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Problem description

To reduce emission of NOx from diesel engines the method Selective cat-

alytic reduction (SCR) is used in heavy duty commercial vehicles. In this

system AdBlue is used as a reducing agent. To avoid damages to the en-

gine caused by the use of other �uids than AdBlue it is important to detect

the presence of such a �uid.

This project will look into the possibilities of detecting and classify-

ing �uids in a tank based on sensors already present in a current system,

and possibly by adding new sensors if this is advantageous. The work is

a continuation of a project where classi�cation was achieved under stable

noiseless conditions without temperature changes. As a next step tem-

perature changes in the �uids will be introduced, and more noise will be

added. The main aspects of the assignment will be:

• Developing a classi�er able to cope with temperature changes and

noisy environment, which are conditions challenging the ability to

perform a correct identi�cation.

• Comparing what can be achieved by only using the sensors present

in a current system with what can be gained by adding new sensors.

• Expanding the number of �uids for the classi�er to deal with.
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Summary & Conclusion

In order to meet the increasingly stringent emission standards for heavy

duty commercial vehicles world wide, systems to reduce the emission of

NOx from diesel engines are required. Selective catalytic reduction, using

Adblue as a reducing agent, is such a system. To avoid damage to the

system it is important to avoid non compliant Adblue being present in the

tank.

This report investigates whether it is possible to distinguish di�erent

�uids from each other by applying classi�cation theory to the sensor data

available in a system for measuring urea concentration already in use.

Sensor data has been retrieved by measuring in a number of �uids in a lab,

while trying to simulate realistic tank conditions in the form of bubbles

and temperature changes. The sensors used were an ultrasound sensor and

a conductivity sensor. The �uids included in the experiment were Adblue

32.1 %, Adblue 15.8 %, Diesel, Glycol 100 %, Glycol 50 %, and water.

Three classi�cation strategies were tested, Minimum error classi�cation

assuming Gaussian distribution of data, k-nearest-neighbor classi�cation

and least mean square classi�cation. The best results were achieved after

transforming the feature space by applying Multiple Discriminant Anal-

ysis. Using this as a preprocessing step the best results achieved by the

di�erent classi�cation strategies were as follows: The minimum error rate

(MER) classi�er achieved an error rate of 0.57%. The k-Nearest-neighbor
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(kNN) classi�er achieved an error rate of 0.12%. The Least-mean-square

(LMS) classi�er achieved an error rate of 5.72%. By these results it can

be concluded that the minimum error rate classi�er is the recommended

classi�cation strategies of the three that were tested. This can be done

because the results achieved by this classi�er are almost as good as the

results achieved by the kNN classi�er, while after it has been trained it

has a signi�cantly lower computational cost than kNN, which makes it

more suited to be implemented in a microcontroller system operating on

a vehicle.



Sammendrag

For å møtte stadig strengere utslipskrav for kommersiel tungtra�kk, trengs

metoder for å begrense utslip av NOx fra dieselmotorer. Selective catalytic

reduction er en slik metode som bruker en urea/vann løsning kalt Adblue

til å �ltrere ut NOx eksos. For å unngå skader på dette systemet er det

viktig å oppdage om andre væsker enn Adlue er tilsted på tanken.

Denne rapporten undersøker om det er mulig å skille ulike væsker fra

hverandre ved å benytte kjent klassi�seringsteori sammen med sensordata

tilgjengelig i et system for ureakonsentrasjonsmåling som er i bruk idag.

Målinger har blitt utført i en rekke væsker mens realistiske tankforhold

har blitt førsøkt simulert ved å generere bobbler og endre temperatur.

Sensorene som ble brukt var en ultralydsensor og en konduktivitetssensor.

Væskene inkludert i forsøket var Adblue 32,1 %, Adblue 15,8 %, Diesel,

Glycol 100 %, Glycol 50 %, og vann.

