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Summary

This thesis presents concentration and speciation data for Cu, Zn, Cd, and Al in eight highland
rivers and streams in the Reoros area, central Norway. About 16 sampling campaigns were
performed before, during and after floods during spring and autumn of 1997. Due to rain- and
snowmelt-induced flushout from weathered mine tailings, the flood episodes were expected to
produce high concentrations of metals in the local rivers. The examined river sites represent
highly different degrees of pollution, height above sea level, annual discharge, pH, etc., and
the project is aimed towards producing general information about the temporal variations of
the metal chemistry and parameters important for the metal chemistry in this and similar
regions. Dissolved species of the metals were fractionated by dialysis in situ, colloidal species
by filtration, and total (more precisely; soluble in 0.1 M HNO;) concentrations were
determined directly after acidification. Ca concentration, pH, river discharge, water
temperature, and to a lesser extent precipitation and TOC were also monitored. In addition Cu
and Zn/Cd metallothioneins were studied in kidney, liver and gills in trout (salmo trutta)
populations in two of the rivers characterized by completely different metal concentration

fingerprints.

The results showed that Cu and Al, and possibly Zn and Cd as well, were practically
completely in particulate or colloidal form at pH values of 7 and above. At pH levels one or a
few pH units lower, the trace metals shifted to occur almost completely dissolved. The pH
range at which the change from colloidal/particulate to dissolved species occurred, depended
on the metal concerned and the TOC in the water. High TOC concentrations (> 8) seemed to
accompany low fractions of dissolved metals, probably because the metals adsorbed on high
molecular weight organic compounds or organic coatings on inorganic particles. At TOC
concentrations lower than 8 mg/L, a 50 % dissolved fraction was estimated at pH ~7.2 and
~5.8 for Cu and Al respectively, whereas for Cd and Zn, a 50 % dissolved fraction was
estimated at pH 7.7. The latter is a pH slightly higher than the highest value observed in the
present investigation. Higher TOC concentrations (>8 mg/L) increased metal adsorption and

made adsorption start up to one pH unit lower than in low TOC waters (<8 mg/L).\




Total metal concentrations were generally elevated during flood conditions in the pH neutral
rivers, whereas pH was significantly lowered. In spite of the low pH, the dissolved fractions of
Zn, Cd, and Al decreased during flood periods, probably due to enhanced particle
concentrations. Thus flood conditions apparantly brought metals into a less acute toxic state.
However pH may have influenced metal toxicity in other ways as well; e.g. the free metal ion
activity in the dissolved fraction could have increased during flood due to the decreased pH.
But even if that was the case, metal toxicity would not necessarily be higher since H"

competes with free metal ions for uptake sites on biological membranes.

Alkalinity and Ca reduce negative effects of metals, and both were low during flood
conditions. This is obviously unfortunate for aquatic organisms. Generally however, total
metal concentration peaks occurred at the beginning of rising floods, followed by a very low
pH, alkalinity, and Ca concentration a few weeks later and the spring discharge maximum a
few weeks after that. Thus Ca®" and pH had not yet reached their spring minimum, that is; the
most unfavorable condition to protect organisms against metals, at the metal concentration

maximum.

The snowcap covering River Orva accumulated and contained huge amounts of Cu, and may
have substantially increased the Cu concentration in the river during snowmelt. This also
impacts reaches of the large river Gldma which receives water from Orva. It is suggested that
the hydroelectric power plant Kurdsfossen in Glama should regulate river runoff in a different

manner in order to smooth out metal concentration peaks.

Gill concentrations of Cu metallothionein (MT) in Rugla and Cd/Zn MT in Naustebekken
were appreciably elevated during run-off episodes. The Cu MT and Cd/Zn MT concentrations
in gills and kidneys were high enough to account for all or almost all Cu and Cd but only for a
minor fraction of the Zn present in these organs. For Zn this indicates that other detoxifying

mechanisms may be more important than MT.\
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Introduction

The objective of this thesis was to examine the composition of Cu, Zn, Cd, and Al species in
mine-polluted rivers and lakes. The dissolved, colloidal, and particulate species were
fractionated by the dialysis in situ method (Bene§ and Steinnes, 1974). Special emphasis has
been paid on how the percent dissolved metal fraction changed during changes in river
discharge, pH, total organic carbon concentration, alkalinity, and Ca concentration, generally
and in individual rivers. Metal and main water chemistry patterns were investigated, e.g. to
make results from monitoring studies easier to interpret and expected hazards to aquatic life

'

more precisely predictable. The section "Suggested applications of..." in the Results and

discussion chapter exemplifies how results from the present work may be used.

Water organisms may be influenced by metal concentrations varying temporally on a seasonal
or diurnal scale, or due to weather related variations in temperature and rainfall. Due to
genetic diversity, some individuals from a population may die and some survive during
intermediate to highly toxic episodes. Populations may thus adapt rather rapidly to chemical
pollution that is not extensive enough to erase the whole population. On a longer time scale,
populations may also adapt to lower metal concentrations that do not kill fish directly. Such
adaptations however are less likely in the present study area during the, evolutionary speaking,
short time since mining pollution became a problem. Two of the rivers have been thoroughly
examined in order to interpret to what extent genetic adaptations to metal pollution may have
occurred, and if so, whether such adaptations could be metal specific and connected to one of
the major interior metal defense mechanisms in fish; the methallotheioneins (MT). MTs are
proteins that attach to and detoxify metals inside body tissue. To study metal specific
adaptation in trout, we searched for two different aquatic habitats; one high in Cu, low in Cd
and Zn, the other with an opposite composition. Other criteria were (1) that the metal
concentrations should be high enough to wipe out parts of the trout populations during
episodes, (2) that the rivers would have to be available for monitoring most of the year, and
(3) that the fish stocks should not be able to rescue in attached clean creeks during critical
episodes. Parameters such as pH, Ca concentration, accessibility from road, distance from
other considered sites, river discharge, lakes in the stream path and numerous practical
features were also considered. No ideal habitats were found in Norway for this experiment,

but two streams located a few km from each other near the town of Reros in central Norway\
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constituted the closest match to the criteria. In Paper 1 the water chemistry of these two
streams is discussed in detail. Their fish populations and the influence of metals on them are
discussed in Paper 2, and in two other studies that are not part of the present thesis (Olsvik et
al., 2001a-b). Six additional rivers were studied in Paper 3 to reveal how parameters affecting
toxic stress from metals covary and correlate during changing river flow. Results from the
same eight rivers were also analyzed to reveal how TOC and pH influence the partition of the

metals between the dissolved, the colloidal and the particulate fraction (Paper 4).

Mining

Man has extracted Cu from rocks for 6-7000 years and Fe for about 4000 years. During the
last centuries, however, mining has been much more extensive throughout the world and has
caused major impacts on nature. Water, air, and soil pollution have resulted from extraction,
smelting and waste deposition from the mining activity. Coal combustion and the use,
processing and deposition of refined products have caused further, yet indirect, damage on the
environment. Mineral extraction and processing activities prior to recent decades have left a
legacy of acid drainage from waste rock and ore bodies, mercury pollution from amalgam
processing of precious metals, other heavy metals pollution from residual minerals in mill
tailings, and, in some instances, cyanide toxicities from early gold leaching operations
(Moore, 1997). Accumulation of heavy metals and resulting physiological impacts have been
reported for a variety of fish species and other aquatic organisms from mining and smelting
areas (Bradley and Morris, 1986; Hillis and Parker, 1993; Moore ef al., 1991; Somers and
Harvey, 1984). Mining operations may also cause an increased potential for erosion that can
increase sediment loading to surface waters. Such eroded minerals may be abrasive and can
kill aquatic organisms directly or their spawning areas or prey may be influenced (Johnson,

1997b).

A large number of abandoned mining sites exist throughout Norway. From 1941 to 1997 the
activity of the nine most important Norwegian mining sites ceased (Dahl, 2001) and today
only two metal producing mines are still operated (Carstens, 2000). Activity at the last sulfide
ore mine in Norway, Nikkel Olivin A/S in Ballangen ceased in 2001 due to lacking reserves
and low Ni richness in the deposits. According to Foslie (1926), mining activity in Norway
started in the middle of the 17th century. At that time, only Cu was extracted from the ores.

Two hundred years later sulfur also became extruded, and Norway became a major exporting\
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nation of mining products during the 18th and 19th century. Cu has been the major product,
but also Ni, Mo, Ti, Ag, Zn, and Fe/pyrite have been produced in quantities of national-
economic importance (Foslie, 1925). By 1926 the mines in the Roros district had contributed
with about 1/3 of the total Cu production in Norway (Foslie, 1926). All mines in the area are
now abandoned, but due to new technology and rising prices, Zn deposits are being considered

for extrusion.

During the last two decades great effort has been made to reduce acid mine drainage from
Norwegian mining areas. From 1985 to 1996 the total amount of Cu and Zn released from the
nine largest mining areas was reduced by 75 and 60 % respectively (Dahl, 2001), but there are
some new problems arising. Mining shafts, e.g. at the Bjorgésen site which is investigated in
the present work, may some time in the future be filled to the edge with acidic and metal

polluted water; endangering downstream trout and salmon populated stretches of Gaula river.

Most of the extrudable ore deposits in Norway are located along the Caledonian Mountain
Ridge, stretching from Stavanger in the SW of Norway in a NNE direction along the whole
country (Foslie, 1925). Metal sulfide ore deposits are usually very long, moderately broad, and
rather shallow. The huge mine “Kongensgruva”, which is located in the drainage area to Orva
is a typical example, covering an area of 3000 x ~75 meters and with a depth of 1 to 4 meters

(Foslie, 1926).

Mining pollution

Low pH and high heavy metal concentrations characterize mining influenced waters.
Precipitation of Fe and Al hydroxides ("yellow-boy") are common in the watersheds, as well
as high concentrations of colloids, particles, alkali metals, alkaline-earth metals, and high and

conservatively mixed sulfate concentrations (Schmiermund, 1997).

Acid mine drainage is produced by the exposure of pyrite (FeS,) and other sulfide minerals to
air and water. The resulting sulfur oxidation and production of acidity entails elevated
concentrations of iron, sulfate and other metals in drainage waters (Sengupta, 1993). Waters
where considerable acidity is caused naturally, by acidic rocks, are very rare (Schmiermund,

1997), probably since sulfidic ores generally covers small areas and are not crushed to small\
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stones/gravel in the way mining tailings are. Acid mine drainage may originate from
underground or open pit workings, as leachate from waste rock dumps, mill tailings, ore
stockings, and smelting residuals, or from lake deposits made for reducing oxygen access to
the metal containing materials. The most acidic waters known are mine waters found
underground in the Richmond Mine at Iron Mountain in California, USA. Total dissolved
metal concentrations as high as 200 g/L, pH values as low as -3.6 (using the Pitzer method for
pH calibration), and sulfate concentrations as high as 760 g/L were encountered (Nordstrom et
al., 2000). There is a strong negative correlation between pH and heavy metal concentrations
in waters influenced by mining activity, however some waters draining mining areas may

reach pH levels ~8, and still be influenced by metal pollution (Johnson, 1997a).

The reactions of acid and metal sulfides may be illustrated by the oxidation of pyrite. Pyrite
reacts with oxygen and water to produce ferrous iron, sulfate, and hydrogen ions (Johnson,

1997a);

FeS, + 20, + HyO = Fe*" + 280, + 2H,0 +2H"  (Eq. 1)

Some of the released ferrous iron (Fe*") will be oxidized by oxygen to ferric iron (Fe"). Ferric
iron may precipitate as iron hydroxide (Fe(OH)s), producing acid, or being a catalyst for
further oxidation of pyrite. Either way, due to intermediate rate determining reactions and very
effective bacterial catalysis, the production of acid mine drainage is a rapid and self-
perpetuating process, which continues as long as air, water, and pyrite are available. Similar
and more or less simultaneous reactions will also release high amounts of metals such as Cu,
Co, As, Ni, Mo, and Sb to aquatic environments for decades or even centuries after the
operation has ceased. The high acidity in mine effluents will often release other adjacent acid
consuming minerals such as hydroxides of Al and Mn, increasing the concentration of these
metals as well in downstream water systems (Johnson, 1997a; Schmiermund, 1997). Acid
mine drainage may also dissolve carbonate minerals such as calcite (CaCQO3), increasing the

concentrations of Ca®" in the water or producing gypsum (CaSOy) precipitation.\
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The production of acid mine drainage is occasionally reduced by covering or surrounding
mining residuals with membranes and gravel. Such remediations prohibit rain and air to
access, and water to flush through the residuals. Some residuals are instead covered
completely with water in ponds to reduce oxygen access. Acid mine drainage may be treated
by liming (Ca(OH), or CaO) or other chemicals which rise the pH, followed by oxygenation
or other oxidants. These procedures cause neutralization of pH, and, subsequently,

precipitation of metal contaminants (Kleinmann, 1997).

Other factors influencing metal concentrations in rivers and lakes

Precipitation chemistry

Trace substances, both gases and particles, are removed from the atmosphere by precipitation
(wet deposition), cloud or fog impaction (cloud deposition), or by impaction onto surfaces in
the absence if precipitation or clouds (dry deposition). For many metals (e.g. Zn and Cd), the
atmosphere is a significant transport medium to the biosphere (Ross and Vermette, 1995). Al
on the other hand is a major constituent of many commonly occurring minerals, and although
this element may be considerably enriched in rainwater close to e.g. smelters (Reimann et al.,
1997), riverborne Al will generally almost exclusively originate from the watershed. Al
leaching to surface waters may still be strongly influenced by anthropogenic influence through
acid pollution. A huge number of fish populations in the southern part of Norway have
become extinct due to the combination of acid rain and Al leaching (Dalziel et al., 1995;
Staurnes et al., 1995). The present study area however is not much influenced by long range
atmospheric transport of pollutants (Steinnes et al., 1992) and it is unlikely that any
considerable part of the acidity, Cu, Zn, or Cd observed in these mine-polluted rivers
originates from this source. Previous local mining and smelting activity in the area may

however have caused some airborne transport of metals to the watersheds.

Mechanisms in the watershed
Topographic, geological, and biological conditions may vary highly within, as well as
between, watersheds: a) the landscape may be flat or steep, b) rocks may contain different
combinations of minerals. Moraine and soil material may be c) deep or shallow, d) porous or
more impermeable and e) consist of numerous combinations of grain sizes. Finally, f) trees
and other vegetation may vary, which is important for the water chemistry since plants

withdraw a lot of water from the ground and absorb/release compounds from/to the water. The\
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solid states the water contacts along its underground path, and the retention time in each of the
zones it passes, will also vary highly; temporally as well as from site to site. These variations
will strongly influence the composition of the water that finally reaches lower altitude river

systems.

Once introduced into a watershed as rain, water may flow towards the sea along the surface
(surface water), below the surface in the unsaturated zone (subsurface water) or in the
saturated zone (groundwater). All waters at any point in or on the ground will shortly after
precipitation begin to mix with other waters with different composition. Thus, water at any
point along its pathway is generally not in complete equilibrium with the various geological
phases it is surrounded by (Allard, 1995). Water slowly flowing through easily weathered
materials with large surfaces (fine-grained) will generally contain the highest amounts of

material from the solid states it passes.

Weathering kinetics and content of metals in the different minerals and rocks may vary
considerably, and are important factors determining the flux of metals from the watershed to
the river systems. Shale formed from clay minerals is e.g. occasionally enriched in Cd and As,
whereas this rock normally has moderate to low concentrations of Cu, Cr, and Ni. Secondary
mineral formation and adsorption to other solid states may as well alter the water chemistry

considerably after the metal containing solids are dissolved.

The snowpack may have a crucial impact on the water chemistry in arctic and subarctic
regions. Pollution compounds may be covered and restrained under snow during winter (e.g.
mining pollution) or stored within the snowpack (e.g., atmospheric metal pollution and acid
precipitation). Different elements may respond differently to snowpack melting during spring
flood (Caritat ef al., 1996): Some elements/parameters show a short-lived sharp peak during
spring flood, which is indicative of a lower value in summer and winter baseflow than in the
meltwater. This pattern is frequently observed for metal contaminants or acidification
products. Some parameters may be highest during winter and summer baseflow (e.g. Ca and
alkalinity) because of dilution by lower concentrations in meltwaters. Other

elements/parameters show a peak in the beginning of the snowmelt, followed by a dilution\
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through the flood peak. This pattern is abundant for elements that mobilize from snow before

the melting is completed, and is occasionally observed for major elements.

In a river or a lake, water masses from different chemical environments in a watershed will
mix. New equilibria will result, and the water composition may be oversaturated with respect
to some minerals. Due to this fact and to the complex physico-chemical and biological
mechanisms discussed above, the watershed influence on the water chemistry in lakes and
streams is poorly predictable. The watershed characteristics in the study area will however be
briefly discussed since they may indicate to what extent the conclusions drawn may apply in

similar regions as well.

Interactions with bottom sediments

The chemical composition in rivers and lakes will influence and be influenced by bottom
sediments. In lakes and slowly flowing stretches of rivers, sedimentation will remove particles
and colloids supplied by groundwater or incoming rivers. Such old sedimentation deposits
may later on be excavated along the outer curves of rivers, or, during flood conditions, along
the whole riverbed. At flood conditions, particles will be transported in rivers to and from the
river banks, and into the river from acres and soils in the watershed. Considerable amounts of
heavy metals transported to and in rivers by these mechanisms may be found in the particulate
fraction (Bradley, 1988). The coarser the particles, the lower their ability to stay in the water
masses. Particles containing metals may therefore fall down and be released several times
from their origin to more lasting storages in slow-flowing stretches of the rivers or on the
ocean floor. Especially during flood conditions, huge amounts of particles may be released
from streambeds to the aquatic phase (Bradley, 1988). By two different mechanisms this may
lead to elevated particulate fractions of the metals: a) The resuspended particles contain
metals. b) dissolved species may adsorb to the particle surface. Other chemical mechanisms
however as well as adsorption will influence on the water chemistry during changing water
discharges. Dissolved metal species may e.g. be removed from the water by
precipitation/coprecipitation on particles and changing concentrations of ligands- and

counterions.

Metal concentrations may be several orders of magnitude higher in interstitial waters

compared to overlying waters (Hong ef al., 1995), and dissolved species may be released from
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lake as well as river deposits through diffusion from sediment interstitial waters. In some
marine systems as much as 80-90 % of the metals deposited on the bottom may be released by
upward diffusion (Gobeil et al., 1987; Heggie, 1983). Organic substances are reported to be
important in binding metals such as Cu, Pb, and Cd to the sediment particles (Schintu et al.,

1991).

In addition to those discussed above, other mechanisms may contribute to the release of
particulate or dissolved metal species from earlier sediment deposits; biological activity,
changing flow paths, temperatures, or light, seasonal, diurnal or more casual, e.g. rain induced,
variations in the general water chemistry (Kimball et al., 1992; Wielinga et al., 1999). In
rivers covered by ice during the winter, it is also reported that spring ice-jam episodes may
mobilize large amounts of metal containing, fine grained sediments (Moore and Landrigan,
1999). Hart and Hines (1995) suggest that Cu, Zn, and Cd chemistry in aquatic systems is
probably more likely to be controlled by physico-chemical than by biological processes.

Factors influencing metal speciation in natural waters

Metal speciation and toxicity in natural waters are influenced by many variables. Some
variables may influence the distribution of metal species available for uptake, some may
influence biota uptake channels, and some may influence to what exctent organisms may deal
with accumulated metals. Some, such as pH, may at the same time exert both beneficial and
harmful effects on organisms exposed to metal pollution. Significant variables such as organic
compounds, pH, particles, hardness, and alkalinity; their temporal trends and how they

influence metal speciation and toxicity, will be briefly discussed in the next sections.

River discharge, particles, and temporal trends

As discussed above, the elevated water velocity in a river during flood will cause resuspension
of previously deposited particles and lead to higher concentrations of suspended particles.
Maximum sediment concentrations occasionally precede the river discharge peak, as observed
by Miller and Piest (1970). Coinciding sediment concentrations and river discharge peaks
have however also been observed, as well as maximum sediment loads at flood ebb (Bradley,
1982). Temporal variability in grain size distribution may also differ between rivers.
Suspended particles may become coarser, finer grained or unaffected by floods (Walling and

Moorehead, 1989).
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Main water chemistry constituents such as pH and Ca concentration may also respond
differently to discharge variations in different rivers. Flood released particles may decrease the
percent fraction of dissolved metals by two mechanisms: a) low metal content particles
because they can offer binding sites to dissolved metals b) high metal content particles

because they are directly introduced to the water column.

Due to all these possible variations, and because the water chemistry as well as the particulate
quantity and quality will influence the metal chemistry in the water, the metal speciation in
each river is unique, and so is each and every flood incident within it. Some general features
about metal fractionation and variability in natural fresh waters are still evident. By
investigating temporal variations in eight rivers with very different chemical fingerprints, an
attempt is made in this work to reveal general trends concerning the covariation of parameters

influencing metal chemistry, and probably toxicity, during a year.

pH

Groundwater reaching the rivers usually contributes to high alkalinity. During flood episodes,
the groundwater fraction is usually low compared to surface runoff (Stumm and Morgan,
1996), leading to a pH drop (Bergstrém and Lindstrom, 1987). Such a pH drop may be
additionally decreased in mining areas where rainwater flushes through oxidized metal
sulfides. Decreased pH may as well lead to the release of adsorbed metals from colloids and
particles. In fact, for most metals, adsorption changes from almost none at low pH to almost
100 % a few pH units higher (Allard ef al., 1986; Mouvet and Bourg, 1983; Schindler ef al.,
1976; Stumm and Morgan, 1996).

The size distribution of metals may also be influenced indirectly by pH; the H ion competes
with metals for ligands such as OH", CI, CO32', HCOj5', HS, Sz', sulfate, and phosphate, and
metal complexation will change adsorption abilities as well as bioavailability of the metals. In
most cases, pH is the most important variable influencing metal speciation (Stumm and

Morgan, 1996).
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Organic compounds

Organic compounds may be found in considerable amounts both in the dissolved, colloidal,
and particulate fraction (Patel et al., 1999; Tanizaki et al., 1985; Thorsen, 2000), and the
metals may be attached to either of them. The organic content of water may, depending on pH,
influence significantly the size distribution of all metals investigated. Generally humic
substances tend to enhance metal cation sorption on particles at low pH and reduce metal
cation sorption at high pH, though many exceptions are reported (Zuyi et al., 2000). Other
chemical parameters will probably also influence metal attachment to organic material; during
mixing of fresh and salty waters, the partition of metal species between solution and
suspended particles is controlled by two counteracting, non-biological processes: a. Removal
from the dissolved fraction by precipitation/coprecipitation mechanisms or flocculation of
humic and fulvic acid — metal complexes (Hoyle et al., 1984; Sholkovitz, 1976). b. Gain to the
dissolved fraction by desorption mechanisms (Li et al., 1984; Van der Weijden et al., 1977). It
is possible that the ionic strength variation which may be observed between rivers and
temporally within rivers may cause some similar influences on the bounding of metals to

organic compounds in fresh waters.

Hardness and alkalinity

Water hardness is the sum of [Ca] and [Mg], predominantly existing as free Ca’" and Mg2+
ions in most freshwaters (Sigg and Xue, 1994). Ca*" and Mg”", as well as most other major
cations in water, generally form less stable organic complexes than trace metals (e.g. Cu(Il)
and Zn(II)). Occasionally however, due to their much higher concentrations, Ca*" and Mg”"
may occupy much more of the organic ligand sites than the trace metals they compete with
(Stumm and Morgan, 1996). The major metal ions such as Ca’" may therefore make metal
ions more bioavailable through ion exchange/desorption reactions. Despite the fact that water
hardness or [Ca*] may increase the concentration of dissolved or free metal ion species, high
Ca concentrations are found beneficial for most organisms in waters affected by metal
pollution. A suggested mechanism for this has been that Ca®" competes with metal ions for

uptake sites on cell membranes (Campbell and Stokes, 1985; Pagenkopf, 1983).

Considerable amounts of HCOs; and CO32' is present in neutral and alkaline waters.
Complexes with these ligands dominate speciation of many metals under certain conditions

(Stumm and Morgan, 1996). Carbonato and bicarbonato metal species are generally less
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bioavailable than metal hydroxo complexes and free metal ions (Luoma, 1983). This is one of
the reasons why high alkalinity as well as high hardness is considered favorable in metal
polluted rivers and lakes. Hardness or alkalinity are even accounted for in some water quality

guidelines (e.g. United States Environmental Protection Agency, 1998).

The aqueous concentrations of Ca2+, H', OH, HCO; and CO, may also influence the surface
and adsorption properties of mineral particles, e.g. the surface charge of calcium carbonate

(Stumm and Morgan, 1996; Thompson and Pownall, 1989).

Other parameters influencing metal speciation

Some additional parameters should be mentioned which affect water speciation. Light
conditions have proved to be important for iron chemistry (Brick and Moore, 1996; Kimball ef
al., 1992; Sullivan et al., 1998) whereas water temperature may influence the metal speciation

of many metals to some extent (Byrne et al., 1988; Hawke and Hunter, 1992).

