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Abstract

The nonhomogeneous Poisson process is commonly used iroteding of failure times of complex repairable sys-
tems. In practice there may be a substantial heterogenehgifailure behavior among apparently identical repdérab
systems. In this paper we introduce a new approach fortitatisnodeling of failures and the corresponding statisti-
cal inference when there is both an observable and unolidervaeterogeneity between such systems. The approach
is partly nonparametric and hence avoids making resteéaissumptions about the underlying process. The main
feature of the approach is the elimination of thfEeet of unobservable heterogeneity, which leaves an opdiioiz
problem involving the observable covariates only. The nesthmd is introduced in a power law process setting and
can easily be extended to general nonhomogeneous Poissmespr The satisfactory performance of the method is
verified in an extensive simulation study as well as in a cas#ysand the method compares favorably to the gamma
frailty model and to the classical regression model notm#sy an unobserved heterogeneity. The approach can be
adapted for a wide class of models.
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1. Introduction

The reliability of complex repairable systems is commorntlydged by using counting process models, where
events correspond to failures of the system. The most premhimodel is the nonhomogeneous Poisson processes
(NHPP), which is completely described by its rate of ocaneeeof failures (ROCOF). This description should take
into account that in many real life applications there is astantial heterogeneity between apparently identical re-
pairable systems. The motivation for this paper was the jmi@sence of observed and unobserved heterogeneity in
failure patterns of German onshore wind turbines analymedktail in [15]. Several factors like size of a turbine,
manufacturer or local climatic conditions are known to iafige the reliability of wind turbines ([5]). These may be

represented by a set of covariates, leading to the consioleraf regression models. Nevertheless, there are other
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factors that potentially mayfiect the reliability, e.g., position of a turbine inside a @itarm or specific technology
used in a turbine, which are not recorded or af@dalilt to quantify. The latter types of factors are not necelysa
observable, but may still have a significaffeget on the reliability. Thus, if ignored, a regression asalpf repairable
systems may give misleading or wrong results.

In [14] we introduced a new approach for modeling and anslg$irepairable systems with an unobservable
heterogeneity. We adopted the common approach of mulidic of the basic ROCOF by a positive random variable,
a so called frailty, taking independent values across theays. While in traditional frailty models it is necessary t
make parametric assumptions about the distribution ofréikiés, we made a nonparametric approach, thus avoiding
numerical and other problems that may occur with the panaomabdels, especially in large data sets and when using
complicated models.

In this paper we extend the technique from [14], where fosusiv on regression models for NHPPs, involving
observed covariates in addition to unobservable hetegiyeiThe main idea is to eliminate the possible disturbance
of the unobserved heterogeneity, thus enabling estimafithre net &ect of the observable covariates in the behavior
of the systems. The most common way to incorporate covariate the ROCOF model is to multiply a baseline
ROCOF by a function of the covariates, with the exponentiatfion being the most common choice, leading to what
corresponds to the proportional hazards model in survivalysis, which here also might be called the proportional
ROCOF model. A heterogeneity can then be added to such a rbgdalltiplication of the frailty, as indicated
above. A classical reference for regression modeling in R&i8 [10], where heterogeneity (called randdfie&s)
is also treated by assuming the standard approach of Idttilties be gamma distributed. A subsequent review of
applications of proportional hazards models in repairapstems was given in [9]. More recent reviews are given in
[12] and [7]. The former of these papers advocates the ugermnd tests to guide in the search for appropriate failure
models. The latter paper, on the other hand, considers ti@gm of model selection for multiple repairable units,
with emphasis on unobservable heterogeneity, dependesutiktrend.

It seems that the majority of analyses of repairable systansot include factors or covariates that makeat
the failure process. Thus the literature on repairableesysiwith covariates is much less rich than, for example, the
literature on regression models for recurrent events isthicstics. There are, however, several recent approéthes
reliability where covariates play an important role. Foaeple, [13] used covariates such as length or diameter of
pipes, age and presence of clay in order to explain the ittyadif pipe failures in water networks. The same data were
reanalyzed in [1] using time-dependent covariates. Miydy a similar application and using similar covariates,
[11] introduced a dynamic NHPP, where the ROCOF of a systemeases with the observed number of failures.
The importance of taking covariates andfeliences in environment into consideration is furthermdaseuwssed in
the paper [2], analyzing data for drill bits in a bauxite min€he paper [3] made use of the power law process
for multiple repairable units with dfiering reliability characteristics to predict the expeateanber of failures for a
fleet of military aircrafts, while [18] extended the powewlanodel by introducing a single multiplicative covariate
with the interpretation of a known scaling of the systemitufe behavior. The paper [20] proposed the use of a
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proportional hazards model with time-varying covariatasrésidual life prediction of repairable systems. The pape
[19] models operational and environmental stress factersogariates in repairable systems. Afelient approach

to involving both observable and unobservable heterotyehas recently been presented in [8]. The authors’ main
idea is to introduce a joint distribution of the parametdrthe baseline power law ROCOF function, and estimate its
parameters by an empirical Bayes procedure.