Tre klassi�katorer har blitt testet: Minimum feilrate, k-nærmeste-nabo

og Minste kvadraters metode. Best resultat ble oppnådd etter å ha utført

Multippel Diskriminant Analyse på egenskapsrommet. De beste resul-

tatene oppnådd med de ulike klassi�seringsstrategiene var som følger: Min-

imum feilrate klassi�katoren oppnådde en feilrate på 0, 57%. K-nærmeste-

nabo klassi�katoren oppnådde en feilrate på 0, 12%. Minste kvadraters

metode oppnådde en feilrate på 5, 72%.
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Chapter 1

Introduction

In order to meet the increasingly stringent emission standards for heavy

duty commercial vehicles world wide, systems to reduce the emission of

NOx from diesel engines are required. Selective catalytic reduction, using

Adblue as a reducing agent, is such a system. Adblue is a water solu-

tion ideally containing 32.5 % urea. To avoid damage to the system it is

important to avoid non compliant Adblue being present in the tank. On

the market today sensor solutions measuring the urea concentration in the

tank exists. However, their ability to recognize non Adblue solutions are

limited, and some �uid compositions might be wrongly perceived as being

Adblue.

This project seeks to apply known classi�cation theory, in order to

better distinguish di�erent �uids that might be present in the tank, either

intentionally or by human error. The work being presented in this report

is the continuation of an earlier project where a system, successfully dis-

tinguishing between a selection of �uids under stable conditions in room

temperature, was made [26]. In this report the development of a clas-

si�er, also able to deal with temperature changes that will occur during

normal operation on a vehicle, will be presented. The classi�er will be

1



2 CHAPTER 1. INTRODUCTION

based on data from sensors already available in a system measuring urea

concentration.

The report starts with a Theory chapter presenting the mathematical

basis for the classi�ers, this chapter has been taken from the project work

this master thesis builds upon. The work having been done as part of this

master thesis is presented in three main chapters. Chapter 3 describes the

process of retrieving sensor data in the laboratory and extracting features

to be used for classi�cation. Chapter 4 presents the development of a new

round trip time detection algorithm and the motivation behind it. Finally,

Chapter 5 describes the development and evaluation of three classi�ers and

the results they produced. Discussion and suggestions for future work has

been placed in the end of the report. Appendix A contains output from

systematic testing of the four classi�ers that were developed and tested in

the process. Appendix B contains paths to �les referred to in the report.



Chapter 2

Theory on Classi�cation

In this chapter some of the mathematical concepts used in this report will

be brie�y explained. The chapter has been taken from the report of the

project work this master thesis builds upon [26] as the theory behind the

classi�cation algorithms still remains the same.

A classi�cation system can be seen as the task of recognizing patterns

in sensor data making it possible to separate the data into classes. Such a

system typically consists of sensing, processing the sensor data, and clas-

si�cation based on the measurement [9]. An illustration of such a system

can be seen in Figure 2.1. This chapter will focus on the classi�cation

module.

Sensing ClassificationProcessing
Raw data Features

Real world Class decision

Figure 2.1: Components in a typical classi�cation system

3



4 CHAPTER 2. THEORY ON CLASSIFICATION

Many di�erent strategies can be used within the �eld of classi�cation.

However a certain standard syntax on how to formulate the problem exists.

A vector x contains all the measured features, and a class is de�ned as ω.

A decision rule is made to decide which class the vector x will be assigned

to. This can be done by creating a discriminant function g(x) returning a

scalar number, and then make a decision based on a threshold value. An

example of such a classi�cation problem is as follows. Given a problem with

c classes the discriminant function can be made as a set of discriminant

functions gi(x), i = 1, .., c. A decision rule is then typical made as: Assign

feature vector x to class ωi if gi(x) > gj(x) for all j 6= i [10]. The

task of making the classi�er is now reduced to �nding the functions gi(x)

minimizing the number of erroneous classi�cations. In this report three

methods for �nding such functions will be used and the theory behind

each method will now be presented.

