel 350 
3 Cl2 30 0.135 1.42 [0.65] 1st parallel 250 
3 Cl2 30 0.135 1.42 [0.65] 2nd parallel 250 

 

* The module was disconnected and the sealing was exchanged before the tests 

proceeds.  Since the 1 and 2 bar tests at 90 °C seems to be logic compared to the 

other chlorine tests, the 3 bar tests at 90 °C was omitted. 

Total chlorine exposure time: 7 660 s, (1500+2500 s at 30 C) 
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Pressure 
[bar] 

Gas Temp. [°C] Permeance 
[m3(STP)/ 
(m2 bar h)] 

Selectivity 
(gas/N2) 

Comment 

1 N2 30 0.0531 0.59 1st parallel 
1 N2 30 0.0524 0.58 2nd parallel 
2 N2 30 0.0546 0.58 1st parallel 
2 N2 30 0.0547 0.59 2nd parallel 
3 N2 30 0.0555 0.58 1st parallel 
3 N2 30 0.0553 0.58 2nd parallel 
1 N2 60 0.0515 0.61 1st parallel 
1 N2 60 0.0518 0.62 2nd parallel 
2 N2 60 0.0529 0.63 1st parallel 
2 N2 60 0.0532 0.63 2nd parallel 
3 N2 60 0.0539 0.63 1st parallel 
3 N2 60 0.0541 0.63 2nd parallel 
1 N2 90 0.0505 0.68 1st parallel 
1 N2 90 0.0507 0.68 2nd parallel 
2 N2 90 0.0514 0.68 1st parallel 
2 N2 90 0.0514 0.68 2nd parallel 
3 N2 90 0.0515 0.68 1st parallel 
3 N2 90 0.0518 0.68 2nd parallel 
1 N2 30 0.0632 0.70 [1.19] 1st parallel 
1 N2 30 0.0632 0.70 [1.21] 2nd parallel 
2 N2 30 0.0639 0.68 [1.17] 1st parallel 
2 N2 30 0.0637 0.68 [1.16] 2nd parallel 
3 N2 30 0.0635 0.67 [1.14] 1st parallel 
3 N2 30 0.0639 0.67 [1.16] 2nd parallel 
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Appendix 7 C1 surface-modified glass membrane 

Tests performed with the new module. 

Permeances are reported as [m3 (STP) /(m2 bar h)] performed at 30 °C 

Gas type Permeance Selectivity 

(N2 ref) 

Chlorine exposure 

time [s] 

Permeability decay 

[10-5/s] 

N2 0.0290 1   

O2 0.0280 0.97   

Cl2 0.0750 2.6 3.26 3 600 

N2 0.0256 0.88 [1]   

O2 0.0258 0.89 [1]   

 

New membrane sample 

Gas type Permeance Selectivity 

(N2 ref) 

Chlorine exposure 

time [s] 

Permeability decay 

[10-5/s] 

N2 0.0484 1   

O2 0.0456 0.94   

Cl2 0.149 3.07 0.187 86 400 

N2 0.0406 0.83 [1]   

O2 0.0401 0.83 [0.99]   
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Appendix 8 C8 surface-modified glass membrane  

All the tests are performed at 30 °C. 

The tests are reported in the order as they were performed.  Between each parallel 

there has been an evacuation for at least 30 minutes and between each pressure an 

evacuation for at least 1.5 hours has been performed. (Old module) 

Pressure 

[bar] 

Gas Permeance 

[m3(STP)/(m2 bar h)]

Selectivity 

(gas/N2) 

Comment 

1 N2 0.00175 -  

3 N2 0.00181 -  

1 O2 0.00226 1.29  

3 O2 0.00240 1.32  

1 Cl2 0.0165 9.42 Exposed for 2800 s 

2 Cl2 0.0148 - Exposed for 2300 s 

3 Cl2 0.00889 4.90 Something happened 

Exposed for 1350 s 

1 N2 0.000302 1 [0.17]  

1 O2 0.000295 0.98  

1 Cl2 0.00541 17.92 Exposed for 500 s 

Total exposure time 6950 s 
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Appendix 9 C18 surface-modified glass membrane  

Appendix 9-1: Chlorine separation 

The tests are reported in the order as they were performed. Between each pressure an 

evacuation for at least 1.5 hours has been performed. (Old module) 

Pressure 
[bar] 

Gas Temp. 
[°C] 

Permeance 
[m3(STP)/ 
(m2 bar h)] 

Selectivity 
(gas/N2) 

Comment 

1 N2 30 0.00255 1  
3 N2 30 0.00258 1  
1 O2 30 0.00433 1.70  
3 O2 30 0.00461 1.81  
1 Cl2 30 0.0605 23.73 Exposed for 700 s 
2 Cl2 30 0.0794 - Exposed for 500 s 
3 Cl2 30 0.0816 32.00 Exposed for 650 s 
1 N2 30 0.00199 1 [0.78] To check exp. depend. 
1 O2 30 0.00383 1.92 To check exp. depend. 
1 N2 60 0.00378 1  
1 O2 60 0.00622 1.65  
1 Cl2 60 0.0497 13.15  
3 Cl2 60 0.0495 13.10  
1 N2 60 0.00262 1 [0.69] To check exp. depend. 
1 O2 60 0.00443 1.69 To check exp. depend. 

