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Abstract  28 

Malignant serous effusions are a common manifestation of advanced cancer, associated with 29 

significant morbidity and mortality. The aim of this study was to identify the metabolic 30 

differences between ovarian serous carcinoma effusions obtained pre- and post-chemotherapy, as 31 

well as to compare ovarian carcinoma (OC) effusions with breast carcinoma and malignant 32 

mesothelioma specimens. The supernatants of 115 effusion samples were analyzed by high-33 

resolution magnetic resonance (MR) spectroscopy in vitro and multivariate analysis. The samples 34 

comprised of pleural and peritoneal effusions from 95 OC, 10 breast carcinomas, and 10 35 

malignant mesotheliomas. Among the OC, 8 were paired peritoneal specimens obtained pre- and 36 

post-chemotherapy from the same patient. OC had elevated levels of ketones (aceto-acetate and 37 

beta-hydroxybutyrate) and lactate compared to malignant mesotheliomas and breast carcinomas, 38 

whereas the latter had more glucose, alanine, and pyruvate. Multivariate analysis of paired 39 

effusions in OC showed a significant increase in glucose and lipid levels in the post-treatment 40 

spectra (P=0.039). MR spectroscopy is a promising technique for comprehensive and 41 

comparative studies of metabolites in malignant serous effusions and our study shows that small 42 

metabolites associated with effusions might improve our understanding of tumor biology and 43 

disease progression and has diagnostic potential in this differential diagnosis.   44 

 45 

Keywords: Metabolomics; Biomarkers; Magnetic Resonance Spectroscopy; Differential 46 
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1. Introduction  49 

The accumulation of malignant effusions is a common event in clinical practice. Effusions 50 

containing tumor cells may accumulate within the serosal cavities, i.e. the peritoneal, pleural and 51 

pericardial cavity in practically every cancer type. In adults, the most common organs of origin 52 

are the breast, lung and ovary, with gastrointestinal cancers as an additional relatively common 53 

origin, especially in Asian countries. In addition to metastases, the serosal cavities are the site of 54 

origin of several cancers, including malignant mesothelioma and primary peritoneal carcinoma, 55 

although these are by far outnumbered by metastatic cancer. The finding of cancer cells in 56 

effusions is generally a marker of advanced-stage disease and is associated with poor survival in 57 

the majority of cases 1. 58 

 59 

To improve our understanding of the tumor biology and to identify the clinically relevant events 60 

in serous effusions, it may be useful to study the small metabolites associated with these 61 

effusions in a comprehensive manner. Emerging metabolic profiling techniques enables 62 

simultaneous assessment of a broad range of endogenous and exogenous metabolites in a 63 

systematic manner 2,3. This methodology, termed metabolomics, involves a high throughput 64 

analysis of small-molecular metabolites that are downstream products of preceding gene 65 

expressions and protein activity. Within systems biology, magnetic resonance (MR) 66 

metabolomics has become one of the key platforms, allowing rapid analysis of samples with 67 

minimal sample preparation.   68 

 69 

Metabolic profiling of biofluids can provide an extensive view of changes in endogenous 70 

metabolites in monitoring cellular responses to perturbations such as normal physiology, diseases 71 

and drug treatments 4-8. Metabolomics have been successfully used in the detection of biomarkers 72 
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associated with various clinical conditions such as detection of ovarian cancers 9-13 and in 73 

differentiating benign and malignant ascites 14 . Analysis of metabolites in biofluids as a 74 

diagnostic tool has several advantages such as non-invasive or minimally-invasive sample 75 

collection and the possibility of multiple sample collection over a time course thus making it an 76 

ideal choice for clinical studies 4. Malignant effusions in serosal cavities represent an important 77 

source for potential metabolic markers. It may aid in understanding more about the metabolic 78 

basis behind malignant effusions, to identify novel biomarkers for diagnosis and treatment and to 79 

discover potential targets for therapy. 80 

  81 

The aim of this study was to identify the metabolic differences between malignant serous 82 

effusions from patients with ovarian and breast carcinomas and malignant mesothelioma, in order 83 

to define tumor-specific patterns which may have a biological and diagnostic role. We further 84 

compared the metabolic profiles of ovarian carcinoma effusions obtained pre-chemotherapy at 85 

diagnosis and post-chemotherapy, most commonly at disease recurrence, this with the objective 86 

of defining metabolomic features which may be related to chemotherapy exposure and disease 87 

progression. 88 

 89 

90 
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2. Materials and Methods 91 