The rest of this paper is organized as follows. In Section Pavieew the main results of [14]. Section 3 is the main
section where we introduce the new model which extends thadehio [14] by inclusion of covariates. In particular
we present a novel approach for estimation of thefodent vector which describes the influence of the covariates
Section 4 describes briefly a comprehensive simulatiorystnd some of its conclusion, where the simulation study
itself will be presented in the supplementary material. Secstudy using data from the WMEP database for German

wind turbines [5] is presented in Section 5. Some concludéngarks are finally given in Section 6.

2. NHPP with covariates and nonparametric frailty

2.1. The case with unobserved heterogeneity and no covariates ([ 14])

In this section we review the main results from [14]. As intthdicle, consider a model where, conditionally on

Z, the events (failures) follow an NHPP with ROCOF
A(t)Z) = Zabt™? (1)

where the power law basic intensity was chosen for simplstilation. Recall thaZ is a positive random variable
representing the frailty of the system under study. In otdeavoid an identification problem concerning the scale
parametea we will here assume that®&) = 1. Further, we assume that (@) is finite.

Let mindependent processes described by (1) be observed omidéntierval [Q ;] for a random lengthr; > 0
(realizations of a random variabt® and let us denote number of observed evantsith eventtimes;; (i = 1,...,n;,
j = 1,...,m). Unobserved individual frailties (unobserved realiaat of a random variablg) will be denoted as
Z,...,Zm. Tis assumed to be stochastically independeit of

In [14] we derived estimates @ b and their variances, as well as predicted values for theithal frailtiesz;.
Also, estimates of VaiZ) were given. Thus, while standard models of this kind userpatac distributions foiZ,
e.g., the gamma distribution, the clue of [14] was to avoig assumptions on the distribution Bf

Below we review the estimators,
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A nj
Zj =~ b (4)
ar].

Among several possible estimators, the preferred estimodidar (2Z) in [14] was their equation (34),

Zm,l b

Var (2) = Var(2;) - # (5)
Where\7a\r(2,-) is the empirical variance of thg from (4).

2.2. The new model: NHPP with covariates and nonparametric frailty

Suppose now that for each system there is an observablaatevagctorX = [Xy, ..., Xg]. The idea is to modify
the model from [14], as described in the previous sectiothabthe influence oX is taken into account. The model
we shall consider for inclusion of is of the Cox-type, where the conditional ROCOF, given ttaditir Z and the
covariate vectoX, can be written

AtZ, X) = Zabt"exp(B;X) (6)

As beforea > 0 andb > 0 are unknown parameters, whi3g = [Bo1, . - ., Sor] IS the vector of unknown cdicients
(" denotes the transposition of a vector)is as before a positive random variable wifZ) = 1 and Va(Z) < «
representing the unobserved heterogeneity (frailty).id\ghe process is observed from time 0 until a random time
7 > 0. The assumption is now that the variab¥esX, r are independent. Note, that the classical regression model
(i.e., the model without unobserved heterogeneity) ididet in this settings as a special case with (1) = 1.

The basic properties of NHPPs imply that the conditionaleetation and variance of the number of eveNts

occurring within a timer are given by, respectively,
E(NIZ. X, 7) = Zar"exp(B;X) (7)
Var(N|Z, X, 7) = Zar"exp(ByX) (8)

Let us assume that independent processes of this type are observed, whejththeocess is observed for a time
7; and described by an observed vector of covariafes [ X1, . . ., Xjr], and an unobserved individual fraily. The
number of observed events in tjth process is denoted agand the observed event times in this process are denoted
astj(i=1,...,n;,j=1...,m).

The main interest is in the estimation of the ffagent vectorB, which explains the fect of covariates on the
failure behavior of a process and which is discussed in theding section. The estimation ¢ a and prediction of

thez;'s and Var(Z) are discussed in the section 2.4.