 

Total exposure time: 1850s at 30 C. 
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Second round, same membrane sample 

Gas Temp [°C] Pressure 

[Bar] 

Permeance 

[m3(STP)/(m2 bar h)]

Selectivity (gas/N2) 

N2 30 1 0.00130 1 

O2 30 1 0.00257 1.98 

HCl 30 1 0.0241 18.5 

HCl 30 3 0.0281 - 

N2 30 1 0.00166 1 [1.28]  

H2 30 1 0.00450 2.71 

H2 30 3 0.00465 - 

N2 60 1 0.00288 1 

O2 60 1 0.00469 1.62 

H2 60 1 0.00805 2.80 

H2 60 3 0.00813 - 

N2 60 1 0.00304 1 [1.06] 

HCl 60 1 0.0179 5.89 

HCl 60 3 0.0250 - 

N2 80 1 0.00339 1 

O2 80 1 0.00524 1.55 

H2 80 1 0.0102 3.01 

H2 80 3 0.0106 - 

N2 80 1 0.00365 1 [1.07] 

Cl2 80 1 0.0187 5.12 

Cl2 80 3 0.0190 - 

N2 80 1 0.000495 1 [0.136] 

N2 80 1 0.000557 * 1 [1.13] 

HCl 80 1 0.00555 9.96 

HCl 80 3 0.00786 ** - 

N2 80 1 0.00098  

The selectivities for N2 given in the brackets refer to the change of the selectivity 

relatively to the permeability obtained for nitrogen previously at the same pressure 

and temperature. 
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* The membrane was evacuated for 80 hours before this test was performed.  The 
membrane has been discoloured during the chlorine test; this might be due to 
degradation of the sealing (some kind of silicone rubber) used in the mounting of the 
membrane in the module. 
 
** The sealing broke under this test, but fortunately the test had been performed long 
enough so that a result was obtained.  It was necessary to clean the module with a 
mixture of acetone / ethanol due to degradation products in the module.  The 
membrane was so brown that it also was flushed with the mixture.  Every part of the 
module (Except the membrane itself) was dried with paper before the module was 
assembled. The membrane was evacuated for 2 hours before the last nitrogen 
measurement was performed 
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Second sample 

Pressure 
[bar] 

Gas Temp 
[°C] 

Permeance 
[m3(STP)/ 
(m2 bar h)] 

Selectivity 
(gas/N2) 

Comment 

1 N2 30 0.00479 -  
3 N2 30 0.00393 -  
1 N2 30 0.00465 -  
1 N2 30 0.00440 -  
3 N2 30 0.00369 1  
1 N2 30 0.00452 1  
1 O2 30 0.00555 1.23  
3 O2 30 0.00494 1.34  
1 Cl2 30 0.0545 12.1 Exposed for 1500 s 
3 Cl2 30 0.0564 15.3 Exposed for 1500 s 
1 N2 30 0.000188 1 [0.04] After two weeks 

(1209600 s) of Cl2 
exposure at 30 °C and 

1.05 bar   
3 N2 30 0.000145 1 [0.04]  
1 O2 30 0.000183 0.97 [0.04]  
1 Cl2 30 0.00168 8.94 [0.37] Exposed for 4000 s 
3 Cl2 30 0.00218 15.0 [0.59] Exposed for 11000 s 
1 N2 30 0.0000761 0,5  
1 N2 30 0.0000714  After 1st regen. 
1 N2 30 0.000323  After 2nd regen. 

Total exposure time: 1 227 600s at 30 C. 

 

The selectivities are calculated with reference to the nitrogen tests performed under 

the same conditions. 

 

The first regeneration:  The module and membrane were heated to 80 °C and 

pressurised to 1 bar of N2 gas. Evacuating the low-pressure side insured a stable 

pressure gradient over the membrane.  This regeneration lasted for 16 hours, and then 

the permeability was measured the usual way.  As it can be seen from the table of 

results, this procedure had no significant effect.  It is believed that the silicone sealing 

used in the module are not stable for temperatures beyond 80°C.  It seems like that 

the regeneration procedure had induced a slight discolouring of the membrane. 
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The second regeneration: The membrane was disassembled from the module, and 

put into an external heating camber.  In here the membrane was heated up to 120 °C, 

put under vacuum and left for 16 hours.  The temperature was allowed to decrease 

slowly, to avoid any crack formations in the glass.  When the glass was removed from 

the heating chamber, it was noticed that the discolouring had become serve. 

