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Abstract

Motivated by recent experimental advances, we study two-component spin-orbit coupled ultracold
bosonic atoms in two dimensions on a square optical lattice. Using a Bose-Hubbard model with
spin-conserving and non-spin-conserving nearest neighbour hoppings and spin-dependent on-site
density-density interaction, our goal is to characterize phase separation and spin structure in the
weakly interacting and deep Mott regimes. In the weakly coupled regime, we decouple interac-
tions through a real space uniform density mean �eld theory. At zero temperature, this gives an
analytic condition for the phase separation transition driven by inter- relative to intracomponent
interaction. Solving the self-consistent equations at �nite temperature reveals entropic remixing
in the phase separated regime and a more surprising entropy driven phase separation in the mixed
regime. This is a consequence of complex interplay between interaction and spin-orbit coupling,
and can be explained through the e�ect of component imbalance on the e�ective single-particle
dispersion relation. We also provide an alternate explanation based on thermal occupation of
eigenstates with a characteristic imbalance. In the strongly interacting Mott regime, we derive
an e�ective spin Hamiltonian describing the magnetic phases of the Mott insulator. The compe-
tition between anisotropic Heisenberg and Dzyaloshinskii-Moriya interactions gives rise to various
ferromagnetic, antiferromagnetic, spiral, stripe, vortex, and skyrmion phases. On basis of classi-
cal Monte-Carlo simulations in the literature, we reconstruct the phase diagram with a classical
variational approach, while magnon excitation spectra and quantum �uctuations are calculated
with Holstein-Primako� transformation and subsequent spin wave expansion. The analysis shows
that states with ferromagnetic or antiferromagnetic ordering of boson species are protected against
thermal �uctuations by a gap, and well described by classical states. States with equal superposi-
tion of boson species at each lattice site are subject to relatively large quantum �uctuations, which
may cause breakdown of the states within their classical parameter space regions. The dispersion
relations are gapless and linear around the minima to lowest order in the spin wave expansion.
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Sammendrag

Med nylige eksperimentelle framskritt som bakteppe ser vi på spinn-bane-koblede ultrakalde boson-
iske atomer i to ulike hyper�ne tilstander. For et dypt og kvadratisk optisk gitter i to dimensjoner
benytter vi en Bose-Hubbard-modell med tunnelering til nabogitterpunkter og frastøtende veksel-
virkning internt på hvert gitterpunkt. Målet med denne oppgaven er å se på faseseparasjon og
romlig spinntekstur i det svakt vekselvirkende og i Mottisolatorregimet av parameterrommet. For
den svakt vekselvirkende fasen antar vi uniform gass og benytter middelfeltsteori for komponent-
tetthetene. Ved null temperatur �nner vi en analytisk betingelse for full faseseparasjon drevet
av forholdet mellom vekselvirkningen for atomer i ulike og i samme hyper�ne tilstand. Ved en-
delig temperatur gir de selvkonsistente likningene gjeninnblanding av minoritetskomponenten i
den faseseparerte fasen og en mer overraskende entropidrevet faseseparasjon i den blandede fasen.
Sistnevnte er en mangepartikkele�ekt som oppstår som følge av komplisert samspill mellom spinn-
bane-kobling og vekselvirkning. Vi forklarer den ved hjelp av endringen i den e�ektive enpartikkel-
beskrivelsen komponentubalanse medfører. En alternativ forklaring tar utgangspunkt i den termisk
fyllingen av egentilstander med en karakteristisk ubalanse. For den sterkt vekselvirkende Mott-
isolatorfasen utleder vi en e�ektiv spinnmodell. Konkurranse mellom et anisotropt Heisenberg-
ledd og Dzyaloshinskii-Moriya-vekselvirkning fører til et mangfoldig fasediagram med ferromag-
netiske, antiferromagnetiske, spiral-, stripe-, virvel- og skyrmionfaser. På bakgrunn av klassiske
Monte-Carlo-simulasjoner rekonstruerer vi fasediagrammet ved hjelp av variasjonstilstander for de
ulike fasene. Eksitasjonsspektre og kvante�uktuasjoner studeres ved hjelp av Holstein-Primako�-
transformasjon og påfølgende spinnbølgeutvikling. Tilstander med ferromagnetisk eller antiferro-
magnetisk ordning av atomene er beskyttet av gap i eksitasjonsspekteret, har minimale kvante-
�uktuasjoner og beskrives derfor godt av klassiske tilstander. Isolatortilstander med samtlige
atomer i jevn superposisjon av de hyper�ne tilstandene har derimot relativt store kvante�uktua-
sjoner som bryter klassisk degenerasjon og som fører til ustabilitet for tilstrekkelig sterk Dzyaloshinskii-
Moriya-vekselvirkning.
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Abbreviations

BEC Bose-Einstein condensate
DM Dzyaloshinskii-Moriya
IC Incommensurate
MI Mott insulator
S1 Spiral-1. Spiral phase in the plane spanned by ẑ and x̂± ŷ.
S2 Spiral-2. Spiral phase in the x̂-ẑ or ŷ-ẑ plane.
SF Super�uid
SkX Skyrmion crystal
SOC Spin-orbit coupling
VX Vortex phase
zFM Ferromagnet with ordering along the ẑ-axis.
zAFM Antiferromagnet with ordering along the ẑ-axis.

Nomenclature

N Number of lattice sites
t Hopping amplitude of ordinary hoppings
βlδ Spin-orbit coupling matrix
η O�-diagonal term in βlδ determining SOC strength in ŷ-direction.
κ O�-diagonal term in βlδ determining SOC strength in x̂-direction or strength of Rashba

SOC, where η = −κ
γx Diagonal term in βlδ determining SOC strength in x̂-direction. Typically set to 0.
γy Diagonal term in βlδ determining SOC strength in ŷ-direction. Typically set to 0.
t0 Combined hopping amplitude for ordinary and SOC-induced hoppings.
α Gauge �eld strength determining relative importance of ordinary and SOC-induced

hoppings in x̂-direction.
β Gauge �eld strength determining relative importance of ordinary and SOC-induced

hoppings in ŷ-direction.
u Intracomponent interaction strength.
λ Inter- relative to intracomponent interaction strength.
D Dzyaloshinskii-Moriya interaction strength.
S Spin quantum number or length of spin in classical spin model.
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Chapter 1

Introduction

1.1 Motivation and background

The complexity of interacting quantum many-particle systems is tremendous, and a challenge for
classical computers [1]. An alternative is the use of quantum simulation, which is not based on
numerical methods applied to some equation, but rather the time evolution of a highly control-
lable quantum system [2]. With their inherent quantum behaviour, tunability, and absence of
impurities, cold atom systems are well suited for this [3]. Cooling atomic gases down to nanokelvin
temperatures, one can make these systems simulate condensed matter physics and reach otherwise
inaccessible parameter regimes, enabling the study of novel phenomena. The history of ultracold
atoms and Bose-Einstein condensation already contains fascinating physics.

In 1924, Albert Einstein received a letter from the younger colleague S. N. Bose, who wanted
his opinion on a paper on the statistical description of light [4]. Einstein was impressed, translated
the article, and complemented it with a discussion on the implications for atomic gases. The
two articles appeared alongside in Zeitschrift für Physik in 1924 [5, 6]. In a second article [7],
Einstein went one step further and predicted the phenomenon nowadays known as Bose-Einstein
condensation: the macroscopic occupation of a single quantum state.

Unfortunately, the applicability of any theory is not determined by how interesting it is. Due
to the exceptionally low temperature required, Bose-Einstein condensation was for a long time
regarded a curiosity without much relevance in real systems. This changed upon the experimental
discovery of super�uid liquid helium in 1938 [8, 9]. Shortly after, Bose-Einstein condensation was
proposed as underlying mechanism [10, 11], and Landau came up with the �rst phenomenological
theory of super�uidity [12, 13]. In its simplest form, in spite of dragging an impurity through the
condensate, excitations become impossible below a critical velocity determined by the condensate
excitation spectrum. When Bogoliubovs analysis of the weakly interacting Bose-Einstein conden-
sate showed a linear dispersion relation at small energies, the two approaches constituted the �rst
microscopic theory of a super�uid [11, 13, 14]. The theoretical research continued the following
years. Although Einsteins original paper still provides a satisfactory description of Bose-Einstein
condensation in non-interacting systems, it was far from clear whether condensation was also pos-
sible in interacting systems [15, 16]. A de�nition was provided by Penrose and Onsager through
the concept of o�-diagonal long range order (ODLRO) [16, 17], but to this day, there is no general
rigorous proof for condensation in interacting systems.

In 1995, 70 years after the theoretical prediction, Bose-Einstein condensation was realized in
atomic gases. Groups lead by E. A. Cornell and C. E. Wieman at Boulder and W. Ketterle
at MIT reached condensation temperatures using laser- and evaporative cooling for alkali atoms
[11, 18�21]. The momentum distribution was measured with absorption imaging after a time-of
�ight expansion, and developed an additional non-Gaussian peak below the condensation temper-
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2 CHAPTER 1. INTRODUCTION

ature, corresponding to the macroscopic ground state occupation predicted by Einstein. For these
achievements, Cornell, Wieman, and Ketterle shared the 2002 Nobel prize.

The experimental realization caused a boom in the experimental and theoretical research on
Bose-Einstein condensates. Soon, several groups had achieved Bose-Einstein condensation, and the
techniques for its realization were becoming standard [20]. Nowadays, in the words of Galitski and
Spielman [22], while �theorists create spherical cow models, in cold atom physics, experimentalists
can actually make spherical cows�. Among the many examples of tunability, one can instanta-
neously turn o� the trapping potential, tune interactions between atoms with Feshbach resonances
[23], and generate periodic potentials using laser-induced dipole oscillations [24]. The latter is
particularly important because it is a prerequisite to simulate many condensed matter systems.

In the experiments with 87Rb of the Boulder group, as a mere coincidence, it was discovered that
the condensate was split into two clouds with particles in di�erent hyper�ne states [21, 25]. Since a
particle can be in any superposition of hyper�ne states, particles in two-component boson mixtures
can be attributed a pseudo-spin [26]. This raises the question of whether exotic phenomena related
to spin in massively studied electronic systems can be realized and simulated with cold atoms.
Unlike electrons, atoms do not have a net charge, so the physical origin must necessarily be di�erent,
but innovative use of magnetic �elds and lasers can typically provide an implementation.

An example of an e�ect for which electron spin is at the forefront, is spin-orbit coupling. For
electrons, this is a relativistic correction to the non-relativistic Schrödinger equation [27]. For
rotationally symmetric potentials in atomic physics, it is manifest as coupling between the orbital
and spin angular momenta of the electron, contributing to the �ne structure [28]. More generally,
there is spin-orbit coupling in the presence of an electric �eld. Using symmetry considerations and
group theory, splitting of energy bands in semiconductors cubic in quasimomentum was found the-
oretically by Dresselhaus [29]. Rashba and Sheka found splitting linear and isotropic in momentum
[30, 31], while Bychov and Rashba later found a similar e�ect in the two-dimensional electron gas
[32]. Spin-orbit coupling is also of interest in the rapidly developing �eld of spintronics [33], where
the goal is manipulation of spin in condensed matter systems. Magnetization of ferromagnetic
domains through spin-orbit coupling has applications in data storage and memory handling [26].

Although SOC has been well known for a long time, the last decade, it has attracted massive
attention due to the realization that it can lead to topological insulators [34, 35]. In the quantum
Hall e�ect, a strong magnetic �eld breaks time-reversal invariance and causes conducting surface
states, even if the bulk is insulating [22, 36]. These states are protected by a topological invariant,
and therefore extremely robust [37]. For spin-orbit coupled systems, strong magnetic �elds are not
necessary due to an additional topological invariant still capable of protecting the surface states
[38, 39]. Topology is of relevance in many other systems as well, such as super�uids and magnets
[11, 40, 41]. The 2016 Nobel prize was shared by D. J. Thouless, F. D. M. Haldane, and J. M.
Kosterlitz for their study of topological phases of matter and topological phase transitions [40].
The new type of transition was ground breaking because it cannot be explained by spontaneous
symmetry breaking in the Landau-Ginzburg-Wilson paradigm of phase transitions.

Motivated by this, we return to the question of whether a synthetic spin-orbit coupling can be
realized in cold atom systems. For quite a long time, proposals on how to realize spin-orbit coupling
existed [42, 43], but it was �rst achieved only in 2011 [44]. Again, this was a nice illustration of the
�exibility shown by cold atom systems. Through the Doppler e�ect, Raman transitions between
hyper�ne states are made velocity dependent, thus providing the coupling between momentum and
pseudo-spin required by SOC [22]. As with the �rst realization of BEC in atomic gases, this sparked
interest in the community. The following years saw measurements of properties such as excitation
spectra [45, 46], lack of Galilean invariance [47], phase separation, and spin textures [44, 48�50].
The observation of Zitterbewegung is a particularly nice demonstration of the simulative power of
spin-orbit coupled cold atom systems [51, 52]. Predicted from the Dirac equation almost 90 years
ago, its measurement remains out of reach for electrons [53, 54].

All the experiments above use a one-dimensional spin-orbit coupling equivalent to an equal
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linear combination of Rashba and Dresselhaus SOC. The realization of their general linear combi-
nation was achieved in 2016 [55, 56], following the realization in atomic Fermi gases earlier the same
year [57, 58]. This opens new possibilities for the study of two-dimensional topological insulators,
possibly also in bosonic systems.

More than 20 years of Bose-Einstein condensation in atomic gases have shown that an experi-
mental breakthrough is typically followed by rapid replication and subsequent standardization of
techniques forming a basis for further study. Mixtures of ultracold atoms can be used to simulate
e�ects of spin-orbit coupling, with exciting prospects for topological insulators and applications
in spintronics. Spin-orbit coupled ultracold atoms is therefore an active and rapidly developing
research �eld.

1.2 Structure of thesis

Chapters 5 and 6 form the main body of this thesis, while chapters 1-4 provide an introduction to
the systems we are studying and their theoretical description. In chapter 7, we conclude. There
are two appendices. Below, we provide a more detailed description of the contents in each chapter.

In chapter 2, we give some conventions used throughout the thesis, and discuss some basic
concepts. Then, we present the less trivial Bogoliubov transformation generalized to more than
two boson species. We will need this when analysing spin model excitation spectra in chapter 6.

In chapter 3, we provide an introduction to cold atom systems and their experimental realiza-
tion. We then formulate the basics of spin-orbit coupling, and calculate the well known dispersion
relation of the spin-orbit coupled Bose gas in the continuum.

In chapter 4, we derive a Bose-Hubbard model for spin-orbit coupled systems which serves as
starting point for the remainder of the thesis. We then discuss the single species super�uid to Mott
insulator transition (SF-MI) and some recent articles treating the spin-orbit coupled case.

Applying a homogeneous density mean �eld theory, we study the Bose-Hubbard model in the
weak coupling limit in chapter 5, discussing the phase separation transition occurring due to inter-
component interaction.

In chapter 6, we go to the opposite limit of strong interactions. First, we derive an e�ective spin
Hamiltonian, before studying it with a classical variational approach. Finally, we study quantum
�uctuations by means of the Holstein-Primako� transformation.

In chapter 7, we conclude. In appendix A, we discuss some aspects of self-consistent determi-
nation of mean �eld parameters relevant for chapter 5. In appendix B, we present the details of
the e�ective spin model derivation in chapter 6.
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Chapter 2

Preliminaries

2.1 Mathematical conventions

We typically follow common conventions in physics.
Vectors are denoted by boldface letters, for instance position r, momentum k, and gauge �eld

A. Exceptions include the Cartesian unit vectors x̂, ŷ, and ẑ, and the vector of Pauli matrices ~σ,
where we use the standard de�nitions

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (2.1)

Column vectors describing spin structure are also not typeset as bold, and neither are matrices.
The transpose of a matrix P is denoted by PT , while P † and P ∗ denote the hermitian and complex
conjugate matrices. We also let h.c. denote the hermitian conjugate, so that O + h.c. = O +O†.

Throughout this thesis, we will be using several indices. Various momenta or quasi-momenta
are typically denoted by q or k, although we drop the boldface notation if such a momentum
occurs in a sub- or superscript. Indices i and j typically refer to lattice sites, while σ refers to spin
components, and l, δ, and m refer to one of the spatial directions in a two-dimensional system,
namely x or y.

Expectation values are denoted by brackets, and we use natural units with ~ = kB = 1. In
plots, dimensionful labels on the axes must typically be interpreted in units of a characteristic
system scale with the same physical dimension, for instance the ordinary hopping rate t in chapter
5.

Considering a square lattice Hamiltonian, for instance the Heisenberg model

H = −J
∑
〈ij〉

Si · Sj = −2J
∑
i,δ

Si · Si+δ, (2.2)

nearest neighbour summation is denoted by 〈ij〉, and is understood to include also the term where
i and j are interchanged. This leads to the factor 2 in the equivalent second form, where we include
only δ ∈ {x̂, ŷ}. We typically set the lattice constant to 1.

2.2 Bose-Einstein condensation

In this section, we go through the basic mechanism of Bose-Einstein condensation of non-interacting
particles, and discuss in particular the importance of system dimensionality and low energy be-
haviour of the dispersion relation.
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6 CHAPTER 2. PRELIMINARIES

Consider a d-dimensional quantum system of bosons where possible states are characterized by
quasimomentum vector k and energy Ek, where k = 0 is a minimum of the dispersion relation.
In the Grand Canonical Ensemble, eigenstate occupation numbers are controlled by a chemical
potential µ, and given by

nk =
1

eβ(Ek−µ) − 1
, (2.3)

where β = 1/T is the inverse temperature. To have non-negative occupation numbers, we require
µ to be smaller than the ground state energy E0. Assume E0 = 0. For small temperatures, µ must
be tuned close to 0 to obtain signi�cant densities, and the low temperature means that only low
energy modes can contribute. Assume therefore a power-law dependence

Ek = Ckν , (2.4)

where we for simplicity have assumed a rotationally symmetric dispersion relation. We now aim
at relating the density ρ of the system with the chemical potential. In the thermodynamic limit,
one may rewrite the sum over the eigenstate occupation numbers in (2.3) as an integral,

ρ =
1

V

1

eβ(E0−µ) − 1
+

1

V

∫
D(E)

eβ(E−µ) − 1
dE, (2.5)

where D(E) is the density of states and V the volume. Depending on dimension and the low energy
behaviour ν, the integral above can be limited to a �nite maximum value at µ = 0, for instance
for the free Bose gas in 3 dimensions. Below a critical transition temperature, particles have to
condense into the minimum. We now derive conditions on ν and the dimension for this to happen.

The density of states is

D(E) =
∑
k

δ(E − Ek) ∝
∫

dk kd−1δ(E − Ckν) (2.6)

Calculating the delta function integral givesD(E) ∝ Ed/ν−1. The maximum density ρex of particles
in excited states is then

ρex ∝
∫

dE
Ed/ν−1

eβE − 1
. (2.7)

Possible divergences come from small energy, and by Taylor expanding the denominator, we have
to consider

∫
Ed/ν−2dE. This diverges for d/ν − 2 ≤ −1, so Bose-Einstein condensation is only

possible for d > ν. As proclaimed, �nite temperature Bose-Einstein condensation is possible for
the free boson gas in 3 dimensions (d = 3, ν = 2). In two-dimensional systems with quadratic dis-
persion, it is not, and this is an important result for us since we consider two-dimensional systems.
In the strong coupling regime considered in chapter 6, we will however encounter dispersion rela-
tions linear in quasimomentum, for which �nite temperature Bose-Einstein condensation is again
possible.

2.3 Quantum mechanics in periodic potentials

The presence of a periodic potential is characteristic for many condensed matter systems. We
therefore give a brief review of quantum mechanics in periodic potentials. In particular, since we
in chapter 4 want to derive the Bose-Hubbard model on an optical lattice, we discuss Wannier
functions in a harmonic potential.

Consider a periodic potential V (x) with lattice constant a in one dimension. Since we later
consider Hamiltonians separable with respect to spatial direction, this can easily be generalized to
higher dimensions. The eigenfunctions of such a potential are Bloch waves, and on the form [59]
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Figure 2.1: A periodic potential V (x) may be though of as a sum over atomic potentials Vs(x) corre-
sponding to a given lattice site. In a deep lattice, bound states of these atomic potentials are well localized
around the lattice site minimum and rapidly decaying.

ψnk (x) = eikxunk (x), (2.8)

where k is known as the quasi- or crystal momentum, and unk (x) is periodic with the same peri-
odicity as the lattice. The quasimomentum vectors can be taken to lie within the �rst Brillouin
zone, −π/a < k ≤ π/a, and the energy spectrum forms bands {n}.

In the context of particles on an atomic lattice, the periodic potential is a sum over single-atom
potentials. In the tight-binding approximation, the central assumption is that the potential close
to an atom is approximated by the single atom Hamiltonian [60]. In the vicinity of this atom, we
expect single-atom orbitals φn0 to be a good approximation to the eigenfunctions. By translational
symmetry, this applies also for eigenfunctions localized around all other atoms. We work with
an optical lattice, but can still think of the potential V (x) as composed of localized potential
wells Vs(x), as illustrated in �gure 2.1. With the ideal harmonic potential, outside the part of
the real axis with length a corresponding to a given potential minimum s, the potential can be
set to 0 exactly. Assuming the potential is deep, the eigenfunctions φns of Vs(x) are well localized
around lattice site minimum s at position xs. One can then construct a linear combination of such
eigenfunctions,

1√
N

∑
s

eikxφns (x), (2.9)

which satis�es Blochs theorem assuming eigenfunctions are zero outside the spatial region of their
designated lattice site. Since this is not strictly true, this linear combination is not an exact
Bloch eigenfunction ψnk , but for a deep lattice, it is a good approximation. Motivated by this, we
introduce Wannier functions as the inverse Fourier transform of the Bloch waves,

wns (x) =
1√
N

∑
k

e−ikxsψnk (x). (2.10)

In the deep lattice limit, we therefore expect wns to approach the single well eigenfunction φns ,
and to be localized around the given lattice site. Using that Bloch waves form a complete and
orthogonal set, one can show that the Wannier functions do too. One may therefore expand any
state in the localized Wannier functions. We use such an expansion in chapter 4.
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2.4 Bogoliubov transformations

When calculating excitation spectra in chapter 6, we will need a special technique known as the
Bogoliubov transformation. It is named after N. Bogoliubov, who applied it to the weakly inter-
acting Bose gas to explain super�uidity in 1947 [14], as mentioned already in the introduction. It
works equally well also for fermions, and is an essential ingredient in the famous BCS-theory of
superconductivity developed a few years later [61�63]. A third application is the calculation of
magnon dispersion relations in various quantum spin models [64]. This is how we will be using it.
First, we go through the basic case with two di�erent bosons using Bogoliubovs original approach.
We then consider the dynamic matrix method, which is more practical for a larger number of boson
operators [65, 66].

The starting point of Bogoliubov was the Hamiltonian [11],

H =
∑
k

k2

2m
a†kak +

u

2V

∑
kp1p2

a†p1+ka
†
p2−kap1ap2 . (2.11)

Assuming weak interactions and macroscopic occupation of the zero momentum state, terms in
the interaction where less than two operators destroy or create particles in the k = 0 mode are
neglected. This gives quadratic Hamiltonian on the form [11]

H = E0 +
1

2

∑
k 6=0

{(
k2

2m
+ un

)(
a†kak + a†−ka−k

)
+ un

(
a†ka
†
−k + aka−k

)}
, (2.12)

where n is the approximate density of particles. One should think of ak and a−k as completely in-
dependent operators. For convenience, we let Ak =

(
k2/2m+ un

)
and Bk = un. The Hamiltonian

can be diagonalized by the transformation [13]

ak = ukαk − vkα†−k (2.13)

a−k = ukα−k − vkα†k, (2.14)

where we can choose uk and vk to be real. We require the new operators αk and α
†
k to satisfy boson

commutation relations, and this gives condition u2
k − v2

k = 1. Inserting the above transformation
in the Hamiltonian (2.12), one can show that choosing [13]

uk =

[
1

2

(
Ak
ωk

+ 1

)]1/2

vk =

[
1

2

(
Ak
ωk
− 1

)]1/2

(2.15)

with

ωk =
√
A2
k −B2

k (2.16)

renders the Hamiltonian on the form of the non-interacting Bose gas

H = E0 +
1

2

∑
k 6=0

(ωk −Ak) +
∑
k 6=0

ωkα
†
kαk, (2.17)

where we have used
∑
k α
†
kαk =

∑
k α
†
−kα−k.