2.3. Estimation of the effect of covariates
The form of the conditional expected number of eveéitsithin a timer given by (7) allows the construction of
estimators of the cdicientsf, in (6). Taking the expected value of each side of (7) givesitieonditional expected

number of events (with use of the assumed independé&ncand X)

E(N) = E(E(NIZ X, 7)) = E(2) aE(7°) E(exp(B, X)) (9)
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Similarly,

z x,r]] =E(@2)a (10)

[ezn) e i

Substitution of KZ) a from equation (10) into equation (9) gives

(N \E()EEmX) o
exp(B;X) E(N)
Based on equation (11), let us define the functi(#) by
N E(7°) E(exp(8' X))
h(B) = E{ 5 7 ) - 12)
exp(B’ X) E(N)

Equation (11) then states that the true vg8yédies in the set described as

{B:h(B) =0} (13)

With use of the double expectation rule, linearity of theented value, equation (7) and assumed independencies

we get

N 1
e i = LRy | R e
= E(2) aE (exp((B, - B) X)) (14)

Thus the functiom(B) can be represented as (by use of equation (14) and equéjjon (
E (exp(8'X)) E(exp((By — B)'X))

(o)
As can be easily checked from equation (15§% + 8) = h(% - g) for all g, i.e. h(B) is symmetrical around the
pointB = %.

From the Cauchy-Schwarz inequali(UV) |2 < E(U2) E(V2) with U = exp((% —,B)' %),V =exp((% +,B)/ %)
anduV = exp(%2'X) it also follows thah (% +8)>h(%)forall g + 0, i.e. the poing = £ is the unique minimum

h(B) =

-1 (15)

of the functionh(B). Thus we have the somewhat unexpected result

Bo=2 argﬂmin(h(ﬁ))

which is the key result in the estimation procedureffgto be presented below.
The idea is to minimize instead the sample versfi(ﬁ) of h(B) in (12), where the theoretical means are substituted
by simple sample averages and paramleisrsubstituted by its estimator. The resulting estimatgaé then

1]1]Zm:

B = 2 argmin(h(B)) = 2 argmin{ — —
-2 1

Zexp(ﬂ'xk) (16)

Texpﬁx

(¢}
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Figure 1: The gray contours represent the contours of thetitmh(g) for the caseR = 2 and selected values of the parameters and specific
distributions ofX. The black contour represents the contour wi(f) = 0. The black cross represents the minimunmh@g), the red cross
represents the estimaﬁethe intersection of the blue dashed lines represent tieectdficient vectorBy, = (1, -1). The curves are obtained by
utilizing the consistency g and using the high value afi = 30000 to obtain curves that are for practical purposes equak theoretical ones.

B2

Figure 2: The underlying distributions are the same as fguiféi 1, but the curves are based on a simulated sample ofvatieas fromm = 30
processes. The gray contours represent the contours ofrthieieal function ﬁ(ﬂ) with black contour representing the contour with valueaqu
to 0. The black cross represents the minimurfi(@), the red cross represents the estiniﬁté Bo which is represented by the intersection of the
blue dashed lines. The green triangle represents the valimated by the classical regression model which does san@s heterogeneity, while
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An illustration of the process of obtainilﬁ;in (16) is presented in Figures 1 and 2, which are based oesaifi
parameters used in the simulation study (see Section 3 fexglanation).

It can be shown that the estima;én‘s consistent fo,, i.e.,,B' converges (in probability) t@, asm tends to
infinity. The clue is thah() is a convex function g8, and the result then follows from Theorem 1, page 49, in [4].

Since the derived estimatgris twice the minimum of the sample version of the functigg), the variance of
the estimatoﬁ can be estimated by adaptation of the approach used ing¢6]by. using a Taylor expansion and the

implicit function theorem, as briefly summarized in Appendi

2.4. Estimation of other parameters

2.4.1. Estimation of b
As was shown above, an estimatéa$ needed in the estimation 8§. It is seen from the derivation in Appendix
A of [14] that the problem of estimatinly is not changed by the inclusion of covariates. In fact, in eld@) we
can define the unobserved varialfle= Z exp(8,X), which brings (6) on the same form as (1). Hence (2) (and the

corresponding estimator of variance) is still valid.

2.4.2. Estimation of a
The estimation o can be done in a way similar to the derivationadf the case without covariates (see (3)).
SinceE(Z) = 1, the estimator od can be defined by the sample version of equation (10), innglthie already derived

estimators, i.e.,

. 1< n;
a= EZ—A i ‘ (17)

Alternatively, equation (9) could be used to construct dimegor ofa.
The variance o&{givenx;'s andr;’s, j = 1,...,m) can be derived with use of Taylor expansion and properties

of the estimator® andB and NHPPs and is briefly summarized in Appendix B.