It looks like the temperature as much as the silicone sealing used might cause the 

colour change.  None of the regeneration procedures tried here seems to be sufficient 

enough, although the last procedure gives a four-time increase of the flux. 

 

 

Appendix 9-2: HCl separation (Low surface coverage membrane) 

 

All tests are performed at 30 °C and 1 bar. 

(New module) 

Gas 

type 

Permeance 

[m3 (STP)/(m2 

bar h)] 

Selectivity N2 

reference 

HCl 

exposure 

length [s] 

Permeability decay 

[10-5/s] 

N2 0.00106 1 ref   

O2 0.00181 1.7   

H2 0.00488 4.6 {1 ref}   

HCl 0.0224 21 {4.6}   

N2 0.000896 1 ref.0.85 3600 4.3 

O2 0.00151 1.7   

H2 0.00463 5.2 {1 ref}   

HCl 0.0301 34 {6.5} 86400 0.070 

N2 0.000842 0.94   
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Appendix 10 C1+C18 surface-modified glass membrane  

Appendix 10-1: Chlorine separation 

All permeances are measured at 30 °C and given in m3(STP)/(m2 bar h).  

(old module) 

Gas Permeance 
at 1 bar 

Selectivity at 1 bar, 
N2 as reference 

Comments 

Nitrogen 0.000657 1  
Oxygen 0.000960 1.5  
Nitrogen 0.000795 1 [1.2]  
Nitrogen 0.000818 1 Ref. 
Oxygen 0.000906 1.1  
Chlorine 0.00906 11 Exposed for 3600 s 
Nitrogen 0.000641 1 [0.81]  
Oxygen 0.000770 1.2  
Chlorine 0.00772 12 Exposed for 3600 s 
Nitrogen 0.000515 1 [0.80] After 48 hours of 

evacuation.  New 
sealing in the module 

Oxygen 0.000710 1.4  
Chlorine 0.00940 18.2 Exposed for 4500 s 
Nitrogen 0.000694 1 [1.3]  
Nitrogen 0.000689 1.0  
Oxygen 0.000731 1.05  
Chlorine 0.00925 13.2 Exposed for 3800 s 
Nitrogen 0.000541 1 [0.78] New sealing in the 

module 
Oxygen 0.000870 1.6  
Chlorine 0.00889 16 Exposed for 4000s 
Nitrogen 0.000592 1 [1.1]  
Oxygen 0.000491 0.83 The reason for this 

sudden drop is not 
discovered. 

Nitrogen 0.000522 1[0.88]  
Oxygen 0.000634 1.21  
 

The sealing showed a slight degradation on the high-pressure side each time the 

module was remounted.  This degradation was in an early stage and only an area 

around the metal pipe was attacked.  By visual inspection the dept of the degraded 

layer was estimated to be approximately .5 mm. 

After the membrane had been stored in a desiccator for 14 days, (The time the other 

parallel were measured) it was remounted.  The nitrogen and oxygen permeabilities 
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were measured twice, to see if the storage had affected the membrane.  The glass 

membrane was then demounted and placed in a glass durability chamber. 

The chamber was evacuated over night and then filled with 1.1 bar Cl2 at 30 °C.  

After 5 days the chamber was emptied, flushed with N2 and evacuated over night.  

The membrane was remounted in the module and the module was evacuated over 

night before the last permeation tests were performed. 

 All permeability fluxes are measured at 30 °C and given in m3(STP)/(m2 bar h). 

Gas Permeance 
at 1 bar 

Selectivity at 1 
bar, N2 as 
reference 

Comments 

Nitrogen 0.000751 1 [1.4]  
Oxygen 0.000919 1.2  
Nitrogen 0.000774 1 [1.03]  
Oxygen 0.000954 1.2  
Nitrogen 0.000329 1 [0.42] After 5 days Cl2 exposure (432000)  
Nitrogen 0.000332 1.0  
Oxygen 0.000332 1.0  
Chlorine 0.00205 6.2 Exposed for 3750 s 
Nitrogen 0.000325 0.98  
Oxygen 0.000330 1.0  
Nitrogen 0.000555 1[1.7] After 5 days Cl2 exposure (432000)  
Nitrogen 0.000531 1 [0.95]  
Oxygen 0.000508 0.96  
Nitrogen 0.000530 1.0 Evacuated for 60 hours 
Oxygen 0.000502 0.96  
Chlorine 0.000195 