Since natural water masses continuously mix with each other, they are generally not in
complete equilibrium according to all possible reactions that may take place within the water,
or with the atmosphere or bottom sediments. Kinetics may thus be important for many water
chemistry processes. Complexation reactions usually proceed towards equilibrium within a
second or less (Buykx et al., 1999), whereas adsorption and especially desorption reactions

may be rather slow (Stumm and Morgan, 1996).

Biota may affect metal speciation as well as concentrations. In addition to "conventional"
uptake and excretion of metals between the aquatic phase and the organsms living within it, it
has been suggested that some organisms produce and excrete organic ligands into the bulk
water. In this manner they regulate their own metal uptake through controlling the bulk water

chemistry they live in (Xue and Sigg, 1993).
Metal toxicity

Metal speciation and biovailability

Usually metal pollution in rivers and lakes is monitored by analyzing samples for total
concentrations or filtered <0.45 pm fractions. However only a small fraction of the measured
quantities may penetrate biological membranes. Truly dissolved metal species are generally

considered more readily bioabsorbed than metals attached to high molecular weight material
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(Batley, 1983), and probably dissolved species contribute most of the toxicity experienced by
aquatic organisms during acute metal exposure episodes. Several investigations have
concluded that the most readily bioavailable and toxic metal species is the free metal ion
species (e.g. Cu™") (e.g. Campbell, 1995; Florence, 1983). Thus the free metal ion activity is
considered a good approach to the toxicity of a certain metal. This is called the Free Metal
Activity Model (FIAM). The FIAM theory has been widely used in toxicity considerations
(e.g., Vercauteren and Blust, 1996; Brown and Markich, 2000; Sunda and Hanson, 1976).
Some studies stresses exceptions and difficulties with FIAM, such as complexing of metals
with dissolved organic matter (Campbell, 1995; Pagenkopf, 1983; eij et al, 1992;
Campbell et al., 2000). Luoma (1983) however suggests that hydroxo complexes as well as
free metal ions are relatively bioavailable whereas carbonato and bicarbonato complexes are
bioavailable only to a minor degree. Several other investigations discuss the bioavailability of
dissolved metal species and in particular free metal ions (Brown and Markich, 2000; Cope et
al., 1994; Mason and Jenkins, 1995; Stumm and Morgan, 1996; Sunda and Hanson, 1976;
Vercauteren and Blust, 1996). Generally they conclude that these metal species are more

readily accumulated in fish than particulate metal species.

Determination of the free metal ion activity in fresh water is difficult, thus in the present work
the dissolved fraction as obtained by dialysis in situ was measured. This is obviously a less
accurate estimate of the readily bioavailable fraction than the free metal ion, still it is far better
than the total metal concentration. Small inorganic species (e.g. hydroxo, carbonato and
bicarbonato complexes) and some organic complexes (e.g. chelates with fulvic acids), due to
their size, will be included in the dissolved fraction (Steinnes, 1983; Stumm and Morgan,
1981). The work has been focused on bioavailable metal species and how they vary and
covary with other factors influencing on metal toxicity. The role of pH and organic matter in

controlling the metal speciation is also emphasized.

Metal uptake, accumulation and biological response

Huge differences in metal tolerance and uptake between biological species are frequently
observed (e.g., Williams et al, 1991; Masnado et al, 1995). This indicates that
uptake/excretion mechanisms specific for each biological species are important for toxicity

responses and accumulation in water organisms. Metals may enter the bodies of fish as well as
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most water organisms through gills, the integument, or the intestine, and accumulate and

influence differently on different organs.

Generally gills are probably the most vulnerable organ in fish towards acute exposures
(McDonald and Wood, 1993), whereas liver and kidney are more likely to be damaged during
prolonged dietary or waterborne exposures (Spry and Wiener, 1991). Uptake through the
gastrointestinal tract can be important for some aquatic organisms. The uptake of Cu and Cd
via the gastrointestinal tract has been shown to be considerable in trout from metal spiked
feed, and identifiable as such through elevated metal levels in the guts compared to the gills
(Handy, 1992). Food uptake may be increasingly important during prolonged exposures and
during the winter season when lakes are covered by ice. Kock ef al. (1998) e.g. reported that
Pb uptake in arctic char was significant in lakes during the ice-covered season. Especially for
Cd, body burdens are reported to increase after exposure to Cd-loaded food (Kumada et al.,

1980).

Numerous passive and active uptake channels are available on cell surfaces (Simkiss and
Taylor, 1995). Generally uptake through gills is expected to be most significant in fish,
especially during acute exposures (McDonald, Reader and Dalziel, 1989; Wood, 1992) and
summer season (Kock et al., 1998)(Pb). The fish skin is probably rather impermeable to most

harmful metals in water (Dallinger ef al., 1987).

The route of uptake may influence the final tissue distribution of metals. In salmonids e.g.,
dietary cadmium is retained principally in the gut, kidney, and liver, whereas exposure to
dissolved cadmium mainly results in gill and kidney accumulation (Segner, 1987). The
process of uptake of a metal into a cell is generally considered to be a two-step process: 1.
Initial surface binding onto specific transport sites on the cell wall. 2. Transport across the cell

membrane.

Organisms have evolved a number of mechanisms to prevent or limit excessive uptake at these
binding or transport stages (Mason and Jenkins, 1995). But also after biouptake, different
strategies are prevailed to withstand toxic stress. To acclimate to metal pollution, fish may e.g.

use metal binding proteins to bind and detoxifying intracellular metals (Stone and Overnell
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1985; Cope et al., 1994). Metallothioneins (MTs) are one group of low molecular weight
proteins with a high ability to sequester excessive heavy metals such as Cu, Zn, Cd, and Hg.
MTs are assumed to be especially efficient in detoxifying sudden bursts of intracellular metals
(Cherian and Cahn 1993), and the production of MT may be induced by metal stress. Tort et
al., (1996) e.g. found three times higher levels of liver MT in fish exposed to cadmium as

compared to controls.

The last strategy of metal detoxification is excretion, which is reviewed elsewhere (Mason and

Jenkins, 1995).

Parameters influencing metal toxicity

Given two water bodies with similar metal regimes, the toxicological response of an organism
may still be different. The reason may be that positive metal species such as Me®" and
Me(OH)" must compete with H', Ca®*, and Mg for metal binding sites on fish gills or other
biological surfaces where the metal uptake occurs (Campbell and Stokes, 1985). The effect of
the H™ competition on uptake as well as on toxic responses, was reviewed by Campbell and
Stokes (1985): The toxicity of Cu, Zn, and Cd decreased at low pH in most studies on Salmo
Gairdneri, as well as many other aquatic organisms. The studies cited were however mostly
performed in artificial water in vitro. Artificial water normally contains natural levels of main
water components such as pH, alkalinity, hardness etc., but cannot account for the complex
mixtures of particles, colloids, and organic ligands typical of natural waters. The enhanced
toxicity expected at decreasing pH from dissolving metal complexes and desorbing
colloidal/particulate metals might therefore have been less than in natural waters. Nevertheless
Campbell and Stokes (1985) clearly state that although a low pH incident might lead to a

increased dissolved fraction of a metal, it does not necessarily lead to a higher metal toxicity.

Water hardness ([Ca2+]+[Mg2+]) and alkalinity are occasionally both quoted as mg CaCOs/L,
and in nonpolluted rivers and lakes the two parameters are usually similar, (Davies et al.,
1993). In heavily polluted streams however, a low alkalinity may be accompanied by high

hardness.
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Many studies confirm that hardness and/or alkalinity reduce the toxicity of metals in aquatic
environments (Kock et al., 1995; Moore and Ramamoorthy, 1984; Spry and Wiener, 1991)
(review), but the mechanisms of the two are different. Whereas Ca and to a minor extent Mg
competes for adsorption sites and uptake channels in cell membranes, alkalinity increases
complexation of readily adsorbed free metal ions (Kock et al., 1995). Davies et al. (1993)
propose that antagonistic properties of water hardness reduce toxicity of Cd in acute toxicity

tests, but may not reduce toxicity significantly during long-term exposure.

Organic compounds and Ca®" may reduce the toxic response of fish exposed to low pH and/or

high Al concentrations (Lien et al., 1996).

Aims and hypothesis of the present study

The main purposes of this thesis were: 1) to reveal how the organic content and pH together
influence the dissolved/particulate metal concentration ratio in rivers. 2) To estimate the
dissolved, colloidal, and particulate fraction of Cu, Zn, Cd, and Al in natural waters. 3) To
study metal speciation differences between sites with different pH, TOC, alkalinity, and Ca
concentrations. 4) To reveal temporal covariation patterns concerning metal concentrations,
metal speciation, and other parameters influencing metal toxicity. 5) To study metallothionein
concentrations and organ distribution in fish during a river runoff episode. 6) To reveal to
what extent metallothioneins are capable of detoxifying significant amounts Cu, Zn, and Cd

accumulated in trout tissues.

Study area

The study aimed at providing water chemistry data to biochemical studies on fish, as well as
studying the metal chemistry itself. Therefore many criteria had to be considered while
choosing the study area. For the cross exposure work published in Olsvik et al. (2000) (Paper
2) and Olsvik et al. (2001a-b), two trout populated rivers with a completely different metal
chemistry were required; one with high Cd/low Cu concentrations and another with the
opposite ratio. This criterion was however difficult to fulfill, because the [Cu]/[Cd] ratio in
most Norwegian mine polluted rivers appeared to be rather constant at about 100-200. Ca
concentrations should be intermediate or low, and the populations were ideally supposed to

live on the edge of extinction. The latter was to achieve a remaining fish stock that was
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genetically adapted through partial deteriorations during high toxic stress episodes. The two
rivers found, Rugla and Naustebekken matched these criteria fairly well, however genetical
adaptation was somewhat uncertain since the fish stocks to some extent had access to
unpolluted side-creeks during critical episodes. Practical considerations such as availability
via road, available cabins, distance to laboratories, and distance between river sites were
considered as well. The study area and the river sites (Figure 1) finally chosen were a

compromise between all these considerations.

The water chemistry of six other rivers in the area, which differed highly concerning levels of
pollution, river discharges, pH, and TOC, were studied as well. The metal chemistry variations

and covariations of all eight rivers are described in Papers 3 and 4.
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Figure 1: Map of the study area

Table 1 shows major characteristics of the selected sites. Orva, and especially the very small
(nameless) creek running from the Bjorgdsen mining area, are very heavily polluted by acid
mine drainage. These two streams, as well as river Glama around the chosen sampling stretch,
do not contain any fish population. Gldma and the five other streams have rather neutral pH

values and moderate to low Ca concentrations. The stream discharge varies highly from
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stream to stream as well as temporally within each of them; from less than 1 to more than 100
L s in Bjergasen, and from 10" to more than 10° L's™ in the largest river, Glama. The sizes of
the other rivers may be estimated by comparing watershed sizes (Table 1). In two of the rivers,
Naustebekken and Hitterelva, lakes are located between the polluting mines and the sampling
sites. Sedimentation in these lakes may cause depletion of particulate metals from the rivers.
Sampling sites are located in headwater streams, all except Gaula at altitudes ranging from
500 to 900 meters (see Table 1). Tree vegetation reaches an altitude of 800-900 meters in the
area, and the bulk of snow accumulated in the watersheds during winter is melted by the end
of June. The area has an inland climate with relatively warm summers (~10 to 30 °C) and

cold, dry winters with temperatures occasionally reaching below —40 °C. Annual precipitation

(1961-1990) is 504 mm (Aune, 1993), which is very low for Norway.

Table 1: Topographic characteristics of the sampling sites and chemical quality of stream

water.

Site Altitude (m) Distance Water- Lakein Average Average Pollut-
Sampl- Main  mine - shed river pH Ca ion level
ing site mine  sampl. size" path (mg/L)

site (km)  (km®)

Roa 640 860 11 90 N 7.14 3.7 Low

Nauste- 820 860 1 8 Y 6.90 2.3 Low

bekken

Gaula 360 1040 30 290 N 7.02 3.5 Low

Hitter- 700 820 7 140 Y 7.35 6.4 Medium

vassdraget

Rugla 620 880 7 70 N 7.01 43 Medium

Glama 620  800-900 10 1000 N 7.13 5.0 Medium

Orva 620  800-900 5 25 N 5.52 4.4 High

Bjorgdsen 500 580 2 1 N 3.19 9.8 Very

high

DAbove the sampling site.

Pictures showing the study sites and illustrating some of the challenges during fieldwork are

presented in Figures P1 to P24.
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Experimental

In this chapter a short description of the methods used is given. Complete descriptions of the
methods are given in each of the papers. In addition a minor study in Orva is described (not in
any of the papers). Pictures showing the dialysis and filtration process are presented in Figures
P.25 to P.30. Sampling and analysis quality control are accounted for in each of the published

papers.

The dissolved species of the metals were fractionated by dialysis in situ. Suspended matter
was removed by filtration, and the colloid fraction was defined as the difference between the
filtered and the dialyzed fraction. Unfractionated samples were collected for total
concentration determination, or more precisely; acid extractable concentrations, since all
samples were acidified to 0.1 M HNOs;. Ca concentrations, pH, river discharge, water

temperatures, and (to a lesser extent) precipitation and TOC were also monitored.

Three samples were collected from red deposits observed in the snowcap covering stream
Orva (Figure P.23): A fraction of the snowcap was shovelled away to form a vertical wall
from the stream surface to the top of the remaining snow. Wide-neck 50 ml polyethylene
bottles were then pushed into this snow-wall at ~0 cm, 10 cm, and 20 cm from underneath.
The samples were acidified to 0.1 M HNO; and Cu, Zn, and Cd were determined by flame

atomic absorption spectrophotometry.

Results and discussion

Metal accumulation and metallothionein in fish

Biological uptake, accumulation, and biochemical response (MT-production) during a run-off
episode were studied in the streams Rugla and Naustebekken (Paper 2). Rugla was highly
polluted by Cu and intermediate by Zn and Cd. For Naustebekken the metal fingerprint was
opposite. The run-off episode caused enhanced concentrations of Cu, Zn, and Cd in the water,
and generally corresponding metal accumulation in fish gills, liver, and kidney. It was shown
that Cu, Cd, and Zn concentrations in all three organs also reflected well the general metal

concentrations in each of the rivers, however the kidney in Rugla trout unexpectedly contained
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less Cu than the kidney in Naustebekken trout. A negative correlation between age and Cu
concentration was found in all organs except in the Rugla trout kidney. For Zn no
agedependence was established, whereas for Cd the general trend was opposite of that for Cu;
a positive correlation between age and fish organ concentrations was found in liver and kidney

however not in gills.

Intracellular MT bound to Cd or Zn was found by '*’Cd replacement, whereas Cu bound MT
is the difference between total and Cd/Zn MT (Paper 2). As for the totals, the Cd and Zn
fractions bound to MT in fish reflected well the corresponding metal concentration in the
rivers. The concentrations of Cd/Zn MT in gills, liver, and kidney were three- to fourfold
higher in Naustebekken compared to Rugla trout, whereas the corresponding water
concentrations were six- to tenfold higher in Naustebekken. For Cu this pattern was less
obvious; it seemed to coincide for gills but not for liver. Although Naustebekken trout may
have been adapted to high levels of Cd and Zn, and minor levels of Cu, its MT production
system still seemed capable of coping with Cu stress; after transfer to Rugla this trout
experienced a pronounced higher Cu concentration, and a marked increase in Cu MT was

observed.

Gill concentrations of Cu MT in Rugla and Cd/Zn MT in Naustebekken was clearly enhanced
during run-off episodes, indicating the significance of MT in detoxifying sudden bursts of
metal concentrations. Generally the Cu MT and Cd/Zn MT concentrations in gills and kidneys
were high enough to account for all or almost all Cu and Cd but only for a minor fraction of
the Zn present in these organs. For Zn this indicates that other detoxifying mechanisms may

be more important than MT.

Metal speciation

Dialysis in situ and filtration separated the metals in three fractions; dissolved (< 4 nm),
colloidal (>4 nm, <0.45 pm) and particulate (>0.45 pm). At the Bjorgasen and Orva sampling
sites, average pH levels were 3.1 and 5.5 respectively (Figure 3, Paper 4). Because of this low
pH, more than 90 % of Cu, Zn, and Cd occurred in dissolved form in these streams. Average

pH in the six other streams studied was in the range 6.9 to 7.4, and for this reason the
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dissolved fractions were lower with an average of 54, 79, and 79 % for Cu, Zn, and Cd
respectively. In the same streams a major part of Al, 55 %, was colloidally bound, whereas the

dissolved and particulate fractions were 21 and 23 % respectively.

In Figure 4 (Paper 4), data from the present study is combined with data from similar studies
to reveal relations between TOC, pH, and metal size distribution. The results support
equilibrium models implying that the percent fraction of metals bound to particles (for
simplicity called adsorbed) rises steeply from almost zero to almost 100 % within a narrow
and element-specific pH range. Changes in TOC concentrations however seem capable of
shifting the metal absorption curves by up to one pH unit. The scattered points reveal that
other parameters as well as pH and TOC, e.g. metal concentrations, organic matter

composition, and hardness/alkalinity, probably also influence the metal speciation.

50 % of Cu and Al are in dissolved form at about pH 7.2 and 5.8 respectively in low TOC (< 8
mg/L) waters (Figure 4, Paper 4). Zn and Cd on the other hand adsorb at slightly higher pH
levels: For Zn and Cd the corresponding 50 % dissolved fraction seems to occur at higher pH
than accounted for by own and literature data; extrapolation suggests pH 7.6-7.8. The rather
short distance on the pH scale between Cu adsorption and Zn/Cd adsorption may seem
insignificant at first glance. It may however explain the fact that the percent dissolved fraction
of Cu is generally found to be some 30 % lower than the case for Zn and Cd in pH neutral

surface waters (Figure 4, Paper 4).

TOC alterations may also significantly influence Cu, Cd, and Al speciation (Figure 4, Paper
4). High TOC concentrations (> 8) seem to accompany low fractions of dissolved metals. For
Cu and Cd, this is probably because the metals adsorbed on high molecular weight organic
compounds or organic coatings on inorganic particles. The influence of organic material on Al
may be somewhat less clear because, as described above, that element may precipitate as well.
For Cd, 10 to 60 % is adsorbed at high TOC (> 8 mg/L) in the pH range 6-7. However in
corresponding low TOC samples (< 8 mg/L), as much as 75 to 100 % is adsorbed. For Al, a
dissolved fraction of 50 % seems to occur at about pH 6 at low TOC. This is one pH unit or
more higher than in the high TOC waters. For Zn only a small number of high TOC data exist,

and the influence of TOC on Zn size distribution is less obvious.
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In short, a narrow pH range almost completely governs the dissolved/particulate distribution
for many metals. The location of this range along the pH axis is specific for each element and
may be considerably altered by the organic matter content. In particular during sudden metal
concentration bursts this could be significant, since dissolved species probably exert most of

the acute toxic stress in waters.

Dissolved fraction modelling

As discussed below, models predicting the water chemistry from easily attainable data would
be very beneficial in future monitoring studies. Multivariate regression analysis (Fugleberg
and Kristianslund, 1995) on data from Paper 4 revealed a general equation for the dissolved

fraction of Cu, based on pH and TOC concentrations (mg/L)(Eq. 2).
Dissolved fraction of Cu (%) = (61.894 — 6.482 pH — 0.644 TOC) In(pH?) (Eq. 2)

The model explained 69 % of the variance in Cu dissolved fraction in the pH range ~ 4 to 7.2
(ANOVA analysis). The equation should however be used with precaution since in many
cases dissolved fractions predicted by the model deviated strongly from the experimentally
determined ones. Other parameters such as metal concentrations and alkalinity probably
influenced the dissolved fraction as well as pH and TOC, and could possibly have been
included as model variables. Examples of dissolved fractions calculated by the model are
presented in Table 2, and are in reasonable agreement with measured dissolved fractions in
Figure 4, Paper 4. Successful multivariable regression models were not achieved for the other

elements.

Table 2: Dissolved fractions of Cu from Equation 2 at different combinations of pH and TOC

Model Cu dissolved fractions

TOC (mg/L) pH 4 pHS pH 6 pH 7
12 78 70 55 34
6 &9 82 69 49
2 96 91 78 59
0.5 99 94 81 63
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Temporal variations in metal chemistry and parameters influencing metal
toxicity

All water chemistry data collected for this thesis are given in Appendix 1 (Table Al.l to
A1.18). The most important parameters are plotted as a function of time as well (Appendix 2,
Figures A2.1 to A2.8). Temporal variations are discussed in Paper 3, Appendix 2 contain
additional figures not printed in that paper. This chapter shortly summarizes conclusions from
Paper 3, with some additional information from Appendix 2 and views temporal trends in the

light of Paper 4.

In most rivers, low winter discharges were succeeded by rain induced flood peaks at May 7-8.
However in Glama, a hydroelectric power plant regulation smoothed out this peak. In most
streams the May 7-8 incident led to elevated, or even year 1997 maximum, total metal
concentrations (Figure A2.1 to A2.8 in Appendix 2). As the spring flood discharge proceeded
to its maximum, the metal concentrations generally declined; exceptions were Naustebekken
and Hitterelva (Figure A2.2 and A2.3 respectively in Appendix 2). In these two streams the
metal peaks were delayed by lakes in their path. In Bjergasen (Figure A2.8 in Appendix 2),
the total metal concentrations were clearly lower during flood incidents; opposite to other
sites. Probably clean rain- and meltwater diluted water from a contaminated and relatively
steadily seeping groundwater source in Bjergdsen during the floods. During the rather
extraordinarily dry summer in 1997 the metal concentrations declined or were rather steady in

most of the streams and rose again during autumn rainfalls.

Early stages of flood episodes have been reported to accompany elevated metal concentrations
in several studies (Cortesao and Vale, 1996; Grimshaw et al., 1976; Sullivan et al., 1986). For
organisms in moderately mine-polluted streams, such incidents could therefore be critical.

Generally total Al showed higher temporal variations than the other elements.

Another parameter that may influence metal toxic stress in natural waters is pH. As discussed
in Paper 4, pH is probably the most important parameter determining the dissolved to

particulate metal distribution. Within a rather narrow range, pH may reduce the dissolved
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fraction from ~100 % (low pH) to ~0 % (high pH). Low pH however may have other effects
on metal speciation and toxicity; the H" ion may e.g. act directly toxic on aquatic life. At
decreasing pH, metals will also be increasingly present in the bioavailable free ionic state
(Stumm and Morgan, 1996). But the H" ion may also protect aquatic life from metal uptake,
by competition for surface uptake sites (see Introduction). The total concentrations of Cu, Zn,
Cd, and Al seem to covary rather closely, Al deviating somewhat from the others (Figure 3a in
Paper 3). But each of the metals also correlate negatively with pH (Table II, Paper 3). Whereas
the metal concentrations have an early peak during the spring flood, the pH minimum seems
to occur a few weeks later, still a few weeks before the river discharge peak (Figure 3a and 4
in Paper 3). However this does not necessarily apply for all sites. In Naustebekken e.g., the pH
trough induced by the spring flood coincides with the maximum for total Al, and even occurs

one month prior to the maxima of the other elements (Figure A2.2 in Appendix 2).

High river discharges usually accompany increased concentrations of particles and colloids.
This material may contain metals or introduce adsorption surfaces to dissolved metal species.
Probably due to one or both of these, the dissolved fractions of Zn, Cd, and Al showed a
significant negative correlation with river discharge (Figure 3¢ and Table II in Paper 3). The
desorbing effect from a lower pH observed during flood (Table II, Paper 3) could be expected
to counteract this trend, but did not seem strong enough. Total and dissolved Cu generally
follows the same trend as corresponding Zn, Cd, and Al concentrations (Figure 3a and 3b in
Paper 3). Still no correlation was found between river discharge and the dissolved fraction of
Cu. It is suggested in Paper 3 that particle concentrations may be less important, on the
expense of pH dependence (discussed below) for Cu. The deviating behavior of Cu however
may be further understood from results in Paper 4: In that paper it is concluded that the
dissolved fraction of the metals may change rapidly from ~100 % at a low pH to ~0 % a few
pH units higher. The change appears steepest at about 50 % adsorption (see Figure 4, Paper 4),
that is, for Cu, at about pH 7.2. Most streams and lakes discussed in the present work show pH
values around this level, and this may be the reason why the Cu speciation seems so strongly

correlated to pH.

As discussed in the Introduction, alkalinity and Ca may protect aquatic organisms against
metal pollution. Unfortunately however the temporal variation pattern for alkalinity and Ca

concentration seems to be opposite to that of the metals; alkalinity and Ca concentration are
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high at low river discharges during the winter and dry summer and low during spring and
autumn flood peaks (Figure A2.1 — A2.8 in Appendix 2). Because of this pattern, there were
significant negative correlations between alkalinity and Ca concentration on one side and Cu
and Al on the other (see Paper 3). Generally, though, the minimum levels of alkalinity and Ca
concentration occurred one month or more delayed compared to the spring maximum of the
total metal concentrations. This contributed to intermediate Ca and alkalinity levels during the

critical metal concentration maximum in spring.

