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PREFACE

It’s been nearly four years since I came to Norway and fired up the engine for a Ph.D study (Dr.ing in
Norwegian) in the fall of 1997 (see the scenario depicted below in the box). I have been delighted and
excited to condense my work word by word in this dissertation throughout the process, and I strive to
provide maximum value. I am pleased to see that I persevered to the very end of study, writing, refining
and forging ahead with good spirits (not all the time though).

Most of the work has been carried out at Telemark University College, Porsgrunn, Norway during the
period of 1997 to 2001; some courses were taken at the Norwegian University of Science and Technology
(autumn semester, 1999), Trondheim, Norway. Part of thesis work was accomplished during my stay as a
visiting Ph.D student at the group of Prof. Lars Munck, Royal Veterinary and Agricultural University,
Copenhagen, Denmark.

This dissertation, I do hope, delivers some new developments and useful applications in multivariate data
analysis/applied chemometrics. The motive of this work has been my curiosity and fascination, for the
problems surrounding the core idea, the combination of multivariate data analytical techniques with
imaging, acoustics and feature extraction tools. The proposed methodologies/approaches have proven
themselves successful in a wide range of applications.

More understanding of multivariate data analysis/chemometrics has been achieved as I went through those
courses, books, discussions and conferences. From “ PCA”, “PCR” and “PLS "to “ unfold-PCA/PLS”,
PARAFAC” and “Tucker3”, and from “ FFT”, “WT” to “AMT”, and then from “MIA/MIR/MIX”,
“MAR” to “N-way Image analysis”, “PPV” and “Acoustic Chemometrics”, I have been confused,
impressed, surprised, amazed and finally I learned many things. (Don’t worry if you don’t understand
what all these abbreviations stand for) I realize that I have been keeping my knowledge/understanding
evolving and somewhat unwittingly created this Ph.D thesis with six articles. I’'m excited and proud of this
achievement in my life.

Cheers to all of you involved with my study for your kind help as this thesis was honed and re-honed.

I especially wish to thank the Norwegian State Department, who originally "found me" through an
agreement with China, called "kvotestipendier". [ wish to thank Prof. Sunil de Silva for winning such
stipends for HIT/TF, and Prof. Kefa Cen for his strong recommendation. When the dust had settled,
and [ found myself as one of the chosen few (and had found my way to an originally very obscure
town called Porsgrunn - it was indeed a very long way from Hangzhou in China!), I was soon taken
under the very competent wings of Mrs. Unni S. Solvi and Mrs. Trine Ellefsen, who have guided me
through all of the necessary bureaucratic intricacies for which I am most grateful. Additionally 1
highly appreciate the management of HIT/TF, who early in my stay here decided to add some much
needed extra support to my stipend. Finally I wish to recognize the NFR-project: "PARFLU"
(operated through Tel-Tek, Telemark Technological R&D Center), which has also carried an
important part of the costs involved in my four years at HIT/TF in Porsgrunn.




ACKNOWLEDGEMENTS

At this moment, it is definitely time to say thank-you to those who helped me as I struggled. I’d like to
thank everyone involved with this thesis work.

First of all, I’'m greatly indebted to a versatile and kind man, Prof. Kim H. Esbensen, who has been not
only my guiding light on my way towards this goal, but also my good friend. The dissertation you are
holding at hand would not be possible at all were it not for his ebullient, enjoyable, and inspiring
instructions throughout my Ph.D work. I have fun working with him, so I have fun learning from him.
What I’ve learned from him will always be appreciated, cherished, and treasured for the rest of my life.
Some “spicy” stuff added to the less funny parts of the Ph.D study, is also unforgettable: dining out in
fancy restaurants, imbibing in many multivariate “establishments”, partying on the island of Lgvgy
(“Kroken”), or appreciating art in the museums etc...My heartfelt thanks to you, Kim!

I have been blessed with wonderful colleagues, including: Kim, Thorbjgrn Lied, Maths Halstensen, Maria
Lundhaug, (and myself) who formed Applied Chemometrics Research Group (ACRG). Many thanks to
them for their technical help and constructive discussion! And to the “honorary member”, Inger H.
Matveyev (Ai Lin), a Norwegian M.Sc student who, among very many other accomplishments, also
speaks amazingly good Chinese!

To Prof. Sunil de Silva, at POSTEC, Porsgrunn, who brought me to the field of powder technology, for the
constructive discussion with him and his support.

To all the staff at Telemark College who kindly helped me during my stay here, in particular: Trine,
Annita, Unni, May-Britt, Finn, Rune, David.

To Prof. Saba Mylvaganam at Telemark College, for his assistance with fascinating process sensor
technology.

To Prof. Lars Munck, at Royal Veterinary and Agricultural University, Copenhagen, Denmark, for giving
opportunity to work at his group for four months as a visiting Ph.D student. Also to all other folks at this
famous chemometrics group, in particular: Rasmus, Birthe, Elizabeth, Claus, Allan, Gilda.

To Prof. Kefa Cen, at Institute of Thermal Eng., Zhejiang University, China, for his long-time support!

To the folks whom I had a lot of fun with: Steve, Afshin, Elizabeth, Rune, My, Maria, Heidi, Yngve, John,
Stine...

To my Chinese friends who helped me in many ways, Anna, Zhuang, Qianpu, Jin, Mao, Baoan in Norway
and Ruan Wei, Yu Liang, Wenjie in China.

Finally and as always, I’d like to extend my deepest gratitude to my parents and sister, for their love and
long-standing encouragement along my way.

May this thesis pay for itself many times over.
Jun Huang

Porsgrunn, Norway
Mar 18, 2000

I



ABSTRACT

This Ph.D dissertation is concerned with selected developments within applied chemometrics,
focusing on AMT (Angle Measure Technique), N-way image analysis and acoustic
chemometrics.

The core of this dissertation consists of 6 papers, mostly dedicated to combining multivariate
chemometric methods with AMT, acoustic sensor technology and image analysis to provide
new, simple and robust solutions to various technical and industrial problems. A range of
multivariate models are employed in conjunction with multivariate feature extraction
techniques. Multivariate models concerned include: Principal Component Analysis (PCA),
Partial Least Square (PLS), Unfold-PCA/PCA, Parallel Factor Analysis (PARAFAC), and
Tucker3 modeling etc. Transformation techniques such as AMT, FFT and WT are used as

powerful preprocessing facilities for subsequent multivariate data modeling.

Paper I-IV presents a new, unified image AMT approach for characterization/discrimination

and quantitative predictions, based on image analysis, AMT and multivariate data modeling.

Paper V gives an overview of relationships and applications of multi-way methods in image
analysis. The primary objective in this paper is to investigate alternative multivariate
approaches, to clarify some confusing concepts and to investigate the relationships and
suitability of the various methods applied in N-way image analysis. It is elaborated that data
configuration and problem formulation has direct impacts on the choice of the pertinent multi-

way methods.

Paper VI presents a contribution to acoustic chemometrics, a non-invasive quantitative
measurement technique for monitoring powder breakage during pneumatic transportation.

The significance of these contributions to the continued development of chemometrics will
hopefully find good use in the applied technological and industrial sectors.

KEYWORDS: Chemometrics; Multivariate data analysis; AMT (Angle Measure Technique); N-
way image analysis; Acoustic chemometrics; Multi-way
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Developments in Applied Chemometrics: AMT, acoustic chemometrics and N-way image analysis

1. INTRODUCTION AND DEFINITIONS

We live in a multivariate world where “data” come from every field constantly, and in more
varied forms than ever. The proliferation of sophisticated instruments, coupled with new
development in modern sensor and computer technology, has caused vast amounts of complex
data that often contain many inter-correlated measurements simultaneously. Chemometrics is a
powerful tool to extract information from such complex data in order to obtain knowledge and
understanding of the systems under investigation. Chemometrics has several useful definitions,
of which the following is from Chemometrics: a textbook Elsevier, NY, 1998, by D.L. Massart
et al.

Chemometrics is the chemical discipline that uses mathematical, statistical and other methods
employing formal logic

1) to design or select optimal measurement procedures and experiments, and

2) to provide maximum relevant chemical information by analyzing chemical data.

Chemometrics has evolved rapidly over the past three decades, supported by the availability of
ever more powerful computers and advanced analytical instruments. Chemometrics is widely
used in analytical chemistry, but it has been adopted in many other fields as well. Its power is
broadening as it becomes more interdisciplinary, combined with other important areas such as
information technology, electronics, sensor technology etc.

In fact, many methods in chemometrics are also found in different fields such as economics,
psychology and biology, and the similar definitions such as econometrics, psychometrics and
biometrics characterize handling these types of data.

Therefore, multivariate data analysis would today seem to be a general term as it is comprised
of a set of mathematical and statistical tools that can be applied to very many fields. It is
concerned with data which consist of multiple measurements on a number of individuals,
objects or data samples. The measurement and analysis of dependence between variables is
fundamental to multivariate analysis. Multivariate data analysis offers a wide range of
mathematical tools in conjunction with exploratory approaches, and thus provides plenty of new
possibilities in extracting hidden information from vast amounts of covariate data and facilitates
solving multivariate problems to gain knowledge and achieve a deeper understanding of the
problems under investigation. It can also be used for e.g. decision making. In this sense,
multivariate data analysis is a technology rather than a discipline, since it is a set of
techniques/tools that can be adopted in very many areas and thereby do useful work for all these
disciplines [Munck, personal communication].

A significant part of multivariate data analysis can be covered by the following three types of
problem formulations or data analysis objectives [Esbensen, Wold & Geladi, 1989]:

-1-
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e Data description (Explorative Data Structure Modeling);
e  Discrimination and Classification;
e Regression and Prediction.

The purpose of data description can be manifold: determination of simple means and variations,
correlations, underlying structures etc. Principal Component Analysis (PCA) is one of
frequently used methods for multivariate data description.

Discrimination deals with separation of groups of data. Classification has a similar purpose, but
typically a set of relevant groupings in the data are known beforehand. The aim of classification
analysis is to assign, or to classify new samples to different established groups. These
definitions lead to unsupervised and supervised pattern recognition, respectively.

Regression aims to relate two sets of variables to each other. In the chemometric practice,
regression models will e.g. often be established between indirect observations obtained from
e.g. instruments (X-block) and properties (Y-block) that may be too expensive, difficult, or
time-consuming to measure. Multiple Linear Regression (MLR), Principal Component
Regression (PCR) and Partial Least Squares (PLS) are some commonly used regression
methods. Prediction means determining Y values from new X measurements, based on
previously calibrated X-Y models. Multivariate calibration, Martens & Neas (1987), is a term
that covers both regression modeling and prediction. Proper validation should receive more
attention in this process since it is imperative in evaluating how well the calibrated model can
be used for the future working situations of the prediction models.

The applications of multivariate data analysis have increased enormously in a wide range of
academia and industrial sectors in the past two decades. These include process monitoring, fault
detection, classification, data mining, quality control, relations between chemical compositions
and structures and chemical properties, and determination of concentrations of constituents of
samples from a multitude of measurement series, etc. Industrial sectors range from chemical,
pharmaceutical, biotechnology, food and beverages to semiconductors, telecommunication, and
marketing data analysis etc.

This dissertation is mainly focused on the development of some interesting novel techniques,
methodology and applications using multivariate data analysis, covering areas such as image
analysis and acoustic monitoring. In particular, it aims to combine multivariate techniques with
e.g. classical image analysis, acoustic sensor technology to achieve a better understanding of
system/products under observation, and to provide simpler and more pragmatic approaches to
achieve the desired technological and industrial goals, from multiple images/acoustic signals
acquired by various imaging instruments/sensors.

2.
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2. MULTIVARIATE TECHNIQUES

In the following only the models that are covered in the research work related to this thesis will
be briefly described, though there is already a plethora of literature on multivariate modeling.
The purpose is to review these models in general as well as to keep this thesis systematic.

2.1. Principle Component Analysis (PCA)

PCA in many ways forms the most fundamental basis for multivariate data analysis [S. Wold, et
al. 1987]. The essence of PCA is to represent the original multi-dimensional data with
(significantly) fewer descriptive parameters (principal components, or latent factors) which
capture the main variation residing in the data through orthogonal decomposition. Assume that
the data matrix X is composed of I objects (rows) and K variables (columns). Objects can be
samples taken to the lab, time points of a process, batches from batch process, etc. Variables
can be absorbance at different wavelengths, frequency, scales, pressure, temperature, flow, etc.

Mathematically, PCA can be written
-
X=>»tp'+E

F denotes the number of components, indicative of the complexity of the observed variations in
data. The principal components represented by t;p, pairs are ordered by amount of variance
captured. Orthogonal scores, t;, describe sample relationships, and orthonormal loadings, py,
variable relationships. Residuals are contained in E.

PCA is a versatile exploratory tool, which has a wide range of application areas. It can be used
from initial screening to discrimination and classification, etc. with visualized graphical
representations. Visual tools such as score and loading plots, plots of Hotelling T statistics and
lack of model fit statistics Q, residual plots give a very convenient way to understand data. PCA
has been used throughout the following papers for studying data structure, discrimination,
classification and interpretation etc.

2.2. Partial Least Squares (PLS)

The PLS approach was originated around 1975 by Herman Wold who developed a simple but
efficient way, NIPALS (Nonlinear Iterative Partial Least Squares), to estimate the parameters in
the modeling of complicated data sets in terms of chains of matrices (blocks), which led to the
acronym PLS for these models.

-3.
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PLS is a method for relating two multivariate data matrices, X and Y, to each other by finding
projections into lower dimensional subspaces of X and Y which maximize the covariance
between them. See Figure 1.

Variables

Variables

Objects Objects

Figure 1. A schematic overview of PLS modeling

X and Y are modeled as:

X =itfpf'+E
f=1

These are known as outer relationships. The relationship, the regression link, between X and Y
is established with the inner relationship w=bgd;, i.e. the scores in Y are modeled as a linear
combination of the scores in X.

PLS does not perform two independent PCA on the two matrices independently. PLS aims to
improve the predictive efficiency of the regression model by finding score vectors for X that are
maximally correlated to the scores for Y. Unlike Principal Component Regression (PCR), PLS
allows the Y-structure to intervene directly in the X-decomposition [Esbensen, 2000].

The PLS2 NIPALS Algorithm is given below [Wold, et al, 1984, Hoskuldsson, 1996]:

0. Initialization of X and Y matrices appropriately (centering, scaling, etc.).
S=1: X=X5 Y=Y

1. Choose the column in Y with highest sum of squares for initial uy

2. w=X"u /1X" wyl (w is normalized)

-4 -
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tf = Xf Wf

qr= Ythfll YthfI (q is normalized)

us=Yqr

Go to step 1 until convergence of e.g. lt; e ~to | <limit, u; may be used alternatively
pr=X bl

bf= llfT tf/th tf

Xf.,,]:Xf-tjpr and Yf+1=Yf-btjqu

10. f=f+1

11. Save the current intermediate factors and go to step 1.

e I A

This algorithm can be simplified when there is only one column in Y, namely PLS1. In this
case, y vector becomes u, and algorithm is much simpler as follows (in fact it is not even
iterative any more):

1. Initialization of X and y appropriately (centering, scaling, etc.)
S=1 X=X yr=y

we=X"y /1X y, | (w is normalized)

tf =Xf Wf

=y 4ty

pr=X /Y'Y

Xp=Xrtpy and yp=ytr o

J=f+1

Save the current intermediate factors and go to step 1.

P NN A LD

PLS has seen unparalleled application success in both chemometrics and many other fields. It
plays a key role in calibration and prediction in very many modern fields within science and
technology, e.g. perform indirect measurements of Y, which may be expensive, difficult,
laborious, time consuming, dangerous, etc, from an already established PLS model based on the
manifest X-variables instead, in the multivariate calibration context [Martens & Naes, 1987].
PLS has been used for regression and prediction in combination with some other techniques in
this thesis work.

2.3. Multi-way methods

Multi-way methods are concerned with multi-way data measured as a function of three or more
“ways”. Nowadays multi-way data come massively as many highly sophisticated instruments
are developed, e.g. hyphenated instrument that give a physical separation followed by
spectroscopy. Typical application areas cover image analysis, sensory analysis, process
analysis, spectroscopy, chromatography etc.
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One traditional approach to multi-way analysis is to perform unfolding, followed by ordinary
two-way analysis, e.g. unfold-PCA/PLS. These are then called “weak” multi-way methods as
they do not fully utilize the multi-way structure. By contrast, “strong” multi-way methods refer
to those using a complete multi-way structure in the modeling, e.g. PARAFAC, Tucker3 etc.
The reason for using multi-way methods is not necessarily to obtain better fit, but rather more
adequate, robust and interpretable models. Furthermore, true multi-way models explicitly
establish relationships between factors in all modes spanned by the data array under
investigation.

2.3.1  Unfold-PCA/PLS

Unfold-PCA/PLS is simply unfolding a multi-way array to a matrix along one of the modes,
and then performing standard two-way methods like PCA. Conceptually, this is much simpler
than strong multi-way methods, but it is not so in a multi-mode sense since unfolding may bring
some loss of information and difficulty of interpreting the loadings mixed by the unfolded
modes. It also tends to overfit the model with more noise included in the model. However, this
is problem-dependent. In Multivariate Image Analysis (MIA), unfolding images along object
(pixel) modes will cause nothing to lose for e.g. classification purpose. Unfold-PLS works in
the same way as unfold-PCA with respect to unfolding. If there is quality variable (s)
associated with each sample, the data can be unfolded (across the sample/object mode) and a
regression can be performed. In Paper V, unfold-PLS is used to predict rheological properties of
cheeses from microscopic images corresponding to each cheese.

For three-way data array, there are two model representations in terms of data configuration.

For OOV and OVV data arrays (O denotes object mode, and V variable mode), they can be
written as follows [Paper V]:

X=YTp +E
=

X=Y 1B +E
f=1

where Ty denotes back-folded score matrix (score image), pyloading vector, #;score vector, and
Prback-folded loading matrix (loading image).

The difference is caused by the fact that unfolding is carried out along two object modes
(sample) for OOV data array, while two variable modes are unfolded for OVV data array. See
details in Paper V.
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2.3.2. PARAFAC

PARAFAC is a true multi-way decomposition method. The PARAFAC algorithm is not
sequential, and hence refitting is necessary, while PCA is a least squares model, fitted
sequentially (NIPALS). PARAFAC algorithm can be based on Alternating Least Squares
(ALS), GRAM/DTLD, PMF3 etc. A detailed tutorial on PARAFAC is given by Bro [Bro,
1997]. A PARAFAC model of a three-way array is expressed by three loading matrices, A, B
and C with elements a, b]f ¢y and the corresponding residuals. It can be written

F
xijk = Z alfib.ifck.f' + eijk
=

where F is the number of components, e, denotes the residual elements.
s

It can also be written

X=Ya ®b &
f=1

where a, b,’ c, are the fth column of the loading matrices A, B and C respectively, and the

symbol ® denotes Kronecker multiplication.

2.3.3. Tucker3 model

Tucker3 model is another basic multi-way method. As compared to PARAFAC, it allows more
flexible solutions, e.g. the number of components can vary in A, B and C through G. By
leaving one or two modes uncompressed, Tucker3 model becomes Tucker2 and Tucker]l model
respectively. Tuckerl is actually identical to unfold-PCA. Tucker2 may sometimes be
beneficial, e.g when one of modes contains very few observations. Tuckerl (unfold-PCA) is
adopted in MIA.

A tucker3 model is a weighted sum of all possible outer products between the factors stored as

columns in A, B and C with the weight of outer product determined by a core array G (wj, w,,
ws). It can be written in a same manner to PARAFAC

D E F
'xijk = Z Z Z aid bjeckf gdef + eijk
d=1 =1 f=l
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where the index D, E, F denotes the number of components in each mode, and & s the

elements of core array G.

2.3.4. Multi-way Calibration

There are many possible multi-way calibration methods, among which unfold-PLS and N-PLS
associated with a trilinear (PARAFAC-like) model are introduced here. Unfold-PLS is
characterized by performing ordinary PLS on a two-way array unfolded from a three-way array
and y variable(s), while keeping the object mode of X in common with dependent y intact. N-
PLS based on PARAFAC model can be represented graphically in Figure 2 (with one y
variable illustrated). As described earlier, the Y-block can be a vector, a two-way matrix, or a

three-way (N-way) matrix.
by by
R
+...+ +
1 ap

ub
= [ |

Figure 2. N-PLS model based on two steps: PARAFAC decomposition of X, followed by PLS
on scores from X and y.

J
I X;;=
K

a

Details on multi-linear calibration are given by [Bro, 1996, Smilde, 1997]. Bro pointed out that
the advantages of N-PLS (including tri-PLS) over unfold-PLS can be highlighted by the
following two points: 1) The trilinear model is more parsimonious, simpler and thus easier to
interpret; 2) Less prone to noise due to decomposition across all modes.

N-PLS is used to relate Y—rheological properties of cheeses to X—microscopic images in
Paper V. The results show that N-PLS models are apparently superior to unfold-PLS models in
this case.

However, there is no general rule in choosing which method to use. The knowledge of data sets
under investigation and a priori knowledge of calibration methods, namely proper problem
formulation, is always a must. For instance, we have found unfold-PLS works very well in

-8-
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multivariate image regression (MIR). There might also be a possibility of applying N-PLS in
multivariate image regression, i.e. finding regions of interest.

2.4. Validation

Validation, a controversial topic within chemometrics, has provoked a wide range of
discussions in recent years. Validation is now gaining more attention from reflected
chemometricians. Validation is an important aspect of any multivariate data analysis,
prediction, classification, and other data modeling. Validation, in a data analytical context,
means assessing the performance of a data analytical modeling or a prediction validation. The
purpose of validation is to substantiate that a particular model will work according to its
purpose, not only in the calibration/modelling situation, but also in the future for new, similar
data, as well as to avoid either overfitting or underfitting of data models. Validation may thus
typically be used both for optimizing model complexity, e.g. the determination of the optimal
number of PLS-components (“internal validation”), and for prediction validation by assessing
e.g. the RMSEP of future prediction (“external” validation). Already when we select training
objects for calibration, for instance, we must also think of how the model should be validated. A
prediction model that is not properly validated is useless.

An introductory overview of Principles of Proper Validation (PPV) may be outlined by a set of
characterizing distinctions [Esbensen, 2001]:

1. There is no single universal method of validation (- contrary to many myths)
Validation cannot be fully understood by focusing on the methods of validation only

3. Validation can only be understood in terms of the underlying principles behind proper
validation

4. PPV is always a reflection of the specific data structure present in any given problem or
data set

5. The objective of PPV is to establish a proper correspondence between method and the
empirical data structure

6. PPV is general and applies to all situations in which assessment of performance is desired,
be this prediction-, classification-, time series forecasting-, modeling validation a.o.

In chemometrics, validation is perhaps most well known regarding prediction validation, of
which there are (at least) three types, namely test set validation, cross validation and leverage
correction validation. The concept of “sampling variance difference” is intimately connected
with proper understanding of the different validation methods offered in the data analysis
communities. Figure 3 shows an overview of external and internal validation, describing the
relationships of sampling, test validation, cross validation, leverage correction to one another.
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Figure 3. Schematic overview of internal and external validation. Cross-validation segments
only functions as virtual, temporary small test sets. With cross-validation there is no second
sampling from the target population: Cross-validation is a simulation of the test set validation
only. With leverage-corrected validation a direct copy of the training set serves as the virtual
test set, suitably "modified" by leverage corrections to the prediction residuals; leverage-
corrected validation can also be viewed as a weighted, one-segment cross-validation. Both
cross-validation as well as leverage-corrected validation are internal validations only. Only test
set validation approach incorporates the essential sampling variance difference.
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2.4.1 Sampling variance difference

If/when one has secured two (or more) optimally sampled, “representative” data sets, there can
effectively be only one variance component that will differ between them: the sampling
variance difference. There will principally be an inherent sampling variance difference between
any set(s) of independent correct samplings from one parent population. It is unacceptable, both
from a philosophical as well as from a practical scientific point of view, a priori to discard the
very possibility to assess the contribution from this sampling variance difference. But this is
exactly what all validation schemes do, which do not include the critical sampling variance
difference component.

It is also this sampling variance difference that will help us quantify fully the data model
performance in future situations (predictions, classifications...) — provided only that the test set
is representative and structurally correct in the above sense. For these reasons it is only a test set
validated model that will ever be able to render a fair and valid estimate of both the number of
optimal components to be used in, say, a particular prediction model as well as the error to be
expected in future predictions (RMSEP). There is one fundamental bonus associated with this
insight [Esbensen, 2001] — it is only necessary to perform one proper test set validation in order
both to estimate the inherent model dimensionality (internal objective) as well as the RMSEP
(external), all in one, optimal, valid procedure.

2.4.2 Test set validation

A proper test set should preferentially be as large as the training set, and cover the same ranges
and covariance features — drawn under the same sampling conditions. In other words, both test
set and training set must be as similarly drawn as at all possible, albeit with the critical
difference that the test set necessarily must represent a second, “future” sampling from the
parent population. Drawing such a test set will represent a similar situation to that which a
calibrated model is to be used for future prediction.

2.4.3 Cross validation

Certainly one often cannot always get access to “as many objects as fully desirable”.
Realistically, there are often limits so that test set validation is de facto out of the question.
Naturally the validation issue does not stop here - in fact, it just becomes more challenging.
Suffice here to mention just some of the more often encountered reasons for this:

e not enough resources (money, equipment, sample containers, operators, ...)
e not enough time before the opportunity to acquire a second/third relevant data set is
gone.
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e not enough experience/knowledge (that indeed a second/third data set was necessary)
e wrong information/myths (“all that’s needed is a good cross-validation procedure”)

If so, we plainly have to resort to another method. Obviously cross-validation comes to the fore:

In this situation it is optimal that one tries to make the calibration set as big - and thus as
statistically representative - as possible. With cross-validation a series of sub-model calibrations
will be run with different, non-overlapping subsets of calibration objects, all from the training
data set, used as temporary virtual validation objects. Their formal usage is only in a similar
fashion as for real test set objects. In reality with cross-validation there is no second sampling
from the target population: Cross-validation is but a simulation of the proper test set validation,
without taking into account the essential sampling variance difference.

With cross-validation one in fact only assesses the internal robustness of any covariance data
structure by selecting different sizes of segments for cross-validation and/or by using several
repeated cross-validation sub-samples.

There are two major types of cross validation:

o “Full” cross validation (or Leave-One-Out validation, LOO)
Often used if the training data set is “small”. For the larger and more well-balanced data
sets, full cross validation will eventually tend to lead to more-and-more over-optimistic
validation results, because one left-out sample on average will give a significantly smaller
simulated sampling variance contribution. For larger data sets one would eventually rather
choose segmented cross validation, which will then be a more realistic validation
configuration.

e Segmented cross validation

This approach is often used if there is a relatively large number of samples in the training
data set, but we nevertheless don't know exactly how to pick out a representative subset.
The number of segments will always depend on the size and structure of the data set and on
its covariance complexity. The choice of the proper number of cross-validation segments
from the calibration data set is in fact very much related to the actual model structure, and
it is the responsibility of the data analyst always to observe the specific data structure of a
given training data set and to determine the proper number of segments accordingly
[Esbensen, 2001]. The pertinent information source is the ¢-u plot (or similar graphic plots
for other types of data analysis). A plot of t-scores against u-scores is the specific PL-
regression reflection of the pertinent X-Y relation (correlation) for one particular
component of a PLS model, e.g. t1-ul, t2-u2 etc.
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e Leverage correction
Leverage correction is a "quick-and-dirty" validation method. It is quick because it only
requires us to make one model, dirty because the prediction error will always be an over-
optimistic estimate. This is because all objects are used for both modeling and validation.
We only use leverage correction in the first runs to get the initial impression. Like cross
validation, we also never use a separate test set but use the correction approach to simulate
the test set validation.

