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Sammendrag

Dette prosjektet har satt søkelyset på to problemstillinger knyttet til samevolusjonen

mellom parasitt og vert; 1) utvikling av vertstilpasninger som mottrekk mot

tilpasninger hos parasitten, med spesiell fokus på eggtilpasninger, og 2) mekanismer

som kan forklare den store variasjonen i forsvarsatferd mot kullparasittisme blant

ulike verter.

1) Flere gjøk- (Cuculus canorus) stammer eller gentes har utviklet egg som er

veldig like vertens egne egg, såkalt eggmimikry, for å vanskeliggjøre vertenes

eggavvisning. For å svare på dette har mange verter på sin side gjort det vanskeligere

for parasitten ved å utvikle en lavere variasjon i utseende mellom sine egg innen

kullet (innenkull-variasjon), og en høyere variasjon mellom egg fra kull til kull

(mellomkull-variasjon). Mange nordamerikanske spurvefugler blir benyttet som verter

av brunhodetrupialen (Molothrus ater), men denne parasitten har ikke utviklet

eggmimikry i forhold til vertseggene. Vi sammenlignet kullvariasjonen mellom

spurvefugler i Europa og Nord-Amerika og fant en høyere innenkull-variasjon og en

lavere mellomkull-variasjon i eggutseende hos nordamerikanske spurvefugler, selv

om forskjellen i innenkull-variasjon mellom kontinentene var mindre enn forventet.

Hos europeiske spurvefugler er det i tidligere eksperimenter funnet at det er en

sammenheng som forventet mellom avvisningsraten overfor parasittiske ikke-

mimikry egg og kullvariasjonen i eggutseende. Vi fant at det ikke var noen slik

sammenheng hos spurvefugler i Nord-Amerika. Resultatene gir støtte til hypotesen

om at parasitter med eggmimikry utøver et betydelig seleksjonstrykk for utvikling av

bestemte eggkarakterer hos sine verter.

Vi undersøkte om det var noen forskjell i innenkull-variasjon hos avvisere og

akseptorer av parasittegg innen bestemte populasjoner av tre europeiske spurvefugler;

rørsanger (Acrocephalus scirpaceus), bokfink (Fringilla coelebs) og munk (Sylvia

atricapilla). Det ble funnet at det var en signifikant forskjell i innenkull-variasjon i

eggutseende mellom avvisere og akseptorer av kunstige ikke-mimikry gjøkegg i en

rørsanger-populasjon i Tsjekkia; avviserne hadde en lavere innenkull variasjon enn

akseptorer av slike egg. Denne vertspopulasjonen har en intermediær avvisningsrate

overfor ikke-mimikry egg. Et tilsvarende forsøk ble utført hos en bokfink-populasjon i

Norge og en munk-populasjon i Tsjekkia. Begge artene er meget gode avvisere av

ikke-mimikry egg, noe som indikerer at de aller fleste individer er i stand til å avvise
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slike egg. Vi valgte derfor å benytte egg fra artsfrender i forsøkene med disse artene. I

motsetning til hos rørsangeren fant vi at det ikke var noen forskjell i innenkull-

variasjon mellom akseptorer og avvisere av fremmede egg hos bokfink og munk. Hos

begge artene ble det funnet at avvisningen av fremmede egg i stor grad avhenger av

kontrasten (grad av mimikry) mellom egne egg og parasittegget. Dette viser at selv

om individene er i stand til å avvise parasittegg, så finnes det kognitive begrensninger

som medfører at egg som utseendemessig ligger under en viss terskelverdi med

hensyn til likhet med egne egg vil bli akseptert. Det ble ikke funnet noen indikasjoner

på at avvisningsatferden var avhengig av vertenes alder eller av kondisjonelle stimuli

for noen av de tre artene. Dette kan tyde på at det er en genetisk basert kobling

mellom det å kunne gjenkjenne fremmede egg og innenkull-variasjon.

2) Mange vertsarter viser ingen eller kun intermediære avvisningsrater overfor

fremmede ikke-mimikry egg. En slik tilsynelatende suboptimal atferd kan skyldes at

det er kostnader forbundet med avvisningen som forhindrer evolusjon av perfekt

avvisningsatferd. Slike kostnader kan være feilaktig avvisning av egne egg i

uparasitterte reir (gjenkjenningsfeil), eller avvisning av egne egg i tillegg til

parasittegget i parasitterte reir (avvisningskostnader). Hos gjøkverter, som ved

suksessfull gjøkparasittisme har en reproduktiv suksess tilnærmet lik null, vil kun

gjenkjenningsfeil være kilde til et potensielt seleksjonstrykk mot utvikling av høy

avvisning av fremmede egg. Vi undersøkte om slike kostnader forekommer hos

bokfink og munk; to arter som antas å ha blitt benyttet av gjøken tidligere, men som i

dag ikke blir regelmessig parasittert. På grunn av at avvisningsatferden opprettholdes i

fravær av parasittisme, forventet vi at disse artene begår få gjenkjenningsfeil.

Undersøkelsen gav støtte til denne prediksjonen; avvisningskostnader i parasitterte

reir var relativt høye, men gjenkjenningsfeil i uparasitterte reir var meget sjeldent

forekommende.

En hypotese ("spatiell habitat-struktur hypotesen") basert på metapopulasjons-

dynamikk og med vekt på karakteristikker vedrørende vertsartenes hekkebiotop ble

framsatt for å forklare de store variasjonene i avvisning hos europeiske spurvefugler.

Hypotesen bygger på at gjøken benytter de verter som hekker nær utkikkspunkter for

parasitten, dvs. nær trær. Arter som hekker både nær og langt fra trær er de beste

gjøkvertene, i og med at genflyt fra uparasitterte populasjoner vil forhindre utvikling

av perfekt avvisning i parasitterte populasjoner. Arter som alltid hekker nær trær har

høye avvisningsrater fordi få eller ingen populasjoner har unnsluppet parasittering, og
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det har derfor vært sterk seleksjon for utvikling av vertsforsvar. Data for gjøkverter i

Europa gav god støtte til hypotesen. Grad av parasitt eggmimikry og

parasitteringsrater er høyest hos de vertsarter som kan hekke både langt fra trær og

nær trær, noe som tyder på at gjøken har størst suksess hos slike arter.
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Abstract

This thesis deals with two topics in the coevolution between brood parasites and their

hosts: 1) evolution of host adaptations against parasite egg mimicry, and 2) sources

that could explain the considerable variation in rejection behaviour found among

various passerines.

1) Several common cuckoo (Cuculus canorus) tribes or gentes in Europe have

evolved eggs that are remarkably similar to the host eggs in both size and appearance

(i.e. egg mimicry). To counter this adaptation in the parasite, hosts can produce eggs

with similar appearance within clutches (low intraclutch variation) as well as eggs

with diverging appearance between different clutches (high interclutch variation).

Many North American passerines are utilised as hosts by the brown-headed cowbird

(Molothrus ater). However, this parasite generally lays non-mimetic eggs. As

predicted, we found that European passerines had a lower intraclutch variation and a

higher interclutch variation in egg appearance than North American passerines.

However, the difference in intraclutch variation between the continents was less than

expected. A relationship has previously been found among European passerines

between the rejection rate of non-mimetic eggs and clutch variation in egg

appearance, and this is thought to reflect the stage in the coevolution between parasite

and host. We found no evidence of such patterns among North American species.

These results provide support for the hypothesis that specific host clutch variation is a

counteradaptation against parasite egg mimicry.

We investigated whether there was any difference in clutch variation between

acceptors and rejecters of parasitic eggs within populations of three European

passerines; reed warblers (Acrocephalus scirpaceus), chaffinches (Fringilla coelebs),

and blackcaps (Sylvia atricapilla). In a Czech reed warbler population with an

intermediate rejection rate of non-mimetic cuckoo eggs, it was found that rejecters

had a statistically significant lower intraclutch variation than acceptors of such eggs.

Age or conditional stimuli did not seem to have any influence on the rejection

behaviour. A similar experiment was carried out in a Norwegian chaffinch population

and a Czech blackcap population, which, however, were experimentally parasitised

with foreign conspecific eggs because they are both very good rejecters of non-

mimetic parasitic eggs. We found no difference in intraclutch variation among

acceptors and rejecters of foreign eggs in chaffinches and blackcaps. However, it was
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found that the rejection of conspecific eggs greatly depends upon the contrast (i.e.

mimicry) between the parasitic and their own eggs. It therefore seems that even

though individuals have the ability to reject foreign eggs, limitations in their cognitive

system entails that parasitic eggs that are too similar to the host eggs will be accepted.

We also looked for potential effects of age on rejection behaviour and intraclutch

variation, but no relationship between these variables was found. The results indicate

that in these three species both rejection behaviour and clutch variation are more or

less innate features, and also that there is a genetically based linkage between

recognition of odd eggs and intraclutch variation in egg appearance.

2) Many hosts of brood parasites show no or only intermediate rejection rates

of foreign non-mimetic eggs. Evolution of proper rejection behaviour could be

prevented by costs related to egg rejection. Important in this respect are erroneous

rejection of their own eggs in non-parasitised nests (recognition errors) and rejection

of their own eggs in addition to the parasitic egg in parasitised clutches (rejection

costs). Because successful cuckoo parasitism usually is detrimental to the breeding

success of the host, only recognition errors are believed to be important as an

opposing selective pressure against proper host defence in cuckoo hosts. We

examined whether such costs exist in chaffinches and blackcaps. These species

maintain a high rejection rate of foreign eggs, even though they are not currently used

as hosts by the cuckoo. We therefore predicted that recognition errors should be

absent or at least rare in these species. We found support for this prediction; rejection

costs were relatively high but recognition errors were at best rare events.

In another investigation, we proposed a hypothesis (the "spatial habitat

structure hypothesis") based upon metapopulation dynamics and characteristics

concerning host breeding habitats to explain the variation in rejection behaviour found

among European passerines. This hypothesis is based upon the fact that the cuckoo, as

well as other avian brood parasites, needs access to vantage points in trees to monitor

host nests, and thus only species breeding near trees are available as hosts. Our results

were very much in accordance with this hypothesis. Species that breed both near and

far away from trees are the best cuckoo hosts, because gene flow from non-parasitised

populations breeding far from trees will prevent the evolution of proper rejection

behaviour in parasitised populations breeding near trees. However, species that

always breed near trees have high rejection rates because the majority of the

populations have been utilised as hosts, and thus there has been a strong selection for
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the evolution of host defences. Furthermore, the level of parasite egg mimicry and the

level of parasitism was found to be highest among hosts breeding both near and far

away from trees, indicating that the cuckoo is most successful when utilising such

species as hosts.
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Introduction

Avian brood parasitism

Coevolution is defined as specialised relationships between species that leads to a

reciprocal evolutionary change (Janzen 1980, Thompson 1994). Such interactions

have intrigued researchers since the publication of Charles Darwin’s "The origin of

species" (1859). One of the most suitable model systems for studying coevolution is

the interaction between avian brood parasites and their hosts (Rothstein & Robinson

1998). Brood parasitism can occur between individuals of the same species

(intraspecific or conspecific brood parasitism, CBP), or between individuals of

different species (interspecific brood parasitism, IBP). CBP occurs especially in

colony-breeding birds and species with precocial young, and has been documented in

236 (2.4%) (Rohwer & Freeman 1989, Yom-Tov 1980, 2001) of 9672 bird species

(Sibley & Monroe 1990). Recently, new molecular techniques have been developed

for revealing CBP (Andersson & Åhlund 2001), and the number of species in which

such parasitism occurs is expected to increase as more studies are carried out. IBP has

evolved independently 5-7 times, and is found in several distantly related taxa

(Hughes 1996, 2000, Payne 1997). In general, CBP is hypothesised to be the

precursor of IBP (Hamilton & Orians 1965, Payne 1977, Yamauchi 1993, 1995,

Cichón 1996, Robert & Sorci 2001). In detailed field studies on two North American

ducks (Anatidae), Sorenson (1998) showed a possible route in which CBP can lead to

IBP. However, IBP could also evolve directly by parasite exploitation of smaller

species with a longer incubation period (Slagsvold 1998). In contrast to CBP, obligate

IBP occurs almost exclusively among altricial birds (Lyon & Eadie 1991). The only

exception is the black-headed duck (Heteronetta atricapilla) (Weller 1968, Mallory

2000). Even though there are about 100 species of obligate avian brood parasites

(Payne 1977, Johnsgard 1997, Davies 2000), only a few of these have been

thoroughly studied. Among the best-studied brood parasites are the common cuckoo

(Cuculus canorus) and the great spotted cuckoo (Clamator glandarius) in Europe, and

the brown-headed cowbird (Molothrus ater) in North America.

Costs of parasitism

The costs inflicted on the hosts as well as the benefits for parasites are basically the

same in both intraspecific and interspecific brood parasitism (Petrie & Møller 1991,
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Power 1998). Hosts suffer costs related to egg loss, misdirected parental care and

overcrowding. However, in some cases, hosts of conspecific parasites may in fact

receive some benefit from being parasitised through kin selection accompanied by an

increase in the inclusive fitness of the host (Andersson 1984, Andersson & Åhlund

2000, Lyon & Eadie 2000). In any case, the costs associated with interspecific brood

parasitism generally exceed those related to intraspecific brood parasitism, and are in

many cases severe. Thus, in common cuckoos the parasitic chick ejects all the eggs

and young of the host so that it becomes the sole occupant of the nest (Wyllie 1981).

Cowbird chicks, on the other hand, generally grow up together with the young of the

hosts (but see Dearborn 1996), but often outcompete these because of earlier hatching

which results in a size advantage, especially in small hosts (Payne 1997, Rothstein &

Robinson 1998).

In addition to costs in current reproduction, hosts may suffer costs in terms of

lowered future survival and reproduction (trade-offs in life history theory, Stearns

1992), but no efforts have so far been made to measure such costs (Rothstein &

Robinson 1998, Winfree 1999). However, it has recently been shown that increased

egg production in one breeding season (e.g. due to abandonment and relaying after

being parasitised) is costly, and may severely reduce future fitness in birds (Nager et

al. 2001, Visser & Lessells 2001).

Coevolutionary adaptations and counteradaptations

Due to the costs inflicted upon hosts by the brood parasite, there will be a strong

selection favouring evolution of host defences. The parasite, on the other hand, will

reply by evolving more sophisticated trickery. This coevolution between brood

parasites and their hosts has led to a variety of adaptations on both sides, and has

traditionally been described as an evolutionary arms race (Dawkins & Krebs 1979,

Rothstein 1990). This arms race and the various adaptations and counteradaptations in

parasites and hosts can best be described as containing several stages (Davies &

Brooke 1989b), as summarised below:

1). Host rejection and evolution of cuckoo egg mimicry

When brood parasites first start to parasitise new host species with no prior history of

such interactions, the hosts will accept the parasitic eggs regardless of the degree of

mimicry (i.e. resemblance) between host and parasitic eggs. As an example of such a
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scenario, azure-winged magpies (Cyanopica cyana) in Japan accepted non-mimetic

cuckoo eggs when the population was first parasitised a few decades ago (Yamagishi

& Fujioka 1986, Nakamura 1990). However, because the population suffered high

levels of parasitism, the rejection behaviour soon changed and a higher proportion of

rejecters of such eggs was found (Nakamura et al. 1998). In addition, species that are

generally considered unsuitable as hosts for brood parasites (e.g. seed eaters and hole

nesters) also mainly accept non-mimetic eggs (Davies & Brooke 1989b, Moksnes et

al. 1990). The brown-headed cowbird in North America is a generalist brood parasite

(Gibbs et al. 1997, Alderson et al. 1999, Hahn et al. 1999) that has expanded its range

dramatically during the last few centuries (Mayfield 1965). Many of its hosts accept

non-mimetic parasitic eggs, probably because they have only recently been utilised as

cowbird hosts (Rothstein 1990, Hosoi & Rothstein 2000).

Due to the negative effect on host reproduction, there will be a selection in

hosts for evolving rejection of parasitic eggs. The rate of spread of such behaviour

will depend upon genetic predisposition, metapopulation dynamics, the costs of

parasitism and rejection, and the level of parasitism (e.g. Kelly 1987, Davies &

Brooke 1989b, Takasu et al. 1993, Lotem & Nakamura 1998, Martinez et al. 1999).

The arms race between the cuckoo and its hosts can lead to differences in coevolved

traits among populations of a single host species. Thus, the rejection rate of great

spotted cuckoo eggs among their magpie (Pica pica) hosts varies among populations

depending on the level of parasitism (Soler & Møller 1990, Soler et al. 1999), and has

increased in southern parts of Spain in the last decades (Soler et al. 1994). Davies &

Brooke (1989a) found that non-parasitised pied wagtails (Motacilla alba) and

meadow pipits (Anthus pratensis) in Iceland showed less discrimination against

foreign eggs than did parasitised conspecifics in Britain. Such differences in rejection

behaviour among various host populations have also been found in other studies (e.g.

Briskie et al. 1992, Sealy 1996, Lindholm & Thomas 2000).

When hosts start to reject non-mimetic parasitic eggs, parasites laying mimetic

eggs will have a selective advantage (Brooke & Davies 1988, see also Peer et al.

2000). The rate of spread of mimetic eggs in the parasite population is expected to be

faster than the spread of rejection behaviour in the host population, because every

cuckoo encounters a host, while only a few hosts encounters the parasite ("the rare

enemy effect"; Dawkins & Krebs 1979). The cuckoo will therefore usually be one

step ahead in the arms race with its hosts (Kelly 1987). However, it is important to
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note that if the level of parasitism is high the hosts may evolve counteradaptations

quite rapidly and perhaps drive the parasite to extinction before it has evolved proper

countermeasures (see below). Takasu et al. (1993) modelled the population dynamics

of cuckoo-host interactions based upon population genetics, and found that hosts in

high abundance (denoting carrying capacity) and with exposed nests (denoting risk of

parasitism) should evolve defences most rapidly.

2). Various theoretical outcomes of the arms race

a). With a high level of parasitism, the host population may become extinct before it

evolves a proper defence (May & Robinson 1985).

b). The host could evolve rejection of eggs with relatively good mimicry.

Theoretically, there can be three possible outcomes of this arms race:

i). The parasite may switch to a new host that accepts non-mimetic eggs (Davies &

Brooke 1989a, Moksnes et al. 1990).

ii). The parasitic egg mimicry may evolve to be a perfect match of the host eggs.