Of special interest is the number of particles in excited states [13]. This is

N −N0 =
∑
k 6=0

〈a†kak〉. (2.18)

Inserting the Bogoliubov transformation gives
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N −N0 =
∑
k

〈(ukα†k − vkα−k)(ukαk − vkα†−k)〉 (2.19)

=
∑
k 6=0

v2
k +

∑
k 6=0

(u2
k + v2

k)〈α†kαk〉, (2.20)

where we have used that 〈α†kα
†
−k〉 = 〈αkα−k〉 = 0 since the Hamiltonian is diagonal in these oper-

ators. For the same reason, the expectation value 〈α†kαk〉 is simply the Bose-Einstein distribution
nB(ωk). The �rst term in the above expression comes from boson commutation relations, and
shows that with weak interactions, bosons �nd themselves in �nite momentum states even at zero
temperature.

In the above calculation, we skipped the derivation of the coe�cients uk and vk. This requires
some calculation, but is quite doable. If more than two di�erent bosons are coupled, a more
systematic approach would be an advantage. In the dynamic matrix method, the idea is to write the
problem on a form where one can apply familiar matrix diagonalization by �nding the eigenvalues
and -vectors.

Consider a more general Hamiltonian [66]

H =

n∑
i,j=1

[
τija

†
iaj +

1

2

(
γija

†
ia
†
j + γ∗jiaiaj

)]
, (2.21)

where {ai} are n independent boson annihilation operators satisfying usual commutation relations,
and τij and γij are matrices. The hermiticity of H gives τij = τ∗ji and γij = γji. The Hamiltonian
can be written as [66]

H =
1

2
ψ†Mψ − 1

2
Tr(τ), (2.22)

where ψ† = (a†1, ..., a
†
n, a1, ..., an) ≡ (a†, aT ), and M is the matrix

M =

(
τ γ
γ† τT

)
. (2.23)

The last term in (2.22) is due to the non-commutativity of creation and annihilation operators for
the same boson species. To diagonalize the problem, introduce a new set of operators φ† = (α†, αT )
such that ψ = Tφ for some matrix T . Inserted in the Hamiltonian, this gives a term φ†T †MTφ.
Thus, we need properties [66]

• φ = T−1ψ satis�es boson commutation relations

• T †MT = D, with diagonal matrix D

Going back to Bogoliubovs original calculation, the �rst requirement corresponds to u2 − v2 = 1,
and the second to the intelligent choice of u and v that we made. The �rst requirement signi�cantly
complicates the problem, since otherwise, ordinary orthogonal diagonalization would have been
su�cient.

We can write the transformation as

(
a

(a†)T

)
=

(
U1 V1

V2 U2

)(
α

(α†)T

)
. (2.24)

Comparing the expressions for a and a† gives U2 = U∗1 and V2 = V ∗1 [65]. Expressed in term of the
new bosons, the condition that ψ are also bosons becomes
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[ψi, (ψ
†)j ] =

∑
kl

Tik[φk, φ
†
l ](T

†)lj = Jij , (2.25)

where J is the matrix

J =

(
1 0
0 −1

)
. (2.26)

If we assume the operators in φ are bosons, then [φk, φ
†
l ] = Jkl, and hence, we can write (2.25)

on matrix form as TJT † = J , or equivalently T † = JT−1J . The diagonalization requirement
T †MT = D then takes the form [65]

T−1JMT = JD. (2.27)

If we can �nd a set of eigenvectors diagonalizing MJ , we can therefore also diagonalize the
physical problem. Whether this is actually possible still depends on the coe�cients τij and γij ,
but we now have a systematic way of attacking the problem.

One can show [66] that the eigenvalues of the matrix M̃ = JM appear in pairs ±ω1, ...,±ωn.
The diagonal matrix can therefore be written as D = diag(Ω,Ω), with Ω = diag(ω1, ..., ωn) con-
sisting of all the positive eigenvalues. Inserting this back into (2.22) gives

H =

n∑
i=1

ωiα
†
iαi +

1

2
(Tr Ω− Tr τ). (2.28)

In addition to the thermal excitation term, we obtain quantum corrections. One may now use this
matrix method to re-derive the formula for the Hamiltonian of the weakly interacting Bose gas.

Finally, a note on terminology. The method we just discussed is called the dynamic matrix
method. The reason is that the Heisenberg equation of motion for the boson operators becomes
the Schrödinger-like [65]

i
dψ

dt
= M̃ψ, (2.29)

where M̃ is the matrix we use to �nd the physical eigenvalues of the problem.



Chapter 3

Cold atoms and spin-orbit coupling

3.1 Cold atom systems

Ever since the �rst experimental realization, atomic Bose-Einstein condensation has been an ac-
tive research �eld for both theorists and experimentalists. The cooling of atomic gases down to
nanokelvin temperatures has become standard, and is performed at multiple laboratories world-
wide [20]. In this section, we aim at describing some of the theoretical and experimental concepts
underlying the experimental realization of Bose-Einstein condensation. The books by Pitaevskii
and Stringari [11] and Pethick and Smith [13] provide a more detailed introduction.

3.1.1 Internal states and pseudo-spin

Due to the concept of quantum statistics, whether the particles of a gas are identical or not is of
fundamental importance. One might therefore expect novel features in a mixture of Bose-Einstein
condensates. It could be a mixture of di�erent isotopes or atoms [67], but more common is atoms
in di�erent hyper�ne states.

To take a concrete example, consider 87Rb, which is a popular isotope because of a fortunate
suppression of inelastic collisions between atoms in two of the hyper�ne states [21]. Since it is an
alkali metal, it has 86 electrons in the inner shells, and an additional electron with spin described by
a spin operator I with spin quantum number I = 1/2. The atom also has a nuclear spin J with spin
quantum number J = 3/2 [13]. These spins can be combined to a total spin F = I+ J. According
to the rules for addition of spin variables [59], F is a new spin variable with spin quantum number
3/2± 1/2. Since the magnetic quantum number mF can take the values −F,−F + 1, ..., F , there
are 3 + 5 = 8 possible internal states. Due to interaction between the electron and nuclear spins,
there is an energy di�erence between the F = 1 and F = 2 states. In presence of a magnetic �eld,
the degeneracy with respect to magnetic quantum number is lifted as well. The internal states of
the atom are typically shown in a level diagram, as in �gure 3.1a.

Experimentally, one can choose two of the internal states in the level diagram and make sure
that the occupation of other states is negligible within the trapping potential. The atoms can
then be in any superposition of the two hyper�ne states. This generates a two-dimensional Hilbert
space, which is isomorphic to a spin-1/2 system. This justi�es labelling the hyper�ne states as
spin states |↑〉 and |↓〉. The spin structure of any operator acting a single particle state can then
be expressed in terms of Pauli matrices and the identity, giving a description completely analogous
to electrons with an intrinsic spin.

11
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Figure 3.1: (a) Figure adapted from Ref. [68]. Level diagram for energy of internal spin states of an
alkali atom with nuclear spin 3/2 in a magnetic �eld. Interaction between the electron and nuclear spins
gives an energy di�erence between the F = 1 and F = 2 states, while the presence of the magnetic �eld
lifts the degeneracy with respect to magnetic quantum number mF . In (b), an oscillating electric �eld
induces a dipole moment, which oscillates in or out of phase with the electric �eld depending on the driving
frequency. In both cases, the dipole interaction with the electric �eld causes a periodic potential.

3.1.2 Cooling

A typical phase diagram describing states of matter shows three di�erent phases [11]. At high tem-
perature, the system is in a liquid or gaseous phase, but at su�ciently low temperature, molecules
start to form, and the system enters a solid phase. To achieve Bose-Einstein condensation in
atomic gases, this must be prevented [21]. Starting from a gas, the formation of molecules cannot
happen through processes involving only two particles, since the formation of a bound state leaves
an excess potential energy which due to momentum conservation cannot be compensated for by
an increase in kinetic energy [69]. For three-body processes, two particles can enter a bound state,
and the excess energy can be transferred to the relative motion between the newly formed molecule
and the third particle participating in the process. The rate at which such processes happen is
proportional to ρ3, where ρ is the density of the gas. This suggests that by using a su�ciently
dilute gas, molecule formation is so slow that the atomic gas is pertained su�ciently long to reach
kinetic equilibrium [20]. This can happen through the more frequent two-body processes. Bose-
Einstein condensation can therefore occur in the time-window after thermalization of the gas and
before a signi�cant fraction of the condensate is lost due to molecule formation.

A typical experimental protocol for achieving Bose-Einstein condensation therefore starts with
vaporization. To cool the gas down to nK temperatures, most experiments use multiple cooling
techniques. Typically, laser cooling is applied applied �rst, which may include Zeeman slowing,
Doppler cooling, and Sisyphus cooling [13, 20, 70]. For the �nal cooling step down to Bose-Einstein
condensation temperatures, most experiments use evaporative cooling [20]. By letting high energy
particles escape, followed by kinetic re-equilibration, the number of low energy particles is increased
[13, 68]. Recently, Bose-Einstein condensation has also been reached with laser-cooling techniques
only [71].

3.1.3 Trapping and optical lattices

To prevent interaction with the surroundings, the atoms need to be trapped. Several techniques
exist, based on application of lasers and magnetic �elds.

In magnetic traps [13], the idea is to use the magnetic �eld dependence of the hyper�ne state
splitting. If a magnetic �eld gradient is present, this generates a force which can be used to
trap particles in regions with a local minimum in the magnetic �eld strength B = |B|. Atoms
in other hyper�ne states will be repelled from such regions. These cannot be trapped, since a
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local maximum in B cannot be achieved in free space. This follows from the Maxwell equations
by considering ∇2B2 [11]. Since in any case, the trapping potential depends on boson species,
magnetic traps are typically not optimal for mixtures of bosons in di�erent hyper�ne states.

Optical traps do not have this disadvantage. The idea is to use an electric �eld E(r) to induce
a dipole moment p, which again interacts with the electric �eld through the dipole interaction
Hdip = −p ·E. In the quantum mechanical problem, one can use second order perturbation theory
with Hdip as the perturbation to calculate corrections to the energy of the hyper�ne states [11, 13].
For our purposes, the classical driven harmonic oscillator su�ces to explain the qualitative features.
The amplitude of the oscillation depends on driving frequency ω, and is proportional to the electric
�eld. The dipole potential therefore becomes [24]

Vdip = −〈p(t) ·E(r, t)〉 ∝ α(ω)
〈
|E(r, t)|2

〉
, (3.1)

where the brackets denote time average. Depending on whether the system is driven below or above
the resonance frequency, the dipole moment oscillates in or out of phase with the electric �eld,
and the atoms prefer to sit at spots with large or small time-averaged electric �eld. Such regions
are naturally created by laser beams. With a standard Gaussian pro�le [72], atoms experience a
harmonic trapping potential around the focus point for sub-resonant driving.

The creation of an optical lattice is based on the above principle. Two counter-propagating laser
beams form a standing wave, and time average gives the desired periodic potential, as illustrated
in �gure 3.1b. If we let kL be the wavevector of the lasers and assume plane waves propagating in
the positive and negative x-directions, the resulting potential is [24]

V (r) = V0 sin2 kLx, (3.2)

where the lattice depth V0 is proportional to laser intensity. Hence, the periodicity of the potential
is π/kL = λL/2.

By considering various laser geometries, it is possible to generate a plethora of lattices, examples
being triangular [73], hexagonal [74], and kagome [75] lattices. Simpler, but of special importance
to us, is the two-dimensional square lattice. This can be generated by adding a second set of
counter-propagating lasers in the y-direction. By choosing the polarization di�erently, the two sets
of lasers do not interfere. With equal intensities, the lattice potential then becomes

V (r) = V0

(
sin2 kLx+ sin2 kLy

)
. (3.3)

The minima of this potential form a square lattice. By adding strong con�nement in the z-direction,
a two-dimensional gas of atoms in an optical lattice can been produced. This is the focus of the
investigations in this thesis.

An alternate way of avoiding interference is to use lasers with somewhat di�erent frequencies
[69]. Interference terms in the dipole potential are then washed away by the resulting beat phe-
nomenon. This is particularly useful when one wants to avoid interference between more than two
lasers, since there are only two independent polarizations available.

3.1.4 Interaction and Feshbach resonances

We require the atoms of the Bose gas to be isolated from any external reservoir. Interactions
therefore play an important role in thermalization of the gas, as mentioned in section 3.1.2. In this
section, we discuss the characteristics of interaction in cold atom systems.

Although atoms consist of several particles � a nucleus and electrons � treating the atoms as
point particles, we may describe their interaction with a potential V (r), where r is the relative
coordinate. The interaction is typically strongly repulsive at small distances, while dipole-dipole
interaction gives a tail V (r) ∝ −1/r6 at large distances [59].
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In a dilute gas, particles are usually far apart and weakly interacting. The e�ect of interactions
on the Bose-Einstein condensate is therefore dominated by the rare event that particles get close.
This is described by scattering theory. At low temperatures, the scattering properties of the system
as described by the di�erential scattering cross section are determined by a single parameter known
as the scattering length a [13]. Qualitatively, the particle wave lengths are too large to resolve
details of the interaction potential [76]. Due to this insensitivity, the interaction can be replaced
by an e�ective interaction on a simpler form, V (r) → Veff(r) [13]. A popular choice is the delta
function potential

Veff(r) = U0δ(r), (3.4)

although strictly speaking, it must be interpreted as a Fermi pseudo-potential to produce the correct
scattering properties [69, 77]. Calculation of the scattering length from the pseudo-potential gives
connection

U0 =
4π~2a

m
(3.5)

between the true and the e�ective potential. This is a direct relation between the scattering length
and the interaction strength of the cold bosons in the system.

An important concept for the ultracold atomic gas is Feshbach resonances. By increasing
the depth of an attractive potential, whenever a new bound bound state enters the system, the
scattering length diverges and changes sign according to [13]

a ∝ C

E − Ebs
, (3.6)

where E is the energy of the particles, and Ebs is the energy of the bound state. Possible bound
states also include states where the particles �nd themselves in di�erent hyper�ne states than they
were originally. For such states, the di�erence E−Ebs can be tuned with a magnetic �eld. Hence,
the scattering length, and by extension the e�ective interaction, can be tuned with a magnetic
�eld, which is easily controllable.

3.2 Spin-orbit coupling

In this section, we �rst discuss the basic properties of spin-orbit coupling in electronic systems,
and then outline how a synthetic spin-orbit coupling can be realized in two-component ultracold
atom systems.

3.2.1 Electronic Spin-Orbit Coupling

Spin-orbit coupling is a coupling between the spin and the momentum of a particle. For electrons,
it arises from the Dirac equation as a relativistic correction to the Schrödinger equation for a
particle moving in an electrostatic potential V [27],

HSOC = − e

2m2
ec

2
S · p×∇V, (3.7)

where S is the spin operator, me the electron mass, and e the elementary charge. For the hydrogen
atom with spherically symmetric Coulomb potential V (r), this gives a contribution to the �ne
structure of the atom [28]. Using that ∇V is radial and that the orbital angular momentum is
L = r× p, the relativistic correction becomes

HSOC = λSOS · L, (3.8)
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Figure 3.2: Interpretation of spin-orbit coupling as an e�ective magnetic �eld. If an electron is moving
with velocity v in an electric �eld E (left panel), there is an e�ective magnetic �eld Beff = −v × E/c2 in
the rest frame of the electron (right panel). Figure adapted from Ref. [22].

with some coupling strength λSO. Spin-orbit coupling therefore becomes a coupling between the
spin and orbital angular momentum of the electron. This explains the the name, although the
concept is really more general. Whenever an electron moves in an electric �eld, there is coupling
between the spin and momentum of the particle.

A di�erent way to view spin-orbit coupling is through an e�ective magnetic �eld in the rest-
frame of the electron. Consider, as in �gure 3.2, an electron moving with velocity v perpendicular
to an electric �eld E. In the reference frame where the electron is at rest, Lorentz transformation
of the electric �eld gives a magnetic �eld

Beff = −v ×E/c2 (3.9)

to lowest order in v/c. In this frame, there is a Zeeman interaction H ∝ S · Beff . Hence, there
must be a contribution

HSOC ∝ S · p×E (3.10)

also in the original frame. Working out the details, the prefactors agree with the prefactors in
(3.7).

We now specialize to the case of atoms moving in two dimensions, which we take to be the
xy-plane. This situation in realized for instance at interfaces between solid-state materials [26].
With electric �eld E, the spin-orbit coupling is proportional to

~σ · p×E = σx(Ezpy − Eypz)− σy(Ezpx − Expz) + σz(Eypx − Expy). (3.11)

Since 〈pz〉 = 0 for the two-dimensional electron gas, we get

HSOC ∝ Ez(σxpy − σypx) + σz(Eypx − Expy). (3.12)

This shows that spin-orbit coupling on the form S ·p×E can generate any linear coupling between
the momenta and the z-component of the spin. The second term couples the x- and y-components
of the spin in a particular way, namely as

HR = κR(σxpy − σypx) (3.13)

This is known as Rashba spin-orbit coupling, and was used to explain spin resonance in two-
dimensional semiconductors by Bychov and Rashba in 1984 [26, 32]. The most general linear
coupling between electron momentum and the x- and y-components of the spin is on the form

HSOC =
∑
lδ

βlδσlpδ, (3.14)

with spin-orbit coupling matrix βγδ [78]. One may therefore ask whether other forms of βlδ could
be of relevance as well. As realized by Dresselhaus [27, 29], there may be coupling of higher order
in momentum on the form
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Figure 3.3: E�ective magnetic �elds Ω(k) as function of momentum k. Left panel: Rashba SOC on the
form σxky − σykx. Right panel: Dresselhaus SOC on the form σxkx − σyky.

H3D
D = γck

2
z(−σxkx + σyky) (3.15)

in zincblende structures. When the system is subject to strong con�nement in the z-direction,
it can written in the form (3.14), since upon replacement of k2

z with the expectation value, the
uncertainty principle gives an appreciable uncertainty 〈k2

z〉. The result is therefore a so called
Dresselhaus spin-orbit coupling on the form

HD = κD(σxkx − σyky). (3.16)

Earlier, we discussed the interpretation of SOC as a momentum-dependent magnetic �eld,
HSOC = −S ·B(k). Regardless of physical origin, this gives a nice way of visualizing the two types
of spin-orbit coupling. In �gure 3.3, we plot the e�ective magnetic �elds as function of momentum
vector k.

The Rashba and Dresselhaus spin-orbit couplings can be represented in di�erent ways. For the
forms above, the Rashba spin-orbit coupling comes as o�-diagonal elements in the SOC-matrix,
while Dresselhaus SOC is on the diagonal. Considering for instance the Dresselhaus SOC, we can
however obtain the equivalent form HD ∝ σxky + σykx by making a π/4 rotation. Similarly, the
Rashba SOC can be represented by HR ∝ σxkx + σyky. Considering for a moment the atomic
gas, the di�erent representations are again equivalent, but since spin represents hyper�ne states,
spin-variables are not a�ected by a real space rotation. To show equivalence of the above forms,
one therefore has to rotate with angle π/2 instead of π/4.

A case especially interesting for applications is when the strengths of the Rashba and Dressel-
haus SOC are equal, giving rise to a so called persistent spin helix (PSH). Experimentally, this has
been realized in quantum well structures by tuning the con�nement in z-direction, and hence 〈k2

z〉
in equation (3.15) [79]. Since at the PSH point, the spiral structure is particularly stable [26], it
has been proposed to make a spin �eld-e�ect transistor based on SOC at the PSH point [80].

Spin-orbit coupling is a relativistic e�ect, so extreme conditions are required to give observable
e�ects [22]. Particles then have to move at relativistic speeds or be subject to strong electric
�elds, as in many condensed matter systems. An example is topological insulators [35], where
spin-orbit coupling drastically a�ects transport properties. As usual in condensed matter systems,
the parameter regime is largely �xed by the properties of the material one is studying, and being
a relativistic e�ect, spin-orbit coupling is typically small [81]. Contrary to this, the synthetic
spin-orbit coupling we consider next can be made large, and shows high �exibility.

3.2.2 Synthetic spin-orbit coupling

We have seen that for electrons, spin-orbit coupling can be caused by an electric �eld. In cold atom
systems, the atoms are neutral and spin corresponds to hyper�ne states. Any coupling between
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momentum and spin must therefore have a fundamentally di�erent origin.
The �rst realization of a spin-orbit coupled BEC came in 2011, and used a Raman transition

scheme [44]. Nowadays, the use of Raman lasers for this purpose has become standard, and has
been used in numerous experiments all over the globe [46, 51, 52, 82�85]. An alternate way to
generate SOC is to drive the system with some time-periodic perturbation which can cause spin-
orbit coupling in a time-averaged Floquet Hamiltonian [86] for the system [87�91]. Recently, this
was implemented using pulsed magnetic �eld gradients [92].

To explain the more common Raman transition scheme, one may consider two counter-propagating
lasers with frequencies ωA and ωB = ωA −∆ω, and wave vectors kA and kB [22, 93, 94]. Assume
we are interested in two hyper�ne states of the atom with energies ω1 and ω2. The two lasers
couple each of these states to an excited state with energy ωE . By absorption of a photon from
laser beam A and stimulated re-emission into laser beam B, the Raman lasers cause a transition
from hyper�ne state 1 to hyper�ne state 2. In addition, such a transition transfers momentum
kA−kB to the atom. If ∆ω is close to ω2−ω1, the transition is resonant. Since the laser frequency
di�erence as observed by the atom depends on the atomic velocity due to the Doppler e�ect, the
transition rate is coupled to momentum.

Utilizing several lasers and coupling between up to four of the hyper�ne states of the atom,
one can in principle produce any linear combination of Dresselhaus and Rashba spin-orbit coupling
[22]. Theoretical proposals have existed for some years, but the experimental realization turned out
to be a much more challenging than then simple one-dimensional SOC equivalent to equal linear
combination of Rashba and Dresselhaus SOC. For bosons, it was achieved in 2016 by a group in
Shanghai [55, 56], following the realization in atomic Fermi gases earlier the same year [57, 58].

3.3 Continuum spin-orbit coupled Bose gas

Consider the spin-orbit coupled non-interacting Bose gas in two dimensions. With an additional
magnetic �eld causing Zeeman splitting 2h between the two relevant components of the gas, the
system is described by Hamiltonian

H =
p2

2m
− hσz + ησxpy + κσypx. (3.17)

The e�ect of spin-orbit coupling on the dispersion relation is especially easy to understand
when there is no Zeeman splitting. The spin-orbit coupling gives a contribution to particle energy
linear in momentum, where the sign depends on whether the spin is aligned parallel or anti-parallel
to the e�ective magnetic �eld. The dispersion relation is therefore shifted in momentum space,
and the ground state is no longer at k = 0.