The entire validation dilemma can be summarized by the following distinctions [Esbensen,
2000] :

e Cross-validation endeavors to simulate test set validation, in that small, test set segments
are apparently used, but they are not independently sampled (as they were de facto sampled
simultaneously with all other training set objects), and they are invariably replaced into the
training set.

e With any type of cross-validation the training data set size - the model support - is
invariably reduced by a factor ranging from N/(N-1) to 0.5, so that the very purpose of
modeling is in fact always partially impaired. This leads to a refocusing on:

e The importance of the second (third...) test set - the test set imperative.

e This also leads to a re-focusing on the “problem” of how to choose the “optimal” number
of segments, S, in segmented cross validation - Which guidelines for this choice exists?

® The t-u plot comes to the fore for all of these endeavors

Full exposition of these validation issues can be found in the recent tutorial: “Principles of
Proper Validation (PPV)” [Esbensen, 2001].
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3. MULTIVARIATE FEATURE EXTRACTION TECHNIQUES

There are many multivariate feature extraction techniques that have been used in extracting
information from raw data, such as FFT, WT, Single Value Decomposition (SVD),
autocorrelation and autocovariance functions (ACF), histogram, AMT etc [Kvaal, 1998, Wold,
1999, Huang & Esbensen, 2000]. They all have something in common when working on
images: image feature extractors. Different features extracted from images can be categorized
into three types: spectral, textural, and contextual features [Haralick et al, 1973]. Spectral
features is concerned with multi-spectral images since it gives information about characteristics
of spectrum as a function of wavelengths. Textural feature analysis has been one of primary
tasks in computer vision applications. Textural features contain information about spatial
variation distribution within one single image channel, while contextural features are extracted
from blocks of pictorial data surrounding the region of interest. These three types of features are
bound to contain useful information from images, and hence can be utilized in combination
with multivariate data analysis. When it comes to multivariate characterization, these transform
techniques operate on images as powerful preprocessing facilities for subsequent multivariate
modeling (PCA, PCR, PLS etc.). In Paper I-V, attempts have been made to characterize
samples/images and establish links between images and properties of samples.

The following domain transform techniques have been touched upon in this thesis work:

e  Fourier transform (FFT)

e  Wavelets Transform (WT)

e AMT (Angle Measure Technique)

e  Single Value Decomposition (SVD)

e Autocovariance (ACOV) and autocorrelation (ACOR) spectra

It is noteworthy, that all these transform techniques are global feature extractors which view
individual images as a whole, instead of working locally on part of an image within one band.
FFT, WT and AMT have also been used to extract features from the acoustic time series in
connection with chemometric modeling in this thesis work.

3.1. Fourier transform

This classical domain transformation has been introduced to the field of chemometrics in recent
years. FFT frequency domain representation of original time domain provide FFT power
spectra, a new optimal type of X-spectra for multivariate data modeling. When it is used for
multivariate calibration, this approach is called Fourier regression. In Fourier regression, a
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regression model is formed between the FFT-transformed frequency components and a
dependent variable(s), e.g. in acoustic chemometrics, where Fourier regression was used to
relate the acoustic signals to process monitoring, see Paper VII.

In Paper V, 2-D FFT transform of an image is used as a preprocessing step before regression.
Frequency components of images will form a three-way data subject to three-way modeling.
FFT transform is also used in acoustic chemometrics to extract information from acoustic signal
in combination with multivariate calibration, see Paper VII.

3.2. Wavelet transform (WT)

Wavelet transform has been applied successfully for signal processing and image analysis in
chemistry in the past decade. WT was mainly employed for de-noising and data compression in
analytical chemistry, including chromatography, IR spectrometry, mass spectrometry, NMR
spectrometry, etc[A.K. Leung, 1998, B.K. Alsberg,1997, S.G.Nikolov, 1996] One of main
features of WT is that both time and frequency information of signal are retained. An other
advantage is that a lot of basis functions can be chosen, while only the sine and cosine function
can be basis in FFT. In analogy to Fourier regression, wavelet transform has been introduced as
a preprocessing step before the regression, leading to the concept of Wavelet regression.
Wavelet transform can also be regarded as a feature extraction tool for use in multivariate
calibration in this context. The wavelet transform of signal(s) is coded as wavelet coefficients
which act as regression vectors for the dependent variable(s) in the regression model.

In the work for Paper V, 2-D wavelet transform of an image was also tried out. A three-way
data array composed of 2-D wavelet coefficients matrices from a set of images was subjected to
multivariate data modeling. But the results were not as good as those for the 2-D FFT
transform. In Paper VII, FFT worked better than WT in extracting information from acoustic
signals in conjunction with chemometric modeling.

3.3. Angle Measure Technique (AMT)

The theory and applications of Angle Measure Technique (AMT) comprise a significant part of
this thesis work. AMT is a new domain transform technique, which transforms the original
signal into complexity spectra in a completely new scale domain. AMT was originally
proposed by Robert Andrle [1994] as a novel substitute for fractal analysis to explain the
complexity of geomorphic lines. This technique was later introduced into chemometrics and
further to as a generic approach for all measurement series [Esbensen et al, 1996, Huang &
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Esbensen, 2000]. The AMT in this thesis works mainly in image analysis as an image feature
extractor. The most useful aspect of this new AMT transform is that the compound spectra
(Mean Angle, Mean Difference Y, etc.) can be used as 1-D object vectors in multivariate data
modelling (e.g. PCA, PCR or PLS). For 2-D image objects it is the both global and local texture
of the field-of-view which is transformed into a corresponding 1-D linear complexity spectrum.
These complexity spectra implicitly carry a truly remarkable information richness related to all
scale(s). This is the principal feature of AMT which performs as a useful texture-characterizing
pre-processing tool in very many of applications.

Some major characteristics of AMT in image analysis are:

e Digital image arrays are often (very) large 3-way data. AMT transforms a 2-D
image into a 1-D complexity spectrum, without losing textural information.
e AMT can thus also (partly) be considered as a data compression method.

e AMT has a high sensitivity w.r.t. even (very) small complexity-scale changes, see
Huang et al. [2001], Esbensen & Huang [2001].

§“®\>\§* §\§ Ir
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Figure 4. Graphical User Interface (GUI) of the AMT toolbox for Matlab 5.x

The author has been developing the AMT software package during this Ph.D study. Figure 4
shows a GUI of AMT toolbox for image AMT transform, which allows for selecting images,
different channels, AMT calculations etc. It is designed for general purposes, so it is an casy-
to-use toolbox. The core calculation part is written in Mex C (Matlab EXcutable C) and
compiled to DLL in advance for much higher speed. For an image of size 512*512, it only takes
a second or so to acquire AMT complexity spectra in a Pentium III computer. This toolbox is,
therefore, quite promising for on-line industrial applications.
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The AMT transform calculates “Mean Angle (MA)”, as well as the other indices e.g. “Mean
Difference Y (MDY)”, by averaging all individual measures over a set of randomly chosen
points along entire measurement series, Figure 6. By incrementing the scale, “S”, the AMT
produces the MA complexity spectra as function of scales.

Figures 5-8 illustrate the derivation process of AMT complexity spectra from a microscopic
image of yogurt.

Figure 5. Microscopic image of yogurt. (Courtesy of Arla Foods, Denmark). Note the
background is water (black).

Difference X

T
\ B Difference Y

.8 A Y
Digitized [ing

Figure 6. Explanation of the AMT derivation. The solid line represents the 1-D measurement
series unfolded from a 2-D gray-level image in this case. The individual "Angle" is measured as
the supplement to angle CAB. Difference X and Y is the horizontal and vertical distance
between point C and B, respectively. [Huang & Esbensen, 2000]
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Figure 7. All individual angles measured along a number of randomly chosen 1000 points when
scale =10 (left panel) and 100 (right panel).
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Figure 8. AMT complexity spectrum (Mean Angle) derived from the illustration above, with
scale ranging from 1 to 256 (pixels). Note that Mean angles measured at scale=10, 100 from
Figure 7 are marked by the two dashed lines.

This AMT toolbox also allows for preprocessing of images. For instance, images under study
may contain “useless” background, or conversely, this background percentage needs to be
determined. In such a case, the freedom is given to users to remove background by choosing a
certain cut-off gray level, as shown in Figure 9. The AMT transform can then be performed on
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a new measurement series where the “background” pixels have been removed, while the
“above-cutoff” parts of the image are dynamically juxtaposed. Figure 5 is a good illustration of
this type of image, where an inherent background is always present.

Chaase the cut-off level

4000 6000 8000 10600 12000
Image pixels

Figure 9. A dialog box for choosing cut-off level of an image for subsequent AMT calculation

The AMT complexity spectrum (MA) is calculated based on the same image, but without this
background. Comparison of two relevant spectra is shown in Figure 10. The spectrum with
background removed, gives higher complexity in general than the original spectrum, as can be
seen from apparently more local peaks-and-valleys and higher MA-values at most of the scales.
It is also indicated that some smooth information are eliminated from original signal. For
detailed interpretation, see Paper I-IV.
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Figure 10. Comparison of AMT spectra derived from original image and “background
removed” image.

Recently a new development in AMT was proposed by Kvaal & Bro [personal communication,
2000]. The basic idea is to calculate a histogram of all angles for each scale instead of mean
angle. Figure 11 shows the histograms of angle measures at scale=10, 100. The argument is that
some information may reside in histograms of all angles which possibly are also much related
to inhomogeneous feature in the signal/image. Subsequently, a 3-way AMT landscape can be
used for multivariate modeling, with the aid of 3-way methods such as Tucker3, PARAFAC, N-
PLS etc. See Figure 12.
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Figure 11. Angle histogram with 180 bins corresponding to a specific scale. (a) Scale=10; (b)
Scale=100

AMT landscape

150

1004

100

Scale Angle Bin

Figure 12. Two-way AMT landscape

In analogy with the above, AMT regression makes use of the AMT spectra, such as MA, MDY
etc., which carry potential regression information at each corresponding scale. An AMT
regression model is established between the AMT complexity spectra and a dependent variable

(s).
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More details are given in Paper I-IV.

3.4. Singlular Value Decomposition (SVD)

Singlular Value Decomposition(SVD) is related to principal component analysis [Geladi, 1996,
Kvaal 1998, Wise, 1999]. Consider an image, X of size (i X j). The SVD of this image matrix X
is given below:

X=USV’

where U and V are orthogonal matrices of size i x r and j x r, respectively, and S is a diagonal
matrix of size r x r. r is the rank of X.

The singular values are sorted in descending order on the diagonal of S. The SVD spectrum
A of an image is defined as the vector of diagonal elements from S:

A =diag(S)
Usually a truncated version of the SVD spectrum will be used :
A, =diag(S,)(tr < min(i, j))

The SVD spectra containing information from a set of images can now be arranged as object
vectors for subsequent multivariate data modeling. This technique has been used e.g. to predict
the sensory porosity from bread images [Kvaal, 1998].

3.5. Autocovariance (ACOV) and autocorrelation (ACOR) spectra

The Autocovariance (ACOV) and autocorrelation (ACOR) spectra are also used for
multivariate feature extraction due to their statistical interpretations and potential of reflecting
characteristic information of different textures. Like AMT and SVD spectra, they also give
decaying spectra containing information from images. How fast the spectra decay gives
indication of different textural characteristics, e.g. texture images with large amounts of local
variation generate slowly decaying spectra. The 1-D ACOV and ACOR spectra can also be
estimated from images, and then facilitated for multivariate characterization [Kvaal, 1998].
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There are certainly many more feature extraction tools for images. But only those techniques in
relation to this research work are discussed here.

In conclusion, image feature extraction techniques in conjunction with multivariate methods
provide a powerful approach for a variety of promising applications, e.g. discrimination and
classification of samples, prediction of properties of samples from images etc. On-line
applications e.g. monitoring image features can be made possible by using rapid imaging and
multivariate modeling. It is, however, important to realize that the choice of multivariate feature
extraction techniques depends much upon a priori knowledge of data/images under
investigation, e.g. the structures of images. Experience from Paper I-V indicates that FFT works
better than WT for prediction of rheological properties from microscopic cheese images, for
example, and AMT seems superior for capturing information from irregular texture images,
ibid.
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4. MULTI-WAY METHODS IN IMAGE ANALYSIS

Spontaneously, the question “ why multi-way methods in image analysis” would arise at first
sight of this title. Images, coming in various forms, from microscopic via digital camera to
satellite images, provide a set of low-cost tools, with rich information, to characterize complex
samples and hence are receiving more and more attention nowadays. Image data, such as in
chemistry and chemical engineering, are inherently multivariate due to the fact that they can be
up to three spatial dimensions and many spectral dimensions. Time, temperature, or
environmental studies can add more dimensionalities to the image data. Tackling these image
data begs for multi-way models from chemometrics. MIA is a typical example of using the
unfold-PCA model. The extended concept, N-way image analysis, is concerned with applying
both “weak” and “strong” multi-way methods to image analysis. Paper V is dedicated to this
issue and hopes to be inspiring for more contributions to this area. In this paper, both weak and
strong multi-way methods are applied in order to decompose and characterize image data
(macro satellite images, virtual fluorescence images and microscopic images), and obtain
systematic insight into their abilities to capture data structure. Attempts are also made to
investigate the relationships between serial images and their corresponding properties.
Comparisons of the efficiencies of these methods are also given. However, the goal of
comparison is not to verify one method over another, but rather to explore some new,
alternative approaches to N-way image analysis and furthermore to investigate the differential
suitability of the methods applied.

4.1. Relations of image analysis, processing and data analysis

The concepts of image analysis, image, data analysis and image processing are used widely but
with little consistent terminology discipline. As described in the book Digital Image Processing
by Gonzalez & Woods (1992), image analysis is composed of three areas, low-level,
intermediate-level, and high —level processing. In the low-level processing, image acquisition
and preprocessing are treated. Intermediate-level processing extracts and characterizes the
components in an image resulting from a low-level processing. This encompasses segmentation
and representation. Finally, high-level processing involves recognition and interpretation, which
is usually the principal point of image analysis. Image analysis distinguishes itself from image
processing in that the ultimate output of image analysis is numerical data and knowledge rather
than a direct image(s). Geladi & Grahn (1996) generalized the relation of image analysis and
data analysis as shown in Figure 13.
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Figure 13. Relationships between images, data, analysis and processing. [Geladi & Grahn,
1996].

A huge literature can also be found on color imaging/univariate digitized image analysis
[Gonzalez & Woods, 1992, Bernd, 1997, Geladi & Grahn, 1996]. Many numerical,
mathematical, or statistical techniques have been applied to image data in the vast area of image
analysis. Common methods for recognition are decision-theoretic methods that represent
patterns in vector form, and structural methods based on symbolic form (such as strings and
trees). Correlators, Bayes classifiers and neural networks are typical approaches to decision-
theoretic recognition, while symbolic matching and syntactic methods form the structural
approaches. Techniques for image interpretation are based on predicate logic, semantic
networks, and production systems.

Present techniques for recognition and interpretation are based on multivariate data analysis,
e.g. Multivariate Image Analysis, N-way image analysis which will be described in Paper V.

4.2. Terminology and history in N-way image analysis

In recent years, multivariate techniques have also be introduced to image analysis, dealing with
data modeling of complex images. The introduction of multivariate data analysis to image
analysis has opened up new approaches to analyze image, e.g. segmentation, representation,
recognition and interpretation etc. Multivariate Image Analysis (MIA) including Multivariate
Image Regression (MIR)/Multivariate teXture analysis (MIX) are typical methods [Esbensen &
Geladi, 1989, Geladi & Grahn, 1996, Windig, 1998, Esbensen & Lied, 1999]. MIA is not
separate from the three levels of processing mentioned above. It focuses more on intermediate
and especially high-level processing, with its own unique approach. Based on multivariate
techniques like PCA and PLS, MIA offers a completely different new way to image analysis
(segmentation, recognition and interpretation). A MIA model uses a bilinear decomposition of
image data (soft modeling) to segment, recognize and interpret image with the aid of visual
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graphical plots, which allows for a great deal of flexibility. Applications have been found in
many fields such as microscopy, satellite remote sensing, medical imaging, radiology, process
technology, chemistry, spectroscopy and astronomy, etc [Esbensen & Geladi, 1989, Macgregor
et al, 1997, Windig et al, 2000, Lied & Esbensen, 1999, Huang & Esbensen, 2000, etc.].

A new, more general term for multivariate data analysis on images, N-way image analysis, is
proposed in this work for the application of all multi-way methods to image analysis [Paper V].
The unique aspect of N-way image analysis is a.0. also the possibility of modeling of multiple
images simultaneously, not just of one single image. Here multiple images can refer to
multivariate images (congruent), as well as more easily obtainable images (incongruent) which
possess common properties and interrelationships. Different multi-way models are applied to
different types of multivariate images. It is underlined that a priori knowledge of image data
and appropriate problem formulation is imperative in choosing pertinent multi-way models for
properly configured image data.

Some interesting work has been done in food technology, in which multivariate techniques
made it possible to carry out a combinatorial study of data from different measurement systems
e.g. fluorescence, NIR, image features etc. Models were established to determine complex
quality characteristics in food [J.P. Wold etc. 2000].

However, the huge potential of multivariate data analysis on images has not been explored
widely, which can be seen from the still rather limited number of literature in this area.

4.3. Data configuration in multivariate data analysis on images

Many multivariate models are available for N-way image modeling. However, one can not just
apply different models directly on “image data”, but one must have a clear overview of data
configuration and scientific objectives as mentioned earlier.

It has been pointed out in Paper I and Paper V that proper data configuration is important in
multivariate data analysis on images. It is essential that choosing an optimal data analytical
methodology require an appropriate data configuration pertaining to the salient problem
formulations in N-way image analysis. Arrangement of the often huge amount of image data is
intimately connected with a scientific goal or pertinent problem formulation. One of the
fundamental prerequisite of multi-way modeling is that data array be trilinear (for three-way).
Arrays of three-way data can be characterized by a categorical object/variable (O/V)
convention. Four different three-way configurations are represented by codes (000), (OOV),
(OVYV) and (VVYV), of which the two extremes are usually of no practical consequence for
multivariate data analysis. A three-way data array composed of a multivariate image, for
instance, may be organized as OOV, which is perhaps most familiar three-way data array in N-
way image analysis. Data configuration may become more complicated when a third categorical
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direction (mode) is introduced, Time. It is argued that Time should be treated as a V-direction or
its own direction, as Time would appear to be equivalent to V-direction in process
chemometrics. Multi-temporal multivariate images are a stack of images of the same object
characterized at different time intervals. This type of image data array can be represented as
OOT.

In a simpler case, two-way data arrays can be constructed with the aid of multivariate feature
extraction techniques, such as AMT, SVD, ACOR/ACOV etc. Any of these techniques can
transform 2-D images into 1-D object vectors, in a new domain which helps form a new
variable mode (s) for subsequent 2-way modeling [Paper I-IV].

It is noteworthy that advanced imaging and spectroscopic technology today allows for rapid
collection of both spectral data and images. Spectroscopy could be considered a special case of
imaging, a 1-D image. Both spectral data and images can be combined by means of multivariate
chemometric modeling to provide a powerful approach to extract maximum information from
the system(s) under investigation.
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5. AcousTtiCc CHEMOMETRICS

Acoustic chemometrics is a non-invasive quantitative measurement technique, characterized by
easy “clamp-on” deployment of acoustic sensors, followed by an essential and integrated signal
analysis/multivariate calibration data modeling. Acoustic chemometrics is an emerging
discipline, encompassing diverse fields such as electronics, applied engineering and
chemometrics and combines acoustic sensor technology with multivariate data analysis
[Esbensen et al, 1998, 1999].

The generic data flow path in acoustic chemometrics is shown in Figure 14 below.

PHYSICAL | el | | ey | ey [T A
PHENOMENON "-
\

S —
VIBRATIONS SENSOR SIGNALADAPTION LOWPASS FILTER
ACCELEROMETER
AID CONVERTION SIGNAL ANALYSIS MULTIVARIATE
CALIBRATION

Figure 14. Schematic data flow path in acoustic chemometrics (Courtesy of M. Halstensen).
The working of acoustic chemometrics principally consists of four main elements:

Sensor technology: Selection of types/number of sensors, positioning, mounting etc;

Data acquisition: cabling, signal conditioning (amplification, filtering), signal processing (A/D
conversion etc.);

Signal analysis: Transformations including FFT, Wavelets, AMT (Angle Measure Technique)
[5], autocorrelation, etc;

Multivariate modeling/calibration: PLS regression for multivariate calibration and prediction
of quality parameters of interest from acoustic data.

Acoustic chemometrics aims to be able to measure directly from the outside of a
pipeline/container wall, at a valve, on suitable flanges or similar constructions by “listening” to
the acoustics from inside the conduit etc. The basis of this approach is due largely to the fact
that emission of “noise” is an inherent characteristic of many production, manufacturing and
transportation processes. “Noise” here means acoustic energy output not only in the audible
range (5-20KHz), but also denotes the forms of vibrational energy in contiguous frequencies
outside audible range, i.e.0-5, 20-250KHz. Acoustic signals generated from process e.g.
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pneumatic transport lines must contain abundant information about the process. The
establishment of links between the acoustics and the parameters of process/products demands
the use of chemometrics. It plays a major role in searching for the correlations between
acoustics and process/products under investigation. It is indispensable as an integral part of
many new measurement techniques. In sum, acoustic chemometrics makes use of domain
transformations of acoustic signals characterizing vibration spectra developed in the process, as
X-input for multivariate calibration of parameters Y.

The phenomenological master equation (associated with FFT) for acoustic chemometrics can be
written as

FFT X-spectra =F ( intrinsic physical/chemical properties, i.e. concentration,
velocity, flow-rate, temperature, particle size distribution, etc....)

This is to be related to a multivariate regression modeling (associated with PLS)

Y parameter(s)= PLS-R (FFT X-spectra)

Acoustic chemometrics is used to monitor powder breakage during pneumatic transport in
Paper VI.
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6. APPLICATIONS OF AMT, MULTI-WAY METHODS IN IMAGE ANALYSIS AND
ACOUSTIC CHEMOMETRICS

The development and applications of multivariate chemometric tools within the realm of this
thesis has been largely driven by the need for efficient methods in extracting information and
exploring data structures from raw data such as images and acoustics, and establishing models
that can relate sample properties to easily obtainable raw data.

Figures 15-18 generalize the unified multivariate approaches developed for multivariate
characterization and prediction, and applications detailed in Paper I-VI.

6.1. AMT applications

In powder industry, traditional image analysis for powder characterization focuses on the
individual particles typically using e.g. microscopic imaging and individual morphology
description etc. There is very often a long and troublesome procedure before even trying to
translate this piecemeal information to characteristics of powders. Traditional image analysis
also necessarily involves a difficult and time-consuming sample-preparation process, such as
dispersion of the powders before microscopic imaging etc. This makes it extremely difficult to
carry out a on-line, or at-line measurements in practical situations. Completely discharging any
specific dealings with the individual particles, the present alternative multivariate AMT
chemometric approach, acquires images directly from in-situ powders with an absolute
minimum sampling preparation necessary, followed by the AMT transforms, multivariate
image analysis and/or chemometric modeling. This type of imagery, recordings of the entire
field-of-view of powders, also contain some information relating to the individual particles, but
mainly about the bulk powder, which is a reflection of the complex bulk, interacting properties
of the powder, for example “stickiness”, flowability, fluidization velocity etc. The advantage of
using AMT is that AMT characterizes the complexity of both local individual particles and
global bulk powders simultaneously. For example, some local properties like individual particle
size, shape, roughness, smoothness, regularity etc. can be represented, from which the related
global properties like flowability, fluidization velocity, wall friction angle can also be described
by multivariate AMT regression. These important powder functional properties usually have to
be measured by running large-scale experiments, which requires much time and money. The
AMT approach derives predictions of the relevant powder properties under one roof, however.
The AMT image features—spectra---contain information necessary to predict a great many of
these properties. This work explores to what extent this is possible. The image analytical global
field-of-view approach based on simple and direct powder image analysis, coupled with
chemometric data analysis, appears very practical and well suited for industrial use, and
especially for at-line or in-line characterizations, see Figure 15. Details are given in Paper I and
II.

-30 -



Developments in Applied Chemometrics: AMT, acoustic chemometrics and N-way image analysis

Further applications of Multivariate AMT approach are given in Paper IIT and IV.

This unified approach has also been used to conduct fast and automated monitoring of a
germination process. Germination frequency and speed of germination plays a key role for yield
assessment in agriculture and for estimating malting quality in the brewing industry. It is crucial
for the malting industry to obtain a fast and homogeneous germination in the malt house.
Therefore it is of great importance to have a fast and objective germination test to investigate
the malting barley before malting it. High percent germination and vigorous growth means a
good malting barley variety. Selecting a variety is the first step in successful production and
marketing of malting barley. Currently, there is a lack of efficient methods available to measure
germination percentage of barley. The number of germinated barley kernels is usually counted
manually in the laboratory. This is very laborious, time-consuming and subjective. There is a
strong need from industry calling for fast, automatic methods in measurements of germination
percentage. The present new compound method, multivariate AMT approach in combination
with image analysis appears promising for industrial use due to its simple imaging and fast
modeling as shown in Figure 15. This approach is able to characterize germination process and
conduct indirect measurement of percentage of germination varying with time. [Paper I1I]

The existence of non-neglectable quantities of impurities (pollutants) in virtually any mass
produced product is unavoidable in many industry sectors because of competitive economic and
production technology pressures a. 0. Sectors like food, feed and beverage production are prime
examples, but the problem of a non-zero impurity level is almost universal in the particulate
industries. The purity of final products is one of the critical criteria for many quality
evaluations. Sugar manufacturers, for instance, need strict control and very high-sensitivity
detection of the impurity levels in their process and products. Wheat/rice producing companies
have to check very thoroughly for impurities of foreign grains, e.g. sand and small stones in
their products. The currently used techniques used for impurity detection are typically either too
laborious, too expensive, or too slow to be applied for effective on-line, precise manufacturing
control. In fact current processes often badly demand fast, cheap and time-saving methods for
higher profits. The new AMT chemometric approach is comprised by a novel image feature
extraction technique and multivariate calibration (PLS), allowing for very accurate and precise
impurity detection by image analysis. Fast digital imaging of in-situ powders with a calibration
range of trace amounts of various pollutants, coupled with fast multivariate AMT regression
provide a unified approach for quick quantitative impurity detection as shown in Figure 15.
[Paper 1V]
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Images (2-D) Image Feature Spectra
(1-D), e.g AMT, SVD

Transform, e.g /\_\
AMT, SVD

Regression
e.g. MAR

— > /\'\ |:> X-block <:> Y-blodk

Applications of this approach and multivariate
models touched upon in this thesis

v

e  Powder characterization and discrimination.( PCA) [Paper I]
Problem: Difficult sampling, microscopic imaging, individual particles,
morphology descriptions...
Solution: imaging of an assembly of particles, easy sample preparation,
AMT transforms, multivariate image analysis and/or chemometric modeling

e Prediction of Powder Functional Properties (PLS-based Multivariate AMT
Regression (MAR)) [Paper II]
Problem: No efficient and accurate methods to measure or predict powder
functional properties...
Solution: Multivariate AMT Regression + simple imaging

e Characterization of barley germination process (PLS-based Multivariate
AMT Regression (MAR)) [Paper III]
Problem: Germination test is laborious, and fast, automated methods are in
demand ...
Solution: High sensitivity of AMT to image change, Multivariate AMT
Regression + simple imaging

e High-sensitivity particulate impurity detection and quality control. (PLS-
based Multivariate AMT Regression (MAR)) [Paper IV]
Problem: Efficient methods for impurity detection in industry...
Solution: High sensitivity of AMT to image change, Multivariate AMT
Regression + simple imaging

Figure 15. A schematic overview of multivariate chemometric approaches combined with
multivariate feature extraction techniques and applications discussed in the text.
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6.2. Applications of Multi-way methods in image analysis

A multivariate image 2-way array
3-way array (unfolded)
Regression
unfolding X-block P— Y-block

>

Variable mode, e.g.
wavelength
v
Multivariate Image Analysis, for Multivariate Image
segmentation, classification, Regression for regression
discrimination, by interactive study of two sets of images, or images
feature space and scene space. (score to vectors, etc.
plots vs. raw images or score images)
Tools used: unfold-PCA (Tuckerl Tools used: Unfold- PLS, efc.
modeling), extra mapping tools for
selection of region of interest Applications: Relate spectral
images to ground truth,

Applications: Segment different monitor the change of fruit
regions of interest from remote sensing quality etc. [Geladi & Grahn,
multispectral images. [Esbensen & 1996, Lied & Esbensen,
Geladi, 1989, Paper V, 2000] 2000]

Figure 16. An overview of the MIA approach and its applications discussed in the text

Paper V gives an overview of multi-way methods in image analysis, elaborating the proper
relationships between strong and weak multi-way data decompositions, their pro’s and con’s
and their relative merits. The paper presents a fairly complete catalogue of representative usages
of the many multi-way methods by displaying three application examples on multi-spectral
images, virtual fluorescence images and microscopic functional property images using both
weak and strong multi-way methods.