0.00155 
 

2.9 
Exposed for 4300 s   

The first flux is measured after 
1000s, the last one is measured after 

15000 s 
Nitrogen 0.000644  Error in measurement, too short 

evacuation 
Nitrogen 0.000539 1.0  
Oxygen 0.000503 0.96  
80 %O2 
20 %Cl2 

0.000477 
0.000573 

 The first flux is measured after 
1000s, the last one is measured after 

15000 s 
Estimated; exposed for 4200s (pure 

Cl2) 
Nitrogen 0.000586 - Short evacuation (2 hours) 
Nitrogen 0.000536 1.0  
Oxygen 0.000518 0.97  
55%O2 
45 %Cl2 

0.000447 
0.000756 

- The first flux is measured after 500s, 
the last one is measured after 15000 s 
Estimated; exposed for 7900s (pure 

Cl2) 
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Gas 

Permeability 
flux at 1 bar 

Selectivity at 1 
bar, N2 as 
reference 

Comments 

Nitrogen 0.000532 1.0  
Oxygen 0.000507 0.95  
28 %O2 
72 %Cl2 

0.000384 
0.00111 

 The first flux is measured after 500s, 
the last one is measured after 15000 s 
Estimated; exposed for 18700 (pure 

Cl2) 
Nitrogen 0.000550 1.0  
Oxygen 0.000513 0.93  
13 %O2 
87 %Cl 

0.000388 
0.00118 

 The first flux is measured after 500s, 
the last one is measured after 7000 s 
Estimated; exposed for 6950s (pure 

Cl2) 
Nitrogen 0.000538 1 [0.98]  
Oxygen 0.000506 0.94  
Chlorine 0.000382 

0.00129 
 

2.4 
The first flux is measured after 500s, 
the last one is measured after 4000 s 

Exposed for 4000 
Nitrogen 0.000533 1.0  
Oxygen 0.000505 0.95  
Nitrogen 0.000528 1 [0.99] After 19 days Cl2 exposure (1641600 

s)  
Nitrogen 0.000509 1 [0.96]  
Oxygen 0.000471 0.92  
Nitrogen 0.000506 0.99  
Oxygen 0.000472 0.92  
Chlorine 0.000325 

0.000811 
 

1.6 
The first flux is measured after 
1000s, the last one is measured after 
7000 s 

Exposed for 7000 
Nitrogen 0.000510 1.0  
Oxygen 0.000459 0.90  
Nitrogen 0.000183 1 [0.36] After 14 days Cl2 exposure (1209600 

s) 
Oxygen 0.000181 0.99  
Chlorine 0.000134 

0.000384 
 

2.1 
 

Nitrogen 0.000208 1 [1.1]  
Oxygen 0.000196 0.94  
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Second sample 

All permeability fluxes are measured at 30 °C and given in m3(STP)/(m2 bar h).(old 

module) 

Gas Permeance 

at 1 bar 

Selectivity at 1 bar, 

N2 as reference 

Comments 

Nitrogen 0.00192 1  

Oxygen 0.00230 1.2  

Nitrogen 0.00194 1.0  

Oxygen 0.00209 1.1  

Chlorine 0.0118 6.1 Exposed for 3600 s 

Nitrogen 0.00190 1.0  

Oxygen 0.00210 1.1  

Chlorine 0.0115 6.0 Exposed for 4000 s 

Nitrogen 0.000614 1.0 [0.32] After 8 hours of evacuation.  New 
sealing in the module.  Module 

exposed to air for 24 hours 
Oxygen 0.000775 1.3  

Chlorine 0.00907 15 Exposed for 3700 s 

Nitrogen 0.000676 1.0[1.1]  

Oxygen 0.000778 1.2  

Chlorine 0.0110 16 Exposed for 3900 s 

Nitrogen 0.000650 1.0 [0.96]  

Oxygen 0.000721 1.1  

Chlorine 0.0105 16 Exposed for 4100s 

Nitrogen 0.000771 1 [1.2] New sealing in the module 

Oxygen 0.000877 1.1  

Nitrogen 0.000795 1.0  

Oxygen 0.000924 1.2  

 

Total chlorine exposure time is 19300 seconds. 

The sealing showed a slight degradation on the high-pressure side each time the 

module was remounted.  This degradation was in an early stage and only an area 

around the metal pipe was attacked.  By visual inspection the dept of the degraded 

layer was estimated to be approximately .5 mm. 
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Appendix10-2: HCl separation 

(New module) 

Gas  Permeance 

[m3(STP)/(m2 bar h)] 

Selectivity (N2 

ref, H2 ref in {}) 

N2 perm. 

decay [10-5/s] 

HCl exposure 

time [s] 

N2 0.00587 1 {0.42}   

O2 0.00764 1.3 {0.56}   

H2 0.0137 2.3 {1}   

HCl 0.0291 5.0 {2.1}  4 700 

N2 0.00564 0.96 0.83  

H2 0.0138 2.3 {1}   
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Appendix 11 C12 surface-modified glass membrane  

All permeability fluxes are measured at 30  C and given in [m3(STP)/(m2 bar h)]. 