Since the Hamiltonian consists exclusively of momentum component operators, we can factor
out the spatial dependence of the energy eigenvectors and write

ψk(r) = eik·rφ, (3.18)

where φ is a position independent two-component column vector. The resulting eigenvalue problem(
k2

2m − h ηky − iκkx
ηky + iκkx

k2

2m + h

)
φ = Ekφ (3.19)

gives continuum dispersion relation

Ek± =
k2

2m
±
√
h2 + κ2k2

x + η2k2
y. (3.20)

This dispersion relation is plotted in �gure 3.4. For Rashba SOC, where η = −κ, the dispersion re-
lation is isotropic with a continuously degenerate minimum, as in 3.4a. As shown in 3.4b, this large
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Figure 3.4: Dispersion relation as function of quasimomentum. For the Rashba SOC in (a), there is
a circularly symmetric continuously degenerate minimum. This degeneracy is lifted for κ 6= η in (b),
corresponding to a general linear combination of Rashba and Dresselahaus SOC, for which there are two
minima at �nite k. In (c), we plot the dispersion relation for Rashba SOC as function of k = |k| with
various Zeeman �eld strengths h at m = κ = 1. For su�ciently large h, the minima at �nite k vanish.

degeneracy is lifted when |κ| 6= |η|, and the dispersion relation instead has two isolated minima.
The large ground state degeneracy for pure Rashba SOC makes Bose-Einstein condensation harder
since the e�ective dimension of the density of states is reduced by one [95]. For two-dimensional
systems, as discussed in chapter 2, Bose-Einstein condensation at �nite temperature in minima
with quadratic dispersion is already not possible. The continuously degenerate minimum is still
an important qualitative feature, since the e�ective dimensionality amongst others is important
for the amount of �uctuations in the system. For three-dimensional systems, �nite-temperature
Bose-Einstein condensation of non-interacting particles becomes impossible because of the perfect
Rashba SOC [22, 96]. Interactions may however partially lift the massive degeneracy.

In �gure 3.4c, we plot the dispersion relation for Rashba SOC with mass m = 1 and spin-orbit
coupling κ2 = η2 = 1. The minimum at �nite k vanishes for su�ciently strong Zeeman �eld h.
The condition for this can be determined from ∂Ek−/∂k = 0, which gives extrema at k = 0 and

k2 = κ2m2 − h2

κ2
. (3.21)

When the second term on the right hand side becomes larger than the �rst, there is no solution
at �nite k. Thus, the condition to get a minimum at �nite k is |h| < κ2m. We show in chapter 5
that something analogous happens when the cold atoms reside on an optical lattice.

The location of the minima at �nite quasi-momentum can be tested experimentally with a time-
of-�ight (TOF) measurement. When switching o� the con�nement and Raman lasers, spin and
quasimomentum are projected down on momentum and spin eigenstates. After a free expansion,
the momentum distribution is mapped to a real space distribution, which can be measured for
instance by absorption imaging, as in [44]. In �gure 1 there, the clouds of oppositely polarized
spins come closer upon increasing the Zeeman splitting, before merging at a critical value. In Ref.
[45], the entire dispersion relation is measured with spin-injection spectroscopy.

In the above mentioned paper [44], one also measured the e�ect of a Zeeman term on a parameter
quantifying phase separation. Although the Zeeman term always favours phase separation, the
transition point may come only at a critical Zeeman splitting due to spin-dependent interactions
and spin-orbit coupling. The interactions can also cause phase separation. Without spin-orbit
coupling, this can be addressed with the Gross-Pitaevskii equation for a homogeneous condensate.
One may show that the conditions for stability of the mixed condensate become [11, 13]

u↑↑ > 0 u↓↓ > 0 u↑↑u↓↓ > u2
↑↓. (3.22)

The physical interpretation is quite straightforward. If either of the intracomponent interactions
are negative, the attraction causes a collapse, and can even lead to a phenomenon coined a �bosen-
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ova� [97, 98]. The last condition expresses that if intercomponent repulsion is stronger than the
intracomponent repulsion, phase separation is energetically favourable.

One may now ask how spin-orbit coupling a�ects the stability of the mixture. This is the
subject of chapter 5.
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Chapter 4

Bose-Hubbard models

In the previous chapter, we discussed the physics of spin-orbit coupled ultracold atoms. In this
chapter, our aim is to go from the description of this in �rst quantization to a many-body description
in second quantization. Applying the tight-binding approximation, we derive the Bose-Hubbard
model including spin-orbit coupling. Finally, we discuss some properties of the super�uid to Mott
insulator (SF-MI) quantum phase transition in the Bose-Hubbard model with and without spin-
orbit coupling.

4.1 Bose-Hubbard model derivations

In �rst quantization, an N -particle state can be represented as

ΨN (r1, ..., rN ) =

N∏
i=1

φi(ri), (4.1)

where, due to the two internal spin states, the single particle state φi is characterized by a two-
component column vector,

φi(ri) =

(
φi↑(ri)
φi↓(ri)

)
. (4.2)

The Hamiltonian describing the non-interacting spin-orbit coupled gas of N cold atoms of mass m
in an external potential V (r) is then

h =

N∑
i=1

(
p2
i

2m
+ V (r) +

∑
lδ

βlδσ
l
ip
δ
i

)
. (4.3)

Here, l, δ ∈ {x, y}, and σli is Pauli matrix l acting on the spin space of particle i. Similarly, pδi
is momentum component δ of the same particle. The matrix βlδ was introduced in the previous
chapter, and quanti�es the form and strength of the SOC. The external potential V (r) includes
the square optical lattice potential discussed in the previous chapter,

V (r) = V0

(
sin2 kLx+ sin2 kLy

)
. (4.4)

There are two energy scales associated with this lattice. In addition to the lattice depth V0, the
recoil energy ER = k2

L/2m is a typical kinetic energy for particles on the lattice. In experiments,
there is typically also a slowly varying trapping potential con�ning atoms within some �nite region.
This potential may have signi�cant e�ects on the system [24], but for simplicity, we consider an
in�nite system without such trapping potentials.

21
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In second quantization, interaction is introduced through the term

Hu =
∑
σσ′

∫
dr dr′ Ψ†σ(r)Ψ†σ′(r

′)Vσσ′(r− r′)Ψσ′(r′)Ψσ(r), (4.5)

where Ψ†σ(r) is the creation operator for a particle of species σ at position r, and Vσσ′(r− r′) is a
component dependent two-particle potential. Using e�ective contact potential

Vσσ′(r− r′) =
1

2
gσσ′δ(r− r′) (4.6)

generalized to component-dependent interaction gσσ′ [99], we get

Hu =
1

2

∑
σσ′

gσσ′

∫
dr Ψ†σ(r)Ψ†σ′(r)Ψσ′(r)Ψσ(r). (4.7)

The full Hamiltonian in second quantization is now

H =
∑
σσ′

∫
dr Ψ†σ(r)

{
δσσ′

[
p2

2m
+ V (r)

]
+
∑
lδ

βlδ(σl)
σσ′
pδ

}
Ψσ′(r)

+
1

2

∑
σσ′

gσσ′

∫
dr Ψ†σ(r)Ψ†σ′(r)Ψσ′(r)Ψσ(r).

(4.8)

Below, we provide two derivations of the Bose-Hubbard model for spin-orbit coupled systems
in the tight-binding approximation, corresponding to V0 � ER. In this limit, both give the same
answer. The �rst is based on naive replacement of derivatives of the real space �eld operator Ψ(r)
with discrete lattice site operators. Although simple and intuitive, it fails to connect the parameters
in the resulting Bose-Hubbard model with the original lattice parameters. More rigorous is Wannier
state approach.

4.1.1 Naive discretization

We aim at replacing the �eld operators in the above second quantized Hamiltonian with lattice
site creation operators ψ†i = (a†i↑, a

†
i↓) and ψi = (ai↑, ai↓)

T . The motivation for this is that in the
tight-binding approximation, the regions between lattice site minima are classically forbidden, and
hence, particles sit close to the lattice site. We express the integral as a discrete sum and replace
the derivatives in the momentum operator according to [100]

∂δΨ(r) =
1

2
(ψi+δ − ψi−δ) (4.9)

∂2
δΨ(r) = ψi+δ + ψi−δ − 2ψi, (4.10)

where we have used the middle point expression for the �rst derivative to ensure hermiticity in
the spin-orbit coupling term. Inserting this in (4.8), terms on the form

∑
i ψ
†
iψi do not interest

us since they are merely a renormalization of the chemical potential. Collecting the contributions
from the kinetic, spin-orbit coupling, and interaction terms, we get

H = − 1

2ma2

∑
i,δ

ψ†i (ψi+δ + ψi−δ)− i
∑
lδ

∑
i

βlδ
2a
ψ†iσ

l(ψi+δ − ψi−δ) +
1

2

∑
σσ′

∑
i

gσσ′ψ†iσψ
†
iσ′ψiσ′ψiσ.

(4.11)
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Letting 1/2ma2 → t, βlδ/2a→ βlδ and gσσ′ → uσσ′ , we can write this as

H =
∑
i,δ

{
− t ψ†iψi+δ − iψ

†
i

(∑
l

βlδσl

)
ψi+δ + h.c.

}
+

1

2

∑
σσ′

∑
i

uσσ′a†iσa
†
iσ′aiσ′aiσ. (4.12)

For βlδ = 0 and uσσ′ = uδσσ′ , this is nothing but the famous Bose-Hubbard model. Here, we have
generalized it to a spinor condensate with spin-orbit coupling and spin-dependent interaction.

4.1.2 Wannier function derivation

In this section, we provide a more formal derivation. Instead of using some unspeci�ed localized
operators, we use the Wannier functions of the non-interacting problem without spin-orbit coupling,
as discussed in section 2.3. Since these form a complete and orthogonal set, one may expand the
position creation and annihilation operators in the Wannier basis,

Ψσ(r) =
∑
i

wσ(r− ri) aiσ, (4.13)

where a†iσ creates a particle of species σ in the lowest band Wannier state localized around ri.
Since the atoms are cold, we have omitted the higher band terms and suppressed the band index
n.

Inserting the Wannier function expansion in the kinetic and external potential terms of the
Hamiltonian (4.8) gives [69]

Hkin + V̂ext =
∑
ij

∑
σ

a†iσajσ

∫
dr w∗iσ(r)

(
p2

2mσ
+ Vσ(r)

)
wjσ(r). (4.14)

In the limit V0/ER →∞, we may use the harmonic approximation for the potential, and this gives
trapping frequency

ω/ER = 2
√
V0/ER. (4.15)

We may then approximate the Wannier functions with the Gaussian ground state of the harmonic
potential, which is exponentially decaying. The Wannier functions are localized around lattice
sites in the deep lattice limit, and hence, the overlap between the Wannier functions wiσ(r) and
wjσ(r) decreases rapidly with distance |ri−rj |. Terms with i = j in (4.1.2) simply renormalize the
chemical potential. In order to get non-trivial dynamics, we therefore include terms where i and
j are nearest neighbours, but neglect all other terms. With spin-independent mass and external
potential, the Wannier functions are spin-independent, and we can write the coupling between
nearest neighbours as

t = −
∫

dr w∗(r− ri)

(
p2

2m
+ V (r)

)
w(r− ri+δ). (4.16)

Since the Wannier functions are Gaussian, the overlap between two neighbouring lattice sites is
exponentially suppressed in

√
V0/ER [101, 102].

For the spin-orbit coupling term, one obtains

HSOC = −i
∑
lδ

βlδ
∑
ij

∑
σσ′

[∫
dr w∗σ(r− ri)∂δwσ′(r− rj)

]
b†iσ(σl)

σσ′
bjσ′ . (4.17)
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Mirror symmetry dictates that the term from i = j gives zero, and that there is a contribution for
nearest neighbours only when j = i± δ. Neglecting all other terms and noticing that i ↔ j gives
a relative minus sign, we can write the Hamiltonian as

HSOC = −i
∑
i,δ

ψ†i

(
σlβ̃lδ

)
ψi+δ + h.c. (4.18)

in terms of a rescaled

β̃lδ = βlδ

[∫
dr w∗(r− ri)∂δw(r− ri+δ)

]
, (4.19)

where we have omitted the spin index of the Wannier functions because they are spin independent.
This can easily be generalized.

For the interaction term, the Hamiltonian becomes

Hu =
1

2

∑
σσ′

∑
ijkl

gσσ′

[∫
dr w∗iσ(r) w∗jσ′(r) wkσ′(r) wlσ(r)

]
a†iσa

†
jσ′akσ′alσ (4.20)

Here, we include only terms with i = j = k = l, and end up with

Hu =
1

2

∑
i,σσ′

uσσ′a†iσa
†
iσ′aiσ′aiσ, (4.21)

where

uσσ′ = gσσ′

∫
dr |wσ(r)|2|wσ′(r)|2 = gσσ′

∫
dr |w(r)|4. (4.22)

Since all Wannier functions belong to the same lattice site, there is polynomial and not exponen-
tial dependence on the lattice deepness parameter V0/ER. Because of this qualitative di�erence
between the on-site interaction and hopping terms, one can easily tune the ratios the hopping
amplitudes and the interaction several orders of magnitude, as demonstrated in the experiment
[103].

By rede�ning β̃lδ → βlδ and collecting the terms, we arrive at the Hamiltonian (4.12), but
where the model coe�cients have been related to the lattice parameters. The general scheme for
determining the model parameters can be summarized as follows:

• Calculate the Bloch eigenstates of the non-interacting single-particle problem without SOC

• Fourier transform the Bloch waves to obtain Wannier states

• Use the Wannier states to calculate model parameters through the above integrals

More than the qualitative arguments we have already given, we will not concern ourselves with the
details of this, and take model parameters as given.

4.2 System Hamiltonian

We have shown that the tight-binding Hamiltonian of interacting spinor bosons with spin-orbit
coupling on a lattice takes the quite general form

H =
∑
i,δ

{
− t ψ†iψi+δ − iψ

†
i

(∑
l

βlδσl

)
ψi+δ + h.c.

}
+

1

2

∑
σσ′

∑
i

uσσ′a†iσa
†
iσ′aiσ′aiσ −

∑
iσ

µσniσ.

(4.23)
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Several conventions for representing this Hamiltonian exist. First, we explicitly write out the matrix
structure in spin space and discuss the physical interpretation of the terms. We then discuss an
elegant way to represent the Hamiltonian in terms of a non-Abelian gauge �eld.

4.2.1 Matrix representation

Introduce the spin-orbit coupling hopping amplitude

sσ,−σi,i+δ = −i
∑

l∈{x,y}

βlδ(σl)
σ,−σ. (4.24)

Since l ∈ {x, y}, σl is o�-diagonal, and writing out the matrix structure of the Hamiltonian (4.23),
we obtain

H =
∑
〈ij〉

(
a†i↑ a†i↓

)(−t s↑↓ij
s↓↑ij −t

)(
aj↑
aj↓

)
+

1

2

∑
iσσ′

uσσ′niσ(niσ′ − δσσ′)−
∑
iσ

µσniσ, (4.25)

where we have rewritten the interaction term using density operators niσ = a†iσaiσ and require
sσσ

′

ij to be anti-symmetric under i ↔ j to preserve hermiticity. From the de�nition of sσ,−σij , we
then obtain symmetry relations

s−σ,σij =−
(
sσ,−σij

)∗
sσ,−σji =− sσ,−σij

s−σ,σji =
(
sσ,−σij

)∗
.

(4.26)

All these coe�cients can be expressed in terms of s↑↓i,i+δ ≡ sδ. In terms of the matrix elements βlδ,
we get

sδ = −iβxδ − βyδ. (4.27)

We now write the elements in the spin-orbit coupling matrix βlδ as

βlδ =

(
γx η
κ γy

)
. (4.28)

Since a general linear combination of Rashba and Dresselhaus spin-orbit coupling can be realized
by choosing a matrix with only diagonal or only o�-diagonal elements, we will typically set γx =
γy = 0. At some point, we will typically also specialize to the case of pure Rashba spin-orbit
coupling by setting η = −κ.

The interaction term coe�cients can in general be written as

uσσ′ = u

(
1 + δ/2 λ

λ 1− δ/2

)
, (4.29)

so that λ is the inter- relative to intracomponent interaction strength, while δ quanti�es the di�er-
ence between the intracomponent interactions of the two boson species. For the remainder of this
thesis, we set δ = 0. As discussed in section 3.1.4, experimentalists have large freedom to tune the
interaction between particles.

The above Hamiltonian is represented schematically in �gure 4.1. The diagonal terms in the
hopping matrix correspond to regular spin-conserving hoppings, since the term a†iσai+δ,σ creates a
particle at lattice site i and destroys one with the same spin at i + δ. Similarly, the o�-diagonal
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𝜂 𝜅𝑡
𝑡

𝜆𝑢𝑢

Figure 4.1: Schematic representation of the spin-orbit coupled Bose-Hubbard Hamiltonian. In addition
to regular spin-conserving hoppings with amplitude t, there are SOC-induced non-spin-conserving hoppings
with amplitudes κ and η in the x- and y-directions. The interaction energy between two particles of the
same species at the same lattice site is u, while the corresponding intercomponent interaction is λu.

terms in the matrix correspond to hoppings with spin-�ip, which is exactly what SOC corresponds
to in the Raman transition picture. The on-site particle interaction strengths are also illustrated
in the �gure.

4.2.2 Non-Abelian gauge �eld representation

In this section, we discuss a related way to represent the Hamiltonian. The general spin-orbit
coupled Bose-Hubbard model with on-site density-density interaction can be written as [104]

H = −t0
∑
〈ij〉

ψ†iTijψj +
1

2

∑
i,σσ′

uσσ′niσ(niσ′ − δσσ′)−
∑
i,σ

µσniσ. (4.30)

For o�-diagonal spin-orbit coupling matrix βlδ, Tij can be expressed as Tij = exp[iA · (rj − ri)],
where A = (ασy, βσx, 0) is a non-Abelian gauge �eld. The justi�cation for this is that for charged
particles in an electromagnetic �eld, the electromagnetic vector potential AEM couples linearly to
the particle momenta [22], just like the Pauli spin-matrices in our spin-orbit coupling term. In the
tight-binding limit, the interaction with the electromagnetic �elds therefore appears in exactly the
same way. In contrast to the electromagnetic vector potential components, the components of our
gauge potential A do not commute, and A is therefore said to be non-Abelian.

To compare with our previous Hamiltonian, Taylor expand the exponential by using (σl)
2 = 1.

This gives

exp(iασl) = cos(α) + i sin(α)σl. (4.31)

The Hamiltonian becomes

H = −t0
∑
i

{
ψ†i (cosα+ i sinα σy)ψi+x̂ + ψ†i (cosβ + i sinβ σx)ψi+ŷ + h.c.

}
(4.32)

=
∑
i

{
ψ†i

(
−t0 cosα −t0 sinα
t0 sinα −t0 cosα

)
ψi+x̂ + ψ†i

(
−t0 cosβ −it0 sinβ
−it0 sinβ −t0 cosβ

)
ψi+ŷ + h.c.

}
. (4.33)

We may compare this with the Hamiltonian (4.25). The spin-orbit coupling coe�cients can be
related through κ = t0 sinα and η = t0 sinβ. Unlike the previous Hamiltonian, the ordinary
hopping amplitudes are component-dependent. There is therefore a di�erence between the two
representations, but for Rashba SOC with η = −κ and β = −α, the two Hamiltonians are again
equivalent with t = t0 cosα.

Another choice for the non-Abelian gauge potential is A = (ασx, βσy, 0), corresponding to
a diagonal SOC-matrix βγδ. Both conventions are in use in the literature, but we stick to the
o�-diagonal form.
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4.3 Super�uid to Mott insulator transition

We now discuss some characteristics of the Bose-Hubbard model we derived in the previous section.
First, we consider the single-species case and the super�uid to Mott insulator (SF-MI) quantum
phase transition present in this system. Based on recent literature, we then consider the spin-orbit
coupled two-component model and describe some of its special features.

4.3.1 Single species SF-MI transition

The single species Bose-Hubbard model can be obtained by removing the intercomponent interac-
tion and spin-orbit coupling in the model we derived in the previous section, obtaining

H = −t0
∑
i,δ

(a†iai+δ + a†i+δai) +
u

2

∑
i

ni(ni − 1)− µ
∑
i

a†iai, (4.34)

where we have expressed the bosons in the interaction term through the density operators ni. As
discussed in section 4.1.2, one can tune the ratio t/u several orders of magnitude, between the
regimes where the kinetic and interaction terms dominate. We consider therefore the model in
these two extreme limits, the super�uid regime t� u and the Mott insulating regime t� u.

Consider �rst u = 0. In addition to the chemical potential term controlling the number of
particles, there is only the kinetic term, which prefers delocalization of particles across the entire
lattice. One may calculate the energy spectrum exactly by introducing the Fourier transform,
analogous to our calculations in chapter 5. The ground state then corresponds to the q = 0 state.
In terms of lattice site creation operators, one may then write the ground state as [103]

|ψSF〉 ∝

(∑
i

a†i

)M
|0〉 , (4.35)

where |0〉 is the vacuum, and the total number of particles M is determined by the chemical
potential.

In the opposite limit, setting t = 0, the Hamiltonian is separable. As argued in the book by
Sachdev [105], the many-body eigenstates are lattice site occupation number states |{ni}〉, where
ni is an integer representing the number of particles at lattice i. Following the argument there, we
minimize the energy at each lattice site with respect to ni, obtaining as function of µ a stepwise
increasing lattice site occupation n at every lattice site. In second quantization, the ground state
can then be written as [103]

|ΨMI〉 ∝
∏
i

(
a†i

)n
|0〉 . (4.36)

The two states have completely di�erent properties. Physically, the Mott insulator state cor-
responds to a classical state where particles sit at given lattice sites. In the super�uid phase,
particles condense in the Bloch state with the lowest energy. While the number of particles at each
lattice site is �xed in the Mott insulator, in the super�uid phase, they are Poisson distributed in
the thermodynamic limit [101].

The super�uid to Mott insulator transition was measured experimentally by Greiner et al. [103]
using time-of-�ight measurement. In the super�uid phase, emergence of coherent matter waves
from the lattice sites gives an interference pattern at the equivalent wave vectors q = 2kL(nx, ny),
where nx and ny are integers. Tuning the lattice depth above a critical value corresponding to the
SF-MI transition, loss of coherence destroys the pattern.

The excitation spectra of the two phases are also fundamentally di�erent. For the super�uid,
breaking of the global U(1) symmetry bi → eiφbi leads to a gapless Goldstone mode [1, 105, 106].
In the Mott insulator, the fundamental excitation is the displacement of an atom from one lattice
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site to another [101]. This is associated with a given energy, and possible excitations are therefore
multiples of this. The excitation spectra were measured in the above mentioned experiment [103],
�nding excellent agreement with theory. Using interference peak width as a measure of excitations
in the super�uid phase, they could �nd the spectrum even in the Mott insulator phase by �rst
reducing the lattice depth down in the super�uid regime, before sudden release and free expansion.

So far, we have discussed various characteristics of the two phases in the extreme limits t� u
and t � u. In between, there is a second order quantum phase transition [105]. Considering t/u
and µ as system parameters, the goal is to describe the phase diagram. The correct qualitative
result can be obtained by relatively simple means using a Gutzwiller variational state [101], utilizing
that in both extreme limits, the ground state is approximated by a product state. Various other
methods have also been applied [107], including mean �eld decoupling of lattice sites in the kinetic
term [105, 108], strong coupling expansion [109], and Monte-Carlo simulations [110, 111]. More
recently, a new method known as boson dynamical mean �eld theory has also been developed
[112, 113].

The phase diagram shows a hierarchy of Mott lobes, and can be found in the references [1, 101,
105]. Inside each lobe, the system has an integer number of particles per lattice site. Dimensionality
is of importance, and in particular, the phase diagram in one dimension looks somewhat di�erent
than in higher dimensions [107, 114].