Thus, parasite gentes or tribes may arise, which specialise on one or a few host

species (Jourdain 1925, Chance 1940, Baker 1942, Lack 1968, Gibbs et al. 2000). The

common cuckoo in Europe can be classified into at least 16 such gentes (Wyllie 1981,

Alvarez 1994, Moksnes & Røskaft 1995). As the mimicry becomes more common,

the increase in host rejection rates may slow down and perhaps stall completely if

mimicry reaches fixation (i.e. rejecters have the same fitness as acceptors; Kelly 1987,

Rothstein 1990, Davies & Brooke 1998). However, a host counteradaptation at this

stage could be to evolve eggs with a more intricate surface pattern (i.e. signatures, see

Davies 2000), so that it is harder for the parasite to mimic its eggs. Alternatively, the

hosts can evolve a lower intraclutch variation and/or a higher interclutch variation in

egg appearance (Swynnerton 1918, Victoria 1972, Rothstein 1974, Davies & Brooke

1989b, Øien et al. 1995, Soler & Møller 1996, Rodríguez-Gironés & Lotem 1999,

Marchetti 2000). The low intraclutch variation makes it easier for the hosts to detect

and reject foreign eggs, whereas a high interclutch variation makes it more difficult

for parasites to mimic the eggs of a specific host (Davies & Brooke 1989b). It is

hypothesised that parasitism will first select for an evolution of a low intraclutch

variation because it would then be easier for hosts to recognise their own eggs as well

as detect the parasitic egg. The increasing interclutch variation would thus be a

consequence of the reduced intraclutch variation (Soler & Møller 1996). At this point,
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it should be mentioned that in some birds (e.g. Ploceus weavers), intraspecific brood

parasitism probably is responsible for the evolution of a low intra- and high

interclutch variation (e.g. Victoria 1972, Freeman 1988, Møller & Petrie 1991,

Jackson 1992a, 1998).

iii). A parasite gens can become extinct if the corresponding host population is

becoming rare, or if it evolves strong discrimination against parasitic eggs. Many

European passerines show strong specific aggression when confronted with adult

cuckoos near their nest (Moksnes et al. 1990, Duckworth 1991, Braa et al. 1992,

Røskaft et al. in review), as well as strong discrimination against foreign eggs

(Moksnes et al. 1990, Moksnes & Røskaft 1992) even though many of them are not

regularly parasitised at present.

A loss of host rejection behaviour in the absence of parasitism (e.g. Cruz &

Wiley 1989) assumes that there is a cost connected with the maintenance of such

behaviour, for example erroneous rejection of own eggs in the absence of parasitism

(Marchetti 1992, Brooke et al. 1998). If there are few costs involved, the loss of

"rejecter alleles" will be slow (Davies & Brooke 1988, Takasu et al. 1993).

Alternatively, the rejection behaviour could be lost due to random genetic drift.

However, it is also important to take into account factors that could select for the

maintenance of rejection behaviour in hosts besides obligate parasitism, such as

intraspecific brood parasitism (e.g. Freeman 1988, Rothstein 1990, Jackson 1992a, b).

Imperfect host behaviour; lag, equilibrium or other explanations?

Many hosts of brood parasites show no or only intermediate levels of rejection of

foreign non-mimetic eggs (e.g. Rothstein 1975a, 1990, Von Haartman 1981, Davies &

Brooke 1989a, Moksnes et al. 1990, Brooke et al. 1998, Alvarez 1999). Several

hypotheses have been proposed to explain this phenomenon. According to the

"evolutionary lag hypothesis", a lack of proper defences against parasitism is due to a

time lag in the origin and spread of anti-parasite adaptations (Rothstein 1975b, 1990,

Dawkins & Krebs 1979, Davies & Brooke 1989a, Lotem & Rothstein 1995). Thus,

lag is more likely to explain lack of defences in young parasite-host systems than in

systems where parasites and hosts have coexisted for a long time (Rothstein &

Robinson 1998, Winfree 1999). Many hosts of the brown-headed cowbird are

acceptors of non-mimetic eggs (Rothstein 1990). This parasite is a relatively young
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species compared with the common cuckoo, and in addition many new hosts have

become available in the last few centuries due to anthropogenically induced habitat

changes (Rothstein & Robinson 1998). Some hosts of the common cuckoo also show

no or only moderate rejection of non-mimetic eggs, even though they are quite

heavily parasitised. The dunnock (Prunella modularis) is an example of such a

species, and the lack of defences against parasitism could be explained by the lag

hypothesis (Brooke & Davies 1988).

An alternative hypothesis is the "evolutionary equilibrium hypothesis", stating that

acceptance of parasitic eggs is a result of a balance between various opposing

selective pressures (Zahavi 1979, Rohwer & Spaw 1988, Petit 1991, Lotem et al.

1992, 1995, Takasu et al. 1993, Lotem & Nakamura 1998, Takasu 1998a, b).

Rejection costs and recognition errors are especially important in this respect (Lotem

& Nakamura 1998). Rejection costs are accidental loss of their own eggs when

rejecting parasitic eggs, whereas recognition errors are erroneous rejection of their

own eggs when not parasitised (Lotem et al. 1995, Rothstein & Robinson 1998).

Costs associated with the rejection of parasitic eggs are likely to be highest when the

parasite lays mimetic eggs (Davies & Brooke 1988, Davies et al. 1996, Lotem &

Nakamura 1998). The impact of such costs is likely to be dependent on the host-

parasite system in question (Røskaft & Moksnes 1998). As common cuckoo hosts

normally lose all their eggs and young when successfully parasitised, only recognition

errors are assumed to be of importance as an opposing selective pressure against

proper host defence. In these hosts, intermediate rejection rates could thus be the

result of a balance between the costs of acceptance and the costs of making

recognition errors. Many hosts of the brown-headed cowbird, however, grow up

together with the parasitic chick, and thus rejection costs can also be important in this

respect. A scenario, first proposed by Davies & Brooke (1988), where an equilibrium

may exist is when young inexperienced breeders have not yet learned the appearance

of their own eggs and thus accept most of the eggs laid (both their own and parasitic

eggs) in their first breeding attempt (Lotem et al. 1992, 1995).

Due to recognition errors and rejection costs some hosts may need additional

stimuli to the parasitic egg when deciding whether to reject such eggs or not (e.g.

Rothstein 1982a, Davies & Brooke 1988, Moksnes & Røskaft 1989, Moksnes et al.

1993, 2000, Sealy 1995, Alvarez 1996, Brooke et al. 1998, Lindholm 2000, Soler et

al. 2000a), especially when they are confronted with mimetic eggs (Davies et al.
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1996). Øien et al. (1999) predicted that species with no or high rejection rates should

show few costs and no conditional responses in relation to rejection behaviour (see

e.g. Hill & Sealy 1994, Soler et al. 2000b); their response towards parasitic eggs

should be more or less fixed. On the other hand, hosts with intermediate rejection

rates towards foreign eggs should have larger costs and also show more conditional

responses in rejection behaviour.

Zahavi (1979) proposed another hypothesis for the acceptance of parasitic eggs

based upon the existence of costs associated with parasite retaliation or "mafia"

behaviour, and Soler et al. (1995) found support for this in the great spotted cuckoo-

magpie system. In addition, nest-site limitations (Petit 1991) and the length of the

breeding season (Moksnes et al. 1993, Brooker & Brooker 1996, 1998) could also

explain the acceptance of parasitic eggs in some situations.

Recently, researchers have acknowledged the importance of looking upon

interactions between parasites and their hosts not only as isolated entities/populations,

but also as metapopulations (Levins 1969, Lindholm 1999, Lindholm & Thomas

2000, Soler & Soler 2000). Taking migration, gene flow, local adaptations and other

metapopulation dynamics into account, a new dimension is introduced to

coevolutionary studies. A hypothesis that could explain the existence of both

acceptors and rejecters within and among host populations based upon the existence

of costs connected to rejection behaviour is the "intermittent arms race hypothesis"

(Soler et al. 1998), also termed the "coevolutionary cycles model" (Rothstein 2001).

According to this hypothesis based upon metapopulation dynamics, hosts evolve

better defences as the level of parasitism increases, and as a consequence of this the

fitness gains for parasites decrease. Parasites that disperse will therefore have a

selective advantage if they encounter host populations that have no previous history of

interactions with the brood parasite. When the level of parasitism declines, hosts will

lose their defences against parasitism due to the costs associated with maintaining

such traits (e.g. Peer & Bollinger 1997). However, many hosts retain rejection

behaviour for a long time even though they are not currently parasitised, indicating no

or negligible costs in retention of such behaviour (e.g. Braa et al. 1992, Moksnes &

Røskaft 1992, Rothstein 2001). Rejection behaviour can even be retained through

speciation events (Bolen et al. 2000, Rothstein 2001). This scenario of long time

retention of rejection behaviour is termed the "single trajectory-model" (Rothstein

2001).
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The metapopulation approach can also help to explain why some host

populations have a mixture of acceptors and rejecters of parasitic eggs, not because of

costs associated with rejection behaviour but rather because of gene flow of "acceptor

alleles" from non-parasitised host populations preventing the evolution of proper host

defence in parasitised populations. Martinez et al. (1999) found that the amount of

gene flow between different magpie populations in Europe (the most common host of

the great spotted cuckoo) is high, and Soler et al. (1999) obtained further support for

the "rejecter-gene flow hypothesis" regarding this parasite-host system. This

hypothesis can explain the persistence of a high rejection rate in currently non-

parasitised host populations, the coexistence of both acceptors and rejecters within a

population, as well as the rapid increase in rejection rates in recently parasitised

populations by gene flow of "rejecter alleles" from areas of sympatry to allopatry (see

also Soler & Møller 1990, Briskie et al. 1992, Soler & Soler 2000). However, it has

also been stressed that rapid changes in host defences within populations as well as

differences in defences between populations may reflect phenotypic plasticity rather

than or in addition to genetically determined evolutionary changes (e.g. Soler et al.

1994, Brooke et al. 1998, Robert & Sorci 1999, Lindholm 2000, Lindholm & Thomas

2000).

Study sites and study species

Data on European and North American passerine eggs for use in comparative studies

were obtained at the Zoological Museum in Copenhagen, Denmark and the Western

Foundation of Vertebrate Zoology in Camarillo, California, USA in 1996.

The studies on chaffinches (Fringilla coelebs) were carried out in Stjørdal,

central Norway (63°10'N, 10°20'E) in 1999 - 2001. The study area consists of three

lowland alder (Alnus incana) woodlands in which chaffinches are breeding in high

densities.

Blackcaps (Sylvia atricapilla) were studied in a deciduous woodland near

Dolní Bojanovice in the southeastern part of the Czech Republic (48°52'N, 17°00'E)

during the 2000 and 2001 seasons. This area has a large population of blackcaps.

Finally, reed warblers (Acrocephalus scirpaceus) were studied near Luzice in

the southeastern part of the Czech Republic (47°40'N, 16°48'E) in 1998. The area
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consists of several artificial fishponds with dense littoral vegetation (Hudec 1975), in

which reed warblers breed in high densities (Øien et al. 1998).

Aims of the study and summary of papers

The main aims of the study were to reveal host adaptations in the coevolutionary arms

race with brood parasites with a special focus on egg appearance (Papers I - III), and

to explain the pronounced variation in rejection behaviour found among various hosts

(Papers IV - V).

Evolution of egg characteristics among hosts of brood parasites

(Papers I - III)

Here I tested the hypothesis that hosts of brood parasites with egg mimicry should

lower their intraclutch variation and increase their interclutch variation in egg

appearance as a counteradaptation against parasitism.

Paper I:

North American passerines are utilised by the brown-headed cowbird, a generalist

brood parasite with no egg-mimicry. Thus, parasitic eggs are easily recognised even

without specific host egg characteristics. In a comparative study it was found that

European passerines suitable as common cuckoo hosts in general had a lower

intraclutch variation and a higher interclutch variation than comparable North

American species. In addition, in contrast to what has previously been found among

common cuckoo hosts in Europe there was no difference in these traits between

suitable and unsuitable hosts of the cowbird. Neither conspecific brood parasitism nor

nest predation, both of which could influence the evolution of egg characteristics,

explained the differences in clutch variation between European and North American

passerines. This shows that specialist brood parasites with egg mimicry (e.g. the

common cuckoo) are powerful selective agents for the evolution of such traits in

passerine birds.

Paper II:

In a Czech reed warbler population, which rejects non-mimetic cuckoo eggs at an

intermediate rate (56.3% in this study), a lower intraclutch variation in egg

appearance was found among pairs that rejected experimentally added non-mimetic
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model cuckoo eggs than among pairs that accepted such eggs. There was no evidence

of conditional responses; the rejection rate of artificial eggs was not correlated with

the level of parasitism, and furthermore, we found no indication for a correlation

between rejection behaviour and age. The results obtained suggest that a genetically

based linkage between the recognition of odd eggs and intraclutch variation may exist

in this host population.

Paper III:

Host age and intraclutch variation, and also mimicry of parasitic eggs, may be

important for host rejection behaviour. Here we examined the role of these clues for

the rejection of experimentally added conspecific eggs in a chaffinch population in

Norway and a blackcap population in the Czech Republic. The chaffinch population is

allopatric whereas the blackcap population is sympatric with the common cuckoo.

However, the blackcaps are not regularly parasitised. Both species are good rejecters

of non-mimetic parasitic eggs and generally have a low intraclutch and a high

interclutch variation in egg appearance. We found that there was no difference in

intraclutch variation in egg appearance between rejecters and acceptors of conspecific

eggs. However, the ability to reject foreign eggs was highly dependent on the degree

of mimicry between parasitic and host eggs; the better the mimicry, the lower the

rejection rate. Acceptance of mimetic eggs is probably due to limitations in the

cognitive system, indicating that the hosts need some clues (e.g. differences in egg

colour or spotting pattern) to detect the parasitic egg. No effect of age was revealed in

the rejection behaviour or intraclutch variation. The results indicate that responses

towards foreign non-mimetic conspecific eggs in chaffinches and blackcaps are more

or less fixed.

Sources that could prevent the evolution of proper host defence (Papers

IV - V)

Many hosts of brood parasites show imperfect rejection behaviour towards parasitic

eggs. Here I examined two possible explanations for the lack of such behaviour; costs

related to recognition and rejection of parasitic eggs and metapopulation dynamics

preventing a proper spread of "rejecter alleles".
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Paper IV:

Costs associated with the recognition and rejection of parasitic eggs were investigated

in chaffinches and blackcaps, two species that are good rejecters of foreign eggs. Both

species show specific aggression against the cuckoo, but are not currently parasitised.

It is hypothesised that such hosts should show no or only few costs, because the

rejection behaviour is retained even in the absence of parasitism by the common

cuckoo. We found that both species experienced quite high costs when rejecting eggs

from parasitised clutches, but that they made very few recognition errors in non-

parasitised clutches. These findings supported our predictions since only the presence

of recognition errors is believed to be important for a loss of rejection behaviour in

the absence of parasitism. In addition, the influence of a conditional stimulus, the

sight of a dummy cuckoo at the nest, was insignificant among chaffinches because no

more recognition errors were made at nests presented with the dummy than at those

without this treatment.

Paper V:

Here we proposed a hypothesis based upon metapopulation dynamics (local

adaptations, gene flow, etc.), and with focus on the breeding habitat of the hosts, that

could explain the extensive variation in host adaptations found among various

passerines. The "spatial habitat structure hypothesis" assumes that common cuckoos

and other parasites utilise only species or populations breeding near vantage points

(i.e. mainly trees). This implies that parasite-host population dynamics could vary

between different habitats. Data on hosts of the common cuckoo in Europe supported

the hypothesis. We found that cuckoos are best adapted to utilise species in which

some populations are breeding far from trees (i.e. cuckoo vantage points) and others

are breeding near trees, because in such species gene flow from non-parasitised

populations prevents the hosts from evolving a perfect rejection behaviour. On the

other hand, hosts that always breed near trees will rapidly evolve rejection behaviour

because the majority of individuals in most populations will experience brood

parasites. Parasite egg mimicry and the level of parasitism was found to be highest

among hosts breeding both near and far away from trees, indicating that the cuckoo is

most successful when utilising these species.
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Discussion

In this section, I discuss how our findings contribute to the knowledge about avian

brood parasitism. Basically, our results have shed light on host counteradaptations to

adaptive traits evolved by brood parasites, as well as focusing on the variation in host

rejection behaviour against parasitic eggs among various passerines.

Host adaptations against brood parasitism

An advanced host counteradaptation against brood parasites that lay mimetic eggs is

the evolution of specific clutch characteristics (Davies & Brooke 1989a, Øien et al.

1995, Soler & Møller 1996, Rodríguez-Gironés & Lotem 1999). Previous studies

have shown that European passerines which have been involved in a coevolutionary

arms race with the common cuckoo have evolved a low intraclutch variation and a

high interclutch variation in egg appearance to be better able to recognise mimetic

parasitic eggs (Øien et al. 1995, Soler & Møller 1996). Our findings provide further

support for this hypothesis, by showing that hosts of a parasite with non-mimetic eggs

(i.e. the brown-headed cowbird) have not evolved such clutch characteristics (Paper

I). In addition, the results show that there is indeed a difference in both intraclutch and

interclutch variation in egg appearance between hosts of the common cuckoo and of

the brown-headed cowbird. Cuckoo hosts have a lower intraclutch and a higher

interclutch variation than cowbird hosts (Paper I). However, the difference in

intraclutch variation was less than expected. This suggests a new possibility for the

evolution of a low intraclutch variation and a high interclutch variation. Previously, it

was thought that a high interclutch variation is a direct consequence of selection for a

reduced intraclutch variation (Soler & Møller 1996). The results from the present

study could indicate that the evolution of a higher interclutch variation is more or less

independent of the evolution of intraclutch variation. As a new host egg-type occurs

in a population through mutation or immigration from another host population, the

carriers will have a selective advantage when confronted with a parasitic egg that

mimics the most common egg morph. Thus, this egg-type will spread in the host

population, given that the level of parasitism is high enough.

The main conclusion from the comparative analyses presented in Paper I is

that brood parasites with mimetic eggs are strong selective agents for the evolution of

egg characteristics among their hosts. Additional support for this hypothesis is

provided by the study on a reed warbler population in the Czech Republic (Paper II).
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This was the first investigation that set out to examine levels of intraclutch variation

within a population of a common cuckoo host in Europe, since previous studies have

focused on comparisons between species (Davies & Brooke 1989a, Øien et al. 1995,

Soler & Møller 1996). Several studies have shown that the reed warbler is an

intermediate rejecter of non-mimetic eggs (Davies & Brooke 1988, 1989b, Brooke et

al. 1998, Lindholm & Thomas 2000), which was further supported in the present

study (Paper II). We found that rejecters of non-mimetic eggs among reed warblers

had a significantly lower intraclutch variation in egg appearance than acceptors of

such eggs. This study suggests that there exists some sort of genetic linkage between

the evolution of clutch characteristics and the ability to recognise odd eggs (Paper II).

The results indicate that there were few conditional responses in rejection behaviour

within this population. The rejection rate was not related to the level of cuckoo

parasitism in the area, nor was there any indication for a relationship between age and

rejection behaviour. However, several other studies have shown that this species

shows conditional responses in its rejection decisions (Davies & Brooke 1988,

Lindholm 2000, Moksnes et al. 2000), suggesting a genetic basis for rejection

behaviour combined with some flexibility in this behaviour triggered by clues in the

environment.