2.1 Patients and material 92 

The supernatants of 115 effusion samples were analyzed using high-resolution magnetic 93 

resonance (MR) spectroscopy in vitro followed by multivariate analysis. The samples comprised 94 

of 95 OC (84 peritoneal, 11 pleural), 10 breast carcinomas (7 pleural, 2 peritoneal, 1 pericardial) 95 

and 10 malignant mesotheliomas (6 peritoneal, 4 pleural). Among the OC, 8 were paired 96 

peritoneal specimens obtained pre- and post-chemotherapy from the same patient. Specimens 97 

were submitted to the Norwegian Radium Hospital from 1999-2012. Due to their closely-linked 98 

histogenesis and phenotype, ovarian, peritoneal and tubal serous carcinomas are henceforth 99 

referred to as OC. Informed consent was obtained according to national guidelines. The study 100 

was approved by the Regional Committee for Medical Research Ethics in Norway.  101 

OC specimens consisted of 2 groups. The first included 79 fresh non-fixed malignant peritoneal 102 

(n=68) and pleural (n=11) effusions from 62 patients with OC, 12 with primary peritoneal 103 

carcinoma, and 5 with tubal carcinoma. Forty-four effusions were obtained prior to chemotherapy 104 

administration, and 35 were obtained after chemotherapy, at interval debulking surgery or at 105 

recurrent disease. All patients received standard chemotherapy (platinum + paclitaxel). 106 

Clinicopathologic data of this cohort are detailed in Table 1.  107 

The second group consisted of 8 pairs of patient-matched pre- and post-chemotherapy peritoneal 108 

effusions studied for chemotherapy-related changes in the metabolomic profile. These patients 109 

were not included in analyses for association with clinicopathologic parameters. 110 

Effusions were submitted for routine diagnostic purposes and were processed immediately after 111 

tapping. Cell blocks were prepared using the Thrombin clot method. Diagnoses were established 112 

using morphology and immunohistochemistry. Effusion specimens were centrifuged, and 113 
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supernatants were frozen at -70°C. Smears and H&E-stained cell block sections were reviewed 114 

by a surgical pathologist experienced in cytopathology (BD).  115 

 116 

2.2 Metabolic profiling 117 

The samples were slowly thawed at room temperature. Aliquots of 300 µL were mixed with 118 

equal amount of buffer solution as described elsewhere8. Samples were then transferred to high-119 

quality 5 mm MR tubes. The ratio between H2O and D2O was 90:10 in all samples. 120 

 121 

2.3 MR experiments 122 

The MR spectra were acquired using a Bruker Avance III 600MHz/54 mm US-Plus (Bruker 123 

Biospin, Rheinstetten, Germany) operating at 600 MHz for proton (1H), equipped with a QCI 124 

cryoprobe. All spectra were recorded in an automatic fashion using a Bruker SampleJet and the 125 