Application I shows the possibility for application of strong multi-way methods on multi-
spectral images, otherwise conventionally analyzed by MIA approach shown in Figure 16. By

-33 -



Developments in Applied Chemometrics: AMT, acoustic chemometrics and N-way image analysis

contrast, application II attempts to investigate the feasibility of applying MIA models on typical
three-way data, normally handled by strong multi-way methods and provides a new perspective
of dealing with fluorescence spectra as images. In application III, microscopic images were
taken on a set of different cheeses, which were made from a factorial experiment by varying
coagulation temperature and the amount of rennet enzyme at a number of levels. The objective
here ultimately is to derive functional properties prediction models. Reference rheological
properties for these cheeses were tested by uniaxial compression techniques. Attempts have
been made to discriminate different cheeses and predict rheological parameters from these
cheese images by multi-way methods.

The objective of Paper V is to review the multi-way methods from the perspective of proper
(i.e. problem-dependent) data array organization and the many multi-way methodological

methods presented in the literature.

Figure 17 shows the general approach of 3-way (N-way) image analysis in relation to typical
problem formulations.
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For exploratory data structure
modeling, discrimination/
classification, etc.
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Characterization of microscopic
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[Paper V]

Unfold-PLS, N-PLS on 3-way
X-block

Applications:

Prediction of Y-block,
rheological properties of
cheeses from microscopic
cheese images.

[Paper V]

Figure 17. The development and generalization of 3-way (N-way) image analysis and its
applications discussed in the text.

6.3. Applications of acoustic chemometrics

The objectives of acoustic chemometrics are manifold, such as quantitative measurements and
process monitoring. This approach has been used for quantitative measurement of volume flow
rate, multi-component mixture concentrations, density, particle size distribution, and other
physical/chemical parameters in multi-phase flow. Figure 18 generalizes this acoustic
chemometric approach and industrial and technological applications.
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In the present application, acoustic chemometrics is used for non-invasive monitoring of
powder breakage during pneumatic transport. Six types of alumina with different particle size
distributions have been tested for breakage in a plant-scale transport rig. We have investigated
the correlation between acoustic signals and the breakage of particles during pneumatic
transport, and the applicability of acoustic chemometrics as a tool for discovering quality
variations (i.e. varying particle size). By relating the acoustic information to dust fractions from
the process, we assess the possibility of predicting powder breakage during transport, based on
acoustic sensor technology and multivariate data modeling.

Time series FFT-PSD Quality
spectra parameter(s)

A FFT (WT, AMT) Regression
'W |:> X-block <:'> Y-block
T~ R

>

1l

For predictions, study of relations between the acoustics and
corresponding quality parameters, chemical/physical properties etc.

Tools used:
FFT transformation, PLS, etc

Applications:

Quantitative measurement of flow rate, particle size distribution,
concentration fractions, mixture components, flow velocities etc.
[Esbensen et al, 1998-2000]

Non-invasive monitoring of powder breakage during pneumatic
transportation [Paper VI]

Figure 18. Acoustic chemometric approach and applications, see details in the text.
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7. DISCUSSION AND CONCLUSIONS

7.1. DISCUSSION AND CONCLUSIONS

The main topics in this thesis resulted in selected developments in applied chemometrics: AMT,
N-way image analysis and acoustic chemometrics.

In Paper I, a new, compound approach for powder characterization/discrimination, based on
image analysis, AMT and PCA modeling is presented, where the theory of AMT is described in
detail. A companion Paper II proposes a unified methodology for this type of data analysis,
Multivariate AMT Regression (MAR), opening up for a wide range of application areas. These
AMT approaches are able to extract and characterize multivariate features stemming from
digital video images, as well as to discriminate/classify different powder types and predict
powder functional properties and mixing components from images.

Further applications of this image AMT chemometric approach are given in Paper III and IV.
Paper III describes the characterization of barley germination process from images using
combined image AMT, while Paper IV demonstrates the use of this approach for high-
sensitivity particulate impurity detection and quality control

In the above multivariate AMT approaches, the AMT functions as a versatile feature extraction
tool to obtain information from complex systems. It also helps to facilitate image data arrays for
chemometric modeling in terms of new data configuration(s). Other domain transform
techniques can perhaps also analogously be used to extract features and configure data for
modeling in a similar way.

Paper V gives a systematic overview of relationships and applications of multi-way methods in
image analysis, N-way image analysis. The primary objective in this paper is to review multi-
way methods from the perspective of proper data array organization and problem formulation,
and to investigate the relative suitability of the models applied. It should be underlined that data
configuration and problem formulation has direct impacts on the choice of pertinent multi-way
methods. In chemometrics, there are many rather bewildering issues concerning how to
organize the object-, variable-, time-way etc, and which particular method to use in terms of the
stated scientific goal(s). We have in particular applied strong and weak multi-way methods on
both conventional OOV and OVV image arrays. The suitability of the models varies from
example to example. For instance, MIA based on unfold-PCA is very well suited for multi-
spectral image (OOV) classification, while PARARFAC is suited for recovering pure spectra
from three-way fluorescence data (OVV). N-PLS works better than unfold-PLS in predicting
functional properties from a 3-way image array (OVV). A fairly representative set of multi-way
methods were applied in this survey, including deliberate “cross-over” experiments, in order to
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show that how exploitation of multi-way methods is logically restricted by the problem and data
array prerequisites.

In Paper VI, acoustic chemometrics is used to monitor powder breakage during pneumatic
transport. This non-invasive method is generally successful in relating the acoustics to the
particle size distributions of aluminum powders transported. There are still many remaining
issues concerning the details of the physics behind acoustic vibrations which are decomposed,
how precise this approach can be in the real-world applications, and more signal domain
transform techniques to be tried out etc.

7.2. FUTURE WORK

The AMT methodology and applications have been a prominent part of this thesis work. There
are still some remaining issues in AMT study concerning the following:

e How to exactly interpret the AMT spectra. More quantitative and qualitative
information might be extracted by further and deeper understanding of the mechanisms
behind the successful predictions.

e The AMT work here has been largely focused on image analysis. We have also tried to
apply AMT on NIR spectra and acoustics. The difficulty we had is how to choose the
optimal AMT parameter settings in terms of specific signals.

e Instead of Mean Angle, a histogram of all angles for each scale may be calculated to
obtain a 2-way AMT spectra. This makes it possible to apply 3-way modeling on 3-
way AMT data. Some extra information may perhaps be obtained especially for e.g.
inhomogeneous images in this way.

Further work on AMT can be continued towards the above problems.

In this thesis there is also an important emphasis on multi-way methods in image analysis.
Further study of the relationships between multi-way models and data configuration needs to be
carried on. New types of image data may need to be investigated and properly configured, and
require suitable multi-way methods. There is definitely a huge potential of applications in image
analysis, e.g. to combine spectroscopy and digital imaging for chemical analysis.

It will be another focus in the near future to carry out a systematic comparison study of different
preprocessing techniques (WT, FFT, AMT...) in acoustic chemometrics as well as in other
applications.

Much fascinating and challenging work remains in the above areas.
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7.3. SUMMARY OF ACHIEVEMENTS

The following summary lists the most important achievements in this thesis:

Methodology developments:

Multivariate AMT approach

--AMT image analysis (Paper I-IV)

--Multivariate AMT Regression (Paper II-1V)

Preprocessing facilities to multivariate chemometric modeling

--Systematic approach of using feature extraction techniques with multivariate
modeling (Paper I-VI)

--FFT, WT transformations on images and acoustic signals combined with PLS, N-
PLS (Paper V, VI)

Systematics of multi-way methods in image analysis (Paper V)

--Relationships of multi-way models in N-way image analysis

--Guidelines in choosing pertinent multi-way models for properly configured image
data

Applications:

Powder science and technology examples (Paper I-11, IV, VI)
Food science and technology examples (Paper III, V)
Industrial application examples (Paper I, II, VI)

Software developments:

The AMT toolbox for Matlab™ (see details in appendix)

Collaborations:

POSTEC (Powder Science and Technology), Tel-Tek, Porsgrunn

Chemometrics group, Royal Veterinary and Agricultural University, Copenhagen
Arla Foods, Denmark

Danisco, Denmark

CAMO ASA, Oslo
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8. EPILOGUE

Some interesting discussions and debate on image/signal analysis are going on via the ICS-L
chemometrics web forum at the time I'm finishing this thesis. The central issue is related to
whether or not some terms such as image analysis, signal processing should be categorized into
the field of chemometrics, as well as awareness of the need to create new terms in
chemometrics or not [Wold, Chang, 2000]. The chemometrics history has seen more and more
image analysis combined with chemometric techniques in the past decade. Some pioneering
work, e.g. Multivariate Image Analysis, has been carried out by Geladi & Esbensen since 1989.
S. Wold pointed out that image analysis is at least part of the new chemometric wave [ICS-L
web forum, 2000]. The reason is very simple and obvious. Images, from microscopic via digital
camera to satellite images, provide a vast set of tools, with low cost and rich information, to
characterize complex samples and hence will be used everywhere very soon. It is certainly
reasonable to state that image analysis is now a part of chemometrics in a sense that new simple
and robust chemometric approaches can be developed to make use of image information.
Furthermore, chemical data come in more varied fashions than ever, and images containing
chemical information can certainly be called chemical data. The chemometric analysis of such
images with the purpose to obtain chemical information/knowledge is then within the field of
chemometrics as well as image analysis.

This is the same case with signal analysis such as Fourier and Wavelet analysis. When they are
introduced to chemometrics, they can be used with classical and modern chemometric
techniques, and then become part of new chemometric approaches or techniques, i.e. Fourier
regression and Wavelet regression. Analogously, the term “multivariate AMT regression
(MAR)” arises when AMT is used in conjunction with regression modeling. Acoustic
chemometrics is another typical example, which combines acoustic sensor technology with
chemometric modeling. Some other terms in relation to image analysis developed in this thesis
work include MIA/MIR, 3-way (N-way) image analysis etc, as well as some new
approaches/techniques for multivariate image feature extraction, discrimination/classification,
prediction etc.

All in all, those terms/methods can be collected under the label of chemometrics when they are
used in a typical chemometric context. It is, therefore, not illegal and sometimes necessary to
create new, proper terminology which may differ from the same thing used elsewhere, but this
should always be done with care and with the proper respect for the pertinent origins.

I’'m proud and happy to be a part of this continued chemometics movement. Chemometrics is
very exciting!
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Applications of Angle Measure Technique (AMT)
in image analysis
Part I. A new methodology for in situ powder characterization

Jun Huang *, Kim H. Esbensen
Applied Chemometrics Research Group, Department of Technology (TF), Telemark University College (HiT), N-3914, Porsgrunn, Norway
Received 4 January 2000; received in revised form 4 May 2000; accepted 4 July 2000

Abstract

A new approach for powder characterization based on image analysis, “Angle Measure Technique” (AMT) and multi-
variate data modeling is presented. AMT is designed to describe signal complexity as a function of geometrical scale from
local to global. In this application, powder images are first unfolded to produce 1-D measurement series, which AMT, sub-
sequently, transforms into multivariate scale characterizations. This new compound approach is able to extract and character-
ize powder features, such as particle size(s), shape(s), smoothness, coarseness, graininess, mixing homogeneity, as well as to
classify and discriminate between different powders and even predict bulk behavioral properties. Experimental work reported
here involves digital imaging of several tens of different types of powders, using a problem-dependent, low-angle, asymmet-
ric illumination. The unilateral illumination setup brings about a significant simplification of traditional image analysis in
powder studies, which is usually orientated towards characterizing all individual particles before aggregating this informa-
tion. The present new technique achieves the same objectives by a simple and direct imaging, followed by AMT chemomet-
ric analysis. Principal Component Analysis (PCA) on AMT spectra derived from this type of imagery is used here to illus-
trate the power of this new technique, specifically to discriminate between powder types. © 2000 Elsevier Science B.V. All
rights reserved.

Keywords: Angle Measure Technique (AMT); Image analysis; Powder characterization; Principal Component Analysis (PCA)

1. Introduction for characterizing the complexity of geomorphic lines
in a physical geography context only. A broader,
1.1. AMT concept generic AMT approach for technological applica-

tions was, subsequently, developed by us [2]. AMT is
a technique for simultaneous description of the com-
plexity of any measurement series. AMT is defined

The AMT concept was originally introduced by
the American physical geographer Robert Andrle [1]

as a function of a scale-dimension “s” — from lo-

" Corresponding author. Tel: +47-35-57-51-52; fax: +47.35.  Ccal to global, see Fig. 1. This creates a completely
57-52-50. new domain with which to characterize all types of
E-mail address: junhuang@hit.no (J. Huang). data series, e.g. time series, spatial series, as well as
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Fig. 1. Explanation of AMT. The individual “angle” is measured as the supplement to angle CAB. Difference of X and Y are the horizontal

and vertical distances between points C and B, respectively.

any other ordered measurement series. AMT is nei-
ther an alternative to time-series analysis nor to the
Fourier transform; the new scale domain represents a
genuine novel addition to the time and frequency
domains [2].

The AMT transform produces “complexity-spec-
tra” by calculating a geometric angle, which charac-
terizes the directional change, or the corresponding
X /Y difference, when tracing the ordered series out-
ward from a set of randomly chosen sample points
along any 1-D or 2-D series for a set of increasing
scales of measurement, see Fig. | below for details.
Specifically, the individual angles of the AMT ap-
proach are measured along the measurement series by
initial selection of a random point A as the center of
a circle with radius “s”, which may be termed the
contemporary scale. The two fiducial points B and C
are found as the intersections of the measurement se-
ries with this circle. The supplement to angle CAB is
calculated and stored. Several calculation by-prod-
ucts (additional complexity indices, the mean differ-
ence between points C and B in the Y- and X-direc-
tions) are also obtained. This is carried out for a set
of such points, “A”, (say, 500), distributed ran-
domly along the entire measurement series, after
which AMT calculates a mean angle measure (MA),
as well as the mean distance in the Y-direction

(MDY), by averaging over all individual measure-
ments; this also allows for an optional standard devi-
ation measure (STD) for both MA and MDY.

By incrementing the scale, s =s+ 1 (letting s
start out from 1, corresponding to the digitization unit
of the measurement series), AMT is now able to
characterize the complete scale-complexity relation-
ships of the measurement series, simultaneously for
all scales. AMT, thus, transforms any 1-D measure-
ment series from the pertinent signal-domain into the
new scale-domain, resulting to multivariate com-
plexity spectra MA and the MDY, (optional standard
deviation, etc.). See Figs. 1 and 2, and Ref. [2,4] for
further details.

MA and MDY, as used in the present applica-
tions, provide valuable complementary information
on characterizing the complexity of a measurement
series. MA has been found especially useful to char-
acterize underlying scale modes (i.e. “characteristic
scales”) in the midst of significant noise fractions,
while MDY has proved itself especially successful in
delineating periodic or quasi-periodic phenomena.
AMT-derived spectra can be used as any other stan-
dard multivariate preprocessing facility for further
data analysis or modeling [2]. In the present applica-
tion, isotropic 2-D powder images are unfolded to
long 1-D vectors, which now form the measurement
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Fig. 2. Illustration of AMT transform from the measurement-space,
in this case, the time domain (left panel) to the AMT scale-domain
(right panel). The original measurement data were sampled at 1 Hz,
from a signal containing 0.01 and 0.05 Hz periodicities, corrupted
by zero-mean random noise. Both the MA and the MDY spectra
are illustrated in the right panel.

series, subsequently, transformed into AMT spectra
as illustrated above. These now contain information
about the powders and their properties.

1.2. Why AMT and image analysis for powder char-
acterization

There are many definitions of powders in the field
of powder science and technology. The following is
largely due to Ref. [9]. A powder is an assembly of
particles surrounded by fluids, whose behavior is in-
fluenced by the nature and interaction of the individ-
ual particles and of the fluid that surrounds them, as
well as by the interaction between these two phases.

Traditional image analysis for powder characteriza-
tion focuses on the individual particles typically us-
ing, e.g. microscopic imaging and individual mor-
phology description, etc [10]. This approach involves
a difficult and time-consuming sample-preparation
process, such as dispersion of the powders before
microscopic imaging, etc. Completely discharging
any specific dealings with the individual particles, the
present alternative approach acquires images directly
from in situ powders with an absolute minimum
sampling preparation necessary, followed by the
AMT transforms, multivariate image analysis and /or
chemometric modeling. This type of imagery,
recordings of the entire field-of-view of powders, also
contains some information relating to the individual
particles, but mainly about the bulk powder, which is
a reflection of the complex bulk, interacting proper-
ties of the powder, e.g. “stickiness”, flowability, flu-
idization velocity, etc. AMT is particularly useful
here to characterize both the local individual particle
properties, as well as those pertaining to the global
bulk powder simultaneously. The present image ana-
lytical global field-of-view approach would appear
much more practical and promising for industrial use,
and especially for at-line or in-line characterizations.

2. Basic methodology

2.1. Brief description of imaging camera with oblique
illumination

The camera used in all present experiments goes
by the name Silvacam, which originally is a standard
three-channel JVC digital camera, type KA-20, in-
tended for video recording in the visible spectrum
(R/G/B). Silvacam was rebuilt by a Finnish,
Karelsilva OY, for use in airborne remote-sensing
multispectral image analysis. Silvacam’s frequency
spectrum is translated toward the infrared part of the
spectrum, the modified camera now using the red,
green and near-infrared channels (R/G/NIR). The
reason is that biological materials, as well as many
other (inorganic) materials often has more diagnos-
tic, selective information in the infrared region than
in the blue. The camera lens is a FULINON-TVeZ,
also modified to allow increased NIR transmittance.

Low-angle oblique illumination sources are used
in our AMT applications [2]. The low-angle illumina-
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tions result in critically detailed field-of-view im-
agery, such as shadows created by the individual par-
ticles (of which there are many in this type of im-
agery), or highlighted definitions of interstices and
cavities between particles a.o. It is a distinct advan-
tage by this particular illumination set-up that the in-
dividual particle surface roughness will contribute to
the complex light-shadow pattern created.

Average optimal imaging settings for each series
of powders to be characterised and compared need be
obtained by experimental trial-and-error. We always
run an initial experimental design for this purpose,
taking into account such factors as: number of light
sources, their (individual) angle of illumination, spa-
tial resolution of camera, spectral characteristics of
illumination sources a.o. It is critically important,
however, that all powders to be compared be recorded
under the exact same conditions of course. Clearly all
this results in very complex light /shadow-enhanced
imagery. On average there may be anything from, say
a few hundred (large-grained) particles to several
tens-of-thousand (very small-grained) particles in
identically sized field-of-view frames. It may not be
possible to decompose, to analyze this type of im-
agery by any traditional method operating in the im-
age-plane with the objective of individual particle
segmentation, etc.

2.2. Basic AMT image example illustrations

2.2.1. Interpretation of AMT spectra

The AMT transform can deal with a wide variety
of types of measurement series. Some general illus-
trations on time series data and other typical mea-
surement series were earlier presented in detail [1,2].
Below image analytical AMT applications will be in
focus. It is advantageous to know how to interpret the
image-information as judged from, or as described
by, the AMT spectra. Below is a rough summary of
typical interpretations of AMT spectra focusing on
MA and MDY.

2.2.1.1. Mean Angle (MA).

* Characterizes both noise (irregularity) /stochastic
signal parts, as well as periodicity.

e Low MA-values signify low local complexity
(irregularity, sinuosity, roughness, etc.) at corre-
sponding scales.

¢ High MA-values imply significant local complex-
ity (irregularity, sinuosity, roughness, etc.) at the
corresponding scales. High MA-values signify dra-
matically swift “peak-and-valley” swings at the
contemporary scales, i.e. large directional angle
changes in the original measurement series.

* Local maximum MA-values (peaks on the MA-
spectrum), termed characteristic scale(s), signify a
complexity mode at a specific preferred scale.

* Characteristic scale(s), corresponding to character-
istic angle(s), always indicate significant changes
associated with this /these scale(s).

e Multiple MA-spectrum peaks each indicates a dis-
tinct complexity mode at these scales.

 Absolute local minima (valleys in the MA-spec-
trum) signify “simplicity” at these scales, e.g. of-
ten interpretable as, e.g. relative “smoothness” at
this scale.

e The MA-spectrum is actually increasingly robust
with respect to added noise [1].

e “Periodic peaks and valleys” on the MA-spectrum
is a bona fide reflection of an intrinsic periodicity
in the raw measurement series as well, but there is
not an exact one-to-one relationship as, e.g. for the
Fourier transform.

e The MA-spectrum always has relatively uncertain
values for the small(est) scales.

2.2.1.2. Mean Difference Y (MDY).

* Excels in characterizing periodicity with a high
degree of sensitivity. MDY is very robust with re-
spect to added noise, largely noise-invariant for
small and intermediate noise fractions

e Low MDY-values imply low local amplitude dif-
ferences at corresponding scales

» High MDY-values imply large(r) local amplitude
differences at corresponding scales

e MDY-spectrum “periodic peaks and valleys” indi-
cates bona fide original signal periodicity

e Multiple MDY-modes indicative of super-posi-
tioned periodic signals

e Horizontal scale-distance between MDY-modes
indicates signal period, or “frequency”

e Exponential increase with respect to logarithmic
s-axis is an indication of signal trend(s)

e MDY absolute maximum values correspond to
overall variance of measurement series
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e MDY never interesting for “small s-values” in
contrast to MA

The complementary MDX measure (Fig. 1) is only
used for 2-D measurement series and will not be dis-
cussed further here. “STD” is an optional secondary
AMT-measure. It is the standard deviation derived
from the calculation(s) of MA and MDY. It is largely
a damped counterpart to these two primary measures,
which has rarely found any particular use in our ex-
periences.

2.2.2. Optimal AMT spectra for isotropic images

The range of measurement scales for a series of
comparative images is critically problem-dependent.
There are a lot of initial comparative studies neces-
sary when a new series of powders are to be AMT-
characterized and compared. The “s-scales” used
here range from 400-2000 pixel units.

Our AMT-transformation facility has recently
been reprogrammed by the first author, and is now
implemented as a MATLAB 5.3 program (core cal-
culation part written in Mex C [7]). The program al-
lows for problem-dependent changes of all critical
parameters, such as scale range, scale length (incre-
ment), number of randomly chosen points “A”, etc.
It is imperative that all these parameters, as well as
the scaling of the axes, always be held constant when
the outputs are to be compared [2]. Images to be
compared should of course also be kept in the same
size and resolution.

AMT works on only one channel of a multispec-
tral image, typically selected according to some
problem-dependent criterion (alternatively, we some-
times use a particular score image [6]). Green chan-
nels of all images are used for AMT calculations in
the present applications, since they are of optimal
contrast. Subsequently, they are unfolded row-wise
into 1-D vector measurement series. It is important
that the direction of the unfolding of the recorded
imagery be aligned with the horizontal trace of the
axis of oblique illumination. This requirement was
not properly emphasized in our earlier work, e.g. Ref.

[2]

2.2.3. AMT-characterization of texture imagery
Traditional approaches quantifying the texture
contents in an image are statistical, structural, and

spectral [5]. Statistical approaches typically yield
characterizations of textures based on a host of dif-
ferent “variability indices” a.o., resulting to quantita-
tive measures for image textures that otherwise would
only be described qualitatively as, e.g. smooth,
coarse, grainy, etc. There are many such texture
measures in the literature, and they keep growing in
number. The defining characteristic for these tech-
niques is that they all operate in the image-plane, by
moving around “local” templates for local neighbor-
hood characterization, thereafter the template(s) are
translated to new positions, etc. — in short, they are
computationally very intensive.

Structural techniques deal with detection, quan-
tification and the spatial arrangement of so-called
“image primitives”, e.g. such as texture based on
comparison with a template of regularly spaced par-
allel lines (a 1-D primitive) or other 2-D simple
“units”. Recently, this has developed into more re-
fined use of specific “texture primitives”, etc. But
again there are a host of such approaches, and again
these are also all computationally very intensive.

Spectral techniques are mainly based on the 2-D
Fourier transform and are typically used to detect
whatever “global periodicities” be present in an im-
age. This technique differs principally from the above
in that the FFT works in a transformed domain. This
is very often a great advantage computationally. With
our present foray into the possibilities for real-time
powder characterizations, we are only interested in
approaches, which are fast.

Texture image analysis is of significant interest in
powder characterization because images of powders
directly offer a presentation of the aggregate appear-
ance of the powder, not of the dispersed individual
particles. Intuitively, it is believed that powder char-
acterization /discrimination is intimately related to
the characterization of the complexity, roughness,
periodicity, irregularity, etc., of this presentation of
powders. Powders come in excruciatingly many
forms, of very significantly different particle sizes,
shapes, surface roughness, density, “stickiness”, flu-
idizabilities and many other specific properties. Hith-
erto, it has been very difficult to get to the dynamic
functional of these characterizations in any analytical
way — except for direct experimental measurements
in suitable scale-rigs, or even (for the most critical or
difficult issues) in full-scale rigs. This has caused
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Mean Difference ¥

Fig. 3. (a) Image of a rough concrete surface. (b ) Image of a smooth glass surface. (c) Comparison of spectra from both images. Note the
spectra for rough surface lie far above those for the glass surface at all scales. The spectra for the rough surface are representative as a
signature for “rough texture” (coarseness, intricacy, irregularity, etc.), as opposed to those for the smooth surface.
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Fig. 4. Images showing different aspects of very regular periodic textures and their corresponding AMT spectra. Both MA and MDY reflect
the periodicities in the scale domain (different from FT).
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great difficulties to both academic research and in-
dustry. As a first introduction, below we show how
AMT characterizes and discriminates between a typi-
cally (very) smooth and a correspondingly (very)
coarse texture. There is also an example to give the
reader a first feel for how the AMT description of
periodic textures appears.