4.3.2 Spin-orbit coupled SF-MI transition

Consider now the spin-orbit coupled Bose-Hubbard model. The basic situation has not changed.
Ordinary hopping and SOC couple neighbouring lattice sites and prefer delocalization, while the
interaction term still consists only of lattice site occupation number operators favouring localiza-
tion. The super�uid to Mott insulator transition therefore remains, but the two components of the
condensate allow a much richer description of the two phases. In the remaining part of this thesis,
the goal is to analyse the pseudo-spin structure of cold atoms with the Bose-Hubbard model. In
chapter 5, we do this in the super�uid regime with weak interaction, and obtain a phase separation
transition line. Chapter 6 focuses on the strongly coupled case, and here we derive an e�ective
spin model displaying rich ground state spin textures. The SF-MI transition itself has also been
studied in several articles, mostly using approaches already familiar from the single-component
Bose-Hubbard model [104, 115�120]. Below, we consider some of these articles in more detail.

Graÿ et al. [115] apply a re-summed hopping expansion approach to the spinor spin-orbit
coupled model, obtaining an e�ective action by treating the hopping term as a perturbation [107,
121]. Bolukbasi et al. use a Gutzwiller variational Ansatz, allowing both boson species in the
lattice site product state, and minimizing the ground state energy numerically. Cole et al. [104] use
methods reminiscent of the mean-�eld decoupling of the hopping term mentioned in the previous
section, generalizing to spin-orbit coupled, inhomogeneous solutions by iteratively diagonalizing a
�nite set of single site e�ective Hamiltonians. He et al. [120] apply the boson dynamical mean
�eld theory.

All these papers show that the critical transition parameter (t0/u)c increases with the gauge �eld
strength α from zero spin-orbit coupling with α = 0, up to α = π/2, where ordinary hoppings are
suppressed in favour of SOC-induced spin-�ip hoppings. The Mott insulating state is therefore more
stable toward hoppings with spin-�ip than toward ordinary hoppings. This can be understood with
slave boson mean �eld theory [104, 120], where particle and spin degrees of freedom are decoupled.
Another common feature is that magnetic texture in the Mott insulating phase is mimicked by the
super�uid state on the other side of the SF-MI transition.



Chapter 5

Weak coupling

In the weakly coupled limit of the Bose-Hubbard model discussed in the previous chapter, the
system is super�uid. The goal of this chapter is to describe the transition from a mixed to a phase
separated state that arises through competition between interaction and spin-orbit coupling.

This problem was studied using mean �eld theory and classical Monte-Carlo simulations on
a Landau-Ginzburg model in a recent paper [100]. Alternately, one may minimize the Gross-
Pitaevskii interaction energy with respect to occupation of the four minima of the non-interacting
dispersion relation [104, 122]. We instead use a real space homogeneous density mean �eld theory.
After �nding the dispersion relation of the e�ective single-particle Hamiltonian, we solve the self-
consistent equations for Rashba SOC, obtaining the phase diagram at zero and �nite temperature
as function of the inter- relative to intracomponent interaction and spin-orbit coupling strength.

5.1 Mean �eld Hamiltonian and its diagonalization

Our starting point is the Hamiltonian (4.25) in the previous chapter. Assume weak coupling u� t,
or equivalently small average �lling per lattice site. Write the lattice site occupation number as

niσ = n0σ + δniσ, (5.1)

where we have assumed uniform component densities n0σ = 〈niσ〉. The presence of spin textured
ground states may violate this assumption [100, 104, 120, 122], but since the gas is homogeneous
in certain parameter regimes and �uctuations in the component densities may be small, we still
expect our mean �eld theory to reproduce real physics.

We may now decouple the interaction term by neglecting terms of order O(δn2). This gives
mean �eld interaction Hamiltonian

HMF
u = −1

2
u
∑
iσ

niσ −
N

2

∑
σσ′

uσσ′n0σn0σ′ +
∑
iσσ′

uσσ′n0σniσ′ , (5.2)

which can also be seen from the general argument in [123]. Introducing quantities

n0 = n0↑ + n0↓ (5.3)

∆n0 = n0↑ − n0↓, (5.4)

the constant term in (5.2) can be written as

H0 ≡ −
Nu

4

[
(1 + λ)n2

0 + (1− λ)∆n2
0

]
, (5.5)

29
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and the full mean �eld Hamiltonian is

HMF = H0 +
∑
〈ij〉

(
a†i↑ a†i↓

)(−t s↑↓ij
s↓↑ij −t

)(
aj↑
aj↓

)
+
∑
iσ

[∑
σ′

uσσ′n0σ′ − µσ − u/2

]
niσ. (5.6)

The hopping terms are unchanged, and the mean-�eld interaction simply renormalizes the chemical
potential. We let µσ − u/2→ µσ since µ is a control parameter, but keep the dependence on n0σ

explicit, since these are variational parameters.
To diagonalize this Hamiltonian, we decouple neighbouring lattice sites by introducing the

Fourier transformed boson operators a†kσ and akσ by

akσ =
1√
N

∑
i

aiσe
−ik·ri (5.7)

a†kσ =
1√
N

∑
i

a†iσe
+ik·ri , (5.8)

where N is the number of lattice sites. The inverse Fourier transform gives

aiσ =
1√
N

∑
k

aiσe
+ik·ri (5.9)

a†iσ =
1√
N

∑
k

a†iσe
−ik·ri . (5.10)

Considering the regular hopping term in (5.6) �rst, and inserting the above representations for the
square lattice, we get

Ht =
1

N

∑
kq

∑
i,δ,σ

(−t)
(
a†qσeiq·riakσe−ik·(ri+δ) + h.c.

)
= −t

∑
kσ

(
eikδa†kσakσ + h.c.)

= −2t
∑
kδσ

cos kδ a
†
kσakσ, (5.11)

where we have used the delta function identity

1

N

∑
i

ei(k−q)·ri = δk,q. (5.12)

A similar calculation for the renormalized chemical potential term gives∑
i

a†iσaiσ =
∑
k

a†kσakσ. (5.13)

Inserting this in the Hamiltonian and writing out the sum over σ′, we end up with

HMF
u +Hµ =

∑
kσ

{
u

2
[(1 + λ)n0 + σ(1− λ)∆n0 − (δ/2)(n0 + ∆n0)]− µσ

}
a†kσakσ. (5.14)
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In Fourier-space, the regular hopping, interaction, and chemical potential terms give the same
operator structure. We can therefore combine them to obtain

Ht +HMF
u +Hµ =

∑
k

ψ†k

(
εk↑ 0
0 εk↓

)
ψk, (5.15)

with

εkσ =− 2t(cos kx + cos ky)− σ∆µ/2− µ̄
1

2
un0 [(1 + λ) + σ(1− λ)∆n0/n0]− un0(δ/4) (1 + ∆n0/n0) ,

(5.16)

and where we have introduced µ̄ = (µ↑ + µ↓)/2 and ∆µ = µ↑ − µ↓. From now on, we set δ = 0.
Putting it back into the equations should mostly be a trivial generalization.

A similar calculation is performed for the spin-orbit coupling. This term couples creation and
annihilation operators for di�erent species in real space, and must therefore do so in Fourier space
as well. Using the symmetry relations for sαβij in equation (4.26), we can express the spin-orbit
coupling as

HSOC =
∑
i,δ

{
sδa
†
i↑ai+δ,↓ − sδa

†
i+δ,↑ai↓ − s

∗
δa
†
i↓ai+δ,↑ + s∗δa

†
i+δ,↓ai↑

}
. (5.17)

The terms are on the form

∑
i

a†iσai+δ,−σ =
1

N

∑
kq

∑
i

a†qσe−iq·riaq,−σeik·(ri+δ)

=
∑
k

a†kσak,−σeikδ . (5.18)

Collecting all the terms gives spin-orbit coupling

HSOC =
∑
k,δ

2i sin kδ
(
sδa
†
k↑ak↓ − s

∗
δa
†
k↓ak↑

)
=
∑
k,δ

2i sin kδ

(
a†k↑ a†k↓

)(
0 sδ
−s∗δ 0

)(
ak↑
ak↓

)
.

We arrive at momentum space Hamiltonian

HMF = H0 +
∑
k

(
a†k↑ a†k↓

)(
εk↑ sk
s∗k εk↓

)(
ak↑
ak↓

)
≡ H0 +

∑
k

ψ†kHkψk, (5.19)

where we have de�ned

sk =
∑
δ

2i sin kδ sδ. (5.20)

Inserting the coe�cients of the original spin-orbit coupling matrix βlδ, we get

sδ = s↑↓ij = −iβxδ − βyδ, (5.21)
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Figure 5.1: Single particle dispersion relation of non-interacting particles. In (a), the lowest band has
four minima at k = (±k0, k0) and k = (k0,±k0), and the Zeeman �eld causes a gap between the energy
bands at k = 0. In (b), the dispersion relation is plotted along kx = ky for di�erent Zeeman �elds ∆µ in
units of the hopping amplitude t.

and hence,

sk = 2(γx − iκ) sin qx + 2(η − iγy) sin ky

as general expression for the diagonal terms. In the following, we consider Rashba SOC with
γx = γy = 0 and η = −κ, and note therefore in particular

sRashba
k = −2κ(i sin kx + sin ky). (5.22)

The Hamiltonian (5.19) can be diagonalized with a unitary transformation. Letting ψk = Pkφk,
where φk is composed of band index annihilation operators ak±, we want P

†
kHkPk to be diagonal.

The eigenvalues of Hk are

Ek± =
1

2
(εk↑ + εk↓)±

√
1

4
(εk↑ − εk↓)2 + |sk|2. (5.23)

Introducing rk = Ek+− εk↓ = −(Ek−− εk↑), the matrix of normalized eigenvectors can be written
as

Pk =
1√

r2
k + |sk|2

(
rk sk
s∗k −rk

)
. (5.24)

Since this is a unitary matrix, a†kα and akα satisfy boson commutation relations. Note that rk can
be expressed as

rk = ∆0 +
√

∆2
0 + |sk|2 (5.25)

by de�ning ∆0 as

∆0 =
1

2
(εk↑ − εk↓) = −u(λ− 1)∆n0/2−∆µ/2, (5.26)

which is in fact k-independent. If we were to include kδσz-terms in the Hamiltonian, this would
not be the case. An imbalance ∆n0 acts on the dispersion relation in the same way as the Zeeman
�eld ∆µ.
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The dispersion relation of non-interacting particles is known also from the literature [124], and
we plot it for Rashba SOC in �gure 5.1. The continuous ground state degeneracy is lifted by the
optical lattice, and instead, there are four minima at �nite k. If the Zeeman �eld is su�ciently
strong, the four minima vanish in favour of a single minimum at k = 0, as illustrated in �gure
5.1b. This is analogous to the continuum result in section 3.3.

With band index α, the diagonalized mean �eld Hamiltonian becomes

HMF = H0 +
∑
kα

Ekαa
†
kαakα. (5.27)

Thermal occupation of energy eigenstates is given by the Bose-Einstein distribution. Assuming
we can calculate the variational parameters n0 and ∆n0, the mean �eld expectation value of any
operator O(ai, a

†
i ) can be obtained by expressing it in terms of the new operators ak±, a

†
k±, for

which thermal expectation values are know. In particular, it would be interesting to do this for
bond current operators, trying to reproduce the anti-ferromagnetic pattern of loop currents in Refs.
[104, 125].

5.2 Self-consistent determination of variational parameters

As discussed in [123], there are two equivalent methods for determining the variational parameters
of a mean �eld theory:

• Minimizing the free energy with respect to variational parameters.

• Obtaining self-consistent equations by calculating expectation values within the mean �eld
approximation.

The two methods lead to the same equations, but since the second method gives a somewhat
simpler calculation, we only do the second in detail for �nite temperature. At zero temperature,
the �rst approach is advantageous. We give a proof of equivalence in appendix A.

Considering the �rst method �rst, the free energy is

Ω = H0 + kBT
∑
kα

ln
(
1− e−βEkα

)
. (5.28)

Minimization with respect to n0↑ and n0↓ gives

∂Ω

∂n0σ
= 0, (5.29)

which can be solved for n0 and ∆n0 at �xed µσ. Subsequently, we should check whether the solution
is a minimum by calculating the eigenvalues of the matrix of second derivatives. Alternately, one
may compute the free energy for the small set of minimum candidates.

The alternate route is to solve the two equations

n0σ =
1

N

∑
k

〈a†kσakσ〉, (5.30)

where brackets denote thermal average. Since the matrix Pk is hermitian and unitary, it is its own
inverse, so for boson species ↑, we get
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〈a†k↑ak↑〉 = (r2
k + |sk|2)−1

〈
(r∗kâ

†
k+ + s∗kâ

†
k−)(rkâk+ + skâk−)

〉
= (r2

k + |sk|2)−1
[
|rk|2〈â†k+âk+〉+ |sk|2 〈â†k−âk−〉+ r∗ksk〈â

†
k+âk−〉+ rks

∗
k〈â
†
k−âk+〉

]
=

r2
k

r2
k + |sk|2

nB(Ek+) +
|sk|2

r2
k + |sk|2

nB(Ek−),

where the last terms in the intermediate step are zero because the Hamiltonian is diagonal in band
operators, and where nB(E) is the Bose-Einstein distribution

nB(E) =
1

eβE − 1
. (5.31)

For species ↓, the coe�cients r2
k and |sk|2 are interchanged, and we end up with self-consistent

equations

n0↑ =
1

N

∑
k

1

r2
k + |sk|2

{
r2
k

exp(βEk+)− 1
+

|sk|2

exp(βEk−)− 1

}
(5.32)

n0↓ =
1

N

∑
k

1

r2
k + |sk|2

{
|sk|2

exp(βEk+)− 1
+

r2
k

exp(βEk−)− 1

}
. (5.33)

In terms of n0 and ∆n0, we may write this as

n0 =
1

N

∑
kα

nB(Ekα) (5.34)

∆n0 =
1

N

∑
kα

∆nkαnB(Ekα), (5.35)

with imbalance

∆nkα = α
r2
k − |sk|

2

r2
k + |sk|2

(5.36)

characteristic for each eigenstate. When ∆0 is negative and |sk|2 = 0, we get rk = 0. The
characteristic imbalance must therefore be calculated explicitly at this point, and the limiting
value is

lim
|sk|→0

∆nkα = −α. (5.37)

The above self-consistent equations contain a Brillouin zone sum, but are not especially irreg-
ular. At T = 0, they can be simpli�ed by assuming all particles condense into the minimum of the
e�ective single-particle dispersion relation. We consider this next.

5.2.1 Zero-temperature phase diagram

Consider �rst zero spin-orbit coupling. The energy eigenvalues are εkσ, and with Nn0σ particles
in the state (k, σ), the total energy becomes

Etot = H0 +Nn0↑εk↑ +Nn0↓εk↓. (5.38)
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The minimum resides at k = 0, and the energy therefore becomes

Etot = Nn0

[
−4t+

1

4
un0(1 + λ)− µ̄

]
+Nn0

[
1

4
n0u(1− λ)

(
∆n0

n0

)2

− 1

2
∆µ

(
∆n0

n0

)]
, (5.39)

where we have substituted the variables n0σ with n0 and ∆n0. Completing the square gives

Etot =Nn0

[
−4t+

1

4
un0(1 + λ)− µ̄

]
(5.40)

+
1

4
Nun2

0(1− λ)

[
−
(

∆µ

n0u(1− λ)

)2

+

(
∆n0

n0
− ∆µ

un0(1− λ)

)2
]
. (5.41)

One can check that λ drops when ∆n0 = n0, since then, there is only one species present. We
have to minimize this energy. The �rst term determines the average occupation n0, but since µ̄ is
a control parameter, we are not particularly interested in this term. Minimizing the second term
under the restriction |∆n0/n0| < 1 reveals

∆n0

n0
=

{ ∆µ
n0u(1−λ) , λ ≤ λcrit

sgn(∆µ), λ ≥ λcrit,
(5.42)

where λcrit = 1 − ∆µ/n0u. Consistent with our intuition, the Zeeman term eases the phase
separation transition, and leads to a sharp but continuous transition at small Zeeman �elds.

We now generalize this argument to �nite spin-orbit coupling. The square root term in the
dispersion relation can shift the minimum from k = 0 to a �nite quasi-momentum vector. At
any given n0 and ∆n0, we want to know where this happens. Choosing pure Rashba or pure
Dresselhaus SOC, the conditions ∂Ek−/∂kδ give possible solutions k = 0 and

sin2 kx = sin2 ky =
1

(2 + κ2/t2)

(
κ2

t2
− ∆2

0

4κ2

)
. (5.43)

For

|∆0| ≥ 2κ2/t, (5.44)

there is no solution at �nite quasi-momentum, and the minimum sits at k = 0.
The idea is again to assume that all particles condense into a dispersion relation minimum at

zero temperature. The location and energy of the minima still depend on the variational param-
eters, but condensation into the four degenerate minima �xes the imbalance to the characteristic
imbalance of these states. We may therefore calculate ∆n0 for the �nite-k minimum through

∆n0 = ∆nkα (5.45)

by inserting the momentum space location of the minima from equation (5.43).
We consider in particular the phase transition driven by interaction. For a small Zeeman �eld

∆µ, it is always possible to choose ∆n0 so that minima at �nite k exist. Since this imposes an
additional restriction on ∆n0, it might be energetically favourable to condense in k = 0, where
there are no restrictions other than |∆n0|/n0 ≤ 1. The strategy for determining the phase diagram
should therefore be the following:

• Assuming the minimum resides at �nite quasi-momentum vector, determine the imbalance
from (5.45) at �xed n0 subject to the restrictions |∆0| < 2κ2/t and |∆n0|/n0 ≤ 1.

• Minimize Ek=0,− subject to |∆n0|/n0 ≤ 1. This can be done analytically.
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Figure 5.2: Imbalance ∆n0 as function of spin-orbit coupling strength κ and inter-species interaction λ
for temperatures T = 0, 1, 2. The black line shows the analytic condition (5.46), where complete phase
separation is reached at T = 0. Both κ and T are measured in units of the hopping amplitude t.

• Compare the two energies and pick out the smallest. The imbalance ∆n0 takes value that
optimizes the best energy.

Based on the above procedure, a simple analytic condition for complete phase separation can be
derived. At zero SOC and small but �nite chemical potential imbalance ∆µ, the transition is
continuous. At su�ciently strong intercomponent interaction, we always expect complete phase
separation. Starting in this regime and reducing λ, at some point, the dispersion relation minimum
�oats out from k = 0 with characteristic imbalance ∆n0/n0 = 1 to some �nite k. If this happens
continuously, it must happen when |∆0| = 2κ2/t can be satis�ed with imbalance ∆n0/n0 = 1.
Expressing this condition in terms of λ gives transition line

λ = 1− ∆µ

un0
+

4κ2

tun0
. (5.46)

The transition point at κ = 0 coincides our earlier calculation. Quadratic dependence on κ is
qualitatively similar to the phase diagram in Ref. [100].

For intercomponent interaction below the complete phase separation transition point, the im-
balance is determined by the �nite-k solution. The zero-temperature phase diagram is presented
in �gure 5.2a, where the blue region corresponds to the mixed phase with ∆n0 ≈ 0, and the system
is completely phase separated in the red region. Starting from the transition point and lowering λ,
there is a region with intermediate imbalance, before dropping rather quickly to zero. This is also
illustrated by the zero-temperature curves in �gure 5.3. Here, it is also clear that the size of the
intermediate imbalance region increases with spin-orbit-coupling κ. We may see this in connection
with the larger numerical uncertainty in the Monte-Carlo phase diagram of [100], although there,
the system �nds itself in the somewhat inhomogeneous stripe phase.

5.2.2 Finite temperature phase diagram

At �nite temperature, we use equations (5.32) and (5.33) to determine the imbalance. Considering
parameter values κ and λ at �xed density n0, one may �nd µ as function of ∆n0 by incrementing
µ until the right hand side of equation (5.32) is su�ciently close to the density we want. Equa-
tion (5.33) can then be considered an equation in the single variable ∆n0, which we solve by a
combination of Newtons method and the bisection algorithm [126].

Choosing parameters n0 = 1, t = 1, and u = 2 well inside the super�uid regime of the Bose-
Hubbard model [104, 115, 120], we present the resulting phase diagrams in �gure 5.2 at ∆µ = 0.01,
while 5.3 shows cuts along di�erent �xed values of κ.
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Figure 5.3: Imbalance as function of relative intercomponent interaction at di�erent values of κ. Each
plot shows the imbalance at four di�erent temperatures T . In the region with complete phase separation
at T = 0, �nite temperature reduces the imbalance from ∆n0/n0 = 1. With �nite spin-orbit coupling,
entropy driven phase separation causes imbalance to increase with temperature in the region with small
imbalance at T = 0. Both κ and T are measured in units of the hopping amplitude t.

5.3 Entropy driven remixing and phase separation

In this section we discuss the obtained component imbalance phase diagrams at zero and �nite
temperature.

Considering the �gures 5.2 and 5.3, at zero SOC, the phase separation transition occurs close
to λ = 1, consistent with the continuum Gross-Pitaevskii prediction in section 3.3. The physical
interpretation there applies here as well. With increasing SOC-strength κ, alignment of pseudo-
spin with the e�ective magnetic �eld is an energetic asset the system is increasingly reluctant to
give up. Spin-orbit coupling is not possible with only one component, and the phase separation
transition therefore requires stronger inter- relative to intracomponent imbalance λ. This is the
main physical mechanism behind the phase diagram in �gure 5.2a.

The region with very large imbalance shrinks with temperature. This can be explained by en-
tropic remixing. When minimizing the free energy Ω = U−TS, a compromise between minimizing
U and maximizing S must be reached, and the temperature T controls their relative importance.
Being able to choose between di�erent particle spin states gives additional freedom increasing the
entropy. As a simple toy model, one may consider two identical, non-interacting particles with
spin-1/2 in a two-state system. The two states can for instance represent two degenerate minima
of a momentum dispersion relation. If the particles have the same spin, there are 3 di�erent states,
while for opposite spins, particle spin makes the two states with particles at di�erent momenta
distinct. In the thermodynamic limit, this e�ect becomes even more pronounced.

Examining the phase diagram in 5.3b and the imbalance curves in 5.3c more closely reveals
also the opposite e�ect. There are parameter space regions where the imbalance increases with
temperature. Comparing for instance the zero-temperature curve with the intermediate T = 0.5
curve at κ = 1 in 5.3c, from λ = 0 to approximately λ = 2, the intermediate temperature imbalance
is signi�cantly larger than at zero temperature. For T = 0.5, the phase separation transition takes
place roughly between λ = 2 and λ = 3, while for zero temperature, the transition starts only
around λ = 2.5.

This counter-intuitive phase separation can only be explained by an e�ect causing entropy to
increase with imbalance, and which at small to moderate imbalances dominates the e�ect causing
remixing. It can be understood by considering the behaviour of the dispersion relation (5.23) with
∆0, which consists of the Zeeman splitting ∆µ and imbalance ∆n0. Comparing with the continuum
dispersion relation for Rashba SOC derived in chapter 3.3,

ECont.
k± =

k2

2m
±
√
h2 + κ2k2, (5.47)
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Figure 5.4: Dispersion relation along kx = ky for a SOC BEC on an optical lattice with λ = 3.5 and
κ = 1 at di�erent values of the variational parameter ∆n0. At low temperature, the number of thermally
accessible state increases with ∆n0, and this causes entropy driven phase separation.

one recognizes again that imbalance acts as an e�ective Zeeman splitting. The lattice dispersion
relation is plotted along kx = ky in �gure 5.4, and is very similar to the continuum dispersion
relation in �gure 3.4c of chapter 3. At zero temperature, all particles reside in one of the minima.
At small but �nite temperature, only small regions around the minima are thermally accessible.
Increasing the e�ective Zeeman �eld strength reduces the central maximum, and hence, the number
of accessible states increases. The net result is that entropy increases with ∆n0, thus explaining
entropy driven phase separation as an e�ect arising due to complex interplay between interaction
and spin-orbit coupling.