2.4.3. Egtimation of unobserved heterogeneity
The traditional frailty models are characterized by thearare of the unobservedfects which can be estimated
with use of the properties of NHPPs following the recipesgiby [14].

The unconditional variance 6f can be computed as follows, with use of (7) and (8) and thewstion E(Z) = 1.
Var(N) = E (Var(NIZ X, 7)) + Var (E (N|Z, X, 7)) (18)
= aE () E (exp(ByX)) + & (E(ZZ) E () E (exp(28,X)) - E(=")° E(exp(ﬂgx))z)
which together with (9) gives

E(N2) - E(N) E()” E (exp(BpX))”

Var(2) = E(N)? E(rzb)E(exp(ZﬁBX))

~1 (19)
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Using empirical forms of the expectations and substitutiregestimators of the parameteand the vectog in (19)
gives the estimatovar(2), i.e.,

m 2

m 2 m ~y
1 LA n,(zrﬁ’) (jZleXp(ﬁ xj))

Var(z) = -1 (20)

2 m N
(le K ) El i El oxp(28 %)

The method of moments using equation (7) together with éguét0) allows us to express the individual frailties
zjas
2= 1)
j = -
arbexp(Byx))
This expression can also be obtained by the likelihood agir@onsidered in [14] in which the individual frailties

z; are viewed as parameters. Using the derived estimatord )rdgfines the estimators of the individual frailtigs ~

(G=1,...,m)

nj

) éfﬁexp(ﬁ'x ,—) 22

Note, that the empirical mean of the estimated individuailties is equal 1, i. e Z zj=1.

A natural choice for the estimator of the variance of the weobed &ects |s the empirical variance of the es-

computed as

timatedZ;’s, which will be denoted avar(z,-). These are estimates of the vanance(\éagmﬁ,—xj), which can be
T 0
var| — |~ E|var — 2
arbexp(ByX) arbexp(ByX)

Z, x] +Var{E{m Z, x]]
E(r ") E(exp(-£6X))

= 3 + Var(2) (23)

— -b _p
This means thalz’ar(?j) overestimates the true variance of the unobsertffedts by the factoglﬂ?ﬂn. The

formula (23) hence suggests an estimator of(¥r
m 5 m ~
2T '21 exp(—ﬂ x,—)
j=

=1
: mPa (24)

Var (2) = Var(2;) -
which generalizes (5) to the case which includes observeatates.

2.5. Remarks

e Sinceh(0) = 0 by (15), the sample versidif0) goes through 0 asymptotically.

e The estimation of3 using minimization ofh(8) derived in this paper can be used also for models without

unobserved heterogeneity.



From the sample versidﬁ(ﬂ) is seen that the minimized function is a strictly convexpsth and continu-
ous function with one global unique minimum (no other locahima or maxima). Therefore, the numerical

minimization of this function is stable, robust and quick.
Efficient algorithms for the computation of the covariance i@t 3 exist (e).

Since the estimation method mainly uses analytical exjmessand simple numerical minimization, it is gener-
ally very quick. Bootstrapping can also conveniently bedufee the estimation of the variance of the estimated

parameters.

The estimation process depends heavily on the estimatioreahs. It is, therefore, sensitive to extreme obser-

vations and outliers and a robust method for the estimafidineomean might be beneficial.

A function h(8) analogous to the functidm(8) which does not involve time can also be derived,

N E(exp(8'X))
eXp(ﬁ'X)) EN) (5)

Estimators oj3, based on the function(8) will have larger variance than estimators basedh(@).

h(B) = E(

Since the estimation & b and Varn(Z) generalize the approach of [14], the remarks herein ard agD in that

case.

The derived estimation process can easily be generalizetthés parametric NHPP models, i.e., for processes
with ROCOF
AUZ. X) = Zo(t. 6)exp(BoX) (26)

wherelg(0,t) denotes a basic ROCOF described by the param@terle estimation process will then be an

extension of the approach sketched in Section 3 of [14].

3. Simulation study

The functionality of the derived approach was tested in aikition study which follows the setting of the simu-

lation study in the previous paper [14]. Comparisons werdemna the approaches using the gamma frailty model and

the classical model without unobserved heterogeneity.

The aim of the simulation study was to investigate the depeoel on the number of systemsexpected number

of events per system@®); the codficient of variation CV = ratio of standard deviation and mean) of the distribution

of observation timer (modeled by lognormal distribution), correlation betwexmvariates; and presence of unob-

served heterogeneity. The power law process with ROQ§fa, b) = abt®~! was chosen as the basic ROCOF, with
a=1andb=13.