(Old module) 

Gas Permeability 
flux at 1 bar 

Permeability 
flux at 3 bar 

Permeability 
flux at 1 bar 

Selectivity at 
1 bar 

(Averaged) 
with N2 as 
reference 

Selectivity 
at 3 bar 

with N2 as 
reference 

Nitrogen 0.00580 0.00594 0.00570 1 1 
Oxygen 0.00716 0.00741 0.00735 1.26 1.25 
Chlorine 0.0422 

Exposed for 
3600 s 

0.0412 
Exposed for 

1500 s 

0.0410 
Exposed for 

1500 s 

7.23 6.94 

Nitrogen 0.00130 0.00135 0.00116 0.21 [New 
reference] 

0.23 [New 
reference] 

Oxygen 0.00164 0.00167 - 1.33 1.23 
Chlorine 0.0147 

Exposed for 
3500 s 

0.0164 
Exposed for 

2800 s 

- 12.0 12.1 

Nitrogen 0.000579 0.000545 - 0.47 [New 
reference] 

0.40 [New 
reference] 

Nitrogen  0.000574 0.000622 - 1 1.1 
Chlorine 0.0129 

Exposed for 
2500 s 

0.0114 
Exposed for 

2000 s 

- 22.5 20.9 

Nitrogen 0.000295 0.000309 - 0.51 0.57 
The second results for the permeabilities at one bar are performed after the three bar 

tests.  Since the results seem relatively pressure stable, the second run were only 

performed in the first screening test (the upper four rows in the table).  The 

corresponding selectivities at one bar are based on the average value of the involved 

gases. 

Between increasing pressures, only a short evacuation have been performed. When 

the test pressure is lowered the evacuation were extended to at least two hours.  

Between the different gases, evacuation over night has been used. 

The thicker solid line above the three last rows in the table indicates that the sealing 

of the module were changed prior to these tests. 

Total chlorine exposure time: 17400 s at 30 C 
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Appendix 12 Pf-C10 surface-modified glass membrane  

Appendix 12-1: Nitrogen adsorption isotherm, unexposed sample.  
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Nitrogen adsorption isotherm, chlorine exposed sample. 
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Appendix12-2: BET-plot, unexposed sample. 
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BET-plot, chlorine exposed sample. 
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Appendix12-3: Permeance measurements. 

Cl2 separation 

All fluxes are measured at 31-34 °C and given in [m3 (STP)/(m2 bar h )]  

(New module) 

Type of 
gas 

Pressure 
difference 
[Bar] 

Permeability 
flux 

Selectivity (gas 
/nitrogen) 

Chlorine 
exposure 
time* 

∆(P/l)N2,(relative) 
/ exposure 
time [1/s]·105 

N2 1 0.00803 -   
N2 1 0.00796 1 (reference)   
O2 1 0.00927 1.2   
Cl2 1 0.02051 2.6 1h  
N2 1 0.00752 0.94  1.48 
N2 1 0.00752 1 (New 

reference) 
  

O2 1 0.00883 1.2   
N2 1 0.00745 1.0   
Cl2 1 0.02153 2.9 10h  
N2 1 0.00752 1.0  -0.014 
N2 3 0.00745 1 (reference)   
O2 1 0.00876 1.2   
O2 3 0.00876 1.2   
N2 1 0.00752 1.0   
N2 1 0.00759 1.0   
  Static chlorine 

exposure 
168 h  

N2 1 0.00657 0.87  0.021 
N2 3 0.00657 0.87   
O2 1 0.00788 1.0 (1.2 §)   
O2 3 0.00796 1.1 (1.2 §)   
Cl2 1 0.02029 2.7 (3.1 §) 1h  
Cl2 3 0.02146 2.9 (3.3 §) 1.5h  
N2 1 0.00672 0.89 (1.0 §)   
N2 3 0.00679 0.89 (1.0 §)   
  Static chlorine 

exposure 
336h  

N2 1 0.00847 1.1  -0.022 
N2 3 0.00745 1.0   
N2 1 0.00861 1.1   
O2 1 0.01000 1.3 (1.2§)   
O2 3 0.00883 1.2 (1.2§)   
Cl2 1 0.02380 3.2 (2.8§) 1h  
Cl2 3 0.02248 3.0 (3.0§) 0.5h  
N2 1 0.00839 1.1 (0.99§)   
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Type of 
gas 

Pressure 
difference 
[Bar] 

Permeability 
flux 

Selectivity (gas 
/nitrogen) 

Chlorine 
exposure 
time* 

∆(P/l)N2,(relative) 
/ exposure 
time [1/s]·105 

   Static chlorine 
exposure 

504h  

N2 1 0.00888 1.2  -0.00305 
N2 3 0.00764 1.0   
O2 1 0,01082 1.4 (1.2§)   
O2 3 0.00907 1.2 (1.2 §)   
NB see below    
N2 1 0.00582    
N2 3 0.00598    
O2 1 0.00730 1.3    
O2 3 0.00730 1.3    
Cl2 1 0.02016 3.5   
Cl2 3 0.02139 3.6   
N2 1 0.00650 1.1  0.00263 