2.1 Nearest-neighbor

The Nearest-Neighbor classi�cation is based on imagining all the feature

vectors x as points in a n-dimensional euclidean space. A training set is

made by making a number of measurements with known classes. Clas-

si�cation of new measurements with unknown class is then achieved by

calculating the distance between the new measurement x to all the points

in the training set and assigning a class to the measurement correspond-

ing to the class of the nearest point in the training sett, hence the name

Nearest-Neighbor classi�cation. A two dimensional example can be seen

in Figure 2.2. The main advantages of the Nearest-Neighbor classi�er are

that it is very easy to implement and that no previous knowledge of the

nature of the classes is demanded. However the computational cost grows

with the number of elements in the training set and the number of dimen-

sions in the feature space. This method is therefore primarily useful as
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Unknown class

Distance to nearest neighbor

Figure 2.2: Example of nearest-neighbor classi�cation with a two dimen-
tional feature space and two classes. Class 1 is ploted as x and class 2 is
ploted as o. The unknown feature vector ploted as a star will be assigned
to class 2.

part of the development phase, where its performance can be compared to

other classi�cation strategies.

2.2 Bayesian, Minimum-error-rate

The Minimum-error-rate classi�er is based on the assumption that we can

de�ne probability density functions p(x|ωi) for each class ωi, i = 1, .., c.

Using Bayes formula [7]:
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P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
(2.1)

we get an expression for the probability of a certain class given the in-

formation obtained in the feature vector x. Here P (ωi|x) is the probability

of the class ωi given the measurement obtained in the feature vector x.

P (ωi) is the probability of having class ωi prior to the measurement of its

features, p(x|ωi) is the probability density function of x given it belongs

to class ωi and p(x) is the unconditional probability density function of

x. A set of discriminant functions can now be de�ned as gi(x) = P (ωi|x),

i = 1, .., c. The decision rule can be stated in the standardized way: Assign

feature vector x to class ωi if gi(x) > gj(x) for all j 6= i. In other words

always choose the class with the highest probability given the measured

features. The advantages of this classi�er are that given correct knowledge

of the probability density functions it is simple to implement and it is, in

contrast to the Nearest-Neighbor classi�er, computationally cheap when

implemented in code. The main challenge is to obtain correct knowledge

about which probability distribution to use and given this, estimate the

correct parameters.

In the following multivariate Gaussian density is assumed. A set of

discriminant functions has been de�ned as gi(x) = P (ωi|x), i = 1, .., c.

Since all the function are divided by the same factor p(x) this term can

be omitted without altering the outcome of the decision rule. Thus a new

set of discriminant functions can been de�ned as g∗i (x) = p(x|ωi)P (ωi).

By using the property a > b => ln(a) > ln(b) the discriminant functions

can be further altered to the set g∗∗i (x) = ln(p(x|ωi)P (ωi)), again without

altering the outcome of the decision rule. Inserting p(x|ωi) ∼ N(µi,Σi)

we have the set of functions:
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g∗∗i (x) = −
1

2
(x−µi)

TΣ−1i (x−µi)−
d

2
ln(2π)−

1

2
ln(|Σi|)+ln(P (ωi)), i = 1, ..c

(2.2)

In Equation 2.2 µi is the expected feature vector given class ωi, Σi is

the covariance matrix of the probability density function p(x|ωi), and d is

the dimension of the feature space. The term −d
2 ln(2π) can be removed

because it is equal for all g∗∗i (x). Finally, by sorting terms after decreasing

order, we end up with a set of discriminant functions [10]:

gi(x) = xTWix+wT
i x+ wi0 (2.3)

Wi = −
1

2
Σ−1i (2.4)

wi = Σ−1i µi (2.5)

wi0 = −
1

2
µT
i Σ
−1
i µi −

1

2
ln(|Σi|) + ln(P (ωi)) (2.6)

The parameters µi, Σi, and P (ωi) can be estimated for each class by

using a training set containing measurements with known class. Using

these estimated parametersWi, wi and wi0 can be calculated directly. To

classify a new measurement x with unknown class all that needs to be

done is calculate the value of gi(x) for all i = 1, ..c and assign ωi to x if

gi(x) > gj(x) for all j 6= i.
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2.3 Least-mean-square

The least-mean-square method seek a minimum error solution to the equa-

tions:

aTi y = 1 ∀y ∈ Yi

aTi y = 0 ∀y /∈ Yi
(2.7)

In equation 2.7 y is an expanded version of x:

y =

[
1

x

]
(2.8)

and Yi is the set containing all y belonging to class ωi

When having multiple classes the following syntax can be used:

Y =


Y1

Y2

...