Four diferent values ofmwere consideredn = 10, 30, 100, 300. Parameters were, furthermore, adjusted to given

values of EN) = 3,10,30,100 andCV = 0.1 or 05. Two cases with unobserved heterogeneity and one caseuwith
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unobserved heterogeneity were considerdiscrete frailty, where frailty is modeled as two unobserved groups in
data (each system belongs to one of the groups with prot;ag)jliand Var(%) = 0.5); gamma frailty, where frailty

is gamma distributed with mean equal to 1 and variance equaBb; andno frailty. The covariates; andx, were
chosen as bivariate normal with mean 0, standard deviatigrs1 ando, = 0.5, and correlatiop equal to 0 or (.
The values for the corresponding ¢beients were chosen #s = 1 andB; = —1.

The detailed setup of the simulation study is describederstipplementary material.

For each combination @f, m, E(N), CV, and each case of unobserved heterogeneity, 10000 siondatiere run
and processed. The model introduced in this paper was fitedah of the simulated datasets, as well as the gamma
frailty model and the classical model without unobservegtogeneity. The unknown parameterd, B,, Var(2)
(when appropriate) were estimated for each model and statltiataset.

The classical model and the gamma frailty model were fittedhloyperical maximization of the loglikelihoods

(displayed in the supplementary material).

3.1. Summary of the results of the simulation study

e Empirical formulas

The empirical results from the simulation study agree featisrily with the theoretically derived formulas.

e Effect of covariates
The detailed results of the estimation of parameggi@nds, can be found in the supplementary material in the

tables 3, 4, 5, 6, 7 and 8. The results confirm the validity efaktimation approach introduced in this paper.

Comparing the mean squared errors, the classical modehkasighest values in the simulations with un-

observed heterogeneity, while in the simulations withowbhserved heterogeneity it is the best model (as
expected since it is the true model in this case). The estmbatsed on the new approach is comparable to the
results obtained from the gamma frailty model in the siniate with unobserved heterogeneity, although the
gamma frailty model has slightly lower mean squared ermothé simulations with unobserved heterogeneity
modeled as gamma frailty. In the simulations without unobese heterogeneity the gamma frailty model is al-

most identical to the classical model, while the estimaliased on the new approach has slightly higher mean

squared errors.

The formula for the computation of the standard errors oftftenators of; andB, given by (A.10) contains
an estimator of the variance of the unobservidas. Therefore the estimation of the standard errors gkthe
parameters is strongly influenced by the quality of the ediion of the variance of the unobservefteets.

If the variance of the unobserveffects is estimated well, then the theoretical standard ®a in a good
agreement with the empirical results while in case of baitn@dgion of the variance of the unobserveteets

the formula (A.10) can return negative values.
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The standard errors of the estimators of the paramgieasnds,, computed from the hessians of the loglike-
lihood functions, behave similarly as for the parameteendb in the analogous simulation study in [14].
That means that they underestimate the empirical standestsef these estimators in the simulations with
unobserved heterogeneity in the classical model, whilkérstmulations without unobserved heterogeneity the
standard errors computed from the hessians of the lodliéed functions slightly overestimate the empirical
standard errors in the classical model. The standard eofdfse estimators of the parametgsandg; in

the gamma frailty model computed from the hessians of thikiglthood functions slightly overestimate the

empirical standard errors of the estimatgrsandp..

e Parametersa, b and Var (2)
The results from the theoretical formulas describing therag@ch of this paper are in very good agreement with

the empirical results, which confirms the validity of theided formulas.

The results of the estimation of the paramete@mdb and Var(Z) agree with the results from the analogous

simulation study in [14], and can be found in the supplemgmtaaterial.

Remark related to the numerical solution

The optimizations were performed using the optimizatioscpdureoptim() in R.

It was found that the numerical maximizations of the loditk@ods for the classical model and gamma frailty
model are quite sensitive to the choice of starting poinedusy the optimization procedure (especially in case of
fitting gamma frailty model to data without unobserved hegeneity) while the finding of the minimum of the
function defined by (16) was numerically stable (since, as argued above, it is a strictly convex function with one
global minimum). Moreover, it was observed that the estiomatvith use of the function (16) and related equations
was generally quicker than finding the maximums of the lagiifoods. The gain in speed depends on the choice of
the starting points.

The problems with optimization of loglikelihood functionan of course be influenced by the implementations of
the optimization procedures, which may be improved. On therchand, it is necessary to be aware of these problems

when working with real data.