Øien et al. (1999) proposed that species that are good rejecters of parasitic

eggs should show few conditional responses towards foreign eggs, i.e. that their

response is more or less fixed. We examined this hypothesis by studying the rejection

behaviour in two European passerines, the chaffinch and the blackcap, which are both

good rejecters of parasitic eggs (Braa et al. 1992, Moksnes 1992, Moksnes & Røskaft

1992, Moksnes et al. 1994, Paper III, but see Davies & Brooke 1989a, b). Our results

supported the findings of Braa et al. (1992) and Moksnes (1992); rejection of foreign

eggs was strongly dependent on the mimicry between parasitic and host eggs. The

better the mimicry, the poorer the rejection ability. These results suggest that a

threshold exists in the cognitive abilities (see McLean & Maloney 1998), and that

mimetic eggs fell below this threshold and thus were not perceived as foreign. In

accordance with Øien et al. (1999), we found no difference in intraclutch variation

between rejecters and acceptors of parasitic eggs in these species (Paper III).

Furthermore, there was no indication for an effect of age on the decision to reject such

eggs, suggesting that these species do not need a prolonged learning period to

recognise the appearance of their own eggs (see Rothstein 1974, 1978, Lotem et al.
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1995). In addition, among chaffinches there was no relationship between age and

intraclutch variation in egg appearance (Paper III). The low intraclutch variation in

this species makes it very likely that all subsequent eggs laid by the female will look

very similar to the first laid egg, and therefore a prolonged learning period is not

required (e.g. Lotem et al. 1995, Rodríguez-Gironés & Lotem 1999). However, the

situation is likely to be the opposite in species with higher intraclutch variation,

especially when they are parasitised by parasites laying mimetic eggs (Lotem et al.

1995, Lotem & Nakamura 1998, Rodríguez-Gironés & Lotem 1999). The effect of

age obviously differs among species, as Lotem et al. (1992, 1995) found that both

rejection behaviour and intraclutch variation were correlated with age in a great reed

warbler population in Japan, while several other studies have not revealed any effects

of age on rejection behaviour (Marchetti 2000, Soler et al. 2000a, Amundsen et al. in

review), or egg signatures (Gosler et al. 2000).

Variation in rejection behaviour among hosts of brood parasites

The profound variation in rejection rates of parasitic eggs among hosts of brood

parasites is intriguing, and as explained previously there exist several hypotheses

offering an explanation for such a variation. According to the "evolutionary lag

hypothesis", a lack of proper defence against parasitism is due to a lag in the origin or

spread of rejection behaviour (Dawkins & Krebs 1979, Davies & Brooke 1989a,

Rothstein 1990). The "evolutionary equilibrium hypothesis" explains the coexistence

of acceptors and rejecters within a host population by a balance between opposing

selection pressures such as the cost of acceptance versus rejection costs and

recognition errors (Zahavi 1979, Davies et al. 1996, Lotem & Nakamura 1998,

Takasu 1998a). In hosts of brood parasites that lose their whole clutch when

successfully parasitised (e.g. common cuckoo hosts), only recognition errors are

important as an opposing selection pressure against evolution of proper defences

(Rothstein & Robinson 1998). Common cuckoo hosts could therefore tolerate high

rejection costs and it would still be most adaptive to reject foreign eggs. In

chaffinches and blackcaps, a high rejection rate is maintained even though they are

not currently used as cuckoo hosts, indicating that there are no costs associated with

this behaviour. Our study supports this, as it was shown that recognition errors are

extremely rare, but that rejection costs are high (Paper IV). These results correspond

well with the "single trajectory model" outlined by Rothstein (2001). The loss of
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rejection behaviour in hosts that have previously been involved in a coevolutionary

arms race with the cuckoo will thus only be due to random genetic drift as long as no

costs are associated with the maintenance of such relict traits.

The occurrence of rejection costs has been thoroughly documented in previous

studies (e.g. Molnár 1944, Rothstein 1976, 1977, Davies & Brooke 1988, 1989a, b,

Rohwer et al. 1989, Røskaft et al. 1990, 1993, Lorenzana & Sealy 2001, Welbergen et

al. 2001), but only a few studies have revealed recognition errors in non-parasitised

host clutches, which are the best evidence for the existence of such costs (Davies &

Brooke 1988, Marchetti 1992). However, loss of own eggs in non-parasitised nests

can also occur in species that are acceptors of foreign eggs, and can be due to jostling,

partial predation or other reasons (e.g. Rothstein 1982b, Kemal & Rothstein 1988,

Lerkelund et al. 1993, E. Røskaft pers. obs., Paper IV). To make the picture even

more complex, there could be different amounts of errors made among various

populations of the same species. Thus, Davies & Brooke (1988) found that

recognition errors occurred within a reed warbler population in England, whereas

Røskaft et al. (in press) found no evidence for recognition errors even after exposure

to a dummy cuckoo among reed warblers and great reed warblers in the Czech

Republic.

 A third hypothesis that could explain the variation in rejection behaviour

among hosts is the "spatial habitat structure hypothesis" (Paper V). This hypothesis,

based upon metapopulation dynamics, received support in our study and shows the

influence of gene flow and local adaptations in the evolution of host defences (Paper

V).  Brood parasites must have access to perches in trees where they can be on the

lookout for host nests that they can parasitise (Alvarez 1993, Øien et al. 1996,

Clotfelter 1998, Hauber & Russo 2000, Moskát & Honza 2000, Clarke et al. 2001).

Passerine birds that breed in the open are therefore believed to escape parasitism and

should not have evolved defences against parasitism. Unfortunately, relevant data

concerning such species do not currently exist. At the other extreme, we find species

that breed only near trees (i.e. in woodlands and woodland borders). In such hosts,

most populations are utilised by brood parasites and should thus rapidly evolve

rejection behaviour. Initially there will be a high level of parasitism enforcing a strong

selection pressure upon the hosts for the evolution of host adaptations against

parasitism. The brood parasite might have problems in matching the speed of the

evolution of host defences, and therefore only sporadically evolve adaptations like
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egg mimicry. The level of parasitism would thus decline as hosts evolve a proper

defence. The most suggestive prediction from the "spatial habitat structure

hypothesis" is the one concerning host species that can breed both near trees and far

away from trees. Because only the populations that breed near trees are exposed to

parasitism and thus experience a selective pressure for evolving host defence, gene

flow from non-parasitised populations can prevent the evolution of a proper host

defence in parasitised populations. This prediction also applies to single populations,

in which some individuals breed near trees while others breed further away from

trees. In populations fulfilling these criteria, we expect that host rejection behaviour is

moderate, cuckoo egg mimicry is good, and the level of parasitism is high. Indeed, we

found support for these predictions among European hosts of the common cuckoo

(Paper V). Further support for the "spatial habitat structure hypothesis" was obtained

in another study, where it was found that the level of aggression towards a dummy

cuckoo generally was highest among suitable host species that always breed near trees

and host populations that always breed in sympatry with the cuckoo (Røskaft et al. in

review).

 The three hypotheses outlined above ("lag", "equilibrium" and "habitat

structure" hypotheses) to explain the existence of varying occurrences of rejection

behaviour among hosts of brood parasites are all consistent with the hypothesis that

the interaction between parasites and their hosts can be described as coevolutionary

arms races. The obvious lack of antiparasitic adaptations among many hosts today can

be explained by a lag in the evolution of such traits (Rothstein 1975b). With a strong

selection (high costs of parasitism and/or high levels of parasitism) and a proper

genetic background, hosts are assumed to eventually become good rejecters (i.e.

"rejecter alleles" approach fixation). However, we can also think of cases where it is

not necessarily more adaptive to be a rejecter of parasitic eggs than to be an acceptor

(Lotem & Nakamura 1998), perhaps when host intraclutch variation in egg

appearance is high and the parasitic egg is a good mimic of the host eggs (Lotem et al.

1995, Davies et al. 1996, Takasu 1998b, Rodríguez-Gironés & Lotem 1999). In such

cases, the costs of recognition and rejection can be equal to or higher than the costs of

acceptance and thus there could be a monomorphic host population constituted only

of acceptors, or a dimorphic population with an equilibrium between equally adapted

acceptors and rejecters (Lotem & Nakamura 1998). This equilibrium will be very

dependent on the selection pressure enforced upon the hosts for evolving defence
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mechanisms, and in particular the level of parasitism is a critical factor (Lotem et al.

1992, Takasu et al. 1993, Davies et al. 1996). Thus, the equilibrium state could be

unstable, and the proportion of individuals that reject or accept foreign eggs could

fluctuate (Soler & Soler 2000). The situation is even more complicated when rejection

behaviour is age dependent, or when hosts show conditional responses in their

rejection behaviour, i.e. that individuals reject foreign eggs when receiving specific

stimuli. In such cases, rejection is a better strategy on average, but the rejecter mutant

will suppress rejection due to rejection costs when the stimulus expression is below a

critical threshold determined by current perceptual abilities. There could alternatively

exist a genotypic variability in adjustment of the conditional response, if different

genotypes with different reaction norms are favoured in various environmental

conditions (Lotem & Nakamura 1998). In summary, it is very difficult to separate the

"lag" and the "equilibrium" hypotheses, and it could be argued that they really are not

mutually exclusive but instead explain different stages in the coevolutionary arms

race (Davies 1999, 2000, Winfree 1999). In situations where the costs of recognition

and rejection outweigh the costs of acceptance (equilibrium), it can be argued that

selection has not yet reduced the costs of rejection (lag) (Winfree 1999). If the hosts

evolve a lower intraclutch variation in egg appearance or improve their perceptual

abilities, the risk of making recognition errors may decrease, and the equilibrium state

is distorted. Hosts that show high rejection rates against foreign eggs and also have a

low intraclutch variation are thus likely to have overcome the costs associated with

recognition and rejection of parasitic eggs, and can therefore be described as winners

of the struggle against brood parasites (Paper III). The "spatial habitat structure

hypothesis" described above is also based upon the arms race model (Paper V). From

this hypothesis the level of parasitism and rejection behaviour in various host

population or species can be predicted from characteristics of the host breeding

habitat. Intermediate rejection rates are not necessarily due to the costs of recognition

and rejection as stated by the "equilibrium hypothesis", but rather due to gene flow of

"acceptor alleles" from non-parasitised populations into parasitised populations, thus

efficiently preventing the evolution of proper defence in such populations even

though rejection is adaptive. To enable us to separate the "equilibrium" and "spatial

habitat structure" hypotheses, further studies should focus on obtaining more data on

rates of gene flow between populations of parasites and hosts as well as data on
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recognition errors from unparasitised host nests. Only then is it possible to solve the

enigma of apparently "improper" host defence.
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Prospects for future studies

Future studies should focus more upon avian brood parasitism in a metapopulation

context. The coevolutionary arms race between parasites and hosts can lead to a

strong pattern of local adaptations among various host-parasite populations, especially

when different host populations are isolated from each other. Theoretically, in the

arms race between hosts and parasites, the latter can increase their mean fitness by

specialising on the most common local host genotype (frequency-dependent

selection). This would then give a selective advantage to rare host genotypes,

allowing for counteradaptations by the hosts (Haldane 1949, Kaltz & Shykoff 1998).

However, local adaptations in metapopulations as described above can be precluded

by phenomena like extinction, recolonisation, gene flow, variable selection pressures

and environmental stochasticity (Kaltz & Shykoff 1998, Martinez et al. 1999). The

investigation of host-parasite dynamics in a metapopulation context is a recent idea

which has been mainly applied to plants and their pathogens (see review in Kaltz &

Shykoff 1998). Recently, the metapopulation approach has been applied to the

coevolutionary interactions between great spotted cuckoos and their magpie hosts

(Soler et al. 1998, Martinez et al. 1999, Soler et al. 1999, Soler & Soler 2000).

Lindholm (1999) has studied common cuckoo-reed warbler interactions in Britain by

a similar approach. In addition, the study presented in this thesis (Paper V) has shown

that the spatial habitat structure is important for the evolution of adaptations and

counteradaptations in common cuckoo and host metapopulations. There is need for

more studies on local adaptations in a metapopulation scenario, because such

investigations can reveal the primary causes of coevolutionary processes in host-

parasite systems (Soler & Soler 2000). In addition, studies of local adaptations in a

metapopulation context are very important for improving our understanding of

biodiversity and conservation of this diversity (Hanski 1999).
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Conclusions

The results presented in this thesis support the hypothesis that hosts of a specialist

brood parasite with mimetic eggs (i.e. the common cuckoo) have evolved a low

intraclutch and a high interclutch variation to be better able to recognise the parasitic

egg. Hosts of generalist brood parasites without egg mimicry (i.e. the brown-headed

cowbird) have not evolved such traits. Variation in intraclutch variation related to

rejection behaviour against non-mimetic parasitic eggs can even be found within host

populations of the common cuckoo, as illustrated by our study on reed warblers in

which rejecters of non-mimetic eggs had a lower intraclutch variation than acceptors

of such eggs. Reed warblers are intermediate rejecters of non-mimetic parasitic eggs.

However, when cuckoo host species are good rejecters of non-mimetic eggs, the great

majority of individuals are expected to have a low intraclutch variation, just as the

chaffinches and blackcaps in our analyses. Failure to reject foreign eggs in these

species is not because they lack the ability, but is rather due to cognitive limitations.

Thus, parasitic eggs will not be rejected if they are too similar to the host eggs. Our

results on three European passerines indicate that in these specific populations the age

of the hosts has minor influence on rejection behaviour or intraclutch variation. This

provides support for the view that these traits are more or less genetically fixed, with

few conditional or learned components.

A high rejection rate is maintained in some hosts of the common cuckoo even

though these species are not currently utilised by the parasite. The retention of

rejection behaviour in blackcaps and chaffinches is probably due to the fact that

recognition errors are negligible and thus this trait is more or less selectively neutral.

The considerable variation in rejection behaviour among hosts of brood parasites can

be explained by other means than the existence of costs related to such behaviour.

Instead, metapopulation dynamics and host breeding habitats may influence the

evolution of host defences. Species that breed both near trees (i.e. vantage points for

parasites) and far away from trees are most suitable as hosts, because gene flow from

non-parasitised populations prevent proper evolution of host defence in parasitised

populations. Host species that always breed near trees rapidly evolve defences and

thus the parasite may not be able to keep up with the hosts in the ongoing arms race.

Such hosts are therefore not ideal from the point of view of the parasite.
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ABSTRACT

Many passerine host species have counteracted the parasite egg mimicry in their co-

evolutionary arms race with the common cuckoo (Cuculus canorus) by evolving increased

interclutch and reduced intraclutch variation in egg appearance. Such variations make it

easier for hosts to recognize a foreign egg, reduce the possibility of making recognition

errors, and the ability of the cuckoo to mimic the eggs of a particular host. Here, we

investigate if such clutch characteristics have evolved among North American passerines.

We predict that due to the absence of brood parasites with egg mimicry on this continent,

these passerines should 1) not show any relationship between rejection rates and intra- or

interclutch variation, and 2) intraclutch variation should be lower and interclutch variation

higher in European hosts exposed to cuckoo parasitism as compared to North American

hosts parasitized by cowbirds. Here we present data that show support for most of these and

other predictions, also when controlling statistically for effects of common descent.

However, the effect of continent on intraclutch variation was less than predicted, and we

discuss a possible reason for this. All things considered, the results demonstrate that

parasitism by a specialist brood parasite with egg mimicry is a powerful selective force

regarding the evolution of egg characteristics in passerine birds.

KEY WORDS: Brood parasitism, Cuculus canorus, Molothrus ater, co-evolution, rejection

behavior, clutch variation, egg appearance.
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The common cuckoo (Cuculus canorus) is considered as a specialist brood parasite.

There are about 16 cuckoo gentes or tribes in Europe, and each gens generally parasitizes

only one or a few host species (Wyllie 1981; Alvarez 1994; Moksnes and Rø skaft 1995).

Genetic evidence (Gibbs et al. 2000) indicates that it is the cuckoo female that specializes on

specific host species and thus form the gentes. Several cuckoo gentes lay eggs that are

remarkably similar to the host eggs. This egg mimicry has probably evolved as a response to

host discrimination of unlike parasitic eggs (Brooke and Davies 1988), and the various

adaptations and counter-adaptations evolved by the parasite and its hosts can be described as

the result of a co-evolutionary arms race (Dawkins and Krebs 1979; Davies and Brooke

1989b; Moksnes et al. 1990; Rothstein 1990). This scenario may show several stages, among

which the most advanced counter-adaptation by the host against the parasite egg mimicry is

to evolve eggs with higher interclutch and lower intraclutch variation in appearance (Øien et

al. 1995; Soler and Mø ller 1996). Such counter-adaptations against cuckoo parasitism should

only have been evolved in host species that have experienced an arms race with the cuckoo,

and thus can be regarded as suitable hosts (Davies and Brooke 1989b; Moksnes et al. 1990).

In North America, there are no brood parasites with egg mimicry. The brown-headed

cowbird (Molothrus ater) is a generalist brood parasite, which utilizes many passerine

species as hosts (Friedmann and Kiff 1985), and recent genetic studies have confirmed that

individual cowbirds use multiple hosts (Alderson et al. 1999; Hahn et al. 1999). Because it

has expanded its range over the last few centuries and encountered new host populations and

even new host species (Mayfield 1965), many hosts have probably not had enough time to

counteract the parasitism (Rothstein 1990; Hosoi and Rothstein 2000; but see Robert and

Sorci 1999 for a case of rapid evolution of host defenses). Although some host species reject

non-mimetic cowbird eggs, many species accept such eggs (Rothstein 1975, 1990). Because

of the abundance of naïve hosts that accept non-mimetic eggs, there has not been a strong

selection pressure on the brown-headed cowbird to evolve eggs that resemble those of the

host. Hence, the co-evolutionary arms race between the cowbird and its hosts is probably
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still at an early stage compared to that between the cuckoo and its hosts in Europe. Thus,

there has not been a similar selection pressure on egg variability within and between clutches

of North American passerines as in their European counterparts. Even rejecters of the non-

mimetic cowbird eggs have probably not experienced a strong selection pressure to evolve a

pattern of egg variability similar to that in the European cuckoo hosts, because cowbird eggs

are generally easily distinguishable from host eggs. The probability of making recognition

errors is thus negligible (Lotem et al. 1992).

By performing comparative analyses, we tested the hypothesis that hosts of specialist

brood parasites with egg mimicry, like the cuckoo, should evolve a high interclutch and a

low intraclutch variation in egg appearance to facilitate the recognition of the parasitic egg.

Previously, this hypothesis has received support from a study concerning the European

cuckoo and its hosts (Øien et al. 1995; Soler and Mø ller 1996). Here, we go one step further,

and investigate if there are any differences in clutch variation among hosts of a generalist

brood parasite.