(total) 
N2 3 0.00645 1.1   
The chlorine exposure times are given for the duration of each experiment 

(cumulative total chlorine exposure time is 1023 hours) 

 

§ “local selectivity based on the first nitrogen permeances measured after each long-

term chlorine exposure 

 

Prior to the “gap” in the table some problems with one union on the module was 

encountered.  There might have been a leakage there for some time, possible causing 

the pressure dependency for the O2 and N2 experienced in the “middle” of the table 
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HCl separation 

All permeances are measured at 30 °C. 

Permeances given in [m3 (STP)/(m2 bar h)] (New module) 

Gas  Pressure 

[bar] 

Permeance Selectivity (N2 

reference) 

HCl exp 

time [s] 

Perm. Decay [10-5 

1/s] 

N2 1 0.0115 1   

H2 1 0.0291 2.5 [1 |H2]   

H2 3 0.0291 - [1 |H2]   

O2 1 0.0124 1.1   

HCl 1 0.0181 1.6 [0.62 |H2] 1500  

HCl 3 0.0217 - [0.75 |H2] 600  

N2 1 0.0106 0.92 (new ref.)  4.0 

H2 1 0.0276 2.6 [0.95 |H2]   

H2 3 0.0277 -[0.95 |H2]   

HCl 1 Static 

exposure 

- 8 208 000 

(95 days) 

 

N2 1 0.00975 1(new ref.) 

0.92 

 9.8·10-4 

O2 1 0.0106 1.1   

H2 1 0.0247 2.5 [1 |H2]   

H2 3 0.0250 - [1 |H2]   

HCl 1 0.0197 2.0 [0.80 |H2] 5000  

HCl 3 0.0202 - [0.81 |H2] 1500  

N2 1 0.00920    

N2 1 0.00913   NB! Regenerated@ 

80°C and 1 mbar 

for 2 hours prior to 

this measurement. 
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Appendix 13 Pf-C10 (2 nm) surface-modified glass 

membrane  

Appendix13-1: N2-adsorption isotherm. 
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Appendix13-2: BET-plot. 
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Appendix13-3: Permeance measurements. 

All permeances are given in [m3 (STP)/(m2 bar h)] and measured at 30 °C 

Gas type Pressure 
[bar] 

Permeance Selectivity (Gas 
/ N2) [-] 

Perm. Decay [1/s] 

N2 1 0.00576 -  
N2 3 0.00694 -  
O2 1 0.00752 1.3  
O2 3 0.00905 1.3  
Cl2 1 0.0328 5.7 Cl2 exp. Time: 4000s 
Cl2 3 0.0327 4.7 Cl2 exp. Time:3000s 
N2 1 0.00503 0.87 1.81·10-5 
N2 3 0.00516 0.74  

  Stored 1 
month in the 
desiccator 

  

N2 1 0.00496 1 (0.86)  
N2  0.00491 1 (0.70)  
O2 1 0.00688 1.4  
O2 3 0.00690 1.4  

  Static chlorine 
exposure 

63 days at 30 
°C and 1 bar 

Cl2 Exp Time: 
5.44·106s 

N2 1 0.00122 0.24  
N2 3 0.00135 0.27  
O2 1 0.00292 2.4 (0.58)  
O2 3 0.00315 2.3 (0.64)  
N2 1 0.00266 0.54 8.52·10-8 
N2 3 0.00269 0.55  
N2 1 0.00290 1 (0.58)  
N2 3 0.00296 1 (0.60)  
O2 1 0.00417 1.4  
O2 3 0.00427 1.4  
Cl2 1 0.0274 9.4 Cl2 Exp Time: 2500s 
Cl2 3 0.0250 8.4 Cl2 Exp Time: 2400s 
N2 1 0.00398 1 (1.4) (3.63·10-8) See comment 
N2 3 0.00407 1 (1.4)  

HCl 1 0.0147 3.7  
HCl 3 0.0229 5.6  
HCl 0.5 0.018   
HCl 0.5 0.00591/0.002

19/ 0.0223 
 See comment on next 

page 
HCl 1 0.0269 3.7  
N2 1 0.00439 1.1 (2.11·10-8) 
N2 3 0.00442 1.1  
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Comments to the table 

 The permeability decays displayed in brackets are calculated with the 
permeability prior to the 63 days long chlorine exposure as the before 
reference. 

 The three flux values given for the 0.5 bar HCl test are given as a curiosity, 
since the pressure vs. time plot used to determine the permeability flux was 
showing four regions with a stable dp/dt as indicated by the numbers 1 to 4 in 
figure A13-1: 

 

 
Figure A13-1: Experimental p vs. t dependence for HCl permeability at 0.5 bar (absolute). 