Fig. 3 shows an image of a smooth glass surface
contrasted with an image with a rough concrete
surface. The corresponding AMT spectra for both
images are shown in the right panel. The marked dif-
ferences between their AMT spectra are very promis-
ing. The MA-levels for the glass image are much
lower at all scales than for the concrete image, as are
the corresponding MDY relationships, which are even
more different. This means that the concrete image
has much more textural intricacy, roughness, etc., for
all scales.

Fig. 4 shows two images with periodic textures.
This type of texture image has traditionally been
widely analyzed by the spectral approach based on
Fourier transform. Fig. 4 illustrates how the AMT
spectra characterize this type of textures. The distin-
guishing peaks in MA show clearly the periodic
“characteristic angles”, which reflect the periodici-
ties. The sinusoidal MDY -spectra also show this
strong periodicity.

As can be seen directly from the two periodic im-
ages (a and c), they actually have distinctly similar

patterns with predominantly identical periodicities in
both the horizontal and vertical directions, but their
texture primitives are different. This is clearly re-
flected in their respective AMT spectra. MA shows
that both have almost identical characteristic scales
throughout but with clearly differentiating character-
istic angles (Fig. 5). The MDY spectra likewise indi-
cate the similar periodicities in the two images by
giving the strong sinusoidal signals, but also here the
distinction can be drawn between their MDY spectra
(Fig. 6). Detailed appreciation reveals that there is
almost no overlap between their (MA, MDY) spec-
tra, regardless of the apparent similar shapes. The
AMT spectra for image Fig. 4(a) are indicative of a
higher degree of complexity than those for image Fig.
4(c). It is, therefore, straightforward to discriminate
even between these two very similar texture patterns
by analyzing their AMT spectra. These examples,
while very simplistic, nevertheless, give a clear im-
pression of the power of the AMT-description, espe-
cially for delineating more intricate textures.

We have shown that AMT is able to deliver very
exact and discriminating characterizations of typical
features as encountered in powder descriptions, e.g.
local / global smoothness /roughness, as well as vari-
ous forms of local /global periodicities. Real-world
powders will of course show (much) more complex
relationships than the above simple introductory ex-
amples, but also in these more realistic, and more

Mean Angle
100
50 |
0 -
T T T T T
0 50 100 150 200
patterni
Scale

Fig. 5. Detailed comparison plot of MA relationships for the two images in Fig. 4.
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Fig. 6. Detailed comparison plot of MDY relationships for the two images in Fig. 4.
complex situations, which are always also character- seven reference powders in many ways span a use-
ized by an additional stochastic noise component. ful experimental domain with respect to many of the

intrinsic parameters of interest. An overview of their
basic characteristics follows:
3. Discriminability of AMT spectra of powder im-

ages
* Microdol 100 (MD100) is a limestone material with
Here we illustrate on a set of real-world powders crystalline structure. It is often used in white paint
from POSTEC (a research institute in powder sci- mixed with water, e.g. in the auto industry and in
ence and technology, Norway), which are represen- road marking materials. MD 100 can also be uti-
tative among those widely used in industry. These lized in cosmetics and in food production.

Pellet MD 100

Alumitam

Cement

Sand

Fig. 7. Raw digital images for the seven POSTEC reference powders. Note the very varying appearances for selected parameters such as
particle size, color, shape, roughness, etc.



J. Huang, K.H. Esbensen / Chemometrics and Intelligent Laboratory Systems 54 (2000) 1-19 9

1100 1200 1300 1400 1500 1800 1700 1BOO 1800 2000

Fig. 8. Raw, unfolded 1-D series from the original reference pow-
der images. Extensive overlap, signifying extremely low discrim-
inability in this original 1-D spatial domain.

Polythene pellets are quasi-spherical particles used

as raw materials for plastic production. Compared

to the other powders illustrated here, they have a

relatively large particle size.

* Rape seeds. These biological seeds are spherical
and used for synthetic oil production.

* Sand — “Leighton Buzzard sand”, which appears
yellowish with relatively sharp edges and narrow,
oblong shapes.

e PVC granules are smaller PVC particles. This
powder has special electrostatic properties and is
used in PVC plastic production and elsewhere.

* Alumina come from bauxite and have high density.

Alumina is used as raw material in the aluminum

production. Fine-grained.

e Cement. Extremely fine-grained. Cement powders
are especially cohesive, compared to others.

The raw images of these powders are shown in
Fig. 7. Note that they differ greatly from each other
in many aspects such as particle size, color, shape,
roughness, etc. Fig. 8 shows the associated data se-
ries from the unfolded raw images.

The compound (MA, MDY) spectra give fully
discriminating representations of the raw images,
whose raw unfolded representations were hopelessly
overlapped as shown in Fig. 8. Fig. 9 shows that ce-
ment, alumina and MD have particularly smooth
curves, signifying much less complexity, when im-
aged directly as powders. By contrast, the four re-
maining powders display higher complexities and /or
grain sizes, etc. The rape seeds (topmost) seem to
have by far the most complex spectra. This is be-
cause the rape seeds have relatively larger, and more
varied grain-sizes, as well as some irregular impuri-
ties (white petals, inorganic fragments, etc.). The
PVC pellets have the largest overall grain-sizes but
with more regular surfaces, almost uniform color and
shape. The spectra for sand and PVC are somewhat
similar but still with a clear difference. The two most
similar spectra would be sand and PVC.

The above illustrates that it is possible to conduct
quite detailed interpretations of the significance of
the relative AMT spectra in relation to their original
image appearance. But we shall not go into any de-
tails as to this issue here. We shall instead point out

150 —]
100 ]
50
0 —
0 200 400 600
Sand Md Pvc Cement

Fig. 9. AMT spectra for the seven POSTEC reference powders as above. No overlaps but complete discriminability in the AMT scale do-

main.
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SandE

f

Sand A

Fig. 10. Raw digital images of the different sands. This sand series differs mainly with respect to particle size, grain morphology, color and

shape, etc.

that by using the entire compound (MA, MDY) spec-
tra, there is now a potential object vector available
for each powder, fully capable of complete distinc-
tion between these seven powders. This example fur-
nishes a very clear demonstration of the power of
AMT to facilitate discrimination between different
powders, i.e. powders in which the gamut of all dis-
tinguishing features varies maximally between the
powders. The second group of powders to be dis-
criminated by the same AMT technique here is all of
the same type; they are all sands. The AMT also

shows here a powerful ability to differentiate be-
tween them. Their digital video appearance and the
corresponding AMT spectra are shown in Figs. 10
and 11.

At opposite ends, sand A appears much more
complex than sand G with respect to grain-size,
grain-form, irregularities, etc. Sand G, in fact, has the
smallest mean size, while sand A has the largest mean
size. There is a very distinct systematic “develop-
ment” from A to G, which is a reflection of the grad-
ual differences between the sands as their corre-

0 260

400 600

sandA sandC sandE sandG

Fig. 11. AMT spectra for the sand data series. Unambiguous differences between all sands.
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sponding powder images appear less and less com-
plex. Such clear differences between the spectra can
clearly be used for discrimination, e.g. in combina-
tion with PCA analysis and/or classification meth-
ods (SIMCA), etc [8].

The salient point made by the two illustrations
above is that it is fully possible to use the AMT-de-
rived spectra directly as is for various chemometric
discrimination /classification purposes — even
though one is not necessarily able to fully interpret
all the intricacies of the relative appearances of the
AMT-spectra.

4. PCA study for powder characterization and
discrimination

4.1. Data configuration

Each image is unfolded/vectorized into a 1-D
vector, followed by the AMT transform. AMT trans-
forms each raw powder image into their correspond-
ing complexity-spectrum, all with an identical scale
range in the new scale-domain. This common scale-
array, in fact, represent a new, derived variable-mode
for the original images, which themselves make up

the corresponding objects. Thus, AMT transforms a
series of 2-D images (not a stack of multivariate im-
ages) into a series of 1-D complexity spectra with a
common variable way. Subsequently, an X-matrix
can be constructed from aggregating these AMT
spectra for each powder. This ordinary two-way ma-
trix can be used for any conventional matrix-based
data modelling purpose, etc.

There exists some misunderstandings with respect
to multivariate analysis on images regarding whether
to use the unfold-operator or to use, e.g. three-way
(N-way) analysis. The different images presented
here do not have intrinsic variations or correlations
between the pixels at the same image positions, un-
like multispectral images, which are recorded at dif-
ferent wavelengths on the same field-of-view image
basis. There is no variable mode, as in a three-way
data array, precisely because there is only one chan-
nel, one variable, forming the image upon which
AMT is applied. It is, therefore, not possible to ar-
range the raw images into a three-way array. An un-
fold PCA, or PLS, can only be applied on true multi-
spectral images.

With the AMT transformation, the data density is
reduced significantly. Analogously, FFT, wavelet
also transforms raw images and create frequency- and
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Fig. 12. PCA (1 — 2 score plot. All seven powders are clearly discriminated from each other. Note the individual sampling /measurement

reproducibility as evidenced by the four replicates.
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wavelet-scale domains, respectively. Subsequently, 4.2. Discriminations
these frequency component vectors, or wavelet coef-
ficients, can be used in the exact same way to con- To compensate for unavoidable variances in sam-
struct a similar 2-D data matrix for multivariate ple preparation, illumination and image recordings,
modeling or calibration, etc. A comparative study on each powder is routinely replicated (imaged) four
this issue will be presented in the sequel paper [11]. times for all measurements. The replicating takes
(@)
0.040 _ X-loadings
0.035
0.030 —|
0.025 4
0.020 —
0 200 400 600
RESULT1, PC(X-expkR7%)
(b)
020 _| X-loadings
0.16 _~
010
0.05 __
¥ W LWZ
005 ]

[ 160 200 3bo 400 500 600
RESULTT, PC(Xerpl. 202%)

Fig. 13. Corresponding PCA loadings for PC1 and PC2. (a) PC1 loadings, note that variables are more important at larger scales. (b) PC2
loadings, note that variables at small scales are of major importance.
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place by successive rotation of the sample container
90° clockwise. We often use both the individual
recordings, as well as their averages in attempts to
picture the sampling/measurement reproducibility.
Examples to follow.

4.2.1. POSTEC powders

Fig. 12 shows PCA results from the seven refer-
ence POSTEC powders. The PCA model needs one
component to explain over 97% of total X-variance,
followed by 2% for PC2. The t1 — ¢2 score plot
shows clearly all seven completely resolved powder
types. PC1 signifies the “powder complexity”, e.g.
rape seeds rightmost while the leftmost is cement,
which appear least complicated. Apart from this
“macroscopic” PCI discriminability, we see that the
meager 2% variance accounted for by PC2, in fact,
plays a highly significant role in the discrimination
between four and five powders, along the PC2-direc-
tion.

Close inspection of the loadings for both PC1 and
PC?2 point to the remarkable discrimination sensitivi-
ties implicitly hidden in the raw AMT-spectra (Fig.
13). While the PC1-loadings are relatively simple and
straightforward, there are much more detailed rela-

tionships revealed in PC2 and details, which relate to
the tiny, but highly significant small(er) differences
between the powders, which distinguish along the
PC2-direction in the score plot. For PC2, the small(er)
AMT-scales play a dominating role in contrast to the
PCl-loading relationships. Clearly, using both PCs
does the trick. This gets even better for AMT + PLS
— DISCRIM a.o. to be further explored in the sequel

paper [3].

4.2.2. Sand samples

Fig. 14 illustrates the same AMT + PCA ap-
proach for the discrimination between the homoge-
nous sand series. Again, principal component PCI is
apparently dominating, as PC1 here accounts for 96%
of the total X-variance in the data set, while PC2
takes care of only 3%. There is a very regular dispo-
sition of these seven sand types in the score plot.
Their groupings are again clearly separated from each
other, never to any degree affected by the sampling /
measurement replicate errors. And again there are
very important differences in the PC1 and PC2 load-
ing relationships (see Fig. 15) which point to the en-
tire scale-domain being important, as well as reiterat-
ing the significant difference between the parts of the

PC2 Scores
6 — dE1
8 g@ﬁ@%@g sandD1
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n sand%%
R sandC3
2 sandes (sande2
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2
sandF1
4 ]
6 ] sandG3 sandA1
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J sseann ~§1 sandA2
s T sandAd4
~ PC1
-40 30 20 o 10 20 30 40 50

RESULT2, X-expl: 96%,3%

Fig. 14. Score plot (1 — ¢2) for the more homogenous sand series.
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Fig. 15. PC1 loadings (left panel) and PC2 loadings (right panel) for the sand series. Note subtle differences in the differentiating capabili-

ties of PC2 with respect to Fig. 13.

AMT-scales extricated along the decomposed PC1
and PC2 directions.

4.2.3. Master food powder example
As a final realistic testing of AMTs powder char-
acterization potential we have put together a set of 17

widely varying powders, all related to food, food sci-
ence or food production. The purpose of this master
data set, which will also appear in the second paper
in this series [3], is to furnish a “maximally difficult”
real-world data set, with relevance for all industry
sectors working with powders. Specifically, this data
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set will allow several parallel studies with different, Re. (1): As shown in the images below, some food
but interrelated objectives: powders display a great variety of intrinsic complexi-
ties, such as irregular shapes, roughness, sizes, color,

1. Between-powder discrimination (including diffi- surface structure, etc., while others, like salt and
cult, closely similar powders, etc.) white sugar, appear relatively identical due to uni-
2. Feasibility studies of quantitative powder-mixture form color, size, shape.
characterizations Re. (2, 3): Quantitative mixture characterizations
3. Feasibility studies of quantitative impurity / and quantitative impurity /pollutants detection, at the

pollutant detections ultra-trace level, have never been attempted before

s

\\§

|

|

Secahe : Sat Mbastard seed

Black Pepper (fine)

Bronam, Sugar Eronam Fice Black Pepper (coarse’) Surflonarer seed

Fig. 16. Raw video images of the 16 different food powders, displaying a wide variety of most of the salient characterizing parameters,
grain-size, form-aspect ratios, color, surface roughness (individual particles), powder surface characteristics a.0. A 17th powder is also in-
cluded in this set, although not depicted here: Cocoa.
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Fig. 17. AMT spectra from a selected subset of representative food powders. The spectra complexity generally increases from bottom to the
top in the sequence: salt, white rice, black pepper (coarse), coriander and “Stranger”.

based on direct video imaging. Clearly, there is a need
for, e.g. pollutants detection in the food industry;
likewise, for raw materials quality assurance, etc.,
when the raw material consists of a powder mixture.
There would appear to be many obvious direct indus-
trial applications for this new type of image analysis
technology. We explore these features in our sequel
paper.

Fig. 16 shows 16 different powders in their video
appearances. The AMT spectra derived from these
powder images are again capable of characterizing the
complexities of all powders. Selected AMT spectra
are shown below in Fig. 17. The topmost curve is the
AMT spectrum from a “blind test” powder (termed
“stranger”), courtesy of KVL /DTU, Denmark. This
particular powder, as shown in the raw image, has a
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Fig. 18. PCA of all 17 food powder AMT spectra. Groups of quadruple replicates have been circled to show the capability of discrimination

in the presence of realistic sample preparation/measurement error.
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rather complicated structure, shape, size(s), surface MA- and MDY-values among all the selected pow-
appearance, etc. A closer look also shows specular ders, i.e. the most complex pattern.
reflectance from some individual particle surfaces. The spectrum for salt appears smooth without any
Appropriately, the “stranger” displays the highest characteristic angles/scales, signifying the highest
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Fig. 19. PCI loadings (left panel) and PC2 loadings (right panel) for the food powder series. Note the subtle differences in the differentiating
capabilities of PC2 with respect to Figs. 13 and 15.
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homogeneity. The white rice image likewise shows
large relative uniformities, which also drag down the
values of AMT spectra, to be positioned just above
the salt spectra. However, a clear peak in the rice
spectrum can be observed (approximately at scale
30-35), which is attributable to the very large aspect
ratio (length /width) for this particular powder. The
spectrum for coriander is positioned just below that
of “stranger”. As seen in the coriander image, the in-
dividual particles have very rough shells, some of
which are broken, giving this high irregularity.

As shown from the discussions above, obtaining
the basics for understanding “simple” and “com-
plex” powder appearances is easy through the AMT
characterizations. Thus, it should also be a relatively
straightforward operation to characterize even the
current complexities of these “difficult” powders and
to discriminate between them by AMT plus PCA ap-
proach presented above.

The PCA results on the discrimination of these
food powders are shown in Fig. 18, together with the
appropriate PC1 and PC2 loadings in Fig. 19. The
different groups are all successfully separated from
each other, using these (94 + 03) 97% of the total
variance. PC1 again mainly discriminates on the ba-
sis of the overall complexity differences between the
powders. For example, the complex “stranger” is lo-
cated on the extreme right along PC1, while the
“simplest” salt occupies the extreme SW position in
the plot.

But, in this analysis, the second PC now joins in a
more complex fashion as, e.g. witnessed by the fact
that both salt and the very distinct “sunflower”
powder (boasting by far the largest grain-size) oc-
cupy identicalght / shadow positions on the negative
PC2-axis. The overall discrimination is dependent on
both the first two principal components; in fact, this
feature is characteristic of all the above three AMT
analyses, Figs. 13, 15 and 19). The overall PC1- and
PC2-loading similarities are marked, while there are
also subtle but significant differences with respect to
the PC2-loadings. The PC2 relationships constitute
subtle morphological additions to the dominating
PCl-modelling, which mainly has to do with the
general complexity /size differences between the
powders.

Clearly, the powders displaying the highest PC2-
scores at the positive end make for an interesting dis-

tinction: among these powders, we find cocoa, cof-
fee, the fine-grained black pepper, mustard seed. On
close inspection, the PC2 component in this example
can perhaps be tentatively interpreted as a relative
“appearance uniformity” axis, which would indeed be
a feature, which is orthogonal to PCI1. This is con-
sistent with the fact that it is only the lower scales,
which display high loadings on PC2.

5. Discussion and conclusions

As can be seen from all of the above examples,
different powders can easily be quantitatively dis-
criminated from each other, but similar powders are
still likened very closely. In the overall description of
powder appearances, there are many different aspects
that need attention, among which would be individ-
ual grain attributes: size, aspect ratio, surface rough-
ness, color, as well as bulk powder attributes color,
shadow(s): particle—particle shadows and /or illumi-
nation artifacts, etc. It is, however, possible to char-
acterize all these simultaneously with the AMT ap-
proach. It is emphasized that the use of unilateral
low-angle illumination plays a decisive role in this
endeavor; this resulting to very complex light/
shadow pattern, which at first appears almost chaotic
to the uninitiated eye, actually lends itself optimally
to the AMT decomposing technique. This goes for
porosity, as well [2]. The present AMT-implementa-
tion uses less than 2.0 s for a complete coverage of a
512 X 512 image for 400—-600 AMT scale units (both
MA and MDY) on a Pentium III computer. There
would not appear to be any serious problems imple-
menting a real-time on-line facility, which points to
an obvious large industrial application potential.

This paper has shown, step-by-step, the basic con-
cepts, typical interpretations and the first industrially
relevant applications of AMT. The basic methodol-
ogy has been developed for characterization and dis-
crimination of powders. This new AMT approach has
shown the capability of characterizing the complexi-
ties of unfolded 1-D measurement series, which stem
from generally isotropic 2-D imagery. AMT spectra
contain abundant information related to the raw data
(2-D images, in the present case), which underline the
need for multivariate data modeling as an integral part
(e.g. PCA, SIMCA, etc.). The approach may, there-
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fore, presumably also be used for prediction pur-
poses in science and technology, say for prediction of,
e.g. dynamic, functional properties in powder indus-
try a.o. These aspects will be discussed in the sequel
paper [3]. Multivariate AMT regression will be use-
ful in many other areas for prediction of physical and
other properties, e.g. for process analysis, monitoring
and for quality control, etc. AMT opens up for a wide
variety of potential application areas also outside the
chosen powder science playground. Applications are
legion. The remaining issue in the AMT study con-
cerns how to exactly interpret the AMT spectra. It
might be possible to extract even more qualitative, as
well as quantitative information from the spectra, than
what has been demonstrated here. Luckily, these are
aspects which lend themselves eminently to further
basic, as well as applied studies. More applications on
the AMT will be given in our companion studies.
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Abstract

This paper presents a novel way to predict the bulk powder characteristics from unilaterally illuminated powders using
Angle Measure Technique (AMT) image analysis in combination with multivariate calibration. It is demonstrated that the
AMT transform can account for the complexity of images in the scale domain and be used as a strong preprocessing facility
for multivariate regression modeling. The concept of multivariate AMT regression has been proposed for this purpose. A
wide variety of types of powders was collected in order to study the reliability, reproducibility and representativity of the
methods. PLS models have been established to quantitatively predict key physical and behavioral powder properties such as
particle size, density, minimum fluidization velocity, wall friction angle, and angle of repose. Finally, a first attempt at pre-
diction of mixing component fractions in powder mixtures has also been implemented, which can be used for on-line moni-
toring of many types of mixing process if fast digital imaging is available. © 2001 Published by Elsevier Science B.V.

Keywords: Angle Measure Technique (AMT); Partial Least Squares (PLS); Multivariate AMT Regression (MAR); Bulk powder properties;

Image analysis; Mixing monitoring

1. Introduction

Bulk particle materials, with values of billions of
dollars, are handled extensively in the industries
around the world. They are characterized by their un-
predictable behavior, which can range from liquid-
like in an aerated state to near solid in a compacted
state. Dealing with this situation in an acceptable
manner requires development of reliable, repro-

" Tel.: +47-35-57-51-52; fax: +47-35-57-52-50.
E-mail address: Jun.Huang@hit.no (J. Huang).

ducible and relevant methods of characterization. The
current situation allows only little possibilities for
building up of a body of knowledge regarding the in-
terrelationships between characteristics and behavior.
This systematic experimental work starts off with
predictions of basic particle properties such as mean
size and further investigate the interrelationships
among bulk powder characteristics and predict the
behavior such as in silos and pneumatic transport
systems. The multivariate AMT regression tech-
nique, a new proposed concept to be described be-
low, is put to use in constructing robust prediction
models for these situations.

0169-7439 /01 /$ - see front matter © 2001 Published by Elsevier Science B.V.
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As presented in this paper, Angle Measure Tech-
nique (AMT) is applied on powder imagery in con-
nection with multivariate calibration. The multiva-
riate AMT regression is employed to establish a
relationship between ordinary powder video imagery
and functional powder properties. Images taken on
in-situ powders are bound to contain information
concerning irregularities, geometric shapes, sizes,
roughness, smoothness, etc. of the individual parti-
cles. These basic characteristics can then be related to
bulk powder functional properties and behavior, us-
ing proper multivariate calibration based on derived
AMT-spectra.

The AMT transform, as a new signal description
method, has shown potential in many areas of sci-
ence and technology since its debut in 1994 [1]. It
characterizes the scale-dependent complexity of data
such as time series, spatial series, and any other mea-
surement series, in a new domain—the scale do-
main. Possible applications now include image anal-
ysis, signal analysis, spectroscopy, analysis of drilling
well log data, and measurement runs in quality con-
trol.

2. Theory

2.1. AMT concept

AMT is defined as a function from the local to
global scale, s, which creates a new domain to char-
acterize all data such as time series, spatial series, and
any other ordered measurement series. AMT is nei-
ther an alternative to time-series analysis nor to the
Fourier transform; the new scale domain represents a
genuine novel addition to the time and frequency
domains. See detailed descriptions in our companion
paper [2], in which the AMT transform was applied
to image analysis as an image feature extraction tool
for powder characterization and discrimination with
the aid of Principal Component Analysis. The basic
interpretation of AMT spectra and some typical ex-
amples for image analysis have also been illustrated
there. In this work, AMT-based image features are
generalized and now used for predicting powder
functional properties and mixing components in
combination with multivariate calibration (PLS).

2.2. Multivariate AMT regression (MAR)

In recent years, some new regression techniques
have sprung up in the field of chemometrics, such as
Fourier regression, wavelet regression etc. In Fourier
regression, a regression model is formed between the
frequency components and a dependent variable(s),
e.g. in acoustic chemometrics, where Fourier regres-
sion was used to relate the acoustic signals to pro-
cess monitoring [3]. Similarly, wavelet transform has
been introduced as a preprocessing step before the
regression. In analogy to Fourier regression, Alsberg
et al. proposed the concept of Wavelet regression [4].
Wavelet transform can also be regarded as a feature
extraction tool for use in multivariate calibration in
this context. The wavelet transform of signal(s) is
coded as wavelet coefficients that act as regression
vectors for the dependent variable(s) in the regres-
sion model.

Assume that X is the original matrix with the size
of N M, where N denotes the samples (rows), M
denotes the variables, such as wavelength. Assume
that y is the variable to be predicted. In general, the
regression coefficients b need to be estimated by re-
gression methods. This can be denoted by the equa-
tion

y=Xb,

In the Fourier regression, if X is transformed to the
Fourier power spectra P we get y = Pb, which is
solved generally by

h=p* ¥,
where the generalized inverse P is from a regres-
sion method (e.g. PLS)

Similarly, X is transformed to the wavelet coeffi-
cients with respect to each sequential scale. The
equation is obtained in general as

b=wty

where the generalized inverse W is from a regres-
sion method.

In analogy to the above regressions, AMT regres-
sion makes use of the AMT spectra, such as MA and
MDY, which carry potential regression information at
each corresponding scale [2]. An AMT regression
model is established between the AMT complexity
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spectra and a dependent variable. Assume that A is
the AMT spectra that may be composed of MA and
MDY or more indices. The analogous regression
equation in general is given as

N

b=A"y

where the generalized inverse A™ is from a regres-
sion method.

A schematic overview of AMT regression ap-
proach is shown in Fig. 1. This flow diagram gener-
alizes the basic methodology of MAR. Any multi-
variate calibration methods can be applied to the
specific problem in conjunction with AMT (MLR,
PCR, PLS, etc.).

How much of the AMT spectra should be used in
PLS analysis is problem-dependent. PLS offers a lin-
ear approach to analyze data with many noisy,
collinear, and even incomplete variables in both X
and Y. The precision of PLS method improves with
the increasing number of relevant X-variables with
regard to the observations. It is therefore recom-
mended to use full spectra from as many AMT-scales
as possible for the initial trials. However, use of full
spectra may not always be necessary. One should
perform variable selection in the scales to achieve an
optimal number of scales for prediction according to
some suitable prediction optimality criterion, of
which many are available in chemometrics.