It is assumed that different rates of rejection of parasitic eggs by different host species

may represent different stages in this arms race. In hosts of parasites with egg mimicry, high

rejection rates have therefore been found to be positively correlated with a high level of

interclutch variation and a low level of intraclutch variation and vice versa (Øien et al. 1995;

Soler and Mø ller 1996). However, such a relationship is not expected in hosts of parasites

without egg mimicry. From this we predict (1) that there should not be any relationship

between rejection rates and clutch variation among North American passerines. Another

prediction that follows from the hypothesis is (2) that the intraclutch variation in egg

appearance should be lower, and the interclutch variation should be higher in European

passerines suitable as cuckoo hosts than in North American passerines suitable as cowbird

hosts. Furthermore, we expect (3) no such differences to be found between unsuitable host

species on the two continents.

It is reasonable to argue that not every suitable host species in Europe has participated

to the same degree in an arms race with the cuckoo. Therefore, we have partitioned host
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species on both continents into three groups according to their rejection rates of non-mimetic

eggs. We predict (4) that European species in the group with highest rejection rates (≥ 80 %)

should have a lower intraclutch and a higher interclutch variation than North-American

species within this group. In species with intermediate rejection rates, there could potentially

also be some differences between the continents. However, this is probably not as

pronounced as in the former group, because many individuals in cuckoo host species are still

acceptors without any adaptations against brood parasitism (e.g. Stokke et al. 1999).

However, we expect (5) to find no differences in clutch variation between European and

North American passerines with the lowest rejection rates (≤ 20 %), because here the

majority of the individuals are acceptors.

MATERIALS AND METHODS

Data collection and classification of species

Data on clutch variation in 99 European passerines were obtained from the egg

collection at the Zoological Museum in Copenhagen, Denmark. Corresponding data for 122

North American passerines were acquired from the Western Foundation of Vertebrate

Zoology in Camarillo, California, USA. Only species that breed in open nests were used,

because hole-nesters might have been subject to different selection pressures than those

experienced by open nesters (Lack 1968). The clutches were photographed and the egg

variation within and between clutches was assessed on a scale from 1 (low) to 5 (high) by

four experienced persons as described by Øien et al. (1995). The mean value of the scores

attained by these persons was used in the further analyses. This was justified because the

various assessments were highly consistent (interclutch variation; repeatability = 0.757, s.e.

= 0.012, F = 7.244, d.f. = 219, 660, p < 0.0001, intraclutch variation; repeatability = 0.718,

s.e. = 0.035, F = 6.076, d.f. = 219, 660, p < 0.0001). In a recent paper, the method of

assessing egg characteristics based upon human vision has been questioned (Cherry and

Bennett 2001). Birds and human colour vision are different in several ways, including
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sensitivity to UV-wavelengths (Bennett and Cuthill 1994). The egg classification in the

present study would therefore probably have derived advantage from use of such

measurements, which we unfortunately were unable to do due to lack of equipment.

However, many results obtained earlier using data generated with the traditional method

have been in accordance with what it should be expected that the birds perceived (see e.g.

Jackson 1998; Stokke et al. 1999; Welbergen et al. 2001), and supporting our assumption

that the method used in this study is satisfactory for quantifying the actual appearance of

eggs.

Data on the rejection rate of experimentally added non-mimetic parasitic eggs for 34

European and 37 North American passerine species were obtained from the literature

(sources available from the authors on request).

It is believed that the evolution of a mimetic egg by the parasite leads to the selection

for a lowered intraclutch variation in the host, and thereby automatically also a higher

interclutch variation (Soler and Mø ller 1996). In the European species it could therefore be

argued that rejection rates of mimetic eggs should be included in our analyses. However,

several studies have shown that the rejection of mimetic and non-mimetic eggs are highly

correlated (e.g. Braa et al. 1992; Moksnes and Rø skaft 1992; Moksnes et al. 1993; Soler et

al. 1999, but see Brooke and Davies 1988; Davies and Brooke 1989a for other findings). In

addition, North American passerines are always parasitized with non-mimetic eggs (e.g.

Rothstein 1975), and only experimental data on such eggs could be obtained. To standardize

the methods on both continents we therefore only used rejection rates of non-mimetic eggs.

In the present study we divided the species into two different groups according to

their suitability as hosts; suitable and unsuitable. European passerines were classified as

suitable or unsuitable as cuckoo hosts according to Moksnes and Rø skaft (1995), while the

North American species were classified as suitable or unsuitable as cowbird hosts according

to data obtained from Ehrlich et al. (1988) and Terres (1996). A species was regarded as a

suitable host if it feeds its offspring with insects, breeds in open or semi-open nests, and has

eggs and young that are small enough for the parasitic chick to evict (cuckoo) (Davies and
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Brooke 1989a; Moksnes et al. 1990; Moksnes and Rø skaft 1995), or successfully compete

with (cowbird) (e.g. Friedmann 1963). Species that feed their young with regurgitated food

(e.g. Hirundinidae) were regarded as unsuitable hosts (Davies and Brooke 1989b). We also

classified as suitable hosts 13 species (six in Europe and seven in North America) that in

some parts of their range are available as hosts, but in other parts are unavailable because

they here may nest in holes/semi-holes with small entrances inaccessible to brood parasites.

In such species gene flow from unparasitized to parasitized populations could potentially

slow down the evolution of proper host defense, and thus lower the expected difference in

clutch variation between Europe and North America (Rø skaft et al. in press). We therefore

did our analyses both including and excluding these species (Table 2).

Comparative and statistical analyses

Treating each species as an independent data point may lead to an overestimation of

the true number of degrees of freedom in statistical analyses (Felsenstein 1985; Harvey and

Pagel 1991; Martins and Garland 1991). To control for possible effects of common descent,

data used in the analysis were also assessed in light of phylogenetic relationships among

species. When testing for relationships between rejection rates and intra-/interclutch egg

variation, we produced a tree based on molecular data (DNA-DNA hybridization) (Sibley

and Ahlquist 1990), with additional information from the literature (sources available from

the authors upon request). We used three different methods to assign branch lengths; the

method of Grafen (1989), the method of Pagel (1992), and constant branch lengths (= 1). We

selected the branch lengths that yielded absolute values of contrasts that were not related to

their standard deviations (p < 0.05) for any of the traits analyzed (Garland et al. 1992). When

testing for any differences in clutch variation between the continents, we also made a tree (as

above), but then all the species from both continents were merged into the same tree. A

dummy variable was created for continental occurrence, where 0 = North America and 1 =

Europe. We used the computer program package PDAP (Phenotypic Diversity Analysis

Programs) version 5.0 (Garland et al. 1993; Garland et al. 1999) to generate the trees and to
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load variable data into them. This package also contains Felsenstein`s (1985) independent

comparison method, which allowed us to obtain pairwise contrasts of the variables between

nodes in the phylogenetic trees that were independent of each other. These contrasts were

then used in the statistical analyses, and the relationship between the variables was analyzed

by multiple regression (rejection rate versus clutch variation) and multivariate GLM

(continent versus clutch variation). The regressions using independent contrasts were based

on forcing the regression line through the origin (Garland et al. 1992).

We also analyzed the data by using a conventional multiple regression-analysis, and a

multivariate GLM approach, where each species was treated as an independent data point.

Intraclutch variation was square root transformed, and the rejection rate was arcsine

transformed before the analyses (Test for normality using Kolmogorov-Smirnov test with

Lilliefors significance correction, n.s.). Interclutch variation already had an approximate

normal distribution. All the tests were two-tailed. SPSS for Windows, version 10.0 (SPSS

Inc. Chicago, Illinois, USA) was used for the data analyses.

RESULTS

Both when using the independent contrasts method and a conventional multiple

regression using each species as an independent data point, we found as predicted (1) that

there was no statistically significant relationship between the rejection rate of artificial, non-

mimetic parasitic eggs and the variation in egg appearance in North American passerines

(Table 1).

Insert Table 1 approximately here

Three of the North American species with high rejection rates can be considered as

unsuitable cowbird hosts (e.g. Friedmann 1963); blue jay (Cyanocitta cristata), scrub jay

(Aphelocoma coerulescens) and American robin (Turdus migratorius). We therefore did the

same analyses excluding these species, because the evolution of rejection in these cases can

be due to factors other than cuckoo-/cowbird parasitism. However, the results did not differ

from those obtained when these species were included in the analyses (Table 1).
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When using a conventional multivariate test, we found as predicted (2), that there was

a statistically significant difference in clutch variation between Europe and North America

among the species regarded as suitable hosts; intraclutch variation: mean = 1.66 ± 0.33 (n =

67) versus 1.89 ± 0.44 (n = 101) respectively, interclutch variation: mean = 3.25 ± 0.75 (n =

67) versus 2.92 ± 0.83 (n = 101) (Table 2). This difference was even more pronounced when

the 13 species that can be both available and unavailable to the brood parasite were

excluded; intraclutch variation: mean = 1.64 ± 0.31 (n = 61) versus 1.88 ± 0.44 (n = 94),

interclutch variation: mean = 3.32 ± 0.75 (n = 61) versus 2.91 ± 0.85 (n = 94) for Europe and

North America respectively (Table 2). Among unsuitable hosts, as predicted there was (3) no

difference in clutch variation between European and North American passerines (intraclutch

variation: mean = 2.02 ± 0.49 (n = 31) versus 1.86 ± 0.54 (n = 21) respectively, interclutch

variation: mean = 2.97 ± 0.69 (n = 31) versus 2.69 ± 0.74 (n = 21), Table 2). When analyzing

data based on independent contrasts, we obtained mostly similar results (Table 2). There was

a statistically significant difference in clutch variation between European and North

American passerines when suitable species were compared. As in the conventional analyses,

the exclusion of partially available species resulted in a greater difference between the

continents. However, continental occurrence was only related to interclutch variation while

contrary to our predictions (2 - 3), there was no statistically significant difference in

intraclutch variation.

Insert Table 2 approximately here

The division of 71 species with known rejection rates towards non-mimetic parasitic

eggs into three groups, yielded as predicted (4 - 5) only differences among continents in the

group with the highest rejection rates (≥ 80 %, Table 3). Again, the most profound effect of

continent was on interclutch variation (Europe; mean = 3.50 ± 0.72 (n = 11), North America;

Insert Table 3 approximately here
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mean = 2.39 ± 0.92 (n = 11)), while the effect of continent on intraclutch variation was in the

predicted direction but not statistically significant (Europe; mean = 1.57 ± 0.27 (n = 11),

North America; mean = 1.64 ± 0.46 (n = 11)).

DISCUSSION

In accordance with our prediction (1), and contrary to what was previously found

among European passerines (Øien et al. 1995; Soler and Mø ller 1996) we found no

statistically significant correlation between intra- and interclutch variation in egg appearance

and the rejection rate of non-mimetic parasitic eggs in North American passerines. This

supports the idea that the common cuckoo is responsible for the evolution of these

differences in egg characteristics among the European passerines. The division of the species

into groups according to their suitability as hosts or to their level of rejection of foreign eggs

also supported our predictions (2 - 5). Statistically significant differences in clutch variation

between European and North American passerines were only found when comparing suitable

species, or species with high rejection rates. When comparing suitable species by using

conventional statistics, there was a difference between continents in both intra- and

interclutch variation. However, when controlling for phylogeny, this difference was only

statistically significant for interclutch variation. Continental differences among species with

high rejection rates, gave only a significant effect on interclutch variation regardless of the

method used to analyze the data (i.e. conventional or independent contrasts). The support for

our predictions with regard to interclutch variation but only partial support regarding

intraclutch variation is hard to explain, because it has previously been thought that a high

interclutch variation is a direct consequence of selection for a lowered intraclutch variation

(Soler and Mø ller 1996). However, our data indicates that there generally is less variation

between the eggs within a clutch even among unsuitable hosts than previously thought.

Another possibility for the evolution of a higher interclutch variation in the European

passerines could be that when a new host egg type emerges through mutation, it would give
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the carrier a selective advantage when confronted with a cuckoo egg that mimics the

ordinary host egg morph. Thus, the allele(s) responsible for this egg type would spread in the

population and lead to a higher interclutch variation, given that the parasitism rate is high

enough to enforce a selective pressure for the evolution of such host egg characteristics. The

reason that hosts that are not parasitized with a mimetic egg do not evolve such egg

characteristics could be that there are selective forces working against it. A relevant question

in this regard is if there are other factors that could influence the evolution of egg

characteristics. Two obvious variables besides interspecific brood parasitism are conspecific

brood parasitism (CBP) (Yom-Tov 1980; Rohwer and Freeman 1989; Petrie and Mø ller

1991), and nest predation (Tinbergen et al. 1962; Lack 1968; Montevecchi 1976).

CBP is especially common in colony-breeding birds (Brown 1984; Mø ller 1987;

Brown and Brown 1988, 1989; Yom-Tov 2001), and birds with precocial young (Weller

1959; Yom-Tov 1980, 2001; Andersson 1984; Rohwer and Freeman 1989; Sorenson 1998).

It is reasonable to assume that in species where some individuals use the CBP-strategy, it

would pay to evolve a low intraclutch- and a high interclutch variation in egg appearance to

detect the parasitic egg, just as in species that are subject to interspecific brood parasitism.

Interestingly, Jackson (1998) found that frequent CBP (23-35%) in the Northern masked

weaver (Ploceus taeniopterus) caused evolution of a high interclutch variation in egg

appearance. However, there is no obvious reason that CBP should occur more frequently in

Europe than in North America. Yom-Tov (2001) found that CBP was detected in 36

passerine species distributed in Western Palearctic (13), North America (20) or on both

continents (3). Out of the 220 species in our analysis, CBP has been found in only 20

species; four European and 16 North American species (Yom-Tov 2001). This implies that

interspecific brood parasitism should enforce a greater selective pressure on most passerines

than CBP, and therefore is the more likely explanation for the observed differences in clutch

variation between Europe and North America. However, some of the species in our study

have a high rate of rejection of foreign eggs, although they are often considered unsuitable as

cowbird- or cuckoo hosts (e.g. Turdus sp., blue jay and scrub jay). CBP could thus be more



12

widespread than previously believed, and be responsible for the evolution of high rejection

rates in some passerines (e.g. Ringsby et al. 1993; Grendstad et al. 1999).

Nest predation could select for eggs with a less conspicuous ground color and more

spots/markings so as to be more cryptic against the nest lining (Tinbergen et al. 1962;

Montevecchi 1976). Thus, to obtain well-camouflaged eggs, species would evolve a low

intraclutch variation in egg appearance. A high interclutch variation could also be adaptive

because then the nest predators would have difficulty to evolve a search image for a

particular egg type. However, in many cases predators search for nests, and not directly for

the eggs (Collias and Collias 1984; Nilsson et al. 1985; Götmark 1992; Kim et al. 1995).

Experiments have shown that there is no higher rate of predation on eggs in nests where one

or several eggs deviates from the rest (Mason and Rothstein 1987; Davies and Brooke 1988;

Rø skaft et al. 1990). In addition, Weidinger (2001) found that nest survival was not related

to egg color in three European passerines with open nests. A study by Martin and Clobert

(1996) showed that the rate of nest predation among passerines with open nests was lower in

Europe than in North America. If predation is important in the evolution of egg

characteristics, this result could indicate selection for a lower intraclutch- and a higher

interclutch variation in North America than in Europe, which is contrary to our results. Nest

predation is therefore likely of minor importance as a selective agent for the evolution of the

low intra- and high interclutch variation found among cuckoo hosts.

To conclude, the results indicate that passerines that have been involved in a long-

term evolutionary arms race with a specialist brood parasite, have developed a higher

interclutch variation in egg appearance than passerines which have been involved in

interactions with a generalist brood parasite. There is also a trend towards a lower intraclutch

variation among these passerines, although not significant in most of the analyses. In

addition, there was a no significant relationship between clutch variation and rejection rate

among North American passerines. This implies that the cuckoo can be regarded as a strong

selective agent for the evolution of egg appearance in European passerines. Since there is no

brood parasite with egg mimicry in North America, rejecters of foreign eggs on this



13

continent are not dependent of evolving a low intra- or a high interclutch variation in order to

recognize a parasitic egg.
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TABLE 1. Comparison of the relationship between host rejection rate of non-mimetic

parasitic eggs (dependent variable) and intra- and interclutch variation in egg appearance

(independent variables) among North American passerines. Three species with high rejection

rates have been regarded as unsuitable hosts (see text), and could have evolved rejection

behavior for other reasons than interspecific brood parasitism. The data are therefore also

analyzed excluding these species. Rinter = regression coefficient for interclutch variation. Rintra

= regression coefficient for intraclutch variation. Real data = data without controlling for

phylogeny, Sibley-Ahlquist = data obtained by using the phylogenetic tree derived from

Sibley and Ahlquist (1990; with additional information).

R2 F p d.f. Rinter p Rintra p

Real data 0.083 1.539 0.229 2,36 0.066 0.834 -0.342 0.283

excl. 3 species 0.099 1.696 0.200 2,33 -0.322 0.352 0.010 0.978

Sibley-Ahlquist 0.033 0.575 0.568 2,36 -0.267 0.359 0.126 0.664

excl. 3 species 0.062 1.017 0.373 2,33 -0.410 0.177 0.271 0.368
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TABLE 2. A multivariate comparative analysis of the relationship between continent

(independent variable) and intra- and interclutch variations in egg appearance (dependent

variables) among European and North American passerines. The analyses are conducted

with the species divided into two groups according to their suitability as hosts; suitable or

unsuitable hosts. In addition, we have analyzed the suitable hosts excluding 13 species,

which in some areas could be unavailable to the parasites, because they are partial hole-

nesters (see text). Finter = effect of continent on interclutch variation. Fintra = effect of

continent on intraclutch variation. For other details see Table 1.

F p d.f. Finter p Fintra p

SUITABLE

Real data 24.667 <0.001 2,165 7.161 0.008 12.817 <0.001

excl. 13 species 29.490 <0.001 2,152 9.110 0.003 13.368 <0.001

Sibley-Ahlquist 4.746 0.010 2,165 4.932 0.028 0.402 0.527

excl. 13 species 12.211 <0.001 2,152 13.108 <0.001 0.129 0.720

UNSUITABLE

Real data 0.988 0.379 2,49 1.890 0.175 1.241 0.271

Sibley-Ahlquist 1.170 0.319 2,49 1.295 0.261 0.840 0.364
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TABLE 3. Comparison of 34 European and 37 North American species divided into three

groups according to their ability to reject foreign non-mimetic parasitic eggs; low = rejection

rate ≤ 20 %, medium = rejection rate > 20 - < 80 %, high = rejection rate ≥ 80 %. Based

upon this division a multivariate comparative analysis of the relationship between continent

(independent variable) on intra- and interclutch variations in egg appearance (dependent

variables) among European and North American passerines was performed. For other details

see Table 1.