As discussed below, organic substances may decrease the metal toxicity. Three sampling
campaigns included TOC analysis, unfortunately too few to reveal any temporal trends. Some
investigations report elevated concentrations of organic substances during flood (Borg, 1986;
Borg et al., 1995) whereas others report the opposite (Bishop ef al., 1995; Sanden et al.,
1997). In another investigation (Bishop and Pettersson, 1996) it seemed that during floods,
TOC in forested subcatchments was high, whereas the opposite seemed evident in a mire
subcatchment. TOC is therefore not connected to river discharge in any consistent manner.
Some Norwegian investigations in the present study area (Kjellberg and Lovik, 1997) or in
adjacent regions (Grande and Romstad, 1993; Kjellberg, 1991) still indicate that TOC most

likely will be higher during flood or increasing flood conditions.

Normalized values (z-scores) describe how high a certain concentration is in a stream
compared to the average in that stream. In short, a z-score of 0 (zero) means that a certain
sample contains exactly the average (e.g. alkalinity) for that site. A z-score at 1 means that the
respective sample show an (e.g.) alkalinity that is 1 standard deviation higher than average for
the site whereas a z-score at —1 i1s 1 standard deviation below average . Z-scores for several
rivers may be plotted in the same figure, which makes it easier to reveal general temporal

trends in the data material as a whole (see Figures 2 to 4 in Paper 3).
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Figure 2: Normalized values (z-scores) for dissolved and total metal concentrations

As shown in Figure 2, the dissolved concentrations generally follow the totals quite well for
all elements except Al. In a few cases the dissolved concentration apparently exceeds its
corresponding total, e.g. on one occasion during May in Rugla (Figure A2.5). This is probably
caused by a delayed dialysis equilibrium during very rapidly decreasing metal concentrations,
and the phenomenon may have disturbed the calculations of dissolved fractions to some
extent. At the Bjorgdsen site however, low pH causes total and dissolved concentrations to be
equally high for Cu, Zn, and Cd. The almost identical path of the dissolved and the total
concentrations indicate that the dialysis bags generally follow the exterior water chemistry
very closely. The dissolved fractions of Zn and Cd in Hitterelva, Glama, and Orva are also
high (Figure 2, Paper 4) and indicate the same conclusion; the dissolved concentrations
determined within the dialysis bags represent well the river bulk water at the sampling date

(Figures A2.3, A2.6, and A2.7 in Appendix 2).
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In several cases, metal concentration peaks are observed for some metals, whereas others
remain low or intermediate. This is e.g. observed on October 1 in Rugla (Figure A2.5) and on
July 3 in Rea (Figure A2.1), both incidents especially high in total Cu. However during a
heavy rain incident in the beginning of May, Cd and Zn responded with high dissolved
concentrations in Naustebekken whereas dissolved Cu in this case remained intermediate
(Figure A2.2). Concentrations of Zn and Cd generally covaried very closely, but on a few
occasions, e.g. in Rugla during May (Figure A2.5), dissolved Zn and Cd behaved differently.
The deviations between the metals indicate that either their release mechanisms may vary, or
continuous adsorption/desorption reactions at some stage in the watershed may withhold some
metals longer than the others. Total concentrations of Al showed the highest temporal
variations of the metals, and generally the path of the Al concentration curves deviated most

from the other metals (Figures A2.1, A2.2, and A2.5).

After more than a week with dry weather, the forecast on September 29 predicted forthcoming
rain. Samples were therefore collected at September 30, October 1 and October 2 to observe
chemical changes on a higher temporal resolution. An intermediate rain episode came at about
16:00 and lasted to about 19:00 on October 1. Samples were collected from about 22:00 to
01.00 in Rugla, Orva, Gldma, and Rea, and for the former site this coincided well with the
monitored flood maximum. New samples were then collected at all eight sites from about
12:00 the next day (October 2). The intermediate flood incident at October 1 doubled the Cu
concentration in Rugla, causing the highest measured Cu concentration during 1997 in that
stream (Figure A2.5). About 18 hours later it was back to the pre-flood level. The maximum
Cu concentration occurred even though the precipitation that caused it was a mixture of snow
and sleet in the mining area. The snow/sleet partly covered the mine tailings, which probably
therefore released metals rather poorly, whereas the lowland rain probably diluted somewhat
the metals that were released. If heavier rain episodes were monitored with similar or shorter
intervals, much higher metal concentration peaks would probably have been revealed. This
shows how rapid chemical changes may occur in streams, and illustrates how useful

continuous logging may be in stream monitoring studies.

As discussed above, total metal concentrations are generally higher during early flood

conditions for all elements. This has been attributed to flush-out from weathered materials,
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e.g. mine tailings, and, to some extent, particulate metals being resuspended from the stream
bottom due to the higher water velocity. Several facts indicate that the latter may have
contributed significantly to the Rugla Cu concentration peak discussed in the previous
paragraph: First, the fact that the Cu concentrations increased despite the low water flow that
was expected to seep from the snow/sleet covering the mining wastes. Secondly, the dissolved
Cu concentrations decreased during the same episode (Figure A2.5). This is consistent with a
scenario where no metals are released from the tailings, however particulate Cu is resuspended
from the stream bottom and simultaneously diluted by lowland originating rainwater. The fact
that the total concentrations of Zn and Cd did not increase as much as Cu during this episode
does not necessarily contradict this conclusion: Splitting the data material in two, high and low
river discharge samples, reveals that the [Cu]rota/[Zn]Tota fraction was highest during elevated
river discharges in all eight rivers, on average 15 % higher. This may indicate that Cu could
have a stronger tendency to resuspension that Zn and Cd. Not surprising since, as discussed

above, Zn and Cd attach less readily to particles than Cu.

Metal concentrations in relation to fish stocks and guidelines

All streams in the present study are more or less influenced by previous mining activity (Table
3), and Bjergasen and Orva are ecologically dead due to the very high metal concentrations.
According to locals, salmonid species are completely absent for several kilometers
downstream the Orva inlet in Gldma, and nothing but a few whitefish (Coregonus lavaretus)
had ever been caught in the studied stretch of Glama since mining activity started in the area.
Lake Djupsjoen is located some hundred meters upstream the Hitterelva sampling site, and the
water chemistry and pollution levels are probably quite similar. Considerable amounts of
whitefish (Coregonus lavaretus) and minor amounts of trout (Salmo trutta), grayling
(Thymallus thymallus), minnow (Phoxinus aphya), and arctic char (Salvelinus alpinus) are
reported in Lake Djupsjoen. However the lake is probably considerably affected by metal
pollution, and some of the fish in the lake probably migrated from an unpolluted lake (Store
Hittersjoen) some kilometers further upstream. Fish caught in Djupsjeen may therefore not be

a part of any local fish stock (Grande ef al., 1996).
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Table 3: Average total metal concentrations in each river (Ug/L) compared to Norwegian

water quality guidelines (values within "Poor" or "Very poor" water quality are shadowed)

Site Cu” Zn” Cd” AlY
Roa 33+ 0.9 8.4 + 3.6 0.0120 + 0.0070 72 + 62
Naustebekken 4.8+ 2.0 90 + 35 0.170 + 0.076 36 £11
Hitterelva 35+ 9 124 + 17 0.23 £ 0.03

Gaula 109+ 6.4 28 + 14 0.077 £+ 0.035

Rugla 22+ 9 85 +£26 0.022 + 0.009 124 + 147
Glama 47+ 38 104 + 71 0.24 £ 0.16

Orva 340+ 160 850 + 380 1.42 £ 0.61

Bjorgésen 3100+ 900 6200 + 2800 142 + 4.7

Guidelines"

Good <2 <10 <0.04 <5
Less good 2-5 10-30 0.04-0.1 5-20
Quite poor 5-15 30-60 0.1-0.2 20-50
Poor 15-50 60-110 0.2-0.5 50-100
Very poor >50 >110 >0.5 >100

Y According to Holtan and Rosland (1992). The guidelines are mainly based on concentration
factors compared to expected background levels, but to some extent on the toxicity of each
element as well.

%) Average + standard deviations.

The average metal concentrations in Glama and Djupsjeen/Hitterelva are higher than in Rugla,
a stream polluted considerably with Cu (class "Poor") but only to a minor degree with Zn and
Cd. Somewhat surprisingly, no fish were however observed in Rugla during electric fishing,
except trout in a minor pond 1 km downstream where it may have been able to escape into an
unpolluted side stream at metal stress incidents (a waterfall separated the site and the pond
from upstream migration). Naustebekken stream on the other hand was rather strongly
polluted with Zn (class "Poor") and to some extent Cd but not with Cu. In Naustebekken a
large population of trout existed, but the arctic char population became extinct and
repopulation trials failed after the mining activity started. Possibly the Zn or Cd concentrations

influenced the arctic char spawning areas in the lake, whereas the trout, spawning in running
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water, could do this in some unpolluted brooks running into the lake. The fact that
Naustebekken, due to Zn, and Rugla, due to Cu, are both located in the class "Poor" whereas
the trout populations are not influenced in the former but extinct, at least at the studied site, in
the latter may therefore not necessarily lead to the conclusion that there is something wrong
with the guidelines. It may as well be caused e.g. by the clean spawning areas available for the
Naustebekken trout. The two last streams, Rea and Gaula, were quite clean, the latter
predominantly because of substantial remediation at surrounding mining sites during the early

nineties. Stream Rga however contained significant amounts of Al.

Al concentrations were only determined in three streams. This metal was rated as most critical
among the metals according to the guidelines in two of these streams; Rea and Rugla (Table
3). On the basis of current Al toxicity models, it is likely however that Al will have only minor
toxic effects on fish at the concentrations and pH levels concerned; at least that is the case
unless the water consists of very freshly mixed neutral and acidic water bodies (Verbost et al.,

1995).

Lake buffering

The dissolved fraction of Cu, Zn, Cd, and Al was lower in Rugla than in Naustebekken (Paper
1). It was suggested that particle sedimentation in a lake that Naustebekken passes through
caused the difference. More streams and lakes are however available in Figure 4 in Paper 4,
and in this material it does not seem likely that lake and river sites should differ considerably
in dissolved fractions, given similar pH and TOC conditions, Other parameters probably
scatter the data material more than lake /stream origin. Lakes may however reduce toxic
effects of metals running through them by diluting and smoothing metal concentration peaks.
This may be viewed by the "lake buffered" metal concentrations in Naustebekken and
Hitterelva (Figures A2.2 and A2.3 in Appendix 2 respectively), compared to the others
(Figures A2.1 and A2.3 to A2.8 in Appendix 2).

Snowcap accumulation

Rust-coloured deposits were observed in the lower 20 cm of the snowcaps covering most of
Orva during early spring (Figure P.23). The deposits probably originated from splashing
droplets from the fast-flowing stream or from water sieving into the snow that sags down

during mild episodes. To get some indication of whether or not the snowcap could influence
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the water chemistry, three samples were collected at 0, 10 and 20 cm into the snowcap from

underneath (see Experimental). The results are presented in Table 4.

Table 4: Metal concentrations (Ug/L) in Orva stream and in the metal deposits located in the

snowcap covering the stream.

Sample Cu Zn Cd  Discharge
(m’/s)

May 6

Stream water 147 583 0.76 0.26

Snow, 0 cm 1) 2400 96 1.12

Snow, 10 cm 1) 17500 260 2.7

Snow, 20 cm 1) 430 93 0.060

May 15

Stream water 720 1280 24 355

1) Measured from underneath snowcap

Several factors indicated that the Cu deposits in the snowcap influenced the river water
chemistry considerably during their release: The Cu concentrations were surprisingly high in
the Orva snowpack (up to 100 times the river levels) whereas Zn in snow was lower than in
stream water and Cd concentrations in the snow were rather close to the corresponding water
concentrations (Table 4). Observations in Orva and Rugla during the May 5-8 rain episode
showed that a substantial part of the winter snowcap covering a stream could be melted or
mechanically broken down within a day or perhaps even only in a few hours. Additionally, the
metal deposits in the snowcap were located close to the river water and were therefore
probably released before the rest of the snow. Thus the metal deposits were probably mixed
into the water masses within a very short time, potentially contributing to a very high metal
concentration peak. During this early stage of the spring flood, the dilution effect of melting

water was probably moderate as well.
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To interpret the effects of Cu in the melting snowpack on the streamwater underneath, some

rough assumptions were made:

1. The stream is ~5 km long, and 2/3 of it were estimated to be covered by snow.

2. From the melting in the sample bottles, the density of the snow was estimated to be 0.4

g/em’.

3. The 0, 10, and 20 cm snow-samples were estimated to represent the 0-5, 5-15, and 15-25

cm layers respectively in the snow, for the part of the stream covered by snow.

By calculating the corresponding water volumes and using the Cu concentrations in the snow
(Table 4), it was estimated that 7.8 kg of Cu was captured in the Orva snowcap. To interpret
the snowcap metal contribution to the stream water during the most critical period, one

assumed that:

4. Half of the 25 cm of metal containing layer was released during six hours at May 15, the

spring maximum Cu concentration.

This means that 3.9 kg of Cu were released to the water, possibly during the incident of 1997
which for some organisms located at downstream sites may have been critical for survival.
Considering river discharges and metal concentrations on May 15 (Table 4), ~11.4 kg Cu were
transported with the stream during six hours at May 15. If a 3.9 kg contribution of Cu from the
snowcap were a reasonable estimation, it would have contributed with 34 % of the Cu in Orva

at this incident.

It should be emphasized that the calculations are based on rather rough assumptions, and that
further research with more samples is necessary to quantify accurately the influence a
snowcap metal deposition may exert on water chemistry. The huge differences between Cu,
Zn, and Cd concentration factors in the snow (compared to water concentrations) were rather

surprising and should be further investigated.
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River Glama and discharge regulation

The stream Orva is completely dead due to the high metal concentrations in the water. It runs
into the large river Gldma (called Glomma further down), which, according to locals, is almost
completely dead several kilometers downstream from the Orva inlet. Thus, parameters
influencing Orva water will also influence Gldma for a long distance downstream. The extra
metal bursts from the snowcap in Orva (discussed above) is in this respect only one out of
several negative factors which act at the same time in Glama. Whereas the Cu concentrations
in Orva increase 7-fold from the winter samplings to the spring peak sample, the
corresponding Cu concentrations in Glama 3 km downstream increase about 18-fold. At the
same time, alkalinity and pH are very low as well (Figure A2.6), possibly increasing the toxic

responses of the metal burst.

The extremely high metal concentration peak in Gldma is probably due to the last of the "bad
luck" factors in that stream. Whereas Orva receives and loads rainwater fast, the river runoff
peak in Glama is delayed due to the long distance to Gldmas outer watershed. The presence of
a large lake/dam, Aursunden (Figure 1), in its path also delays and smooths runoff peaks.
When Orva water, with high metal concentrations and river discharges at early spring then
enters Gldma which is still running at low winter discharge, the metal concentrations in Glama
should be expected to be very high, just as observed. To some extent the very high
concentration peaks in Glama could have been reduced somewhat. Aursunden Lake is
regulated by the hydroelectric power plant Kurdsfossen Kraftstasjon. By letting out more
water through during the most critical incidents, the high loads of metals from Orva could
have been diluted. Unfortunately, spring flood is a period when power plants in general
increase the water volume in their dams, which have been partially emptied during the
electricity demanding and dry winter season. Probably due to the delay in Gldmas watershed,
it seems that the river runoff in the beginning of May is naturally low (Figure 3). Thus the
river discharge regulation by the power plant does not seem to have contributed to the
maximum metal peak in 1997, but could have reduced it if run differently. The flood however
proceeds differently each year, and it seems likely that the power plant regulation at some
incidents increases the effects of the metal pollution from Orva. It is therefore suggested that
considerable amounts of water should be let through at early spring rain and/or melting

episodes to dilute the downstream effects of metal pollution.
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Figure 3: River runoff in Glama, regulated (as measured) and natural (calculated; as if the
stream was unregulated by the hydroelectric power plant) (Glommens og Laagens

Brukseierforening, 1999).

Suggested applications of results from the present study

Following are a few examples suggesting how the present results may be used qualitatively or

quantitatively in other studies.

Example 1:

In a study monitoring a moderately polluted stream, Cu concentrations around 20 pg/L, a pH
of 7, and 10 mg/L TOC are found. One is concerned about what future changes in water

chemistry might lead to in terms of ecological harm.

During average conditions, around 70 % of Cu in the water could be expected to exist in the
dissolved state (Figure 4 in Paper 4 or Eq. 2). Many organisms are influenced by Cu
concentrations of 20 pg/L, and could be sensitive to small changes in the water chemistry.
Significant amounts of Cu adsorbed on particles are likely to desorb if TOC or pH decreases.
One should therefore carefully control changes in the watershed that might alter the TOC or
pH in the stream. Also pH, TOC, and Cu concentrations should be closely monitored at flood

or other episodes where levels of these parameters may be especially unfavorable.
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Example 2:
A stream receives polluted effluents from a Zn mine. The Zn concentrations are about 60 ug/L
in the stream and this element is considered to be the most toxic for the water organisms. TOC
1s 3 mg/L and pH is about 6.5. One is concerned about decreasing pH values due to deposition
of pollutants from long range atmospheric transport in the river watershed and how it will

interfere with existing pollution in the area.

At low TOC values and pH around 6.5, it is likely that most Zn will already be in the
dissolved state (Figure 4 in Paper 4). Further acidification is unlikely to change this.
Acidification may on the other hand to some extent increase the Zn*" fraction within the
dissolved fraction, by dissociation from complexes. This may be of some concern, although
the higher H' concentrations (as discussed above) will compete with Zn>" for uptake sites on
biological membranes. All in all though, it is not very likely that a minor decrease in pH will
influence Zn speciation enough to harm aquatic life if they can tolerate the present metal

levels.

Example 3:

A hydroelectric power plant connected to a water reservoir is located upstream an old waste
fill which releases acidity and metals to the stream. Dissolved waste material is released
during periods when rain flushes through the wastes. One would like to reduce the risk of
negative effects from the waste material as much as possible, but fears that removing the

masses may release even more in the process, and be very expensive.

One inexpensive and easy way to reduce acute toxic effects from the peaks would be, as
described above for Gldma, to dilute the worst peaks by letting more water through the power
plant dam. First one should consider whether rising water levels in the stream could permeate
into dry layers in the waste and increase the flushout. If that seemed unlikely, one could then
install instruments that continuously logged rain or water discharges, pH, and/or conductivity
in the stream/waste seepage. At especially unfavorable conditions more water could be let

through to dilute the incoming waste effluents.
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Example 4:
Cu concentrations are on average 12 ug/L, TOC is 8 mg/L, and pH is 6.5 in a stream. During a
flood episode in May, however a Cu concentration of 70 pg/L is observed, pH is 4, the TOC
rises to 12 mg/L, and the alkalinity is negative. One wonders whether or not the metal level in

the stream is high enough to injure aquatic life.

A substantial part (>50 %) of the Cu would probably exist in particulate/colloidal form (Figure
4 in Paper 4). Additionally, considering that on average the Cu concentration is rather low, the
pH is quite neutral, and the TOC concentration is high in the stream, one could easily
conclude that aquatic organisms in that stream most likely are quite unaffected by the Cu

concentrations.

The metal concentrations are however unusually high during a certain stage of the flood. This
coincide with a low alkalinity and a very low pH which, nevertheless an elevated TOC
concentration probably elevates the dissolved fraction to ~80 % (Eq. 2 or Figure 4, Paper 4).
Organisms may therefore be considered threatened by acute effects of Cu concentrations in the

stream, even if the average concentrations are rather moderate.

Conclusions

The influence of pH, TOC, alkalinity, Ca concentrations, and conductivity on the
concentrations and speciation of Cu, Cd, Zn, and Al have been studied in eight streams. The
studied metals were predominantly bound to particles and colloids at high pH levels, but
shifted to be more or less completely dissolved one or a few pH units lower. At what pH range
the shift occurred clearly depended on the metal concerned and the TOC in the water. At TOC
concentrations lower than 8, a 50 % dissolved fraction was estimated to occur at pH ~7.2 and
~5.8 for Cu and Al respectively, whereas for Cd and Zn a 50 % dissolved fraction seemed to

occur at pH ~7.7 - slightly higher than the highest value observed in this investigation.

High TOC concentrations (> 8) seemed to accompany low fractions of dissolved metals,
probably because the metals adsorbed on high molecular weight organic compounds or
organic coatings on inorganic particles. A comparable dissolved fraction therefore occurred in
the order of one pH unit lower in high compared to low TOC waters. Cu, Zn, and Cd occurred

almost exclusively (> 90 %) in dissolved form in the two streams with average pH at 3.1 and
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5.5. Six other streams with average pH from 6.9 to 7.4, showed average dissolved fractions at
54,79, and 79 % for Cu, Zn, and Cd respectively. Most of Al, 55 % on average, was however
in colloidal form in three streams in the same pH range. The dissolved and particulate

fractions were 21 and 23 % respectively for this element.

In the pH neutral streams, total metal concentrations were generally high during flood
conditions, and the pH was decreased. The low pH may have tended to increase the dissolved
and free ionic fraction of the metals, although not necessarily their toxicity. As observed in
Paper 3 however, the dissolved fraction decreased significantly at higher river discharges for
Zn, Cd, and Al. Probably the higher concentration of particles in water during flood
counteracted the effects of the lower pH. Alkalinity and Ca concentration, which may reduce
metal toxicity, were also low during flood conditions. Some correlations that were not
statistically significant may have been obscured by the fact that the maxima and minima of the
different parameters did not coincide in time. Generally, but with exceptions in single streams,
the total metal concentration spring peaks came first at rising flood episodes, followed by low
pH, Ca concentration, and alkalinity two weeks later. Thus, at the spring maximum of metal
concentrations; alkalinity, Ca®" concentrations, and pH (for organisms unfavored by low pH)
had not yet reached their most unfavorable condition for protecting metal stressed organisms.
The flood maximum occurred two weeks after the pH, alkalinity and Ca minimum. After this
point pH increased, metal concentrations decreased, and Ca concentration and alkalinity

remained low.

The snowcap that covered the stream Orva accumulated and contained huge amounts of Cu,
but only minor amounts of Zn and Cd. Calculations indicated that this snowcap may have
markedly increased the metal concentration in the stream as it melted down during the critical

period of rising flood.

It 1s suggested that the river runoff regulation of the river Gldma by a hydroelectric power
plant could be run differently in order to level out metal peaks downstream the point where the

highly metal polluted stream Orva runs into Gldma.
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Gill concentrations of Cu MT in Rugla and Cd/Zn MT in Naustebekken clearly increased
during run-off episodes, indicating the significance of MT in detoxifying sudden bursts of
metal concentrations. Generally the Cu MT and Cd/Zn MT concentrations in gills and kidneys
were high enough to account for all or almost all Cu and Cd, demonstrating the capacity of
MT to regulate the toxicity of these elements. Only a minor fraction of Zn present in these
organs was however bound to MT. For Zn this indicated that other detoxifying mechanisms

could be more important than MT.

Further research

Considerable efforts have been made to predict metal toxic stress and accumulation from
pollution in aquatic organisms during the past decades. Since the uptake varies between metal
species, metal speciation techniques have been especially focused upon. Unfortunately
instrumental speciation of metals in natural waters is time consuming, expensive, and best
suited to separate metals into broad classes. Equilibrium models on the other hand, used to
calculate the concentration of individual metal species, generally suffer from lacking data on
ligand/particle concentrations/compositions or uncertain equilibrium constants, especially for

organic compounds.

In the ideal case, monitoring studies of metal concentration, speciation, and toxicity should, at
low cost and effort, predict rather precisely the concentrations of metal species that are
available in the studied water, what toxic stress they exert, and to what extent they accumulate
in water organisms. Preferably the studies should monitor metal concentrations and toxicity
consecutively during temporal variations in the streams. Unfortunately, with currently
available techniques, this would be extremely expensive and a huge amount of field and
laboratory work would be necessary. Presently, metal pollution monitoring studies in streams
and lakes are thus generally carried out by collecting occasional samples with certain
intervals, e.g. once a month, and then determine total trace metal concentrations and a few
other important water chemistry parameters such as pH, hardness, alkalinity, and TOC.
Averages and peaks of each of the parameters are then compared to standardized water quality
guidelines, sometimes also considering combinatory effects of e.g. total Cu and Ca. It is likely

however that both guidelines and monitoring studies may be improved to account for the

47



effects of metal pollution in a more precise manner. Some possible approaches to future

modeling projects are suggested in Figure 4.

Model building research Monitoring studies
Speciation Main Continuous
chemistrv logging
Dialysis in situ
Ultrafiltration Metal conen. Voltametry .
Filtration pH lonic selective Water chemist ‘ .

, TOC electrodes The concentration of different metal fractions or
onic Alkalinity River species may be plotted along a time axis to
exchange Ligands discharge reveal the most critical periods.