The multivariate AMT regression has brought a
new approach to extract information for prediction
from “measurement series”, which in the present
context are unfolded isotropic images (with no loss
of information after unfolding). This approach offers

a breakthrough in a major part of image analysis
which converts texturally isotropic images into 1-D
multivariate AMT-spectra completely without loss of
fidelity. It views an image in a mathematically trans-
formed way instead of by direct visualization. This
work deals with isotropic powder images, but ap-
plies equally well in many other similar situations.
It is important to emphasize the definition of pow-
der again [2]. A powder is an assembly of particles
surrounded by fluids, whose behavior is influenced by
the nature and interaction of the individual particles
and of the fluid that surrounds them. Traditional
image analysis on powder characterization focuses
much on the individual particles using microscopic
imaging and morphology descriptions [5]. In deter-
mination of particle sizes, for instance, intensive cal-
culations are necessary because invariably image an-
alytical techniques, morphological methods such as
erosion and dilation, have to be used in order to be
able to segment the particles. After segmentation and
individual particle characterization, the desired pow-
der parameters may now be pursued, often by his-
togram processing, or some other accumulative re-
gion-oriented techniques. This is therefore very often
a long and troublesome procedure before even trying
to translate this piecemeal information to character-
istics of powders. This approach also necessarily in-
volves a difficult and time-consuming sample prepa-
ration process, such as dispersion of the powders
before microscopic imaging, etc. This makes it ex-
tremely difficult to carry out the on-line, at-line mea-
surements in practical situations [6,7]. Instead of
dealing with the individual particles, the present al-
ternative approach acquires images directly from

AMT transform

Raw data

—- AMT

matrix spectra

Variable
Selection

PLS

X- block

&

W |

Fig. 1. A schematic overview of multivariate AMT regression using PLS, MAR.
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powder with a minimum sampling preparation neces-
sary, followed by MAR. Images taken on powders
contain information not only about the individual
particles, but also the bulk powders, which reflect in-
teractive properties of the powder. The advantage of
using AMT is that it characterizes the complexity of
both local individual particles and global bulk pow-
ders simultaneously. For example, some local prop-
erties like individual particle size, shape, roughness,
smoothness, and regularity can be represented, from
which the related global properties like flowability,
fluidization velocity, and wall friction angle can also
be described by MAR. These important powder func-
tional properties usually have to be measured by run-
ning large-scale experiments that demand much time
and money. The AMT approach derives predictions
of the relevant powder properties under one roof,
however. The AMT image features—spectra—con-
tain information necessary to predict a great many of
these properties. The present work also aims to as-
sess to what extent this is possible. This approach,
based on simple and direct powder image analysis,
coupled with chemometric data analysis, appears very
practical and well suited for industrial use.

3. Experimental and results
3.1. Hardware and software

3.1.1. Camera and illumination

The camera used in all present experiments is
named Silvacam, using red, green and near-infrared
channels (R /G /NIR). See details in Ref. [2]. Oblique
illumination sources are used in our unfolded AMT
applications [2,8,9]. The unilateral illumination with
optimized angles results in critically more detailed
field-of-view imagery, including shadows created by
the individual particles, or highlighted definitions of
interstices and cavities between particles, etc. It is
specifically held as a distinct advantage by this illu-
mination set-up that, e.g. individual particle surface
roughness, will also contribute to the complex light-
shadow pattern created.

Average optimal settings for each series of pow-
ders to be characterised and compared need be ob-
tained by experimental trial-and-error. Such factors
need to be taken into account: number of light

sources, angle of illumination, spatial resolution of
camera, spectral characteristics of illumination
sources, etc. It is important that all powder images to
be compared be recorded under exactly the same
conditions.

Image processing and AMT calculations in this
work were implemented in a Dell computer with
Pentium III processor and 128 MB RAM.

3.1.2. Software

The present 2nd generation of AMT program has
been developed by the first author in MATLAB 5.3,
with the central computation part written in Mex C
for high speed. The software used for PLS modeling
is the UNSCRAMBLER 7.5, from Camo ASA.

3.2. Prediction of powder functional properties

Throughout the experiments, all powders were
imaged under identical conditions, where the opti-
mized angle of illumination, focus distance, and im-
age resolution were held constant, as were the scal-
ing of axes, number of measurement scales in order
for AMT transforms to be comparable.

To dampen the inaccuracies in sample preparation
and measurement, each type of powder is imaged four
times by rotating the sample container 90° clockwise.
Consequently, four replicates for each type of pow-
der are obtained for each powder type. Prediction
models are then made both based on all replicates as
well as on averaged spectra only in order to compare
their differences. From this, one gains a visual im-
pression of the reliability of the averaging procedure
and the reproducibility of the ensuing PLS models,
which are always based on the averaged results.

3.2.1. Prediction of particle size for different food
powders

This group of powders includes a wide range of
food samples such as spices, sugar, tea, etc. As shown
in Fig. 16 in Ref. [2], some food powders display a
variety of intrinsic complexities such as sizes, irregu-
lar shapes, roughness, color, and surface structure,
while others, like salt and white sugar, appear rela-
tively uniform due to identical color, size, and shape.
Specific powder discrimination on these powders has
been discussed in Ref. [2]. This work attempts to
predict the particle sizes of these food samples from
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the same AMT image features. Particle size ranges
from less than 100 to about 5000 pm.

AMT spectra for all powders are shown in Fig. 2,
where the spectra are composed of two parts, MA and
MDY, the important AMT indices. See details in Ref.
[2]. The spectra for salt lie at the bottom, and appear
quite smooth without any characteristic angles/
scales, which signify the simplicity of the salt image.
The slightly higher curve with similar shape repre-
sents the spectrum for sugar, which visually appear
very similar to salt. It may be the slightly larger size
and brighter crystal surface that makes sugar spectra
a bit more complex. There is a general trend that par-
ticle size is a very important factor to contribute to
the complexity of powders; the larger the size of the
powder, the more complexity there is. We deliber-
ately also chose some rather irregular powders to put
AMT to a tough test. They have different particle size
distributions, color, and shape, etc. Intuitively, we
consider that particle size is a geometrical parameter
that must be related to the AMT scale domain. This
should be the most direct /obvious variable that AMT
can characterize. Therefore, we start off with the pre-
diction of the mean, as well as the median particle
size. The reference results for these two parameters
were measured by a standard sieving method. The

200 —

150 —|

100 —f

50—

PLS modeling results are shown in Figs. 3 and 4. As
expected, this AMT approach is capable of predict-
ing particle sizes of different powders with no prob-
lems.

3.2.2. Prediction of powder behavioral properties

In today’s powder industry, there is a serious need
to know the relevance of the various characteristics,
such as the roughness, size, surface structure, and
shape, for prediction of e.g. behavior in silo
filling /discharging and pneumatic transport. It is also
the primary objective of this experimental work to
determine to what extent the AMT approach can re-
late the basic static image characteristics to this type
of bulk behavioral properties. Seven representative
powders, which are widely used in the industry, are
chosen for this purpose. Their raw images are shown
in Fig. 7 in Ref. [2]. It should be mentioned that it is
difficult to obtain more powders with all the follow-
ing properties measured, which demands a very sig-
nificant effort in large-scale experimental rigs.

The overview of their characteristics was de-
scribed in Ref. [2].

The predicted parameters are listed below:

+ Mean particle size, the average size of the sam-
ple (um)

0 100
“Bipeppert EpappT Brownme

400 400
grmlen ouiareed  salt e

Fig. 2. Averaged AMT spectra of different food samples. There are some overlaps at smaller scales, but clear discrimination at all larger
scales. Note that the AMT spectra are composed of two parts, MA and MDY (identical in all the following AMT spectra).
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Fig. 3. Results for prediction of mean size of food powders. (a) Modeling results are based on averaged spectra. Correlation coefficient is
0.93; RMSEP is 229.8. (b) Modeling results are based on all sets of four replicates, which were put into the same segment when cross-vali-
dated. Correlation coefficient is 0.94; RMSEP is 215.4.
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- Particle density, characterizes the solid density
of individual particles (kg/m?)

- Bulk density, the density of the bulk, can vary
depending on how it is measured, and on the
condition of the powder (kg,/m?)

+ Minimum fluidization velocity, is the minimum
gas rate necessary to fluidize the powder
(ecm/s)

+ Permeability prior to fluidization is the air ve-
locity per specific pressure drop, which can be
found from fluidization testers (m?/Ps S)

+ Wall friction angle against ST37 is the angle of
a powder against the wall of steel type ST37
(grade)

- Static angle of repose, is the angle of the in-
clined surface of heap with the horizontal plane
(grade)

+ Dynamic angle of repose, gives the dynamic
angle of repose, formed when the heap is being
poured from the top (grade)

All these parameters constitute a minimum set of
relevant powder material properties. Each demands
specific tests for its material characteristics. We have
attempted to predict as many of them as possible di-
rectly from the digital imaging of in-situ powders.

The AMT spectra give clear representations of the
raw images. Fig. 9 in Ref. [2] shows that cement,
alumina, and MD have smoother curves, which mean
there are not much complexities in these images. It is
easily understood that these three powders have sim-
pler patterns to go along with their smoother individ-
ual grain surfaces. By contrast, the rest of the pow-
ders have higher complexities. The rape seed seems

Table 1

to have the largest complexity of all. This is proba-
bly because rape seeds have relatively larger parti-
cles and contain some irregular impurities like white
petals. Pellets have the largest sizes but with a more
regular surface, almost uniform color and shape.
Therefore, the MA for pellets is located in the mid-
dle of all curves with a relatively smooth shape,
showing just a little more complexity than the three
fine powders. Spectra for sand and PVC are similar
but still with a clear difference.

Table 1 shows physical and behavioral character-
istics for these reference powders. It has been shown
in many powder studies [6] that behavioral powder
properties are more dominantly linked to the charac-
teristics of the particles constituting the powder and
to the nature of the size distribution(s) present. In the
field of powder industry, it is regretted that knowl-
edge cannot be extended to reliable and complete
prediction of bulk powder behavior from an exami-
nation of these characteristics alone. Reference stud-
ies have shown that the fluidization behavior is very
much related to the particle size and density. For in-
stance, both Geldart’s classification and Dixon’s dia-
gram show such relations that link these behavioral
properties to basic characteristics. These two dia-
grams have been used very frequently in the powder
industry. For more details, see Ref. [6].

A rough initial PLS2 modeling based on all refer-
ence variables (properties) show such relationships
that are consistent with their study in the field of
powder technology. As shown in Fig. 5a and b, min-
imum fluidization velocity is correlated to particle
size, and density is negatively correlated to both. The
figure also shows that some of the other relation-

Physical and behavioral reference properties of seven representative powders
All reference values, courtesy of POSTEC, Porsgrunn (Powder Science and Technology Research Institute).

Powders Particle Poured Mean Minimum Wall friction Static angle Dynamic
density bulk density particle fluidization angle against of repose (°) angle of
(kg/m?) (kg/m?) size (pum) velocity (m/s) ST37 (°) repose (°)

Pellets 913 555 3667 1.0 X 10° 14.8 38 37

Rape 1164 687 1650 43 x107! 18.7 30 30

Sand 2645 1590 687 25%x 107! 16.3 36 33

PVC 1414 518 472 8.1X 1072 14.8 37 35

MD100 2865 1212 91 3.0x 1074 26.1 63 39

Alumina 3399 939 87 3.1x1073 22.8 47 34

Cement 3095 734 15 32x107* 29.3 65 33
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Fig. 5. (a) Loading plot from PLS2 modeling for all ¥ variables. (b) Loading plot from PLS2 modeling for three particular variables (den-
sity, mean size, minimum fluidization velocity).

ships, e.g. wall friction angle, are correlated to the
static angle of repose. It is useful to see that a first

PLS2 model gives initial results in predicting some of
the important properties with apparent ease while
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confirming well-known interrelationships among
these basic static properties and the behavioral prop-
erties.

Final individual PLS1 models for each reference
Y-variable were established for predictions. Compar-
ative models based on all replicates and averaged
spectra were made to test the reproducibility of the
imaging method. Full cross validation was used for
modeling based on the averaged spectra, due to a
small number of certified reference samples (Table
1). As mentioned earlier, it usually takes a long time
and great effort to measure parameters such as mini-
mum fluidized velocity in powder industry. Seg-
mented cross-validation was used for samples with
replicates, in such a systematic way that all replicates
went into the same segment in order to avoid overop-
timistic results. Both full cross-validation and non-
systematic segmented cross-validation will give un-
realistically good outcome when such replicates are
present. Test set validation could not be adopted here
since not enough reference samples can be obtained.
For more details about validation, see Refs. [10,11].
Tables 2 and 3 show the statistical evaluations of
these PLS1 models for all predicted properties. Most
notably are the satisfactory results for density, mini-
mum fluidization velocity, wall friction angle and
static angle of repose, which strongly substantiate the
capability of this new multivariate AMT approach. It
does not work, however, with bulk density, perme-

Table 2

ability and dynamic angle of repose, as marked in
gray color in these tables. Minimum fluidization ve-
locity is a very important parameter in the field of
fluidization. It is very encouraging that this parame-
ter can be predicted and its relations with others can
also be studied in our first modeling. Fig. 6 shows the
predicted vs. measured evaluation plot for minimum
fluidization velocity. Here four replicates and seg-
mented cross-validation were used. One outlier, “pel-
lets”, was detected. The model manages to explain
88% Y-variance with 98% X-variance, as shown in
X-loading weight plot in Fig. 6a. X-loading weights
indicate that only the smallest scales X-variables are
not used much for explaining Y. Full spectrum can be
used for modeling without variable selection prob-
lems, or, alternatively, one may choose any conve-
nient (interdependent) subset of scales if necessary.
The X-loading weights plot can be used directly for
variable selection in the present situation.

Note that for some properties, there may occur a
smaller or larger clustering of the comparatively low
number of reference powders, Fig. 6, while for oth-
ers there is a more satisfactory spanning of the entire
calibration range, Fig. 7.

Another modeling result, for the static angle of re-
pose, is shown in Fig. 7. Reference studies [6,7] show
that it has direct relations to particle shape, rough-
ness, and irregularity, etc. It was also discussed ear-
lier that the AMT is especially useful in characteriz-

Comparative statistics ( fitted regression models of “predicted vs. reference” values) pertaining to eight powder properties
Note that all results below are based on averaged AMT spectra. The parameters marked in gray color cannot be predicted.

Slope Offset Correlation RMSEP #PLS
coefficient. components

Mean size 0,95 21.5 0.97 1353 2
Density 1.10 -363.3 0,93 286.9 2
Bulk Density
Min.Fluid. 078 0.02 0.90 0.07 2
Velocity
Permeahility
Wall friction angle 0.80 4.12 0.89 2.22 4
against ST37
Static angle of repose 1.17 -9.74 0.95 5.55 3
Dynamic angle of
repose
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Table 3

Comparative statistics ( fitted regression models of “predicted vs. reference” values) of eight powder properties

Note that all results are based on individual AMT spectra (four replicates for each powder). All replicates were put into the same segment
when the models were cross-validated. The parameters marked in gray color cannot be predicted.

Slope Offset Correlation RMSEP #PLS
coefficient. components

Mean size 0.95 17.4 0.97 135.3 1
Density 0.84 330.6 0.91 356.3 4
Bulk Density
Min.Fluid. 0.86 0.02 0.91 0.07 3
Velocity
Permeability
Wall friction angle against 0.92 -1.7 0.94 1.45 3
ST37
Static angle of repose 1.14 -7.8 0.94 5.72 3
Dynamic angle of repose

ing complexity stemming from individual particle
roughness, etc. Good prediction models were ob-
tained as expected. Final predicted vs. measured
evaluation plot for static angle of repose is shown in
Fig. 7b. This model was based on averaged spectra.
No outliers were found. The correlation coefficient is
as high as 0.95. Again, X-loading weights plot shows
that 97% X variance has been used to explain 76% Y
variance. The w-spectra are particularly informative
with respect to the relative scale influence. See Fig.
Ta.

Good models for wall friction angle were also ob-
tained. This parameter is, for instance, useful in de-
scribing powder behavior in silo systems. All final
prediction results have been summarized in Tables 2
and 3, with and without replicate averaging, respec-
tively.

The salient point made by the illustrations above
is that it is fully possible to use the AMT-derived
spectra directly as is for various prediction purposes
—even though one is not necessarily able to fully in-
terpret all the intricacies of the relative appearances
of the AMT-spectra. These types of AMT spectra are
now routinely used as a preprocessing facility at our
laboratories, in addition to spectroscopy, FFT, and
Wavelets for subsequent multivariate modeling.

The following example will show how multivari-
ate AMT regression can also be used for powder
mixing process analysis.

3.3. Prediction of mixing components

Mixing of particulate materials is widely used in
the process and related industries. It is a deliberate act
intended to increase the homogeneity of a mixture of
different components or sizes [12]. The most impor-
tant objective in mixing is usually the production of
a homogeneous mixture of several components, i.e.
an even distribution of concentrations throughout the
mass. However, many present monitoring methods
are either inapplicable, or too difficult, or too time-
consuming, to be applied for on-line, or at-line moni-
toring and characterization. The difficulty of predict-
ing the result of many independent or interdependent
causes in mixing and segregation processes can be-
come so great that the behavior of the system is un-
predictable or chaotic for all practical purposes. An
effective design procedure employing both heuristics
and algorithms needs to be developed.

To meet these demands, image analysis is here
used in combination with AMT and chemometrics.
Although the mixtures are all close to chaotic, they
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Fig. 6. (a) X-loading weights. 98% of X variance is used to account for 88% of Y variance. (b) Final predicted vs. measured evaluation

plot for minimum fluidization velocity. Final modeling was carried out based on replicates which went into the same segment when cross-
validated. Correlation coefficient is 0.91.
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Fig. 7. (a) X-loading weights. 97% of X variance is used to account for 76% of Y variance. (b) Predicted vs. measured evaluation plot for
static angle of repose. Final modeling was carried out based on averaged spectra using full cross-validation. Correlation coefficient is 0.95.

do have different characteristics, such as color, shape, AMT can take advantage of to discriminate /dis-
size and density. It is exactly these characteristics that tinguish between the fractions of components. With
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(a)

N

(b)

Fig. 8. Images with one homogeneous component. (a) Black tablets (100%). (b) White tablets (100%).

this insight, we tried to establish multivariate models
to predict the quantity of the selected mixtures with
the aid of AMT image features, e.g. mixing frac-
tions, homogeneity.

Several types of mixtures were prepared for mix-
ing prediction modeling. First we deliberately chose
two high-contrast types of tablets: one white and the
other black. They have otherwise similar densities,

sizes, and shapes, etc. Fig. 8a and b shows the im-
ages with one component before mixed. They are
randomly mixed thoroughly and well distributed in
the sample container.

Several mixture series were made with specific
different proportions of components (10% incre-
ment), which is meant to simulate monitoring of a
mixing process. Fig. 9 shows the mixture with 20%

(a)
Fig. 9. (a) Mixture with 80% white tablets and 20% black tablets. (b) Mixture with 50% white tablets and 50% black tablets. Note random
distribution throughout the sample container.

(b)
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black tablets and 80% white tablets, juxtaposed with
the mixture with 50% white and 50% gray tablets. It
would be of great interest to compare the AMT spec-
tra derived from these two images for all mixtures.

Fig. 10 shows detailed comparison of some se-
lected mixture AMT spectra with different propor-
tions of components. The spectra for pure black
tablets lie at the bottom because they are the “sim-
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Fig. 10. (a) Comparison of selected AMT spectra. Mixtures of black and white tablets: (100%, 0%), (60%, 40%), (30%,70%), (0%,100%).
(b) Blow-up of MA. (c) Blow-up of MDY. Note that spectra for pure black tablets and white tablets are both located at the bottom due to

their simplicity and uniformity.
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Fig. 11. Predicted vs. measured evaluation plots for mixing component prediction. Models based on averaged spectra. (a) Model with all 11
compositions of the mixture series. Nos. 1 and 11 represent the pure end members. Correlation coefficient is 0.86; RMSEP is 13.62. (b)
Model without the pure black and white end members (Nos. 1 and 11 in (a)). Correlation coefficient is 0.92; RMSEP is 13.01.
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18 J. Huang / Chemometrics and Intelligent Laboratory Systems 00 (2001) 000-000

plest” among these mixtures, as evidenced clearly by
the raw images. Likewise, the spectra for pure white
tablets are located just above the pure black tablets.
It is easily understood that both are composed of one
component alone, and therefore not of much com-
plexity. Distinctly opposed to this, all the mixtures are
more complicated so that their spectra are located
higher than the components. This indicates princi-
pally different features for homogeneous media and
mixtures. Clear systematic variations can be per-
ceived from the enlarged MA and MDY spectra, Fig.
10b and c. There are some small overlaps between
mixture spectra at smaller scales, which mean they
have different degree of complexity at smaller scales.

These image features—AMT spectra—can now
be used as X-block variables to predict the mixing
components quantitatively (Y variables), by multi-
variate AMT regression. The results from this PLS
modeling are illustrated below, in Fig. 11. The first
attempts to predict mixing components are marginally
successful, and the predicted vs. measured evaluation
plot shows a reasonably promising result. It must be
emphasized that subsequent optimization of e.g. illu-
mination and imaging parameters leads to improved
results for individual powder cases. We only show
here the potential of this new approach; specific in-
dustrial application studies are under way.

The model based on averaged spectra is able to
explain 90% of X-variance and 85% of Y-variance
with two principal components. See Fig. 12. Regres-
sion coefficients from model using two PCs are
shown in Fig. 13. Apparently, smaller scales of AMT
spectra show higher importance in the modeling.

For on-line process monitoring, it would be inter-
esting to study trajectory score plots that directly de-
pict the simulated mixing process. As shown in Fig.
14, sample 1-11 represent the mixtures with differ-
ent proportions of components. Number and its com-
ponent proportions (%) are, 1 (B100, WO0), 2 (B90,
W10), 3 (B80, W20), 4 (B70, W30), 5 (B60, W40),
6 (B50, W50), 7 (B40, W60), 8 (B30, W70), 9 (B20,
W380), 10 (B10, W90), and 11 (B0, W100). Fig. 14
shows that the sequence is exactly consistent with the
proportional percentage of black and white tablets,
indicating a progressive development of the mixing
process. Numbers 1 and 11 correspond to pure black
and white tablets, respectively. As can be seen, they
are located at a comparatively large distance away
from all others, because they are not actual mixtures.
These two samples can thus also be considered out-
liers during the modeling, Fig. 11b. This type of tra-
jectory plot can be used to represent the development
of mixing components and evaluate the quality and
performance of the mixing process. This type of plot

Regression Coefficients

X-variables

0 100
Manew, (v-var, PC)(Comi,2)

400 500 600 700 800

Fig. 13. Regression coefficients from the mixing model using two PLS components.
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Fig. 14. Score plot from the mixing model. Note how the trajectory of samples represents the progressive development of mixing process.

See details in text.

is thus suitable as a vehicle for on-line mixing pro-
cess operator support.

It can be seen from the above results that this ap-
proach would appear promising with respect to more
developed use in practice, e.g. image sampling from
on-line, or at-line mixing processes.

4. Discussion and conclusions

As seen from all the above results, the models
based on replicate and average spectra do not show
much difference. This indicates that the measure-
ments were basically conducted accurately and the
method is reliable and reproducible, but studying
models based on replicates is helpful in finding out-
liers and in dampening the unavoidable imaging in-
accuracies. Therefore, we usually establish initial
models based on all replicates to see if there exists
outliers, and then average the remaining replicates to
make the final models.

MAR provides a unified methodology of data
analysis for a wide range of applications. The AMT
image feature vectors enable the use of multivariate

techniques for prediction of desired variables, which
represent powder properties in this case. The at-
tempts to predict functional powder properties and
mixing components have been made based on very
simple in-situ video powder images instead of micro-
scopic images of individual particles. It is construc-
tive that MAR is able to link the basic characteristics
of powders to the behavioral properties from the
AMT image features.

The general success of this new approach has
proved that the present approach is a powerful new
technique for prediction in powder science and in-
dustry, which lacks similar reliable, reproducible
methods of characterization. The homogeneity of a
mixture, an important homogenous powder charac-
teristic, can be evaluated with the same technique no
matter how complicated the mixture. Additionally, a
mixing process may be simulated and observed from
the process trajectory score plot. This latter pilot
study indicates that some work remain before the in-
triguing mixing process monitoring will reach indus-
trial applications standards, but these first results are
certainly encouraging enough to continue our work.
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Abstract

Fast and even germination is an essential barley malting quality parameter. During the malting
process the number of germinated kernels needs to be known in order to evaluate which variety
of barley should be used in the malt house. Traditional manual germination tests are time-
consuming and laborious so that it would be of great interest for the malting industry to have an
automated, fast and objective instrumental method for assessing the contemporary level of
germinated kernels.

The present unified approach allows for indirect quantitative germination assessment using fast
imaging and AMT transform in combination with multivariate calibration. The validated PLS-
prediction models constructed here are able to quantify the process of germination from a very
early stage. This methodology development pilot study reports the initial levels of accuracy and
precision obtainable.

Keywords: Barley Germination; AMT (Angle Measure Technique); PLS (Partial Least Square);
Multivariate Modeling; Multivariate AMT Regression (MAR)

1. Introduction

Germination frequency - and speed of germination - play a key role for yield in agriculture and
malting quality for the brewing industry. It is crucial for the malting industry to obtain a fast
and reliable germination assessment in the malt house. Therefore it is of great importance to
develop a fast and objective instrumental germination test to characterize the barley before
malting it. A high percent germination and a vigorous growth means a good malting barley
variety. Selecting an optimal variety is the first step in successful production - and marketing -
of malting barley. Currently there is a lack of efficient methods available to measure the
germination behavior of barley. The number of germinated barley kernels in a standard sample
is usually counted manually in the laboratory. This is very laborious, time-consuming and at
times partly subjective. There is a strong need from e.g. the brewery industry calling for fast,

: Corresponding author. E-mail: Jun.Huang @hit.no. Tel: +47 35 57 51 52. Fax: +47 35 57 52 50.
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automatic methods instead. The new compound method presented here, the multivariate AMT
approach in combination with image analysis, appears very promising for this industrial use due
to its simple imaging requirements and fast PC-modeling. The present approach is able to
characterize the germination process automatically and to conduct indirect instrumental
measurements on-line.

Two varieties of barley grown at the KVL farm with rather different germination qualities due
to weather, variety, fungal infection, and treatment were collected for the present germination
test.

The Angle Measure Technique (AMT) was originally introduced by Andrle in 1994 for
characterization of the complexity of geomorphic lines'. Later Esbensen and his group
broadened the AMT concept and proposed the generic AMT approach for general signal
complexity characterization, see details in the series related publications *°. Applications now
include image analysis, signal analysis, spectroscopy, quality control a.o.

We give full technical descriptions as an appendix for the interested reader.

3. Materials and Experimental
3.1. Materials

A standard number of kernels, e.g. 100, are placed on two layers of filter paper in a petri dish
and 4 ml of water is added. The petri dish is placed at a controlled temperature of 20°C and
germinated for 72 hours. The number of germinated kernels is counted manually every 3 or 6
hours and then replaced in the controlled oven. Two rather different varieties of barley were
chosen in the present screening experiment, A and B, in order to illuminate the inherent
germination differences between barley varieties. For the present pilot study we are only
interested in the principal behavior of these two different barley varieties; we need not even
identify these. A systematic study is underway aimed at a proper survey of the entire barley
field, Mgller & Munck (in prep)™.