4. Case study

Failure data from WMEP database which contains reportstadure stops of German onshore wind turbines
between years 1989-2009 were analyzed as a real life exariaes about this database can be found in [5] and

detailed analysis of this dataset can be found in [15].
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In total, 9900 failure stops from 702 wind turbines from 368atent wind farms were processed (most of wind
farms consists of 1 turbine, the biggest wind farm consig®&furbines). The mean time of observation of a turbine
was 10.8 years, on average 1.3 failures per turbine per ye@ observed with mean time between failures 260 days.

In order to illustrate the method of the present paper weidensd two covariatesy representing the rated power
of a turbine (in MW), and covariate representing the local harshness of environment. Thesesrkenown from the
literature to influence the reliability of wind turbinesgese.g. [17] and [16], and they were also found to be the most
important covariates in the analyses of [15]. Note that,tduack of information in the database about local climatic
conditions, a proxy covariate for harshness of environmes constructed in [15] using the available information
on number of stops caused by external natural factors sutighasing, high wind and icing. More precisely, the
corresponding covariate, whichxs in the present study, was computed for each wind farm as #mage number of
such stops per year for the turbines of the farm. It is impatia note that the corresponding turbine stops were then
not considered as failures in the analysis.

The distribution of the two covariates can be seen in Figureh# transformed variables, logj and /X2, were

used in the analysis in order to avoid too big influence of alfege values.
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Figure 3: Distribution of the covariateg (left) andx; (right) in the case study.

We fitted the nonparametric frailty model with covariatesaduced in this paper, based on the power law process,
to the data. The results are shown in table 1, together witctiiresponding results when using the gamma frailty
model. For comparison, we also fitted the classical powemiaalel which does not take into account unobserved
heterogeneity.

It is seen from table 1 that the results from the nonparametndel are in good agreement with the results
from the gamma frailty model, which indicates a satisfactoehavior of our method. Since there is obviously a

non-significant heterogeneity present in the data (redelmugh the estimated V&£) and the corresponding low
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Table 1: Result of fitting considered models to wind turbiai&ife dataVar (2) in the nonparametric frailty model is based on (24) and &adsrd
error was estimated with use of bootstrapping (over windihes).

| [ & [s@ [ b [ 5 [ ] k[ 5% @0 [ i@

nonparametric frailty model | 1.8042 [ 0.1307 | 0.9418 | 0.0095 | 0.4303 | 0.0345 | 0.9060 | 0.0857 | 0.3162 0.0289

gamma frailty model 1.7375 | 0.1167 | 0.9429 | 0.0095 | 0.4164 | 0.0316 | 0.9442 | 0.0839 | 0.2998 0.0203
classical model 1.8549 | 0.0661 | 0.9471 | 0.0094 | 0.4378 | 0.0152 | 0.8521 | 0.0312 - -

standard errors), the classical model, which does notwaviekterogeneity, should be rejected as a good description
of the data. As an observation from table 1, the estimatediatal errors (with use of the hessian of the loglikelihood)
of the parameters are smaller for the classical model, wéypgtarently is caused by the more restricted assumptions
of this model. The standard errors in the classical modeéwaéso computed with use of bootstrapping (over wind
turbines which preserves the unobserved heterogeneityfhenresults, which are summarized in table 2, show that
the standard errors computed with use of hessian of thekklilbod underestimate the real standard errors if the
unobserved heterogeneity is not taken into account (timelatd errors computed empirically and with use of hessian
of the loglikelihoods are in good agreement for the gammniliyfnaodel and the new method, as can be seen from the
results of the simulation study). A consequence is that mgtracting confidence intervals for the parameters by the
standard method 'estimate plus two standard errors’ wedvoloiain too optimistic intervals when using the classical

(wrong) model.

Table 2: Comparison of standard errors computed with uskeohéssian of the loglikelihood describing the classicaliehavithout unobserved
heterogeneity and with use of bootstrapping (over windites) using the same model.

| | se&) | sHb) | SH) | SHp) |
[ standard errors computed with use of hessiar]f 0.0661 [ 0.0094 [ 0.0152 [ 0.0312 |
[ bootstrap standard errors | 0.1385 | 0.0125 | 0.0393 | 0.0709 |

One may then ask, what is the engineering conclusion thabeadrawn from the case study? The estimated
b is close to 1, which indicates that the failure process oividdal wind turbines are approximately homogeneous
Poisson processes, though witlffeiing ROCOF'’s, due to éierences in observed covariates as well as possibly with
differing frailtiesZ.

Referring back to Section 2.3, Figure 4 illustrates the pssaf estimation of the regression paramegerand
B2 corresponding to the observed covariates, and also shenestimated parameters by each of the three methods
considered. Since the estimated values of théimentss; andg; are positive and they have exponential influence on
the ROCOF, the results confirm the negatitfeet of rated power and weather conditions on the number lof éi.