F p d.f. Finter p Fintra p

LOW

Real data 0.220 0.804 2, 28 0.149 0.703 0.001 0.980

Sibley-Ahlquist 0.950 0.399 2, 28 1.529 0.226 1.255 0.272

MEDIUM

Real data 1.357 0.287 2, 15 0.014 0.906 0.974 0.338

Sibley-Ahlquist 0.183 0.835 2, 15 0.014 0.906 0.344 0.565

HIGH

Real data 6.689 0.006 2, 19 9.979 0.005 0.170 0.684

Sibley-Ahlquist 9.949 0.001 2, 19 8.997 0.007 1.554 0.227
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 Chaffinches Fringilla coelebs and Blackcaps Sylvia atricapilla are good rejecters of foreign eggs and

also generally have a low intraclutch variation and a high interclutch variation in egg appearance.

These traits have most probably evolved as counteradaptations against brood parasitism by the

Common Cuckoo Cuculus canorus, even though none of these species are regularly parasitised today.

In this study, we investigated some cues and traits that could influence rejection of foreign conspecific

eggs in these species. Since the rejection rates of parasitic eggs are high, the variation in rejection

behaviour is low, indicating that the majority of individuals within the population are able to reject

parasitic eggs. Thus, we predict that 1) the effect of age on the decision to reject foreign eggs is

negligible, 2) the intraclutch variation should generally be low in all individuals, and that 3) rejection

decisions should be highly dependent on the degree of mimicry between parasitic and host eggs. We

found support for all these predictions in both species. Due to their highly sophisticated

countermeasures against brood parasitism, Blackcaps and Chaffinches can probably be regarded as

current winners of the arms race with the Common Cuckoo.
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It has previously been shown that hosts of the Common Cuckoo Cuculus canorus may lower

their intraclutch variation and increase their interclutch variation in egg appearance as an

evolutionary response against interspecific brood parasitism (Øien et al. 1995, Soler & Møller

1996). This is thought to be an advanced adaptation to counter the evolution of mimetic eggs

by the brood parasite, as described in the co-evolutionary arms race hypothesis (Dawkins &

Krebs 1979, Davies & Brooke 1989a, Moksnes et al. 1990, Rothstein 1990). A lack of

"proper" counteradaptations in hosts can be due to a lag in the origin or spread of such traits

(the evolutionary lag hypothesis; Dawkins & Krebs 1979, Davies & Brooke 1989a, Rothstein

1990), or due to a balance between opposing selection pressures (the evolutionary equilibrium

hypothesis; Zahavi 1979, Rohwer & Spaw 1988, Lotem et al. 1992, 1995, Lotem &

Nakamura 1998, Takasu 1998). One possible scenario where an equilibrium may exist is

when there are costs connected to recognition or rejection of foreign eggs (e.g. Rothstein

1982a, Davies & Brooke 1988, Marchetti 1992, Davies et al. 1996, Røskaft & Moksnes

1998). Due to such costs, some passerines may show conditional responses (see e.g. Lotem &

Nakamura 1998) by rejecting parasitic eggs more frequently when being confronted with a

parasite near their nest (e.g. Davies & Brooke 1988, Moksnes et al. 1993, 2000), or in periods

when the probability of being parasitised is especially high (e.g. Alvarez 1996, Lindholm

2000). Lotem et al. (1992, 1995) obtained support for another scenario explaining the co-

existence of both rejecters and acceptors in a host population. They found that young Great

Reed Warbler Acrocephalus arundinaceus females breeding for the first time had a higher

intraclutch variation in egg appearance and a lower rejection rate than older females. The

difference in rejection behaviour was explained by an imprinting mechanism, in which young

birds need experience to learn the appearance of their own eggs (see also Victoria 1972,

Rothstein 1974, 1978). Since young Great Reed Warblers have a high intraclutch variation,

the prolonged learning period could be necessary to reduce the costs of recognition errors (i.e.
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erroneous rejection of own eggs from unparasitised clutches) (Lotem et al. 1992, 1995, Lotem

& Nakamura 1998).

It has recently been shown that the rejection rate of parasitic eggs in a population of

Reed Warblers Acrocephalus scirpaceus was significantly related to the intraclutch variation

in egg appearance (Stokke et al. 1999). Those individuals that rejected parasitic eggs had a

statistically significantly lower intraclutch variation than those that accepted such eggs.

However, there were no indications that the rejection behaviour was dependent on age or

conditional stimuli. In host species with intermediate rejection rates there might be

considerable variation in rejection ability within and between populations (e.g. Brooke et al.

1998, Lindholm & Thomas 2000). In such species conditional responses could play a major

role in defence against parasites (Øien et al. 1999). This has previously been found in the

Reed Warbler (Davies & Brooke 1988, Lindholm 2000) and the Meadow Pipit Anthus

pratensis (Moksnes et al. 1993), which are both intermediate rejecters of parasitic non-

mimetic eggs (Davies & Brooke 1988, 1989b, Moksnes et al. 1990, Moksnes et al. 1994,

Brooke et al. 1998, Stokke et al. 1999). The aim of the present study was to go one step

further, and investigate what traits or cues that could influence egg rejection in species that

are very good rejecters of parasitic eggs. Such species should, because of the minute variation

in rejection ability between individuals within a population, show few conditional responses

and their behaviour should be more or less fixed (Øien et al. 1999). We predict that since

most of the individuals in the population are able to reject parasitic eggs, there should be 1) no

age-specific effects on rejection behaviour or intraclutch variation. In addition, we predict for

the same reason that 2) no relationship between rejection behaviour and intraclutch variation

should be found. In other words, the intraclutch variation should generally be low in all

individuals.
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To examine these predictions, we studied two European passerines, the Chaffinch

Fringilla coelebs and the Blackcap Sylvia atricapilla. Both are known to reject model Cuckoo

eggs, both mimetic and non-mimetic, at high frequencies (in Norway 77-100%; Braa et al.

1992, Moksnes 1992, Moksnes & Røskaft 1992, Moksnes et al. 1994). Chaffinches have even

been shown to recognise and reject foreign conspecific eggs that differ slightly from those of

their own (Moksnes et al. 1991, Moksnes 1992, but see Davies & Brooke 1989b). Due to the

high rejection rate of artificial Cuckoo eggs, which yields almost no variation in rejection

behaviour in these species, we designed a more fine-tuned experiment by parasitising all

clutches with an arbitrarily chosen conspecific egg. Both the Chaffinch and the Blackcap are

known to have a low intraclutch variation and a high interclutch variation in egg appearance

(Øien et al. 1995), and therefore the contrast between the parasitic and host eggs in this study

varies from low to high among the different clutches. According to the arms race hypothesis,

the evolution of such clutch characteristics by the hosts would make it easier to spot a foreign

egg (low intraclutch variation) and in addition make it more difficult for the parasite to mimic

the host eggs (high interclutch variation). We therefore predicted that 3) the rejection

behaviour should be highly dependent on the contrast between the parasitic and the host eggs;

low contrast eggs should be difficult to detect and therefore should lead to acceptance while

high contrast eggs should be easy to detect and thus lead to rejection. Such a response pattern

has previously been found in the Chaffinch and the Brambling Fringilla montifringilla (Braa

et al. 1992, Moksnes 1992), as well as in several other species (e.g. Davies & Brooke 1988,

Higuchi 1989, Welbergen et al. 2001).

METHODS

The study on Chaffinches was carried out in Stjørdal, about 30 km north of Trondheim in

central Norway (63°10´N, 10°20´E) in 1999-2000. The study area consists of three minor
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lowland Grey Alder Alnus incana woodlands in which the Chaffinch is breeding in high

densities. This host population is allopatric with the Cuckoo, and during our two-year study,

no Cuckoos were observed in the study area. A total of 85 nests were used in the experiments.

Catching and ringing revealed that we found the nest of the same female both years in three

cases. To avoid pseudoreplication we only used data from the first year (1999) for these

females, thus 82 clutches were included in the analyses. Ten additional clutches were used as

controls. These nests were visited and the eggs handled in the same way as the experimental

clutches, except that no parasitic egg was introduced.

The study on Blackcaps was carried out in a deciduous woodland (85 ha) near the

village Dolní Bojanovice in the southeastern part of the Czech Republic (48°52´N, 17°00´E)

in 2000. This host population occurs in sympatry with the Cuckoo, but no case of parasitism

has been recorded. Experiments were carried out in 35 nests, but unfortunately no clutches

were assigned as controls in this species.

Both the Chaffinch and the Blackcap normally have one brood per season (Cramp

1992, Cramp & Perrins 1994). The fact that few of the parasitised hosts deserted their nests

(see Results) indicates that the probability of using the same hosts twice for experiments was

very low, and thus we avoided pseudoreplication.

In the Chaffinch, as well as in several other species (e.g. Moksnes et al. 1994,

Palomino et al. 1998), it is the females that are responsible for the rejection of parasitic eggs.

Chaffinches were caught in mist nets, photographed, and ringed with colour rings for

individual identification. We later aged the birds as one-year-old (inexperienced) or older

(experienced), based on the photos, according to criteria described in Svensson (1992) and

Jenni & Winkler (1994). By this method the age of 25 female Chaffinch nest owners was

determined. Unfortunately, we were not able to collect such data for the Blackcaps.
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As already mentioned we used foreign conspecific eggs in the experiments, instead of

Cuckoo eggs. The purpose was to obtain a more equal distribution between acceptors and

rejecters of parasitic eggs. We consider this design as a more fine-tuned test of the variation in

general recognition ability among individuals. Intraspecific brood parasitism has not been

documented in these species (Braa et al. 1992, Yom-Tov 2001). The host clutch was

experimentally parasitised on the day after the last egg was laid. This should make it possible

for the host to assess the whole clutch when deciding to reject the parasitic egg or not. In the

Chaffinch experiments, one randomly chosen egg was exchanged with a foreign conspecific

egg from another nest. The removed egg was later used in the next experiment. In the

Blackcap experiments, one foreign conspecific egg was added to the host clutch, but no host

egg was removed. In both species, the whole clutch including the parasitic egg was

photographed at the same time as the parasitic egg was added. The clutches and adult birds

were photographed in a standardised manner, using a Canon EOS 100 camera with a ML 3

flashlight and Fujicolor 100 ASA film. The nests were visited every day for the next six days.

If the parasitic egg was not removed or damaged (selective ejection), or the nest was not

abandoned (desertion) within the termination of this period, it was regarded as accepted. The

intraclutch variation in egg appearance and the contrast between the parasitic egg and the host

eggs were later judged based on the photos, by three (Blackcap) and four (Chaffinch)

experienced test persons.

The intraclutch variation was measured on the following scale from one to five (Øien

et al. 1995, Stokke et al. 1999): 1) No variation, all the eggs were similar, 2) At least one egg

differed slightly from the others, 3) At least one egg showed marked differences from the

other eggs, 4) At least one egg differed dramatically from the others, and 5) All the eggs were

different from one another. The contrast between the parasitic and host eggs was scored on

the following scale from one to three (Braa et al. 1992, Moksnes 1992): 1) No contrast
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between host and parasitic eggs. The foreign egg was indistinguishable from the host eggs, 2)

Medium contrast between host and parasitic eggs. The foreign egg could be distinguished

from the host eggs, but the difference was only moderate, and 3) High contrast between host

and parasitic eggs. The foreign egg was easily distinguished from the host eggs.

The mean of the assessments of the test persons was used both for intraclutch variation

and contrast. This was justified by the fact that the test persons were highly consistent in their

assessments, as measured by calculation of repeatability (Lessells & Boag 1987). The

repeatability of scores for intraclutch variation in the Chaffinch was 0.32 (F81,327=2.87,

P<0.001). The corresponding values for the Blackcap was 0.52 (F34,104=4.26, P<0.001). The

repeatability of scores for contrast in the Chaffinch was 0.74 (F81,327=12.40, P<0.001), while

in the Blackcap it was 0.83 (F34,104=15.87, P<0.001).

Recently, the method of assessing clutch variation and mimicry-score based upon

human vision has been questioned (Cherry & Bennett 2001). Indisputably, birds and human

colour vision are different in several ways, including sensitivity to UV-wavelengths (Bennett

& Cuthill 1994). The egg classification in the present study would therefore probably have

derived advantage from use of such measurements, which we unfortunately were unable to do

due to lack of equipment. However, we see one problem concerning use of

photospectrometry. Cherry & Bennett (2001) focus on measurements of eggs in museum

collections. When it comes to field studies the situation is more complex. In the present study

it is probably important to reduce the disturbance of the hosts, particularly when the aim is to

reveal rejection behaviour, which could be influenced by disturbance. The traditional method

of taking photos of the clutch is a simple and quick process in contrast to photospectrometry,

which involves mounting and use of more advanced equipment and thus is a more time-

consuming and serious source of disturbance. Even if the traditional method is less accurate,

the question is if it is accurate enough for the measurements in the present study. This
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question is difficult to answer. However, many results obtained earlier by the method have

been in accordance with what it should be expected that the birds perceived (see e.g. Lotem et

al. 1995, Øien et al. 1995, Jackson 1998, Stokke et al. 1999, Welbergen et al. 2001), and it is

hard to believe that these relationships were only coincidences. We therefore assume that the

method used in the present study has been satisfactory for quantifying the actual differences

between eggs.

The data-material was analysed using SPSS 10.0 for Windows (SPSS Inc., Chicago,

USA). All the tests are two-tailed.

RESULTS

Rejection behaviour and method of rejection

The parasitic egg was rejected in 42 (51.2%) out of the 82 Chaffinch clutches. In only 9

(11.0%) cases the nest was deserted, while the parasitic egg was selectively ejected in 33

cases (40.2%). There was no difference in mean contrast between the parasitic and host eggs

between deserters ( X =2.53 ± 0.44 (SD), N=9) and ejectors ( X =2.40 ± 0.52 (SD), N=33)

(Mann-Whitney U test: U=132, N1=9, N2=33, P=0.61). None of the 10 Chaffinch control

clutches was deserted, even though they were visited just as often as experimental nests,

indicating that desertions are genuine responses towards parasitic eggs. However, probably

due to a small sample size, the difference in desertion rates between experimental and control

clutches was not statistically significant (Fisher's Exact Test, P=0.59). Regarding the

Blackcap, the parasitic egg was rejected in 13 (37.1%) out of the 35 experiments. In two of

the experiments the nest was deserted (5.7%), while the foreign egg was selectively ejected

from 11 clutches (31.4%). There was no statistically significant difference in the proportion of

acceptors and rejecters of parasitic eggs between Chaffinches and Blackcaps in this study

(Fisher's Exact Test, P=0.23).
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Rejection behaviour, contrast and intraclutch variation

          Insert Figure 1 and 2 approx. here

The mean contrast between parasitic and host eggs (Figure 1) differed significantly between

acceptors and rejecters in both Chaffinches ( X =1.65 ± 0.52 (SD), N=40 vs. X =2.43 ± 0.50

(SD), N=42, respectively, Mann-Whitney U test: U=251, N1=40, N2=42, P<0.001) and

Blackcaps ( X =1.67 ± 0.48 (SD), N=22 vs. X =2.26 ± 0.60 (SD), N=13, respectively, Mann-

Whitney U test: U=62, N1=22, N2=13, P=0.005). However, the mean intraclutch variation in

egg appearance (Figure 2) was not statistically significant between acceptors and rejecters in

neither Chaffinches ( X =1.96 ± 0.68 (SD), N=40 vs. X =1.86 ± 0.57 (SD), N=42, respectively,

Mann-Whitney U test: U=778, N1=40, N2=42, P=0.56) or Blackcaps ( X =1.65 ± 0.62 (SD),

N=22 vs. X =1.54 ± 0.40 (SD), N=13, respectively, Mann-Whitney U test: U=139, N1=22,

N2=13, P=0.88). We also investigated possible differences in intraclutch variation in egg

appearance between individuals that accepted or rejected a moderately mimetic parasitic egg

in order to control for the effect of contrast on rejection behaviour. We recoded the mean

contrast into a class variable (1 = 1-1.44, 2 = 1.45-2.44, 3 = 2.45-3) to make these analyses,

and selected the cases where contrast was moderate (i.e. = 2). The mean intraclutch variation

in egg appearance was not statistically significant between acceptors and rejecters in neither

Chaffinches ( X =2.06 ± 0.77 (SD), N=22 vs. X =1.81 ± 0.66 (SD), N=18, respectively, Mann-

Whitney U test: U=158, N1=22, N2=18, P=0.27) or Blackcaps ( X =1.62 ± 0.65 (SD), N=15 vs.

X =1.71 ± 0.30 (SD), N=7, respectively, Mann-Whitney U test: U=37, N1=15, N2=7, P=0.26).

A binary logistic regression analysis was carried out to determine the combined effect of

contrast and intraclutch variation (independent variables) on rejection behaviour (dependent

variable). When regarding the Chaffinch, rejection behaviour was significantly affected by the

contrast between parasitic and host eggs (Wald χ2
1=20.53, P<0.001); as the contrast between
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parasitic and host eggs increased, so did the rejection rate of the parasitic egg (B=2.86 ± 0.63

(SD)). However, the intraclutch variation in egg appearance had no effect on rejection

behaviour (Wald χ2
1=1.55, P=0.21). Among the Blackcaps, there was also a statistically

significant effect of contrast on rejection behaviour in the same direction as for the

Chaffinches (Wald χ2
1=6.10, P=0.01, B=2.46 ± 1.00 (SD)). Again, the intraclutch variation

had no effect on rejection behaviour (Wald χ2
1=1.04, P =0.31).

The effect of host age

One-year-old Chaffinch females had a slightly higher mean intraclutch variation ( X =2.10 ±

0.43 (SD), N=10) than older females ( X =1.88 ± 0.65 (SD), N=15), but this difference was not

statistically significant (Mann-Whitney U test: U=53, N1=10, N2=15, P=0.24).

The ability to reject foreign eggs was not statistically different between one-year-old

and older females. Six out of 10 one-year-old females, and seven out of 15 older females

rejected the parasitic egg  (Fisher's Exact Test, P=0.69). This comparison was justified by the

fact that the mean contrast between the parasitic egg and the host eggs between one-year-old-

and older females ( X =2.20 ± 0.63 (SD), N=10 vs. X =2.00 ± 0.66 (SD), N=15, respectively)

was not statistically significantly different (Mann-Whitney U test: U=60, N1=10, N2=15,

P=0.40).

There were no age-specific differences in the way the females rejected the foreign egg.

Five out of six one-year-old females selectively ejected the parasitic egg, while six out of

seven older females used the same method of rejection (Fisher's Exact Test, P=1.00). One

female in each age class rejected the parasitic egg by desertion.

The period from parasitism until rejection of the foreign egg between one-year-old and

older Chaffinch females ( X =2.83 days ± 1.33 (SD), N=6 vs. X =3.00 days ± 1.83 (SD), N=7,
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respectively) was not statistically significantly different (Mann-Whitney U test: U=21, N1=6,

N2=7, P=0.94).