Yc

 (2.9)

where all the vectors y belonging to class ωi �lls all the rows in Yi.

A =
[
a1 a2 · · · ac

]
(2.10)

B =


B1

B2

...

Bc

 (2.11)

where all the elements in Bi are zero except the ones in the ith column,

those are 1. Ideally a matrix A should be found so that the equation

Y A = B holds. This will usually not be possible, and instead a matrix
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A minimizing the square error of the equation Y A −B is found. A can

then be found as [11]:

A = (Y TY )−1Y TB (2.12)
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Chapter 3

Retrieving data & extracting

features

The goal of this project is to be able to classify �uids in a tank using

data retrieved from sensors. The �nal system is meant to be part of a real

time system continuously reporting the content in the tank. As a result

the sensors used needs to work in a closed tank with little or no need of

supervision and maintenance. At the current stage of the study it is im-

portant to de�ne what kind of sensors can be placed in the tank, and which

features can be extracted from the available sensor data. Seeing that the

tank will be placed on a vehicle, important issues are the limited space

available, the harsh conditions the system must endure and the cost of the

system. The work concerning development and testing of new and already

existing sensors has been performed in a lab. Conditions the �nished sys-

tem will meet on a vehicle have been reproduced to the extent possible in

the lab. Creating the laboratory setup has consisted of creating a Lab-

VIEW program combining many sensors into one system. Some hardware

implementations have also been necessary in order to combine new circuits

and already existing hardware. In addition to creating a laboratory setup

11
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to retrieve test data, algorithms for feature extraction have been created

in Matlab. This chapter will start by describing the measurement setup

creating data �les containing sensor data before it de�nes the features to

be extracted and the program performing the feature extraction.

3.1 Measurement setup

The measurement setup consists of a tank containing a �uid, a heating

device to create the change of temperature, and the sensors together with

a LabVIEW program running on a computer for data acquisition. This

part of the system can be seen as the sensing module in Figure 2.1. The

LabView setup collects data including an ultrasound signal, temperature,

conductivity, and light absorption at �ve di�erent light frequencies (wave

length: 505 nm, 573 nm, 589 nm, 605 nm, 624 nm). A simpli�ed overview

of the data �ow can be seen in Figure 3.1. In addition, a pump was used to

create circulation and bubbles in the �uids together with a heating/cooling

device to achieve a temperature sweep consistent with what a �nished

system will meet. In order to get as wide a temperature range as possible

the �uids were cooled in a freezer over night and then heated by the heating

device while performing all the measurements simultaneously. Performing

one temperature sweep in a �uid typically took three hours.

3.1.1 LabVIEW program

As already stated, a LabVIEW program was made to handle all the data

acquisition, see Figure 3.1. The program communicates with the the Ar-

duino board using the NI LabVIEW Interface for Arduino Toolkit [21]. This

consists of a program running on the Arduino and a series of LabVIEW

functions making it straight forward to access the Arduino I/O pins. To

retrieve the ultrasound data a National Instruments card (NI PCI-5142)

was used. The part of the program sampling the ultrasound is built around
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Figure 3.1: Measurement setup

an example code provided by LabVIEW.

As a result of the Arduino board only having six analog I/O pins and

nine analog values needed to be read by the Arduino, an analog multi-

plexer (CD4052B, [8]) was used. The multiplexer was set up in such a way

that it could be controlled by LabVIEW through the Arduino board. Lab-

VIEW provides the possibility of creating laboratory applications quickly

with a practical user interface. However, the graphical programing quickly

results in quite untidy and unreadable block diagrams. As a result of this

the LabVIEW program will be explained in writing. Still, the program

�le (measureto�le.vi) can be found by following the path in Appendix B.