Figure 5 plots the estimated individual frailties for bolie tgamma frailty model and the new proposed model.
The latter are given by (22), while the gamma frailty modeldasidered in more detail in the supplementary material
and in [14]. The figure shows that the frailties in the gamnadtfr model are pushed more towards 1 compared to the
ones obtained from the nonparametric model. For an exptanat this fact, see the discussion of the gamma frailty
model in Section 2.2 of [14].

The estimated frailties can be viewed as coming from latemtiGates which were not observed, but which if

13



observed would have had affext on an individual system’s ROCOF. Such unobserved "d¢ates” might in the
present case befects such as fiering maintenance strategiesffdiences in the manufacturing process, position of

turbines inside a wind farm etc.
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Figure 4: lllustration of the process of estimation of thegpaeterg3, introduced in this paper, i.e. by the equation (16), in treecstudy. The gray
contours represent the contours of the functig8) with black contour representing the contour with valueada 0. The black cross represents
the minimum of the empirical version of the functibif8), the red cross represents the estimated value. The gieaglé represents the value

estimated by classical model while the green diamond reptsshe value estimated by gamma frailty model.

5. Conclusions

This paper introduces a new method for estimation of tiiece of covariates for a large class of models. The
method extends the method introduced in [14] to the caseatisiervable heterogeneity described by covariates. The
main advantage of the new approach is that it is partly nampatric and hence avoids making restrictive assumptions
about the underlying process.

The functionality, advantages and disadvantages of theadetith respect to varying process parameters, have
been illustrated and discussed in detail and compared toldissical models in a simulation study using the power
law process as the basic model. In addition, the method hexs #ygplied in a case study using real data for wind
turbine failures.

The simulation study shows that the new method performs wemypetitively compared to the classical model
and to the gamma frailty model, while avoiding restrictigs@mptions and numerical problems related to the use of

the gamma frailty model. The method appears to be very wigddfor solution by numerical methods.

14



nonparametric frailty model
gamma frailty model

estimated individual frailties
e

turbine

Figure 5: Estimated individual frailties (for each windhirmre) in the case study by the nonparametric frailty modele(pand by the gamma frailty

model (red). Turbines are ordered by the size of the estinatebserved individual frailties in the nonparametridlfiyanodel.
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Appendix A. Variance of the estimator 8

Recall that the measured covariaigs and the observation times’s (j = 1,...,m) are observed parameters
describing the process, since they are known before thiodtidve process and they do not change during the process.
The sample version of the functidi@g) will therefore be viewed as a function of the observed nunabevents and
the estimatob (which together form an observed data), i.e. the notatighd), whered = [n, ..., nm, b], will be
used. All the computations below are done conditionallyxgs andr;'s (j = 1,...,m), which will be, in most
of cases, omitted from the notation. The set obals, j = 1,..., m, will be denoted byx and the set of alrj's,
j=1,....,m will be denoted byt.

The minimum of the functioﬁ(ﬂ, d) is described by the set of equations

(8, d) = {(Dr(ﬂ, d) = ahg;, D 1,...,R} -0 (A1)

which has a solutiop = g as was shown above.

Let us assume, that

A~ (9,51 ﬁﬁR ~
so(B | . T (B
Sl |5 (a2)
9P 9Pr

is an invertible matrix. This assumption is not very resive, since the sample version of the functiyp) is strictly

convex. The implicit function theorem then ensures existasf a function

NS

e(d) = {gr(d),r =1,....R} = (A.3)

which maps the observed data= [Ny, .. ., N, 5] into an estimaté.
As can be easily checked by minimization of the functig@, E (dx, 7)), where Ed|x, 7) represents the condi-
tionally expected data, (which were computed with use ofrtbi&viduals version of (7), properties of the estimaitor

and the double expectation rule),

E(dix, 1) = [E(nllxl,rl) oo, E(OmlXm, Tm) » E(B|x,‘r)]'