As stated in the Material and Methods section, we have no specific data on age in the

Blackcap. However, there were no statistically significant difference in distribution of

acceptors and rejecters throughout the breeding season (Table 1, χ2
2=4.16, P=0.13). In

addition, there was no statistically significant difference in mean clutch size between

          Insert Table 1 approx. here

acceptors ( X =4.95 ± 0.62 (SD), N=19) and rejecters ( X =4.85 ± 0.80 (SD), N=13) of parasitic

eggs (Mann-Whitney U test: U=113, N1=13, N2=19, P=0.68). These results may indicate that

the possibility of age specific rejection behaviour within this Blackcap population is

negligible.

DISCUSSION

The high rejection rates of non-mimetic conspecific eggs by Chaffinches and Blackcaps in the

present study correspond well with what has been reported previously by other authors

(Davies & Brooke 1989b, Braa et al. 1992, Moksnes 1992, Moksnes & Røskaft 1992,

Moksnes et al. 1994). However, the response towards foreign eggs in these species is

intriguing, because as far as we know none of them are currently regularly parasitised by the

Cuckoo in Europe. As mentioned above we did not detect any intraspecific brood parasitism

in neither Chaffinches nor Blackcaps (see also Yom-Tov 2001), which for the former species

is consistent with previous studies (Braa et al. 1992). The high rejection rate of foreign eggs

has therefore most likely evolved as a consequence of previous parasitism by Common

Cuckoos. In support of this view is the fact that in a large-scale study of Cuckoo egg

collections at European museums, Moksnes & Røskaft (1995) found 180 parasitised clutches

of Blackcaps and 76 parasitised clutches of Chaffinches. All together, 117 (65%) of the
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parasitic eggs among Blackcaps belonged to the corresponding Cuckoo egg-morph (Sylvia).

In the Chaffinch, nine (11.8%) of the Cuckoo eggs belonged to the Fringilla egg-morph.

These clutches were mostly collected about a century ago, and indicate that both species were

formerly more or less regularly parasitised at least in part of their range. Glue & Murray

(1984) found that three out of 1696 (0.17%) Blackcap nests in Britain were parasitised by the

Cuckoo, and Malchevsky (1960) reported that the Chaffinch is occasionally parasitised in the

northwestern and central regions of former USSR, indicating that these species might still be

parasitised sporadically in parts of Europe. Additional support for a former interaction

between Cuckoos and these passerines is the fact that both Blackcaps and Chaffinches

respond very aggressively towards dummy Cuckoos near their nests (Moksnes et al. 1990),

and obviously look upon the parasite as a threat.

The results support prediction (1) that there is no effect of age on intraclutch variation

or rejection behaviour in the Chaffinch population. The even distribution of rejecters and

acceptors during the breeding season and similar clutch size in both groups (see also Stokke et

al. (1999)) also indicates negligible effects of age in the Blackcap population. These findings

are contrary to what was found by Lotem et al. (1992, 1995) in the Great Reed Warbler, but

in close consistence with the results obtained by Stokke et al. (1999) for Reed Warbler;

Marchetti (2000) for Yellow-browed Leaf Warbler Phylloscopus humei; Soler et al. (2000)

for Rufous-tailed Scrub Robin Cercotrichas galactotes; and T. Amundsen, P.T. Brobakken,

A. Moksnes & E. Røskaft (unpubl. data) for Bluethroat Luscinia svecica (see also Gosler et

al. 2000). For Chaffinches and Blackcaps the results, therefore, do not support the existence

of an evolutionary equilibrium between rejecters and acceptors based on a learning process

among first year breeders. Regarding the Chaffinch, this is further supported by the finding

that one-year-old females do not need longer time to reject foreign eggs than older females. In

some species, like the Great Reed Warbler in Japan, first-year breeders seem to need a
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prolonged learning period, which enables them to learn the whole spectrum of variation

among own eggs (Lotem et al. 1992, 1995). However, species with a low intraclutch

variation, like Chaffinches and Blackcaps, do not need a prolonged learning period to

recognise their own eggs due to the minor variation among them making the probability of

recognition errors negligible (Rodríguez-Gironés & Lotem 1999).

Furthermore, as predicted (2) there was no relationship between rejection behaviour

and intraclutch variation in egg appearance among the species in the present study, as would

be expected if there was little variation in host defences within these host populations (Øien et

al. 1999). In accordance with previous studies (Braa et al. 1992, Moksnes 1992) and our

prediction (3), we found that rejection of foreign eggs was highly dependent upon the degree

of similarity between parasitic and host eggs. When there was a marked contrast between the

parasitic and host eggs, the majority of the individuals were able to recognise and reject the

foreign egg (Chaffinches; 88.5%, Blackcaps; 60.0%). However, as the degree of mimicry

between host and parasitic eggs became better, the ability to reject the foreign egg was poorer.

It is therefore reasonable to assume that the failure to detect foreign eggs when they are too

similar to own eggs, is based upon limitations of the cognitive system (e.g. McLean &

Maloney 1998), and that there is a threshold regarding the visual system for detection and

rejection of such eggs. Since neither Chaffinches nor Blackcaps in our study areas are

currently parasitised and rarely (Blackcaps) or never (Chaffinches) encounter Cuckoos,

conditional cues like Cuckoos near their nests are also of minor help as an aid in the detection

of a foreign egg.

Our results for Chaffinches and Blackcaps support the hypothesis proposed by Øien et

al. (1999), stating that good rejecters of non-mimetic eggs should be more or less fixed in

their responses. This means that they will reject parasitic eggs as long as their cognitive

system can discriminate between the parasitic and their own eggs. Their low intraclutch
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variation makes it easier to detect even a relatively good mimetic parasitic egg. In addition,

their high interclutch variation makes it very difficult for brood parasites to successfully

parasitise these species (Øien et al. 1995, Soler & Møller 1996). Even though the parasite

deposits a perfect mimetic egg in one host nest, the high interclutch variation implies that the

same egg type in another host nest would appear as non-mimetic. In a previous study,

Moksnes (1992) found that Chaffinches really have the knowledge of how their own eggs

look like, and that they reject any eggs that look different from this picture (see also Rothstein

1975, 1982b). In the Reed Warbler, which is an intermediate rejecter, some individuals are

unable to recognise and reject even highly non-mimetic eggs, and thus may not have the

genetic background necessary to detect such eggs (Stokke et al. 1999). It therefore seems that

species like the Chaffinch and the Blackcap have evolved advanced counteradaptations

against the Cuckoo. Since they presently are not utilised as hosts, but obviously look on

Cuckoos as a threat, these species can be regarded as current winners in their co-evolutionary

arms race with the brood parasite. However, intermediate rejecter species like the Reed

Warbler, may on the other hand still be at an earlier stage in the arms race, or at an

evolutionary equilibrium due to costs associated with recognition or rejection of eggs (Davies

& Brooke 1988, Davies et al. 1996; but see Røskaft et al. 2002).

To sum up; when the defences of various host species (e.g. Reed Warbler (Stokke et

al. 1999) and Chaffinch/Blackcap (this study)) against brood parasitism are considered, we

basically agree with the conclusion made by Davies (2000); there could be a mixture of

systems that are at equilibrium and/or at different stages of a continuing arms race. Some of

the responses towards parasites are evolved adaptive responses, while some are proximate

decisions based upon cognitive experience. Caution should therefore be taken in stating

generalisations. Instead, studies on various specific host-parasite interactions will lead to a

better understanding of such systems in general.
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Figure legends

Figure 1 (Stokke et al.). Mean (± SD) contrast between parasitic and host eggs among

acceptors and rejecters of foreign conspecific eggs in Chaffinches and Blackcaps. Sample

sizes shown above the bars.

Figure 2 (Stokke et al.). Mean (± SD) intraclutch variation in egg appearance among

acceptors and rejecters of foreign conspecific eggs in Chaffinches and Blackcaps. Sample

sizes shown above the bars.
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Table 1. Distribution of Blackcap rejecters and acceptors of foreign conspecific eggs

throughout the breeding season. Date of egg laying refers to the date when first egg was laid

Date of egg laying

15 April-4 May 5-24 May 25 May-13 June

Acception 12 3 4

Rejection 4 6 3

Total 16 9 7

The distribution of acceptors and rejecters throughout the breeding season was not statistically

significantly different (χ2
2=4.16, P=0.13).
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Summary

Many hosts of avian brood parasites accept parasitic eggs even though successful parasitism

frequently is detrimental to the hosts' own reproduction. Such behaviour seems suboptimal,

but has been explained by the existence of opposing selective pressures operating against the

evolution of proper host defence. Costs associated with rejection and recognition of eggs are

central topics in this respect. Here we report cases of such costs in two European passerines

(chaffinches and blackcaps), that are good rejecters of foreign eggs, even though the common

cuckoo does not presently use them as hosts. Since high rejection rates are maintained in the

absence of parasitism we predict that few recognition errors are made by these species. We

tested this prediction by monitoring the occurrence of such errors in both experimentally

parasitised and unparasitised host clutches. We found support for the prediction, as our results

show that recognition errors are at best rare events in these two species. We discuss the role

of intraspecific brood parasitism as well as other explanations for the retention of a high

rejection rate in these species. Various studies have reported mixed support for the occurrence

of recognition errors among hosts of the cuckoo, and we consider other explanations for the

existence of both acceptors and rejecters of foreign eggs in host populations.
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Introduction

The common cuckoo Cuculus canorus is regarded as a specialist brood parasite (Chance,

1922, 1940; Baker, 1942; Lack, 1968; Gibbs et al., 2000). This specialisation has led to the

occurrence of at least 16 cuckoo tribes or gentes in Europe, each parasitising one or a few

passerine species (Wyllie, 1981; Alvarez, 1994; Moksnes & Røskaft, 1995). In the

coevolutionary arms race between the cuckoo and its hosts both sides have evolved

adaptations and counteradaptations to enhance their reproductive success (Dawkins & Krebs,

1979; Davies & Brooke, 1989a, 1989b; Moksnes et al., 1990; Rothstein, 1990). Several

cuckoo gentes have thus evolved eggs that mimic those of the host (Baker, 1942; Southern,

1954; Wyllie, 1981; Brooke & Davies, 1988). The hosts on the other hand, have evolved

specific clutch characteristics like a low intraclutch and a high interclutch variation in egg

appearance to be better able to discriminate against the mimetic parasitic egg (Øien et al.,

1995; Soler & Møller, 1996; Stokke et al., 1999, 2002). Successful cuckoo parasitism is

detrimental to the host reproduction (Lack, 1968; Payne, 1977; Wyllie, 1981), and thus there

is a strong selection for evolving traits that could enhance the rejection of parasitic eggs.

However, many hosts show no or intermediate rejection rates towards cuckoo eggs (e.g. von

Haartman, 1981; Davies & Brooke, 1989a; Moksnes et al., 1990; Brooke et al., 1998;

Alvarez, 1999; Stokke et al., 1999). Recently, much effort has been made in revealing

selection pressures that could oppose the evolution of proper host defences against avian

brood parasitism, and set the stage for an equilibrium between acceptors and rejecters of

parasitic eggs within a host population (Zahavi, 1979; Rohwer & Spaw, 1988; Moksnes et al.,

1991; Lotem et al., 1992, 1995; Lotem & Nakamura, 1998). Central topics in this respect are

rejection costs and recognition errors in the process where hosts are evaluating and deciding if

they are parasitised or not (e.g. Molnár, 1944; Rothstein, 1976, 1977, 1982a; Davies &

Brooke, 1988, 1989a, 1989b; Rohwer et al., 1989; Moksnes et al., 1991; Marchetti, 1992;

Røskaft et al., 1990, 1993; Lotem et al., 1992, 1995; Lorenzana & Sealy, 2001). Rejection

costs are loss of own eggs in the process when hosts are rejecting parasitic eggs. This could
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be ejection or destruction of own eggs in addition to the foreign eggs or desertion of the

whole clutch. Recognition errors are defined as erroneous rejection of own eggs (ejection or

desertion) in cases when hosts are not parasitised (Rothstein & Robinson, 1998). Several

attempts have been made to model which host behaviour that should be adaptive when

confronted with brood parasitism, based upon the influence of these costs (e.g. Davies &

Brooke, 1989b; Takasu et al., 1993; Davies et al., 1996; Lotem & Nakamura, 1998; Takasu,

1998; Røskaft & Moksnes, 1998; Rodríguez-Gironés & Lotem, 1999). However, rejection

costs and recognition errors as opposing selection pressures in the evolution of proper host

defences are likely to have different effects depending on the host-parasite system in question

(Rothstein, 1990; Røskaft & Moksnes, 1998; Rothstein & Robinson, 1998; Takasu, 1998). In

common cuckoo hosts, rejection costs are of minor importance as opposing selection pressure

against evolution of host defences. Only recognition errors can tilt the selection in favour of

acception, if the costs associated with such errors are high enough (Rothstein, 1990; Lotem et

al., 1995; Rothstein & Robinson, 1998). In some cases it can be very difficult to separate

these two terms, e.g. when hosts are parasitised but reject own eggs instead of the parasitic

egg. Such cases could be interpreted as recognition errors, but could as well be defined as

rejection costs (Røskaft et al., 2002). This is particularly true among small cuckoo hosts,

which often have great difficulties in ejecting the thick-shelled parasitic egg (Moksnes et al.,

1991). In the process of trying to eject the foreign egg, such hosts could instead accidentally

destroy or eject some of their own eggs. Thus, even though these cases are rejection costs,

they might appear as recognition errors. The only proper way to detect true recognition errors

is thus to record hosts that reject own eggs in unparasitised clutches. Such errors are most

likely to occur when the parasite has evolved mimetic eggs (Rothstein, 1982a; Brooke &

Davies, 1988; Davies & Brooke, 1988), and/or when the hosts have a high intraclutch

variation in egg appearance (Davies & Brooke, 1998). In such cases the parasite egg

appearance can be within the range of the host egg intraclutch variation (Rothstein, 1982a).

Even though recognition errors are hypothesised to be important for the evolution of host
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defences, very few studies have so far documented the existence of such costs (Davies &

Brooke, 1988; Marchetti, 1992).

In the present study we investigate the occurrence of rejection costs and possible

recognition errors in two common European passerines, the chaffinch Fringilla coelebs and

the blackcap Sylvia atricapilla. Both species are rejecting foreign parasitic eggs at high rates

(Davies & Brooke, 1989a; Moksnes et al., 1990, 1994; Moksnes, 1992), they have a low

intraclutch variation and a high interclutch variation in egg appearance (Øien et al., 1995), but

none of them are currently used regularly as cuckoo hosts in Western Europe. Both species

are known to puncture eject parasitic eggs (Moksnes et al., 1994). The maintenance of a high

rejection rate in spite of the absence of interspecific brood parasitism is intriguing, and we

thus predict (1) that these two species should make no or at least very few recognition errors.

Alternatively, the rejection behaviour is maintained because of high levels of intraspecific

brood parasitism. However, no cases of such parasitism have previously been detected in

neither chaffinches nor blackcaps (Braa et al., 1992; see also Yom-Tov, 2001).

We have focused mainly on the chaffinch, because our study population is allopatric

with the cuckoo, and thus do not experience cuckoos in their breeding area. This implies that

there is no partial egg loss due to egg predation by cuckoos, which could lead to a higher

estimate of recognition errors than is really the case. However, chaffinches usually respond

very aggressively to a cuckoo dummy mounted near the nest and obviously look upon the

brood parasite as a threat (Moksnes et al., 1990; Braa et al., 1992). If recognition errors exist

in this host population, we predict (2) that individuals that are exposed to a stuffed cuckoo

dummy near their nest (i.e. receive a conditional stimuli) should be more prone to make errors

than individuals that have not seen the dummy (Røskaft et al., 2002). In several other studies

it has been found that such conditional stimuli increase the rejection of foreign eggs (Davies

& Brooke, 1988; Moksnes & Røskaft, 1989; Moksnes et al., 1993, 2000; but see Braa et al.,

1992; Lindholm, 2000).
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Material and methods

A chaffinch population in Stjørdal, about 30 km north of Trondheim in central Norway

(63°10´N, 10°20´E), was studied during the 1999-2001 breeding seasons. The study area

consists of lowland grey alder Alnus incana forests in which the chaffinch is a common

breeder. No cuckoos are present in this area, and thus this population does not experience

these brood parasites in the breeding season. The blackcap study was carried out in a

deciduous forest in the southeastern part of the Czech Republic (48°52´N, 17°00´E) during

the 2000-2001 breeding seasons. This population occurs in sympatry with the cuckoo, but no

cuckoo eggs were found in blackcap nests during our study.

When studying rejection costs, the host clutches were parasitised with a foreign

conspecific egg on the day after the last egg was laid. It was thus possible for the host to

assess the whole clutch when deciding to reject the parasitic egg or not. Both chaffinches and

blackcaps reject foreign non-mimetic eggs at a high rate (Braa et al., 1992; Moksnes, 1992;

Moksnes & Røskaft, 1992; Moksnes et al., 1994). We therefore used conspecific eggs instead

of artificial cuckoo eggs to obtain a more equal distribution between acceptors and rejecters

of parasitic eggs. We consider this design as a more fine-tuned test of the variation in general

recognition ability among individuals. In the chaffinch experiments (N = 82), one randomly

chosen egg was exchanged with a foreign conspecific egg from another nest. The removed

egg was later used in the next experiment. In the blackcap experiments (N = 38), one foreign

conspecific egg was added to the host clutch, but no host egg was removed. Both chaffinch

and blackcap nests were visited every day for the next six days. If the parasitic egg was not

removed or damaged, or the nest was not abandoned within the termination of this period, it

was regarded as accepted. To keep track of rejection costs and possible recognition errors, we

also monitored if host eggs disappeared from the nests within the six-day period.

Abandonment of the clutch without destroying or ejecting the parasitic or own eggs is termed

as desertion. Ejection of only the foreign egg with no harm to own eggs is defined as selective

ejection or ejection without cost, while ejection of the parasitic egg in addition to damage or
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removal of own eggs is termed as unselective ejection or ejection with costs. Ejection of own

egg(s) only without any harm to the parasitic egg is defined as rejection errors.

To reveal potential recognition errors in unparasitised clutches, we presented at 27

chaffinch and five blackcap nests a dummy cuckoo (<0.5 m from the nest; Braa et al., 1992)

on the day that the host female had completed her clutch. In addition, 14 chaffinch nests were

only visited and monitored without presentation of the dummy cuckoo. No egg experiments

were done at any of these nests. All nests were visited for the next six days to look for

recognition errors, which were defined as desertions or ejection of own eggs in these

unparasitised nests.

In chaffinches, it is the females that are responsible for rejection of foreign eggs

(Moksnes et al., 1994). At the start of the breeding season, chaffinch females were captured,

ringed and aged so that we could look for possible age effects when calculating costs of

rejection and recognition. Individuals were classified into two age-classes, first-year breeders

and experienced breeders. Unfortunately, no such data were obtained for blackcaps.

All the statistical tests are two-tailed.