A typical situation during measurement in LabVIEW can be seen in Fig-

ure 3.2 showing the user interface. Three graphs can be seen, one showing

the trig signal used to trigger the ultrasound transducer (top center), one
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Figure 3.2: LabVIEW interface

showing the ultra sound signal (top right), and the last one showing the

nine analog values being read by the Arduino board (bottom center). In

addition to this, a number of text-boxes and buttons can be seen. Due

to the scaling of the plot it might be di�cult to read the text. How-

ever, these are mainly input values used to control the program and the

important ones are the following:

• �lename, specifying the name of the output �les generated by the pro-

gram. In total three �les are generated using the speci�ed �lename as

the root and adding respectively; _us_signal.txt, _us_trig.txt and

_arduino.txt.
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• Resource Name, specifying which hardware (National Instruments

card) to import ultrasound data from.

• Channel Name(s), specifying which of the channels available at the

National Instruments card should be used. In this setup both channel

0 and channel 1 were used.

• Timeout(s), specifying how long the program will wait for a trigger

signal before timing out.

• Min. Record Length, Minimum number of samples recorded of the

ultrasound signal.

• Trigger Source, specifying which channel is used to trigger the record-

ing of the ultrasound signal.

• Trigger Level, specifying what voltage level needs to be crossed to be

detected as a trigger.

When running the LabVIEW application two parallel threads are started.

One thread containing a loop retrieving data from the National Instru-

ments card (NI-loop), and one thread containing a loop controlling and

retrieving data measured by the Arduino board (Arduino-loop). The two

treads are synced after each iteration in their respective loops.

NI-loop

The NI-loop waits for a positive trig on the channel de�ned as a trigger

source (should be channel 1). When this occurs it records 3500 samples

from channel 0 (should be the ultrasound signal) and 100 samples from

channel 1 (trig signal) at 14.29MHz. The recorded data from channel 0

is then added to the �le: �lename_us_signal.txt, as a new line, and the

data from channel 1 is added to the �le: �lename_us_trig.txt. Each data
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point is separated by a tab. These two �les will later serve as input to the

Matlab application extracting features from the ultrasound signal.

Arduino-loop

The Arduino-loop reads nine analog values from the Arduino. However,

the Arduino Uno SMD board being used has only six analog I/O-ports [6].

As a consequence the number of analog ports was, as already mentioned,

expanded by an analog multiplexer (CD4052B, [8]). The CD4052B con-

tains two analog 4-to-1 multiplexers controlled by two digital inputs, A

and B. The pin layout and truth-table can be seen in Figure 3.3. Only the

multiplexer referred to as X was used. The common X port was connected

to the analog read pin 5 on the Arduino board. The digital output pins 8

and 9 on the Arduino were connected to port A and B on the multiplexer

respectively. Finally, X port 0 to 2 were connected to conductivity sen-

sor pin 2 to 4 and X port 3 was connected to the temperature pin of the

Q-sensor. Analog read pin 0 to 4 on the Arduino were used to read the

outputs from the light absorption sensor.

Using the connection setup described above the nine values could be

read by �rst reading analog pin 0 to 4 on the Arduino and then by reading

port 5 four times while iterating through the four possible con�gurations

of the control signals A and B. This results in a vector containing the

nine values. Said vector is then appended as a new line to the �le �le-

name_arduino.txt with each data point separated by a tab.