3.2 Imaging
3.2.1  Measurement Setup

The schematic overview of measurement set-up is shown in Figure 4. Imaging was carried out
with this optical system. The illumination system (Reprostarll/Transilluminator, CAMAG) can
function in 6 modes of lighting with both direct and transmitted light. The CCD (Charge
Coupled Device) camera system (Photometrics) played a major role in image acquisition . A
Nikon 105 mm UV photographic lens was connected to the CCD. An Apple Macintosh
computer and image software IPLab Spectrum (Signal Analytics Corporation) were used to
control CCD camera. The Apple Macintosh system was connected to the network and shared
files with computers running Windows through the TSSzalk °. Images can then be transferred to
the other computers for further processing and analysis, as is important in the KVL
chemometrics group.

During the entire experiment, the imaging room was darkened in order to avoid mixture of the
artificial, controlled illumination light and daylight, which could otherwise perhaps lead to

2
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wrong color reproductions a.o. It was also felt important that room temperature was controlled
in the range of 16-20°C. Unstable temperature may also have a negative influence on the
imaging.

12

Figure 1. Schematics of the optical imaging system. 1. CCD camera; 2. Camera lens; 3. Optical
(bandwidth) filter; 4. Illumination lights; 5. Sample holder (kernels); 6. Elevator; 7. Electronics
controller; 8. Image frame grabber; 9. Computer (Macintosh); 10. Other computers; 11. LAN
(Local Area Network); 12. Resulting images

3.2.2  Optimal Imaging Settings

Many imaging conditions were tried out before first generation optimized images were
obtained. For the present purpose, we need to acquire images which will distinguish well
between sprouts and the remaining parts of the kernels. It is easy to obtain high quality images
under normal photographic lightening condition. Unfortunately images acquired in this way do
not discriminate in this fashion at all. Optimal discrimination requires the use of various filters
and specific illumination settings for a better solution. Quite a number of different filters in
front of the lens and many different illumination lights were tried out to try to meet the
requirements. UV and white light illumination, with a UV filter (397nm, 10nm bandwidth) were
finally chosen. The UV illumination is used as excitation light to generate the necessary auto-
fluorescence images, because the sprouts are particularly contrasted in the fluorescing images.
Use of the UV filter enhanced the sprouts while reducing the light reflected from the kernel
bodies. However, a severe price had to be paid for this increased discrimination, i.e. a
significant weakening of the total intensity, which caused a certain unavoidable blurring of the
images '°, but this was not a fatal consequence. Figure 2 shows a comparison of images taken
with and without the UV-filter. Selection of the appropriate f-number and the exposure time

3
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also became a trade-off, whether we wanted sharp images of low intensity or somewhat blurred
images of high intensity. In our case, the signals were overall weak anyhow and the kernels
should not be kept out of the controlled oven too long.

All these factors were taken into account before starting the formal imaging. With this in mind,
a formal experimental design for obtaining the optimal imaging settings was instigated. Images
were recorded with - and without - UV filter, using white and UV illumination alternatively,
with different f-number and exposure times (four experimental factors). In the end the following
optimal recording settings were chosen for the final imaging.

Hlumination : white light
Filter: UV

f-number: 8

Exposure time: Isec.

As an example, Figure 2(a) shows corresponding images, recorded with white light illumination
and without filter. Apparently, the image is of high quality, but it clearly doesn’t emphasize the
wanted part, the germination sprouts. Figure 2 (b), however, gives a much better discriminating
contrast for distinguishing the sprouts from the rest of the kernel bodies.

(a) (b)
Figure 2. A comparison of images taken under different illumination conditions. (a) white light
illumination without UV-filter. (b) white light illumination with UV-filter.
3.2.3  Design of experiments

The entire measurement process lasted 72 hours as shown in Table 1. Two varieties of barley
(100 kernels for each), samples A and B, were germinated under identical conditions
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throughout. The kernels were randomly spread on the black sample holder during imaging;
afterwards all kernels were replaced in the petri dishes for further germination. In this fashion
the kernels were positioned as non-overlapping as possible for the present pilot development
study. We have also already investigated the possibilities for routine imaging of samples not
similarly manually prepared for camera presentations (samples are here poured directly into the
sample holder without any further preparation etc); results from these studies will be reported in
the systematic follow-up paper (in prep).

Every 3 or 6 hours, the kernels were imaged four times with random re-distribution of the
kernels to investigate the repeatability of the present calibration method. We consequently
obtained four replicates for each germination status. We subsequently employed averaging over
all replicates in order to increase the basic image-sampling precision. Gray-scale images of size
1024*%1024 were collected from a square sample area of 8cm*8cm. Figure 3 shows a set of
representative images from different stages of the entire germination process. The number of
germinated kernels clearly increases with time. At the end of the germination process the
individual sprouts become quite long, and are now of no practical consequence for the
characterization. It is important, indeed critical, only to know the early/earliest number of
germination sprouts.

Table 1. Imaging during the germination process.

Germ. Sample A - Sample B —
Day Time Hours Replicates Replicates
1 2 3 4 1 2 3 4
o 17 0 Start Start Start Start Start Start Start Start
20 3 X X X X X X X X

23 6 X X X X X X X X

2 9 - - - - - - - -

5 12 - - - - - - - -

1 8 15 X X X X X X X X
11 18 X X X X X X X X

14 21 X X X X X X X X

17 24 X X X X X X X X

20 27 X X X X X X X X

23 30 X X X X X X X X

2 33 - - - - - - - -

5 36 - - - - - - - -

2 8 39 X X X X X X X X
11 42 X X X X X X X X

14 45 X X X X X X X X

17 48 X X X X X X X X

20 51 X X X X X X X X

23 54 X X X X X X X X

2 57 - - - - - - - -

5 60 - - - - - - - -

3 8 63 X X X X X X X X
11 66 X X X X X X X X

14 69 X X X X X X X X

17 72 X X X X X X X X
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Figure 3. Representative images from different germination stages, arranged chronologically
(left-right/top-bottom).

3.1. Image processing and data analysis

Images of size 1024*1024 were first collected in 16-bit IPLab format, then converted into 8-bit
tiff format and resized into 512*512 pixels (to reduce computation time). All images were
median filtered to enhance the desired sprout/kernel contrasts and sharpen the edges while the
other parts were smoothed '°. The images were all unfolded into vectors of length 512%512
pixels row-wise''. The AMT transforms on the vectorized images were carried out in Matlab
5.3 with the core computation part written in Mex C code for higher speed '*. A Pentium III
computer was used for processing and analysis. The AMT spectra composed of MA (Mean
Angle) and MDY (Mean Difference Y) were calculated with scales ranging from 1 to 200. The
AMT spectra, in Matlab formats, were finally imported into the Unscrambler 7.5 software
system for multivariate calibration.
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4. Results and Discussion

4.1. AMT spectra of the images

Three selected images from the germination process are shown in Figure 7. (a) shows only a
few kernels sprouting at a very early stage. (b) shows how more kernels have sprouted at this
intermediate stage, as the number of visually recognizable brighter dots increase. Most kernels
have germinated at the end of process as shown in Figure (c). Some of these latter sprouts are
distinctly elongated.

(@) (b) (©

Figure 4. Selected images illustrating the image manifestation of the germination process. (a)
beginning of germination, sample GA106; (b) intermediate stage of germination, sample
GA110; (c) end of germination, sample GA114.

Figure 5 and 6 show how even small differences between images are well reflected in the AMT
spectra, i.e. after the AMT transform. For both the MA and MDY spectra, sample GA114
(representing the end of process) lies on the top, while that of GA106 (beginning of
germination) is located at the bottom. In general, the higher the specific values of MA and
MDY are, the more complex are the original signals. The individual spectrum irregularity also
indicate higher original signal complexities. In Figure 4 (a) to (c), the images become more
intricate and irregular as the sprouts get longer. The corresponding MA and MDY spectra both
show the same trend, in that the AMT spectra values increase as the images become more
complex. This is especially clear in the zoomed-in, close-up comparisons of these spectra in
Figures 5 and 6. It is apparent that there is indeed no overlap among the spectra, but MDY is
getting quite irregular as more sprouts appear in the image. These few illustrations are meant to
demonstrate the inherent AMT-sensitive to even minute changes of complexity in the original
signals/images. It is exactly these systematic variations in the AMT spectra which can be
utilized for multivariate modeling. It should therefore be entirely possible to model, and
subsequently predict the number of germinated kernels (Y) based upon these AMT spectra (X)
through a standard multivariate calibration modeling, using e.g. PLS, PCR.
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Figure 5. Illustration of corresponding AMT spectra, Mean Angle (MA), corresponding to the
images in Fig. 4. (a) MA for scales 1-200; (b) Close-up of MA. GA114 lies on top, GA106 at
the bottom. Notice the highly systematic variation completely without overlap.
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Figure 6. Illustration of corresponding AMT spectra, Mean Difference Y (MDY), again
pertaining to Fig. 4. (a) MDY for scales 1-200; (b) Close-up of MDY. GA114 lies on top,
GA106 at the bottom. Notice the almost equally systematic variation again without overlap in
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4.2.  Multivariate data analysis: PCA model diagnostics

Representative images taken at certain germination stages were chosen for analysis. There are
four replicates for each time point. Each image (512x512) is unfolded to a 1-D measurement
series with length of 512x512. A aggregate matrix is assembled, composed of one such vector
for each image to be subjected to multivariate data analysis e.g. PCA, PLS.

It is practically unavoidable to obtain some abnormal recordings, e.g. either due to accidentally
faulty experimental operations, or to uncertain imaging conditions etc. Several hundreds of
images were recorded from the beginning to the end of germination process. It is not practical
to inspect each image one by one. However, with PCA on the image AMT spectra, this became

8
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very easy. Each row of the aggregate X-matrix is composed of the compound AMT spectra
(MA+MDY), which represent the essential features of one image. In the PCA models presented
below, there are different diagnostics available to reveal such outliers such as the PCA score
plot itself, various contribution plots, Hotelling Tz, residuals etc. We here used score plots,
Hotelling T%, and residuals to detect and remove such outliers, see e.g. Figure 7. Two extreme
samples (numbers 4, 12) are clearly located far away from the pertinent Hotelling Ellipse. A
check on the corresponding images turned out to reveal both an over-exposed as well as an
under-exposed image; both resulted in but almost identically blurred, and quite useless, images
however. During several iterative stages all outliers were quickly removed in this way until all
samples were well within the control limits.

Pc2 Scores
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0
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Figure 7. (a) Score plot with Hotelling T? ellipses. The solid and dashed ellipses represent the
control limits before and after the two outliers (No. 4,12) were removed. (b) Residual X-
variance vs. leverage plot. Also here No. 4 and 12 are clearly distinguished, but they were
removed primarily because of their score-plot relationships in (a).
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4.3. Prediction models

In this methodological pilot study it is our primary objective to model whatever relationships
present between the AMT spectra (X) and the germination process stages, as expressed by the
number of manually counted sprouted kernels (Y). Multivariate AMT Regression (MAR), see
Appendix A, was used to predict Y. 9x4 images at 9 representative germination stages, Table 1,
were chosen for the decisive multivariate regression modeling, in which the replicate spectra
were averaged. Subsequently, a X-matrix with 9 samples and 400 variables (two AMT scales)
was formed. For the present modeling, full cross validation had to be employed, since we only
have at our disposition 9 objects for each model .

Table 2 shows comparative PLS modeling results for prediction of the number of germinated
kernels with these AMT image features. The objective of the comparison is to express the
relative usefulness of this approach for the two barley varieties. The results shown are not much
different. The correlation coefficient for variety A is 0.91, and 0.93 for variety B. Both
RMSEPs are around 10.0. An average standard prediction uncertainty of +/- 10 kernels can of
course not yet be considered within a satisfactory optimized range, but method optimization and
parameter fine-tuning has not even begun properly yet.

Table 2 also shows that 89.80% of the X-variance and 99.41% of Y-variance can be explained
in the model for variety A, with 86% of X-variance and 94% of Y-variance for variety B, both
using 3 PLS-components. These cross-validated modeling fractions would appear satisfactory
for both models. The only particularly distinguishing feature between these two models would
be the slope of the firted prediction statistics. The slope for variety A is distinctly more
acceptable, 0.86, than what would appear to be the case for variety B, which displays a rather
less satisfactory slope of 0.73 only, see Figure 8, 9.

Table 2. Comparative statistics (fitted regression statistics) pertaining to the two barley
varieties. Results are based on the averaged AMT spectra at each of the nine selected
germination stages.

Explained Explained  Correlation = RMSEP #PLS
X variance Y variance  coefficient. components
(%) (%)
Variety A 89.80 99.41 0.91 10.0 3
Variety B 89.28 99.13 0.93 10.5 3

4.4 Discussion

An overview of PLS modeling results for variety A and B are shown in Figure 8 and 9. Process
trajectory plots shows clear, progressive development of the germination process in Figure 8,
where the first PLS component alone explains 79% Y-variance (77% X variance). The plot of
X-loading weights, w;, shows the relative role of the various AMT-scales for the model. Notice,
for instance, the very marked difference in the pertinent loading weight spectra in Figure 8 and
9. In Figure 8, AMT-scales of approx. 30-200 pixels for both MA and MDY show equal

10
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importance for the model, while a very different case with the model for variety B is shown in
Figure 9. It is here obvious that the MA spectra at scales of approx.20-80 play the absolutely
most important role for the model, while the MDY spectra show no significant contribution to
model at all. The validation Y-variance plots are indicative of our selection of the proper
number of PLS-components. Both these Predicted vs. Measured plots show moderately
encouraging validation statistics for both varieties A and B.

The above results show that this new multivariate AMT approach is basically successful in
characterizing barley germination process stages but that it predicts the quantified percentage of
germination with accuracies and precisions commensurate with a very first pilot study only.

There will have to be conducted a large amount of follow-up studies, based on the basics of the
approach which has been worked out here, before the true potential of this method can be said
to have been put to a satisfactory test. These necessary studies are well under way already'®. In
all likelihood they will also have to include further imaging optimizations a.o.
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Figure 8. PLS modeling results pertaining to Barley variety A. Upper left: Score plot (process
trajectory plot); Upper right: X-loading weights; Lower left: Validation Y-variance plot;
Lower right: Predicted vs. Measured plot. Corr. Coeff . =0.91; RMSEP=10.5; slope=0.87.
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Figure 9. PLS modeling results pertaining to Barley variety B. Upper left: Score plot (process
trajectory plot); Upper right: X-loading weights; Lower left: Validation Y-variance plot; Lower
right: Predicted vs. Measured plot. Corr. Coeff . =0.93; RMSEP=10.0; slope=0.73.

5.  Conclusions

The AMT transform is a powerful new method for characterizing the complexity of
measurement series in general, of textured images in particular. It creates a new domain, the
scale domain, which often captures and preserves quantitative texture information from the
original domain.

The combination of AMT pre-processing with chemometric PLS-regression has been used here
for a first investigation of the potential for quantitative barley germination assessment. The pilot
study results presented allow for optimism w.r.t. further development, but significant further
methodology optimizations are most likely needed, as is an extensive survey over the entire
malting barley field. These studies are ongoing [14].
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Appendix A. Methods
A.l Angle Measure Technique (AMT)
A.l.1 Basic concept

The AMT (Angle Measure Technique) is a new signal description method developed for
characterizing the complexity of contiguous data such as time series, spatial data series, indeed
any measurement series. The AMT transform produces so-called complexity spectra by
calculating the geometric angles which characterize the directional change, or the
corresponding X/Y difference, when tracing the measurement series outward from a set of
randomly chosen sample points along the 1-D (or 2-D) series for a set of increasing
measurement scales, Fig. A1. The AMT spectrum is consequently to be viewed as a function of
these scales, from the local to global, characterizing the complexities (intricacies, sinuosity,
roughness, etc.) of the measurement series. At a more fundamental level, a new domain is
created, the scale-domain. The AMT is applied to unfolded image data series in this work.
Further details on AMT theory are given in our earlier expositions ™.

Difference X

A
Y

Difference Y

Digitized lin€

Ang]e ofi);

Figure Al. Explanation of AMT. A number of points "A" are chosen randomly along the entire
measurement series (usually 500). A circle with contemporary radius, S, will intersect the
measurement series in two points B and C, which in turn defines the complexity-related angle
CAB. The solid line represents the 1-D measurement series (unfolded from a 2-D gray-level
image in this case). The individual "Angle ofi)" is measured (for each of the random points A
along the entire measurement series) as the supplement to angle CAB. This produces a
statistically robust "mean angle" measure, MA, of the local complexity corresponding to the
scale "S". Additional AMT-indices are also calculated: Mean Difference Y (MDY) is the
vertical distance between point C and B. By letting S=S + 1, the (MA, MDY) AMT-measures
will simultaneously characterize the complexity at all scales.
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A pseudo-code illustration for AMT calculations (Mean Angle) is shown below. Other indices
such as MDX/Y can be obtained in the same way.

For S=1:M

A(s )= 1 %
S )= o ’
Ni=l (l)S

end

where ofi); denotes the individual angle at the corresponding scale
A(s ) denotes the Mean Angle (MA) as a function of scale
M denotes the number of measurement scales (maximum S)
N number of randomly chosen points along the entire measurement series (500)

Figure A2 shows AMT spectra derived from an unfolded image. Observe how MA and MDY
capture different, but complementary aspects of the intricacies of the scale-complexity
interrelationships. The horizontal axis represents "log S". MA displays a complexity "peak"
corresponding to a scale of approx. 25-30 (pixels). This illustration pertains to one AMT-
derivation for one image. When a number of AMT-spectra derived from a set of images are
collected into a common X-matrix, the (log S) scale is now used as the joint variable dimension.
Such an aggregated X-matrix can now be used for e.g. multivariate calibration a.o.
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Figure A2. Illustrative (MA, MDY) complexity-spectra (upper: MA; lower: MDY).

A.1.2. Features of AMT

The most useful aspect of the AMT transform is that the compound (MA, MDY) spectra can be
used as 1-D object vectors for multivariate data modelling (e.g. PCA, PCR or PLS). For 2-D
image objects it is the local texture of the field-of-view which is transformed into a
corresponding 1-D complexity spectrum. These complexity spectra, Figure A2, implicitly carry
are very high information richness related to all scale(s). This is the principal feature of AMT
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which performs as a useful pre-processing in very many of applications. Some major
characteristics of AMT in image analysis are:

e Digital images are often (very) large 2-way data. AMT transforms a 2-D image
into a 1-D complexity spectrum, without losing textural information.

e  AMT can thus (partly) be considered as a data compression method due to the fact
that the image data can alternatively be represented by AMT spectra at a fixed
number of scales which are often significantly less than that of original signal.

AMT has a high sensitivity with respect to even (very) small complexity-scale changes, see
Huang & Esbensen ® >

A.2 Multivariate AMT Regression (MAR)

MAR was proposed in a previous study *. In multivariate AMT regression, the AMT spectra
such as MA and MDY, which carry information at each corresponding scale, work as feature
extractors for further multivariate calibration. AMT regression models are established between
these AMT complexity spectra (X) and a dependent variable (Y). Assume that A is the AMT
spectra which may be composed of MA and/or MDY. The regression equation in general is
given as

b=A%y
where the generalized inverse A" from a regression method such as PCR, PLS etc.
A schematic overview of AMT regression approach is shown in Figure A3. This flow diagram

generalizes the basic methodology of Multivariate AMT Regression (MAR). Other multivariate
calibration methods can be applied to the specific problem in conjunction with AMT.

Raw AMT transform AMT
data | ——"> | Yariable
matrix spectra Selection

PLS 1 v

X- block

w 1]

Figure A3. A schematic overview of multivariate AMT regression, using PLS *
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Applications of Angle Measure Technique (AMT) in image analysis — Part III:
High-sensitivity particulate impurity detection and quality control

Kim H. Esbensen” and Jun Huang

Applied Chemometrics Research Group, Department of Technology (TF)
Telemark University College (HiT), N-3914, Porsgrunn, Norway

ABSTRACT

Image AMT (Angle Measure Technique) is developed for particulate matter impurity
detection and quality control. Images of in-situ powders are used to illustrate this new
technique for high-sensitivity applications, in which unfolded video imagery is converted by
the AMT transform to multivariate data for quantitative prediction of pollutants. This
approach reaches sensitivity levels essentially into the per mil range (v/v), which was quite
unsuspected. This AMT sensitivity is shown to be a direct consequence of the unfolding
employed. We demonstrate technological and industrial applications with laboratory as well
as industrial types of contaminant quantifications. This new image AMT approach can be
applied on-line for product/process control with low cost due to its simple imaging and fast
data analytical modeling.

Key Words: Image analysis; AMT (Angle Measure Technique); impurity detection; quality
control; PLS (Partial Least Squares); Multivariate AMT Regression; unfolding

1. INTRODUCTION

The existence of non-neglectable quantities of impurities (pollutants) in virtually any mass
produced product is unavoidable in many industry sectors because of competitive economic
and production technology pressures a. 0. Sectors like food, feed and beverage production are
prime examples, but the problem of a non-zero impurity level is almost universal in the
particulate industries. The purity of final products is one of the critical criteria for many
quality evaluations. Sugar manufacturer, for instance, need strict control and very high-
sensitivity detection of the impurity levels in their process and products. Wheat/rice
producing companies have to check very thoroughly for impurities of foreign grains, e.g. sand
and small stones in their products. Currently used standard image analysis techniques are
typically either too laborious (sample preparation), too expensive, or too slow to be applied
for effective on-line, precise manufacturing control. Current processes rather demand fast,
inexpensive and time-saving methods for higher profits. We aim to show how the present
technique rises to all these demands with but very modest image technology - and calculation
requirements.

: Corresponding author. E-mail: Kim.Esbensen@hit.no. Tel: +47 35 57 5150. Fax: +47 35 57 52 50.




Applications of AMT in image analysis - Ill: High-sensitivity particulate impurity detection and quality control

The new approach is comprised by the AMT image feature extraction technique with
subsequent multivariate calibration (PLS) [1]. We earlier described the basic technology in
detail in our previous papers in this present series [2-3], in which extensive applications of
AMT on image analysis have also been given, to which the reader is referred for full
expositions if needed [1-5].

Fast digital imaging of in-situ powders with a calibration range of trace amounts of various
pollutants, coupled with Multivariate AMT Regression (MAR) [3], provides an effective
approach for many multivariate calibration purposes, e.g. as for quantitative impurity
characterization in this work. We earlier focused on porosity characterization [1] and powder
functional properties [3]. We are currently also developing this methodology for describing
complex mixing processes and mixing product characterization. Below we shall focus on the
extreme one end of a mixing series characterization, i.e. the situation in which one end-
member is allowed to gradually reduced in concentration literally to the vanishing point. We
are going to investigate to what extent the MAR approach can deal with characterizing a
mixing system in which progressively smaller trace levels of the one component ultimately
becomes an impurity in an otherwise pure matrix. We shall exclusively be working in the sub-
% area of pollutant concentrations, indeed sometimes even below the per mil range.

At the outset of our image AMT mixing and trace concentration characterization studies we
had no idea that the presently presented levels of accuracy and precision would be obtainable
— indeed the results presented below initially came as a complete surprise. Intensive
rationalization has since revealed that the success below is nothing but a direct (hitherto
unrecognized) consequence of the use of the unfolding operator on otherwise standard digital
video imagery.

The experiments reported here aim directly to simulate industrial situations. We present this
work as part of our continuing efforts to develop industrial image analytical process/product
sampling -, monitoring - and process control systems.

2. EXPERIMENTAL AND MATERIALS
2.1 Experimental design and imaging

Three different types of mixed particulate matters have been experimentally studied here. The
first two sets are used to illustrate the characteristics of this new variant of the image AMT
approach. We here make use of plastic pellets with different textures and colors are to
function as pseudo-products and impurities respectively in our image laboratory. The third set
represents a real-world example from the food manufacturing industry: five different types of
grain products polluted by small stone impurities.

Video imaging, illumination conditions, data capture and all other experimental contexts were
described extensively in reference 2, 3 and will not be iterated here. We used a standard
R/G/B digital camera (SONY) for some of our studies, and a modified JVC camera with the
blue channel substituted with a NIR-channel, “SilvaCam”, for others, ibid. In the present
studies we always use the channel which delivered the largest contrast between impurity and
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background as the basis for AMT, see also further below. Other than this the image analysis
examples below are virtually self-explanatory.

The field-of-view areas of impurities addressed here are strictly controlled so as always to
make up under 1% of the whole imaged area of the pure matrix (termed “background”). The
imaging was conducted in such a way that the impurity materials (pellets or stones) were
placed individually and randomly on the background “pure products”. The number of
impurities added was in a random order so as to eliminate any possible differential thermal
effects on the imaged objects. To counteract the unavoidable inaccuracies involved in
repeated sample preparation and image recording of the granular surfaces presented to the
camera, each polluted product was replicated four times by rotating the sample container 90°
clockwise [2,3]. Consequently four replicates for each degree of polluted powder are
obtained for the modeling. Prediction models based on both replicates as well as their
averaged spectra are compared below in order to assess the reproducibility of these two
imaging modes. Not surprisingly there are very significant precision advantages related to this
averaging scheme.

Optimal settings for imaging each pollution series of powders to be characterised and
compared need to be obtained by experimental trial-and-error. Such factors need to be taken
into account as the number of light sources, angle of illumination, spatial resolution of
camera, spectral characteristics of illumination sources etc. It is particularly emphasized that
symmetric, high angle illumination is used in the present case. This is opposite from the low-
angle oblique illumination required for other AMT powder characterizations, as described in
detail in reference [2]. It is important that all mixing and pollution powder series to be
compared be recorded under the same conditions of course. Throughout the experiments each
of the eight powder series reported below were thus imaged under the exactly same internal
conditions, where the illumination, focus distance, and image resolution etc. were held
constant, while there were smaller or larger differences between the different settings for local
series optimizations. Likewise w.r.t. scaling of Y-axes (the quantitative gray-levels in the
individual camera channels), number of AMT-scales [1-5] (resulting in the same number of
X-variables), which were also kept constant in order for the AMT transforms to be
comparable.

2.2 Multivariate calibration

Following our established routines for image AMT, each video image is unfolded into 1-D
vectors, followed by the AMT transform [1-4]. AMT transforms and characterizes each raw
image by its corresponding complexity-spectrum, ibid, all with an identical scale range (X).
This scale-array represent a new, derived variable-mode for the original images, which
themselves make up the corresponding objects. Thus AMT transforms a series of 2-D images
into a series of 1-D complexity spectra with a common variable way. Subsequently, the AMT
spectra obtained (MA, MDY) are concatenated into an X- block for multivariate regression
modeling.

Specifically, the percentages, or per mil of impurities can be used as reference Y-values;
alternatively the actual number of impurity grains may be used. PLS is chosen as regression
method and test set validation is used throughout [9]. The AMT transform is implemented in
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the Matlab 5.3 [8] which takes less than two seconds for a 512x512 image, and the
subsequent modeling is done in the Unscrambler 7.5 software package. Technically it is
therefore easy to envisage how to implement a virtually real-time, on-line impurity detection
facility to any industrial production line in which the necessary image recording can be
carried out.

3. RESULTS
3.1. AMT feature extraction

Figure 1 shows two original images of polluted products, which are made by placing black
pellets randomly on a white pellets background. In these experiments typically some 40 x 40
(1600) grains are contained within the image field-of-view. All our experiments reported here
used only the extreme trace levels of impurities in the interval (0,15) individual grains. This
corresponds to a range from O to 1% (v/v). We actually use the number of pollutants grains
directly in the resulting models below, so that the calibration ranges for all models established
are all identical in this 0-1% (v/v) interval; these alternative quantification options are trivial.

o

Figure 1. Original images of polluted products with different numbers of pollutant grains.
Black impurity pellets are randomly placed on a white pellets background. Each field-of-view
contains at least 1600 individual grains. This is a particular high-contrast case, cmp. Fig.s 5-7.