ICON-NMR software (Bruker Biospin). Proton spectra were obtained at a constant temperature 126 

of 300 K (27ºC) using a modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence with 127 

presaturation during the relaxation delay (Bruker: cpmgpr1d) to achieve water suppression and to 128 

facilitate the detection of low molecular weight species by avoiding the large overlapped signals 129 

derived from large molecules such as proteins and lipids. The spectra were collected with 64 130 

scans and 4 dummy scans. The acquisition time was 3.067 sec, measuring the FID via collection 131 

of 36864 complex data points resulting in a sweep width of 20.0363 ppm. A relaxation delay of 4 132 

seconds was used, during which a presaturation of 25 Hz was applied. The receiver gain was kept 133 

at a constant value of 90.5 and the effective echo time was 80ms. The FIDs were Fourier 134 

transformed after exponential line broadening of 1 Hz. For metabolite quantification, nuclear 135 

overhauser effect spectroscopy (“noesy”, Bruker: noesygppr1d) spectra were acquired using the 136 

same parameters as CPMG with the exception of 32 scans. Measurement and processing was 137 



7 
 

done in full automation using Bruker standard automation programs controlled by ICON-NMR 138 

(along with TopSpin v3 patchlevel 3). Chemical shift was calibrated to the middle of the alanine 139 

peaks at 1.50 ppm. The spectra were peak aligned using icoshift 15. The assignments of chemical 140 

shifts were done on the basis of previously published data 14 . 141 

 142 

2.4 Data processing and multivariate analysis 143 

Data analysis was performed with MATLAB (Version 7.9.0; The Math Works, Natick, MA, 144 

USA). The spectral region between 4.5–5.0 ppm was excluded to remove variation in water 145 

suppression efficiency. Spectra were normalized by setting the total spectral area to a constant 146 

value (=1) for all spectra to minimize possible differences in concentration between the samples. 147 

 148 

Unsupervised principal component analysis (PCA) and supervised partial least squares 149 

discriminant analysis (PLS-DA) were performed using PLS_Toolbox v5.8.3 (Eigenvector 150 

Research, Manson, WA, USA). PCA reduces the dimensionality of the data and summarizes the 151 

structure of the multiple MR spectra visualized in score plots and loading profiles. The variance 152 

structure of the data is explained through linear combinations of the variables called principal 153 

components (PCs). The first PCs will be in the direction explaining most of the variance in the 154 

data set. In the score plot of the PCs, samples with a similar metabolic profile will cluster, while 155 

the corresponding loading profile displays the importance of each variable within the PC. PLS-156 

DA is a supervised classification method which uses the class information to detect variables 157 

generating maximum separation between the classes. All statistical models were cross-validated 158 

with leave one out cross validation. The optimal model contains the number of latent variables 159 

yielding the lowest percentage of misclassification. A permutation test was performed (10000 160 

permutations) to evaluate the significance of the difference between the classes 16. 161 



8 
 

 162 

Multilevel partial least squares discriminant analysis (ML-PLSDA) 17 was used for paired 163 

comparisons of multivariate data from ovarian cancers (n=8 pairs) to assess the treatment related 164 

changes in the metabolites. MLPLS-DA can be considered a multivariate extension of a paired t 165 

test that generates different multivariate submodels for the between-subject and within-subject 166 

variation in the data. This allows to split the variations and hence to analyze without being 167 

confounded by the other variation sources (especially when between subject variation is high). 168 

 169 

2.5 Univariate analysis 170 

To further validate the metabolites which are detected by MLPLS-DA, signal intensities from 1D 171 

noesy spectra (noesygppr1d) were integrated and compared by univariate analysis using PASW 172 

Statistics 17.0 (IBM, New York, USA). Wilcoxon Signed Ranks test was used in non-parametric 173 

analyses and p-values below 0.05 were considered statistical significant. 174 

175 
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3. Results 176 

3.1 Spectral assignment and multivariate analysis 177 

Representative 1H MR spectra (CPMG) of ascitic fluids from patients with breast carcinoma, OC 178 

and mesothelioma are shown in Figure 1, and assignment of the various metabolites detected are 179 

given. In CPMG spectra, the broad signals from the macromolecules are filtered out and the 180 

narrow signals from small molecules are thus highlighted. The detected metabolites include 181 

amino acids (alanine, valine, isoleucine, histidine, and phenylalanine), members of energy 182 