= |arbexp(Byxa). . .., armexp(BoXm) b]' (A.4)

this function maps the conditionally expected data intonbmt%, i.e. p(E(dix, 7)) = %. Taylor expansion of the

functiong(d) around the conditionally expected datédi, ) therefore gives

NI

= (d) ~ ﬂ—zo + Vo (E(dix, 7)) [d - E(d|x, 7)] (A.5)

whereV = [6% s aﬁﬁ] denotes the (row) gradient operator.
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The equation (A.5) can also be used for the computation ofdmelitional covariance matrix cg‘ which gives

the well-known approximation

Cov(g

x,‘r) ~ Vo (E (d|x, 7))’ Cov(d|x, ) Ve (E (dIX, 7)) (A.6)

where Co\d|x, 7) is the covariance matrix of the observed numbers of evgistgind the estimatdy given the mea-
sured covariates;’s and the observation timeg's (j = 1,..., m). Since the systems are assumed to be independent
and CO\(nj, B| X, ‘r) = 0 for eachj = 1,...,m(which follows from the properties of the estimatmand the condi-
tional covariance rule), the covariance matrix Qdix, 7) is a diagonal matrix where the first diagonal terms can

be computed as (by using the individuals versions of (7) 8pd (
Var(NjIX;, 7j) = E(Var(Njlzj, Xj, 7)) + Var (E(N;1Z;, X, 7))
2
= arbexp(B,X;) + (ardexp(ByX;)) Var(2) (A7)
where Var(Z) denotes the variance of the unobservdas. Theif+ 1)st term on diagonal of the matrix Céafx, 1)
is equal to Va( b| x,r).
If it would be possible to find the analytical expression & flanction (A.3), the equation (A.6) together with

Cov(d|x, T) would define the conditional covariance matrix of the estong. Although the function (A.3) can not

be found analytically, the implicit function theorem givtee formula for the desired gradient of this function, i.e.,

Vso(E(dlx,T))——%(ﬂo E(dix )) oo (ﬁO E(dlx r)) (A8)

Where ( ,E(dx, T)) is defined by (A.2) am%— (BO E (d|x, T)) is analogously defined as

T T

ﬂ ony ONm db ﬂ

0 . . . . Po

S ZE@xn)=| s | (REEo) (.9
L N /S
any AN, ab

Using the estimators of in the derived formulas gives thieregor of the conditional covariance of the estimator

B ie.,

66/(/}| X, ‘r) =4V (E (dx, ‘r))' (/Za/(d|x, T) Vo (E (dix, ‘r)) (A.10)
where . .
Vo (E(dIx, 7)) = a;) ( E(dx, )) %’ (g,ﬁ(oux, T)) (A.11)

The estimated conditional expected vaﬁl(sdlx, 1) is defined with use of (A.4), i.e.,
E(dix,7) = [ér?exp(/}/xl) s éTPnexp(B/xm) , B]/ (A.12)

The estimated conditional covariance maiav(d|x, 7) is a diagonal matrix with théth entry (forj = 1,..., m)
on the diagonal equal @rPexp(8'x;) + (ér?exp(ﬁxj))z Var (Z) (estimated with use of (A.7)), whekar () is the
18



estimator of the variance of the unobservéedets derived below, and theé 1)st diagonal element defined %T?%J
(defined with use/ar (b) and the conditional variance formula).

The function®(B, d) and its partial derivatives are defined by (A.1), (A.2) aA®] respectively.

Note, that the analytical expressions for the function @@, d) and its partial derivatives can easily be found

from the sample version of the functitgs, d).

Appendix B. Variance of the estimatord

The variance o&{givenx;'s andr;’s, j = 1,...,m) can be derived with use of Taylor expansion and properties
. o} ~ . . . N .
of the estimator® andp and of NHPPs. Taking the Taylor expansion of the expres%»gﬂm around the points
E(B|x.7) = b, E(B| x.7) = By and E(n;|x, 7) = ar®exp(BX;) gives
nj

nj - Lo
: ~ — alog(r;)(b - b) - ax;(B - B.1
exp(B'x;)  Pexp(Byx)) 2109(ri)(0=0) = x5 = o) (B.1)

Taking the conditional variance afwith use of (B.1) and properties of the estimatbrand and nonhomoge-

neous Poisson processes then gives

Vi —V Z
ar (alx, 1) = o ,Z;‘ Tbexp(,B ) + ar (Z)

2 m ’ m
[ Zlog(r,) Var(b| x, 7) [%Zx,] Cov(B]x, T)[%ZX]]

i=1

2(% Z Iog(r,—)][% Z x,) Cov b,ﬂ| X, ‘r)

=1

m ’ m )
a 1 & Cov(ng. Bl x.7)
o2 525 ©2
= [ exp(ﬂ Xj)
Substitution of unknown parameters by their estimator8i2) defines the estimator of the conditional variance
of the estimator. The unknown covariances Cpl, | x, ) and Coy(n;, B| x,7), j = 1,...., mcan be estimated with

use of (A.5) and properties of the estimalboand of NHPPs.
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