Representative AMT spectra for a number of images with different amounts of impurity are
shown in Figure 2. Clearly there is a systematic variation in the spectra, which indicates that
the AMT spectra are capable of detecting even very subtle differences between the images,
indeed it would appear that the entire AMT spectrum (both MA and MDY) carries
information directly correlated to the individual number of pollutant grains even in the
extreme trace level of 1-15 grains (in approx. 1600 grains), i.e. well into the per mil levels.
This is by any standards a remarkably high sensitivity. The enlarged detailed view of AMT
spectra (MA, MDY) shows a uniform trend of increasing spectral values as more pollutants
are added. This is a powerful reflection of AMT’s capability of very accurately quantifying
the complexity of granular and powder surface morphologies [1-3]. The higher the number of
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impurities grains in an image, the more complex they are, and the higher their AMT spectra
are positioned in the salient spectra comparison plot of Figure 2. As discussed above the
AMT transform works on all image scales simultaneously, increasing from the local to
global. This consistent and systematic variation in the AMT spectra is a good sign for the
possibilities for further multivariate calibration.
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Figure 2. Selected AMT-spectra for an impurity series, corresponding to 0 to 15 pollutant
grains. Note blow-up of MA and MDY for details. The MA and MDY values rise
systematically, without crossings of the respective spectra over the entire scale range, as the
number of impurity grains grow, i.e. the complexity of the AMT-spectra is directly correlated
with the number of impurity pellets added. Note that even though there are considerable local
noise levels especially in the (right hand) MDY -spectra, this is of no consequence as it will be
completely cancelled out by the subsequent PLS-regression [9].

Below we shall show that the predictive PLS-models developed in some cases are able to
predict with an accuracy of some 1-2 particles essentially all the way down to zero number of
grains. How is this possible?

3.2 Rationale for high-sensitivity AMT

Figure 3 is designed to show how this comes about. Figure 3 shows that the contemporary
scale, the radius of the AMT-circle, always must meet with the parts of the unfolded
measurement series which correspond to the pollutant grain(s) at some scale in the interval
(0,M). In the AMT computation, each circle with radius, s, grows outward from the randomly
selected data points A, only one of which are shown here. The set of continuously increasing
circles per force must all intersect with the parts of the measurement series which corresponds
to the contrasting pollutant particles, even if only one (sic). Thus all impurity grains will all
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be reflected at some scale by all circles, which is the reason that the entire AMT-spectrum
carries systematic information on the number of impurity grains. It is the unfolding operation
which creates this very high amplification of the impurity signal/noise ratio. Due to this
unfolding the entire “background” area of the image field-of-view is also drawn into the
pertinent signal detection basis, with an immensely increased sensitivity of the effective
detection level(s).

very large s

Figure 3. Sketch rationalizing how the intrinsic AMT analysis mode [1-5] will detect all
impurity-related contrasting peaks/valleys along the otherwise much more “flat”
measurement series (reflecting the background areas of the image). Any number of "impurity
peaks" (or valleys, in the case of reversed contrast) will be intersected by all incrementing
scale circles with radius s. Shown here is the case in which a single polluting particle (one
single light pollutant particle, on dark background) is detected both by small, intermediate as
well as large and very large circle radius s. This feature will be repeated in direct proportion
to the number of such individual particles present, hence the greatly amplified sensitivity
w.r.t. even both per mil pollutant concentrations and even fractions hereof.

In Figure 1 only the few camera lines (pixel lines) directly portraying the pollutant particle(s)
are affected and can thus be said to carry a signal reflecting the impurity. When the same
image is unfolded however, the entire image field is now used in the AMT-characterizations
of the pollutant particle(s), as is depicted in Figure 3. The 500 “A” points spanning the
measurement series (i.e. distributed over the entire image field-of-view) will now all serve as
centers for the growing AMT-circles, which consequently all will intersect the pertinent
segment(s) of the measurement series, at some high(er) scale or other, thus all contributing to
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an enormous amplification of the sensitivity with which the resulting AMT-complexity
spectrum carries enfolded quantitative information of the number of pollutant grains.

The fact that the AMT spectra are able to reveal such exceedingly small changes in the
original (unfolded) images makes it possible to establish multivariate prediction models for
quantification of the fraction (or number) of pollutant particles (Y) based on the derived AMT
spectra alone. The AMT transform here works as an effective image domain-transform pre-
processing for the ultimate PLS- multivariate calibration.

3.3. Multivariate regression analysis - validations and results

Partial Least Squares Regression (PLS-R) is employed for all multivariate AMT regressions
(MAR) below. Test set validation is adopted throughout in order to obtain proper validation
of the predictive power of the calibrated models [9,11]. It is explicitly mentioned that all test
set measurements were all obtained at later dates - with the general experimental settings
reproduced from scratch. This is in order that the complete sample preparation, sample
presentation and image recording variances were all included in the validations, ibid.

3.3.1 Black and White particles of high contrast

Figure 1 has already shown raw images with black impurities on a simple white pellets
background. Validation results based on both replicate and averaged AMT feature spectra are
shown in Figure 4. Modeling based on averaged spectra gives much better precision,
signifying a considerable stabilizing effect. The first two PLS components explain more than
(87,2) % X-variance and (92,6) % Y-variance respectively. This scenario (black particles on
white background) probably represent an optimal contrast situation; below we shall
immediately test several examples of much less contrasting configurations between impurities
and background in order to get a first idea of the possible limits to the present approach. The
best model shown in

Table 1 below gives excellent prediction ability with correlation coefficient as high as 0.99,
and a relative RMSEP as low as 2.2%, corresponding to a precision of +/- 2 particles. These
prediction statistics must be compared with the extreme trace concentration levels modeled,
0-15 particles in 1600 (sic).
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Figure 4. Test set validation (Predicted vs. Measured) plots. White impurity pellets on black
pellets background. (a) Model based on all replicates. Corr.coeff.=0.91, RMSEP=2.34,
slope=0.72 (b) Model based on averaged spectra. Corr.coeff.=0.96, RMSEP=1.79, slope=
0.98.

3.3.2 Colored particles of low contrast

Red and yellow pellets (otherwise morphologically identical to the white/black pair used
above) are used as a system with considerably less contrast in the image field-of-view, as
seen in Figure 5. Red tablets and yellow pellets are both used as impurities and background
respectively. As seen from the evaluation results summarized in Table 1 this approach works
well as long as there is a reasonable imaging contrast between impurity and background
products. Fig. 7 shows that this contrast need not necessarily be reflected in dramatic visual
contrast.

Figure 5. Original images of red pollutant pellets on yellow background particles, displaying
a significantly reduced contrast compared to Figure 1. The results show that this is still well
within the contrast range which can be quantified without problems however.
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Table 1 summarizes comparative PLS modeling results for a systematic impurity detection
study where pollutants and background products are black-white powders of high contrast,
and red-yellow powders of lower contrast. Illumination and/or inherent contrast features of
the systems to be characterized play a very important role. Contrasts can be significantly
improved, or destroyed, by the specific choices of illuminating conditions; these results are
based on further contrast improvement during our later, more fully developed work. These
four scenarios are all satisfactory first results for the present new technique.

Table 1. Comparative PLS results for impurity detection; all results based on test set
validation

PLS models Corr.Coeff. Slope RMSEP No. of factors
White pellets background, 0.97 1.1 0.72 3
Black pellets pollution

Black pellets background, 0.99 0.99 0.33 2
white pellets pollution

Red tablets pollution and 0.98 0.92 0.87 2
yellow tablets background

Yellow tablets pollution and 0.97 0.91 0.66 2

red tablets background

3.3.3 Grain-stone systems

For the ultimate test we here employ a set of real-world examples: five types of grains
(products) with small stones (of similar dimensions) as impurities were chosen because they
make up a very difficult, but realistic contrast situation. This system represents a bona fide
industrial situation of a real need for product purity monitoring of great practical and
commercial interest. This particular situation was in fact the specific problem which
promoted our efforts towards developing effective image analytical impurity detection
systems (thanks to TECATOR and FOSS NIR Systems for this motivation).

From an extensive series of pilot studies the grain/stone system is known to exhibit the by far
lowest contrasts investigated. The polluting stones are placed randomly embedded in the
surface of the different grain product samples, Figures 6 and 7. From Figure 6 it is apparent
that the red channel is of optimal contrast among all three (R,G,B) channels, and thus chosen
for the AMT transforms. Some modeling based on the other two, Green, Blue - or even NIR
channels - were of course also tried out, but unsurprisingly with less unsatisfactory results.
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Color Video Image
(Printed in Grayscale)

(Blue)

Figure 6. Real-world example: stone impurities in grain. Left panel: color video image
(printed here in gray-scale). The impurities are not as clearly discernable as for the
introductory laboratory plastic pellet systems treated above. Right panel: Split Red, Green
and Blue channels. Note that the red channel is of optimal contrast, and thus used for AMT-
modeling.

Triticum
Dicoccum

Triticum

Capo Compactum

Figure 7. Five selected types of grain polluted by stones (identical pollutants used for all).
Note considerable different expressions of contrast, which is caused by both the color
differences (impurity/product) as well as expressions of the different morphological grain
forms.
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During these grain systems experiments the 1 - 15 impurity stones are again added to
background grain surface in a random fashion to avoid possible thermal effects that perhaps
could be generated by differential heating of the impurities/products. No such effects were
observed however.

Test validation results from all five types of grains are listed in Table 2 below. The prediction
ability of the salient PLS-models are generally satisfactory, although the reduced contrast is
manifested in both larger prediction errors and by a reduction in the overall statistical
accuracy (slopes of fitted predicted vs. measured regression lines). One observes how the
general morphological expression of the background product also plays an important role in
delineating the ‘“contrast” w.r.t. the pollutants. Among all five grains, the best model is
obtained with the grain variety ‘Triticum Dicoccum’ (Corr. Coef. 0.98, RMSEP 0.77, slope
0.94), and the worst ‘Capo’ (Corr. Coeff 0.89, RMSEP 1.97, slope 0.72).

Table 2. Comparative test set validation results for selected types of grain with stone
impurities.

Type of grain Corr.Coeff. Slope RMSEP No. of factors
Barley 0.96 0.89 1.18 1
Capo 0.89 0.72 1.97 3
Terra 0.97 0.91 1.00 1
Triticum 0.91 0.78 1.77 2
Compactum
Triticum 0.98 0.94 0.77 2
Dicoccum

An overview of PLS modeling results for ‘Triticum Dicoccum’ is shown in Figure 8. The first
PLS component explain 97% Y-variance. The predicted vs. measured plot shows very
encouraging validation statistics, e.g. Corr. Coeff .= 0.98, RMSEP=0.77 (i.e. +/- one particle),
slope=0.94. It is noted that "only" some 70% of the X-variance (AMT-spectral variances) are
correlated with the quantitative Y-pollutant levels; 30% of the image information is
effectively filtered out by the PLS-model.

Figure 8(b) shows the X-loading weights w;, which delineate the relative role of the various
AMT-scales for this excellent model. The dominant "peak" for the scale corresponding to 10-
12 pixels (in both the left hand MA- spectrum as well as in the right hand MDY -spectrum) of
course corresponds to the average grain size in the image field-of-view. There are only but
(very) subtle contributions from the higher scale(s) in these relatively simple two-component
systems.

11
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Figure 8. PLS modeling results pertaining to grain variety ‘Triticum Dicoccum’. (a)
Explained X-variance (both calibration and validation) (b) X-loading weights (¢ ) Y-
validation variation (d) Predicted vs. Measured plot. Corr. Coeff . =0.98; RMSEP=0.77;
slope=0.94.

4. DISCUSSION

It is mentioned that along the way we have considered in detail some factors which could be
considered so as perhaps also influencing the modeling, i.e. a possible differential thermal
effect. Initially it was somewhat unbelievable that the technique developed could detect
impurities at such extremely low trace levels. For this reason, for example, we suspected that
the powerful illuminations used perhaps would heat up the two different types of materials
differentially so that successive images of the background would be brighter as the sample
temperature increased chronologically. Such a hypothesis could be excluded however after it
was found that absolutely no model could be established based on an alternative Y-variable
representing the time elapsed since the start of the experiments when adding the pollutants
etc. To completely eliminate this possible thermal effect we still even resolved to adding the
number of impurity particles in a random order onto the background products (adding and/or
removing particles according to a random design).

The success of this new AMT approach is critically dependent on achieving an optimal
contrast between impurity and product background. Oblique illumination may e.g. cause
unwanted shadow effect which is certain to bring additional uncertainty to the modelling.
Black pollutants on white background may e.g. generate dark shadow accentuations which in
fact would - falsely - appear to increase the area of black pollutant etc. Therefore, systematic,

12
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bilateral high-angle illumination should be applied for the present image AMT impurity
detection purposes. We emphasize that this is in direct opposition to the other AMT
approaches treated in the previous two studies of this series™”. Naturally there will always be
a strong problem-dependent illumination dependency for any specific application context

In this work we have only used ordinary R/G/B or R/G/NIR video images as long as there is
sufficient contrast between the impurity and background product. The present approach can
easily be extended also to other types of illumination and cameras etc. In some specific
situations, low-light sensitive CCD-cameras can be used. This would be especially useful for
on-line manufacturing/mixing processes under adverse light conditions a.o. Other situations
may call for UV illumination (fluorescence). Many biological materials are especially
sensitive in NIR or UV etc.

It is conceivable that the present approach will also work for e.g. microscopic imagery - as
indeed also for remote sensing (satellite platform) as well as for astronomical imagery a.o.

Additionally there is an uncharted aspect involving what could be called textural contrast,
Figure 9. From traditional image analysis there exist a plethora of texture filtering facilities,
which may be used in order to enhance the contrasting aspects of the morphological forms of
the individual particles a.o [6, 7, 10]]. In such applications one would use both the raw
image(s) as well as the texture derived counterparts for compound AMT complexity spectra.
The ensuing multivariate calibration modeling will pass judgment on which type of spectra
are most strongly correlated with the impurity quantifications. This area, still completely
unexplored in our work, may even turn out to have interacting relationships with the complex
illumination conditions etc [1-3]. We shall have to address these aspects elsewhere.

Figure 9. Examples of concurrent color - as well as morphological contrasts. The latter will
probably benefit from specific image texture derivations before application of the AMT
approach. Note that form contrast is often correlated with color contrasts pointing to the need
for both color (illumination) enhancement as well as form enhancement (texture filtering) a.o.
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5. RELATIONSHIPS TO IMAGE ANALYSIS

Undoubtedly it may also be possible e.g. to identify pollutant particles by conventional image
analytical means. This would necessitate tracing the perimeters of all particles in the field-of-
view (segmentation), followed by an identification step, discriminating pollutant particles
from the "inert" background counterparts (classification) - after which a similar regression
modeling could have been set up. It is highly significant that this sequence of image
analytical operations is orders-of-magnitude computationally more demanding however,
involving considerably more complex image analysis software facilities a.o.

In contrast to this we here presented the AMT-transform, a much simpler and more efficient
approach, which has been implemented as but a few hundred lines of MATLAB code only.
The otherwise needed image capturing hw/sw is identical for both alternatives. Add to this
only standard chemometric software encompassing PLS-regression/validation facility - et
voila!

6. CONCLUSIONS

As proven by the above test set validation statistics for all nine investigated systems of
pollutants/background particulate matters, the new image AMT approach for impurity
detection is highly satisfactory. As but the first feasibility study the present results call for
much optimism, as well as for further refinement work. There are likely further improvement
possibilities concerning the imaging, illumination and textural morphological features.

The ultimately obtained levels of precision and accuracy are simply astounding. In the
interval 0-15 particles (in 1600), corresponding to volume concentrations in the interval 0-1
%, the derived AMT spectrum (both MA and MDY) carries information directly correlated to
the individual number of pollutant grains even in the extreme trace levels well into the per mil
levels. This is by any standards a remarkable sensitivity for a technique which only uses of-
the-shelf, inexpensive standard digital video cameras and chemometric data analysis (AMT,
PLS).

The reason for these surprising results was analyzed and shown to result from be a significant
sensitivity amplification gain due to the unfolding operation used, whereby the entire image
field-of-view could be made useful as a basis for the AMT quantification, Figure 3.

There are very many potential technical and industrial on-line implementation - and
application scenarios for this new technique. These will most certainly not be confined to the
general area of particulate matters, which was chosen here as but a didactically expedient
exposition vehicle only. Surface characterization (microscopic, microscopic) is one prominent
possibility - there are undoubtedly many others. Viewed in this much broader context the
interesting potential for process control specifically and for quality control in general also
springs to mind immediately.

The present contribution forms part of a larger strategic development program currently

undertaken by the Applied Chemometrics Research Group, in which also quantitative image
analytical mixing fraction assessments plays an important role. We have elsewhere presented
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the corresponding first systematic results from this related area [12]. These current research
areas also impinge upon the area of "sampling" (sampling of heterogeneous materials), an
area of fundamental neglect within chemometrics to which much interest shall be directed in
the future.
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SUMMARY

Multivariate data analysis on images focuses on “weak” multi-way models such as unfolded
PCA/PLS. Multivariate Image Analysis (MIA) and Multivariate Image Regression (MIR) are
typical examples. Some “strong” multi-way methods such as PARAFAC, Tucker3, Multi-linear
PLS are introduced and tentatively also applied to image analysis in this work. Which method
should be used is problem dependent. Based upon macro satellite images, virtual fluorescence
images and microscopic functional property image examples, the performance of each
alternative method is presented, as well as comparisons between weak and strong multi-way
models. It is demonstrated that efficient handling of multiple images requires a clear overview
of the relationship between problem formulation and data array configurations, which should be
given more attention in dealing with image modeling. Appropriate preprocessing techniques,
such as 2-D FFT and Wavelet transform, may also be needed in order to transform and
configure image data to forms suited for further multi-way modeling.

Application 1 shows the possibility for application of strong multi-way methods on multi-
spectral images, otherwise conventionally analyzed by MIA. By contrast, application II
attempts to investigate the feasibility of applying MIA models on typical three-way data,
normally handled by the strong multi-way methods and provides a new perspective of dealing
with fluorescence spectra as images. In application III, microscopic images were taken on a set
of different cheeses, which were made from a factorial experiment by varying coagulation
temperature and the amount of rennet enzyme at a number of levels. The objective here
ultimately is to derive functional properties prediction models. Reference rheological properties
for these cheeses were tested by uniaxial compression techniques. Attempts have earlier been
made to discriminate different cheeses and predict rheological parameters from these cheese
images by multi-way methods.

The present exposition allows to draw some tentative first conclusions as to the proper
relationships between strong and weak multi-way data decompositions, their pro’s and con’s
and their relative merits.

KEY WORDS: Multivariate image analysis; MIA; Multi-way analysis; Unfold-PCA/PLS;
PARAFAC; Tucker3; N- PLS; 2-D FFT;
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1. INTRODUCTION

There exists a plethora of univariate digitized image analysis/processing across a wide range of
fields in science and technology. A huge literature can be found on color imaging/analysis" %
Many numerical, mathematical, or statistical techniques have been applied to image data in the
vast area of image analysis. Some multivariate techniques have also be introduced to image
analysis, dealing with data modeling of relatively complex images. Multivariate Image Analysis
(MIA) also including Multivariate Image Regression (MIR)/Multivariate teXture analysis
(MIX) are typical methods® ~®. The basic concept of MIA was first proposed by Geladi and
Esbensen at the end of 1980’s’. Applications have since been found in many fields such as
microscopy, satellite remote sensing, medical imaging, radiology, chemistry, spectroscopy and
astronomy, etc! ~ 112930

However, the true potential of multivariate data analysis on images has not at all been explored
fully. In this work, attempts have been made to apply multi-way methods to image analysis,
defined as 3-way (N-way) image analysis. One unique aspect of N-way image analysis is the
possibility of modeling of multiple images simultaneously combining both spatial and spectral
information, as opposed to just of one single multivariate image. MIA is thus one particular
approach to N-way image analysis. Principles and applications of MIA have been given in full
detail in the past decade. Typical examples are related to well-known multi-spectral images
such as satellite images, microscopic images etc” *''. There is no need to repeat much of this
development here.

Below we have also tried to apply strong multi-way methods on multi-spectral images which
are otherwise conventionally analyzed by the MIA approach as well as to apply MIA on 3-way
(fluorescence) data usually handled by strong multi-way methods. Another focus of this work is
concerned with more easily obtainable images, which possess common properties and
interrelationships. The microscopic cheese images to be introduced in application III are of
quite similar properties such as appearance and rheological characteristics etc, but they do not
fit any of the se two conventional 3-way array formats. They can nevertheless be juxtaposed,
transformed and reorganized so as also to form a three-way data array for multivariate data
modeling using alternative multi-way methods. Illustration examples given attempt to
discriminate different cheeses and predict the rheological properties from images by N-way
image analysis

The objective of this survey is to review the gamut of multi-way methods from the perspective
of proper (i.e. problem-dependent) data array organization and the many multi-way
methodological methods presented in the literature. Within 3-way/multivariate image analysis
chemometrics there has been a rather bewildering ad hoc modus operandi concerning how to
organize the pertinent object-way(s), variable way(s), time way etc. and what particular method
to use. We here focus on the systematic correspondence between the specific 3-way (N-way)
problem formulation(s) and their matching data array setups, from which follows which
methods are at all possible - or not. We want to show that exploitation of multi-way methods is
not a free optional matter, but rather that it is in many ways more logically restricted by the
problem/data array prerequisites. Therefore our survey is also composed of "cross-over"
methodological experiments, for example using typical (OOV)-methods on decidedly (OVYV)-
data arrays and vice versa, in order to present a fairly complete catalogue of representative
usages of the many multi-way methods.
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2. TERMINOLOGY AND NOMENCLATURE IN N-WAY IMAGE ANALYSIS
2.1. Terminology

Some confusion and misunderstandings may arise when dealing with multivariate analysis on
images and other types of 3-way arrays. It is therefore necessary to give a clear explanation of
terminology and nomenclature to be used in the following. An intensity/gray-level image can be
2-D, 3-D or N-D. The images discussed in the present context are in 2-D form. As mentioned
above, the term N-way image analysis is characterized by multivariate analysis of a stack of
images in general. N-way image data consist of a stack of images which usually have similar
properties, i.e. chemical, biological characteristics or inherent correlations, or intrinsic
variations, etc. A multivariate image is a stack of congruent images on the same field-of-view
measured for a series of different ‘variables’, e.g. wavelength, frequency, etc'. Multi-way
methods can be categorized into weak and strong multi-way methods'?. Unfold-PCA/PLS are
considered weak multi-way methods because they actually unfold 3-way data array into 2-way,
followed by ordinary 2-way analysis, instead of utilizing the entire multi-way structure during
the modeling. It should be noted that the term multi-way PCA (MPCA)? has been used in
chemometrics for unfolding and doing ordinary PCA (hence Tuckerl) modeling. Bro pointed
out that it is improper to use this term since it is easily confused with multi-mode PCA, which is
the term accepted for the Tucker models in general’. Thus we use here the term unfold-
PCA/PLS instead of multi-way PCA/PLS to avoid further confusion. Strong multi-way methods
usually refer to the trilinear PARAFAC model, Tucker3 model, and the more advanced
PARAFAC2 and PARATUCK models, which distinguish themselves from unfold-PCA by
using the multi-mode structure in the data in general, and they also offer different attractive
features. Multi-linear calibration is a strong multi-way regression approach, together with which
PARAFAC and Tucker3 models will be used in our first forays at N-way image analysis below.

2.2. Nomenclature

In the following, digitized images are denoted by bold capitals, and 3-way (image) array by
underlined bold capitals. Lower-case italics are used for scalars, and bold lower-case characters
for vectors. The letters, I, J and K are reserved for indicating the dimension of different modes.
The ijkth element of X is called x; and is the element in the ith row, jth column and kth tube of
X. The name way is defined as geometrical dimension, and the name order indicates number of
ways. Object modes are denoted by bold capital letter O, and variable modes by V, following
Esbensen et al'*,

3. DATA CONFIGURATION IN MULTIVARIATE DATA ANALYSIS ON IMAGES
3.1. Data arrangement in N-way image analysis
Choosing an optimal data analytical methodology requires an appropriate data configuration
pertaining to specific problem formulations in multivariate data analysis'*. N-way image

analysis is no exception. The proper arrangement of a large amount of image data is intimately
connected with the scientific goal or the pertinent problem formulation.
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Arrays of three-way data can be characterized by a categorical object/variable (O/V) mode
convention” . The entire class of all possible four different three-way configurations are
represented by the codes (000), (O0V), (OVV) and (VVYV), of which the two extremes are
usually of no practical consequence for multivariate data analysis. A three-way data array
composed of a multivariate image, for instance, may be characterized as OOV, which is
perhaps the most familiar three-way data array in N-way image analysis. Data configuration
may become more complicated when a third categorical direction (mode) is introduced, time. It
is sometimes argued that time should be treated as a V-direction or its own direction, as time
would appear to be equivalent to V-direction in some process chemometric applications.
Multitemporal multivariate images are a stack of images of the same object by using time
intervals'. This type of image data array can be represented as OOT. We will not go into details
here. There is a need for classification of these O/V/T-issues.

3.2. Analytical Problem Formulation

A significant part of multivariate data analysis can be covered by the following three types of
problem formulation'*:

1) data description (exploratory data analysis);

2) inter-class classification and discrimination;

3) intra-class correlation and regression.
This partitioning is not possibly complete, but can serve as a systematic basis also for carrying
out higher-order data analysis, see more detail in reference 14. This strategic overview should
be kept in mind when doing N-way image analysis of all kinds.

3.3. Relationship between data configuration and problem formulation in 3-way image
analysis

Major types of data modeling in N-way image analysis are described in the following with
focus on the dominant OOV and OVYV data arrays.

3.3.1. Data description

A multivariate image is a two-way array (OO) with a third way as the variable mode (OOV).
The standard MIA way of doing multivariate image analysis is to reorganize/unfold the three-
way data array to two-way first, and then to perform ordinary two-way analysis on unfolded 2D
array. The approach is usually termed unfold-PCA/PLS if used in conjunction with PCA/PLS.
Due to its original three-way arrangement and inherent unfolding, unfold-PCA/PLS can be
categorized as a weak multi-way method. See the graphical presentation in Figure 1. The term
multi-way PCA may be confused with three-way modeling'®, and therefore not used here.



Multi-way Methods in Image Analysis--- Relationships and Applications

=)
| ¢

|

]
=

Structure Noise

= +

Vo —
v

o

=}

-~
(m—— -

K

—
—

Figure 1. A three-way array is unfolded to a two-way array, on which the PCA is then
performed. U denotes the unfolding operator.

For an image array with OOOQO structure, domain transformations may occasionally be
implemented to obtain an OVV or OOV array which is trilinear and thus suited for strong
multi-way analysis. We give one such example in application III below.
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Figure 2. An OOO three-way data array may be transformed to an OVV (or OOV) data array
suited for subsequent multi-way modeling.

3.3.2.  Classification and discrimination

One of most important demands on image analysis is to extract information pertaining to
classification or discrimination of pixels in one or more classes, or of one or more entire
images, depending on the specific problem to be solved. There are two principal types of
classifications in terms of OOV and OVYV data array configurations, see Figure 3.
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Figure 3. Classifications/discriminations pertaining to different data configuration and problem
formulation. (a) OOV data array. Classification is performed simultaneously on each OO plane
which represents 1J objects. (b) OVYV data array. Classification is performed along the object
mode. One single plane here represents one object only.

3.3.3.  Regression

When regression modeling is applied to 3-way image data, it is called 3-way image regression.
There are three basic types of regression in 3-way image regression. See graphical
representation in Figure 4. Image regression can be established not only between images, but
also between image data and physical or chemical properties of what’s been imaged. The latter
will be focused in application III, which is concerned with regression between microscopic
images and rheological properties of cheeses. The possible data configuration problems may be
described by Figure 4.

Multivariate Image Regression (MIR) based on unfold-PLS has recently be reformulated with
details to be found in Lied and Esbensen®”’. MIR deals with OOV data arrays exclusively.

—

Figure 4. A graphical representation of three types of image regression, classified according to
the pertinent order of the Y-array.
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4. THEORY ON MULTI-WAY DECOMPOSTION METHODS
4.1. Weak multi-way methods

As discussed in section 3, unfold PCA/PLS is categorized into the family of weak multi-way
methods. Unfolding breaks the correlations in either (OO) or (VV) modes.

4.1.1. OOV three-way image data array

The typical OOV three-way image data array consists of K images of size IxJ measured e.g. at
K wavelengths in Figure 5. For OOV type of data, the three-way matrix X (IxJxK) is unfolded
into a two-way array so that each image pixel work as an object while each wavelength (or
frequency, energy etc.) is maintained as a variable. Then PCA is performed on the two-way data
set (ITxK). With unfold-PCA, in each component the data are decomposed into a long score
vector (IJ) which can be rearranged to a two-way score image (IxJ). The loading vectors py
(Kx1) describe the variations in variable space for each component. See below a graphical
presentation of MIA modeling (OOV) in Figure 5. The model can be written

X=YTp +E
1=

The index f denotes a component, and E residual images from unfold-PCA. The components
are orthogonal and can be calculated sequentially.
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J

Figure 5. A graphical presentation of MIA modeling (OOV). The matrix X contains K images
measured at a variable direction. E is the matrix of residual images. The indices I, J denote the
objects, and K variables.

4.1.2. OVV three-way image data array

Decomposition of the OVV three-way image array is different from OOV. The distinction is
that unfolding is now performed on the two-way variable mode instead of object mode. As
compared to OOV (e.g. MIA) data decomposition, the three-way OVV array matrix X (IxJxK)
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is unfolded into a two-way array (KxIJ) where the object direction of the images is maintained
(the sample mode). Likewise, in each component the data are decomposed into a score vector
(Kx1) in sample image mode, t;, and a long loading vector (IJ) which can be backfolded to a
two-way loading matrix Py (IxJ) (or loading image) as shown in Figure 6. P describes the
variation in the 2-D variable domain space for each component. The structure model with
residuals is

X=Y1p+E
=

J J
] = =
1 = P1 + P2
t] t2
K K
J ]
=
+...+ Py + 1
ty
K

Figure 6. Decomposition of X by unfold-PCA to F principal components. The matrix X
contains K OVV image data array. E is the residual images. The indices I, J denote the
variables, and K the samples. Note the opposed symmetry difference with respect to Figure 5.

4.2.  Strong multi-way methods in N-way image analysis

Some strong multi-way methods such as PARAFAC and Tucker3 can be adapted to image
analysis. PARAFAC is a de facto trilinear decomposition method, conceptually comparable to
bilinear PCA, while the Tucker3 decomposition is another generalization of PCA to higher
orders”. A detailed tutorial on PARAFAC is given by Bro'">. A PARAFAC model of a three-
way array is expressed by three loading matrices, A, B and C with elements a, b” 'Cy and the

residuals as shown in Figure 7. It can be written

F
X, = 2 ab.c. +e,
f=1

where F is the number of components, e, denotes the residual elements.
s
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Figure 7. An F-component trilinear PARAFAC model of the 3-way data array X .

One of most attractive features of the trilinear PARAFAC model is the solution uniqueness. The
Tucker3 model, also known as 3-way PCA, is another basic strong multi-way method used in
chemometrics. As compared to PARAFAC model, a Tucker3 model allows for extraction of
different number of factors in each of modes, and thus offer more flexibility, but is usually also
more difficult to interpret. It has been used for decomposition, compression, and interpretation
in many three-way applications, with the coverage of PARAFAC model as a special case under
such constraints” ~ %%, However, both PARAFAC and Tucker3 are simpler than the alternative
approach, unfold-PCA, due to fewer parameters in the models. A tucker3 model is a weighted
sum of all possible outer products between the factors stored as columns in A, B and C with the
weight of the outer products determined by a core array G (w;, w,, w3). It can be written in a
same manner to PARAFAC

D E F
'xijk = 2 2 2 aid bjeckf gdef + eijk
d=1 =1 F=1

where the index D, E, F denotes the number of components in each mode, and 84 the

elements of core array G.

A graphical representation of Tucker3 model is given by Figure 8, in which X is a IxJxK
matrix, G is a DxExF, A is IxD, B is JxE, and C is KxF. When one mode in X is not
compressed (e.g. D=I, F=K or E=J), the Tucker3 model becomes a Tucker2 model. If two
dimensions are equal (e.g. F=K and E=J), then the model is called a Tuckerl model, which is
simply equivalent to unfold-PCA without utilizing three-way structure of data. Another special
Tucker3 model is PARAFAC model under the specific constraints that the number of factors in
each direction is the same, D=E=F, and the core array G is a superdiagonal identity matrix.
More detailed descriptions on the Tucker3 model can be found in literatures'®?*.
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Figure 8. A graphical representation of the Tucker3 model.

4.3. Multi-way Calibration

There are many possible multi-way calibration methods, among which unfold-PLS and N-PLS
associated with a trilinear (PARAFAC-like) model are introduced here. Unfold-PLS is
characterized by performing ordinary PLS on a two-way array unfolded from a three-way array
and y variable(s), while keeping the object mode of X in common with the dependent y intact.
N-PLS based on PARAFAC model can be represented graphically in Figure 9 (with one y
variable illustrated). As described earlier, the Y-block can be a vector, a two-way matrix, or a
three-way (N-way) matrix.
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Figure 9. N-PLS model based on two steps: PARAFAC decomposition of X, followed by PLS
on scores from X and y.
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Details on multi-linear calibration are given by Bro and Smilde'” '®. Bro pointed out that the
advantages of N-PLS (including tri-PLS) over unfold-PLS can be highlighted by the following
two points: 1) The trilinear model is more parsimonious, simpler and thus easier to interpret; 2)
Less prone to noise due to decomposition across all modes'’.However, there is no general rule
in choosing which method to use. The knowledge of data sets under investigation and a priori
knowledge of calibration methods, proper problem formulation, is always an important
guideline. For instance, we have often found that unfold-PLS works very well in multivariate
image regression (MIR)™, by virtue of inherent weak correlations in one way etc. There might
also be a possibility of applying N-PLS in multivariate image regression, i.e. finding regions of
interest.

In the following three sections, three application examples on multispectral images, virtual
fluorescence images and microscopic image-functional property correlation using above
methods will be given.

Both weak and strong multi-way methods are applied in order to decompose and characterize
image data, and obtain some insight into their abilities to capture data structure. Application I
and Il apply both MIA and strong multi-way methods on typically MIA data and strong 3-way
data in order to evaluate their scientific playgrounds. Application IIl in addition attempts to
investigate the relationships between transformations of original images and their
corresponding functional properties. Comparisons of the ability of these methods are given. The
goal of comparison is not to verify one method over another, but rather to explore more
alternative approaches to N-way image analysis.

5. APPLICATION I: MULTI-WAY ANALYSIS OF OOV IMAGE ARRAY
MULTI-SPECTRAL IMAGE EXAMPLE

5.1. Data

This data set, Figure 10, is a multi-spectral satellite image of Mobile Bay, Alabama, which has
been described in the chemometric literature (Geladi & Esbensen, 1991). The image size is
512%512 pixels of Mobile Bay and the city of Mobile, Alabama, USA (coordinates 30.6°N,
88°W). It is made up of four variables (“channels”), the wavelength bands 500-600nm (yellow-
green), 600-700nm (orange-red),700-800nm (red-deep red) and 800-1100 nm (near-infrared). In
each wavelength band, the reflected intensities of the earth surface are digitized in the range O-
127. One pixel is about 80*80 m.

11
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(c ) deep-red band (d ) near-infrared

Figure 10. The 4x512x512 satellite image measured at different wavelength bands

This is a typical OOV image array (4 wavelengths X 512pixels X 512 pixels) since two spatial
directions form object modes and the wavelengths form a variable mode, see Figure 11. In the
following, both weak (unfold-PCA/Tucker1) and strong methods (PARAFAC and Tucker3) are
applied to this OOV image array.

Pixels
(Object mode)

Pixels
> Dbject mode)

~

Wavelengths
(Variable mode)

Figure 11. Data configuration of the 4x512x512 satellite image (OOV image array), Mobile
Bay.

12
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5.2. Multi-way analysis of multi-spectral images
5.2.1 Unfold-PCA model (Tuckerl model)

This type of multi-spectral image is an archetype for MIA. MIA’s objective is to conduct
unfold-PCA analysis on the multivariate image, i.e. to conduct an interactive study of scene
(raw images/score images) and feature space (score and loading plots). The score images are
obtained after the PCA calculations on these four raw images (four variables). The displays in
Figure 12 are scaled optimally in the standard gray-scale range of 0-255. The visual image
results of MIA calculations on this multivariate image are shown in Figure 12 and 13. Score
images are in maximum contrast to each other due to orthogonality of the PC scores. Residual
images from a model with 3 components show mostly the noise, e.g. closer look shows some
horizontal lines etc. These result largely from optic-electro instrument artifacts. Still it can be
advantageous to be able to assess even this mini-scale noise fraction in its proper spatial
context.

We will not go to detail since the detailed MIA analysis of this example has been given
elsewhere"’.

(b) T2

(T3

Figure 12. The four score images of the 4x512x512 satellite image: T1,T2,T3,T4. The first
three contain most information, while the last image contains very nearly only residual noise.
The score images are in maximum contrast with each other as a result of orthogonality of
scores.

13
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(b) Xres (2, 1512, 1512)

Figure 13. Noisy residual images from unfold-PCA model with 3 components. Note that while
these residual images carry only the most minute fraction of variance, there is a distinct
advantage in being able to view (even) this in its proper spatial context.

5.2.2. PARAFAC model

A three-component PARAFAC model is now fitted to the same image array for direct
comparison. Figure 14 shows a set of four reconstructed images from the structure model,
which has the same size as raw image array. These four images appear extremely blurred (but
the profiles of bay in image (b), (c), (d) are perhaps faintly discernable). It is quite apparent that
PARAFAC failed in modeling the multivariate image variance efficiently in this case. The
reason is clearly that three components are not enough to account for the most variation as
PARAFAC modeling requires equal components in all modes. There are only 4 wavelengths in
variable mode, and as many as 512 pixels in two object modes. Few variables make it
impossible to choose enough components for a well-fitted model. As clearly seen from
modeling results, three components are not capable of explaining major variations along three
modes.

14
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Figure 14. Reconstructed structure parts from a three-component PARAFAC model. Notice the
extreme difference with respect to Figure 12.

5.2.3. Tucker3 model

A Tucker3 model offers more flexibility than PARAFAC in that it allows for a choice of
different number of components in the different modes. Therefore, we can choose more
components precisely in the two object modes unlike for the PARAFAC model. Different
component options have been tried out. After trial and error, 3 components are chosen in
variable mode, and 64 components in each object mode, as this model captures 98.93% of the
total variance. The reconstructed images from structure part are shown in Figure 15. This
structural model is calculated from X_structure = AG (C'@B"), where A, B, C are loading
arrays, and G core array, and the symbol ® denotes Kronecker multiplication, see Ref. 22.

The reconstructed images (by proper image analysis scaling in the structural model) appear
quite clear and optimally contrasted. They are complementary to each other, but it should be
noted that reconstructed images here are not exactly orthogonal to each other, which is different
from score images derived from unfold-PCA model. Clearly, a Tucker3 modeling provides a
different approach to describe the image data from a new perspective. Tucker3 modeling of
multi-spectral images may be useful for e.g. de-noising, data compression, visualization etc.
Also shown here are residual images in Figure 16. They are mostly random noise due to
possible illumination, non-linear optical behavior etc. The Tucker3 model successfully captures
most of the image variance with this (3,64,64) setup of components, as is also very clearly
evidenced by the corresponding residual images in Figure 16.

15
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Figure 15. Reconstructed structure parts from a Tucker3 model with (3,64,64) components in
each of the three mode (VOO). Notice the differences with respect to Figure 12.

) Res (2, 1:512, 1:512)

(a) Res (3, 1:512, 1512)

(@) Res (4, 1:512, 1512)
Figure 16. Reconstructed noisy residual images from a Tucker3 model with (3,64,64)
components in each of the three modes (VOO).
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Table 1. Cumulative variations captured by unfold-PCA, Tucker3 and PARAFAC models. For
Tucker3 model, 64 components are chosen in each object direction, while the components in the
variable mode vary from 1-3.

Number of Unfold-PCA Tucker3 PARAFAC
components/factors (%) (%) (%)
1 86.55 91.41 (1,64,64) 89.57
2 99.13 97.86 (2,64,64) 94.28
3 99.66 98.93 (3,64,64) 94.76

It is interesting to compare these three different methods on this type of OOV image data array.
Table 1 gives the percentage of variations explained after 1,2,3 components (in first mode for
Tucker3). With three components, unfold-PCA explains the largest variation, 99.66%, followed
by Tucker3, 98.93% and PARAFAC, 94.76%. This is understandable since PARAFAC is most
parsimonious. Furthermore, both unfold-PCA and strong 3-way models maximize the fit of
model to the data in the bilinear and trilinear sense respectively. It is not difficult to see that
unfold-PCA is nothing but Tuckerl in the specific sense that the model is fitted. Therefore,
MIA and other three-way/N-way modeling of images form different cases of N-way image
analysis. In the above unfold-PCA/Tuckerl model, two object modes are left uncompressed,
and only variable mode is compressed. The object modes and variable mode are compressed
with different components in Tucker3 model, whereas the PARAFAC model compresses all
modes with an equal number of components. It is also of interest to compare the respective
loading plots from the three models as shown in Figure 17. Loadings from the unfold-PCA and
Tucker3 models show very small differences only, but differ somewhat from the PARAFAC
model. The reason is that the Tucker model compresses three modes separately, and establish a
relationship between factors in the three modes spanned by the core array. Here both Tuckerl
and Tucker3 use 3 factors in the variable mode. As compared to Tucker models, PARAFAC
does not have a core array to allow this flexibility in choosing different factors. The three
factors here are directly interrelated to each other. However, on the general level all three
models show almost the same interrelationships in this particular example..

Which model to use depends on the problem to be solved. The MIA approach is based on
unfold-PCA, for instance, which offers the tools for data decomposition and interactive study of
scene and feature space for segmentation and classification etc. The latter is largely due to the
fact that pixels in two object modes are kept uncompressed, and thus pixels in the score plot
correspond to those in score images backfolded from scores after unfold-PCA. For more
information, see Ref. 1.

Therefore, MIA is probably better suited for explorative data analysis and classification purpose
etc, while the Tucker3 model could be used for image data compression, exploration of 3-way
structure, de-noising etc. The PARAFAC model may only be considered when there are
approximately as many variables as comparable to objects present.

A significant amount of practical work still needs to be done in this area before a more
satisfactory body of experience is at hand.
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Figure 17. Loading plots (plvs.p2) in the variable mode from different models. (a) Unfold-
PCA/Tucker1 model; (b) Tucker3 model; (¢c) PARAFAC model.

6. APPLICATION II. DECOMPOSITION OF FLUORESCENCE DATA WITH MIA
VIRTUAL SPECTROSCOPIC IMAGE EXAMPLE

6.1. Data set

This well-known data set was obtained from Dr. Rasmus Bro at the Royal Veterinary and
Agricultural University, Copenhagen. It has been used in many 3-way data decomposition
expositions. Five samples were measured on a PE LS50B spectrofluorometer with excitation
250-300nm, emission 250-450nm in 1nm intervals. Two samples contain different amounts of
tyrosine, tryptophane and phenylalanine'®, see Figure 18 (a) and (b). Three other samples are
pure components of these 3 analytes, respectively, see Figure 19 (a), (b) and (c). This is an
archetype trilinear three-way data (OVYV). It has been demonstrated that the 3 pure spectra can
be estimated almost perfectly by the unique PARAFAC decomposition of the fluorescence
spectra of two samples containing different amounts of Try, Trp, and Phe, see details in Ref. 15.

In the present context it is not our intention to seriously pit the MIA approach against the strong
three-way methods (PARAFAC), but rather to analyze such spectroscopic data from an imaging
point of view only -- in order to investigate the possibilities (if any) and limitations (many
expected) of applying MIA on 3-way (OVYV) spectroscopic data. The reason is that virtually
every spectroscopic technique can be used to generate chemical images. Fluorescence data is a
very good example of this since each sample is a “landscape” composed of the excitation and
emission spectra. Intuitively, such a landscape can well also be considered as an image with
appropriate conversion/scaling, see Figure 18 (c), (d) and Figure 19 (d), (e) and ().

18
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Figure 18. (a) Fluorescence spectra of a sample containing different amounts of Trp, Tyr and
Phe; (b) Fluorescence spectra of another sample containing different amounts of Trp, Tyr and
Phe; (c) Image converted from the spectra corresponding to (a); (d) Image converted from the
spectra corresponding to (b);
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Figure 19. (a) The pure fluorescence spectra of a sample containing only Trp; (b) Pure
fluorescence spectra of a sample containing only Phe; (c) Pure fluorescence spectra of a sample
containing only Tyr; (d) Converted image representing Trp; (e) Converted image representing
Phe; (f) Converted image representing Tyr
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6.2. Results and discussion

Fluorescence spectra of the two samples with a mixture of three analytes were first converted
into appropriately scaled images, and then put into a MIA model. This conversion necessitates a
“transformation” of the original data configuration from OVYV data into a virtual OOV data set
as shown in Figure 20. The otherwise standard MIA is now performed on this OOV data array,
which results in “transposed” object—variable relationships, which should be kept firmly in
mind below.

Excitation Pixels
(variable mode) (Object mode)
Emission Pixels
> (viariable mode) > (Object mode)
Sample Variabl
(object mode) mode

Figure 20. Original data configuration type is converted from OVV to virtual OOV. This is
necessary in order to be able to apply the MIA approach. Note that OVV is “transposed” into
OooVv.

The score image (printed in grayscale) shown in Figure 21 is in reality a pseudo-color
composite formed by assigning score image 1, 2, 2 into R, G, B channel for a visualization
purpose. As seen in Figure 21, the three analytes can be seen clearly with different colors
(shown by approximately enclosing markings). Notice the Rayleigh scatter (the triangular part
in the upper left corner), which is easily distinguished in the image. This is, however, very
obscure in the original images shown in Figure 18. The shape of each analyte is similar to the
corresponding pure component image in Figure 19 (d), (e) and (f).

An interactive study of score plots (feature space) and score image (scene space) is conducted
in a conventional MIA fashion shown in Figure 22 and 23. Four groups, which correspond to
three analytes and the Releigh scatter effect respectively, can be classified easily by mapping
typical MIA masks in score plots (t1-t2). These selected areas are then projected so as to be
compared to the corresponding chemical analytes in scene space (score image), Figure 23. See
details about MIA operations in Ref.1, 3-9.

20
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Figure 21. Pseudo-color composite (printed in grayscale) obtained by assigning score image
1,2,2 into R, G, B channel. Note the regions of interest are represented by different colors: Red
(Trp); Pink (Phe); White (Tyr). Cyan (Releigh scatter).

R

Figure 22. Score plots (t1-t2) by plotting two score images against each other. Clusters
indicated by different MIA polygon masks represent different groups in the image plane, Figure
23.
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Figure 23. Regions of interest marked in white color in the image plane are the corresponding
pixel groupings from mapping in score plots in Figure 22.

As is easily seen, MIA does not provide precise results quantitatively as compared to the
PARAFAC model, and neither is MIA aimed at such an objective. However, it does offer a
simple way of direct visualization of spectroscopic/image data which may be useful in more
complex situations, e.g. forensic analysis etc. It may be helpful to look at the data visually and
study the spatial chemical data interactively in appropriate situations.

In conclusion, applying a MIA model on the fluorescence 3-way data (OVV) of course does not
seem to be a natural idea for the purpose of quantitative decomposition of the data. The reason
is of course that the MIA approach is specially designed for OOV multivariate image data.
However, our objective here only is to propose imaging as a complementary way of doing
spectroscopy, which may change one’s perspective to recognize some spectroscopic problems
in a possibly fruitful new light.

7. APPLICATION III—MULTI-WAY ANALYSIS OF OVV IMAGE ARRAYS
MICROSCOPIC IMAGE EXAMPLE

7.1. Data set and problem formulation—“incongruent multiple images”

Images in many areas such as biochemistry have largely been analyzed by traditional image
analysis. These methods tend to be restricted for use in one single image at a time. There is a
lack of good methods which can be used to characterize series of images efficiently. With
multivariate data analysis on images, many serial images can potentially be analyzed
simultaneously.

14 types of cheeses were made from a factorial experiment where coagulation temperature with
rennet enzyme, the amount of rennet enzyme and the length of time at coagulation temperature
before cooling were varied, i.e. a three-factor experiment. For each of these cheeses four
transmission electron micrographs were recorded on four different parts of the cheeses. Each set
of four images therefore constitutes four replicates of the same cheese.
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As seen from selected images shown in Figure 24, such cheese images appear relatively
homogenous and very similar at first glance. It should be stated that we are interested in
classifying each image in foto instead of regions of interest inside each image e.g. MIA. Global
features hidden in each image should receive more attention in this case. The objectives were to
characterize/discriminate different types of cheeses based on this type of microscopic images
and investigate the closeness of replicates, and especially to relate these global images to
selected functional properties to the cheeses by N-way image analysis.

Uniaxial compression, a rheological testing method, has been used to obtain the rheological
properties of these cheeses, such as fracture-stress, -strain, -work and modulus. From a
biotechnological point of view it would obviously be of interest to look for the relations
between the ‘image’ results and the ‘rheological’ results. Therefore unfold-PLS and N-PLS
have been tried to reach this goal.

Figure 24. Microscopic images of cheeses (1-9), made from a factorial experiment by varying
coagulation temperature and the amount of rennet enzyme, each on 3 levels.

7.1.1. Necessary transformations
As inspected from the raw cheese images in Figure 24, at a certain scale they appear relatively
homogeneous and quite “similar”. There is currently a lack of efficient methods to characterize

and discriminate such multiple images in traditional image analysis. Some image analysis
combined with chemometric methods have been initiated on this problem especially concerning
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the interesting new AMT-transformation, but this is deferred to a later occasion® %, Here we
focus on the well-known FFT transformation.

The 14x4 serial images of size 512x512 are stacked on top of each other to form a 3-way array,
which will be of the OOO category. This type of data array is obviously not trilinear, and thus
cannot be used for multi-way analysis directly. Different transformation techniques such as
FFT, Wavelet Transform (WT), have been applied to this QOO data array in order to obtain a
trilinear OVV data array. Such a transform is necessary to bridge the gap between each image
through the new domain®*®. FFT-transformed data (power spectra) are used for illustration here
since these give the most illustrative models, see Figure 25.

pixels pixels freq. Comp. freq. Comp. y: rhelogical
T P property
= _ __—
e L
= = _— ——
= _
= =
raw images transformed 2D- FFTarray

Figure 25. Data configuration of cheese image data for subsequent modeling. Raw images are
organized as a 3-way QOO data array, and subsequently transformed by 2D FFT to a three-way
OVYV array, in which the 2-D frequency domain forms the two new variable modes (VV).
Vector y represents a rheological property which corresponds to the individual original images
in the O-direction.

As is appreciated, these 14x4 images of size 512x512 comprise a large amount of data, and will
cause a long calculation time when applying 3-way methods. All 64 images were therefore
resized to 64x128x128 and transformed to 2-D FFT array of size 64x128x128 so that the time
spent on actual modeling could be decreased significantly. All modeling was carried out with
the N-way toolbox for Matlab by Andersson and Bro™. Image processing and transform were
conducted with the signal processing and image processing toolbox in Matlab 5.3.

7.2. Structural models and cheese discrimination

The cheese image data were explored by both weak and strong multi-way methods, unfold-
PCA, PARAFAC, Tucker3 and Tucker2. Models were calculated based on the derived
64x128x128 2-D FFT array. The pertinent data arrays are centered across the first mode. No
scaling was used since all frequency components in the second and third mode are in same units
and ranges.

Table 2 shows the modeling results of all image decompositions using the above methods. All

methods are able to explain over 99% variance fractions with three components, among which
unfold-PCA explains the highest percent of cumulative variation, followed by Tucker2,
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Tucker3 and PARAFAC. All models fit data almost equally well with but very marginal
difference only. This is as expected, since it has been pointed out that theoretically a Tucker 1
model (unfold PCA) always fits data better than a Tucker3 model, which will fit better than a
Tucker2 followed by the PARAFAC model > *.

Table 2. Cumulative variance fractions explained by alternative multi-way methods: unfold-
PCA, Tucker3, Tucker2, PARAFAC models. The numbers of factors in three modes for
Tucker3 and Tucker2 model are given in parentheses. For the Tucker2 model, -1 represents no
compression in the first mode, the image mode.

Number of Unfold-PCA Tucker3 Tucker2 PARAFAC
components/factors (Tuckerl)
(%) (%) (%) (%)
1 98.97 98.90 (1,2,2) 95.99 (-1,1,1) 95.99
99.07 98.97 (2,2,2) 98.97 (-1,2,2) 98.96
3 99.11 99.05 (3,3,3) 99.06 (-1,3,3) 99.04

It will be useful and interesting to compare in more detail the four N-way decompositions
summarized above. Their score plots (t1-t2) are compared from unfold-PCA, Tucker3 and
PARAFAC models in Figure 26-28. It is observed that cheeses 1-9 span most of empirical
variation found, while cheeses 10-14 lie in between cheeses 1-9. This is as expected: from the
factorial experiment background it is known that cheeses 1-9 were from an experiment
involving varying coagulation temperature and amount of rennet enzyme, each on 3 levels.
They were all left at the coagulation temperature for 22 hours before being cooled. Cheeses 10-
14 were, by way of contrast, all coagulated with an intermediate amount of enzyme only at the
middle temperature, but here the length of time at the coagulation temperature before cooling
varied from 1-22 hours. It is apparent that this can easily be perceived from score plots. Cheeses
1-9 span the whole range of variation, while cheese 10-14 are somewhat clumpy in the middle
ranges only. The replicate groups are, by and large, close to each other with a little overlap.
Notice that replicates lie closer (e.g. sample 9, etc.) in the PARAFAC model than unfold-PCA.
This is because PARAFAC model is more parsimonious and less influenced by the noise. The
strong multi-way models account for more structure than the weak unfold-PCA model, and
hence remove more noise from the final structural model.
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Figure 26. Score plot (t1-t2) from unfold-PCA. Notice the trend that cheeses 1-9 span the
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