In addition to the physical argument we gave earlier, the same line of reasoning can be applied
to entropic remixing. In the phase-separated state, the dispersion relation has a single minimum,
and reducing the imbalance �attens the region around this. Hence, the imbalance is reduced by
�nite temperature.

The characteristic imbalance ∆nkα in (5.2) can be used to explain entropic remixing and phase
separation in a di�erent manner. Equation (5.33) can be viewed as an average of ∆nkα weighted
with Bose-Einstein distribution occupation numbers. All temperature e�ects are incorporated
through changes in these weights. Characteristic imbalance can be plotted as function of position
in k-space. This requires knowledge of ∆n0, which again requires us to solve equation (5.33). We
can do this at some �xed value, for instance T = 0. The additional imbalance induced by a small
change in temperature must then be compensated for by a slight change on the left hand side of the
equation, which becomes the change in total imbalance. The lower band characteristic imbalance
is plotted for κ = 1 and di�erent values of λ along kx = ky in �gure 5.5. The total imbalance ∆n0

is calculated at zero temperature and increases with λ, as shown in the right panel. As we have
already shown, whenever sin kx = sin ky = 0, the characteristic imbalance reaches its maximum
value 1. For zero temperature, complete phase separation is reached approximately at λ = 3.0.
In this regime, there is a rather large characteristic imbalance across the entire Brillouin zone.
The dispersion relation minimum is at k = 0, and at zero temperature, all particles are condensed
here. Upon increasing the temperature, particles go out in the states around k = 0 with lower
characteristic imbalance. Therefore, total imbalance is reduced, and this is entropic remixing. In
the mixed regime of parameter space, characteristic imbalance is small except for the sharp peak at
k = 0. The minimum sits in a state at �nite k with low characteristic imbalance. Upon increasing
the temperature, states around the minima become occupied. A resulting signi�cant contribution
from the central peak explains entropy driven phase separation.
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Figure 5.5: Characteristic imbalance ∆nk− as function quasimomentum with total imbalance determined
from the self-consistent equation with T = 0 at κ = 1. Left panel: Imbalance in the �rst Brillouin zone at
λ = 4. Right panel: Imbalance at various λ along kx = ky.

Both explanations of the �nite temperature e�ects provide nice perspectives on the physics
of the transition. Especially interesting is the counter-intuitive entropy driven phase separation
occurring due to complex interplay between the interaction and spin-orbit coupling. There is
competition between the energy and entropy terms in the free energy, spin-orbit coupling and
interaction in the energy term, and e�ects causing entropy driven phase separation and remixing
in the entropy term. The observed phase transition should therefore be regarded highly non-trivial
even at mean �eld level.



40 CHAPTER 5. WEAK COUPLING



Chapter 6

Strong coupling

In the strongly coupled regime, interaction dominates hopping from the kinetic and spin-orbit
coupling terms of the Hamiltonian. The ground state is therefore a Mott insulator characterized
by localization of each particle at a given lattice site, as discussed in section 4.3. For small
but �nite hopping amplitude in the case of electrons without spin-orbit coupling, a well known
calculation reveals an antiferromagnetic Heisenberg model describing the interaction between spins
at neighbouring lattice sites [127, 128]. In the same spirit, we here derive1 a spin model describing
magnetic textures in the Mott insulator of the spin-orbit coupled Bose-Hubbard model. The
result is an anisotropic Heisenberg model with an additional Dzyaloshinskii-Moriya interaction
[130, 131] giving rise to complex magnetic textures. Based on classical Monte-Carlo simulations
in the literature [102, 104, 129], we aim at reconstructing the phase diagram with a variational
approach. Finally, we use Holstein-Primako� transformation and spin wave expansion to analyse
the e�ect of quantum �uctuations.

6.1 Perturbation theory

In the strong coupling limit, the hopping terms can be considered small compared to the interaction.
Our approach is therefore perturbation theory in the kinetic and SOC terms. We also assume half-
�lling, which is one atom per lattice site

The unperturbed Hamiltonian H0 and the perturbation Hhop are

H0 =
1

2

∑
i,σσ′

uσσ′niσ(niσ′ − δσσ′) (6.1)

Hhop =
∑
〈ij〉,σσ′

tσσ
′

ij a†iσajσ′ , (6.2)

where the matrix tij follows from the Hamiltonian (4.25).
To zeroth order, the energy eigenstates of H0 are Mott insulating states. The ground state has

exactly one boson per lattice site, since this minimizes boson interactions. Spin is irrelevant, and
the ground state is therefore 2N -fold degenerate. As we will see, this degeneracy is lifted when we
go to second order perturbation theory. Our goal is to determine how this happens.

For a given ground state |ψ0〉 of the non-perturbed Hamiltonian, the �rst order energy correction
is

1After completing the calculations, we became aware of articles arriving at variants of the same spin model
[102, 104, 129], and a review article presenting a similar derivation in more detail [93]. We go through the derivation
in our original notation, before adopting the notation of [104] for easier comparison with literature.

41
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∆E1 = 〈ψ0|Hhop |ψ0〉 . (6.3)

The perturbation Hhop consists of terms proportional to a†iσajσ′ , where i and j are nearest neigh-
bours. Since eigenstates are orthogonal, biα |ψ0〉 and bjβ |ψ0〉 must have zero overlap, and therefore

∆E1 = 0. (6.4)

To obtain non-degenerate ground states, one therefore has to go to second order. Here, the energy
correction is

∆E2 =
∑
n

〈ψ0|Hhop |n〉 〈n|Hhop |ψ0〉
E0 − En

, (6.5)

where {|n〉} denotes the set of excited eigenstates with energies En for the unperturbed Hamiltonian
H0, while E0 is the ground state energy. To give a non-zero contribution, |n〉 must have non-zero
overlap with Hhop |ψ0〉. Since the terms in Hhop make one particle jump to a neighbouring lattice
site, |n〉 must have one single doubly occupied lattice site with an empty neighbour, and otherwise
one atom per site. We divide such states |n〉 into two groups. In the same species subspace
(s-subspace), the doubly occupied lattice site holds particles of the same species, while in the
di�erent species subspace (d-subspace), the two atoms are of di�erent species. Let {|ns〉} and
{|nd〉} denote the subsets of {|n〉} with states belonging to the s and d subspaces. In the �rst
case, the unperturbed excited eigenenergy is us = u↑↑ = u↓↓ = u, while in the second, it is
ud = u↑↓ = u↓↑ = λu. We then obtain

∆E2 =− 1

u

∑
ns

〈ψ0|Hhop |ns〉 〈ns|Hhop |ψ0〉 −
1

λu

∑
nd

〈ψ0|Hhop |nd〉 〈nd|Hhop |ψ0〉. (6.6)

(6.7)

This can be written as ∆E2 = 〈ψ0|Heff |ψ0〉 with e�ective Hamiltonian

He� = Hs
e� +Hd

e� = − 1

u
HhopPsHhop −

1

λu
HhopPdHhop (6.8)

by introducing operators Ps and Pd projecting states down on the s and d subspaces. Since we are
interested in the second order correction to the energy, we are interested only in how the e�ective
Hamiltonian acts on the ground states |ψ0〉. This allows certain simpli�cations, which we utilize
in the following. In the rest of this derivation, equality of operators therefore means acting in the
same way on the subspace we are considering.

By inserting the perturbation, the e�ective Hamiltonian Hr
eff corresponding to subspace r ∈

{s, d} becomes

Hr
e� = − 1

ur

∑
〈ij〉αβ

∑
〈kl〉γδ

tαβij t
γδ
kl a
†
iαajβPra

†
kγalδ. (6.9)

To obtain �nite energy correction, Heff |ψ0〉 must still be a state with one particle per lattice site.
This gives requirements i = l and j = k. Splitting the hopping matrix tαβij according to

tαβij = −δαβ t+ δα,−β s
αβ
ij (6.10)

and inserting in the above Hamiltonian, we get

Hr
e� = − 1

ur

∑
〈ij〉 αβγδ

[
−δαβt+ δα,−βs

αβ
ij

] [
−δγδt+ δγ,−δs

γδ
ji

]
a†iαajβPra

†
jγaiδ. (6.11)
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Acting on a ground state for the unperturbed system, the operator a†jγaiδ gives a state with an
additional boson of type γ at position j. Depending on the type of boson at j in the state |ψ0〉,
the projection operator may either allow or prohibit this. We can therefore write

a†iαajβPda
†
jγaiδ = a†iαajβa

†
jγaiδ(1− njγ) = a†iαaiδ(δβγ + a†jγajβ)nj,−γ (6.12)

a†iαajβPsa
†
jγaiδ = a†iαajβa

†
jγaiδ(1− nj,−γ) = a†iαaiδ(δβγ + a†jγajβ)njγ , (6.13)

where we have used that there is only one boson per lattice site in the ground state, and where
we the operators are grouped according to lattice site. The two operators acting on neighbouring
local two-state Hilbert spaces can then be represented by Pauli matrices, giving rise to a near-
est neighbour e�ective spin Hamiltonian. To do this, we have to rewrite operators of the form
a†iαaiβa

†
jγajδnjε. Introduce short-hand notation

|αβ|γδ, ε| = a†iαaiβa
†
jγajδnjε, (6.14)

and associate the pseudo-spin states with column vectors according to

|↑〉 =

(
1
0

)
, |↓〉 =

(
0
1

)
. (6.15)

By comparing the e�ect of boson operators on the two-state pseudo-spin Hilbert space with that
of Pauli matrices on the column vectors, we get

| ↑↑ | = 1

2
(1 + σz) | ↑↓ | = 1

2
σ+

| ↓↓ | = 1

2
(1− σz) | ↓↑ | = 1

2
σ−.

Similarly for the operators at lattice site j gives

| ↑↑, ↓ | = | ↓↓, ↑ | = 0 | ↑↑, ↑ | = 1

2
(1 + σz) | ↑↓, ↓ | = 1

2
σ+

| ↓↑, ↓ | = | ↑↓, ↑ | = 0 | ↓↓, ↓ | = 1

2
(1− σz) | ↓↑, ↑ | = 1

2
σ− .

In addition to the two subspaces we have already introduced, we can group the terms in the
Hamiltonian according to physical origin:

• tt: Two regular hoppings

• ss: Two hoppings with spin-�ip

• ts: One regular hopping and one with spin-�ip

Finding the spin model is now a little tedious, but in the end simply a matter of writing out all the
terms in (6.11), replacing boson operators with Pauli-matrices according to the dictionary above,
and expressing the operators σ+ and σ− in terms of the x- and y-components. This is deferred to
appendix A, and the �nal results for the e�ective Hamiltonians Hs

e� and Hd
e� are
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Table 6.1: E�ective spin model coe�cients in equation (6.18) for general linear combination of Rashba
and Dresselhaus SOC on the form HSOC ∝ ησxky + κσykx.

Jxx = −4(t2 − κ2)/λu Jxy = −4(t2 + η2)/λu
Jyx = −4(t2 + κ2)/λu Jyy = −4(t2 − η2)/λu
Jzx = −4(t2 − κ2)(2λ− 1)/λu Jzy = −4(t2 − η2)(2λ− 1)/λu
Dx = −4(2tκ/u)ŷ Dy = −4(2tη/u)x̂

Table 6.2: Spin model coe�cients for equation (6.18) in units of (4t20/λu) for Rashba spin-orbit coupling
HSOC ∝ σxky − σykx in the notation of [104].

Jxx = − cos 2α Jxy = −1
Jyx = −1 Jyy = − cos 2α
Jzx = −(2λ− 1) cos 2α Jzy = −(2λ− 1) cos 2α
Dx = λ sin 2α(−ŷ) Dy = λ sin 2α(+x̂)

Hd
eff =− t2

λu

∑
i,δ

(
1− σzi σzi+δ + σxi σ

x
i+δ + σyi σ

y
i+δ

)
− 1

λu

∑
i,δ

|sδ|2(1 + σzi σ
z
i+δ)

+
1

λu

∑
i,δ

[
Re(s2

δ)(σ
x
i σ

x
i+δ − σ

y
i σ

y
i+δ)− Im(s2

δ)(σ
x
i σ

y
i+δ + σyi σ

x
i+δ)

] (6.16)

Hs
e� =− 2

u

∑
i,δ

[
(t2 − |sδ|2)σzi σ

z
i+δ − tRe(sδ)ŷ · ~σi × ~σi+δ − t Im(sδ)x̂ · ~σi × ~σi+δ

]
(6.17)

If we choose the spin-orbit coupling matrix βlδ to be either diagonal or o�-diagonal, sδ becomes
real or purely imaginary. Hence, the term with coupling between the x- and y-components of the
spin disappears, and as in [104], we can write the e�ective spin Hamiltonian as

He� =
∑
i,δ

{ ∑
a=x,y,z

Jaδ S
a
i S

a
i+δ + Dδ · (Si × Si+δ)

}
, (6.18)

with couplings Jaδ and Dδ depending on t and sδ, and where S = ~σ/2. In terms of the spin-orbit
coupling matrix elements κ and η, the above parameters take the values in table 6.1.

In the rest of this chapter, we focus on Rashba SOC with η = −κ and use the notation of Ref.
[104] introduced in section 4.2.2, where

t = t0 cosα κ = t0 sinα. (6.19)

One advantage is that when plotting the spin model phase diagram, one can consider arbitrary
ratios of κ/t. One may now rewrite the Heisenberg couplings and Dzyaloshinskii-Moriya strengths
in table 6.1 using t2 − κ2 = t20 cos 2α, t2 + κ2 = t20, and 2tκ = t20 sin 2α. This gives the spin model
coe�cients in table 6.2.

6.1.1 Physical origin of spin model terms

In this section, we describe some qualitative features of the spin model we have derived. The model
consists of an anisotropic Heisenberg term and a cross product term known as the Dzyaloshinskii-
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Moriya interaction. We consider the Heisenberg term �rst.
The e�ective Hamiltonian is constructed using second-order perturbation theory, for which

the energy correction is always negative. Hence, all possible hopping processes are energetically
favourable. Considering the d-subspace e�ective Hamiltonian in (6.16), the coe�cient of the term
t2σzi σ

z
j /u is antiferromagnetic since tt-processes via the d-subspace are only possible at every link

for antiferromagnetic ordering. Similarly, we argue that the coe�cient of the z-direction Heisenberg
coupling from ss-processes is ferromagnetic, and analogously for the s-subspace terms.

The Dzyaloshinskii-Moriya term in general takes the form Dδ · Si × Si+δ. Based on symmetry
arguments, it was �rst proposed by Dzyaloshinskii in 1958 to explain weak ferromagnetism in
antiferromagnets [26, 132]. T. Moriya later showed that it can be generated by SOC [131]. In
our calculation, it is clear that since the coupling strength is 2κt/u, the physical origin is virtual
hopping processes with one regular spin-conserving hopping and one SOC-induced spin-�ip hopping
via the s-subspace. While the Heisenberg term typically prefers ferromagnetic or antiferromagnetic
alignment, the Dzyaloshinskii-Moriya interaction prefers a spiral phase with orthogonal nearest
neighbour spins. The competition between these di�erent preferences is the origin of the complex
magnetic phases we discuss in the next section.

An analogous spin model can also be derived for fermions [102]. Due to the Pauli principle,
there is no equivalent of the s-subspace in this calculation. In the bosonic case, we can impose an
e�ective Pauli principle by letting λ → 0 with λu �xed. The Dzyaloshinskii-Moriya interaction is
then suppressed by the huge interaction energy between atoms of the same species. One might
therefore think there is no Dzyaloshinskii-Moriya interaction for fermions, but it is in fact present
[102] because fermions satisfy anti-commutation relations instead of commutation relations. A
similar observation is that in the d-subspace Hamiltonian without SOC, we get ferromagnetic
coupling in the xy-plane, but antiferromagnetic coupling in the z-direction. The fermion model
gives an isotropic ferromagnetic Heisenberg model [102]. This is again because fermions satisfy
anti-commutation relations. From these observations, we infer that the boson model shares more
features with the fermion model for λ = 1 than for the e�ective Pauli principle.

6.1.2 Fourier representation of Hamiltonian

Before discussing the magnetic texture phase diagram, we derive the Fourier representation of the
Hamiltonian. Introduce Fourier and inverse Fourier transforms

Sq =
1√
N

∑
i

Sie
iq·ri (6.20)

Si =
1√
N

∑
q

Sqe
−iq·ri , (6.21)

where we will occasionally refer to Sq = |Sq| as the magnetic structure factor. Inserting these
expressions in the Hamiltonian (6.18), using the usual delta function identity (5.12) and introducing
a structure factor

ηaq =
∑
δ

Jaδ cos qδ, (6.22)

we get Hamiltonian

H =
∑
q

{∑
a

ηaqS
a
qS

a
−q +

∑
δ

sin qδ Dδ · iSq × S−q

}
. (6.23)

It follows from the anti-symmetry of the cross product that Sq ×S∗q is purely imaginary, and since
S−q = S∗q , the energy stays real.
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Figure 6.1: Panel (a) shows the Monte-Carlo phase diagram of Ref. [104] for the classical spin model
with Rashba SOC and component-dependent interaction. Panel (b) shows some of the various non-trivial
classical ground states in the system, while the inset shows the maximum of the magnetic structure factor
for each of these phases. (Reprinted with permission from W.S. Cole, S. Zhang, A. Paramekanti, and N.
Trivedi, Phys. Rev. Lett. 109 (2012). Copyright (2012) by the American Physical Society.)

6.2 Classical ground state phase diagram

Our goal is now to analyse the spin structure of the ground state for the e�ective Hamiltonian
(6.18). This corresponds to the spatial structure of the two boson species. The problem has been
studied in several papers using classical Monte-Carlo simulations, and we consider these in more
detail below. In section 6.4, we show that quantum �uctuations can be important. Therefore,
we cannot expect a classical approach reproduce the phase diagram very accurately, but it is
nevertheless a good starting point for the quantum treatment. Radi¢ et al. [129] studied the
model at general linear-combinations of Rashba and Dresselhaus SOC, but with spin-independent
interaction corresponding to λ = 1. In a paper by Gong et al. [102], results are presented for spin-
independent interaction, Rashba SOC, and a Zeeman �eld. Cole et al. [104] studied the model for
Rashba spin-orbit coupling and spin-dependent interaction. The resulting phase diagrams show a
plethora of di�erent classical ground states obtained for a �nite lattice. In the rest of the chapter,
we study in particular the phase diagram of the latter paper, which is reprinted in �gure 6.1. In
this section, we give a description of the phases in this diagram based on the article, but leave
discussion of the physical mechanisms behind to section 6.3.5.

The zFM and zAFM states are regular ferromagnetic and antiferromagnetic states with ordering
in the pseudo-spin z-direction. The classical xyFM-state has spin space ferromagnetic ordering with
arbitrary orientation in the xy-plane. The less trivial states are illustrated in panel (b) of �gure 6.1.
In the spiral-1 (S1) phase, spins spiral in the plane spanned by ẑ and x̂± ŷ with an incommensurate
(IC) wave vector q = (q,±q) for some q. For the spiral-2 (S2) phases, spins instead spiral in the
ẑ-ŷ or ẑ-x̂ planes, now with wavevector q = (q, 0) or (0, q). The light green region in the phase
diagram corresponds to a spiral-2 phase with commensurate q = π/2, or equivalently period 4.

The vortex is a topologically protected con�guration known from spin systems such as the
XY-model, and at heart of the celebrated Kosterlitz-Thouless phase transition [40, 133]. Here, it

https://link.aps.org/doi/10.1103/PhysRevLett.109.085302


6.3. VARIATIONAL APPROACH 47

appears as a commensurate 2x2 crystal phase (2x2 VX) in the xy-plane, as shown in panel (b) of
�gure 6.1. In the next section, we show that classically, the vortex phase is continuously degenerate
with a set of states we will refer to as the vortex family.

The skyrmion (Sk) is yet another topologically protected con�guration. It was �rst proposed by
Skyrme as a model for hadrons [134], but later shown to be of relevance also in condensed matter
systems [41]. In the classical simulations of Ref. [104], it occurs as a skyrmion crystal (SkX) of
size 3x3.

6.3 Variational approach

In this section, we analyse the phase diagram of the e�ective spin model (6.18) with a variational
approach. In Ref. [104], Monte-Carlo simulations were compared with energies of variational states
for the zFM, zAFM, xyFM, 2x2 VX, 4x1 S2, and skyrmion phases, but not for the incommen-
surate spiral-1 and spiral-2 phases. We provide calculations for all these phases in addition to a
commensurate 6x1 spiral-2 phase (6x1 S2). For the zFM, zAFM, xyFM, and vortex family states,
we arrive at exact results. We obtain also an exact expression for the commensurate 4x1 spiral-2
phase, while for the incommensurate spiral-1 and spiral-2 phases, we obtain analytical expressions
in the single-mode approximation. For the 6x1 S2 phase and the skyrmion phase, we minimize the
energy numerically with respect to a small set of variational parameters. We also discuss physical
mechanisms behind the phase diagram. As a starting point for this, one may consider the model
in limits such as α = 0, α = π/2, λ→ 0 and λ→∞ [102, 104, 118, 135].

The variational energies in this section are purely classical. In section 6.4 we consider also the
e�ect of quantum �uctuations.

6.3.1 Ferromagnetic and antiferromagnetic phases

For the classical zFM phase, all spins are aligned in the z-direction, Si = Sẑ. We insert this in
the Hamiltonian (6.18). Since the state is uniform, the cross product between neighbouring spins
is zero, so the Dzyaloshinskii-Moriya term does not contribute to the ground state energy. The
energy therefore becomes

EzFM = 2NS2Jz = −2NS2

(
4t20
λu

)
(2λ− 1) cos 2α. (6.24)

For the zAFM phase, again, there is no contribution from the Dzyaloshinskii-Moriya term.
Since neighbouring spins are oriented in opposite directions, we get

EzAFM = −EzFM = 2NS2

(
4t20
λu

)
(2λ− 1) cos 2α. (6.25)

As shown in �gure 6.2a, the xy-ferromagnetic state can be represented as Si = S(cosφ, sinφ, 0),
where φ is the angle between the x-axis and the direction of ferromagnetic ordering. The Dzyaloshinskii-
Moriya term is still zero because spins are parallel. Inserting the spins in the Hamiltonian and
using Jxx + Jxy = Jxy + Jyy , the classical xyFM-state is continuously degenerate with energy

ExyFM = −NS2

(
4t20
λu

)
(1 + cos 2α). (6.26)

6.3.2 Vortex and stripe phases

A similar continuous degeneracy exists for the 2x2 vortex state in �gure 6.2b. To show this,
consider the state illustrated in �gure 6.2c, where spins are rotated with angle θ on one of the two
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Figure 6.2: Magnetic phases in the xy-plane. The xyFM state in (a) has an arbitrary ordering angle φ
with the x-axis. Figure (b) shows the vortex phase, while (c) shows state in the vortex family characterized
by rotation with angle θ on one chessboard sublattice and angle −θ on the other. By setting θ = −π/4,
we obtain the stripe phase in (d), which can be decomposed in two sublattices A and B with opposite
magnetic ordering.

chessboard sublattices, and with angle −θ on the other. We now calculate the energy of this state.
The four spins Si are characterized by angles φi, and after the θ-rotation, these are

φ1 = 3π/4 + θ φ2 = π/4− θ φ3 = −3π/4− θ φ4 = −π/4− θ. (6.27)

This can be expressed as φi+x̂ = −φi + π and φi+ŷ = −φi. Just like the Dzyaloshinskii-Moriya
vectors, the spins of a vortex family state lie in the xy-plane. Therefore, only the Heisenberg term
contributes to the classical ground state energy, which becomes

EVX =
∑
i,δ

{∑
a

Jaδ S
a
i S

a
i+δ

}
=
∑
i,δ

{
Jxδ cosφi cosφi+x̂ + Jyδ cosφi cosφi+ŷ

}
. (6.28)

Inserting the relations between φi and φi+δ gives total energy

EVX = S2
∑
i

(
−Jxx cos2 φi + Jyx sin2 φi + Jxy cos2 φi − Jyy sin2 φi

)
. (6.29)

Using Jxx = Jyy and Jyx = Jxy , the angle φi disappears. In terms of Bose-Hubbard model parameters,
we then get classical continuously degenerate energy

EVX = −NS2

(
4t20
λu

)
(1− cos 2α) . (6.30)

In the Monte-Carlo simulations of [104], the only state showing up is the vortex phase character-
ized by θ = 0. They propose that this is due to �nite temperature e�ects. The article [129] claims
that the stripe phase dominates due to small deviations from perfect Rashba SOC. Classically,
both e�ects may be of relevance, but as discussed in section 6.4.5, classical degeneracy is broken
by quantum �uctuations in favour of the stripe phase shown in �gure 6.2d and characterized by
θ = ±π/4.