3.1.2 Ultrasound & temperature sensor

The ultrasound and temperature sensor are both part of the Q-sensor

currently being used to detect the Urea concentration of Adblue. The ul-

trasound sensor consists of a transducer and a re�ector plate at a known

distance from the transducer. A pulse is generated, by a circuit integrated
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Figure 3.3: Pin layout and truth-table CD4052B. Obtained from [8].

on the Q-sensor-PCB, at �xed time intervals to excite the transducer and

send a pulse through the �uid. The same transducer is then used to record

the echoes returning from the re�ector plate, and this signal is �ltered

through an active �lter, again integrated in the Q-sensor-PCB. The out-

put of this active �lter is in the laboratory setup connected to channel 0 of

the National Instruments card and recorded, as earlier described, by Lab-

VIEW. The signal triggering the excitation circuit is connected to channel

1 of the National Instruments card. The temperature sensor consists of a

thermistor being part of a power loop where the voltage over the thermistor
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re�ects the temperature. This output voltage is recorded by the Arduino

board. The voltage is later translated to degrees Celsius in Matlab, based

on a voltage to temperature table provided by Wema.

3.1.3 Conductivity sensor

The conductivity sensor consist of four pins mounted on a plate that can

be submerged in the �uid. Pin 1 was connected to 5 volts and the three

other pins were connected to resistors, with known resistance (1Ω), leading

to ground. By doing so the voltage over pin 2 to 4 can be used as a

measurement of the conductivity of the �uid. The value of these three

pins were recorded by the Arduino.

3.1.4 Development of the light absorption sensor

In addition to the already existing sensors, measuring ultrasound and con-

ductivity, a new sensor, measuring light absorption, has been suggested.

Such a sensor is not used by the current system, but it has been success-

fully applied in other areas of chemical sensing [23]. A prototype of such

a sensor was developed as part of a project work prior to this master [26].

In this version of the light absorption sensor a RGB-LED was used to gen-

erate light at three di�erent frequencies. A photo resistor was then used

to measure the light intensity of each frequency after the light was �ltered

through the �uid. Using this design, only one frequency could be read at

a time. In addition the photo resistor acted quite slowly to changes in

the light intensity. As a consequence of this, it was necessary to wait for

about a second after changing the color of the RGB-led before measuring

the light intensity at the photo resistor, resulting in a very low sampling

frequency. Furthermore, the characteristics of the components were not

well known, e.g. the actual wavelengths of the transmitted light was not

known except for being in the red, green and blue area respectively. How-
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ever, the measurement principle showed promising results and has been

further studied in this report.

Figure 3.4: Light absorption sensor

A new light absorption sensor has been made with the goal of improving

the less optimal points about the previous design. In the new design, photo

diodes are used both as a light source and to measure the intensity of the

light after having been �ltered through the �uid. The sensor uses the

principle that a light emitting diode will also generate a small electrical

current when exposed to light. The current generated by the receiving

diode is very small and needs to be ampli�ed in order to be measured. A

circuit was made based on a Texas Instruments tutorial [18]. The circuit

is shown in Figure 3.5b. The relation between the current through the

diode id and the output voltage vout can be described by Equation 3.1.
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Hence, by changing the resistor value R1 the circuite can be tuned to give

an output between zero and �ve volts, proportional to the current through

the diode.

vout = idR1 (3.1)

To evaluate as wide a range of frequencies as possible while still keeping

the cost of the prototype at a reasonable level six LEDs were chosen. This

was done on the basis of the diodes emitting light at six more or less

evenly spread frequencies in the visible spectrum (wave length: 430nm [2],

505 nm [3], 573 nm [17], 589 nm [4], 605 nm [5], 624 nm [1]), and for

them not being to expensive. Three ICs, from National Semiconductor

(LMC6482, [19]), each containing two operational ampli�ers was used to

make an amplifying circuit for each LED.

(a) Part of sensor in �uid (b) Amplifying circuit based on[18]

Figure 3.5: Light absorption sensor prototype

The prototype of the sensor was built by making two rails with six

LEDs on each. One working as the light source and one working as the

receiver. The rails where mounted such that LEDs with equal properties
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Led wavelength [nm] Resistor value [MΩ]

624 40

605 20

589 60

573 80

505 40

Table 3.1: Resistor values, light absorption sensor

where facing each other as can be seen in Figure 3.4. The LED-rails

where protected by two PET tubes so they could be submerged in �uid.