Particles
ete. } Quantitative models l
Equilibrium ’/ \ /4
models \ A
Muilti-variable Environmental impact
regression Input of water chemistry may be connected to
T : analvsis nput of water chemi
Toxicity studies / v metal tolerance; "toxic stress factor”.
Metal tolerance o e Z____
| Biomonitoring :
(Adaption to ] I
enhanced metal
conen.)
Bioaccumulation

Figure 4: Possible paths for further advances in speciation and toxicity studies.

The figure is divided in two. On the left are extensive data collection projects with a large
number of parameters collected. Such studies should describe as precisely as possible metal
speciation, and possibly toxicity, given a wide range of water chemical/physical/biological
conditions. Employing multi-variate regression analysis, these data may yield quantitative
models predicting metal speciation and toxicity, given a set of more easily attainable data.
Achieving this requires knowledge about which parameters significantly influence metal
speciation and toxicity. For example in Paper 3, clear connections between metal speciation
and combinations of pH and TOC are shown, and a simple model derived from the same data
is presented in Equation 2 above. Further research could include similar data collections but
from even wider ranges of chemical conditions. Using multi-variable regression analysis,
fairly good quantitative models predicting metal speciation based on TOC and pH may be
achieved. Including other parameters which influence metal speciation as well, such as
particle content, ligand concentrations, and others, would probably also increase the precision

of such models.
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On the right side in Figure 4 are the monitoring studies where easily attainable data are
collected and applied in the models to predict metal speciation and toxicity. Future models
should include standardized procedures and sets of variables for the investigation of streams
and lakes. The output of the models may also suggest which of the metals or combinations of
these and other parameters that influence most significantly aquatic life, and possibly even
predict what organisms or groups of organisms (e.g. benthos, fish, insects) that are most

threatened.

As described above, the uptake of metal ions in an aqueous medium by an organic surface
(roots or phytoplankton) may, to a first approximation, be considered to be proportional to the
concentration of the free metal ion. Since many ion-selective electrodes measure the activity
of the free metal ions, and have become very sensitive (Sigg and Xue, 1994), they may
therefore become increasingly useful tools for metal speciation in the future. They may even
allow continuous logging of metal ion activity if the calibration can be kept stable or
automated and the interferences can be controlled. Biomonitoring, possibly continuous/online,
may as well become increasingly important as gene technology can provide the needed tool to

create organisms that respond measurable to certain pollutants in very low concentrations.

As mentioned above, accurate metal speciation is rather difficult to achieve. Possibly
fractionation such as ultrafiltration, dialysis, and ion exchange prior to equilibrium models
may be useful (43). E.g., by excluding most of the humic substances in water by low
molecular weight cut-off dialysis, the composition of inorganic metal species would be easily

computed from the total metal and ligand concentrations.

Summing up, future advances in the metal speciation techniques and the application of them
may depend on combining and coordinating as well as improving the analytical tools
themselves. Additionally interpretations from general knowledge about water chemistry and
toxicity may be used to create statistically based models, which may describe the pollution
status in waters more accurately than at present. Hopefully future technology will improve in a
way that makes metal waste recirculation and minimizing more beneficial and natural resource
exploitation more efficient. Advanced tools to calculate precisely just how far one can go

before nature ecosystems become injured may then hopefully not be necessary.
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Abstract

Cd, Cu and Zn concentrations were measured in ambient water as well as in gills, liver and kidney tissues of two
natural populations of brown trout (Salmo trutta) during a run-off episode in two rivers with different metal
compositions due to mining pollution. Metallothionein (MT) was also measured in these tissues. The two rivers,
Rugla (Cu contaminated) and Naustebekken (Cd and Zn contaminated). are located in two neighboring drainage
basins separated by the topographic divide near the city of Roros in the County of Ser-Trendelag, Norway. In Rugla,
the Cu concentration increased from 15 pgil at the low water level to 41 pg/l during the run-off episode. In
Naustebekken, corresponding values for Cd were 90— 170 ng/l and those for Zn were 49-91 pg/l. Gill concentrations
of Cu and Cd/Zn MT in both populations of native trout clearly reflect the presence of these metals in the rivers
during the run-off, in accordance with the hypothesis of protection caused by MT induction. When Rugla trout were
transferred to Naustebekken and vice versa, both the amounts of MT itself and the Cu contents reflected the
concentration of this mctal in the new environment, indicating that MT induction also protects against acutely
increased metal levels. The measurcd levels of MT in both native and transferred troul can account for all the Cd
present in the tissucs, but not for all of the Cu and Zn. The capacity of MT to regulate Cd and Cu in the trout
populations in their natural habitat therefore seems clearly present. Our data also indicate that the MT I and 11
isoforms may bind metals selectively. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Brown trout; Cadmium; Copper: Zinc: Metallothionein: Run-ofl episode

1. Introduction
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a result of anthropogenic activitics such as mining.
Rugla and Naustebekken are two subalpine rivers
belonging to two different catchments in the
County of Ser-Trendclag, Central Norway; the
distance between them is less than 10 km. Rugla is
part of the drainage basin Gaula running north-
ward to the Trondheimsfjorden, while Nauste-
bekken is part of the drainage basin Glomma
running southward to the Oslofjorden (Fig. 1).
Along Rugla, several Cu mines are located, the
most important being Muggruva. This Cu-sulfide
orc was mined between 1770 and 1919, but oxida-
tion of mine tailings still contributes heavily to the
clevated river Cu load. A Zn-blende ore
(Fjellsjogruva), mined during a test period between
1953 and 1956, is the important source for the
clevated levels of Cd and Zn in Naustcbekken. In
spite of the ncarby location and thercfore being
affected by the same weather conditions, the metal
compositions of water from Rugla and Nauste-
bekken rivers are quite different.

Brown trout (Salmo trutta) is one ol the most
common fish species in Norwegian streams and
lakes, and the only species present in the rivers
studied in this article. There has been no attempt
to stock these rivers with non-native populations
of brown trout. The investigated arca gives a good
opportunity to study responses and possible adap-
tations of local fish populations to distinct metal
environments,

In strcams and rivers, the concentrations of toxic
mctals usually change during the yecar. At thesc
latitudes, the important factors are snowmelt in the
spring and periods with heavy rainfall throughout
the year. For shorter periods, 1.e. hours or days,
metals may reach levels that cause physiological
stress and even kill organisms (Spry and Wiener,
1991). Fish inhabiting such environments have to
adapt to these conditions and must tolcrate sudden
bursts of elevated metal concentrations. In [ish, the
most vulnerable organ to acutc cxposurcs is
thought to be the gills (McDonald and Wood,
1993). As a first defense strategy the fish may try
to avoid metal accumulation by sccreting gill mu-
cus that binds and immobilizes metals outside the
organism (Handy and Eddy, 1990). Liver and
kidncy arc vulnerable organs during prolonged
metal cxposures, both from waterborne and di-
ctary sources (Spry and Wiener, 1991). Toxic

metals will inevitably cross the boundary layers
and enter the organism.

Prolonged metal exposure may result in fish that
have acquired tolerance to metal toxicity both on
physiological and evolutionary time-scales. On a
short-term  scale, acquired tolerance has been
shown for Cd, Cu and Zn (McDonald and Wood,
1993). A short pre-cxposure Lo sublethal concen-
trations of these metals can confer protection
against subsequent exposures in [reshwater fish
(McCarter and Roch, 1983; Bradley ct al., 1985;
Klaverkamp and Duncan, 1987). This may be
accomplished by a mobilization of the biosynthetic
apparatus so that more metallothionein (MT) can
be produced in response to the second challenge
(Rocsijadi, 1996). Metallothioneins are considered
to be involved in the regulation of cssential metals
such as Zn and Cu, but they also bind Cd and Hg
{Cherian and Chan, 1993). The spill-over hypothe-
sis states that toxic action of metals will take place
only after the metal binding capacity of the metal
binding proteins in the cells is fully exploited
{Hamilton and Mehrle, 1986). Induction of MTs in
fish after acute exposures to high concentrations of
walcrborne metals has been thoroughly docu-
mented (Roesijadi, 1992). Metallothionein induc-
tion has been shown in gills, liver and kidney, both
alter waterborne and dietary exposures (Spry and
Wiener, 1991).

Populations of brown trout, which have sus-
tained generations in environments with relatively
high concentrations of metals, arc expected to
evolve toxicological resistance to both cssential
and noncssential metals due to natural selection. If
MTs are involved in toxicological resistance, trout
of such populations should induce synthesis of
such proteins according to the metal environment
thcy inhabit. However, few data cxist to support
this hypothesis.

In this article. it has becn shown that run-off
episodes with incrcased metal levels in the water
in the two rivers caused accumulation of Cd, Cu
and Zn in the gills, liver and kidney of native
trout. Since the two rivers have a high Cu con-
tent, and salmonid species in general accumulate
considerable amounts of this metal, both Cd/Zn
and Cu MT in the tissues wecre detcrmined by
Cd-saturation assays. Isoforms of MT in gill tis-
sue, developed during the episode of increased
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Fig. 1. Map showing the locations in Norway of the Rugla and Naustebekken rivers,
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metal exposurc, were also isolated, and bound
metal determined. Such studies were also per-
formed with trout transferred and kept in cages
in the other river during the run-off episode. In
this way, responses in both populations to the
different metal environments in the two rivers
could be studied.

2. Methods
2.1. Field experiments

The field experiments were performed in Secp-
tember and October 1997. Brown trout were
captured by electric fishing and in traps. Trout
were both kept in flow-through container sys-
tems in their native river and transferred to the
other river. All trout were kept for at least 5
days, mostly 7-8 days, in the translerred loca-
tion until sampling. The trout were not fed dur-
ing this period, although some food items may
have slipped into the flow-through water system.
The containers contained approximately 80 1 wa-
ter, and the flow through the system was never
lower than 10 I/min, ensuring sufficient oxygen
in the containers. The water temperature during
the cxperimental period ranged from 5.9 to
9.8°C. The containers were covered by nets and
tarpaulins, to cxclude the possibility of rain al-
tering the water chemistry in the tanks. The
trout were killed by a blow (o the head, imme-
diately frozen on dry ice, and transported to thc
laboratory within 3 3 h. They were stored at
—80°C before further processing. Due to the
low density of trout in these rivers, wec were not
able to capturc as many as planned. For this
reason, we had to combine trout of different age
classes within each group of trout. They were
divided into four groups, as described later in
Table 2.

2.2. Water chemistry

Water samples for mctal determination were
taken before and during the run-off cpisode.
The polyethylene bottles used for sampling were
routinely washed in & washing machine, soaked

in 7 M HCI, rinsed in watcr, soaked in deion-
ized water and finally filled with 0.1 M HNO,.
For water sampling, the bottles were refilled
with river water three times before the sample
was collected. Concentrated HNO, was then
added to 0.1 M concentration. These samples
were analyzed for metals by flame (Ca, Zn) or
graphite furnace (Cd, Cu) atomic absorption
spectrophotometer (Perkin  Elmer 5100 AAS).
The pH measurements were carried out by a
Radiometer PHM 80 portable pH meter, alka-
linity by a Hach Digital Titrator Model 16900,
and conductivity by a Radiometer CDM 80
Conductivity Meter. The measurements were
performed at low water level at the end of Au-
gust and compared with corresponding mecasure-
ments prior to and during the run-off cpisode at
the beginning of October that year (Fig. 2).

2.3. Metal quantification

After thawing, gills, kidney and liver were dis-
sected out, washed in ice-cold distilled water to
rcmove blood remnants and kept on ice. The
filaments were cut ofl from the gill arcs before
further processing. For direct metal quantifica-
tion, the wet weights of tissuc samples were de-
termined. After lyophilization for 24 h, the dry
weights were obtained. Tissue samples were di-
gested in 65% HNO, (Suprapur; Merck), boiled
and finally diluted to 0.1 M HNO; beforc metal
analysis. Metal concentrations in tissuc samples
were determined with background correction on
a Perkin Elmer 2100 AAS, cquipped with
graphite furnacc (Model HGA-700) and au-
tosampler (Model AS-70). Oncc for every tenth
sample, resloping was performed (with two in-
ternal standards), and values within 10% from
the long-term average of the standard solutions
were accepted. Quality assurance for metal anal-
ysis was achieved by the use of standard metal
solutions of Cu and Zn (Spectrosol; BDH Labo-
ratory Supplies, Poole, UK), and Cd (Spce-
troscan: Teknolab A/S. Drebak, Norway), as
well as with standard reference material (Bovine
liver SRM 1755b:; National Institute of Stan-
dards and Technology., Gaithersburg, MD,
USA).
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2.4. MT quantification

After thawing, gills. liver and kidney samples
were transferred to icc-cold deoxygenated 1:4 w)v
S mM Tris—HCI (pH 8.5) and homogenized with
a Glas-Col  Homogeniter (Potter Elvchjem)
(Suzuki and Sato, 1995). Then, 5 mM 2-mcrcap-
toethanol was added to avoid oxidation of MT.
Homogenates were centrifuged at 12 000 x ¢ for
10 min. and supernatant aliquots kept at — 80°C
in cryo tubes before further usc. The Cd-chelex
assay was used to quantify Cd/Zn MT (Bartsch ct
al., 1990). High molecular weight proteins in the
supernatants were denatured by trcatment with
acetonitrile, thereby avoiding heat treatment, and
cxcessive amounts of added Cd bound to Chelex-
100, After centrifugation, remaining '"Cd in the
supernatant solution was measured. The concen-
trations of total MT (Cd/Zn MT plus Cu MT)
were determined by the thiomolybdate assay
(Klein et al., 1990). In this case, Cu was removed
from MT by ammonium tctrathiomolybdatc:
thereafter. cxcessive tetrathiomolybdate and its
complexes were removed with DEAE-Sephacel.

The apothionein was then saturated with Cd. and
cxcessive Cd removed by Chelex-100. After cen-
trifugation, the '"’Cd bound to MT in the super-
natant  solution was then measured. The
concentrations of MT could be determined by
assuming its molecular weight to be 7000 and a
molar ratio of 7 gram-atoms of Cd per mole of
protein. The assumption that total MT minus
Cd/Zn MT equals Cu MT is considered valid,
since other metals able to induce and bind to MT
in the trout were only present in the rivers in very
low amounts, as measured by inductively coupled
plasma mass spectrometry and neutron activation
analysis (unpublished results). To test the linearity
of the Cd-saturation assays. dilutions of the com-
mercial MT from Sigma (MT rabbit liver. lot
56H9500) were used. MT samples isolated from
Naustcbekken trout liver were also used. and
linearity was found down to approximately 1 pg
MT/g fresh weight of tissuc for the Cd-chelex
assay and to 10 pg MT;g fresh weight for the
thiomolybdate assay. At Cd/Zn MT concentra-
tions above 150 ug MT/g fresh weight. the Cd-
chelex assay underestimated calculated  values.

1200

1150

1100

1050

Water level Rugla
(relative values)

1000

950

| | 1} 1

900

00:11 12:11 00:11
.30.09.1997

01.10.1997

12:11 00:11 12.11 00:11
02.10.1997

Fig. 2. Relative water levels as measured by a pressure sensor every 30 min before and during the run-off episode in the Rugla river.
The abscissa shows date and time of day. The arrows indicate when the water samples for imnochemical measurements (given in
Table 1) were taken. The collection of water samples under low water conditions on 28 August 1997 1s not indicated.
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This underestimation was found to be 9% for the
rabbit fiver sample of 500 pug MT, calculated as
the deviation [rom the regression linc for cight
samples between 1 oand 500 pg MT (each mea-
surcd three times). The linearity of the thiomolyb-
date assay was found satisfactory throughout the
measured value range. The errors of reproducibil-
ity for the Cd-chelex and the thiomolybdate assay
were less than 4 and 10%, respectively.

2.5. MT isoform separation

For isoform separation. homogenates were
heat-denatured for 2 min at 80°C and centrifuged
at 12 000 x g for 10 min. Supcrnatant aliquots
were stored at — 25°C before chromatographic
scparation. The supernatants were applied to a
Sephadex  G-75 column (1.5 x 35.0 em?) and
cluted with 5 mM Tris—HCI buffer (pH 8.5) at a
flow rate of 42 ml/h. Absorption at 254 nm was
simultancously rcad with a Pharmacia LKB 2138
Uvicord S UV-monitor. The MT-containing frac-
tions were pooled and applied to a DEAE-Sep-
harose fast flow column (1.5 x 15 em?). Fractions
containing the MT isoforms were eluted with a
linear gradient of deoxygenated 5 500 mM Tris-
HCl (pH 8.5) at a flow rate of 90 ml/h. Mectal
concentrations in the fractions were determined
by atomic absorption spectrometry (AAS) as al-
ready described. Most samples were aspired di-
rectly without dilution. otherwise they were
diluted in 0. M HNO.,. This technique for iso-
form separation is in accordance to that previ-

ously used in our laboratory for preparation of

MT from rat liver after Cd and Zn injections to
be used for standard purposcs. as dcscribed by
Andersen and Daac (1988). Positive identification
of Cd and Zn MT 1 and Il isoforms was then
performed by the use of both polyclonal antibod-
ics and autoradiography. These rat MT forms
have been run in parallel experiments for com-
parison and identification of trout MT I and II
isoforms.

2.6. Statistical analysis

Statistical significance of differences between
the two trout populations was tested with the

Mann—Whitney U-test. This nonparametric test
was used because of the low number of data
points for each group. Since we had to combine
trout of somcwhat different age classes in some
groups, a Gaussian distribution of the data could
not be assumed. A P value lower than 0.05 was
considered to be significant.

3. Results

After the dry summer, the total concentrations
of Cd, Cu and Zn in Rugla and Naustcbekken
rivers were generally low compared with the levels
observed during the fall precipitation period
(Table 1). In the arca, rainfall started about 12:00
h on I October 1997, and reached a peak between
1500 and 16.00 h the same day. leading to a
run-off maximum at approximately 19.00 h in the
Rugla river (Fig. 2). In Naustcbekken river, the
run-off pecak occurred a few hours later, because
of the dcelaying effect of the lake Lille Fjellsjo,
located between Naustebekken and the mine tail-
ings at Ficllsjegrava (Fig. 1). Due to this rain
cpisode, the concentrations of Cd, Cu and Zn
increased in both rivers, most dramatically in
Rugla, where the concentration of Cu more than
doubled. In Rugla, the conductivity, alkalinity
and the total concentration of Ca decreased
slightly during the run-oft cpisode, while these
parameters did not change in Naustebekken.

The trout captured in Naustebekken were gen-
erally larger than those from Rugla. The sizes of
the investigated four groups of trout in terms of
body mass were as follows (Table 2): Rugla trout
in Rugla water (RR), 39420 g Rugla trout
transferred to Naustebekken water (RN), 48 + 41
g: Naustebekken trout in Naustebekken walter
(NN), 137 £ 61 g; and Nausicbckken trout trans-
ferred to Rugla water (NR), 36 =49 g. Table 2
also shows the total concentrations of Cd, Cu and
Zn in gills, liver and kidney in the trout groups.
Generally, the highest mctal concentrations were
found for the population inhabiting the river with
the highest corresponding metal concentration. In
the kidney, the highest Cu concentration was
found in trout from Naustebekken, which has the
lowest Cu concentration in the water.
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Table 2
Tissue concentrations of Cu. Zn and Cd (pg/g tissuc fresh weight) in four groups of brown trout (Salmo trutia) trom Rugla and
Naustebekken rivers (n= 6y
Tissue  Mctal  RR RN NN NR
Gills Cd 0.55 (0.48:0.64) 0.59 (0.54/0.60) 2.34 (1.94.3. \‘)) 345 (3.15:3.74)
Cu 1.91 (1.72:2.04) 1.68 (1.50/1.97) 1.51 (1.18:1.68) 263 (2.17/3.15)
n 152.97 (139.20/181.98) 146.45 (142.81/150.99) 473.73 (380.25:503.43) 91 (405.197503.77)
Liver Cd 0.71 (0.69:1.00) 0.74 (0.65/0.87) 6.95 (6.05:7.79) 71 (7 Ob 8.17)
Cu 200.08 (199.00:309.76) 305.59 (213.12;335.25) 86.99 (59.67:146.47) 149 34 (120.17:192.89)
Zn 33.33 (30.30:34.40) 27.60 (26.01 3() 29) 54.01 (39.50,98.79) 35.36 (67 44:113.11)
Kidney Cd l I7(IO“»1 19) 1.35 (1.15:1.6 15.45 (11.44:17.41) 18.32 (16.72,21.32)
Cu 3 (2.08:2.30) 2.48 (2.2972. ()6 4.62 (3.82;5.11) 8.10 (7.50:8.50)
7n 6/ 2() (55.66/82.08) 63.58 (53.18/72.26) 195.76 (133.62:273.55) 296.50 (274.06:337.71)

* Values arc given as medians, first and third quartiles (in parentheses). RR, Rugla trout in Rugla water: RN, Rugla trout
transferred to Naustebekken water; NN, Naustebekken trout in Naustebekken water; NR, Naustebekken trout transferred to Rugla

water.

In all tissues, native Rugla trout (RR) con-
tained significantly less Cd/Zn MT than native
Naustcbekken trout (NN) (P < 0.001) (Fig. 3).
Native Rugla trout contained significantly more
total MT (Cu+ Cd/Zn MT) in gills than native
Naustebekken trout (P < 0.05). Thus, in the gills

of native trout from both populations. the kind of
metal bound to MT rellects the concentrations of

metals in the rivers. In liver, however, Naustc-
bekken trout contained significantly more total
MT than Rugla trout (P < 0.001), while the dif-
ference found for kidney was not significant. Also
included in Fig. 3 arc gill and liver MT measure-
ments of trout from the two rivers captured at
low water levels in 1996 and 1997 (previously
unpublished). Compared with these mcasure-
ments, the concentrations of both Cd/Zn MT and
total MT in gills and liver of Naustebekken trout
(NN) were clevated two to four times during the
run-off episode. A 12-fold increase in total MT
concentration in gills of Rugla trout (RR) was
found after the run-off episode, whilc only a
two-fold increase was seen in liver. Therefore,
induction of MT scems to play an important rolc
in trout metal homeostasis in contaminated rivers,
since the levels of these proteins obviously fluctu-
ate throughout the year.

The transfer experiments did not lead to signifi-
cantly altered Cd and Zn concentrations in gills,
liver or kidney of cither population (Table 2). In
Rugla trout moved to Naustebekken water (RN),

no significant differences could be seen in Cu
concentrations in gills, liver or kidney cither. On
the other hand, when Naustebekken trout were
moved to Rugla water (group NR), with ninc
times more Cu, a significant increase in Cu con-
centration in the gills was found (P < 0.01). In the
liver, no significant Cu increase could be scen,
while there was a significant increase in kidney
(P <0.00).

In Rugla trout (RN), no significant differences
in cither Cd/Zn MT or total MT concentrations
were found after the transfer to the Cd/Zn-rich
Naustebekken water (Fig. 3). On the other hand,
the concentrations of Cd;Zn MT decreased sig-
nificantly in all tissucs of Naustcbekken trout
(NR) moved to the Cu-rich Rugla water (P <
0.05). An increase in total MT concentrations was
found in all tissucs, but significant only in gill
tissue (P < 0.001). The levels of Cu MT in gills,
liver and kidney of Naustebekken trout moved to
Rugla water approached those levels found in
native Rugla trout (RR).

Two scparate metal binding proteins were
found in gills of native Rugla and Naustebekken
trout after the ion exchange cxperiments (Fig.
4A.B), called MT isoforms I and I1. This identifi-
cation of trout MT isoforms was based on metal
content and on comparison with rat liver Cd and
Zn MT I and IT isoforms run in parallel experi-
ments (Fig. 5 and Table 3). Measurements with
AAS revealed high levels of Cu both in the so-
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called a-form and in MT I in native Rugla trout.
In spite of cxcessive Cu presence, the identifica-
tion of the MT isoforms was still possible because
of sclective affinity to radioactive '""Cd (data not
shown) and to clevated levels of Cd in the corre-
sponding peaks (Fig. 4). When Rugla trout were
moved 1o the Cd/Zn-rich Naustebekken water
{Fig. 4C), more Cd was bound sclectively to MT
II. No clear corresponding paticrns could be
found for Cu and Zn.

In native Naustebekken trout (Fig. 4B), MT 11
in gills contained morc Cd than MT 1. and the
amount of Cd in the MT I1 form was (ound to be
much higher than for the corresponding MT 11
form of native Rugla trout. The amount of Cu in
the MT 11 form was also very high comparcd with
that found in Rugla trout. Relative large amounts
of Cu were associated with the a-form and to-
wards the end of the column. but a broad peak
was also found between the MT 1 and 11 peaks
(Fig. 4B). Elevated levels of Zn were found in MT
[ but especially in MT 11, Moved to the Cu-rich
Rugla water, Naustebekken trout developed a
somewhat different metal binding pattern in its
isoforms (Fig. 4D). The amount of Cd decreased
in both MT 1 and MT Il forms. A marked
reduction in the level of Cu bound to MT 11 was
also found, concomitant with a general reduction
of metals found in the eluted [ractions. A large
increase m Zn binding to MT 11 occurred. This
clement also appeared in a new peak called Zn 1,
which cluted in front of MT 1. The origin and
composition of this peak were not investigated
further.