metabolism (glucose, lactate, pyruvate, glutamate, aceto-acetate, beta-hydroxybutyrate (BHB)) 183 

and choline containing metabolites (phosphocholine, glycerophosphocholine). 184 

 185 

Multivariate analysis was applied to a total of 115 spectra from 107 patients (including 8 paired 186 

samples). PCA of the samples (n=115) is shown in Figure 2A. OC effusion samples tapped from 187 

the peritoneal cavity clustered in the upper half of the PCA score plot while those from the 188 

pleural cavity and breast carcinomas tended to cluster in the lower half of the score plot (Figure 189 

2A). Effusions from patients with peritoneal mesothelioma overlapped with the OC effusions 190 

from the peritoneal cavity. In general, malignant effusions of peritoneal origin and pleural origin 191 

were metabolically distinct and grouped in the upper and lower half of the PCA score plot, 192 

respectively.  PCA of the samples were colored according to the tumor cell count in Figure 2B. 193 

Samples with more than 50% of tumor cells tend to cluster along PC1 axis with higher amount of 194 

lactate and lower amount of glucose independent of their anatomical origin. To further evaluate 195 

specimens from each anatomic space, samples from the pleural and peritoneal cavity were 196 

analyzed separately, and the results are shown in Figure 3.   197 

 198 
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PCA score plot of the peritoneal effusions (Figure 3A) showed a trend towards clustering. The 199 

metabolic profiles of OC were characterized by more lipids, aceto-acetate, BHB and acetone and 200 

lower amount of glucose and lactate compared to breast carcinomas and mesotheliomas. Similar 201 

and more clearer separation of OC samples was seen in the PCA of pleural fluids (Figure 3B) in 202 

which breast carcinoma and mesothelioma specimens had higher levels of glucose, pyruvate and 203 

lactate compared to OC. Effusions in mesotheliomas had similar metabolic compositions as in 204 

breast carcinoma, and hence both these effusions overlap in the PCA score plot (Figures 3A and 205 

B). 206 

 207 

Unpaired samples among the OC group which was collected before (n=44) and after (n=35) 208 

chemotherapy from different patients did not show any significant differences in their spectral 209 

profiles. However, ML-PLSDA of paired samples showed that glucose and lipid levels in the 210 

ascitic fluid increased after treatment. There was also a reduction in the levels of lactate and BHB 211 

after treatment (Figure 4). A permutation test (to evaluate the significance of the difference 212 

between the classes) showed that the treatment-related metabolic changes were statistically 213 

significant (P=0.039, Sensitivity=87%, Specificity=87%).  214 

 215 

3.2 Univariate analysis 216 

The glucose signal intensities (integrals) before and after treatment were compared using 217 

Wilcoxon Signed Ranks test, showing an increase in glucose concentration in the post- treatment 218 

samples (P = 0.017). 219 

220 
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4 Discussions 221 

 222 
In this study, we explored the differences in the metabolic patterns of malignant serous effusions 223 

from patients with OC, breast carcinoma and malignant mesothelioma using high resolution 1H 224 

MR spectroscopy. There were differences in the metabolic profiles of OC effusions compared to 225 

the two other cancers. We further observed significant differences in the metabolic fingerprints of 226 

effusions from OC patients in response to chemotherapy by using the multilevel structure of the 227 

paired dataset. 228 

 229 

Metabolic compositions of the serous effusions are reflected in the MR spectra as variations in 230 

size, shape and position of MR signals. Each metabolite appears at specific locations in the 231 

spectrum and each reflects specific cellular and biochemical processes. Effusions in metastatic 232 

carcinomas with tumor cells indicate an advanced stage of malignancy. The metabolic 233 

composition of the effusion fluid depends on factors which govern the formation of the fluid, 234 

movement of the metabolites across the compartments and the metabolic activities of the 235 

malignant cells. It is believed that the mechanisms underlying malignant effusion accumulation 236 

include lymphatic obstruction by metastatic cells impeding the outflow of peritoneal fluid, 237 

increased vascular permeability and new blood vessel formation, increased production by lining 238 

cells, changes in the peritoneal stroma and fibrin accumulation 1,18. A major portion of the 239 

increase in vascular permeability which contributes to effusion formation is caused by 240 

malignancy-induced angiogenesis, resulting in accumulation of protein-rich fluid (a filtrate of 241 

whole blood) in the peritoneal cavity 18. The MR spectra showed that the effusion supernatant 242 

contains a wide range of metabolites like glucose, amino acids, pyruvate, lactate, and lipids. 243 

 244 



12 
 

The observed differences in the metabolic profile of effusion fluid are dependent on the type of 245 

malignancy and the site of effusion. OC have higher levels of lipids and ketones (BHB, acetone, 246 

acetoacetate) and lower levels of glucose, alanine, pyruvate and lactate than breast carcinoma and 247 

mesothelioma effusions. Elevated levels of acetone, acetoacetate and BHB are seen in blood 248 

serum samples of early-stage ovarian cancer 10 and colorectal cancer 19. Increase in ketones may 249 

be linked to lipolysis, which can be triggered to meet the growing energy demand by tumor cells 250 

19. In the process of metastasis to serous cavities, the malignant cells can remain viable while 251 

suspended in the effusion fluid, which forms a microenvironment for the tumor cells. Hence the 252 

metabolic composition of the effusion may be closely linked to the severity and invasiveness of 253 

the metastatic cells. Compared to malignant pleural effusions, the peritoneal fluids contain more 254 

lipids. The infiltration of lymphatics by malignant cells can impede the normal flow of chyle, 255 

which is rich in lipids, from the small intestine and can contribute to high lipid content in the 256 

peritoneal effusions. Samples with high cellularity (>50%) have higher amount of lactate and 257 

lower amount of glucose, which may represent high energy demand and glycolytic activity in 258 

effusions with increased tumor cells. Even though the spectra were normalized before the PCA 259 

analysis to account for the variation in metabolic concentrations between the samples, strong 260 

lactate signals in the samples can render the normalization process suboptimal. Separate analysis 261 

of pleural and peritoneal effusions (Figure 3) showed that lipids are elevated in OC compared to 262 

breast carcinoma and mesothelioma effusions, indicating that other mechanisms may also 263 

contribute to high lipid signals. Increased expression of fatty acid synthase (FAS), the enzyme 264 

responsible for de novo fatty acid synthesis has been observed in ovarian carcinomas 20-22. 265 

Furthermore, inhibition of FAS has been shown to be cytotoxic to SKOV3 human ovarian cancer 266 

cells 23 and delays disease progression in drug-resistant OVCAR-3 human ovarian carcinoma in 267 

nude mice 24. It is seen that ovarian cancers has a predilection for omental metastasis, where there 268 
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is a number of adipocytes.  Transfer of fatty acids from adipocytes to metastatic cells provides 269 

energy for the cancer cells and promotes rapid tumor growth and metastasis 25.  Apolipoprotein E 270 

(ApoE), an important member of the lipid transport system is highly expressed in high grade 271 

ovarian serous carcinomas and is found to be essential for cell proliferation and survival of the 272 

ApoE expressing cancer cell line OVCAR326.  Lipid metabolism and transport in ovarian cancers 273 

needs further evaluation to identify potential therapeutic targets.  274 

 275 

The metabolic profile of OC was distinct from breast carcinoma and malignant mesothelioma, 276 

which showed many overlapping features in multivariate analysis. This difference was clearer in 277 

pleural effusions than in peritoneal specimens (Figure 3B). As pleural effusion in OC represents 278 

an advanced stage of the disease (stage IV) with poor survival 27,28, the tumor cells may be 279 

metabolically more aggressive than their peritoneal counterpart. The effusions from breast 280 

carcinoma and mesotheliomas had relatively lower levels of ketones and higher levels of glucose, 281 

alanine, pyruvate and lactate than OC, probably indicating less fatty acid breakdown in these 282 

tumor cells.  In metastatic effusions, effusion fluid ‘feeds’ the cancer cells and forms a dynamic 283 

microenvironment for exchange of nutrients and mitogenic factors 29,30. Further exploration is 284 

necessary to understand more about the underlying mechanisms behind energy transfers in 285 

effusion fluid. 286 

 287 

Post-chemotherapy samples showed an elevation in glucose and lipids with a reduction in BHB 288 

and lactate in the effusion. This may be due to a reduction in energy demand, reduction in 289 

number of live malignant cells or a change in tumor cell metabolism resulting in reduced glucose 290 

utilization from the microenvironment, decreased lipolysis and a reduction in BHB production. 291 

Early reduction in glucose uptake by the ovarian cancer cell line OVCAR-3 in response to 292 
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cisplatin treatment has been shown before 31. Similar changes in glucose levels related to 293 

chemotherapeutic agents have also been reported in other cancers, like breast carcinoma cell lines 294 

32,33 and gastrointestinal stromal tumor 34. Hence, measuring glucose uptake by the malignant 295 

cells might be useful in evaluating chemosensitivity in ovarian cancer patients. In this study, we 296 

analyzed only a small number of patient-matched specimens as a pilot, precluding analysis of the 297 

association between metabolic changes following treatment and clinical parameters such 298 

treatment response and survival, and further studies are needed to decipher the mechanisms in 299 

detail. Exploration of chemotherapy-induced changes in non-matched samples failed to detect the 300 

changes. This clearly shows the importance of paired metabolomic analyses from same patient to 301 

overcome high metabolic variation between subjects. Understanding the mechanisms behind 302 

therapy-related metabolic changes may help in developing preventive strategies for improving the 303 

prognosis of patients and merits further exploration in larger cohorts. In this study, we could 304 

study only the effusion fluid and a combined metabolic analysis which includes the tumor cells 305 

from patient-matched OC from different anatomic site could be an area of research that warrants 306 

future study.  307 

308 
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5. Conclusions 309 

Differences in metabolic profiles of malignant serous effusion from different anatomical sites 310 

were detected, and metabolic features related to chemotherapy exposure were identified from the 311 

MR spectra. Metabolic characterization by high resolution proton MR spectroscopy could be a 312 

promising technique to further understand the mechanisms of effusion development in 313 

malignancies and to target clinical intervention. 314 

315 
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Figure Legends 409 

 410 

Figure 1 411 

Proton magnetic resonance spectra from malignant effusions 412 

Assignments of various metabolites visible in the MR spectra are shown.  The region between 6.9 413 

ppm-7.9ppm is scaled up to show the assignments.  The red spectrum is from breast carcinoma 414 

effusion, and the green from mesothelioma and the blue from ovarian carcinoma. 415 

 416 

Figure 2  417 

Principal Component Analysis of serous effusions  418 

A) Score plot of PC1 vs PC2 of breast carcinoma, ovarian carcinoma and mesothelioma with 419 

different anatomical origin. Corresponding loading plot for PC2 shows the metabolic differences 420 

between the samples.  B) Same score plot as in A with the samples colored according to their 421 

tumor content. Red samples are with <50% and green samples are with >50% tumor content. 422 

 423 

Figure 3 424 

Principal Component Analysis of serous effusions  425 

Biplots of the malignant effusion from mesothelioma, breast and ovarian carcinoma. (A) 426 

Peritoneal effusions (B) Pleural effusions 427 

 428 

Figure 4  429 

Multi-level Analysis (MLPLSDA) of paired samples showing treatment-related changes. 430 

Scatter plot of LV1 vs LV2 showing difference between pre-treatment and post-treatment 431 

samples. Corresponding loading plot (of LV1 vs LV2) showing the metabolites. 432 
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