6.3.3 Spiral phases

The spirals can be divided into commensurate and incommensurate phases. For the commensurate
phases, based on physical intuition, we propose variational states with a small set of variational
parameters. We then calculate their energies in real space, before minimizing analytically (4x1 S2)
or numerically (6x1 S2). For the incommensurate phases, we instead use the Fourier transformed
Hamiltonian (6.23) in the single-mode approximation, using wave vector as variational parameter.



6.3. VARIATIONAL APPROACH 49

y

S0

S1S2

S3 θ

Z

(a)

y

S0

S1

S2S3

z

S4

S5
𝝋

(b)

Figure 6.3: Spin orientiations Si for the (a) 4x1 (b) and 6x1 spiral-2 phase variational states.

Commensurate 4x1 spiral-2 phase

The commensurate 4x1 spiral-2 phase is a state spiralling with periodicity 4 in the ŷ-ẑ-plane or
x̂-ẑ-plane. We choose the former, and can therefore write the state as

Snx̂+mŷ ≡ Sm%4, (6.31)

where %4 denotes modulo 4. The most general 4x1 spiral-2 phase is therefore Si = ŷ sinφi+ẑ cosφi,
described by four angles φi. We restrict ourselves to the Ansatz

φ0 = π/4− θ φ1 = −π/4 + θ φ2 = −3π/4− θ φ3 = 3π/4 + θ, (6.32)

as illustrated in �gure 6.3a. The physical motivation is the di�erence between the magnitudes of
the Heisenberg couplings Jyx and Jzx . It may therefore be energetically favourable to twist spins
toward either the y- or z-direction, even if the Dzyaloshinskii-Moriya term is dominant in the
spiral-2 phase region. Since here, the coupling Jyx is always ferromagnetic and typically stronger
than Jz, the angle θ is usually positive.

For the above variational state, we now derive an expression for the energy. The Heisenberg
coupling between the spins S0 and S1 cancels exactly the coupling between S1 and S2, but there is
still Heisenberg coupling between the ferromagnetically aligned neighbouring spins in x̂-direction.
Total energy is therefore

E4x1S2 = −
(

4t20
λu

)
N

4

∑
i=1,2,3,4

{
Syi S

y
i+x̂ + (2λ− 1) cos 2α Szi S

z
i+x̂ + λ sin 2α(−x̂) · Si × Si+ŷ

}
(6.33)

= −NS2

(
4t20
λu

){
1

2
[1 + (2λ− 1) cos 2α] +

1

2
[1− (2λ− 1) cos 2α] sin 2θ + λ sin 2α cos 2θ

}
(6.34)

We now minimize with respect to θ. Since the coe�cient in front of sin 2θ is positive, we get θ > 0,
as already predicted. The extrema of an expression on the form A sinx + B cosx are given by
tanx = A/B. Inserting this back into the expression we want to minimize gives

√
A2 +B2. We

are then left with energy

E4x1S2 = −NS2

(
4t20
λu

){
1

2

[
1 + (2λ− 1) cos 2α

]
+

√
1

4
[1− (2λ− 1) cos 2α]

2
+ λ2 sin2 2α

}
(6.35)
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for the commensurate 4x1 spiral-2 phase. When Fourier-transforming this state, due to the period-
icity, we can only have non-zero Fourier components at qy ∈ {0,±π/2, π} inside the �rst Brillouin
zone. By considering each of these points separately, the Fourier transform becomes

Sq = δq,π/2ŷ
NS

2

(
|Sy0 |(1 + i)ŷ + (1− i)|Sz0 |ẑ

)
, (6.36)

where |Sy0 | and |Sz0 | are given by the minimization procedure. One may now insert this in the
Fourier transform of the Hamiltonian in (6.23) and check that one obtains the same energy.

Commensurate 6x1 spiral-2

A similar calculation can be performed for the 6x1 commensurate spiral-2. We start with the
variational state illustrated in �gure 6.3b. The energy becomes

E6x1S2 =
N

6

∑
i=0,...,5

{
JyxS

y
i S

y
i+x̂ + JzxS

z
i S

z
i+x̂ + JyyS

y
i Si+ŷ + JzyS

z
i S

z
i+ŷ +Dx̂ · Si × Si+ŷ

}
, (6.37)

where D = (4t20/λu)λ sin 2α is the strength of the Dzyaloshinskii-Moriya interaction. Inserting the
spins, one obtains

E6x1S2 = −NS2

(
4t20
λu

)
1

6

[
2 + (4− 2 cos 2α) sin2 φ0 + 6(2λ− 1) cos 2α cos2 φ0 (6.38)

+ 4 cos 2α sinφ0 + 2λ sin 2α sin 2φ0 + 4λ sin 2α cosφ0

]
. (6.39)

At any given point in parameter space, we minimize this with respect to φ0, and obtain the 6x1
spiral-2 phase energy.

Performing the Fourier transform of the phase gives

Sq=πŷ =

√
NS

3
(2 sinφ0 − 1)ŷ (6.40)

Sq=π/3ŷ =

√
NS

3

{
(3/2−

√
3i/2) cosφ0ẑ + (1/2 +

√
3i/2)(sinφ0 + 1)ŷ

}
, (6.41)

and zero for all other modes inside the �rst Brillouin zone except the complex conjugate mode
Sq=−(π/3)ŷ. For the uniform rotation with φ0 = π/3, Sq=πŷ = 0, so it is twisting the spins toward
the ŷ-direction that leads to occupation of the secondary mode.

Spiral phases in Fourier space

When calculating the energy of the incommensurate spiral-1 and spiral-2 phases, we use the Hamil-
tonian (6.23) in the single mode approximation, where we assume the state to consist of only one
Fourier mode. To prepare for the calculations, we now derive some requirements on the variational
parameters Sq.

The components of each Fourier mode Sq, satisfy Parsevals theorem individually,∑
q

|Saq |2 =
∑
i

(Sai )2, (6.42)

and summing over all components, we get∑
q

|Sq|2 = NS2, (6.43)



6.3. VARIATIONAL APPROACH 51

In the single-mode approximation, the only non-zero components are Sq0 and S−q0 for some
quasimomentum q0. Using Sq = S∗−q, the above equation gives

|Sq0 |2 =
1

2
NS2. (6.44)

We should also satisfy the stronger requirement Si · Si = S2. Inserting the Fourier transform and
using the global Parseval theorem gives

Re
{
Sq0 · Sq0e−2iq0·ri

}
= 0. (6.45)

Since this holds for all ri, it is a rather strong restriction on Sq0 . Assuming q0 is an incommensurate
wavevector, the exponential is a phase factor which takes in�nitely many values with di�erent ri.
Since Sq0 · Sq0 is constant, the only way to satisfy (6.45) is Sq0 · Sq0 = 0. Expressing the Fourier
mode as

Sq0 =
√
NS2/2 (γxeiφx , γyeiφy , γze

iφz ), (6.46)

Parsevals theorem becomes

γ2
x + γ2

y + γ2
z = 1, (6.47)

and the constant spin length condition

γ2
x cos 2φx + γ2

y cos 2φy + γ2
z cos 2φz = 0 (6.48)

γ2
x sin 2φx + γ2

y sin 2φy + γ2
z sin 2φz = 0. (6.49)

For commensurate phases, the requirement is less dramatic. Considering for instance the 4x1
spiral-2 phase in the previous subsection, we have q0 = (π/2)ŷ, and hence the exponential factor in
(6.45) reduces to e−iπy = (−1)y. Since this is real, we do not need to rely on complete cancellation
of the individual component terms in Sq0 · Sq0 , since we can choose all terms (Saq )2 to be purely
imaginary. This allows us to vary the relative weight of the y- and z-directions in the Fourier
transform (6.36) of the 4x1 S2 phase even with only one mode.

Incommensurate spiral-2 phase

For the incommensurate spiral-2 phase, using the representation in (6.46), we need γx = 0, and
using the global phase freedom, we can choose φz = 0. To satisfy (6.49), we then need cos 2φy = −1,
and hence γy = γz. As illustrated by the commensurate 4x1 and 6x1 spiral-2 phases, it is often
energetically favourable to twist spins toward the y-direction. This is therefore a serious constraint
on the variational state, and the only variational parameter we have left is the momentum vector
q0 = (0, q0).

Inserting in the Hamiltonian (6.23)

Sxq0 = 0 Syq0 =

√
NS2

2

1√
2

Szq0 =

√
NS2

2

1√
2

e−iπ/2 (6.50)

and using

iSq0 × S−q0 =
NS2

2
(−x̂), (6.51)

we end up with
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Figure 6.4: The left panel shows the components of the 3x3 skyrmion crystal phase in the xy-plane. The
right panel shows the labelling of the variational state. The spins are divided into groups, where spins 1,
2, 3, and 6 form a group, and 4, 5, 7, and 8 another, while spin 0 is a group on its own. This motivates
the color-coding of links between neighbouring spins.

E = −NS2

(
4t20
λu

){
λ cos 2α cos q0 + λ sin 2α sin q0 +

1

2
[1 + (2λ− 1) cos 2α]

}
. (6.52)

Minimizing with respect to q0 gives the simple q0 = 2α, and energy

EICS2 = −
(

4t20
λu

){
1

2
[1 + (2λ− 1) cos 2α] + λ

}
. (6.53)

Incommensurate spiral-1 phase

A similar calculation can be done for the incommensurate spiral-1 phase. We choose

Sxq0 = Syq0 =

√
NS2

2

1

2
Szq0 =

√
NS2

2

1√
2
e−iπ/2, (6.54)

and have momentum vector q0 = (q0, q0). Inserting again in the Hamiltonian (6.23), the energy
becomes

EICS1 = −NS2

(
4t20
λu

){[
1

2
+ (2λ− 1/2) cos 2α

]
cos q0 +

√
2λ sin 2α sin q0

}
(6.55)

as function of the variational parameter. As earlier, the minimum of such an expression is given
by the square root of the coe�cients in front of the sine and cosine,

EICS1 = −NS2

(
4t20
λu

){[
1

2
+ (2λ− 1/2) cos 2α

]2

+ 2λ2 sin2 2α

}1/2

. (6.56)

The wavevector minimizing the energy is determined by

tan q0 =

√
2λ sin 2α

1/2 + (2λ− 1/2) cos 2α
, (6.57)

where 0 ≤ q0 ≤ π.
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6.3.4 Skyrmion phase

Consider the skyrmion con�guration in �gure 6.4, which is based on the illustration of the skyrmion
phase in [104]. We number the spins as in the right panel, and divide them into three groups. The
spin S0 is on its own, and aligned in the z-direction. The spins 1, 2, 3, and 6 belong to the same
group, and form angle θ with the z-axis. The spins 4, 5, 7, 8 constitute the last group, and form
angle φ with the z-axis. The components in the xy-plane are as shown in the �gure. We now write
down all spins:

S0 = Sẑ

S1 = S(cos θ ẑ − sin θ x̂) S2 = S(cos θ ẑ + sin θ x̂)

S3 = S(cos θ ẑ − sin θ ŷ) S6 = S(cos θ ẑ + sin θ ŷ) (6.58)

S4 = S(cosφ ẑ + sinφ (−x̂− ŷ)/
√

2) S5 = S(cosφ ẑ + sinφ (+x̂− ŷ)/
√

2)

S7 = S(cosφ ẑ + sinφ (−x̂+ ŷ)/
√

2) S8 = S(cosφ ẑ + sinφ (+x̂+ ŷ)/
√

2)

Links between spins can be characterized by which group the spins they connect belong to, and
this is shown with color-coding in �gure 6.4, where there are green, blue, red, and black links.
Consider �rst the Heisenberg term. The Heisenberg energy of the skyrmion state is

9EH/NS2 = 4 cos θ Jz

+ 2 cos2 θ Jz − sin2 θ (Jxx + Jyy )

+ 8 cos θ cosφ Jz + 2
√

2 sin θ sinφ (Jyx + Jxy )

+ 4 cos2 φ Jz + sin2 φ (Jyx + Jxy − Jyy − Jxx ),

(6.59)

where the di�erent lines correspond to green, blue, red, and black links respectively.
For the Dzyaloshinskii-Moriya term, black links do not contribute since there is cancellation

between links 4-5 and 7-8, and similarly for 4-7 and 5-8. For green, blue, and red links, we then
get

9EDM/NS2 = 2 sin θ (x̂ ·Dy − ŷ ·Dx)

+ 2 sin θ cos θ (ŷ ·Dy − x̂ ·Dy)

+ 2
√

2 sinφ cos θ +
√

2 sinφ cos θ (x̂ ·Dy − ŷ ·Dx).

(6.60)

Collecting the terms and expressing the spin model coupling constants in terms of the original
boson model parameters, the energy becomes

E3x3SkX(θ, φ) = −NS
2

9

(
4t20
λu

){
(4 cos θ + 4 cos2 φ+ 2 cos2 θ + 8 cos θ cosφ)(2λ− 1) cos 2α

− 2(sin2 φ+ sin2 θ) cos 2α+ 2(2
√

2 sin θ sinφ+ sin2 φ)

+ 4(sin θ − sin θ cos θ +
√

2 sinφ cos θ)λ sin 2α

}
.

This can be minimized with respect to the variational parameters θ and φ. We do this numerically.
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Figure 6.5: Variational state energies per spin in units of 4St20/λu as function of α at di�erent �xed λ.

6.3.5 Comparison of variational energies

In this section, we compare the variational energies and obtain a phase diagram similar to �gure
6.1 obtained by Monte-Carlo simulations in [104]. We also discuss physical mechanisms behind the
phase diagrams.

In �gure 6.5, we have �xed λ and plot the classical ground state energies as function of α in
units of 4t20S

2/λu. In 6.6, we keep α �xed and plot as function of λ. By picking out the state
with the lowest energy at all points (α, λ) in parameter space, we get a phase diagram. Some of
the transition lines can even be determined analytically. For instance, by equating the zAFM and
vortex state energies, one obtains the transition line between the 2x2 VX and zAFM states,

λ =
1

4

(
3− 1

cos 2α

)
. (6.61)

We present the variational phase diagram in �gure 6.7.
Qualitatively, there is rather good agreement with the phase diagram in [104]. Although the

transition lines are not at exactly the same place, the general shape is the very similar. This is to
be expected, since the energy di�erence between various variational states can be small, as shown
for instance in �gure 6.5. Approximations in the variational approach and numerical errors and
�nite size e�ects in Monte-Carlo simulations may therefore distort the phase diagrams relative to
each other.
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Figure 6.6: Variational state energies per spin in units of 4St20/λu as function of λ at di�erent �xed α.
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Figure 6.7: Classical variational spin texture phase diagram for the Mott insulator, where λ is the inter-
relative to intracomponent interaction strength in the original boson model, and where α determines the
relative importance of ordinary and SOC-induced hoppings. The phase diagram shows phases such as the
z-ferromagnet (zFM), z-antiferromagnet (zAFM), ferromagnet in the xy-plane (xyFM), vortex (VX) and
stripe, skyrmion (SkX), and various spiral (S) phases. For a detailed description, we refer to the main text.
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The phase diagram can be understood through competition between terms in the e�ective spin
model. Considering �rst small α, the coe�cients in the Heisenberg term of the spin model (6.18)
are ferromagnetic. Since the Dzyaloshinskii-Moriya term is small, the system typically favours
ferromagnetic alignment. If λ > 1, the coupling constant Jz dominates the other Heisenberg
couplings since 2λ − 1 > 1, and we therefore get a z-ferromagnet. For λ < 1, the situation
is reversed, and we get alignment in the xy-plane. The exception is if λ is close to 1. In the
emergent slowly spiralling phases, the Heisenberg term still dominates the DM interaction, but the
Heisenberg anisotropy does not.

Close to α = π/2, the Heisenberg coupling Jz is antiferromagnetic and gives the zAFM phase
for λ & 1. For λ < 1, the situation is somewhat di�erent because the couplings in the xy-plane are
both ferro- and antiferromagnetic. This gives rise to the somewhat more exotic 2x2 vortex phase.

In the middle of the phase diagram, the DM term dominates and generates spiral phases. The
spirals can be divided into two groups. The spiral-1 and spiral-2 phases are spiralling in di�erent
planes, and the spiral-1 phase always occurs for larger λ than spiral-2. This is because the overall
strength of the Heisenberg coupling relative to the DM strength is reduced with increasing λ. Since
unlike the S1 phase, the S2 phase has neighbouring spins with perfect ferromagnetic alignment, an
increase in λ pro�ts the S1 phase. In our phase diagram 6.7, the line between the incommensurate
S1 and S2 phases goes at λ = 1, which can be shown by inserting λ = 1 in the two variational
energies. This is a di�erence from the Monte-Carlo phase diagram 6.1, where this line is bent
upwards. We believe the reason for this mismatch is that the incommensurate spiral phases cannot
twist their spins toward the y-direction in the single-mode approximation. The e�ect of this is
more signi�cant for the S2-phase because of the perfect ferromagnetic alignment in one of the
spatial directions.

Another di�erence between the phase diagrams is that the variational diagram has a smaller
zFM region. Since the zFM variational energy is exact and the spiral-1 phase energy can only get
better by increasing the number of variational parameters, this cannot be due to weaknesses in the
variational approach. We believe instead that it traces back to �nite size e�ects in the Monte-Carlo
simulations, where Ref. [104] uses a lattice with size of order 30x30. Domain walls then make the
spiral and skyrmion phases somewhat less competitive. The size of the skyrmion region is also
di�erent. This should be because our variational Ansatz for the skyrmion state is too simple,
but qualitatively, we have shown the existence of a region with a competitive commensurate 3x3
skyrmion crystal occurring in approximately the right place.

We mentioned in section 4.3.2 that spin textures are typically similar at di�erent sides of the
SF-MI transition. Comparing with our weak coupling mean �eld result, there are similarities
between the derived zero-temperature parabolic transition line in equation (5.46) and the shape
of the zFM-S1 transition in the Mott insulator phase. Although the spin texture problem close to
the SF-MI transition cannot be studied with the methods we have applied in this chapter, this is
still an example of a resemblance in the weakly and strongly coupled regimes.

In conclusion, the location of transition lines is sensitive on method and approximations because
the di�erence between energies of the various states can be small. This causes di�erences between
the phase diagram obtained here and by classical Monte-Carlo simulations in Ref. [104]. In spite
of this, we have reproduced the main qualitative features of the phase diagram with a variational
approach. We have also discussed the physical mechanisms behind, starting from the e�ective spin
model.

6.4 Excitation spectra

The treatment in the previous sections was entirely classical. In this section, we consider quantum
excitations on top of some of the classical ground states.

Various approaches have been applied to study quantum excitations on top of spin models
with Dzyaloshinskii-Moriya interaction. In the Schwinger boson mean �eld theory, one may use
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homogeneous decoupling of link variables for ferromagnetic and antiferromagnetic phases to obtain
the excitation spectrum and quantum corrections [136�138]. Jordan-Wigner fermionization is
particularly well suited for one-dimensional systems [105, 118, 135], but has also been generalized
to two dimensions [139]. Dynamical mean-�eld theory [120] and Ginzburg-Landau theory [140, 141]
have also been applied successfully. We will use the Holstein-Primako� transformation to calculate
excitation spectra of the spin model [142�146].2 Introduced already in 1940, it has ever since been
a useful tool for analysing spin wave collective excitation in magnetic systems [64, 149].

We consider the zFM, zAFM, xyFM, and stripe phases. The general procedure is �rst to
introduce Holstein-Primako� bosons, then decouple lattice sites through Fourier transform, before
diagonalizing the problem with a Bogoliubov transform. We discuss qualitative features of the
excitation spectra around the minima and quantum �uctuations in the ground state on basis of
the energy eigenvalues.

6.4.1 zFM excitation spectrum

For the zFM phase, introduce Holstein-Primako� boson operators ai such that [64]

Szi = S − a†iai (6.62)

S+
i = (2S − a†iai)

1/2ai (6.63)

S−i = a†i (2S − a
†
iai)

1/2. (6.64)

Assuming ai and a
†
i satisfy boson commutation relations, one may show that the above spin oper-

ators satisfy the angular momentum algebra [Sα, Sβ ] = iεαβγSγ . Boson excitations correspond to
deviations from perfect ferromagnetic ordering. The idea is to make an expansion in the parameter
1/S, and to include in the analysis only terms up to quadratic order in bosons, thus neglecting
their interaction. This corresponds to the classical limit. Although we only have S = 1/2, praxis
has shown that this expansion gives quite sensible results [150]. We get

Szi = S − a†iai S+
i '

√
2S ai S−i '

√
2S a†i . (6.65)

For the Dzyaloshinskii-Moriya interaction, we have

HDM = D
∑
i

{
(Sxi S

z
i+x̂ − Szi Sxi+x̂) + (Syi S

z
i+ŷ − Szi S

y
i+ŷ)

}
. (6.66)

Since Sxi and Syi are linear in boson operators to lowest order, we let Szi ' S. Inserting this in the
above expression, making a shift i + δ → i in some of the terms, the whole term becomes zero to
quadratic boson order. The Hamiltonian can then be written as

H =
∑
i,δ

{
JzSzi S

z
i+δ +

1

4
Jxδ (S+

i + S−i )(Si+δ + S−i+δ)−
1

4
Jyδ (S+

i − S
−
i )(Si+δ − S−i+δ)

}

=
∑
i,δ

{
JzSzi S

z
i+δ +

1

4
(Jxδ + Jyδ )(S+

i S
−
i+δ + S−i S

+
i+δ) +

1

4
(Jxδ − J

y
δ )(S+

i S
+
i+δ + S−i S

−
i+δ)

}
(6.67)

2During the preparation of this manuscript, we became aware of two related very recent articles. In [147],
Holstein-Primako� transformation is applied to the model with spin-independent interaction (λ = 1) and general
linear combination of Rashba and Dresselhaus SOC. In [148], the model with Rashba SOC and spin-independent
interaction is investigated using quantum simulations. We discuss both articles in more detail in the �nal section of
this chapter.
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Inserting Holstein-Primako� boson operators, we get real space Hamiltonian

H = E0 − 4SJz
∑
i

a†iai +
S

2

∑
i,δ

{
(Jxδ − J

y
δ )(a†ia

†
i+δ + aiai+δ) + (Jxδ + Jyδ )(a†iai+δ + aia

†
i+δ)

}
,

(6.68)
where E0 = 2NS2Jz is the classical ground state energy. Lattice sites are decoupled by introducing
Fourier transformed bosons and using the usual delta function identity (5.12). We performed
exactly the same type of calculation when �nding the dispersion relation for the weakly coupled
�uid in section 5.1. The result is

H = E0 +
1

2

∑
q

{Aq(a†qaq + a†−qa−q) +Bq(aqa−q + a†qa
†
−q)}, (6.69)

with

Aq = S

(
4t20
λu

)
[4(2λ− 1) cos 2α− (1 + cos 2α)(cos qx + cos qy)] (6.70)

Bq = S

(
4t20
λu

)
(1− cos 2α)(cos qx − cos qy). (6.71)

The standard Bogoliubov transformation in section 2.4 gives energy spectrum

ωq =
√
A2
q −B2

q . (6.72)

Further insight is provided by Taylor-expanding ωq around the minimum at q = 0. To order O(q2),
we obtain

ωq = S

(
4t20
λu

)√
a0 + a2q2 +O(q4), (6.73)

where

a0 = [8(λ− 1) cos 2α− 2(1− cos 2α)]
2 (6.74)

a2 = (1 + cos 2α) [8(λ− 1) cos 2α− 2(1− cos 2α)] . (6.75)

Hence, the dispersion relation has a gap
√
a0 which protects the zFM state against thermal �uc-

tuations, and quadratic dependence around the minimum. For α = 0 and λ = 1, the spin model
reduces to the isotropic Heisenberg model with quadratic dispersion [64]. This is consistent with
our result, because a0 and a2 vanish and leave quartic dependence within the square root.