I'ig. 3. Site-specitic differences in metallothionein concentra-
tions (pg MT g fresh weight) in gills. liver and kidney of
groups of brown trout (Sa/mo trutie) from Rugla and Nauste-
bekken rivers. Cd:Zn MT was determined by the Cd-chelex
assay, while total MT was determined by the thiomolybdate
assay. The Cu M'T concentrations equal the concentrations of
total M1 minus the Cd;Zn MT concentrations. Values arc
given as medians, quartiles and range (# = numbers in box-
plot). LW. Low watcr; RO, run-oft: 1T, transferred. Trout
captured at low water were not quantified for kidney M'T.
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Fig. 4. Scpharosc fast flow anion exchange chromatography of pooled Sephadex G-75 separated gill supernatant samples of brown
trout (Salmo trutta) from Rugla and Naustebekken rivers. (A) Native Rugla trout, (B) transferred Rugla trout, (C) native
Naustebekken trout, and (D) transferred Naustebekken trout. Relative absorbance at 254 nm (whole line, axis not shown) and metal
concentrations (ug/1) arc shown in cluted fractions: Cd (A), Cu (M), 7n (@). Note the different Y2 axis in the figurcs.

4. Discussion
4.1. Water chemistry

During the run-off episode, the concentration
of Cu in the Rugla river was more than twice as
high as the corresponding values at the low water
level. For shorter periods, even higher concentra-
tions may occur, since peaks in metal concentra-
tions may cxtend for hours only. In Rugla, a drop
in conductivity, alkalinity and total Ca concentra-
tion could be seen during the episode, while pH

remained constant. Changes in these parameters
could not be seen in Naustebekken, probably due
to the dilution effect of the lake Lille Fjellsjgen
(Fig. 1). Metal contamination in streams olten
falls sharply with distance from the source (Cari-
tat et al., 1996). Therefore. the trout in Rugla
might be affected by the metals to various degrees
according to their location in the river, depending
on migrations and local behavior. Mctal pollution
from minc tailings in Naustebekken first enters
Lille Fjellsjpen, making up a more defined habitat
for that location. But even herc, migration from
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nonpolluted upstream arcas is possible. Some of

the variation in metal concentrations and MT
content found within each group of trout might
thercfore be explained by these variables. The
monitored run-off cpisode was ncither the first
nor the largest in the time period. FFive other
heavy rainfalls led to water levels in the Rugla
river that were higher. Therefore, the measured
concentrations of metals and MT in trout tissue
were also influenced by these episodes. Free metal
ions are belicved to be the most toxic specics in
freshwater cenvironments (Mason and Jenkins,
19935). The dissolved fractions of the metals stud-
ied (as fractionated in situ by dialysis bags with a
molecular weight cut-off of 10- 20 kDa or ob-
structing particles smaller than 2.5 5.0 nm in
diameter) were generally higher in Naustebekken
than in Rugla (unpublished data). Additionally, in
Naustebekken, the Ca concentration and, concor-
dantly, alkalinity and conductivity were lower
than in Rugla (Table 1). Naustebekken water may
therefore be more toxic during acutc cxposurces,
since the metals scem Lo be more bioavailable in
this river.

4.2. Metal concenlrations in tissue

Our data show that the levels of Cd and Zn in
gills, liver and kidney of brown trout reflect the
concentrations in the water where they live. This
was cxpected as metals are taken up continuously
both via waterborne and dictary pathways. In the
gills and liver, the Cu accumulation also follows

Table 3

Refractometric indices corresponding to gradient elution of
four groups of trout (Sulmo trutia) and Cd- and Zn-injected
rat (Ratrus norvegicus) (Wistar, Hannover) metallothionein T
and 1 isoforms during anion cxchange chromatography

Group a-Form  Zn [ MT 1 MT 11
RR 1.3332 1.3347
RN 13330 1.3344
NN 1.3332 1.3343
NR 1.3332 1.3338  1.3342
Cd-injected rat 1.3335
7n-injected rat 1.3333




9]
2

this pattern. Unexpectedly, the kidney of the
Rugla trout contains less Cu than Naustebekken
trout. Copper may, however, be climinated
through hepatic processes such as dircct clear-
ance through Iysosomes and bile excretion
{Nicminen and Lemasters, 1996). It has rccently
been documented that hepatic elimination of Cu
is stimulated in Cu-acclimated rainbow trout
Oncorhynchus mykiss relative Lo nonacclimated
trout (Grosell ¢t al., 1998).

Naustebekken trout transferred to the Cu-rich
Rugla water received significantly elevated Cu
concentrations in gills and kidney. In the liver,
the increase was not found to be significant at
the P<0.05 level. When Rugla trout were
transferred to the Cd/Zn-rich Naustebekken wa-
ter, ncither an increase nor decrease in metal
content could be detected. In the liver, this may
partly be cxplained by Cu being tightly bound
to MT and not allowing Cd and Zn to replace
this metal, thereby preventing net accumulation.
The obscrved differences between metal accumu-
lation of the two populations after transfer
must, however, be explained otherwise. Anyway,
these results indicate that Naustebekken trout
may accumulate metals more effectively than
Rugla trout.

The use of trout of different size within each
group may camouflage differences in metal con-
centrations in tissucs, as suggested by the high
standard deviations found within each group. In
both populations of native trout, a small posi-
tive corrclation was found between age and Cd
content in liver and kidney, but not in the gills
(data not shown). With the exception of the
kidney of Rugla trout, a negative corrclation be-
tween age and Cu concentrations was found in
all cxamined tissues of the two populations,
while for Zn it was not possible to delect any
clear age-dependent pattern. Aged fish seem to
accumulate more Cd in liver and kidney than
juvenile fish, while the clearance rates for Cu
scem to increase with age. Trout of variable age
cannot be the main explanation for the observed
differences in metal accumulation after the
transfer, as the mean weights of the transferred
trout groups were cqual.
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4.3. MT content

The concentrations of MT measured by the
Cd-chelex and thiomolybdate assays after the
run-off episode are rclatively high compared
with earlier measured levels in salmonid fishes
(Hamilton et al.. 1987; Olsson ct al., 1989). In
Cd-rich environments in Austria, Dallinger et al.
(1997) reported Cd/Zn MT concentrations up Lo
500 pgig fresh weight in liver ol arctic char
Salvelinus afpinus, by using a modified Cd-chelex
assay similar to the method used here. With dif-
lerential pulsc polarography mcthod, however,
Roch et al., (1986) mecasurcd total MT concen-
trations up to 2000 ug/g fresh weight in wild
rainbow trout from a scvercly polluted river in
Canada. This is morc in linc with the levels
found in the present work. It should, however,
be kept in mind that our methods for measuring
quantitative MT levels do not involve heat treat-
ment.

In native Naustebekken trout, the concentra-
tions of Cd/Zn MT in gills were threefold higher
than in native Rugla trout. while they were
about fourfold higher in liver and kidney. Thus,
the data nicely reflected the elevated levels of Cd
and Zn in Naustcbekken. Whereas the concen-
trations of total MT (including Cu MT) in gills
were about fourfold higher in Rugla trout, the
liver concentrations were less than onc-half of
that in Naustebekken trout. Therefore, in gills,
but not in liver, the total MT levels in native
Rugla trout reflected the elevated levels of Cu in
this river.

In gill and liver tissue, a marked increase in
total MT concentrations was found in both pop-
ulations, when total MT levels were compared in
native fish from the same river at low water
levels and after the run-off episode. After trans-
fer to the other river, Cd/Zn MT and Cu MT
concentrations in the gills changed in both popu-
lations towards levels suggested by the metal
content in the new environment. Our data sug-
gest that the turnover of MT in gills is fast, 7
days of cxposure to elevated environmental lev-
cls of waterborne metals may lead to a lourfold
increase (Fig. 3). The most pronounced change
was the marked increasc of Cu MT in Nauste-
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bekken trout gills after transfer to Rugla water.
Therclore, Cu seems to be a potent trigger of MT
induction in gills of brown trout on an acute scale.
This is in contrast to earlier findings that Cu is a
poor inducer of MT in fish gills (McDonald and
Wood, 1993: Grosell et al., 1997). Also. in liver
and kidney. the concentrations of Cu MT in-
creased after an acute exposure to a Cu-rich envi-
ronment, but this was not followed by an increase
in total MT, rather a redistribution of metals
occurred (Fig. 3). The trout might not have been
transferred long enough for the total MT in liver
and kidney to reflect the water chemistry. In any
casc, these results clearly indicate that MT in gills
plays a part in a [irst defense against waterborne
metals. Because of the substantial levels of MT
present. it is rcasonable to believe that the trout in
these rivers really faces metal concentrations that
may be lrying or even Loxic.

4.4. Gill MTs and metal binding

After gel permeation and anion cxchange sepa-
ration of gill tissue supernatants from Rugla and
Naustcbekken trout, Cd was found in two distinct
pcaks. MT T and MT II, in accordance to the
general  beliel that tissues of at least some
salmonid fishes contain two main MT isoforms as
is generally seen also for other vertebrates (Bon-
ham ct al., 1987; Olsson and Hogstrand, 1987,
Olsson et al., 1989). The trout and rat MT iso-
forms eluted at somewhat diffcrent ionic strengths
of the Tris buffer gradient, as shown from the
refractometric indices corresponding to their clu-
tion (Table 3), which may indicate protein differ-
ences between the species. It also appears from the
rat data that the isoform elution in our separating
system depends on whether Zn or Cd is bound Lo

the protein. Metallothionein isoforms from liver of

Zn injected rats cluted at a slightly lower ionic
strength compared with those from Cd injected
rats. In accordance, the MT I form in Nauste-
bekken trout translerred to Rugla water. thereby
gaining Zn by redistribution as shown in Fig. 4D,
eluted at a lower ionic strength (Table 3 and Fig.
5). Also, the other MT isoforms from gill tissuc in
both populations cluted at lower ionic strength
alter transier. This does not seem explainable from

the available data. but may well indicate metal
replacements.

A third peak found in both Rugla and Nauste-
bekken trout gills, most probably corresponding
to the so called a-form (Wilhelmsen et al., 1998),
eluted in front of MT L. In gills of rainbow trout,
Olsson and Hogstrand (1987) also found a peak
that probably corresponded to the a-form in our
study, but their form did not contain metals. Our
a-form was (ound in all anion exchange scpara-
tions. In native Naustebekken trout. this form
contained only Cu. When these trout were trans-
ferred 1o Rugla water, most of the Cu was found
in MT II. The a-form contained almost no Cu in
this transferred group of trout., Due to the high
proportions of Cu MT in Naustebekken trout
after being moved to Rugla water. it was unex-
pected to find that the MT isoforms in these trout
contained less Cu than the MT isoforms in native
Naustebekken trout. The data may therefore sug-
gest that the presently applied anion exchange
chromatographic method is not adequate for the
purification ol Cu-containing MT isoforms, but
other explanations may also be possible.

Our results (Fig. 4) show that a high proportion
of Cd is bound to MT 1n gills of trout living in
Cd-polluted water. This is also suggested by the
metal MT stoichiometry cvaluations presented
later in this article. When Naustebekken trout
were transferred to the Cu-rich Rugla water, Zn
was not only redistributed to MT 11, but also to a
peak called Zn [ (Fig. 4D), which cluted in front
of MT 1. It is possible that this peak represents a
metal binding protein other than MT. This may be
in agreement with the hypothesis that displaced Zn
is the basis for MT induction at the gene expres-
sion level (Roesijadi, 1996), since the total MT
concentration increased markedly in Nauste-
bekken trout transferred to Rugla. Anyway these
results suggest that also other protcins than MT
arc involved in handling of Zn in fish gills.

4.5 Encvironmental responses

Acclimatization to elevated levels ol trace cle-
ments may be achieved cither by altered uptake or
elimination rates, or by sequestcring and thus
immobilizing metal ions in metal binding proteins
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in the cells. Protection against metal toxicity by
induction of MTs rclated to the metal chemistry
in waters has been suggested to be an important
strategy by aquatic animals (Klerks and Welis,
1987; Mulvey and Diamond. 1991; Roesijadi,
1992). In gills of Rugla trout, the concentrations
of Cu MT incrcased markedly after the run-off
episode. Correspondingly Naustebekken trout
Cd/Zn MT also increased compared with the low
water levels (Fig. 3). Gill concentrations of Cu
and Cd/Zn MT in both populations of native
trout therefore clearly reflect the total concentra-
tions of these metals in the rivers during the
run-off, in accordance with the hypothesis of pro-
tection caused by MT induction. In liver, the
elevated levels of Cu MT in native Naustebekken
trout after the run-off episode may be due both to
dietary uptake and to the higher concentrations of
dissolved Cu in this river (data not shown). It has
been suggested that metal-tolcrant fish are less
permeable to Cd and Zn, but more permeable to
Cu, cither as a result of enhanced mucus produc-
tion or as a result of changed metal-binding prop-
crties of the gill surfaces (McDonald and Wood,
1993). Redistribution of Cu from gills to liver and
kidney may explain why Naustebekken trout had
higher levels of Cu MT in these organs after an
increased waterborne cxposure to this metal.
When Rugla trout were transferred to Nauste-
bekken and vice versa, the metals bound to gill
MTs strongly reflected the Cu concentration in
the new environments (Fig. 3). The amount of gill
MT itself also reflected the new environment.
Induction of MT thercfore also seems to be a
protection mechanism against acutely increased
metal levels. These data, however, do not seem to
be in accordance with those of Groscll et al.
(1997, 1998). who stated that the formation of gill
MT in rainbow trout could hardly be among the
primary mechanisms responsible for increased Cu
tolerance. Our data in fact suggest that the forma-
tion of gill Cu MT could well be an important
tolerance mechanism, since acute Cu exposure led
to increased gill Cu MT concentrations being
higher for trout originally exhibiting thc lowest
Cu concentration (Fig. 3). The data also suggest
that tolerance to Cu may be achicved by mecha-
nisms such as altered uptake and elimination

rates, as supported by our accumulation data
which showed that Cu was concentrated to a
lesser degree in tissue of (rout [rom the Cu-rich
Rugla river.

The potential metal binding capacity of MT
present in the tissucs can be calculated, assuming
a MT molecular weight of 7000 and a mectal to
MT binding proportion of 7:1. The results show
that in gills of all four groups of trout (native and
transfcrred), the measured MT concentrations can
account for all of the Cd and Cu, but not for Zn
in gill tissue. Cd/Zn MT can account for only a
small fraction of Zn present in the gills, less than
3%, indicating that MT may have only a small
impact on the overall Zn regulation in this tissue.
Most of the Zn in gills could be found in the high
molecular weight [ractions after gel permcation
chromatography with Sephadex (-75 (data not
shown). Zinc originally bound in the gill surface
layer might have been redistributed and bound to
these proteins after homogenization and chro-
matographic separation. This metal is extensively
present in functional proteins. In liver of Rugla
trout, both native (RR) and transferred, the Cd/
Zn MT can account for all of the Cd, but for less
than 50% of the Zn: while in liver of Nauste-
bekken trout Cdj/Zn MT can account for all of
the Cd in both groups and for over 86% of the Zn
in native trout (NN), but account for less than
40% of the Zn in the transferred group of trout.
The results also show that Cu MT can account
for 79% of the Cu in NN trout, but for less than
20% in the RR trout, indicating that liver MT is
less important in trout exposed to high environ-
mental Cu concentrations. It has been suggested
that one molc of MT may bind 12 monovalent
instead of seven moles of divalent Cu (Winge
1991). The reported percentiles will then represent
an underestimation of the potential Cu binding
capacity of MT. The corresponding metal-MT
stoichiometry for the kidney shows that MT can
account for all of the Cd and Cu in the four
groups of trout, while it can account for less than
20% of the Zn, suggesting that this metal is
mainly bound to functional proteins and not to
MT in this tissue. The results reported here
strongly add up to the evidence that MT both
have the potential and play an important role in
metal regulation.
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INFLUENCE OF pH AND TOC CONCENTRATION ON Cu, Zn, Cd, AND

Al SPECIATION IN RIVERS

PAL GUNDERSEN* AND EILIV STEINNES
Department of Chemistry, Norwegian University of Science and Technology,

N-7491 Trondheim, Norway

Abstract - Dissolved (<~4 nm, dialysis in situ), colloidal (<0.45 um filtered, minus dissolved) and
particulate (total, minus <0.45 pm filtered) concentrations of Cu, Zn, Cd, (Al) in eight (three) mining
polluted rivers were determined by atomic absorption spectrometry (flame and graphite furnace). The
metal size distribution in the rivers was compared to pH, Ca concentration, alkalinity, conductivity, and
total organic carbon (TOC). Data plots based on the present and other studies also yielded information
about the interrelations between TOC, pH and metal adsorption in rivers and lakes. More than 90% of
Cu, Zn, and Cd occurred in dissolved form in two rivers with average pH at 3.1 and 5.1, whereas 54,
79, and 79% of Cu, Zn, and Cd respectively occurred in dissolved form in six pH neutral rivers. In
three pH neutral rivers, on average 55% of Al was bound to colloids, whereas the dissolved and
particulate fractions were 21 and 23% respectively. Our data combined with data from similar studies
support equilibrium models which suggest that the percent fraction of metals adsorbed on particles
rises steeply from almost zero to almost 100 % within a narrow and element-specific pH range.
Changes in TOC concentration seem capable of shifting the pH to % metal absorption curves in the

order of one pH unit.

Keywords: dialysis in situ, metal, Cu, Zn, Cd, Al, speciation, pH, alkalinity, river, aquatic
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INTRODUCTION

Local topography, hydrology, biology, and geology in catchment areas, as well as local precipitation
levels and climate determine the wide range of water chemistry conditions observed in lakes and
streams. In addition, anthropogenic activity may add considerable amounts of polluting compounds,
which will influence and be influenced by the existing aquatic systems. Mining activity is one out of
many anthropogenic contributors to water pollution. When metal sulfides in mining shafts, production
waste, or low quality residuals are exposed to humidity and air, the metal sulfides may be oxidized,
and dissolved metals and acidity will subsequently be released to downstream water systems (Stumm
and Morgan, 1981; Evangelou and Zhang, 1995). Near such sources the metal concentrations may be
several orders of magnitude higher and pH may drop by several units compared to natural levels

(Lemly, 1994; Robb and Robinson, 1995; Ledin and Pedersen, 1996).

Metals such as Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Tl, and Zn are frequently released in large quantities
during or after mining activity and may lead to major destruction of aquatic ecosystems (Davies, 1983;
Williams et al., 1991; Salomons, 1995; Masnado et al., 1995). According to previously published work
on metal concentrations in the streams (Traaen et al., 1988; Rae, 1991; Arnesen and Iversen, 1994;
Gundersen et al., 2001), and toxicity and water quality criteria (Holtan and Rosland, 1992; United
States Environmental Protection Agency, 1998), a number of metals were expected to cause toxic
responses to fish and other organisms in the local rivers; in particular Cu, Zn, Cd, and Al. Biological
responses in two of the rivers have been investigated simultaneously with the present work (Olsvik et

al., 2000, 2001).

The toxicity of different organic and inorganic metal species to aquatic ecosystems has been reviewed
by Luoma (1983). Among Cu species, Cu®* and possibly Cu(OH)" were considered to be most readily
absorbed in organisms, whereas Cu(COj)(aq) and Cu(OH).(aq) appeared far less bioavailable.
Several studies cited by Luoma also revealed that organic Cu and Cd complexes were bioavailable,
but to a lesser extent than the most toxic inorganic species. The theory that the free metal ions
accounts for most of the metal toxicity (Free-ion activity model, FIAM), has been widely used in toxicity

considerations (e.g. Sunda and Hanson, 1976; Vercauteren and Blust, 1996; Brown and Markich,
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2000), although some studies and reviews have criticized or found exceptions to this generalization
(Pagenkopf, 1983; Campbell, 1995; Campbell et al., 2000). It should be emphasized that there are
huge differences in metal tolerance and uptake between biological species (e.g., Williams et al., 1991;

Masnado et al., 1995).

The pH level is probably the single chemical parameter influencing metal speciation most significantly.
Adsorption on different particles and colloids may change from almost none at low pH to almost a 100
% a few pH units higher (Schindler et al., 1976; Mouvet and Bourg, 1983; Allard, Hakanson and
Karlson, 1986; Stumm and Morgan, 1996). With respect to the inorganic dissolved fraction of the
metals, the H" ion will compete with the metals for ligands such as OH", CI, CO32', HCO3, HS, s?,
sulfates and phosphates. Metal complexation will again influence on adsorption abilities and

bioavailability of the metals.

Due to the complexity of organic matter in natural waters, its effect on metal speciation is difficult to
predict. In general humic substances tend to enhance metal cation sorption on particles at low pH and
reduce metal cation sorption at high pH, but many exceptions to this rule are reported (Zuyi et al.,
2000). Organic compounds may be found in considerable amounts both in the dissolved, the colloidal
and the particulate fraction (Tanizaki et al., 1985; Patel et al., 1999; Thorsen, 2000), and to which of
these fractions the metals will be attached is not easy to predict. Shafer et al. (1999) found a clear
positive relation between the concentration of dissolved organic carbon (DOC) and the dissolved
fraction of Zn, indicating that DOC may attach to metals and keep them in the dissolved fraction. Allard
et al. (1986) also found only a few percent of Cd and Zn (1 and 3 % respectively) in the organic
fraction extracted from suspended particulate matter (SPM) samples, indicating that these metals may
not readily attach to high molecular weight organic materials. On the other hand roughly one third of Al
and Cu were organically bound. As discussed below however, the organic content of water may
probably, depending on pH, influence significantly the speciation of all metals investigated. Other
chemical parameters will probably also influence metal attachment to organic material; it is e.g. well
established that during mixing of fresh and salty waters, the partition of metal species between
solution and suspended particles is controlled by two counteracting, non-biological processes: a.

Removal from the dissolved fraction by precipitation/coprecipitation mechanisms or flocculation of
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humic and fulvic acid — metal complexes (Sholkovitz, 1976; Hoyle et al., 1984), and b. Gain to the
dissolved fraction by desorption mechanisms (Van der Weijden et al., 1977; Li et al., 1984). It is
possible that the ionic strength variation one may find between rivers and temporally within rivers may

cause a similar influence on the binding of metals to organic compounds in fresh waters.

Alkalinity too will influence the speciation of metals in water by the formation of metal - carbonate or
bicarbonate species. Major metal cations in water, especially Ca, are believed to compete with trace
metal ions for uptake sites on cell membranes (Pagenkopf, 1983; Campbell and Stokes, 1985). Shafer
et al. (1999) reported that elevated filterable fractions (< 0.4 um) of Al, Cd, and Zn in non-calcareous
rivers were probably caused by higher SPM and metal concentrations at such sites. The examples
above illustrate that many water chemistry parameters may influence trace metal speciation. Observed
correlations between metal speciation and studied water chemistry parameters may thus have been
more or less influenced by confonders; i.e. other parameters directly effecting on metal chemistry and

covarying with the studied parameters.

In the present work the dissolved, colloidal, and particulate fractions of Cu, Zn, and Cd were studied in
eight streams. The same fractions of Al were also studied in three of these streams. The sites were
chosen to cover a wide range of pH levels. Metals considered most likely to reach toxic levels towards
aquatic life and the chemical parameters considered to influence their toxicity most significantly (pH,
Ca, alkalinity, conductivity, TOC) were studied. Particulate (>0.45 um), colloidal (<0.45 pum, >~4 nm)
and dissolved concentrations (<~4 nm) were determined, the latter fractionated by dialysis in situ

(Bene$ and Steinnes, 1974).

The bedrock of the present study area is dominated by low to medium degree metamorphic shales
intruded by a great number of sulfidic ores (Goldschmidt, 1920). Mining activity in this area was among
the most substantial ones in Norway one to two centuries ago, when Norway was an important mining
nation. All mining activity in this area has now ceased, and different forms of remediation have
reduced the most severe metal pollution to the rivers. The main criterion used for selecting the

sampling sites was to cover a wide range of metal pollution levels, mostly at or near levels where the
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metal concentrations could be expected to be lethal to fish. In addition the selected streams differed in

discharge, altitude and main water chemical characteristics.

The purposes of this study were: 1) to reveal how the organic content and pH together influence the
dissolved/particulate metal concentration ratio in rivers and lakes. 2) To predict the % fraction of the
metals one may expect to find as dissolved, colloidal and particulate in natural waters, and view metal

speciation differences between sites with different pH, TOC, alkalinity, and Ca concentrations.