 

As can be seen from the first gap in the table, storage in a desiccator does not 

significantly alter the membrane performance. 

 

After the long-term chlorine exposure no mis-coloring of the membrane could be 

detected visually.  However, a blurry layer had deposited on the surface.  The 

(partial) removal of this layer as a consequence of several evacuations between the 

succeeding tests after the chlorine exposure may explain the rise in the permeability 

flux for nitrogen after the oxygen (and HCl) measurement. 
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Appendix 14 Glass hollow fibre 

Appendix14-1: Cl2 separation (New module) 

 

All tests are performed at 30°C and are given in the unit [m3 STP/(m2 bar h)] 

Gas Permeance 

 

Selectivity 

 [-] (N2 base) 

N2 perm. decay 

[10-5 /s] 

Cl2 Exposure time  

[s] 

N2 0.00241 -   

N2 0.00239 1   

O2 0.00181 0.76   

O2 0.00186 0.78   

He 0.00795 3.3   

He 0.00723 3.0   

H2 0.00984 4.1   

H2 0.0101 4.2   

Cl2 4.73·10-5 0.020  96000 

N2 0.00129 0.53 0.48  

HCl 0.00145 0.61  85000(HCl) 

N2 0.00129 0.53   
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Temperature dependence  

 

First parallel: 

Gas 

type 

Temp. [°C] Permeance [m3 

STP / (m2 bar h)] 

Selectivity 

(N2 ref.) 

Exposure 

time [s] 

Perm. decay 

[10-5 s] 

N2 30 0.00363 -   

N2 30 0.00348 1   

Cl2 30 0.000785 

(0.00140*) 

0.22 

0.40 

96000  

N2 30 0.00308 1 [0.86]  1.41 

N2 80 0.00139! -   

N2 80 0.000428! -   

N2 80 0.000239 1   

Cl2 80 0.000185 

0.000271! 

0.77 

1.1 # 

200 000  

N2 80 0.000293 1.2  - 

N2 30 0.000103   0.48 

leak 30 dp/dt = 2.1·10-6 

[bar/h] 

   

* Speeding up as a function of time 
! Slowing down as a function of time 

# Selectivity lost, most likely is the self leakage of the cabinet the dominant flux. dp/dt = 6.9·10-6 

[bar/h] 
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Second parallel  

Gas 

type 

Temp. 

[°C] 

Permeance 

[m3 STP / 

(m2 bar h)] 

Selectivity N2 

ref  

Perm. 

decay 10-5 

[1/s] 

Exp. time 

[s] 

dp/dt 

[bar/h] 

N2 30 0.000232 1    

leak 30 -    1.90·10-6

O2 30 0.0001943 0.84    

Cl2 30 0.00006602 0.28 0.24 170 000 1.97·10-6

N2 30 0.0001376 0.59    

N2 80 0.0002489 1    

O2 80 0.0002049 0.82    

Cl2 80 0.0001759 0.71 0.14 (at 

80 °C) 

190 000 5.11·10-6

N2 80 0.0001838 0.74    

leak 80 -    4.52·10-6

N2 30 0.000650*     

leak 30     2.04·10-6

* The glue seal seems to be leaking gas and bypassing the membrane since the 

outside-in leakage, measured in the last measurement, is similar to the start-up 

leakage.  
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Appendix14-2: HCl separation 

 

All tests are performed at 30 °C and 1 bar.  The permeances are given in 

[m3(STP)/(m2 bar h)] 

(New module) 

Gas Permeance 

·105* 

Selectivity 

 [-] 

N2 perm decay  

[10-5 /s] 

HCl Exposure 

time  

[s] 

N2 5.89 1 [Ref]   

O2 10.1 1.7   

H2 267 45   

HCl 2.19 0.37 {122; 

H2} 

 530900 (Dynamic) 

N2 5.09 1 [0.86] 0.026**  

H2 72 14   

 

* A single fibre was mounted in the module so the membrane area is small leading to 

low permeation values.  The HCl permeance value is so small that it can not be 

distinguished from the leakage of the cabinet. 

 

** This perm decay is possibly an underestimate since the nitrogen measurements are 

having a great variance.  The change in the H2 flux as a consequence of the HCl 

exposure is much greater (27 % of original flux for H2 compare to 86% of original 

flux for N2) 
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Temperature dependence. 

 

Permeances given in: [m3(STP)/(m2 bar h)] 

Gas 

type 

Temp. 