Results

Rejection costs and rejection errors at parasitised nests

Table 1 summarises the rejection behaviour towards the foreign conspecific egg in the two

host species. Chaffinches suffered rejection costs in 14 (33.3%) out of 42 rejections, while

Table 1 approximately here!

blackcaps suffered such costs in six (40.0%) out of 15 rejections (Table 1). The difference

between the species in proportion of rejection costs was not statistically significantly different

(Fisher’s Exact Test, p = 0.76). Cost of rejection (including deserted nests) in chaffinches was

0.24 own eggs pr. rejected conspecific egg, while in blackcaps the cost was 0.30 own eggs pr.

rejected egg. In five cases where rejection costs were observed in chaffinches, one host egg

was ejected in addition to the parasitic egg. Two of these females were identified; one first-
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year breeder and one experienced breeder. In addition, nine parasitised clutches were

abandoned, most likely as a response to the parasitic egg (Stokke et al., submitted; see also

Hosoi & Rothstein, 2000). The age was known for two of the deserter females; one first-year

breeder and one experienced breeder. In five cases where rejection costs were observed (two

ejections and three desertions) the contrast between the parasitic and the host eggs was

moderate, while in nine cases (three unselective ejections and six desertions) this contrast was

high. Among the blackcaps, rejection costs because of unselective ejection occurred in three

nests (Table 1). In two cases the hosts removed three host eggs together with the parasitic egg

(low and moderate contrast between the parasitic and host eggs), while in one case a single

host egg was removed together with the foreign egg (high contrast between the parasitic and

host egg). In addition, three clutches were deserted when confronted with the parasitic egg. In

two of these clutches the contrast between the parasitic and host eggs were moderate, while in

one case the contrast was high.

In chaffinches rejection errors occurred in only one out of 40 clutches (2.5 %; 0.53 %

of all egg laid (N=189)), while it was found in two out of 23 (8.7  %; 1.75 % of all eggs laid

(N=114)) blackcap clutches (Table 1). There was no significant difference in the frequency of

rejection errors between the two species (Fisher’s Exact Test, p = 0.55). The only incidence of

a rejection error in a parasitised chaffinch clutch occurred when all the three host eggs were

ejected, while the host female continued to incubate the parasitic egg. In this case all the host

eggs were infertile and a little deformed. The egg content was not evenly distributed, but

concentrated in one end of the eggs. This particular host therefore probably looked upon its

own eggs as abnormal, and thus chose to reject these eggs. In both cases where blackcap hosts

made rejection errors, one host egg was removed while the moderately mimetic parasitic egg

remained unharmed in the nest. The intraclutch variation in egg appearance as judged by the

human eye was very low in both cases. The hosts continued incubating the rest of the eggs,

including the parasitic egg.
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Recognition errors in unparasitised nests

Table 2 summarises recognition errors made by chaffinches and blackcaps both with and

without presentation of a dummy cuckoo near their nest. There were two cases of

Table 2 approximately here!

recognition errors by ejection of own eggs in chaffinches (one with and one without the

cuckoo dummy treatment) both made by old, experienced females. However, the nest

histories in these two cases are extraordinary. In the first case mentioned, two eggs appeared

as normal in the nest on two consecutive days. Then there was, strangely, a period of seven

days with no changes in the nest content (two cold eggs). On the eight day the third egg was

laid, and a fourth egg appeared the next day. The following day one host egg had disappeared

(the third laid egg). The cuckoo dummy was presented later on the same day. Nothing

happened with the clutch until the fifth day after the cuckoo experiment. Then another host

egg disappeared (the first laid egg), and the female continued to incubate the remaining two

eggs. The last ejected host egg was somewhat different from the two remaining host eggs, in

that it had more spots distributed at the pointed end of the egg. However, the ground colour

was the same on all three eggs and it is unlikely that a second female had laid the egg that was

ejected. The other female that made a potential recognition error also had an irregular laying-

pattern. Three eggs were laid on three consecutive days, but then there was an interruption in

breeding and three cold eggs remained in the nest for three days. However, on the fourth day

one host egg had disappeared (the third laid egg) and the female incubated the remaining two

eggs. The host egg that was ejected was not different from the rest of the clutch in

appearance, at least to the human eye, indicating that the same female laid all the eggs. At a

third nest, one of the chaffinch pairs that were exposed to a cuckoo dummy deserted their

nest. The age of the deserter female was unknown. None of the pairs that did not receive such

a treatment deserted their clutch. The difference in the frequency of potential recognition

errors (desertions and ejections) between the two experimental groups was not statistically

significant (Fisher’s Exact Test, p = 1.00), and we have thus pooled the results from the two



10

groups in the further analyses. Recognition errors in unparasitised chaffinch clutches thus

occurred in three (7.3 %) out of 41 experiments, and out of a total of 194 eggs only eight (4.1

%) were erroneously rejected. None of the unparasitised blackcaps made any recognition

errors. Unfortunately, the interpretation of the results for this species is not conclusive

because of a small sample size.

Discussion

Our results show that both chaffinches and blackcaps experience considerable costs when

rejecting foreign conspecific eggs from their nests (see also Braa et al., 1992). These costs are

probably even higher when hosts are rejecting the thick-shelled cuckoo eggs instead of

conspecific eggs (Moksnes et al., 1991; see also Rohwer et al., 1989). As stated previously,

such costs can be tolerated in cuckoo hosts due to the detrimental effects when being

successfully parasitised. More interesting in this respect are recognition errors associated with

such rejection behaviour. The maintenance of a high rejection rate of foreign eggs despite the

lack of parasitism in chaffinches and blackcaps suggests that there are few costs in terms of

recognition errors associated with such behaviour in these two species. As predicted (1), our

data on both experimentally parasitised and unparasitised clutches supports this hypothesis.

Regarding the chaffinch, we found no support for increasing costs due to erroneous rejection

of own eggs in unparasitised nests when exposed to a dummy cuckoo (prediction 2). In

accordance with our results, Braa et al. (1992) who also parasitised chaffinches with real

conspecific eggs (N = 24), found only one possible case of a recognition error where one host

egg was ejected without any damage to the parasitic egg. Thus, real recognition errors are at

best very rare in this species. In fact, all the three cases of potential recognition errors by

ejection in our chaffinch population had nest histories that deviated from normal. The egg

disappearance in these cases could therefore be due to other causes than suspicion of being

parasitised. Furthermore, occasional disappearance of own eggs from unparasitised clutches

also occur in species that accept foreign eggs, and can be due to jostling, partial predation and
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other reasons (e.g. Rothstein, 1982b, 1986; Kemal & Rothstein, 1988; Lerkelund et al., 1993;

E. Røskaft, pers. obs.). However, the two cases of rejection errors in blackcaps, where one

host egg was removed while the partially mimetic parasitic egg remained unharmed, could be

interpreted as incidents where females suspected that they were parasitised but removed the

wrong egg due to cognitive constraints (i.e. the parasitic egg was too similar to the host eggs)

(e.g. McLean & Maloney 1998).

Data on other good rejecters of foreign eggs correspond well to our findings.

Marchetti (1992) studied a yellow-browed leaf warbler Phylloscopus inornatus population

and found that this species make a few recognition errors (one own egg in eight out of 180

unparasitised nests; 4.4 %). This population occurs in sympatry with the cuckoo, and could

thus potentially still be occasionally parasitised or loose eggs due to partial egg predation by

the brood parasite. The data on recognition errors made by this species could therefore be

overestimated.

As stated previously, both blackcaps and chaffinches have a low intraclutch and a

high interclutch variation in egg appearance (Øien et al., 1995). The low intraclutch variation

makes it easier to recognise even a relatively mimetic parasitic egg. The maintenance of the

high level of rejection and specific clutch characteristics in chaffinches and blackcaps is most

certainly not presently selected for by intraspecific brood parasitism, because no cases of

intraspecific brood parasitism were detected in neither chaffinches nor blackcaps (see also

Braa et al., 1992; Yom-Tov, 2001). Instead, the behaviour is probably maintained because of

the lack of opposing selection pressures in form of recognition errors. It thus seems likely that

the co-evolution between the cuckoo and blackcaps/chaffinches best can be explained by the

"Single trajectory model" (Rothstein, 2001; see also Welbergen et al. (2001) for retention of

rejection behaviour in unparasitised populations). According to Rothstein (2001), host

adaptations will be retained for long periods even in the absence of selection pressures

favouring these traits. This retention will of course depend upon the costs associated with

expressing such traits. If these adaptations are selectively neutral, they may be maintained in

the population for a long time. Blackcaps and chaffinches are very common birds and holds
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large populations. It is thus unlikely that host adaptations will be lost through stochastic

factors like random genetic drift as long as they have spread thoroughly.

Several studies have shown that hosts can modify their rejection behaviour according

to conditional stimuli. However, in species with high rejection rates towards foreign eggs like

chaffinches and blackcaps, it is hypothesised that there should be few such conditional

responses (Øien et al., 1999). Both results from this study and from Braa et al. (1992) support

this hypothesis. There were no more rejections of foreign conspecific eggs in another good

rejecter of foreign eggs, the brambling Fringilla montifringilla when pairs were confronted

with a dummy cuckoo at their nest than without such a treatment (Braa et al., 1992). In our

study we have shown that the amount of recognition errors did not increase after the treatment

with a dummy cuckoo. What then about species with intermediate rejection rates? Øien et al.

(1999) hypothesised that such species should show more conditional responses in their

rejection decisions. Support for such conditional responses have been found in several cuckoo

hosts (Davies & Brooke, 1988; Moksnes & Røskaft, 1989; Moksnes et al., 1993; Alvarez,

1996). However, evidence for recognition errors in such species are few. The reed warbler

Acrocephalus scirpaceus is a common host of the cuckoo showing conditional responses in

rejection behaviour (Davies & Brooke, 1988; Øien et al., 1998; Moksnes et al., 2000). There

is much variation in rejection behaviour both among and within various populations of this

species, reflecting variation in the risk of being parasitised (Lindholm, 2000; Lindholm &

Thomas, 2000). In a reed warbler population in England the rejection rate of foreign eggs has

declined in recent years due to a lower level of parasitism (Brooke et al., 1998). The decline

in rejection rate towards foreign eggs in this host population can be explained by high costs

due to recognition errors (Davies et al., 1996), and some evidence for such errors have

previously been found (Davies & Brooke, 1988). However, other studies have failed to reveal

such errors in reed warblers (Lindholm, 1999; Røskaft et al., 2002), as well as other species

(e.g. Lawes & Kirkman, 1996; Grendstad et al., 1999). The influence of recognition errors as

opposing selection pressures against evolution of proper defence in hosts of the cuckoo is thus

at present a matter of controversy among researchers. Recently, it has been found that
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cuckoo-hosts can show intermediate rejection rates not because of costs associated with

rejection behaviour, but rather as a result of characteristics of the hosts breeding habitat ("the

spatial habitat-structure hypothesis"; Røskaft et al., 2001). This hypothesis is based upon

metapopulation dynamics (i.e. gene flow, local adaptations, etc.) and features of the parasite

itself making it more suited to utilise hosts breeding in specific habitats. Brood parasites need

access to observation posts in trees to discover host nests (Alvarez, 1993; Øien et al., 1996;

Clotfelter, 1998; Hauber & Russo, 2000; Moskát & Honza, 2000; Clarke et al., 2001). Host

populations or species breeding near trees are therefore most prone to parasitism, experience a

higher level of parasitism and thus a stronger selection pressure on evolving defences than

populations or species breeding far away from trees. Woodland-species like the chaffinch and

the blackcap are therefore good rejecters of foreign eggs. Reed warblers on the other hand

may breed both near and far away from trees (see e.g. Øien et al., 1996), and therefore gene

flow from unparasitised populations may restrain an increase in the rejection rate in

parasitised populations even without the influence of costs related to rejection behaviour.

Needless to say, further studies into this topic with emphasise on metapopulation dynamics

are called for. In addition, we strongly recommend that more data should be collected on the

occurrence of real recognition errors in European passerines in the future, because such data

are very important for the general understanding of evolution of host defences against brood

parasitism.
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Table 1. Reactions of chaffinches and blackcaps towards foreign conspecific eggs. N =

number of nests.

Species

Chaffinch Blackcap

Reaction N (%) N (%)

Conspecific egg accepted 40 (100.0) 23 (100.0)

Ejection of own egg(s) only 1 (2.5) 2 (8.7)

All eggs accepted 39 (97.5) 21 (91.3)

Conspecific egg rejected 42 (100.0) 15 (100.0)

Selective ejection (no costs) 28 (66.7) 9 (60.0)

Unselective ejection (with costs) 5 (11.9) 3 (20.0)

Desertion 9 (21.4) 3 (20.0)
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Table 2. Potential recognition errors (ejections and desertions) in unparasitised nests (with or

without the presentation of a cuckoo dummy) in chaffinches and blackcaps. N = number of

nests.

Species

Chaffinch Blackcap

Reaction N (%) N (%)

No Cuckoo dummy 14 (100.0) -

No recognition errors 13 (92.9) -

Ejection of own egg(s) 1 (7.1) -

Desertions 0 (0.0) -

With Cuckoo dummy 27 (100.0) 5 (100.0)

No recognition errors 25 (92.6) 5 (100.0)

Ejection of own egg(s) 1 (3.7) 0 (0.0)

Desertions 1 (3.7) 0 (0.0)
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In this paper we present tentatively support for predictions derived from a “spatial habitat

structure hypothesis” arguing that common cuckoos Cuculus canorus, the most common

obligate brood parasite in Europe, only breed in areas where they have access to vantage

points in trees. Thus, species where some populations breed near trees while other populations

breed further from trees, have a different cuckoo-host population dynamic, than species where

all populations always breed in the vicinity of trees. Parasitism rate, mimicry of brood parasite

eggs with those of the hosts, and rejection behaviour of hosts varies with the host breeding

habitat. Cuckoos are best adapted to exploit species where some populations breed near trees

while other populations breed in open areas, because such hosts are not always accessible to

cuckoos, and thus gene flow among unparasitised and parasitised populations delays the

evolution of host adaptations. Adaptive behaviour in cuckoos as well as in their hosts can be

predicted from the “spatial habitat structure hypothesis”. Keywords: Host behaviour, Cuculus

canorus, cuckoo parasitism, metapopulation, habitat structure, gene flow. [Behav Ecol: 0:

000-000 (2001)]
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Theoretical analyses have shown that the spatial structure of populations may strongly

influence their evolutionary processes, and analyses of host-parasite models have shown that

patterns of gene flow among different local populations affect their ability to counteract the

parasitism (Via et al., 1995; Gandon et al., 1996; Grenfell and Harward, 1997; Schlichting and

Pigliucci, 1998). Thus, local microadaptations may affect the behavioural traits of different

populations breeding in a metapopulation system.

In the Old World, the common cuckoo Cuculus canorus is an obligate brood parasite

that lays its eggs in the nests of a variety of host species, mainly smaller passerines. As the

cuckoo dramatically reduces the hosts’ breeding success (Røskaft and Moksnes, 1998; Øien et

al., 1998), there should be strong selection for the evolution of counter-adaptations by the

hosts. Many investigations have shown that mechanisms of egg recognition have evolved

among the hosts to counteract brood parasitism(Davies and Brooke, 1988; 1989a; b; Brooke

and Davies, 1988; Moksnes et al., 1990; 1991). Such egg recognition behaviour of the hosts

has led to selection for host-egg mimicry by the cuckoo (Baker, 1942; Lack, 1968; Davies and

Brooke, 1989a; b; Moksnes and Røskaft, 1995).

It is reasonable to assume that the success of brood parasites will vary both temporally

and spatially according to different environmental factors such as habitat structures and

densities of host populations. It could be adaptive for hosts to modify their responses to

parasitism according to variation in these factors (Øien et al., 1999). Experimentally

parasitised hosts of the cuckoo are known to reject the foreign egg more frequently when they

have seen a cuckoo female near the nest (Davies and Brooke, 1988; Moksnes et al., 1993a).

The rejection rates of cuckoo hosts also vary with the degree of similarity between the

parasitic and the host's egg (Davies and Brooke, 1988; Brooke and Davies, 1988).

Furthermore, phenotypic plasticity may occur where individuals that either ejected or

accepted the cuckoo egg in the first test, frequently changed their response in subsequent tests
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(e.g. rufous bush robin Cercotrichas galactotes; Soler et al., 2000). Since the parasitism

pressure of brood parasites may vary spatially as well as temporarily, it has recently been

stressed that host responses towards cuckoo parasitism have to be regarded in a

metapopulation perspective (Lindholm, 1999; Lindholm and Thomas, 2000).

Many host populations show intermediate reactions towards the cuckoo egg, as both

rejection and acceptance occurs (Davies and Brooke, 1989a; Moksnes et al., 1990). Such

populations may be at an equilibrium between individuals that accept and individuals that

reject, as a compromise between the cost of parasitism and the cost of recognition errors

(Lotem et al., 1992; 1995; Takasu, 1998a; b; Takasu et al., 1993; Rodríguez-Gironés and

Lotem, 1999). Recently a new hypothesis explaining the coexistence of acceptors and

rejecters in the same host population (the intermittent arms race hypothesis; Soler et al., 1998)

has been suggested. This hypothesis is based on the existence of spatially structured cyclic

changes in parasitism over many years, where the host population will respond to the

variation in parasitism pressure.

Although the equilibrium hypothesis may explain the intermediate rejection rates in some

populations, it does not explain the dynamics of metapopulations, nor the plasticity different

host populations show in their responses towards cuckoo eggs (Lindholm, 1999; Lindholm

and Thomas, 2000). Furthermore, the equilibrium hypothesis can not predict the level of

acceptance rate of different host species. Unparasitised host populations of several brood

parasite species may accept almost all parasitic eggs experimentally laid in their nests (Davies

and Brooke, 1989b; Soler and Møller, 1990; Lindholm and Thomas, 2000).  Interpopulation

variation has been attributed to phenotypic plasticity, but may as well be genetically

determined and due to differences in gene flow between acceptor and rejecter populations.

The degree of mimicry of cuckoo eggs with those of the hosts may also vary among

populations (Moksnes and Røskaft, 1995).
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In this paper we argue that the interpopulation variation in rejection behaviour within a

species is determined by gene flow between unparasitised and parasitised populations.

Differences in rejection rates of cuckoo eggs will affect the degree of host egg mimicry as

well as the rate of parasitism.  We have made some important prerequisites for this approach;

1) In many potential host species some populations are heavily parasitised by cuckoos

whereas others are not parasitised at all (Davies and Brooke, 1989b). The metapopulation

approach assumes that unparasitised populations are sources for parasitised ones, because

everything else being equal (e.g. predation pressure) the average fitness will be lower in

parasitised populations which will lead to vacancies and immigration of recruits from

unparasitised populations. Thus gene flow from the sources where there is no selection for

egg rejection to the sinks, where there is selection for rejection, leads to a dimorphic response

in the sink populations. In parasitised populations the cuckoos will evolve mimetic eggs to

lower the rate of egg rejection. 2) Because cuckoos are dependent on trees (or in recent time,

electrical poles or wires) as vantage points for finding host nests, (Alvarez, 1993; Øien et al.,

1996; Moskát and Honza, 2000), host populations breeding in the vicinity of trees will be

more exposed to parasitism than host populations breeding further from trees. Thus, there will

be a difference between species that always breed near trees and those breeding both near and

far from trees, where some populations are exposed to cuckoo parasitism whereas others are

not.