The coe�cient a2 becomes negative immediately after the gap a0 closes, and therefore, the
eigenvalue becomes imaginary. This corresponds to an instability, and we plot the line where it
happens in �gure 6.9. Since this is well outside the classical zFM region, our result remains valid,
and we do not expect quantum �uctuations to substantially reduce the extent of the classical
region. Since we have neglected the DM interaction entirely, we could not hope to reproduce the
zFM-S1 transition.

We plot the dispersion relation along qy = 0 for �xed λ and several α in �gure 6.8b. The
gap becomes smaller with increasing α because of the weaker Heisenberg coupling strength, but in
addition, the e�ect is enhanced by the reduction of Jz relative to Jyx = Jxy .

For the XXZ-model given by α = 0, the classical and quantum mechanical ground states are
equal because Bq = 0 and no Bogoliubov transformation is necessary. At �nite α, the classical
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Figure 6.8: Figure (a) shows the Brillouin zone structure of dispersion relation for the z-ferromagnet at
λ = 1.2 and α/π = 0.1. Figure (b) shows the dispersion relation along qy = 0 for λ = 1.2. The state
is protected by a gap. Figure (c) shows quantum corrections for di�erent λ up to the point where the
variational calculation predicts transition to the spiral phase.

ground state energy E0 gets an additional quantum correction Eq − E0, as apparent from the
diagonalized Hamiltonian

H = E0 +
1

2

∑
q

(ωq −Aq) +
∑
q

ωqα
†
qαq. (6.76)

Since Aq > ωq, the correction is negative. Although quantum �uctuations reduce the magnetization
in the preferred spin space z-direction, the possibility of quantum superposition can be utilized
to reduce the ground state energy by obtaining contributions from coupling between x- and y-
components. We plot the quantum corrections as function of α at di�erent �xed λ in �gure 6.8c.
The corrections increase with α, but are always small.

We may now calculate the magnetization of the system using

M =
∑
i

〈Szi 〉 = NS −
∑
i

〈a†iai〉. (6.77)

By re-expressing the original bosons in terms of the rotated Bogoliubov bosons discussed in section
2.4, one may show

M = NS − 1

2

∑
q

(
Aq
ωq
− 1

)
−
∑
q

Aq/ωq
eβωq − 1

. (6.78)

The corrections in the magnetization are of the same order as in the energy, as one can see by
expanding them in the small parameter Bq/Aq.

For the zFM phase, we have now shown that quantum �uctuation e�ects are small by intro-
ducing the Holstein-Primako� transformation. The Dzyaloshinskii-Moriya interaction does not
contribute to the excitation spectrum to lowest order in the spin wave expansion, and the state is
protected against thermal �uctuations by a gap.

6.4.2 zAFM excitation spectrum

We now discuss the zAFM excitation spectrum. The base case of an isotropic antiferromagnetic
Heisenberg model requires a Bogoliubov transformation, and gives a linear dispersion relation
[64, 128, 151]. Unlike the zFM phase, there is no choice of parameters α and λ which leads to the
base case, but we still adopt the same procedure.

To reproduce the ground state in the absence of boson excitations, we need di�erent boson
operators on the sublattices with opposite magnetic ordering. To lowest order in the 1/S-expansion,
we introduce Holstein-Primako� bosons
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Figure 6.9: Quantum �uctuation e�ects on the classical Mott insulator variational phase diagram in
section 6.3. The green lines show where the Holstein-Primako� approach breaks down for the zFM- and
zAFM phases. This happens outside the classical regions. The red line in the classical xyFM region
indicates the appearance of a continuously degenerate minimum and possible breakdown of magnetic
ordering. The red line in the classical stripe or vortex phase region indicates breakdown of the stripe phase
and leads to a signi�cant reduction of the stripe phase region to lowest order in the spin wave expansion.

Szα = S − a†αaα S+
α '

√
2S aα S−α '

√
2S a†α (6.79)

Szβ = −S + b†βbβ S+
β '

√
2S b†β S−β '

√
2S bβ (6.80)

for lattice sites α ∈ A on the sublattice with magnetic ordering along +ẑ, and β ∈ B on the
sublattice with ordering along −ẑ.

The Dzyaloshinskii-Moriya interaction is still

HDM =
4t20
u

sin 2α
∑
i

{
Sxi S

z
i+x − Szi Szi+x + Syi S

z
i+y − Szi S

y
i+y

}
=

4t20
u

sin 2α
∑
i

{
Sxi S

z
i+x − Szi−xSxi + Syi S

z
i+y − Szi−yS

y
i

}
,

(6.81)

and to quadratic order in bosons, we keep only, Szi ' ±S. Since the lattice sites ri±δ have the
same magnetic ordering, we get

HDM ' 0 (6.82)

also for the z-antiferromagnet. This leaves the Heisenberg term, and inserting the boson operators
gives
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H = −2NS2Jz +
∑
α,δ

2SJza†αaα +
∑
β,δ

2SJzb†βbβ

+
S

2

∑
α,δ

{
(Jxδ + Jyδ )(a†αb

†
α+δ + aαbα+δ) + (Jxδ − J

y
δ )(a†αbα+δ + aαb

†
α+δ)

}
+
S

2

∑
β,δ

{
(Jxδ + Jyδ )(b†βa

†
β+δ + bβaβ+δ) + (Jxδ − J

y
δ )(b†βaβ+δ + bβa

†
β+δ)

}
.

(6.83)

Introduce Fourier transformed boson operators aq and bq in accordance with

ai =

√
2

N

∑
q

e−iq·riaq bi =

√
2

N

∑
q

e−iq·ribq, (6.84)

where the sum goes over the reduced Brillouin zone |qy| ≤ |π − qx| for qx ≥ 0 and |qy| ≤ |π + qx|
for qx ≤ 0. Inserting in the Hamiltonian gives

H = E0 +
1

2

∑
q

{
Aq (a†qaq + a†−qa−q + b†qbq + b†−qb−q)

+Bq (a†qb
†
−q + aqb−q + a†−qb

†
q + a−qbq)

+ Cq (a†qbq + aqb
†
q + a†−qb−q + a−qb

†
−q)

} (6.85)

with

Aq = 4SJz = −4S

(
4t20
λu

)
(2λ− 1) cos 2α (6.86)

Bq = S
∑
δ

(Jxδ + Jyδ ) cos qδ = −S
(

4t20
λu

)
(1 + cos 2α)(cos qx + cos qy) (6.87)

Cq = S
∑
δ

(Jxδ − J
y
δ ) cos qδ = S

(
4t20
λu

)
(1− cos 2α)(cos qx − cos qy). (6.88)

We now perform the Bogoliubov transformation using the dynamic matrix method described
in section 2.4. We write the Hamiltonian as

H = E0 +
1

2

∑
q

{
1

2
ψ†qMqψq − 2Aq

}
, (6.89)

where

ψ†q =
(
a†q a†−q b†q b†−q aq a−q bq b−q

)
, (6.90)

and Mq is the matrix
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Mq =



Aq 0 Cq 0 0 0 0 Bq
0 Aq 0 Cq 0 0 Bq 0
Cq 0 Aq 0 0 Bq 0 0
0 Cq 0 Aq Bq 0 0 0
0 0 0 Bq Aq 0 Cq 0
0 0 Bq 0 0 Aq 0 Cq
0 Bq 0 0 Cq 0 Aq 0
Bq 0 0 0 0 Cq 0 Aq


. (6.91)

By simultaneously rearranging the rows and columns of this matrix, we can write Mq on the block
diagonal form

Mq =



Aq Cq 0 Bq
Cq Aq Bq 0
0 Bq Aq Cq
Bq 0 Cq Aq

Aq Cq 0 Bq
Cq Aq Bq 0
0 Bq Aq Cq
Bq 0 Cq Aq


=

(
Nq 0
0 Nq

)
. (6.92)

The rearrangements correspond to changing the order of the operators inside ψq, and here, this
gives

ψ†q → ψ†q =
(
a†q b†q a−q b−q aq bq a†−q b†−q

)
(6.93)

We now have four coupled bosons instead of eight. Consdering the 4x4 matrix Nq and using the
dynamic matrix method, we need to �nd the positive eigenvalues of

Ñq =


Aq Cq 0 Bq
Cq Aq Bq 0
0 −Bq −Aq −Cq
−Bq 0 −Cq −Aq

 . (6.94)

These are

ω±q =
√

(Aq ± Cq)2 −B2
q , (6.95)

and the Hamiltonian becomes

H = E0 +
1

2

∑
q

(ω+
q + ω−q − 2Aq) +

∑
q

(
ω+
q α
†
qαq + ω−q β

†
qβq
)

(6.96)

with new boson operators αq and βq. The eigenvalues ω±q are related by qx ↔ qy, as apparent
from the coe�cient Cq.

As shown in �gure 6.10, the dispersion relation is gapped. The minima are located at q =
(±π, 0) and q = (0,±π), around which the dispersion relation is quadratic. One may again show
this by Taylor expanding around the minima. In �gure 6.9, we plot the line where the gap vanishes
and the state develops an instability to lowest order in the spin wave expansion. The condition is
exactly the same as for the zFM state if we let α → π/2 − α, and the analysis therefore remains
valid in the classical zAFM region. In �gure 6.10c, we plot quantum corrections to the ground
state energy. The corrections are small and negative, and the qualitative picture given for the
z-ferromagnet applies here as well.
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Figure 6.10: Figure (a) shows the Brillouin zone structure of the zAFM excitation spectrum eigenvalue ω1
q at

λ = 1.4 and α/π = 0.4, and the black lines indicate the reduced Brillouin zone. Figure (b) shows a cut along
qy = 0 at λ = 1.4 and di�erent values of α. Finally, (c) shows the ground state energy quantum corrections up
to the point where the variational calculation predicts transition to a di�erent phase.

By introducing di�erent bosons on the two sublattices with di�erent magnetic ordering, we
have now shown that quantum corrections are small. Hence, the ground state is well described by
the classical antiferromagnetic state, and we do not expect the zAFM parameter space region to
be signi�cantly reduced by quantum �uctuations.

6.4.3 xyFM excitation spectrum

For the xy-ferromagnet, we assume spins are aligned at an angle φ with the x-axis, so that Si =
S(cosφ, sinφ, 0). We then rotate the spin space coordinate system so that the z-axis is aligned
with the direction of ferromagnetic ordering. We �rst rotate the spin coordinate system down in
the xy-plane through

Sxi → Sxi Syi → Szi Szi → −S
y
i (6.97)

and then do the rotation (
Sx

Sz

)
→
(

sinφ cosφ
− cosφ sinφ

)(
Sx

Sz

)
. (6.98)

In the new spin space variables, the Hamiltonian becomes

H =
∑
i,δ

{
(Jxδ sin2 φ+ Jyδ cos2 φ) Sxi S

x
i+δ + Jzδ S

y
i S

y
i+δ

+ (Jxδ cos2 φ+ Jyδ sin2 φ) Szi S
z
i+δ + (Jxδ − J

y
δ ) sinφ cosφ (Sxi S

z
i+δ + Szi S

x
i+δ)

}
+D

∑
i

{
sinφ(Syi S

x
i+x − Sxi S

y
i+x) + cosφ (Sxi S

y
i+y − S

y
i S

x
i+y)

}
.

(6.99)

Introducing again the Holstein-Primako� bosons of the ferromagnet from section 6.4.1, the term
linear in boson operators from the DM interaction disappears because∑

δ

(Jxδ − J
y
δ ) = 0. (6.100)

In real space, the Hamiltonian then becomes
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H = NS2
∑
δ

(Jxδ cos2 φ+ Jyδ sin2 φ)− 2S
∑
i,δ

(Jxδ cos2 φ+ Jyδ sin2 φ)a†iai

+
∑
i,δ

S

2

(
Jxδ sin2 φ+ Jyδ cos2 φ+ Jzδ

)
(aia

†
i+δ + a†iai+δ)

+
∑
i,δ

S

2

(
Jxδ sin2 φ+ Jyδ cos2 φ− Jzδ

)
(aiai+δ + a†ia

†
i+δ)

+ iSD
∑
i

[
sinφ (a†iai+x − aia

†
i+x)− cosφ (a†iai+y − aia

†
i+y)

]
.

(6.101)

By Fourier transforming the various terms, we get

H = E0 +
∑
q

{
(Aq +Bq) a

†
qaq + (Aq −Bq) a†−qa−q + Cq(aqa−q + a†qa

†
−q)
}
, (6.102)

now with

Aq = −S
∑
δ

(
Jxδ cos2 φ+ Jyδ sin2 φ

)
+ (S/2)

∑
δ

(
Jxδ sin2 φ+ Jyδ cos2 φ+ Jzδ

)
cos qδ (6.103)

Bq = −DS (sinφ sin qx − cosφ sin qy) (6.104)

Cq = (S/2)
∑
δ

(
Jxδ sin2 φ+ Jyδ cos2 φ− Jzδ

)
cos qδ. (6.105)

The Bogoliubov transformation gives Hamiltonian

H = E0 +
∑
q

{
1

2
(ω+
q + ω−q )−Aq

}
+
∑
q

{
ω+
q α
†
qαq + ω−q β

†
qβq
}
, (6.106)

where αq, βq are two operators satisfying boson commutation relations, and where ω±q are the two
positive eigenvalues of the matrix

M̃q =


Aq +Bq 0 0 Cq

0 Aq −Bq Cq 0
0 −Cq −(Aq +Bq) 0
−Cq 0 0 −(Aq −Bq)

 , (6.107)

namely

ω±q =
∣∣∣Bq ±√A2

q − C2
q

∣∣∣ . (6.108)

We can also express Aq, Bq, and Cq in terms of the parameters of the original boson model,
obtaining
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Figure 6.11: Quantum corrections δE for the xy-ferromagnet with classical energy E0. Figure (a)
shows the corrections as function of the ordering angle φ at α/π = 0.1 and λ = 0.8. Due to the angle
dependence, classical degeneracy is lifted in favour of alignment along the x- or y-axis. Figure (b) shows
signi�cant corrections increasing with α at di�erent �xed λ inside the xyFM region predicted by the classical
variational calculation. The red dots mark the appearance of the continuously degenerate minimum.

Aq = S

(
4t20
λu

){
1 + cos 2α − 1

2

[
cos 2α sin2 φ+ cos2 φ+ (2λ− 1) cos 2α

]
cos qx

− 1

2

[
sin2 φ+ cos 2α cos2 φ+ (2λ− 1) cos 2α

]
cos qy

} (6.109)

Bq = S

(
4t20
λu

)
λ sin 2α

[
sinφ sin qx − cosφ sin qy

]
(6.110)

Cq =− S

2

(
4t20
λu

){[
cos 2α sin2 φ+ cos2 φ− (2λ− 1) cos 2α

]
cos qx

+
[

sin2 φ+ cos 2α cos2 φ− (2λ− 1) cos 2α
]

cos qy

}
.

(6.111)

Calculating the net magnetization, we need the eigenvectors of the dynamic matrix to construct the
matrix T , which we again need to express Sz = S−

∑
i a
†
iai/N in terms of the new boson operators

α and β. In these calculations, the Dzyaloshinskii-Moriya term drops out, so the calculation is in
fact perfectly analogous to the regular two-species calculation with Bq = 0. The main qualitative
features can however be extracted solely on basis of the eigenvalues.

First, the size of ground state energy quantum corrections indicates the importance of quantum
�uctuations. Moreover, if the quantum correction to the ground state energy depends on the angle
φ, the classical continuous degeneracy is lifted. As shown in �gure 6.11a, there is in fact a very
slight preference for alignment in the x- or y-direction. At α/π = 0.1 and λ = 0.8, the quantum
correction to the ground state energy is roughly 1 %, and the variations with alignment angle φ
are up to 4 % of this. These are quite typical numbers, signifying that quantum corrections are
important.

Second, the qualitative nature of thermal excitations is determined by the low energy behaviour
of the excitation spectrum. In the following, we set φ = π/2, which is one the states favoured by
quantum �uctuations. The xy-ferromagnet dispersion relation is plotted in �gure 6.12, and there
is a minimum at q = 0. Expanding around this gives

ω± = S

(
4t20
λu

) ∣∣∣λ sin(2α)qx ±
√
γ0(cos(2α)q2

x + q2
y)
∣∣∣ (6.112)
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Figure 6.12: Excitation spectrum for the xy-ferromagnet at λ = 0.8. Left �gures: Dispersion relation in the
�rst Brillouin zone. Middle �gures: Brillouin zone structure of low energy excitations. Right �gures: dispersion
relation along x- and y-directions. First row: α/π = 0.1. The dispersion relation is linear around the minimum.
Second row: α/π = 0.15. Su�ciently strong Dzyaloshinskii-Moriya interaction gives rise to a continuously
degenerate minimum.
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with

γ0 =
1

2
(1− cos 2α) + 2(1− λ) cos 2α. (6.113)

For su�ciently strong Dzyaloshinskii-Moriya interaction, the two terms can cancel, giving rise
to a continuously degenerate minimum. This is illustrated in �gure 6.12e. Since this minimum
grows from q = 0, the condition for this to happen can be determined from (6.112). If we let
tan2 ξ = q2

y/q
2
x, solving ω

−
q = 0 at �nite q gives

λ2 sin2 2α

γ0
− cos 2α = tan2 ξ. (6.114)

As shown in 6.12e, the degenerate minimum has the shape of a cross close to the origin, and the
direction of the arms is determined by this equation. To solve it, we need the left hand side to be
positive, and the continuously degenerate minimum therefore appears at

λ2 sin2 2α− γ0 cos 2α = 0 (6.115)

Solving for λ gives

λ = − cot2 2α+ cot2 2α

√
1 +

sin2 2α

cos3 2α

(
1

2
+

3

2
cos 2α

)
. (6.116)

The formation of the continuously degenerate minimum leads to existence of costless excitation
modes at �nite quasimomentum vectors, which may destroy the ferromagnetic ordering. We should
however keep in mind that we have neglected interaction between the Holstein-Primako� bosons.
In analogy with the Rashba degenerate minimum in the continuum BEC discussed in section 3.3,
interactions may reduce the massive degeneracy [22, 96]. Appearance of the continuous degeneracy
is in any case indicative that something happens.

Aligning spins in the xy-plane allows the Dzyaloshinskii-Moriya term to contribute to the ex-
citation spectrum to lowest order in the spin wave expansion. We have shown that this causes
relatively large quantum �uctuations, and that it breaks the classical ground state degeneracy in
favour of alignment in the x- or y-direction. At su�ciently large Dzyaloshinskii-Moriya interaction
strength, the formation of a continuously degenerate minimum allows for costless excitations possi-
bly destroying ferromagnetic ordering, and hence reducing the xy-ferromagnet region in parameter
space.

6.4.4 Stripe phase excitation spectrum

For the vortex family states in �gure 6.2c, one should in principle introduce four di�erent bosons
on the four sublattices with di�erent spin orientation. For simplicity, we consider the stripe phase,
where it su�ces to introduce di�erent boson operators a and b on the two sublattices A and B
with opposite magnetic ordering in �gure 6.2d. Make a rotation

Sy → Sz Sz → −Sy Sx → Sx, (6.117)

so that in the new coordinates, spins are aligned parallel or antiparallel to the spin space z-direction.
The Hamiltonian is then

H =
∑
i,δ

{
Jxδ S

x
i S

x
i+δ + Jyδ S

z
i S

z
i+δ + Jzδ S

y
i S

y
i+δ

}
+D

∑
i

{
Syi S

x
i+x̂ − Sxi S

y
i+x̂ + Syi S

z
i+ŷ − Szi S

y
i+ŷ

}
(6.118)

Similar to the calculation for the z-antiferromagnet, introduce the bosons so that
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Szα = S − a†αaα S+
α '

√
2Saα S−α '

√
2Sa†α (6.119)

Szβ = −S + b†βbβ S+
β '

√
2Sb†β S−β '

√
2Sbβ , (6.120)

for α ∈ A and β ∈ B, the only di�erence from the zAFM calculation being the de�nition of the
sublattices. Since we use a real space unit cell with twice the original size in y-direction, this is
associated with a Brillouin zone reduction to −π/2 < qy ≤ π/2.

After inserting the Holstein-Primako� transformation with di�erent bosons on the two sublat-
tices in the above rotated Hamiltonian, insert Fourier transformed boson operators de�ned as

ai =

√
2

N

∑
q

eiq·riaq, (6.121)

bi =

√
2

N

∑
q

e−iq·ribq. (6.122)

This gives

H = E0 +
1

2

∑
q

{
(Aq +Bq)(a

†
qaq + b†qbq) + (Aq −Bq)(a†−qa−q + b†−qb−q)

+ Cq(a
†
qa
†
−q + aqa−q + b†qb

†
−q + bqb−q)

+Dq(a
†
qb−q + aqb

†
−q + a†−qbq + a−qb

†
q)

+ Eq(a
†
qb
†
q + aqbq + a†−qb

†
−q + a−qb−q)

}
,

(6.123)

where the coe�cients are

E0 = NS2(Jyx − Jyy ) (6.124)

Aq = −2S(Jyx − Jyy ) + S(Jxx + Jzx) cos qx (6.125)

Bq = −2DS sin qx (6.126)

Cq = S(Jxx − Jzx) cos qx (6.127)

Dq = S(Jxy − Jzy ) cos qy (6.128)

Eq = S(Jxy + Jzy ) cos qy. (6.129)

We can express the coe�cients in terms of the original boson model parameters α and λ, obtaining

Aq = 2S

(
4t20
λu

)
(1− cos 2α− λ cos 2α cos qx) (6.130)

Bq = −2S

(
4t20
λu

)
λ sin 2α sin qx (6.131)

Cq = 2S

(
4t20
λu

)
(λ− 1) cos 2α cos qx (6.132)

Dq = −S
(

4t20
λu

)
[1− (2λ− 1) cos 2α] cos qy (6.133)

Eq = −S
(

4t20
λu

)
[1 + (2λ− 1) cos 2α] cos qy. (6.134)
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Figure 6.13: Figure (a) shows the stripe phase excitation spectrum eigenvalue ω−
q at λ = 0.8 and

α/π = 0.4, where the black lines indicate the reduced Brillouin zone. Figure (b) shows typical dispersion
relations along qy = 0 at λ = 0.8. The dispersion relation is linear around minima at qx = ±π with a
slope that is decreasing with α. For su�ciently small α the energy turns imaginary, corresponding to an
instability. Figure (c) shows quantum corrections δE normalized to the ground state energy E0 in the
stable regime.

For each Fourier mode inside the reduced Brillouin zone, we can again write the Hamiltonian in
matrix form, obtaining,

H = E0 +
1

2

∑
q

(
1

2
ψ†qMqψq − 2Aq

)
. (6.135)

We choose ψq as

ψ†q =
(
a†q b†−q a−q bq aq b−q a†−q b†q

)
(6.136)

to be able to write Mq on the block diagonal form

Mq =

(
Nq 0
0 Nq

)
, (6.137)

where Nq is the 4x4-matrix

Nq =


Aq +Bq Dq Cq Eq
Dq Aq −Bq Eq Cq
Cq Eq Aq −Bq Dq

Eq Cq Dq Aq +Bq

 . (6.138)

The eigenvalues of the dynamic matrix M̃q are

ω±q =

[
A2
q +B2

q +D2
q − C2

q − E2
q ± 2

√
A2
qB

2
q −B2

qC
2
q +A2

qD
2
q − 2AqCqDqEq + C2

qE
2
q

]1/2

.

(6.139)

The Hamiltonian can now be written as

H = E0 +
1

2

∑
q

(ω+
q + ω−q − 2Aq) +

∑
q

(ω+
q α
†
qαq + ω−q β

†
qβq), (6.140)

where αq and βq are boson operators.
Typical dispersion relations along qy = 0 are plotted in �gure 6.13b for λ = 0.8, while the

Brillouin zone structure of the lowest band is illustrated in �gure 6.13a for α/π = 0.4. The minima



70 CHAPTER 6. STRONG COUPLING

are located at q = (±π, 0), and except for the single point (α, λ) = (π/2, 1), the dispersion relation
is linear around these points. The slope decreases with gauge �eld strength α, and at a critical
point, the eigenvalue turns imaginary. This corresponds to an instability and breakdown of the
stripe phase, and is marked with a red line on top of the variational phase diagram in �gure 6.9. The
stripe phase parameter space region is therefore signi�cantly reduced by quantum �uctuations. In
�gure 6.13c, we plot the quantum corrections in the Hamiltonian (6.140) inside the stable region.
The quantum �uctuations are rather large, and of the same order as in the xyFM state. The
magnitude increases with decreasing α and λ because this strengthens the Dzyaloshinskii-Moriya
interaction and z-component Heisenberg coupling relative to the planar couplings Jxδ and Jyδ .

6.4.5 Summary and related works

In the �nal section of this chapter, we summarize the excitation spectrum results to lowest order
in the spin wave expansion and discuss the some very recent articles.

For the zFM phase, we introduce one type of boson. Although the Dzyaloshinskii-Moriya
interaction does not contribute to the non-interacting Holstein-Primako� excitation spectrum,
the anisotropies in the Heisenberg term introduce small quantum �uctuations not present in the
isotropic case. In return, a gap in the dispersion relation protects the phase against thermal
�uctuations. For the zAFM phase, we need to introduce two di�erent bosons. Apart from this,
the situation is almost exactly the same as for the zFM state, there is no contribution from
the Dzyaloshinskii-Moriya term, a gapped dispersion relation, and small quantum �uctuations. A
notable di�erence from the Néel state of the isotropic AFM Heisenberg model, is that the dispersion
minima are at q = (±π, 0) and q = (0,±π) instead of q = 0. The xyFM and stripe phases are
planar in the xy-plane, and the Dzyaloshinskii-Moriya interaction therefore contributes to the
excitation spectrum. This gives rather large quantum �uctuations and a signi�cant reduction of
the stripe and xyFM regions in the phase diagram. There is no gap to lowest order in the spin
wave expansion, and the excitation spectra are linear around the minima.

Two very recent articles discuss similar matters, and are of special interest.
Wang et al. [148] applied the recently developed technique of string bond states [152], which

is a tensor network method generalizing the density matrix renormalization group method used
in one dimension [153, 154]. Our results are largely in accordance with the simulations there.
For the zFM and zAFM states, they �nd that quantum corrections to the ground state energy
are negligible. For the xyFM and vortex family states, they �nd that the classical continuous
degeneracy is lifted in favour of spin ordering along the x- or y-direction, and note that this is
known as the order by disorder mechanism [155, 156]. Quantum �uctuations reduce the size of the
xFM/yFM and stripe phase regions, but less dramatic than in our calculations.

Sun et al. [147] treats the case of spin-independent interaction (λ = 1) with Holstein-Primako�
transformation on the stripe phase. We may compare our dispersion relation result with λ = 1 with
theirs at Rashba SOC, obtaining full agreement when letting qx ↔ qy corresponding to di�erent
conventions in the de�nition of the SOC. Sun et al. introduce the four bosons required to analyse
the the general vortex-family state, �nding that the classical degeneracy is lifted in favour of the
states with spin-ordering in the x- or y-directions, analogous to our xyFM result and in agreement
with the simulations in Wang et al.. Sun et. al also remark that the stripe phase excitation
spectrum is gapless only to lowest order in the spin wave expansion, and re-introduce it through
a spin coherent state analysis. As a result of this, the breakdown of the stripe phase requires
stronger Dzyaloshinskii-Moriya interaction. We expect that a similar analysis at λ 6= 1 will lead
to better agreement between the Holstein-Primako� result and the quantum simulations in Wang
et al. [148]. The xyFM phase is not treated in Sun et al. because it reduces to the single point
α = 0 when λ = 1.



Chapter 7

Summary and outlook

In this thesis, we have studied two-component spin-orbit coupled ultracold bosonic atoms on a
two-dimensional square optical lattice. These systems are particularly interesting because their
tunability and absence of impurities allow simulation of condensed matter systems, but also the
study of novel phenomena through access to parameter regimes otherwise hard to reach. After
introducing the theoretical and experimental concepts behind the realization of these systems,
we derive a Bose-Hubbard model in the tight-binding approximation, and include only nearest
neighbour hopping and on-site interaction. Following an introductory discussion on the super�uid
to Mott insulator transition, we consider the two extreme limits of weak and strong interaction,
focusing on phase separation e�ects and spin textures.

In the weakly coupled regime, we use a real space uniform density mean �eld theory to decouple
the interaction. After diagonalizing the single particle problem, we solve the self-consistent equa-
tions for component imbalance, and obtain a phase diagram for the phase separation transition as
function of spin-orbit coupling strength and inter- relative to intracomponent interaction. At �nite
temperature, the system shows an expected remixing of the components in the phase separated
regime, but also a more surprising entropy driven phase separation in the mixed regime. Both
e�ects can be understood through interpretation of imbalance as an e�ective Zeeman �eld in the
mean �eld Hamiltonian. We also provide an explanation in terms of locking between momentum
and imbalance.

In the strongly interacting regime, we derive an e�ective spin model describing spin textures in
the Mott insulator. In addition to an anisotropic Heisenberg term, we �nd Dzyaloshinskii-Moriya
interaction. Based on classical Monte-Carlo simulations in the literature [102, 104, 129], we use
a variational approach in real and Fourier space to reconstruct the phase diagram, which shows
ferromagnetic, antiferromagnetic, spiral, stripe, vortex, and skyrmion phases. Quantum �uctua-
tions are analysed with the Holstein-Primako� transformation to lowest order in the spin wave
expansion. For the phases with ferromagnetic or antiferromagnetic alignment in the z-direction
corresponding to components in the pseudo-spin description, quantum �uctuations are small, and
thermal �uctuations are suppressed by a gap. For the xy-planar states with particles at each lattice
site in an equal superposition of the two components, there are substantial quantum �uctuations
which may destroy ordering, and hence distort the classical phase diagram. The dispersion relation
is linear around gapless minima to lowest order in the spin wave expansion.

In the weakly coupled regime, an extension of the real space mean �eld theory should focus
on generalization to spatially inhomogeneous phases, since these are known to occur in certain
parameter regimes [100, 104, 122]. In particular, it would be interesting to see if entropy driven
phase separation persists also for the transition from a stripe phase, and how it is potentially
changed. One may analyse bond current correlation functions using the transformed boson opera-
tors, trying to reproduce the antiferromagnetic pattern of current loops shown to be present in our
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and in similar systems [104, 125]. Other possible topics for further exploration include solving the
self-consistent equations for uneven combinations of Rashba and Dresselhaus spin-orbit coupling,
the inclusion of an e�ective in-plane electric �eld kδσz, and mapping out in more detail the phase
diagram for the transition driven by the joint e�ort of interactions and the Zeeman �eld. One may
also study the problem in the boson path integral formalism. When analysing the phase separation
transition in mean �eld theory, one neglects quantum �uctuations in the problem. Many articles,
for instance Refs. [100, 104, 120, 122], rest on either mean �eld theories or classical Monte-Carlo
simulation, but a treatment of quantum �uctuations is necessary for the results to be entirely
trusted. Particularly interesting would be the e�ect of quantum �uctuations on the entropy driven
phase separation.

In the strongly coupled regime, one may improve the variational phase diagram by introducing a
more general skyrmion phase. In addition, one may consider spiral-2 phases with periodicity larger
than 6. For the possible incommensurate spiral-2 phase, an improvement would be to allow for spins
to twist toward the direction with dominant Heisenberg coupling by introducing secondary Fourier
modes. The excitation spectra of the vortex, commensurate spiral, and skyrmion phases can be
analysed by introducing additional bosons. Making a position dependent rotation of the coordinate
system could provide possibilities for studying the excitation spectra of the incommensurate spiral
phases. One may also investigate the use of Schwinger bosons. While in literature, one has
typically studied either the general linear combination of Rashba and Dresselhaus SOC with spin-
independent interaction or Rashba SOC with spin-dependent interaction, one could also study the
e�ective spin model in the most general case.

A di�erent possibility is to study the model slightly away from half-�lling, where real hopping
processes are possible since not all lattice sites are occupied. For fermions, this can be done
with the t-J model [157], which has been used to study lightly doped Mott insulators in high-
Tc superconductors [158]. The bosonic version of this should also be a very interesting problem
[159�162].



Appendix A

Methods for determining variational

parameters

In this appendix, we show that the two methods for determining the variational parameters in
section 5.2 are equivalent. The argument is based on Ref. [123]. The methods are:

• Minimizing the free energy with respect to the expectation values.

• Obtaining a self-consistent equation by calculating the given expectation values within the
mean �eld approximation.

Given a mean �eld Hamiltonian HMF, the partition function is ZMF = Tr e−βHMF . The mini-
mization method can be expressed as

0 =
∂Ω

∂n0ρ
=

∂

∂n0ρ

(
− 1

β
logZMF

)
(A.1)

=
1

ZMF
Tr

[
e−βHMF

∂

∂n0ρ
HMF

]
, (A.2)

where we have used

∂

∂x
TrO(x) = Tr

[
∂

∂x
O(x)

]
. (A.3)

Since only the mean �eld interaction in the Hamiltonian (5.6) depends on n0σ, we get

∂HMF

∂n0ρ
= −N

∑
σ

uρσn0σ +
∑
iσ

uρσniσ =
∑
i,σ

uρσ(niσ − n0σ).

Inserting this in the minimization condition (A.2), we get

n0σ =
1

N

∑
i

〈niσ〉 , (A.4)

which is exactly the self-consistent equation occurring when we calculate the average occupation
from within mean �eld theory.
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Appendix B

Complete spin model derivation

In section 6.1, we outlined the derivation of the e�ective spin model describing magnetic textures
in the Mott insulator. In this appendix, we �ll in the missing steps and complete the derivation.

The Hamiltonian can be written as a sum of contributions Hs
eff and Hd

eff corresponding to terms
in the energy correction where virtual hopping processes produce states in the s- and d-subspaces.
These correspond to states where the single doubly occupied lattice site has bosons of the same
and of di�erent species. For r ∈ {s, d}, we have shown

Hr
e� = − 1

ur

∑
〈ij〉αβγδ

[
−δαβt+ δα,−βs

αβ
ij

] [
−δγδt+ δγ,−δs

γδ
ji

]
a†iαajβPra

†
jγaiδ. (B.1)

We now write out all terms in the Hamiltonian giving a non-zero second order contribution to the
ground state energy. In this appendix, two operators are therefore considered equal if they give
the same result when acting on the space of ground states of the non-perturbed Hamiltonian in
the subspace we are considering, even if they are not equal on the full Hilbert space. Recall also
that we have introduced operator notation

|αβ|γδ, ε| = a†iαaiβa
†
jγajδnjε, (B.2)

We let a single | ↑ | denote the corresponding number operator. We consider the s- and d-subspaces
separately.

B.1 Same species subspace

The correction ∆Es2 to the energy from the virtual hoppings which produce a state belonging to
the s-subspace is ∆Es2 = 〈ψ0|Hs

e� |ψ0〉, where

Hs
e� = − 1

u

∑
〈ij〉αβγδ

[
−δαβt+ δα,−βs

αβ
ij

] [
−δγδt+ δγ,−δs

γδ
ji

]
a†iαajβPsa

†
jγaiδ. (B.3)

As discussed in the main text, we use the operator identity

a†iαajβPsa
†
jγaiδ = a†iαaiδ(δβγ + a†jγajβ)njγ (B.4)

From the square bracket product in (B.3), we obtain three types of terms, tt, ts, and ss. We can
then write

Hs
e� = Hs,tt

e� +Hs,ss
e� +Hs,ts

e� . (B.5)

Consider each of these terms separately.
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B.1.1 tt-terms

For tt-terms, the Hamiltonian becomes

Hs,tt
e� = − t

2

u

∑
〈ij〉,αβγδ

δαβδγδ

(
a†iαaiδδβγnjγ + a†iαaiδa

†
jγajβnjγ

)
= − t

2

u

∑
〈ij〉,α

a†iαaiαnjα −
t2

u

∑
〈ij〉,αγ

a†iαaiγa
†
jγajαnjγ

= − t
2

u

∑
〈ij〉

(2| ↑ | ↑ |+ 2| ↓ | ↓ |+ | ↑↓ | ↓↑, ↓ |+ | ↓↑ | ↑↓, ↑ |)

= − t
2

4u

∑
〈ij〉

[
2(1 + σzi )(1 + σzj ) + 2(1− σzi )(1− σzj )

]
= − t

2

u

∑
〈ij〉

(1 + σzi σ
z
j ),

where we have used that | ↑↓, ↑ | = | ↓↑, ↓ | = 0.

B.1.2 ss-terms

For the ss-terms, we get

Hs,ss
e� = − 1

u

∑
〈ij〉,αβγδ

δα,−βδγ,−δs
αβ
ij s

γδ
ji

(
a†iαaiδδβγnjγ + a†iαaiδa

†
jγajβnjγ

)
= − 1

u

∑
〈ij〉,αγ

|sα,−αij |2a†iαaiαnj,−α + sα,−αij sγ,−γji a†iαai,−γa
†
jγaj,−αnjγ

= − 1

u

∑
〈ij〉

|s↑↓ij |
2
(
| ↑ | ↓ |+ | ↓ | ↑ |+ | ↑↑ | ↓↓, ↓ |+ | ↓↓ | ↑↑, ↑ |

)
= − 1

4u

∑
〈ij〉

|s↑↓ij |
2
(
2(1 + σzi )(1− σzj ) + 2(1− σzi )(1 + σzj )

)
= − 1

u

∑
〈ij〉

|s↑↓ij |
2(1− σzi σzj )

by using again | ↑↓, ↑ | = | ↓↑, ↓ | = 0.

B.1.3 ts-terms

Finally, the ts-terms give
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Hs,ts
e� =

t

u

∑
〈ij〉,αβγδ

(
δαβδγ,−δs

γδ
ji + δα,−βδγδs

αβ
ij

)(
a†iαaiδδβγnjγ + a†iαaiδa

†
jγajβnjγ

)
=
t

u

∑
〈ij〉,αγ

[
sα,−αji a†iαai,−αnjαδαγ + sγ,−γji a†iαai,−γa

†
jγajαnjγ

+ sα,−αij

(
a†iαai,−αnj,−αδα,−γ + a†iαaiγa

†
jγaj,−αnjγ

)]
=
t

u

∑
〈ij〉

[
s↑↓ji (2| ↑↓ | ↑ |+ | ↓↓ | ↑↓, ↑ |) + s↓↑ji (2| ↓↑ | ↓ |+ | ↑↑ | ↓↑, ↓ |)

+ s↑↓ij (2| ↑↓ | ↓ |+ | ↓↓ | ↓↑, ↓ |) + s↓↑ij (2| ↓↑ | ↑ |+ | ↓↓ | ↓↑, ↓ |)
]

=
2t

u

∑
〈ij〉

[
s↑↓ji | ↑↓ | ↑ |+ s↓↑ji | ↓↑ | ↓ |+ s↑↓ij | ↑↓ | ↓ |+ s↓↑ij | ↓↑ | ↑ |

]
=

t

2u

∑
〈ij〉

[
s↑↓ji σ

+
i (1 + σzj ) + s↓↑ji σ

−
i (1− σzj ) + s↑↓ij σ

+
i (1− σzj ) + s↓↑ij σ

−
i (1 + σzj )

]
.

Use the symmetry properties of sσσ
′

ij to express all spin-orbit coupling coe�cients in terms of s↑↓ij .
After several cancellations, we are left with

Hs,ts
e� = − t

u

∑
〈ij〉

σzj

(
s↑↓ij σ

+
i + (s↑↓ij )∗σ−i

)
.

Use now the antisymmetry of s↑↓ij under i↔ j and sδ = s↑↓ij to express this as

Hs,ts
e� =

t

u

∑
i,δ

[
σzi (sδσ

+
i+δ + s∗δσ

−
i+δ)− σ

z
i+δ(sδσ

+
i + s∗δσ

−
i )
]
,

and insert

sδσ
+
i+δ + s∗δσ

−
i+δ = 2 Re(sδ)σ

x
i+δ − 2 Im(sδ)σ

y
i+δ

in the Hamiltonian. We then obtain

Hs,ts
e� =

2t

u

∑
i,δ

[
Re(sδ)

(
σzi σ

x
i+δ − σzi+δσxi

)
− Im(sδ)

(
σzi σ

y
i+δ − σ

z
i+δσ

y
i

) ]
=

2t

u

∑
i,δ

[
Re(sδ)ŷ · ~σi × ~σi+δ + Im(sδ)x̂ · ~σi × ~σi+δ

]
. (B.6)

B.2 Di�erent species subspace

We now perform the analogous calculation for the d-subspace. In the arrow-representation of the
operators, this corresponds to switching the orientation of the last spin.
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B.2.1 tt-terms

The tt-terms give

Hs,tt
e� = − t

2

u

∑
〈ij〉,α

a†iαaiαnj,−α −
t2

u

∑
〈ij〉,αγ

a†iαaiγa
†
jγajαnj,−γ

= − t
2

u

∑
〈ij〉

(| ↑ | ↓ |+ | ↓ | ↑ |+ | ↑↓ | ↓↑, ↑ |+ | ↓↑ | ↑↓, ↓ |)

= − t
2

4u

∑
〈ij〉

[
(1 + σzi )(1− σzj ) + (1− σzi )(1 + σzj ) + σ+

i σ
−
j + σ−i σ

+
j

]
= − t

2

2u

∑
〈ij〉

(1− σzi σzj + σxi σ
x
j + σyi σ

y
j ),

where we have left out the zero-terms with | ↑↑, ↓ | = 0 in the intermediate steps.

B.2.2 ss-terms

For the ss-terms,

Hs,ss
e� = − 1

u

∑
〈ij〉,αγ

[
|sα,−αij |2a†iαaiαnj,α + sα,−αij sγ,−γji a†iαai,−γa

†
jγaj,−αnj,−γ

]
= − 1

u

∑
〈ij〉

[
|s↑↓ij |

2 (| ↑ | ↑ |+ | ↓ | ↓ |) + s↑↓ij s
↑↓
ji | ↑↓ | ↑↓, ↓ |+ s↓↑ij s

↓↑
ji | ↓↑ | ↓↑, ↑ |

]
= − 1

4u

∑
〈ij〉

[
2|s↑↓ij |

2(1 + σzi σ
z
j ) + s↑↓ij s

↑↓
ji σ

+
i σ

+
j + s↓↑ij s

↓↑
ji σ
−
i σ
−
j

]
.

We again use the symmetry properties of sαβij , and obtain s↑↓ij s
↑↓
ji = −s2

δ and s
↓↑
ij s
↓↑
ji = −(s∗δ)

2. One
may then write the Hamiltonian as

Hs, ss
e� = − 1

4u

∑
〈ij〉

[
2|sm|2(1 + σzi σ

z
j )− (s2

m + (s∗m)2)(σxi σ
x
j − σ

y
i σ

y
j )− (s2

m − (s∗m)2)(σxi σ
y
j + σyi σ

x
j )
]

(B.7)

= − 1

2u

∑
〈ij〉

[
|sm|2(1 + σzi σ

z
j )− Re(s2

m)(σxi σ
x
j − σ

y
i σ

y
j ) + Im(s2

m)(σxi σ
y
j + σyi σ

x
j )

]
. (B.8)

As pointed out in the main text, the term with coupling between x- and y-components of the spin
vanish for diagonal or o�-diagonal SOC-matrix βlm.

B.2.3 ts-terms

For the ts-terms, we obtain
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Hs,ts
e� =

t

u

∑
〈ij〉,αγ

[
sα,−αij

(
a†iαaiγnj,αδα,−γ + a†iαaiγa

†
jγaj,−αnj,−γ

)
+ sγ,−γji

(
δαγa

†
iαai,−γnj,−γδαγ + a†iαai,−γa

†
jγajαnj,−γ

)]
=
t

u

∑
〈ij〉

[
s↑↓ji (| ↑↓ | ↓ |+ | ↓↓ | ↑↓, ↓ |) + s↓↑ji (| ↓↑ | ↑ |+ | ↑↑ | ↓↑, ↑ |)

]
+ s↑↓ij (| ↑↓ | ↑ |+ | ↑↑ | ↑↓, ↓ |) + s↓↑ij (| ↓↑ | ↓ |+ | ↓↓ | ↓↑, ↑ |)

=
t

2u

∑
〈ij〉

[
s↑↓ji
(
σ+
i (1− σzj ) + (1− σzi )σ+

j

)
+ s↓↑ji

(
σ+
i (1− σzj ) + (1− σzi )σ+

j

)
+ s↑↓ij

(
σ+
i (1 + σzj ) + (1 + σzi )σ+

j

)
+ s↓↑ij

(
σ−i (1− σzj ) + (1− σzi )σ−j

) ]
=

t

2u

∑
〈ij〉

[
σzi (sδσ

+
j + s∗δσ

−
j ) + σzj (sδσ

+
i + s∗δσ

−
i )
]
,

where δ = j − i. This expressions looks very similar to the expression we found for the ts-term in
the calculation for the s-subspace, but since sδ → −sδ under i↔ j, there is no contribution from
this term at all,

Hd,ts
e� = 0. (B.9)

This concludes the e�ective spin model derivation. We can now collect the terms and write
down the �nal result

Hd
eff =− t2

λu

∑
i,δ

(
1− σzi σzi+δ + σxi σ

x
i+δ + σyi σ

y
i+δ

)
− 1

λu

∑
i,δ

|sδ|2(1 + σzi σ
z
i+δ) (B.10)

+
1

λu

∑
i,δ

[
Re(s2

δ)(σ
x
i σ

x
i+δ − σ

y
i σ

y
i+δ)− Im(s2

δ)(σ
x
i σ

y
i+δ + σyi σ

x
i+δ)

]
(B.11)

Hs
e� =− 2

u

∑
i,δ

[
(t2 − |sδ|2)σzi σ

z
i+δ − tRe(sδ)ŷ · ~σi × ~σi+δ − t Im(sδ)x̂ · ~σi × ~σi+δ

]
, (B.12)

as also reported in the main text.
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