EXPERIMENTAL

Eight mining polluted rivers in the Rgros area in Norway were examined prior to and during the spring
flood period (April to July) and during the autumn (August to October) of 1997. Dialyzable (dissolved),
filterable and total concentrations of the elements Cu, Zn, Cd and Al were determined, for the latter
element only in three of the rivers. Five sampling campaigns included the filtration procedure (< 0.45
pm) needed for calculating the colloidal fraction. Figure 2 is thus based on those five sampling
campaigns, whereas all other figures and statistics are based on dialysed and total concentrations,
which mostly included 13 or more sampling campaigns (except the Naustebekken and Orva streams

where only 9 and 11 campaigns respectively included dialysed samples).

A 60 ml Millipore syringe, thoroughly rinsed with river water, was used to push 40 ml (rinsing), then 60
ml (sampling) river water through a Millipore 0.45 um filter, for collecting a sample including colloidal +
dissolved fractions. Dissolved species were separated by dialysis in situ (Bene$ and Steinnes, 1974).
At the river sites three to six dialysis bags were hung in the water in a thin acid-washed polyester
string from the bottleneck of a 2-L wide-neck polyethylene bottle. At the top and the bottom of this
bottle several 6-mm holes were drilled to ensure that a suitable water flow passed the dialysis
membranes. The bottles were anchored to about 20-kg weight stone-filled bags connected to land with
a 6-mm polyester rope. Two (autumn) to three (spring) dialysis bags were collected and transferred to
smaller sampling bottles about once a week at the most interesting episodes. Sampling sites were
chosen where the ropes and bottles could be sheltered from floating ice flakes and high water speed.
Narrow dialysis tubes (4.2 cm flat diameter) were chosen for rapid equilibration (Carl Roth GmbH,
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36/32, art. 0655.1, molecular weight cut-off 10000 to 20000 D/ 2.5 to 5.0 nm). Prior to use they were
soaked and stirred in 0.01 M Na,EDTA solution adjusted to pH 8 with NH; (Eide et al., 1980) and
rinsed 14 times with thorough shakings in-between. The ~40 cm long membrane tubes were then
double-knotted in one end, filled with deionized water and emptied once, filled again with deionized
water and sealed like a sausage with a double knot in the other end. Acid washing procedures (Bene$
and Steinnes, 1974; Eide et al., 1980), were avoided due to the descriptions from the manufacturer.
Prior to use the low density polyethylene sampling bottles (50 ml for dialysis samples, 250 ml for total
samples) were washed in a laboratory washing machine, soaked in 7 M HCI, rinsed with deionized
water, and soaked in 7 M HNO; before they were thoroughly rinsed with deionized water again, filled
with 0.1 M HNOj; and stored in air-tight plastic bags. All other equipment used in contact with the
samples was soaked in detergent solution, acetone, 7 M HCIl and 7 M HNOj. In-between and after
these washing steps this equipment was rinsed with deionized water. In the end it was dried and

stored in polyethylene bottles.

Samples for the determination of total metal concentrations were unfiltered, but like the dialysis sam-
ples acidified to 0.1 M with suprapure HNO3 after collection. The term "total concentration" is used for
simplicity, although metals strongly bound to particle surfaces or within lattices may not be included
due to particle sedimentation in the sample bottles. Alkalinity, pH, and TOC were determined in
unacidified unfiltered samples. A Radiometer PHM 80 portable pH meter was used for pH measure-
ments and  alkalinity endpoint  detection. For alkalinity = measurements  (Norges
standardiseringsforbund, 1981), a Hach digital burette (model 16900) was used. Conductivity was

measured by a CDM 80 conductivity meter from Radiometer.

All Zn and Ca determinations as well as Cu determinations in Orva and Bjgrgasen streams were
executed by flame AAS, whereas graphite furnace AAS was used for the rest of the metal
determinations. Three replicates were analyzed for all samples and standards. Where necessary to
achieve a desireable absorbance, two to six injections were dried on the tube platform prior to
atomization in the graphite furnace. Calibrations were run after every ninth sample, and between these

calibrations two internal standards were analyzed. Internal standards within +10 % (Cd, Zn and Al) and
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15 % (Cu) of a long-time average were accepted; otherwise all nine samples run after the foregoing

calibration sequence were reanalyzed.

The quantification limit is defined as 100, where ¢ is the standard deviation from several
measurements of the analytical blank solution. Quantification limits were 0.32, 2.2, 0.023 and 11.6
pg/L for Cu, Zn, Cd, and Al respectively. At metal concentrations lower than quantification limits, all
samples from a given site were reanalyzed with GFAAS. The detection limit is defined as 2ty 50,
where t; 95 is the 95 % significance t factor used in t-tests. Detection limits were 0.17, 0.70, 0.011, and
4.5 pg/L for Cu, Zn, Cd, and Al respectively. All measurements for Cu and Zn were higher than
quantification limits. In Rga stream the Cd concentrations were generally lower than the quantification
limits and they were therefore all excluded from the material. A few samples in the material showed
values lower than detection limits for Cd (1.5 % of samples) and quantification limits for Cd and Al (12
and 8 % of samples respectively). To avoid overestimation of river site averages, none of these
samples were excluded from the material when the averages were calculated. Low concentration
samples were rerun several times and all parallels were averaged. The samples were randomized

prior to analysis.

Recovery measurements were used to assess the accuracy of the analyses. Analysis runs were
accepted when 90 - 110 % of the metal spikes were recovered in all of four randomly selected

samples from the site analyzed, otherwise the series concerned was rerun.

Two (autumn) to three (spring) dialysis bags were collected at each sampling campaign. For Cu, Zn,
and Cd no relative standard errors (RSE) higher than 30% were observed. For Cu and Cd a few (5.4
and 1.5% of the sampling campaigns respectively) showed RSE values higher than 20%. The
agreement between the dialysis replicates was generally acceptable, but the precision for Al should
preferably have been better; 17% of the sampling campaigns showed RSE values higher than 30%
(but lower than 50%) for this element. Any lacking river discharge and dissolved concentration data in

the subsequent figures are due to failure in pressure sensors or dialysis bags.
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RESULTS AND DISCUSSION

In figure 2 the average dissolved, colloidal and particulate fractions of Cu, Zn, Cd, and Al for the eight
studied rivers are presented. The rivers are ranged according to average pH values (figure 3a). A very
steady pH at about 3.1 was observed at the Bjgrgasen site throughout the year, and almost all Cu, Zn,
and Cd at this site were found in the dissolved fraction. In Orva pH averaged 5.5, and still more than
90 % of Cu, Zn, and Cd were dissolved. In the six other streams average pH ranged between 6.9 and
7.2 (Figure 3). In these streams all three fractions generally occurred in significant amounts for Cu, Zn,
and Cd, although the dissolved fraction still was the highest. The average dissolved fractions for the
six pH neutral rivers were 54, 79, and 79 for Cu, Zn, and Cd respectively. Since most solid phases of
natural waters contain components of Si, Al and Fe oxides or hydroxides, the lower dissolved fraction
of Cu compared to Cd may be caused by the relatively strong adsorption ability of this element to such
surfaces (Stumm and Morgan, 1981). Al was only studied in three streams, all within the neutral pH
range. The average colloidal fraction of Al was 55 %, whereas the average dissolved and particulate
fractions were 21 and 23 % respectively. The high colloidal fraction of Al is in accordance with results

from Kimball et al. (1995) and Pettersson et al. (1992).

The colloidal fractions of Cu and Zn were especially high in Rga (figure 2). This may be associated
with the presence of excessive peatlands in the catchment area, causing the elevated TOC
concentrations observed in this stream (figure 3b), although TOC may as well be dominated by
dissolved species (Tanizaki et al., 1985). Most of the metal pollutants passing the Glama sampling site
originated from Orva. Simple calculations however revealed that the metal concentrations observed
were several times higher than what the water discharges observed in the two rivers and Orva metal
concentrations would cause due to conservative mixing. Probably the Orva water did not mix entirely
with the slowly flowing Glama, but followed its right side along the three kilometers downstream to the
Glama sampling site. Consequently the equilibration may have been somewhat delayed, probably
causing the highest dissolved fraction observed for Cu, Zn, and Cd among the pH neutral sites. The
particulate fraction of metals on the other hand was also very high in Glama, leaving almost nothing to
the colloidal fraction. This is in accord with the high load of particles visually observed all through the

year at this site.
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In figure 4, dissolved fractions from the present study are compared with corresponding literature
values. It is evident that pH as well as TOC is important in controlling the metal speciation. Generally
the dissolved fraction is high at low pH and at low TOC values for all elements. Borg and Andersson
(1984) found statistical evidence for this trend for Al. For Cu they reported that TOC correlated
significantly in the same way, but that the correlation with pH was less obvious. For Cd they found the
opposite trend as that of Cu. Their results therefore indicated that the dissolved Cu fraction was
controlled mostly by organic matter content whereas Cd was more controlled pH. By combining
experimental data from the present work with those from six other investigations (Borg and
Andersson, 1984; Tanizaki et al., 1985, 1992a-b; Arnesen, Esbensen and Grande, 1988; Raee, 1991),
the general fractionation pattern of the metals over an extended range of TOC and pH values may be
revealed (figure 4). From these results it appears that both pH and TOC influence or covary
significantly with all metals. For Cu, Zn, and Cd dissolved fractions approaching 100 % are reported in
the whole pH range from 3-7.5. Less than 80 % dissolved fractions of Cu and Cd are generally
reported only in cases where pH is higher than 6.5 or TOC is higher than 6 mg/L. In the pH neutral
range, dissolved metal fractions from 10 to 100 % are observed for Cd, and clearly the lower dissolved
fractions occur at the high TOC sites. Probably Zn will act in a similar way as Cd, although very few

high TOC data are found in the literature to support this assumption.

An interesting interpretation of the results arises when they are compared to calculated curves for pH
dependence of binding of metals on solid surfaces Mouvet and Bourg, 1983; Allard et al., 1986;
Stumm and Morgan, 1996). Fitting such a curve from the former to available experimental Cd data
(figure 4d) gives a good fit at pH values <7.5 for low TOC samples, whereas there is a lack of
experimental data at higher pH values. Circumstantial evidence indicating how the experimental Cd
data extend through higher pH values may be found through the Cu data. The silica adsorption curve
for Cu (also from Schindler et al., 1976) shows that Cu adsorption may be expected to occur at lower
pH values than for Cd. The experimental low TOC data appear to support this assumption, as the
dissolved fractions are much smaller for Cu than for Cd around pH neutrality. Assuming Cu and Cd

fractionation acting principallly similar, but within a different pH range, the slope of the low TOC Cu
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data may indicate the behaviour of the dissolved fraction of Cd at higher pH values; that is; a rather

steeply declining slope.

When moving the Cd-silica adsorption curve 1-1.5 pH units to the left (figure 4), it fits well the high
TOC samples. This indicates that the presence of organic compounds influences metal speciation by
moving the pH-to-metal adsorption curve to the left in the order of one pH unit or more compared to
the case of low TOC content. Considering the steepness of the theoretical curve, which appears to be
very similar to that of the experimental high TOC curve, this expresses a difference between almost all
Cd dissolved (at low TOC content) to almost all Cd adsorbed (at high TOC content) within the neutral
pH range. Neutral pH represents the most common condition in rivers supporting fish and this
observation is therefore important from a toxicity and water use viewpoint. The pH and TOC influence
on the Cd adsorption pattern observed in the present study corresponds to that of pH and fulvic acid
(FA) concentrations on Cd - alumina adsorption studied in vitro by Xu (1991). Above a breakpoint at
pH ~7.3, however FA reduced Cd adsorption under the conditions studied in that investigation. Similar
breakpoints may also exist in pH-TOC-Cd-adsorption natural systems (figure 4d), but sufficient

literature data at high pH were not available to confirm such a trend.

For the dissolved fraction of Cu (figure 4a), the Cu-silica adsorption curve (Schindler et al., 1976))
appears to occur more than one pH unit below the low TOC experimental data. This simply indicates
that the Cu adsorption properties with respect to the colloidal and particulate fraction in natural waters
deviate considerably from those of amorphous silica. This may not be very surprising considering the
complexity of colloids and particles in natural waters and the fact that adsorption properties may differ
considerably between particle species (see "X" and "+" in figure 4). Moreover the solute speciation
may be more important than the composition of SPM for the metal adsorption capabilities in natural
water (Allard et al., 1986). For the high TOC sites, the Cu adsorption-to-pH plot appears far more
scattered compared to what was evident in the corresponding Cd plot (figure 4 a and d). The trend is
still similar as for Cd, high TOC values clearly appear to move the adsorption curve towards lower pH.
The scattering may be associated with substantial differences between the investigations concerned in
other chemical parameters that influence metal speciation, such as temperature dependent equillibria,

alkalinity, hardness, and the presence of numerous other ligands and competing cations. Moreover
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total Cu concentrations in the whole data set ranges from a few pg/L to ~10 mg/L. The FA influence on
the Cu speciation may depend somewhat on the Cu concentrations within this range (Cabaniss and
Shuman, 1988). This could explain some of the scattering observed in figure 4a, and similar effects

may possibly also explain some of the scattering observed for the other elements.

Zn and Cd are known to have quite similar chemical properties. Since very few data for dissolved Zn
fractions at high TOC were found in the literature, interpretations of the TOC influence on Zn
adsorption in figure 4c will not be very reliable. The low TOC value points are though very similar to
the corresponding Cd values, and it is not unlikely that similar trends would be observed for these two

elements also in high TOC waters if more data were available for Zn.

Most Al data in figure 4b are from Borg and Andersson (1984). Al chemistry deviates considerably
from that of the other metals discussed, but it is still interesting to observe a corresponding shift to the
left in the pH to dissolved fraction curve for the higher compared to the lower TOC samples. The shift
from the domination of colloidal/particulate to the domination of dissolved species seems to occur
within a somewhat wider pH range for Al than for the other elements (figure 4). Figure 4 shows that Cd

and Zn most readily occur in the dissolved fraction, followed by Cu and then Al.

Summing up the discussion in the last paragraphs, evidence is collected for the following three
statements: 1) The studied metals are bound almost exclusively to particles and colloids at a high pH,
shifting to occur almost completely dissolved within one or a few pH units lower. 2) Around what pH
this shift occurs will depend on the metal concerned, and, interestingly, 3) the TOC in the water. High
TOC concentrations (> 8) seem to accompany low fractions of dissolved metals, probably because the
metals adsorb on high molecular weight organic compounds or organic coatings on inorganic
particles. Considerable metal adsorption thus occurs around one pH unit lower in high TOC waters

than in low TOC waters.

Computer simulations by Lumsdon and Evans (1995) suggest that Al precipitates as Al(OH); (gibbsite)
between pH 5.5 and 8 at concentrations higher than [110-25 pg/L. The total concentrations from which

the dissolved fractions in figure 4b are calculated are between 36 and 330 pg/L and thus above the
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theoretically soluble concentration. However, referring to figure 4b it is not easy to predict in what
cases Al precipitate, since Lumsdon and Evans (op. cit.) calculate that organic ligands may rise the
solubility of Al in water by several orders of magnitude. Al particles or Al coatings on particles may
both have been produced by precipitation and could have contributed to the observed lower dissolved
fractions at higher pH levels. Since appropriate stability constants of humic and fulvic material with
respect to metal binding have not been determined in the investigated water systems, the amount of
metals occurring as organic is not directly predictable. It is therefore difficult to interpret whether or not
inorganic Al precipitations actually have occurred in cases where the solubility product is exceeded

according to the total or dissolved metal concentrations and inorganic ligand concentrations.

From solubility constants and diagrams (Stumm and Morgan, 1996) and observed alkalinities, pH and
dissolved metal concentrations, no precipitation with hydroxo-, carbonate-, or bicarbonate- species are
likely for Cu, Zn or Cd at any site. Coprecipitation with Fe or Al species however may be possible
when these metals precipitate (Scheidegger et al., 1997). Ongoing precipitation will remove dissolved
metal species from the water column and may thus lead to a decreased dissolved fraction of that
metal. Continuous sedimentation and resuspension of metal-rich particles from the riverbed may also
contribute to higher concentrations and fractions of particulate metals, on expense of the percent

dissolved metal fraction.

The most obvious explanation for the shift in the adsorption curves may be related to the fact that
metals adsorb to organic colloids and particles. Higher TOC levels mean larger adsorption surfaces
and thus more metals may be adsorbed to organic material. The fraction of organic material occurring
in dissolved form may on the other hand be surprisingly high in some cases. In two pH neutral rivers
near Tokyo, Tanizaki et al. (1985) found TOC concentrations at 1.79 and 4.06 mg/L, the dissolved
fractions of which were 67 and 61 % respectivly. Also results from Patel et al. (1999) and Thorsen
(2000) confirm that a substantial part of the TOC in rivers may be found in the dissolved fraction. If low
molecular weight material has the same affinity to metals as the high molecular weight material, a
higher fraction of metals might as well be expected in the dissolved fraction in high TOC aquatic
environments. There may be numerous reasons why this does not appear to be the case in the

present work. Possibly TOC attached to inorganic colloids and particles as coatings may have very
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effective adsorbing properties. Laboratory experiments have confirmed that fulvic acid readily adsorbs
to colloidal Fe(OH)s(s), FeOOH(s), and Fe,O3(s) (Ledin et al., 1993). It is also possible that positively
charged metal ions and negatively charged dissolved organic matter may coagulate to form colloids
and particles or that metals attach easier to high, compared to low, molecular weight organic material.
Results from Pettersson et al. (1992) indicate that the stability of Me-humic/fulvic acids (< 1.2 um)
clearly increase with increasing pH for Cu, but not significantly for Cd. The mechanisms controlling the
relation between dissolved fractions, pH and TOC are therefore not necessarily the same for these

two elements.

Alkalinity, conductivity and Ca concentration figures (figures 3c-e) were very similar for the six pH
neutral sites. Probably the CaCO; system controlled all three parameters within this pH range. In the
acidic streams, alkalinity was obviously very low or even negative since H,CO3; and CO, completely
dominate the carbonate system below pH ~6. Ca concentrations were somewhat elevated in the acidic
streams, whereas conductivity was extremely high and probably almost completely governed by pH.
Ca, alkalinity and possibly conductivity are likely to influence dissolved fractions of the metals, Ca and
conductivity because cations in general may compete with the investigated metal ions for adsorption
sites, alkalinity since HCO3 and 0032' may compete with particle adsorption sites for metal cations.
Alkalinity, Ca concentration and conductivity differ somewhat between the investigated rivers, and do
not appear to be very closely connected to pH (figure 3). Possibly due to the variations in these
parameters, as well as variations in other water chemistry parameters which influence metal
speciation, the figures showing the correlations between pH and dissolved metal fractions were quite

scattered, especially for Cu in high TOC samples (figure 4).

It may be objected that the data plotted in figure 4 are produced by somewhat deviating methods, and
that the conclusions for this reason may be subject to some degree of systematic error. E.g. most high
TOC samples are from one single investigation. The low TOC data within that investigation however
still supports the general trends suggested above, and no clear differences in dissolved fractions
between the investigations seem evident at comparable pH and TOC levels. Furthermore the pore
sizes quoted in the different studies are within a very narrow range (10000-20000 D or about 2.5-5

nm) compared to the wide range of species sizes one would expect to find in natural waters, and
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systematic errors large enough to influence the conclusions drawn therefore seem to be quite unlikely.
Lake and river waters seem to have similar dissolved fractions of metals at comparable pH and TOC
values (see low TOC data in figure 4). It is thus not likely that the TOC induced shift in the pH —
dissolved metal fraction curve should arise from the fact that all high TOC samples are lake water

samples.

CONCLUSIONS

At the Bjargasen and Orva sampling sites, average pH levels were 3.1 and 5.5 respectively. More
than 90% of Cu, Zn, and Cd occurred in dissolved form in these rivers. Average pH in the six other
rivers studied was in the range 6.9 to 7.4, and for this reason the dissolved fractions were lower with
an average of 54, 79, and 79 % for Cu, Zn and Cd respectively. Al was only determined in samples
from three pH neutral rivers. As an average, 55% of Al was colloidally bound in these rivers, whereas

the dissolved and particulate fractions were 21 and 23% respectively.

Our data combined with data from similar studies support equilibrium models suggesting that the
percent fraction of metals adsorbed on particles rises steeply from almost zero to nearly 100 % within
a narrow and element specific pH range. Changes in TOC concentration seem to cause a distinct shift
in the pH-to-% metal absorption curves. A high organic carbon content in fact seems to allow a similar
adsorption to occur about one pH unit lower than in low TOC waters. Scattering of points however
suggests that parameters other than pH and TOC may also influence significantly the metal

speciation.
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Appendix 1: Analytical results for all samples and parameters

Roa
Table A1.1: Water chemistry data
Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meqg/L) (mg/L) tivity (mg/L) temp. discharge pitation Reros
(uS/cm) (°C) (m3/s) (mm/d)
Raros
13.04.97 0.376 6.4 50.0 7.3 0.33 4.1 1.3
21.04.97 0.414 7.1 32.6 7.4 -2 0.50 0 -1.9
06.05.97 0.308 5.9 50.7 7.1 -2 0.73 1.5 0.6
08.05.97 0.270 48.0 6.9 1.36 30 41
15.05.97 0.132 2.8 25.3 7.0 9.81 0 6.1
22.05.97 0.126 27 244 6.7 0 3.36 0.1 1.3
03.06.97 0.091 1.9 17.9 6.9 11.18 0 5.7
12.06.97 0.090 1.9 17.2 7.0 8 11.28 0 14.9
19.06.97 0.098 2.0 18.1 7.1 6 7.56 0 9.4
26.06.97 0.107 22 19.2 71 3.16 6 5.95 5 6.8
03.07.97 0.102 2.2 18.4 7.0 14 5.42 6.1 14.8
28.08.97 0.278 5.1 41.0 7.6 0.33 0.7 16.3
10.09.97 0.121 3.2 24.9 7.0 6 6.60 20.3 5
18.09.97 0.165 3.6 28.7 7.5 3 1.63 0 3.2
30.09.97 0.193 3.9 30.8 75 3.59 5 1.40 1.3 5
01.10.97 3.9 1.38 0.2 1.8
02.10.97 0.179 3.9 31.1 72 4.01 2 1.63 6.8 2.7

V24 h average

Table A1.2: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al
13.04.97 2.21 9.00 0.003 15.1
21.04.97 2.39 9.30 0.005 141 1.10 11.15 6.3
06.05.97 3.39 1510 0.014 50.1 228 16.57 15.6
08.05.97 2.61 14.40 0.015 471
15.05.97 420 1460 0.029 2724 0.51 7.27 0.020 18.6
22.05.97 3.45 8.40 0.020 103.8 1.41 6.93 14.6
03.06.97 2.46 740 0.019 1284 1.76 6.37 0.016 134
12.06.97 2.33 540 0.009 654 1.19 4.20 13.9
19.06.97 2.85 450 0.008 60.9 2.27 480 0.006 6.9
26.06.97 2.59 540 0.007 83.2 0.91 3.63 0.010 5.7
03.07.97 3.70 530 0.007 720 3.03 550 0.020 57.0 2.77 6.33 0.027 123
28.08.97 1.83 2.55 0.002 8.7 1.84 2.70 8.3
10.09.97 4.37 840 0.015 119.2 3.75 8.40 65.3 1.57 3.80 0.006 14.0
18.09.97 4.34 6.90 0.014 455 4.80 7.50 47 .1 1.35 5.05 12.8
30.09.97 4.18 8.40 0.009 59.0 4.26 8.10 447 1.68 6.00 17.2
01.10.97 4.34 8.10 0.018 4738
02.10.97 4.50 950 0.010 38.9 4.14 9.30 51.9 2.18 7.05 14.0




Naustebekken

Table A1.3: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water Water Preci- Air temp.
(meq/L) (mg/L) tivity (mg/L) temp. level Y pitation  Raros
(uS/cm) (°C) (mm/d)
Raros
05.05.97 0.172 3.1 27.3 6.6 -3 108.33 0.1 -2.5
08.05.97 0.192 3.5 31.3 6.9 109.79 30 4.1
15.05.97 0.142 2.7 25.7 6.6 144.79 0 6.1
22.05.97 0.136 24 247 6.4 1.5 188.13 0.1 1.3
03.06.97 0.072 1.6 17.9 6.4 263.71 0 5.7
11.06.97 0.108 21 221 6.7 3 288.29 0 10.5
18.06.97 0.081 1.6 17.2 6.8 6 236.00 3.6 9
25.06.97 0.080 1.7 16.8 73 153 7 203.13 0.2 7.6
02.07.97 0.086 1.6 17.2 7.1 12 188.54 0.5 16.4
28.08.97 0.121 2.2 20.9 7.2 0.7 16.3
10.09.97 0.118 2.3 20.2 7.1 6 20.3 5
18.09.97 0.111 2.2 20.0 7.3 4 0 3.2
30.09.97 0.115 2.2 19.6 72 220 3 1.3 5
02.10.97 0.120 2.2 20.5 7 219 3 6.8 2.7

" Measured water debts at a point in the river. Values are not calibrated to get correct discharges.