From this “spatial habitat structure hypothesis” we develop the following predictions; 1)

In species where all populations always breed near trees, the host should rapidly evolve

rejection behaviour, and the cuckoo should only occasionally match the speed of this

evolution, and only sporadically develop matching mimetic eggs. Thus, in habitats with trees

suitable hosts should always be good rejecters (≈ 100%), whereas cuckoo egg morphs

matching those of the hosts will be rare. Parasitism rate should be low. 2) Among species
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breeding in habitats where some populations are breeding close to trees where they locally are

heavily parasitised by cuckoos, whereas others are breeding far from trees where they are

unparasitised, gene flow among populations should delay the evolution of rejection behaviour

in parasitised populations. If the frequency of unparasitised populations is high, the result

should be a high variation in rejection behaviour among populations. Cuckoos should evolve

egg mimicry in parasitised populations. We expect the average mimicry of cuckoo eggs to be

better among these species than among species always breeding near trees. 3) Host species

that always breed in open areas far from trees should be acceptors, even though they in theory

are suitable hosts. There should be no selection for egg mimicry and parasitism rate should

always be very low (no data exists, however, to test this prediction).
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MATERIALS AND METHODS

In this study we collected data from different sources. In the analyses we have used data on 24

different European cuckoo hosts, because available data on their rejection rates of non-

mimetic cuckoo eggs exists (Table 1; see below).

Only suitable hosts are included in this analysis. Suitable hosts are defined as having

nests that are accessible for the cuckoo. They are feeding their chicks with food that is

digestible for the cuckoo chick, and they have a size of the nest and eggs making it possible

for the young cuckoo to eject the nest content (Davies and Brooke, 1989a; Moksnes et al.,

1990).

Rejection rates of different host species towards non-mimetic cuckoo eggs were

collected from published papers or from own unpublished experiments in Norway, Hungary

and the Czech Republic (von Haartman, 1981; Gärtner, 1982; Järvinen, 1984; Davies and

Brooke, 1989a; Brown et al., 1990; Moksnes et al., 1990; 1994; Moksnes and Røskaft, 1992;

Brooke et al., 1998; Alvarez, 1999; Moskát and Fuisz, 1999; Stokke et al., 1999). A hosts’

rejection rate is defined as the proportion of eggs that was rejected (ejected or deserted), of the

total number of experiments with artificial non-mimetic cuckoo eggs added to the clutch. In

this paper experiments from different populations are pooled (Table 1).

Breeding habitats have been defined as A) always near trees (13 species, Table 1)

where cuckoos in principal always have access to all host nests due to the proximity of trees

(Figure 1), B) some populations (near trees) are accessible to cuckoos while others (far from

trees) are not (eight species). Some host species as e.g. redstart Phoenicurus phoenicurus,

robin Erithacus rubecula, pied wagtail Motacilla alba and wren Troglodytes troglodytes, are

partly hole nesters or breed in cavities in some areas and are therefore inaccessible to
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cuckoos. They are included in this group. Altogether 11 species are therefore included in this

group (Table 1). C) A third category of species always breeding far from trees (Figure 1),

however, is not included in this analysis because no data exist. We used Snow and Perrins

(1998) to determine the breeding habitats and nest sites of the different species. For simplicity

we used only two habitats in the analyses (always near trees; near and far from trees).

The frequency of matching egg morphs of the different species was taken from a study

of more than 12000 cuckoo eggs in European museums (Moksnes and Røskaft, 1995). A

matching cuckoo egg morph is a cuckoo egg that is said to be similar to the eggs of the host

(e.g. a blue cuckoo egg similar to the blue eggs in the redstart, Moksnes et al., 1995). Fourteen

species have a matching cuckoo egg morph while 10 species have no matching cuckoo egg

morph (Table 1). The information regarding the matching egg morph of the rufous bush robin

Cercotrichas galactotes has been taken from Alvarez  (1994).

We also used the mean degree of cuckoo egg mimicry from the museum collections.

For each parasitised clutch the mimicry of the cuckoo egg with the host eggs was scored

according to a scale from (1 to 5, where 1 is perfect mimicry, 2 is good mimicry, 3 is medium

mimicry, 4 is poor mimicry, and 5 is maximum contrast; Moksnes and Røskaft, 1995; Table

1).

Rate of parasitism was obtained by using data from published papers averaged over

the actual range (Wasenius, 1936; Lack, 1963; Wyllie, 1981; Glue and Murray, 1984; ;

Moksnes and Røskaft, 1987; Davies and Brooke, 1989b; Moksnes et al., 1993b; Schulze-

Hagen et al., 1996; Moskát and Honza, 2000). In addition we used a number of nests

containing cuckoo eggs found in European Museums (Moksnes and Røskaft, 1995). Since in

general, data on parasitism rates are poor, we used only two categories of parasitism rate; 1:

normally parasitised at a rate less than 1 %, 2: normally parasitised up to 5 %, but frequently

even above (Table 1).
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Treating each species as an independent data point may lead to an overestimation of

the true number of degrees of freedom in statistical analyses (Felsenstein 1985; Harvey and

Pagel 1991). In order to control for possible effects of common descent, the species used in

the analysis were organised in a phylogenetic tree. We produced one tree based on molecular

data (DNA hybridisation; Sibley and Ahlquist 1991), and another based upon morphology

(Howard and Moore 1991).  In the latter tree, we assumed polytomies between species within

a genus, between genera within a family, etc. In order to obtain a normal distribution, the

rejection rate had to be arcsin transformed before the analysis. We used the computer program

package PDAP (Garland et al. 1993; Garland et al. 1999; Phenotypic Diversity Analysis

Programs) version 5.0 to make the tree and to load variable data. This package also contains

Felsenstein`s (1985) independent comparison method, which allowed us to obtain paired

contrasts of the variables between nodes in the phylogenetic trees that were independent of

each other. The branch lengths were assigned by the method of Grafen (1989), by the method

of Pagel (1992), or set as a constant (= 1). The branch length assignments that were used

varied for each trait and also among the trees. We selected the branch lengths that yielded

absolute values of contrasts that were not related to their standard deviations (p < .05) for any

of the traits analysed (Garland et al. 1992). The relationship between the variables was

analysed by multivariate General Linear Models (GLM). All the tests are two-tailed.
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RESULTS

The mean rejection rate was 78.3 % (± 25.1, SD) for species always breeding near trees while

it was 45.6 % (± 27.6, SD) for species breeding near trees as well as further away from trees,

a difference which proved to be statistically significant (arcsin transformed data, ANOVA,

F1,23 = 9.21, p = .006). The percentage of species that normally were parasitised at a rate

above 1 % was much higher for species breeding in both kind of habitats (100 % of the

species), while 10 of 13 species always breeding near trees (76.9 %) were normally

parasitised less than 1 % (Fishers exact probabilities test, p = .000). The mean degree of

mimicry of the cuckoo eggs towards those of the hosts was 3.6 (± 0.7, SD) for species always

breeding near trees and 3.0 (± 0.5, SD) for species breeding in both kinds of habitats, a

difference that proved to be significant (ANOVA, F1,23  = 4.94, p = .037; the mean of one

species was used as a unit). Finally, the percentage of species with a matching cuckoo egg

morph differed significantly between species always breeding near trees and those breeding

both near and far from trees. A cuckoo egg morph similar to the eggs of the host was found

among 90.9 % of the species breeding in both habitats, while it was found among only 30.8 %

of the species always breeding near trees (Fishers exact probabilities test, p = .005).

A multivariate GLM-test using the habitat as the independent variable and (arcsin)-

rejection rate, whether a species was frequently parasitised above 1 % or not, and the degree

of mimicry of the cuckoo eggs, as dependent variables proved to be statistically significant

(Wilk’s Lambda, F3,21 = 11.9, p = .000). All the dependent variables were statistically

significant ((arcsin)-rejection rate, p = .006; parasitism rate, p = .000; degree of mimicry, p =

.037). Multivariate GLM-tests based upon phylogenetically independent contrasts obtained

from trees based upon DNA-hybridisation or morphology, where habitat was the independent
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variable, and where rejection rate, parasitism rate and egg mimicry were dependent variables

also proved to be statistically significant (DNA-hybridisation, Wilk’s Lambda, F3,21 = 8.34, p

= .001; morphology, Wilk’s Lambda, F3,21 = 6.92, p = .002). In most cases the dependent

variables were statistically significant ((arcsin)-rejection rate; DNA-hybridisation p = .026;

morphology p = .013; parasitism rate DNA-hybridisation p = .000; morphology p = .000,

degree of mimicry DNA-hybridisation p = .033), except for degree of mimicry in the test

based on morphology (p = .247).
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DISCUSSION

Our results tentatively support the “spatial habitat structure hypothesis”. The breeding habitat

of the host species explains their rejection behaviour, the rate of parasitism by the cuckoo, and

whether or not the cuckoo has developed a mimetic egg morph. The differences between

species always breeding near trees or those breeding both near and far from trees were always

in the direction of the predictions derived from the hypothesis. Thus, we have shown that

important adaptations in both the cuckoos and their hosts can be explained by the spatial

structure of habitats among breeding populations, even when controlling for phylogeny of

different hosts.

Although the equilibrium hypothesis (Lotem et al., 1992; 1995; Takasu et al., 1993;

Takasu, 1998a; b; Rodríguez-Gironés and Lotem, 1999) may explain the level of rejection in

relation to parasitism rate of many species, it does not predict which species that should be

parasitised or which species should have the highest level of rejection. However, the “spatial

habitat structure hypothesis” does explain the variation between different species with regard

to egg mimicry, as well  as rejection- and parasitism rates. On the other hand, the support for

the “spatial habitat structure hypothesis” also gives strong support to the “arms race

hypothesis” (Davies and Brooke, 1989b; Moksnes et al., 1990).

The puzzle of why so many European hosts (and hosts ofother brood parasites;

Rothstein, 1990; Brooker et al., 1990) have intermediate rejection rates has interested

scientists for a long time. Recently the variation in rejection rates between host populations

has been considered to be a result of phenotypic plasticity (Brooke et al., 1998; Lindholm,

1999) or conditional host strategies (Øien et al., 1999). These alternatives are, however, not

mutually exclusive to the “spatial habitat structure hypothesis”, because plasticity in
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antiparasite behaviour may be higher for species where parasitism pressure is variable (e.g.

among species breeding both near and far from trees).

In this paper we have only used a bimodal model, including two types of habitats.

However, the metapopulation system is dynamic and we may regard a host species as

representing a system where both the proportion of populations breeding near trees and the

parasitism rate of populations, vary from zero to 100 % (Figure 2). One prediction that can be

derived from the “spatial habitat structure hypothesis” is that there should be a close

relationship between the proportion of populations that breed near trees, and the total rejection

rate of the species (Figure 2). Species where about 50 % of the populations breed near trees

and 50 % away from trees should have intermediate rejection rates. Species that always breed

far from trees should be acceptors. Hole nesting birds are not accessible to cuckoos, although

a few individuals that do not breed in holes may successfully rear young cuckoos. Hole

nesters should therefore behave as they were breeding in more or less open habitats. Some of

the European larks (Alaudidae) breed far from trees, and they are rarely parasitised by

cuckoos (Moksnes and Røskaft, 1995), although, they in principle may be suitable hosts. We

therefore predict that these larks would be acceptors.

Species that in principle always breed near trees should be close to 100 % rejecters.

The definition of a tree is critical for this hypothesis, but it should be of a size that makes it

easy for the cuckoo to use as a vantage point (above 3-4 meters high). The density of trees

should be so high that cuckoos can use alternative vantage points. Cuckoos probably prefer to

use vantage points giving them an overview of several host nests at a time (Clarke et al.,

2001). Dense forests are probably not good cuckoo habitats, because dense vegetation will

make it difficult for the cuckoo to observe host nests. Therefore open forests, or areas with

scattered trees would be the best areas for cuckoos to use as vantage points. Normally, hosts

are more exposed when breeding near trees (Alvarez, 1993; Øien et al., 1996; Moskát and
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Honza, 2000). For species breeding in such habitats, the rejection rate will quickly evolve to a

very high level, making it difficult for the cuckoo to successfully parasitise them. Therefore,

parasitism rates should be highest for species breeding both near trees as well as far from trees

(Figure 2). This explains why species like some of the Acrocephalus warblers may be locally

parasitised at frequencies up to 15 % or more (Molnar, 1944; Moksnes et al., 1993b; Schulze-

Hagen et al., 1996; Øien et al., 1999; Moskát and Honza, 2000). Mimicry of the cuckoo egg

towards those of the hosts should be best among the species where about 50 % of the

populations breed among trees.

However, none of the European species are always parasitised, even among species

always breeding near trees. Among such species some populations may escape parasitism by

the cuckoo, although, it would be hard to conclude whether this is a result of antiparasite

behaviour of hosts, or cuckoos preferring other hosts because the host density of the most

suitable hosts is too low. This phenomenon may explain why none or very few of the

European host species have a 100 % rejection rate.

Data on one of the tested hosts do not support the “spatial habitat structure

hypothesis”. The dunnock Prunella modularis,  a species that always breeds near trees, has in

previous studies been found to be an exception to the patterns of other European hosts (Davies

and Brooke, 1989b; Moksnes et al., 1990). Understanding why the dunnock is such an

exception has been difficult. However, we suggest that one should look closer into their

habitat and whether this species in some populations breeds in dense forests, in cavities, in

very low densities, or if this species has not evolved antiparasite adaptations due to a time lag

(Rothstein, 1982; 1990).

We conclude that the ”spatial habitat structure hypothesis” explains the pattern of

rejection behaviour in hosts and parasitic adaptations in cuckoos in Europe. This conclusion

can be drawn despite the fact that the quality of data used in the present analyses is not
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optimal, because rejection rates, parasitism rates and degree of mimicry are not only taken

from different host populations but often from populations far apart. In further research we

recommend that researchers collect data on rejection rates, parasitism rates, cuckoo egg

mimicry and even dispersal rates of adult and juvenile birds from both parasitised and

unparasitised populations in areas that are not too far from each other (50 – 100 km).
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Table 1

Breeding habitats (A) always near trees, (B) both near trees and far from trees, or species which

partly breed in cavity). Rejection rates in percentage of total experiments (with total number of

experiments in parentheses), whether a matching cuckoo egg morph exists in some of the

populations in European museum collections, mean degrees of mimicry of cuckoo eggs from

museum collections and parasitism rates of different cuckoo hosts in Europe (1 = normally

parasitised at a rate less than 1 %, 2 = frequently parasitised at rates up to 5  % and even above)

Host species Breeding

habitat

Rejection

rate

%   (n)

Matching

cuckoo egg

morph

Mean

degree of

mimicry

Parasitism

rate

Lanius collurio A 96 (26) Yes 2.8 2

Muscicapa striata A 67 (18) No 3.7 1

Erithacus rubecula B 25 (20) Yes 3.5 2

Cercotrichas galactotes B 19 (54) Yes ? 2

Phoenicurus phoenicurus B 34  (65) Yes 2.4 2

Luscinia svecica svecica A 74 (17) No 3.6 1

Troglodytes troglodytes B 17 (6) No 4.3 2

Phylloscopus trochilus A 88 (16) No 4.4 1

P. collybita A 91 (11) No 4.3 1

Hippolais icterina A 78 (9) No 3.8 1

Acrocephalus scirpaceus B 41 (229) Yes 3.1 2

A.  palustris B 87 (38) Yes 3.1 2

A. arundinaceus B 75 (28) Yes 2.4 2

 A. schoenobaenus B 20 (5) Yes 3.0 2
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Host species Breeding

habitat

Rejection

rate

%   (n)

Matching

cuckoo egg

morph

Mean

degree of

mimicry

Parasitism

rate

Sylvia atricapilla A 92 (48) Yes 2.9 1

S. borin A 67 (3) Yes 2.5 2

Anthus pratensis B 36 (82) Yes 2.7 2

Motacilla alba B 73 (41) Yes 2.8 2

M. flava B 80 (5) Yes 2.6 2

Prunella modularis A 3 (32) No 4.9 2

Fringilla coelebs A 77 (74) No 3.6 1

F. montifringilla A 90 (31) Yes 2.6 1

Emberiza citrinella A 100 (13) No 3.6 1

E. schoeniclus A 95 (20) No 3.6 1
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 FIGURE LEGENDS

Figure 1

Distribution of different populations of three theoretical cuckoo host species;

A) Species always breeding near trees. Here cuckoo vantage points occur among all

populations.

B) Species breeding both near trees as well as far from trees. Here some cuckoo vantage

points occur among some of the populations, but not all. Note that reeds are not

considered as a tree or a cuckoo vantage point. Therefore, species breeding in reed

beds far from trees may not be parasitised at all.

C) Species always breeding far from trees with no cuckoo vantage points. Note that a tree

or two may occur in some populations, but that is not enough for cuckoos to exist and

to parasitise the majority of the population.

Figure 2

The relationship between a species’ total rejection rate and the fraction of populations

breeding near trees including the variation between populations (solid lines). The average

parasitism rate of a species in relation to the fraction of species breeding near trees (dotted

line) has a peak in the middle part, here parasitised populations may be heavily parasitised,

while those populations breeding far from trees are not parasitised at all. Species where all

populations always breed near trees on one hand, while other populations never breed near

trees on the other hand, are never parasitised.



26

A

A

C

C

B

B

B C

A

Figure 1



27

Figure 2

Percentage of populations 
breeding near trees

0 % 100 %

0

100

Rejection
rate

0

10

Parasitism
rate

URN:NBN:no.2134



URN:NBN:no.2134







Doctoral theses in Zoology
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1 1978 Tore Slagsvold Dr. philos. Breeding events of birds in relation to spring

temperature and environmental phenology.
2 1980 Arnfinn Langeland Dr. philos. Interaction between fish and zooplankton

populations and their effects on the material
utilization in a freshwater lake.

3 1982 Dag Dolmen Dr. philos. Life aspects of two sympartic species of newts
(Triturus, Amphibia) in Norway, with special
emphasis on their ecological niche segregation.

4 1984 Eivin Røskaft Dr. philos. Sociobiological studies of the rook Corvus
frugilegus.

5 1985 Randi E. Reinertsen Dr. philos. Energy strategies in the cold: Metabolic and
thermoregulatory adaptations in small northern
birds.

6 1985 Jarle Mork Dr. philos. Biochemical genetic studies in fish.
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