[°C] 

Permeance Selectivity N2 

ref [H2 ref] 

Perm. 

decay 10-5 

[1/s] 

Exp. 

time [s] 

dp/dt 

[bar/h] 

N2 30 0.000229 1 [0.092]    

H2 30 0.00248 11 [1]    

HCl 30 0.0000598 0.25 [0.024] 0.16 183 000 1.94·10-6

N2 30 0.000162 0.71 [-]    

N2 80 0.000255 1 [0.12]    

H2 80 0.00217 8.5 [1]    

HCl 80 0.000193 0.75 [0.089] 0.29 (80°C) 110 500 5.6·10-6 

N2 80 0.000173 0.68    

N2 30 0.000232  -4.4·10--3 

(Total) 

  

leak 30     1.90·10-6
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Appendix14-3: Mounting of fires into a larger sized module 

Steel tube (1/4 inch diameter)

Slit cut in the tube wall
prior to mounting

Glue seal

Fibre
A)

B)

C)

Nut
(Concealing the front and

back ferrule)

Swagelok T-union 1/4 inch
(Internal expanded to allow a passage of a 1/4 inch
tube)

T-Union aligned
with the wall slit

Excess fibre
removed

 
Figure A14-1: Three step procedure for making a larger scaled fibre module. 

 

The mounting is planned as a three step procedure as sketched in figure A14-1: 
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A) A ¼ inch (diameter ) steel tube is cut ca 3 cm shorter length than the available 

fibre length.  Approximately 2 cm from each end a ca 0.5x 1.0 cm slit is cut in 

the tube wall.  The internal gradients have to be grinded off using a grinding 

paper in order to prevent possible accidental fibre rupture during mounting.  

The fibres are threaded into the tube and each side is glue sealed using epoxy 

glue. (I.e. Araldite ® AV 138M).  The glue is left for hardening for some 

hours (as will be discussed in section C, it is important that the glue is not 

completely hardened). 

B) The two Swagelok ¼ inch tee-unions have to be modified, because their 

original internal diameter in the length direction is 0.19 inch. The diameter 

must obviously be greater than 0.25 inch in order to be able to slide the union 

onto the tube.  The internal diameter may be increased by drilling using a 

proper sized bore (i.e. 9/32 inch). 

C) Before the glue is completely hardened, the unions with the ferrules should be 

slid onto the tube and the unions should be aligned with the wall slit (In such a 

manner that it is possible to see the fibres through the perpendicular part of the 

tee) both ferules on each union (lengthwise) are then tightened according to 

the manufacturer recommendation.  The tightening of the ferules will cause 

the tube wall to be slightly deformed, therefore the glue must still have some 

flexibility left; otherwise the glue may crack, or squeeze the fibre into fracture.   
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Appendix 15 Spontaneity estimations  

Chlorine substitution 

The following simple substitution reaction is used to describe the stability of an 

alkane when exposed to chlorine gas: 

CH4 + 4Cl2→CCl4 +4HCl 

From /Zumdahl/ the following thermodynamic data of formation is found: 

Table A-15.1 Standard enthalpy of formation, ∆H°f, and standard entropy ∆S°. 

Compound ∆H°f[kJ/mol] ∆S° [J/(mol·K)] 

CH4 -75 186 

Cl2 0 223 

CCl4 -135 216 

HCl -92 187 

H2 0 131 

 

Given the Hess’ summation law, for the reaction enthalpy: 
0 0 0

i , j ,
products j reactants

n nRx f i f jH H H∆ ⋅∆ − ⋅∆∑ ∑
i= =

=  

Where ∆H°rx is the reaction enthalpy [kJ/mol] and n is the stoichiometric coefficient 

[-].  This law can also be applied to calculate the entropy change for the reaction. 
0 0 0

i j
products j reactants

n nRx i jS S S∆ ⋅∆ − ⋅∆∑ ∑
i= =

=  

By inserting the corresponding values from table A-15.1 the following results are 

obtained: 

∆H°Rx, = -428 kJ/mol and S°Rx=-114 J/(mol·K). 

The spontaneity is evaluated by the familiar thermodynamic relation 
0 0

0
universe

G HS S
T T

∆ ∆
∆ − − +∆= =  

A spontaneous process requires that the ∆Suniv>0; Thus, ∆H/T>∆S leading to 

T<∆H/∆S 

Inserting the calculated values, yields: T<3754 K 

“The chlorination is “always” thermodynamic spontaneous”  
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HCl substitution 

Consider the following (hypothetic!) substitution reaction: 

 

CH4 + 4HCl →CCl4 +4H2 

By inserting values from table A-15.1, ∆H°Rx, = 308 kJ/mol and S°Rx=-194 J/(mol·K) 

are obtained. 

Thus, this process is spontaneous if T< -1587 K. Meaning it never will happen since 

the absolute temperature has to be positive. 

“The Hydrogen chloride substitution is “never” thermodynamic 

spontaneous”  
 

Ref: Zumdahl, S. S.:”Chemical principles” C.C. Heath and company, 1992.  
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