Table A1.4: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations

Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al

05.05.97 112 3990 0.060 13.0

08.05.97 1.44 48.40 0.065 16.7

15.05.97 3.89 63.10 0.121 38.2 2.68 63.23 0.103 11.3

22.0597 490 87.00 0.170 50.0 3.59 114.33 0.200 14.2

03.06.97 6.80 131.00 0.249 50.0 528 100.80 0.146 12.6

11.06.97 6.78 155.00 0.301 37.6

18.06.97 6.54 121.00 0.236 47.9

25.06.97 7.40 123.00 0.255 415 451 98.00 0.179 8.3

02.07.97 6.86 113.00 0.242 39.6 6.44 11550 0.244 40.1 580 100.83 0.197 14.6

28.08.97 3.34 48.60 0.090 26.7 3.00 4850 0.089 17.5

10.09.97 417 7200 0.129 355 3.64 6950 0.112 293 1.99 50.75 0.084 7.9

18.09.97 460 7140 0.122 315 3.80 70.90 0.109 29.9 218 5295 0.097 9.8

30.09.97 438 91.00 0.166 34.2 417 89.70 0.154 33,5 250 7715 0.134 135

02.10.97 440 91.10 0.169 34.8 460 88.70 0.154 24.9 1.98 79.70 0.168 8.4




Hittervassdraget

Table A1.5: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meqg/L) (mg/L) tivity (mg/L) temp. dischar- pitation Reros
(uS/cm) (°C) ge”  (mm/d)
(m%s)  Reros
13.04.97 0.422 7.5 68.2 71 -1.5 0.61 4.1 1.3
21.04.97 0.412 7.5 419 7.3 -2 0.56 0 -1.9
07.05.97 0.456 7.8 733 7.2 2.15 10.5 2.9
08.05.97 0.422 7.9 749 7.3 3.83 30 41
14.05.97 0.364 6.8 65.3 7.2 -2 20.79 0 7
21.05.97 5.3 588 7.2 1 12.69 0.1 1.2
04.06.97 0.280 5.6 50.8 7 17.88 0 8.9
12.06.97 0.285 5.6 547 74 10 8.42 0 14.9
19.06.97 0.305 5.8 541 7.5 7 9.11 0 9.4
26.06.97 0.303 5.7 551 75 276 8 5.93 5 6.8
03.07.97 0.305 5.9 56.2 7.4 15 5.77 6.1 14.8
28.08.97 6.2 0.71 0.7 16.3
10.09.97 0.322 6.1 549 7.5 8 7.18 20.3 5
18.09.97 0.319 6.2 56.6 7.6 6 5.55 0 3.2
30.09.97 6.2 552 76 299 5 2.61 1.3 5
02.10.97 0.327 6.3 572 75 297 5 2.83 6.8 2.7

"'24 h average

Table A1.6: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al
13.04.97 29.48 135.00 0.224
21.04.97 27.50 133.00 0.231 13.60 117.67 0.195
07.05.97 27.81 132.00 0.256 24.54 112.00 0.186
08.05.97 28.87 134.00 0.234
14.05.97 30.09 105.00 0.220 12.63 82.43 0.164
21.05.97 61.50 170.00 0.327 38.80 148.67 0.300
04.06.97 41.53 127.00 0.236 34.03 107.33 0.203
12.06.97 42.84 130.00 0.253 21.04 123.67 0.215
19.06.97 38.52 119.00 0.222 23.48 104.33 0.189
26.06.97 33.40 111.00 0.211 16.05 102.17 0.180
03.07.97 35.72 122.00 0.232 33.28 111.00 0.243 20.38 96.77 0.184
28.08.97 24.33 92.70 0.188 21.30 82.80 0.152
10.09.97 29.40 110.00 0.217 24.00 99.20 0.175 24.84 102.15 0.176
18.09.97 33.94 118.00 0.222 27.22 108.00 0.190 15.94 9545 0.178
30.09.97 34.23 123.00 0.228 30.50 110.00 0.206 16.08 97.25 0.192
02.10.97 33.40 123.00 0.226 30.53 118.00 0.205 17.48 101.50 0.190




Gaula

Table A1.7: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meq/L) (mg/L) tivity (mg/L) temp. dischar- pitation Rgros
(1S/cm) (°C) ge”  (mm/d)
(m3/s) Raros
12.04.97 0.390 7.2 60.9 6.7 -2 1.66 0.7 -2
21.04.97 0.390 7.4 554 741 -3 1.50 0 -1.9
07.05.97 0.298 5.8 56.7 71 8.55 10.5 29
08.05.97 0.182 3.9 431 71 20.68 30 4.1
14.05.97 0.150 3.4 34.9 7 0 35.17 0 7
21.05.97 0.164 3.4 343 741 2 19.94 0.1 1.2
04.06.97 0.099 21 212 6.8 43.66 0 8.9
11.06.97 0.069 1.5 16.8 6.8 2 55.02 0 10.5
18.06.97 0.077 1.6 159 6.8 3 38.95 3.6 9
25.06.97 0.077 1.6 14.8 7 148 3 36.41 0.2 7.6
02.07.97 0.066 1.3 13.0 7 10 48.36 0.5 16.4
28.08.97 0.228 4.1 348 7.5 15 1.15 0.7 16.3
10.09.97 0.103 22 174 6.9 5 54.17 20.3 5
18.09.97 0.139 2.8 237 7.2 3 12.30 0 3.2
30.09.97 0.214 4.1 336 73 218 5 6.21 1.3 5
02.10.97 0.194 3.9 337 71 3.00 4 8.11 6.8 27

Table A1.8: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al

12.04.97 8.20 34.10 0.082

21.04.97 8.52 35.00 0.092 516 41.27 0.082
07.05.97 19.21 46.30 0.127 8.36 34.23 0.075
08.05.97 25.96 48.00 0.154

14.05.97 15.33 38.60 0.098 476 23.63 0.063
21.05.97 9.10 22.80 0.067 516 23.50 0.071
04.06.97 6.93 15.00 0.047 6.65 12.30 0.031
11.06.97 22.13 41.20 0.103 2.87 7.90 0.032
18.06.97 5.80 10.90 0.040 6.06 10.70 0.030
25.06.97 512 10.80 0.036 2.22 8.13 0.021
02.07.97 5.40 9.90 0.033 3.45 710 0.022 4.57 7.43 0.026
28.08.97 464 10.60 0.039 430 11.90 0.038

10.09.97 10.04 16.60 0.054 850 14.40 0.042 460 12.70 0.029
18.09.97 6.98 24.30 0.064 6.34 24.80 0.060 247 16.50 0.042
30.09.97 10.06 41.30 0.093 9.18 40.20 0.093 418 28.60 0.076
02.10.97 11.24 38.60 0.098 10.34 38.30 0.095 4.04 33.20 0.088




Rugla

Table A1.9: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meq/L) (mg/L) tivity (mg/L) temp. dischar- pitation Rgros
(1S/cm) (°C) ge”  (mm/d)
Raros
13.04.97 8.5 77.8 4.1 1.3
21.04.97 0.306 8.5 433 71 -3 0 -1.9
07.05.97 0.244 4.8 46.7 6.7 1659.00 10.5 29
08.05.97 0.180 3.6 375 6.7 1467.00 30 4.1
14.05.97 0.146 3.0 311 6.9 -2 840.00 0 7
21.05.97 0.182 3.7 33.6 7 2 688.00 0.1 1.2
03.06.97 0.122 25 232 6.9 850.00 0 5.7
11.06.97 0.110 1.9 225 6.9 759.00 0 10.5
18.06.97 0.113 24 220 6.9 7 708.00 3.6 9
25.06.97 0.132 25 227 71 223 7 648.00 0.2 7.6
02.07.97 0.127 23 218 7.2 12 708.00 0.5 16.4
28.08.97 0.386 6.8 56.7 7.3 14 346.00 0.7 16.3
10.09.97 0.142 3.2 255 6.9 6 708.00 20.3 5
18.09.97 0.242 4.7 38.7 7.2 4 527.00 0 3.2
30.09.97 0.272 5.0 422 72 269 3 476.00 1.3 5
01.10.97 587.00 0.2 1.8
02.10.97 0.241 4.6 387 72 3.31 4 567.00 6.8 2.7

" Measured water debts at a point in the river. Values are not calibrated to get correct discharges.

Table A1.10: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (pg/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al

13.04.97 6.11 6.6 0.012 17.8

21.04.97 6.85 6.5 0.014 19.9 2.90 54 0.011 4.4
07.05.97 16.1 11.4 0.028 376.5 7.02 463 0.014 18.7
08.05.97 26.59 141 0.040 391.8

14.05.97 28.2 13.5 0.041 470.2 4.01 577 0.029 9.2
21.05.97 15.61 7 0.018 65.7 9.1 10.8 0.024 21.4
03.06.97 21.56 7.1 0.020 107.4 13.8 5.93 0.013 17.0
11.06.97 20.96 5.7 0.017 48.3 5.27 0.015 7.5
18.06.97 23.8 6.3 0.015 55.5 12.1 3.9 0.010 11.2
25.06.97 25.75 7.1 0.015 54.0 10.1 4.6 0.010 6.2
02.07.97 30.88 74 0.019 83.5 28.65 6.45 0.017 24.0 17.2 453 0.012 11.9
28.08.97 14.81 55 0.019 33.9 12.685 46 0.018

10.09.97 36.42 11.5 0.033 1225 33.19 10 0.029 96.6 15.3 55 0.012 11.6
18.09.97 21.9 8 0.019 48.8 14.125 6.1 0.018 50.3 9.87 49 0.012 17 1
30.09.97 21.41 8.8 0.024 40.7 21.5 8.9 0.023 331 19.3 9.2 0.021 6.9
01.10.97 41.2 8.775 0.025 10.415 8.6 0.024 6.4
02.10.97 24.3 9.3 0.021 52.9 2299 9.7 0.022 27.4 11.8 7.1 0.018 14.8




Glama

Table A1.11: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meq/L) (mg/L) tivity (mg/L) temp. dischar- pitation Rgros
(1S/cm) (°C) ge”  (mm/d)
(m3/s) Raros
13.04.97 0.342 6.2 445 71 0 12.02 4.1 1.3
21.04.97 0.322 6.1 270 7.2 -3 12.02 0 -1.9
06.05.97 6.9 516 7.2 7.65 1.5 0.6
08.05.97 0.332 7.2 615 71 7.65 30 4.1
15.05.97 0.171 4.5 40.8 6.7 19.44 0 6.1
22.05.97 0.272 5.8 46.0 7 1.8 25.41 0.1 1.3
03.06.97 0.141 3.8 36.5 6.8 28.38 0 5.7
12.06.97 0.258 5.3 421 7.1 8 100.36 0 14.9
19.06.97 0.227 4.6 36.9 7.3 6 112.50 0 9.4
26.06.97 0.190 4.0 342 72 190 7 75.74 5 6.8
03.07.97 0.182 3.6 306 7.2 14 92.21 6.1 14.8
28.08.97 0.216 4.5 364 7.5 15 11.13 0.7 16.3
10.09.97 0.188 4.7 37.3 7 6 28.38 20.3 5
18.09.97 0.209 4.2 356 74 6 38.56 0 3.2
30.09.97 0.216 4.5 357 72 194 7 26.87 1.3 5
01.10.97 4.6 26.87 0.2 1.8
02.10.97 0.000 4.7 385 71 202 5 26.87 6.8 2.7

"'24 h average

Table A1.12: Total, filtrable (< 0.45 pm) and dialysable (< 2.5-~5 nm) metal concentrations (pg/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al
13.04.97 6.74 19.40 0.039
21.04.97 799 21.10 0.054 3.57 33.03 0.053
06.05.97 18.70 59.60 0.130 17.62 71.70 0.147
08.05.97 125.88 271.00 0.664
15.05.97 132.40 201.60 0.464 31.68 165.00 0.318
22.05.97 52.12 137.70 0.291 58.30 130.33 0.272
03.06.97 94.96 192.20 0.440 54.40 154.33 0.295
12.06.97 39.70 73.80 0.200 20.94 56.57 0.130
19.06.97 29.41 63.80 0.181 22.81 66.07 0.126
26.06.97 43.48 78.20 0.188 18.00 62.17 0.141
03.07.97 25.05 54.70 0.119 18.30 56.65 0.113 21.83 40.27 0.100
28.08.97 8.74 12.60 0.061 746 33.00 0.053
10.09.97 63.35 135.50 0.313 56.62 150.00 0.275 23.94 115.50 0.222
18.09.97 28.56 75.00 0.132 23.19 76.40 0.144 2499 67.35 0.139
30.09.97 33.45 103.00 0.201 17.80 71.00 0.127 23.93 105.50 0.213
01.10.97 51.31 135.30 0.272
02.10.97 42.67 126.60 0.257 26.37 112.00 0.202 27.69 121.50 0.234




Orva

Table A1.13: Water chemistry data

Dato Alkalinity Ca  Conduc- pH TOC Water River Preci- Air temp.
(meq/L) (mg/L) tivity (mg/L) temp. dischar- pitation Rgros

(1S/cm) (°C) ge”  (mm/d)

(m3/s) Raros
06.05.97 0.078 6.1 70.1 6.6 0.26 1.5 0.6
08.05.97 0.118 5.0 53.6 6.6 0.49 30 4.1
15.05.97 4.0 80.6 34 3.55 0 6.1
22.05.97 0.038 4.3 56.3 5.9 1.2 1.21 0.1 1.3
03.06.97 0.013 3.0 432 538 4.04 0 5.7
12.06.97 0.018 3.0 40.3 6 10 4.08 0 14.9
19.06.97 0.012 3.1 42.7 6 8 2.74 0 9.4
26.06.97 0.012 3.4 496 56 2.36 8 2.15 5 6.8
03.07.97 0.012 3.2 427 538 17 1.96 6.1 14.8
28.08.97 0.004 6.9 92.7 541 15 0.12 0.7 16.3
10.09.97 -0.012 4.0 66.1 4.9 6 2.39 20.3 5
18.09.97 0.001 4.3 65.2 54 4 0.59 0 3.2
30.09.97 0.005 4.6 719 51 1.80 7 0.51 1.3 5
01.10.97 5.5 0.50 0.2 1.8
02.10.97 -0.002 5.1 91.8 5 232 3 0.59 6.8 2.7

"'24 h average

Table A1.14: Total, filtrable (< 0.45 ym) and dialysable (< ~2.5-5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al

06.05.97 147 583 0.76
08.05.97 110 332 0.45
15.05.97 715 1280 242 512.00 1028 1.912
22.05.97 241 670 1.19 252.00 652 1.119
03.06.97 265 560 1.02 401.00 525
12.06.97 222 509 0.94 155.00 449 0.813
19.06.97 260 580 1.08 273.67 578 1.00
26.06.97 296 644 1.15 244 .33 576 0.997
03.07.97 242 552 0.98 185.00 555 1.022 212.33 557 1.030
28.08.97 291 1040 1.42 293.00 990 1.471
10.09.97 424 905 1.74 387.00 935 1.661 339.50 852 1.476
18.09.97 342 890 1.55 308.00 940 1.651 314.00 943 1.649
30.09.97 411 1095 1.890 378.00 1090 1.748 410.50 1145 1.933
01.10.97 597 1655 2.521
02.10.97 482 1410 2.137 451.00 1400 2.094 44950 1295 2.040




Bjorgasen

Table A1.15: Water chemistry data

Dato Alkalinity Ca Conduc- pH TOC Water River Preci-  Air temp.
(meg/L) (mg/L) tivity (mg/L) temp. dischar  pitation Raros
(uS/cm) (°C) -ge" (mm/d)
(m3/s) Rgros
12.04.97 13.8 836.9 3.1 -3 2.22 0.7 -2
21.04.97 12.9 659.1 3.1 -3 2.01 0 -1.9
07.05.97 8.3 600.2 3.2 11.45 10.5 2.9
08.05.97 8.2 746.6 3.1 27.71 30 4.1
14.05.97 6.9 5916 3.3 -2 47.12 0 7
21.05.97 7.8 5522 3.3 0 26.72 0.1 1.2
04.06.97 3.1 273.2 35 58.51 0 8.9
11.06.97 5.7 430.8 34 15 73.73 0 10.5
18.06.97 8.3 5409 3.2 52.19 3.6 9
25.06.97 10.2 6129 31 2.1 10 48.79 0.2 7.6
02.07.97 9.6 618.2 3.1 17 64.80 0.5 16.4
28.08.97 19.6 1266.8 2.9 17 1.53 0.7 16.3
10.09.97 8.9 5221 3.3 7 72.59 20.3 5
18.09.97 11.2 6105 3.2 5 16.48 0 3.2
30.09.97 11.9 634.0 31 5 8.32 1.3 5
02.10.97 10.2 5915 3.2 2.20 5 10.87 6.8 2.7

"'24 h average

Table A1.16: Total, filtrable (< 0.45 um) and dialysable (< 2.5-~5 nm) metal concentrations (ug/L)

Date Total concentrations Filtrable concentrations Dialysable concentrations
Cu Zn Cd Al Cu Zn Cd Al Cu Zn Cd Al

12.04.97 4216 9904 21.908
21.04.97 4246 9168 21.448 4159 9130 20.733
07.05.97 3858 6256 14.144 4102 7140 17.446
08.05.97 4160 6768 15.884
14.05.97 3183 4944 11.728 3171 4941.33 12.105
21.05.97 3269 5248 12.900 3046 5125.33 12.904
04.06.97 1171 2096 5.248 1225 2218.67 5.683
11.06.97 1955 3312 8.164 1386
18.06.97 2461 4464 11.428 2294 4288 10.440
25.06.97 2884 5440 13.276 2710 4954.67 12.230
02.07.97 2673 4880 11.656 2595 4648 12.140 2478 4424 11.561
28.08.97 4491 14096 22.704 4649 13632 25.744
10.09.97 2278 5056 12.012 2224 5040 11.916 2285 5344 13.690
18.09.97 2677 5872 14.796 2584 5880 14.752 2507 5740 13.948
30.09.97 2964 6720 16.100 2982 6480 15.917 3047 6312 16.028
02.10.97 2683 5424 13.096 2572 5120 13.312 2563 5164 13.461




Table A1.17: Diel river discharges for the rivers

Date Roa” Nauste-  Hitter- Gaula? Rugla? Glama® Orva? Bjorg-
bekken?  elva? asen”
(m’ls) (m°ls) (m’ls) (m’ls) (m%s)  (Lls)
01.03.97| 0.33 0.26 0.54 25 0.12 0.72
02.03.97 | 0.33 0.26 0.60 25 0.12 0.80
03.03.97| 0.34 0.26 0.66 25 0.12 0.88
04.03.97 | 0.28 0.26 0.57 25 0.10 0.76
05.03.97| 0.34 0.26 0.62 25 0.12 0.84
06.03.97 | 0.36 0.26 0.70 25 0.13 0.94
07.03.97 | 0.31 0.3 0.67 25 0.1 0.90
08.03.97 | 0.29 0.29 0.64 25 0.1 0.86
09.03.97 | 0.29 0.25 0.59 25 0.10 0.80
10.03.97 | 0.28 0.25 0.61 25 0.10 0.82
11.03.97 | 0.28 0.26 0.68 25 0.10 0.92
12.03.97 | 0.27 0.25 0.60 25 0.10 0.81
13.03.97 | 0.27 0.29 0.82 25 0.09 1.10
14.03.97 | 0.26 0.24 0.75 25 0.09 1.00
15.03.97 | 0.26 0.24 0.72 25 0.09 0.97
16.03.97 | 0.25 0.34 0.66 25 0.09 0.89
17.03.97 | 0.25 0.32 0.66 25 0.09 0.89
18.03.97 | 0.24 0.29 0.61 25 0.09 0.82
19.03.97 | 0.24 0.29 0.65 25 0.08 0.88
20.03.97| 0.23 0.35 0.59 25 0.08 0.79
21.03.97 | 0.22 0.42 0.55 25 0.08 0.74
22.03.97 | 0.22 0.36 0.55 25 0.08 0.74
23.03.97 | 0.21 0.34 0.54 25 0.08 0.73
24.03.97 | 0.21 0.33 0.53 25 0.08 0.71
25.03.97 | 0.20 0.27 0.52 25 0.07 0.70
26.03.97 | 0.20 0.29 0.52 23 0.07 0.69
27.03.97| 0.20 0.32 0.51 23 0.07 0.69
28.03.97 | 0.21 0.32 0.51 23 0.07 0.69
29.03.97 | 0.21 0.35 0.51 22 0.07 0.68
30.03.97 | 0.21 0.39 0.53 21 0.07 0.71
31.03.97 | 0.22 0.44 1.60 21 0.08 2.14
01.04.97| 0.23 0.5 4.70 21 0.08 6.30
02.04.97 | 0.24 0.51 4.82 12 0.09 6.46
03.04.97 | 0.26 0.52 2.94 12 0.09 3.94
04.04.97 | 0.26 0.73 2.01 12 0.10 2.70
05.04.97 | 0.27 0.78 1.78 12 0.10 2.38
06.04.97 | 0.29 0.56 1.78 12 0.1 2.38
07.04.97 | 0.30 0.49 1.75 12 0.1 2.35
08.04.97 | 0.33 0.47 1.74 12 0.12 2.33
09.04.97 | 0.35 0.46 1.67 12 0.13 2.24
10.04.97 | 0.39 0.47 1.77 12 0.14 2.37
11.04.97 | 0.43 0.49 1.92 13 0.16 2.57
12.04.97 | 0.40 0.54 1.66 12 0.14 2.22
13.04.97 | 0.33 0.61 1.74 12 0.12 2.33
14.04.97 | 0.40 0.55 2.36 12 0.14 3.16
15.04.97 | 0.43 0.5 2.00 12 0.16 2.69
16.04.97 | 0.40 0.54 1.84 12 0.14 2.47

" Discharge roughly calculated from that of nearby streams by the Norwegian Water
Resources and Energy Administration (NVE). ? Water levels (not necessarily proportional to
discharge) measured by pressure sensors (some dates missing). ¥ Measured by NVE.



Table A1.17: Diel river discharges for the rivers (continued).

Date Roa Nauste- Hitter-elva Gaula Rugla” Glama Orva Bjorg-dsen
bekken”  (m’ls) (L/s)
(m’ls) (m’ls) (m’ls) (m’ls)
17.04.97 | 0.42 0.59 2.1 12 0.15 2.83
18.04.97 | 0.50 0.56 2.09 12 0.18 2.81
19.04.97 | 0.53 0.58 1.81 12 0.19 242
20.04.97 | 0.51 0.56 1.64 12 0.18 2.20
21.04.97 | 0.50 0.56 1.50 12 0.18 2.01
22.04.97 | 0.43 0.63 1.37 12 0.16 1.84
23.04.97 | 0.37 0.56 1.29 12 0.13 1.72
24.04.97 | 0.41 0.49 1.34 12 0.15 1.80
25.04.97 | 0.43 0.53 1.26 406 12 0.16 1.68
26.04.97 | 0.43 0.49 1.17 376 12 0.16 1.57
27.04.97 | 0.43 0.43 1.15 376 12 0.15 1.55
28.04.97 | 0.41 0.42 1.20 376 12 0.15 1.61
29.04.97 | 0.38 0.4 1.49 396 7 0.14 2.00
30.04.97 | 0.38 0.39 2.22 416 7 0.14 2.98
01.05.97 | 0.35 0.6 4.83 537 6 0.13 6.47
02.05.97 | 0.43 0.76 8.61 1386 6 0.16 11.54
03.05.97 | 0.43 1.07 8.32 759 8 0.16 11.15
04.05.97 | 0.52 1.24 6.08 628 8 0.19 8.15
05.05.97 | 0.52 108 1.36 5.14 547 8 0.19 6.89
06.05.97 | 0.73 103 1.51 4.64 507 8 0.26 6.22
07.05.97 | 0.98 98 215 8.55 1659 8 0.36 11.45
08.05.97 | 1.36 110 3.83 20.68 1467 8 0.49 27.71
09.05.97 | 1.65 118 5.69 17.84 931 13 0.60 23.91
10.05.97 | 2.06 141 6.91 1549 719 13 0.75 20.76
11.05.97 | 2.50 124 8.67 18.53 769 13 0.90 24.83
12.05.97 | 3.42 130 11.54 2142 769 13 1.24 28.70
13.05.97 | 4.34 129 15.34 27.81 820 13 1.57 37.26
14.05.97 | 6.22 146 20.79 35.17 840 18 2.25 47.12
15.05.97 | 9.81 145 25 38.78 860 19 3.55 51.96
16.05.97 | 10.83 170 27.2 37.75 840 21 3.92 50.58
17.05.97 | 6.43 187 26.7 35.90 850 26 2.33 48.11
18.05.97 | 6.19 202 25.86 33.06 789 25 2.24 44.30
19.05.97 | 4.94 201 20.82 26.28 729 25 1.79 35.21
20.05.97 | 4.19 198 16.27 2222 688 25 1.52 29.78
21.05.97 | 3.66 195 12.69 19.94 688 25 1.32 26.72
22.05.97 | 3.36 188 11.19 18.01 648 25 1.21 24.14
23.05.97 | 3.07 173 9.78 15.01 658 32 1.1 20.12
24.05.97 | 2.98 161 8.78 14.81 658 32 1.08 19.84
25.05.97 | 3.08 170 8.22 15.42 708 32 1.11 20.66
26.05.97 | 3.92 184 8.93 21.18 789 33 1.42 28.39
27.05.97 | 5.77 180 12.61 30.05 840 33 2.09 40.27
28.05.97 | 6.78 193 15.05 3224 799 36 2.45 43.20
29.05.97 | 6.15 196 16.35 30.02 759 36 2.22 40.23
30.05.97 | 5.93 184 14.79 28.37 799 36 2.14 38.01
31.05.97 | 7.18 189 15.27 35.38 860 39 2.60 47.40
01.06.97 | 9.60 213 18.2 43.06 860 40 3.47 57.70
02.06.97 | 11.54 245 21.53 48.41 850 41 417 64.87
03.06.97 | 11.18 264 20.46 48.15 850 28 4.04 64.53

" Discharge roughly calculated from that of nearby streams by the Norwegian Water
Resources and Energy Administration (NVE). ? Water levels (not necessarily proportional to
discharge) measured by pressure sensors (some dates missing). ¥ Measured by NVE.



Table A1.17: Diel river discharges for the rivers (continued).

Date Roa Nauste- Hitter-elva Gaula Rugla” Glama Orva Bjorg-dsen

bekken”  (m’ls) (L/s)

(m’ls) (m’ls) (m’ls) (m’ls)

04.06.97 | 9.92 261 17.88 43.66 809 28 3.59 58.51
05.06.97 | 10.64 261 16.21 43.08 850 42 3.85 57.73
06.06.97 | 11.58 263 15.21 4796 840 42 4.19 64.26
07.06.97 | 13.11 265 14.97 53.89 830 46 4.74 72.21
08.06.97 | 17.13 299 15.27 7346 931 60 6.20 98.43
09.06.97 | 21.15 322 14.93 86.81 809 28 7.65 116.32
10.06.97 | 16.57 304 15.53 7293 809 79 5.99 97.73
11.06.97 | 11.99 288 11.52 55.02 759 102 4.34 73.73
12.06.97 | 11.28 272 8.42 51.58 809 100 4.08 69.11
13.06.97 | 11.69 270 7.49 58.84 830 64 4.23 78.84
14.06.97 | 11.36 272 7.77 59.99 799 64 4.1 80.38
15.06.97 | 13.76 270 8.55 75.83 820 65 4.98 101.61
16.06.97 | 11.93 250 10.66 56.70 729 127  4.32 75.97
17.06.97 | 9.49 240 9.97 4428 749 92 3.43 59.33
18.06.97 | 8.66 236 9.39 38.95 708 114  3.13 52.19
19.06.97 | 7.56 229 9.1 34.68 678 113 274 46.47
20.06.97 | 6.73 221 8.55 31.20 678 86 2.43 41.81
21.06.97 | 6.07 213 8.01 34.67 698 76 2.20 46.45
22.06.97 | 5.70 214 7.49 38.29 708 64 2.06 51.31
23.06.97 | 7.18 221 7.23 4464 789 64 2.60 59.82
24.06.97 | 7.57 215 6.73 55.52 708 53 2.74 74.40
25.06.97 | 5.80 203 6.25 36.41 648 52 2.10 48.79
26.06.97 | 5.95 190 5.93 31.83 688 76 2.15 42.65
27.06.97 | 5.48 183 5.77 30.24 668 76 1.98 40.52
28.06.97 | 4.57 181 5.54 31.28 678 76 1.65 41.91
29.06.97 | 5.13 190 5.32 38.51 678 59 1.86 51.60
30.06.97 | 5.18 185 5.04 35.60 708 59 1.87 47.70
01.07.97 | 6.34 185 6.49 51.56 759 70 2.29 69.09
02.07.97 | 5.70 189 6.01 48.36 708 92 2.06 64.80
03.07.97 | 5.42 173 5.77 40.48 648 92 1.96 54.25
04.07.97 | 4.50 154 5.32 26.97 638 92 1.63 36.14
05.07.97 | 4.00 146 5.1 22.18 597 92 1.45 29.72
06.07.97 | 3.18 133 4.67 16.24 557 58 1.15 21.77
07.07.97 | 3.02 122 4.25 1496 597 47 1.09 20.05
08.07.97 | 2.84 120 3.86 13.97 547 33 1.03 18.72
09.07.97 | 2.39 117 3.66 10.77 527 27 0.87 14.43
10.07.97 | 2.10 113 3.29 10.67 517 27 0.76 14.30
11.07.97 | 1.76 108 2.94 1042 486 27 0.64 13.97
12.07.97 | 1.64 100 2.77 9.38 476 21 0.59 12.57
13.07.97 | 1.54 2.44 8.81 476 21 0.56 11.80
14.07.97 | 1.45 2.32 8.18 466 21 0.53 10.97
15.07.97 | 1.37 2.21 7.85 456 21 0.49 10.52
16.07.97 | 1.29 2.1 6.84 446 21 0.47 9.16
17.07.97 | 1.22 1.99 6.18 426 21 0.44 8.28
18.07.97 | 1.12 1.99 5.69 436 21 0.41 7.62
19.07.97 | 1.08 1.89 5.94 436 21 0.39 7.96
20.07.97 | 1.01 1.78 5.73 416 20 0.36 7.67
21.07.97 | 0.91 1.65 5.14 436 20 0.33 6.89

" Discharge roughly calculated from that of nearby streams by the Norwegian Water
Resources and Energy Administration (NVE). ? Water levels (not necessarily proportional to
discharge) measured by pressure sensors (some dates missing). ¥ Measured by NVE.



Table A1.17: Diel river discharges for the rivers (continued).

Date Roa Nauste- Hitter-elva Gaula Rugla” Glama Orva Bjorg-dsen

bekken”  (m’ls) (L/s)

(m’ls) (m’ls) (m’ls) (m’ls)

22.07.97 | 0.87 2.37 7.58 426 17 0.32 10.16
23.07.97 | 0.95 2.03 717 416 17 0.34 9.61
24.07.97 | 0.78 1.56 4.83 396 17 0.28 6.47
25.07.97 | 0.73 1.51 410 386 14 0.26 5.50
26.07.97 | 0.73 1.49 3.87 386 13 0.26 5.18
27.07.97 | 0.78 1.32 5.80 406 13 0.28 7.78
28.07.97 | 0.73 1.12 7.49 406 13 0.26 10.04
29.07.97 | 0.72 1.05 7.60 406 13 0.26 10.18
30.07.97 | 0.61 1.13 5.84 386 13 0.22 7.83
31.07.97 | 0.54 1.06 4.23 376 13 0.20 5.67
01.08.97 | 0.49 1.06 3.52 356 13 0.18 4.71
02.08.97 | 0.47 1.02 3.39 366 13 0.17 4.54
03.08.97 | 0.51 0.96 3.27 346 13 0.19 4.38
04.08.97 | 0.45 0.91 2.70 346 12 0.16 3.62
05.08.97 | 0.43 0.86 2.23 336 12 0.16 3.00
06.08.97 | 0.42 0.82 1.96 316 12 0.15 2.63
07.08.97 | 0.39 0.77 1.84 316 12 0.14 2.46
08.08.97 | 0.34 0.73 1.68 326 12 0.12 2.25
09.08.97 | 0.35 0.68 1.63 316 12 0.13 2.18
10.08.97 | 0.35 0.64 1.80 316 12 0.13 242
11.08.97 | 0.33 0.6 1.37 296 14 0.12 1.83
12.08.97 | 0.36 0.57 1.08 326 19 0.13 1.45
13.08.97 | 0.35 0.53 1.13 326 19 0.13 1.51
14.08.97 | 0.33 0.46 0.98 316 19 0.12 1.31
15.08.97 | 0.30 0.4 0.75 306 19 0.11 1.01
16.08.97 | 0.29 0.42 0.64 306 19 0.11 0.86
17.08.97 | 0.29 0.4 0.58 296 19 0.11 0.78
18.08.97 | 0.29 0.44 0.54 296 19 0.11 0.72
19.08.97 | 0.29 0.37 0.59 306 19 0.11 0.79
20.08.97 | 0.29 0.41 0.59 316 19 0.11 0.79
21.08.97 | 0.27 0.44 0.54 306 19 0.10 0.73
22.08.97 | 0.28 0.39 0.53 336 19 0.10 0.71
23.08.97 | 0.28 0.38 0.75 326 19 0.10 1.00
24.08.97 | 0.32 0.49 0.74 346 19 0.12 0.99
25.08.97 | 0.30 0.66 0.98 336 19 0.11 1.31
26.08.97 | 0.55 0.89 1.64 376 19 0.20 2.20
27.08.97 | 0.35 0.79 1.65 356 19 0.12 2.22
28.08.97 | 0.33 0.71 1.15 346 11 0.12 1.53
29.08.97 | 0.31 0.83 1.09 346 11 0.11 1.46
30.08.97 | 1.57 1.45 5.16 850 7 0.57 6.91
31.08.97 | 4.35 6.22 43.85 648 9 1.57 58.76
01.09.97 | 1.54 8.03 14.68 547 8 0.56 19.67
02.09.97 | 1.34 7.92 9.14 618 12 0.48 12.25
03.09.97 | 1.38 10.52 13.34 507 27 0.50 17.88
04.09.97 | 1.17 9.06 7.69 466 26 0.42 10.31
05.09.97 | 1.06 7.22 5.59 446 26 0.38 7.49
06.09.97 | 1.01 5.92 417 436 26 0.37 5.58
07.09.97 | 1.28 5.19 4.18 456 26 0.46 5.60

" Discharge roughly calculated from that of nearby streams by the Norwegian Water
Resources and Energy Administration (NVE). ? Water levels (not necessarily proportional to
discharge) measured by pressure sensors (some dates missing). ¥ Measured by NVE.



Table A1.17: Diel river discharges for the rivers (continued).

Date Roa Nauste- Hitter-elva Gaula Rugla” Glama Orva Bjorg-dsen

bekken”  (m’ls) (L/s)

(m’ls) (m’ls) (m’ls) (m’ls)

08.09.97 | 1.27 3.77 5.14 496 26 0.46 6.89
09.09.97 | 3.23 3.83 18.58 830 26 1.17 24.89
10.09.97 | 6.60 7.18 5417 708 28 2.39 72.59
11.09.97 | 2.70 7.69 21.82 648 42 0.98 29.24
12.09.97 | 2.46 7.26 13.81 577 42 0.89 18.50
13.09.97 | 2.32 4.53 10.27 678 27 0.84 13.77
14.09.97 | 2.99 5.78 36.66 648 28 1.08 49.12
15.09.97 | 2.08 9.12 24.51 618 51 0.75 32.84
16.09.97 | 1.67 8.06 13.65 557 50 0.60 18.28
17.09.97 | 1.85 5.88 13.70 547 50 0.67 18.36
18.09.97 | 1.63 5.55 12.30 527 39 0.59 16.48
19.09.97 | 1.95 4.58 14.21 607 39 0.70 19.04
20.09.97 | 1.95 2.68 18.87 729 39 0.71 25.29
21.09.97 | 2.25 2.22 4416 698 39 0.81 59.17
22.09.97 | 2.58 2.47 47.09 729 72 0.93 63.11
23.09.97 | 2.67 2.77 4295 668 94 0.97 57.55
24.09.97 | 2.45 3.86 25.91 618 83 0.89 34.72
25.09.97 | 2.01 4.67 14.68 567 27 0.73 19.67
26.09.97 | 1.76 4.3 10.13 527 27 0.64 13.58
27.09.97 | 1.62 3.78 7.89 507 58 0.59 10.57
28.09.97 | 1.48 3.38 6.39 486 39 0.54 8.57
29.09.97 | 1.40 2.56 5.53 486 27 0.51 7.41
30.09.97 | 1.40 2.61 6.21 476 27 0.51 8.32
01.10.97 | 1.38 2.69 5.79 587 27 0.50 7.76
02.10.97 | 1.63 2.83 8.11 567 27 0.59 10.87
03.10.97 | 1.62 3.13 8.96 587 27 0.59 12.01
04.10.97 | 1.65 3.51 11.62 577 27 0.60 15.57
05.10.97 | 1.58 3.5 9.10 517 27 0.57 12.19
06.10.97 | 1.34 3.29 6.97 507 27 0.48 9.34
07.10.97 | 1.36 3.11 6.95 507 27 0.49 9.32
08.10.97 | 1.37 2.94 8.19 678 27 0.50 10.98
09.10.97 | 1.60 2.77 13.42 577 27 0.58 17.98
10.10.97 | 1.45 2.77 9.21 537 23 0.52 12.34
11.10.97 | 1.34 2.61 7.20 496 23 0.48 9.64
12.10.97 | 1.39 2.34 6.27 507 23 0.50 8.40
13.10.97 | 1.45 3.01 6.97 466 18 0.53 9.34
14.10.97 | 1.32 3.31 6.35 466 19 0.48 8.51

" Discharge roughly calculated from that of nearby streams by the Norwegian Water
Resources and Energy Administration (NVE). ? Water levels (not necessarily proportional to
discharge) measured by pressure sensors (some dates missing). ¥ Measured by NVE.



Table A1.18: Precipitation (three columns in the middle) and temperatures in the area

Date Aursu- Regros Fjel- Rgros " Date Aursu- Reros Fjel Rgros "
nden” " sjgen? nden” " sjgen?
mm/d mm/d mm/d mm/d mm/d mm/d
(685m) (628m) (820m) T (°C) (685m) (628m) (820m) T (°C)
01.03.97 0.6 - -1 16.04.97 1.5 0.2 - 3
02.03.97 - 2 17.04.97 0.2 - -1
03.03.97 0.4 - -2 18.04.97 0.6 0.5 - -4
04.03.97 6.6 4.7 - -2 19.04.97 1.5 1 - -4
05.03.97 0.6 0.5 - 1 20.04.97 0.9 0.6 - -1
06.03.97 0.9 0.3 - -1 21.04.97 1.5 - -2
07.03.97 - 1 22.04.97 4.2 6.6 - -5
08.03.97 0.6 0.5 - 0 23.04.97 0.6 0.2 - -6
09.03.97 - 3 24.04.97 - -7
10.03.97 - 2 25.04.97 0.9 0.5 - -3
11.03.97 - -4 26.04.97 15 0.6 - -2
12.03.97 - 0 27.04.97 - -3
13.03.97 - -4 28.04.97 - 1
14.03.97 0.6 0.5 - -5 29.04.97 - 4
15.03.97 0.9 0.1 - -8 30.04.97 - 2
16.03.97 0.6 1 - -7 01.05.97 51 3.9 - 5
17.03.97 2.7 0.7 - -1 02.05.97 1.5 2 - 2
18.03.97 0.1 - -17 03.05.97 0.1 - -2
19.03.97 - -14 04.05.97 21 0.5 - -2
20.03.97 - -16 05.05.97 0.1 - -3
21.03.97 - -12 06.05.97 1.5 - 1
22.03.97 0.9 0.5 - -9 07.05.97 8.1 10.5 - 3
23.03.97 - -14 08.05.97 18.3 30 - 4
24.03.97 - -9 09.05.97 O - 1
25.03.97 - -8 10.05.97 0.6 5.7 - 3
26.03.97 0.6 0.6 - -2 11.05.97 54 10 - 4
27.03.97 0.9 3.9 - 1 12.05.97 0.2 - 6
28.03.97 3 0.6 - -2 13.05.97 0.6 0.5 - 6
29.03.97 2.1 1.8 - -3 14.05.97 - 7
30.03.97 24 0.5 - 1 15.05.97 - 6
31.03.97 10.2 4.8 - 4 16.05.97 - 5
01.04.97 1.5 1 - 2 17.05.97 - 7
02.04.97 1.8 3.3 - -2 18.05.97 - 2
03.04.97 54 14 - -4 19.05.97 - 2
04.04.97 6.6 8.2 - -4 20.05.97 - 1
05.04.97 4.2 2.5 - -7 21.05.97 0.1 - 1
06.04.97 0.9 1 - -7 22.05.97 0.1 - 1
07.04.97 1.5 1.4 - -9 23.05.97 0.3 - 3
08.04.97 0.1 - -5 24.05.97 - 3
09.04.97 21 1.3 - 1 25.05.97 - 5
10.04.97 0.9 0.7 - 1 26.05.97 - 7
11.04.97 6.3 9 - -3 27.05.97 0.6 1.5 - 4
12.04.97 1.5 0.7 - -2 28.05.97 0.9 0.9 - 4
13.04.97 6 4.1 - 1 29.05.97 4.8 5 - 3
14.04.97 2.1 1.5 - -5 30.05.97 0.9 1.4 - 6
15.04.97 3 3.6 - -2 31.05.97 - 9

- : Not determined
": From Norwegian Meteorological Institute
2 From own logger



Table A1.18: Precipitation (three columns in the middle) and temperatures in the area (continued)

Date Aursun Reros Fjell- T (°C) Date Aursun Reros Fjell- T (°C)
den mm/d sjgen Rgros den mm/d sjgen Rgros
mm/d (628m) mm/d mm/d (628m) mm/d
(685m) (820m) (685m) (820m)
01.06.97 - 8 17.07.97 - 15
02.06.97 - 8 18.07.97 - 16
03.06.97 - 6 19.07.97 7.2 0.1 - 13
04.06.97 - 9 20.07.97 0.9 4.3 - 16
05.06.97 - 11 21.07.97 - 15
06.06.97 - 13 22.07.97 6.6 2.3 - 15
07.06.97 - 15 23.07.97 0.9 - 14
08.06.97 - 18 24.07.97 - 15
09.06.97 - 14 25.07.97 - 16
10.06.97 0.5 - 9 26.07.97 - 14
11.06.97 - 11 27.07.97 0.3 1.9 - 13
12.06.97 - 15 28.07.97 24 4.7 - 11
13.06.97 - 16 29.07.97 1.5 25 - 11
14.06.97 0.5 - 13 30.07.97 0.6 - 14
15.06.97 6 8.2 - 7 31.07.97 - 13
16.06.97 9.3 5.1 - 5 01.08.97 - 14
17.06.97 - 5 02.08.97 - 14
18.06.97 2.4 3.6 - 9 03.08.97 14 5.5 - 13
19.06.97 0.6 - 9 04.08.97 0.1 - 14
20.06.97 1.2 - 11 05.08.97 - 13
21.06.97 - 13 06.08.97 - 17
22.06.97 0.8 - 11 07.08.97 - 17
23.06.97 5.7 4.5 - 11 08.08.97 - 17
24.06.97 8.1 2.5 - 8 09.08.97 - 18
25.06.97 0.9 0.2 - 8 10.08.97 0.9 0.6 - 12
26.06.97 1.2 5 - 7 11.08.97 - 10
27.06.97 6.5 8.3 - 10 12.08.97 - 13
28.06.97 - 14 13.08.97 6.3 0.4 - 14
29.06.97 4.5 3 - 13 14.08.97 - 11
30.06.97 1.2 0.4 - 15 15.08.97 - 13
01.07.97 14.7 24 - 18 16.08.97 - 14
02.07.97 0.6 0.5 - 16 17.08.97 - 16
03.07.97 3.9 6.1 - 15 18.08.97 - 15
04.07.97 0.6 0.2 - 15 19.08.97 0.1 - 16
05.07.97 - 14 20.08.97 0.9 - 15
06.07.97 - 14 21.08.97 - 15
07.07.97 0.9 0.2 - 15 22.08.97 - 15
08.07.97 1.5 2.8 - 8 23.08.97 6.9 4.6 - 11
09.07.97 - 8 24.08.97 8.7 10 - 10
10.07.97 - 13 25.08.97 0.6 2.8 - 12
11.07.97 - 16 26.08.97 12.6 8 - 16
12.07.97 - 15 27.08.97 0.1 - 13
13.07.97 - 17 28.08.97 0.7 - 16
14.07.97 - 16 29.08.97 - 17
15.07.97 - 15 30.08.97 14.5 - 15
16.07.97 0.6 - 15 31.08.97 534 476 - 13

- : Not determined
": From Norwegian Meteorological Institute
2 From own logger



Table A1.18: Precipitation (three columns in the middle) and temperatures in the area (continued)

Date Aursun Regros Fjell- T (°C)
den mm/d sjgen Rgros
mm/d (628m) mm/d

(685m) (820m)
01.09.97 39 49 - 13
02.09.97 - 15
03.09.97 48 55 - 13
04.09.97 -
05.09.97 0.9 0.7 -
06.09.97 -

07.0997 6 4.7 -
08.09.97 2.7 2.1 -
09.09.97 8.1 4.8 -
10.09.97 279 20.3 -
11.09.97 0.6 0.5 -
12.09.97 0.6 1.6 -
13.09.97 0.9 0.8 -
14.09.97 16.2 11.3 -
15.09.97 1.5 1 -

16.09.97 0.1 -
17.09.97 3.9 2.5 -
18.09.97 0.6

19.09.97 51 3.6 1.20
20.09.97 0.5 0.5 1.03
21.09.97 3.9 0.5 0.75
22.09.97 3.3 2 1.20
23.09.97 438 1.1 0.65
24.09.97 1.5 0.7 0.15
25.09.97

26.09.97

27.09.97

28.09.97

29.09.97 0.30
30.09.97 1.5 1.3 0.10
01.10.97 0.2 0.90
02.10.97 6.8 6.8 0.70
03.10.97 0.6 0.2 0.45
04.10.97 4.2 6.2 0.43
05.10.97 0.9 0.3 0.03

06.10.97 0.15
07.10.97 1.5 2.2 0.13
08.10.97 1.6 1.23
09.10.97 6.3 54 0.10
10.10.97 0.9 0.03
11.10.97 0.4

12.10.97 1.5 0.8 0.25
13.10.97 24 0.40

ONNNBRORRONWWWONUURWNSORODOBRNWIAORODANNUTOOSI SR O

14.10.97 3.6 1.8 0175

- : Not determined
"' From Norwegian Meteorological Institute
2 From own logger
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Figure A2.1: Water chemistry data and river discharge (----) in stream Rga. In left figures: Cu, Zn,
and Al concn.; black points represent total concn., open points represent dissolved concn. In right
figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.2: Water chemistry data and river discharge (----) in stream Naustebekken. In left fig-
ures: Cu, Zn, Cd, and Al concn.; black points represent total concn., open points represent dis-
solved concn. In right figures: pH, conductivity, alkalinity and Ca concn.

URN:NBN:no-2117



Aug Sep Oct

Apr May Jun Jul

© © ©
o o o >
a a o -2
[ [ [ e =T
(72} (72} (72} _ —
(<)) o)) & -———
=] =] =]
< < <
S = = \“
- b } ] -
= c c B \,\\,I
3 S 3 ==
] e e \Ilrll\\m - -
> > > it
© © © T T T
= | = = g - N
S .. S S
o - o
A 1 1 1 1 1 1 1 4 A A 1 1 1 1 1 1 1
o o o o o o o o o [ce] ~ © [Te] < (s2) N -~
{ee) ~ © w < (30) N ~
(woaygr) Auagonpuod (baw) Ayurexy (1/bw) 9
© © ©
o o o
Qo Qo Qo
(] (] (]
(/2] (/2] (/2]
(<)) (<)) (<))
=] =] =]
< < <
S S S
o ) o ) o )
= = =
=} =} =}
] ] ]
> > >
© © ©
= | = =
S .. S M S
o - e
< ) ) ) 4 < ) ) ) ) ) ) 4 <
o o o o o [To} ™ e} N [Te} ~ 0 o
S 0 S 0 o o N 5 = s °©
N = > o o o o
(1/6r) no (1/6r) uz (1/61) po

and Cd concn.; black points represent total concn., open points represent dissolved

Figure A2.3: Water chemistry data and river discharge (----) in stream Hitterelva. In left figures:

Cu, Zn
concn. In right figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.4: Water chemistry data and river discharge (----) in river Gaula. In left figures: Cu,
Zn, and Cd concn.; black points represent total concn., open points represent dissolved concn.
In right figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.5: Water chemistry data and river discharge (----) in stream Rugla. In left figures: Cu,
Zn, Cd, and Al concn.; black points represent total concn., open points represent dissolved
concn. In right figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.6: Water chemistry data and river discharge (----) in river Glama. In left figures: Cu,
Zn, and Cd concn.; black points represent total concn., open points represent dissolved concn.
In right figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.7: Water chemistry data and river discharge (----) in stream Orva. In left figures: Cu,
Zn, and Cd concn.; black points represent total concn., open points represent dissolved concn.
In right figures: pH, conductivity, alkalinity and Ca concn.
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Figure A2.8: Water chemistry data and river discharge (----) at the Bjgrgasen site. In left figures:
Cu, Zn, and Cd concn.; black points represent total concn., open points represent dissolved
concn. In right figures: pH, conductivity, and Ca concn. (no positive alkalinity value observed).