The amplifying circuit was mounted on a breadboard and the sensor was

initially tuned by adjusting the resistor values in the circuits so that the

circuit output would be close to �ve volts in air and zero volts if the light

source was switched of. During this tuning phase no stable output was

achieved by the circuit connected to the 430nm LED. As a result this

LED was excluded from the further work. The remaining �ve LEDs all

worked as intended with resistor values as described by Table 3.1. The

light source rail worked by simply applying 5 volts to each of the LEDs

in series with a resistor of 1 kΩ. As it was hard to perfectly tune the

amplifying circuits using resistors, and because the sensor output might

change slightly over time, a software calibration algorithm was created

in LabVIEW. This calibration algorithm worked by simply recording the

average output of the �ve measured values over some time while the sensor

was kept in air. A factor was then found for each value to make the output

in air be 1. These factors could then be used to correct the values obtained

during measurements in the �uids.
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3.1.5 Changing temperature

The reason to change the temperature in the �uids is to be able to com-

pensate for the e�ect temperature has on the properties of the �uid. In

addition to this, changing the temperature in the �uid might have an e�ect

on the measurements in the form of noise. One example can be the for-

mation of bubbles on every surface in the tank, this includes the sensors.

These bubbles will have an impact on the measurements. Understanding

the e�ect of such noise is important to be able to make a system that will

work in the real world outside the laboratory. The �uids were cooled in a

freezer over night and a heating/cooling device from PolyScience was used

to heat the �uid while measuring, see Figure 3.6.

(a) Adblue after a night in the
freezer

(b) PolyScience heating device

Figure 3.6: Cooling and heating of the �uids using a freezer and a Poly-
Science heating device
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3.2 Features

A very important, and maybe the most di�cult, part of the development

of a classi�cation system, is to decide on what features to use. A feature

is information extracted from the sensor data. The choice of features

to use and how to combine them is crucial in order to obtain successful

classi�cation later in the process. In the following the features investigated

in this report will be presented. In addition to use features that are well

known to provide relevant information about the classes of �uids, new

potential features are investigated to reveal whether or not they might

contain relevant information for the classi�cation system. This part of the

system can be seen as part of the processing module in Figure 2.1.

3.2.1 Speed of sound

In the system currently being used, the speed of sound in the �uid is the

key feature used to both measure the urea concentration given the �uid

is accepted as Adblue, and to recognize the presence of non-compliant

�uids. In order to detect this feature, a pulse of sound is sent over a

known distance d. The Round Trip Time, (hereby referred to as RTT) is

detected. RTT is the time it takes a pulse of sound to travel back and

forth between the transducer and the re�ector plate. The speed of sound,

v, in the �uid is then calculated as a function of the RTT and the known

distance the sound has traveled, see equation 3.2.

v =
d

RTT
(3.2)

3.2.2 Startup noise peak strength

In the beginning of the ultrasound signal, displayed in Figure 3.7, four

peaks can be seen. These peaks are not a result of sound traveling through

the �uid being measured, they are internal ringing in the transducer after
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Figure 3.7: Ultrasound signal with startup noise peaks

it has been triggered. However, the acoustic impedance of the �uid might

have an e�ect on their amplitude due to its impact on the boundary con-

ditions between the transducer and the �uid. In order to enlighten how

these peaks change with respect to the di�erent �uids, the amplitude of

these peaks has been extracted from an extensive set of ultrasound signals

measured at di�erent temperatures in di�erent �uids. This can be seen

in Figure 3.8. From the plot it seems reasonable to say that the ampli-

tude of the peaks increases at high temperatures. In addition Adblue321

has higher values for peak 2, 3 and 4, while Glycol100 and Glycol50 have

lower peak values. Although the values are similar for all classes at lower

temperatures the peak amplitudes are kept as a feature to be tested with

a classi�er.

3.2.3 Echo amplitudes

When sound propagates through a �uid it su�ers from transmission loss.

This loss is due to dispersion and attenuation of the sound. