A Systematic Approach to Automated Construction
of Power Emulation Models

Benjamin A. Bjgrnseth, Asbjgrn Djupdal, Lasse Natvig
Department of Computer and Information Science
Norwegian University of Science and Technology

{benjambj,djupdal,lasse } @idi.ntnu.no

Abstract—Efficient estimation of power consumption is vital
when designing large digital systems. The technique called power
emulation can speed up estimation by implementing power
models alongside a design on an FPGA. Current state-of-the-
art power emulation methods construct models using various
custom techniques, but there is no study on how the existing
methods relate to each other nor how their differences impact
the final quality of the model. We propose a methodology
which describes the breadth of current approaches to automated
construction of power emulation models. We also evaluate the
current methods, finding that there is significant variation in
accuracy and complexity. In 32.8 % of all tests, the average
accuracy of the least complex method is better than that of
the most advanced method at less than 0.3 % the hardware
overhead. This result fuels the hope that further innovation may
yield models with high accuracy at low implementation cost. Our
software frameworks and experimental data are made available
to promote continued work on the field.

I. INTRODUCTION

The proliferation of power as a first class design constraint
in computer architecture research makes it increasingly impor-
tant to evaluate the energy efficiency of architectural innova-
tions. A precise evaluation of power consumption may require
the development of HDL implementations of the proposed
hardware designs, which enables the use of ASIC design tools
such as Synopsys PrimeTime [1]. These tools yield highly
accurate power estimates, but the run-time of such tools may
prevent evaluations using real-world workloads.

FPGAs have long been a vessel for high-speed prototyping
of ASIC hardware designs. Previous work has proposed a
technique named power emulation, where regression models
relating RTL activity to energy or power consumption are
created and implemented on an FPGA alongside the HDL
being prototyped [2]. The slow ASIC design tools are thus only
used once, to gather activity and power data for creating the
regression models. Energy consumption can then be estimated
using the FPGA at orders of magnitude higher speed.

Several different semi- or fully automated methods have
been proposed to make the regression modelling step in power
emulation simpler [3], [4], [5]. We will call such methods
energy model synthesis (EMS). These methods demonstrate
the viability of automated power emulation. However, no work
has thus far considered what trade-offs exist in the construction
of the modelling method itself; several method variants work,
but how their differences impact model quality is unclear.
Furthermore, no detailed comparison between these state-of-
the-art methods exist.

In this article, we provide a description of the current
methodology' for automated model creation for power em-
ulation. The explicit methodology description simplifies sys-
tematic comparison of EMS method alternatives. Next, we
evaluate the trade-offs between state-of-the-art EMS methods.
In order to perform these evaluations, we extend the semi-
automatic methods to be fully automated. We find that the
modelling time, prediction accuracy and hardware cost of the
different methods vary significantly, but that the hardware cost
savings of the least complex method is disproportionately high
compared to its loss of accuracy. This suggests that more
accurate methods can be created at lower costs by judiciously
applying the most successful aspects of the more complex
methods as extensions to the simplest one.

The remainder of this article is organized as follows.
Section II presents background material on power modelling of
RTL designs in general and the more specific EMS methods.
Section III describes the EMS methodology, and identifies how
various methods deviate from one another. An evaluation of
the state-of-the-art EMS methods is presented in Section IV,
including a discussion of the impact the results may have
on EMS method design practices. Finally, we conclude and
present ideas for future work in Section V.

II. BACKGROUND
A. RTL Power Models and Power Emulation

Power models of RTL designs have been used to extend
various software simulators with power estimation capabilities;
examples include regular RTL simulation [6], SystemC models
[7] and HLS binaries [8]. The different methods showcase a
broad set of statistical techniques for crafting models from a
sample set of RTL activity and corresponding power values.
Bogliolo et al. use regression trees, where different regression
models are used based on the values of splitting variables [6].
The splitting variables are design signals selected based on the
variance in power due to the signals. The regression models
are computed using the method of least-squares. Bansal et al.
apply significance testing to determine relationships between
signals and power consumption [7]. They also use regression
trees, but select splitting variables based on which signals
introduce the fewest cases. Regression models are created
using symbolic regression, based on the selected signals and a
pre-defined set of operators. Lee et al. create different models

'Note the distinction between method and methodology: a method is a
description of steps taken to reach a goal, whereas a methodology is the set
of methods applicable within a domain.

for different states of a control pipeline [8]. For each state, they
use decision trees to select a subset of signals as predictors,
calculate four models using different regression modelling
techniques, and select the best-performing one.

The idea of implementing the power models in hardware,
called power emulation, was first proposed by Coburn et al.
[2]. This has a calculation speed benefit, but the hardware over-
heads put stricter constraints on model complexity. Coburn’s
method is based on creating and accumulating models of all
RTL components, with several optimizations which reduce the
area requirements. Still, the area overheads reported were on
average 3x. An approach for scaling power emulation to full
chip-multiprocessor systems was proposed by Bhattacharjee et
al. [9]. They use performance counters as predictors, reducing
per-cycle prediction accuracy for massive area reductions.
Their strategy requires a design with performance counters,
and the designer knowledge to select among them. A case
study of how power emulation can be applied in a prototyping
platform may be found in [10].

B. Energy Model Synthesis Methods

Recent methods have focused on partial or complete au-
tomation of the modelling [3], [4], [5]. Ideally, a user would
only need to input an HDL design to the method in order to
synthesize a version augmented with a model of the per-cycle
energy consumption.

Sunwoo et al. propose creating a hierarchical power model
semi-automatically [3]. A subset of modules in the hardware
design and a subset of inputs for each of these modules are
selected manually. For each module, the method automatically
creates a regression model using the method of least-squares.
The sum of model predictions form the model of the top-level
module. The formulae have the fixed format >~ HD(B) x S,
where H D denotes a Hamming-distance computation, B is the
selected input buses, S is the selected input single-bit signals,
and k is a parameter which is set by the modeller to balance
modelling run-time with attainable model accuracy. To reduce
overheads, the final model uses only the N terms with the
highest maximum values in the training data.

Bachmann et al. present a semi-automatic method for
creating a model for an entire hardware design [4]. The
method uses single-bit signals as predictors, selected based
on a manually created name pattern list. The initial list of
signals is filtered based on inter-signal correlation and power-
signal auto-correlation values. The filters remove heavily cor-
related signals, and only keep signals correlating with the
power consumption. The final regression model is the sum
of the remaining signals, with coefficients fit based on a
non-negative least-squares solution. In a follow-up work, the
authors determine that the exclusive use of single-bit signals is
inadequate for accurately predicting the power consumption in
data-dependent situations [11]. This work extends the method
with the option of including manually selected bus variables

The most recent work, conducted by Yang et al. [5], fea-
tures a completely automated modelling method. They include
one predictor variable for each flip-flop in the design, where
each predictor is the toggle-activity of the corresponding flip-
flop. Since there may be a significant number of flip-flops in a
design, they use a rank-k-limited singular-value decomposition

HDL

N
ASIC flow Benchmark
selection

Realization
specification

EDA tool flow

Power
calculation

Signal data

Power data

LT TTT T T s s s i situiniaiaiaiateieteiet el ~
v’ . \
/ Modelling Granularity !
i i
1 i !
' Signal Signal filters i
I selection H
1 1
1 1
:I—b[Factor shape]—0[Term shape H IFiil :
! shape H
1 1
1 Coefficient !

’ A ~
| Hardware Fixed-point

| implementation conversion

Digital design

RTL

Fig. 1. The steps in the EMS methodology. The dashed lines demarcate
methodology categories, and the blue boxes indicate steps in which there are
significant opportunities for method variation. Ellipses are invariants.

technique to reduce the modelling time and calculate an
approximated least-squares solution for this formula.

III. THE ENERGY MODEL SYNTHESIS METHODOLOGY

As is clear from Section II-B, there is significant vari-
ation in the design of existing EMS methods. To facilitate
systematic method design experimentation, we developed a
unifying methodology description illustrated in Figure 1. The
methodology is split into three categories, which are further
comprised of a series of steps. The internals of each step are
what separate one method from the other. The method design
decisions addressed in the different parts of the methodology
are as follows:

a) ASIC Flow: The ASIC flow category steps produce
training data for modelling. Apart from using simulation and
ASIC power calculation tools, EMS methods must include:

Realization specification: ASIC power calculation re-
quires realization details such as the target cell library and
operating conditions. Although often a manual responsibility,
complete automation would require EMS method involvement.

EDA tool flow: The EDA tool flow synthesizes the HDL
design into an ASIC realization. Methods can differ in whether
or not the synthesis manages physical layout.

Benchmark selection: The benchmark selection impacts
signal activity quality because models are optimized for the
activity in the training data. Typical alternatives are writing
benchmarks customized to the design, or picking applications
from a benchmark suite.

b) Modelling: The modelling category steps form the
actual regression modelling. This is the primary focus of cur-
rent EMS methods. The following list describes the questions

TABLE 1. IMPLEMENTATION VARIATIONS FOR METHODOLOGY STEPS IN THE MODELLING CATEGORY. (LEGEND: SUNWOO, -+ BACHMANN] YANG)
Granularity ‘ Signal Selection ‘ Signal Filters ‘ Factor Shape ‘ Term Shape ‘ Formula Shape ‘ Coefficient Calculation ‘ Term Filters
W Top-level Single-bit Name filters Raw signals M Single factors M Sum of Least-squares Maximum
module only signals Auto-correlation Hamming HD(B) - S* terms Non-negative term value
Hierarchical Module with power distance Bit-wise and [7] Regression trees least squares
All RTL inputs Inter-signal H Toggle Bit-wise or [7] 161, (71, [8] B Rank-truncated SVD-
components [2] I Flip-flops correlation Count of zeros [7] Multiplication [7] based least squares
Performance Manual selection Count of ones [7] Bayes Ridge [8]
counters [9] Significance tests [7] Gradient boosting [8]

methods address when implementing a given step. For each
step, some alternatives previously used are presented in Table I.

Granularity: Should the top-level model be hierarchical,
and if so at what granularity should the design be modelled?

Signal selection: What kind of HDL design signals should
model predictors be based on?

Signal filters: Can the usefulness of signals as predictors
be determined, in order to filter out less useful signals to reduce
the modelling complexity?

Factor shape: How should the model predictors be derived
from the selected signals?

Term shape: How should the predictors be combined to
form terms of the model?

Formula shape: Is the final formula a regression tree, or
a single sum of terms?

Coefficient calculation: What method is used to calculate
coefficients for the model terms?

Term filters: Should the model complexity be reduced by
selecting the most useful terms in the final formula?

¢) Hardware Implementation: The hardware imple-
mentation category steps generate an implementation of the
mathematical model, balancing accuracy and hardware over-
head. The steps are as follows:

Fixed-point conversion: The floating-point coefficients
from the regression modelling must be converted to fixed-point
by selecting an appropriate scaling factor and a bit width.

Digital design: The final step creates the hardware based
on some predefined digital design. Simple models can be
trivially implemented; complex models may require tailor-
made designs for sufficient efficiency, as in the work by Coburn
et al. [2].

IV. EVALUATING THE STATE OF THE ART

Having described the methodology, we will next consider
how the current state-of-the-art embodiments of it compare
to each other. Such a comparison should yield a better un-
derstanding of the current methods, which is useful both for
determining which option is the best in a given scenario and
for research on improvements to the methods.

A. Evaluation Framework

We have created an evaluation framework which manages
technical tasks in the execution and evaluation of EMS meth-
ods. This includes HDL analyses; sampled benchmark simula-
tion; EDA tool flow scripts; data management; modelling and

TABLE II. METHODOLOGY STEPS FIXED DURING EVALUATION.

Methodology Step Configuration

HDL Rocket chip [15] with one core.

Realization Specification Commercial 65 nm 1.0V cell library,

500 MHz, no clock-gating.

Synopsys DC [17], front-end synthesis only.
Custom 30K-cycle program.

Fixed resolution of 27 1%,

EDA tool flow
Benchmark selection
Fixed-point conversion

Digital design Sum of terms.
TABLE III. METHOD PARAMETERS USED DURING EVALUATION.
Sunwoo [3] Bachmann [4] Yang [5]
k=2 Signal-signal correlation threshold = 1 k =100
N =10 Signal-signal correlation lag = 5

Power-signal auto-correlation threshold = 0.40
Power-signal auto-correlation lag = 5

hardware implementation steps and evaluation utility functions
in R [12]; and hardware cost calculation. The HDL analyses
and sampled simulation are based on the open-source Chisel
HDL [13], but other languages can be supported as the rest
of the framework is independent of the chosen HDL. All the
utility software and our data material is publicly available [14].

B. Evaluation Method

1) Methodology Configuration: To enable a fair compari-
son between the EMS methods, we use the methods to model
the same HDL design: a Rocket chip [15] with one core. The
power consumption of on-chip SRAM resources is subtracted
from their containing modules, as these resources are better
modelled with specialized SRAM tools like CACTI [10].

We also fix the steps in the ASIC flow and hardware
implementation categories of the methodology. The benchmark
is a custom 30K-cycle program, written to exercise various
parts of the Rocket chip. We use a simple digital design
in which the final result is calculated using an adder tree.
The individual terms are calculated from factors using either
bit-wise and if a factor has bit-width 1, or multiplication
otherwise. Most factors are trivially calculated; for Hamming
distance calculation, we use the FPGA-specific implementation
proposed by Skylarov et al. optimized for wide buses [16]. All
the fixed settings are summarized in Table II.

The steps in the modelling category are implemented
separately for each method in the way described in the original
article. Each method parametrizes certain steps in a way which
allows varying the trade-off between accuracy, implementation
cost, and modelling time. We set the parameters to the values
reported in the original articles. Not all parameter values were
reported; in these cases, their values were set to the values
which yielded the best results after systematic experimentation.
The method parameters are listed in Table III.

2) Evaluation: The accuracy of the models is evaluated
by using each model to predict power based on activity traces

TABLE IV. LIST OF BENCHMARKS USED FOR VALIDATION.

MiBench Samples [cycles] ‘ MachSuite Samples [cycles]
automotive/basicmath 5 X 20K fft/strided 5 x 20K
automotive/bitcount 5 x 20K | fft/transpose 6 X 20K
automotive/qsort 6 X 20K bfs/bulk 10 x 10K
network/dijkstra 4 x 20K bfs/queue 10 x 10K
office/stringsearch 2 X 20K aes/aes 1 x 103K
security/sha 5 X 20K stencil/stencil3d 5 x 20K

from a set of validation benchmarks, and comparing the predic-
tions to actual values calculated by Synopsys PrimeTime. We
use selected benchmarks from MachSuite [18] and MiBench
[19], listed in Table IV. Signal activity is sampled at periods
customized to the length of each benchmark, after skipping
a benchmark-dependent initialization phase, to keep the data
volume manageable.

The modelling time reported for each method is the wall-
clock time spent running it, excluding the time required for
evaluating its accuracy. Although the modelling is imple-
mented in R, the majority of the time is spent on coeffi-
cient calculation which is implemented with calls to efficient
libraries. The run-times should therefore be representative
of what one may expect from more thoroughly optimized
implementations.

The hardware cost is calculated by synthesizing the gener-
ated models using Xilinx Vivado, targeting the Xilinx Virtex-7
FPGA.

C. Fully Automating Existing Methods

As explained in Section II-B, not all the modelling steps
in Bachmann’s and Sunwoo’s methods are fully automated.
We extend the methods to be fully automated to remove
subjectivity as a factor in the execution of the methods.

a) Bachmann: We remove the manually-created signal
name filter. The absence of a name filter causes a large number
of signals to be considered. In order to mitigate the impact on
modelling run-time, we re-order the power filter and signal
filter to execute in that order in contrast to the original article.
This substantially reduces the run-time, since the power-signal
filter has lower complexity than the inter-signal filter.

b) Sunwoo: First, we include a search for an ap-
propriate granularity. The search proceeds by creating both
cumulative and hierarchical models for each module bottom-
up, keeping the one with the best results. Second, we select
all module inputs as signals when possible. However, certain
modules have prohibitively many inputs. We therefore use
correlation with power to sort the inputs, selecting the top of
the list such that the total number of terms is below a given
limit. For our results, we used a term limit of 2000.

D. Results

In this section, we present our results. The accuracy is
reported using the following metrics:

e Average error: The error in prediction of the average
power consumption.

e Average per-cycle error: The

the absolute error of predictions

_ |pred; —actual;|
- mean(actual;)

average of
each cycle

TABLE V. AVERAGE ACCURACY, HARDWARE COST AND RUN-TIME
RESULTS

Metric Sunwoo [3] Bachmann [4] Yang [5]
Average error —-12.9% —6.1% —3.2%
Average per-cycle error 19.4% 16.2% 11.6%
NRMSE 12.3% 10.4% 8.1%
CV(RMSE) 24.0% 20.5% 16.2%
95" absolute error percentile 39.9% 39.7% 25.3%
99" absolute error percentile 49.7% 48.2% 38.6%
Largest underestimation —119% —66% —55%
Largest overestimation 270% 89% 300%
Hardware cost, LUTs 7566 (70 %) 76 (0.7 %) | 27223 (253 %)
Hardware cost, registers 1272 (12.7 %) 0 8164 (81.4 %)
Hardware cost, DSPs 4 (33.3 %) 0 0
Modelling time 17.72 hours 80 seconds 9.77 hours

TABLE VI. DISTRIBUTION OF BEST-PERFORMING METHODS.
Metric Granularity \ Sunwoo Bachmann Yang
Average error Per sample 1 (1.6 %) 21 (32.8 %) 42 (65.6 %)

Per benchmark 0 5 (41.7 %) 7 (58.3 %)
Avg. per-cycle error Per sample 2 (3.1 %) 0 62 (96.9 %)
Per benchmark 0 0 12 (100 %)

e NRMSE: The root-mean-square error of predictions
each cycle, normalized by the range of observations
- RMSE - \/mean((predifactuali)z)

T actualar—actualin

actual y,gr —actual,in

e CV(RMSE): The RMSE normalized by the mean ob-

RMSE . \/meun((predi—uctuali)2)
mean(actual;) ~— mean(actual;)

servation =

1) Comparison of State of the Art: The overall method
results are presented in Table V. The accuracies are calculated
as the arithmetic mean of their respective metrics for all
benchmark samples. Yang’s method clearly has the best overall
accuracy, with the lowest errors in all categories except the
largest overestimation. However, the hardware overhead of
the method is also significant, requiring 253 % of the logic
resources used for the design being modelled. At the other
complexity extreme, we find Bachmann’s method. The imple-
mentation of the final model requires only 0.7 % of the logic
resources of the design itself, thus being practically free. The
modelling time is also the lowest among the alternatives. The
accuracy is considerably lower than Yang’s method, however,
with twice the average error. Sunwoo’s method does not have
convincing overall performance, with the lowest accuracy,
highest run-time and significant hardware cost.

Figure 2 plots the average error and per-cycle error for each
benchmark. In all cases, Yang’s method has the lowest average
per-cycle error. For the average error, however, Bachmann’s
method is often on par and sometimes better. Table VI lists
how often each method performs the best in terms of having
either the lowest average error or average per-cycle error.
Bachmann’s method performs well for its low cost, having
the best average prediction in one third of the benchmark
samples. As is clear from Figure 2, however, the margins by
which Bachmann’s method outperforms Yang’s is often small
in comparison to the margins in favour of Yang’s method.
For average per-cycle errors, Yang’s method has the lowest
average per-cycle error in all but two benchmark samples
where Sunwoo’s method performs the best. Comparing only
Bachmann’s and Sunwoo’s method reveals that Bachmann’s
method has a lower average per-cycle error in 85.9% of the
benchmark samples; Sunwoo’s method is better primarily for
the gsort_small benchmark.

Sunwoo
0,28 Bachmann

iy

)) Q
sffc e gy G ’/4:; & %0/7 %6‘4, ee,c 5,
7 ~% Slay,
e

1(1/3

S, ”

Fig. 2. The average error and average per-cycle error for each benchmark.

— Bachmann— Sunwoo — Yang

— Bachmann— Sunwoo — Yang

o
3

°
o

3

3
>

0.05

Fraction of errors in bucket
|3
b

Fraction of Predictions With Lower Error
g
3

050 0.25 0,00 0.25 0.50 0.0 0.1 02 03 0.4 05
Prediction Error Prediction Error

Fig. 3. Histograms and cumulative distributions of per-cycle errors for
Sunwoo’s, Bachmann’s and Yang’s method. The dotted lines indicate average
prediction error. The bucket size is 0.05.

Figure 3 plots the prediction error distribution over all the
benchmarks. Yang’s method has stable predictive performance,
but a significant tally of prediction errors occur up until the
25% error mark. This is also visible from the cumulative
distribution function, which increases almost linearly with
prediction error until the 90" percentile. Bachmann’s method
is less consistent, with a higher count of larger errors and
a less steep cumulative distribution. The error frequency of
Sunwoo’s method has a clearer central tendency, but a larger
negative mean value.

Bachmann’s method shows comparable performance to
Yang’s method for average prediction in certain benchmarks,
but is consistently outperformed on average per-cycle error. We
investigate the relationship between the size of intervals over
which predictions are averaged, the best-performing method
and interval prediction accuracy in Figure 4. Interestingly,
the fraction of intervals in which Yang’s method performs
the best increases until the interval reaches 100 cycles. This
can be understood by looking at the interval prediction error,
represented with dashed lines in the figure: for interval sizes
below 100 cycles, all methods benefit from an increased
interval size. Past 100 cycles the improvements in accuracy
of Yang’s method are lessened, which explains the relative
improvement to Bachmann’s method which keeps improving.

2) Impact of Toggle Activity as Factor: Both Bachmann’s
and Yang’s methods use signals which are one bit wide to
form their model. However, Bachmann uses the raw signal
values as predictors whereas Yang uses their toggle activity.
An interesting question is whether either of these choices

Fraction of intervals won
0.
006 008 010 012 014 016 0.18
Avg. error

1 10 30 = s0 70 90 ' 200 400 600 800 1000 3000 5000
Interval

Fig. 4. The relationship between prediction interval and method accuracy.
The left-hand axis and solid lines show the fraction of intervals in which a
given method has the lowest average error; the right-hand axis and dashed
lines show the average interval error. The colour scheme is the same as in
previous figures.

TABLE VIIL DATA FROM EXPERIMENTS ON ALTERNATIVE FACTORS IN
YANG’S AND BACHMANN’S METHODS.
Yang, £ = 50 Bachmann
Metric With xor Without xor \ Without xor With xor
Average error —4.4% —30.1% —6.1% —12.0%
Avg. per-cycle error 11.1% 31.2% 16.2% 22.6%
NRMSE 8% 20.7% 10.4% 14.9%
CV(RMSE) 16.2% 38.3% 20.5% 27.6%

is inherently more accurate than the other. We investigate
this issue by modifying Bachmann’s method to use toggle
activity as predictors, and vice versa for Yang’s method. The
results from these experiments are presented in Table VII.
In both cases, the modification to the original method leads
to substantial accuracy degradations. Removing xor from
Yang’s method does reduce its hardware cost, but not without
making it less accurate than the other methods. These results
demonstrate that the choice between using toggle activity or
raw signal values as factors is dependent on the implementation
of other steps in the methodology.

3) Impact of Method Extensions: Our results use exten-
sions of Sunwoo’s and Bachmann’s methods, as described
in Section IV-C. The extensions of Bachmann’s method only
impact run-time, since the power filter and inter-signal filter
are independent of each other. The extensions of Sunwoo’s
method, on the other hand, may impact the accuracy of the
method as the manual interventions ensuring quality are re-
placed with automatic methods which have not been rigorously
developed. To estimate the impact on quality caused by the
removal of human expert knowledge as a method element, we
experimented with slight variations in how our automated steps
worked.

For the granularity selection, we tested two alternatives:
one finer in which all modules are modelled, and one coarser
in which models down to hierarchical level three are modelled.
Table VIII presents the results. Both finer and coarser granu-
larities worsen the accuracy of the final model , indicating that
the automated step hierarchy selection is reasonable accuracy-
wise. Since the difference in accuracy is substantial when using
coarser granularity, the potential for reductions in hardware
overhead appears limited.

For the model signal selection, we test alternative term
limits of 1000 and 3000 instead of the original 2000. These
results are also in Table VIII. Reducing the term limit to
1000 significantly increases both average and per-cycle error.

TABLE VIII. VARYING STEP EXTENSIONS TO SUNWOO’S METHOD.

Granularity Term limit
Metric Finer Coarser_| 1000 3000 | Original
Avg. error —-13.2% —16.7% —-15.6% —12.0% —-12.9%
Avg. per-cycle err. 19.7% 25.4% 23.7% 22.7% 19.4%

As only ten terms are eventually used, it is apparent that
the correlation between factors and power is not perfect as
a discriminator for the factors’ relative eventual merits as
constituents of model terms. Setting the term limit to 3000
interestingly worsens the overall model quality: the average
per-cycle error rises, and graphical comparison reveals that
the method quality in terms of trend prediction suffers a sharp
decline. These unforeseen variations illustrate the importance
and difficulty of signal selection, and indicate that automated
steps must be developed with rigour before a human expert
can be supplanted.

E. Discussion

In this section we highlight the key findings from our
results, and discuss their implications for method design.

1. The least costly method has remarkable accuracy.
Bachmann’s method has on average twice the average error
of Yang’s method, at 0.28% the LUT cost. Being virtually
free, Bachmann’s method admits moderately complex addi-
tions targeting accuracy improvements in specific scenarios. A
reasonable approach for future method designs is therefore to
consider how much of the accuracy difference can be bridged
with modest cost investments.

2. The workload impacts method prediction quality. The
attainable accuracy depends on the workload. For instance,
the benchmark gsort_small is the one where Yang’s method
has its highest average per-cycle error (14.1%) and Sunwoo’s
method has its lowest (15.1%). Method designs should include
different elements which address variations in the expected
workload of the design for stable accuracy.

3. Methodology steps are interdependent. As the best
factor shape for Bachmann’s method is different from that in
Yang’s method, it is apparent that other aspects of the method
design influence this step. Bachmann’s method can be viewed
as a characterization of power states of the system, which is
better described with raw signal values; Yang’s method, using
all flip-flops as predictors, will include signals which are not
suitable as state predictors leading instead to an over-fit for
the training model. It is therefore important to consider all
steps of the method as a whole when designing a method, and
experiment with several steps simultaneously.

4. Automation should be rigorously developed. Without
a good selection of input signals, Sunwoo’s method is unable
to perform well. The negative central tendency in Figure 3
indicates that the method is over-fit to the training data. Our
extension performs adequately, but is brittle as it depends
unpredictably on the term limit parameter. This demonstrates
that all steps must be rigorously developed during method
design if full automation is to be accomplished.

V. CONCLUSION AND FUTURE WORK

This article presented a methodology encompassing the
current approaches to automated power emulation. We de-

scribed how the different state-of-the-art methods all follow
the same general approach, and how the methods relate to one
another. We also presented an evaluation of these methods,
revealing a considerable span in prediction accuracy, modelling
time and hardware overhead. The least costly method had a
prediction error in average power twice that of the most accu-
rate method, with less than 0.3% of the hardware overhead.

This work only constitutes a step towards thorough under-
standing of the methodology for automated power emulation
model creation. There is ample opportunity for further research
on steps in the methodology, or even extensions to the method-
ology itself. One option is to investigate whether the least
costly method can be extended with elements which improve
its accuracy at reasonable hardware cost. Another topic is the
applicability of more powerful statistical modelling methods
such as regression trees. Finally, one may target full method
automation by addressing EDA tool chain dependencies and
design stimuli generation. Our open source software and data
material facilitate continued research on these areas [14].

REFERENCES

[1] “Synopsys PrimeTime,” www.synopsys.com/Tools/Implementation/
SignOff/Pages/PrimeTime.aspx, Synopsys, Oct. 2014.

[2] J. Coburn et al., “Power emulation: a new paradigm for power estima-
tion,” in DAC, 2005, pp. 700-705.

[3] D. Sunwoo et al, “PrEsto: An FPGA-accelerated power estimation
methodology for complex systems,” in FPL, 2010, pp. 310-317.

[4] C. Bachmann et al., “Automated power characterization for run-time
power emulation of SoC designs,” in DSD, 2010, pp. 587-594.

[5]1 J. Yang et al., “Early Stage Real-Time SoC Power Estimation Using
RTL Instrumentation,” in ASP-DAC 2015, 2015, pp. 779-784.

[6] A. Bogliolo et al., “Regression-based RTL power modeling,” TODAES,
vol. 5, no. 3, pp. 337-372, 2000.

[71 N. Bansal et al., “Automatic power modeling of infrastructure IP for
system-on-chip power analysis,” in VLSID, 2007, pp. 513-520.

[8] D. Lee et al., “Dynamic Power and Performance Back-Annotation for
Fast and Accurate Functional Hardware Simulation,” in DATE, 2015,
pp. 1126-1131.

[9] A. Bhattacharjee et al., “Full-system chip multiprocessor power evalu-

ations using FPGA-based emulation,” in ISLPED, 2008, pp. 335-340.

[10] B. A. Bjgrnseth, “Enabling Research on Energy-Efficient System Soft-
ware Using the SHMAC Infrastructure,” Master thesis, 2015.

[11] A. Krieg et al., “Accelerating early design phase differential power
analysis using power emulation techniques,” in HOST, 2011, pp. 81—
86.

[12] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2015. [Online]. Available: http://www.r-project.org/

[13] J. Bachrach et al., “Chisel: Constructing Hardware in a Scala Embedded
Language,” in DAC, 2012, pp. 1212-1221.

[14] Benjamin A. Bjgrnseth, “Repository for software framework and data
material,” https://bitbucket.org/benjambj/energy-model-synthesis.

[15] Y. Lee, “RISC-V Rocket Chip SoC Generator in Chisel,” http://riscv.org/
tutorial-hpca2015/riscv-rocket-chip- generator-tutorial-hpca2015.pdf,
UC Berkeley, Mar 2015.

[16] V. Skylarov and I. Skliarova, “Digital Hamming Weight and Distance
Analyzers for Binary Vectors and Matrices,” Intl. Jrnl. of Innov. Comp.,
Inform. and Control (IJICIC), vol. 9, no. 12, pp. 4825-4849, 2013.

[17] “Synopsys Design = Compiler,” http://www.synopsys.com/tools/
implementation/rtlsynthesis/pages/default.aspx, Synopsys, Nov. 2014.

[18] B. Reagenakun et al., “MachSuite: Benchmarks for Accelerator Design
and Customized Architectures,” in IISWC, no. Section III, 2014.

[19] M. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in WWC-4, 2001, pp. 3-14.

www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.r-project.org/
https://bitbucket.org/benjambj/energy-model-synthesis
http://riscv.org/tutorial-hpca2015/riscv-rocket-chip-generator-tutorial-hpca2015.pdf
http://riscv.org/tutorial-hpca2015/riscv-rocket-chip-generator-tutorial-hpca2015.pdf
http://www.synopsys.com/tools/implementation/rtlsynthesis/pages/default.aspx
http://www.synopsys.com/tools/implementation/rtlsynthesis/pages/default.aspx

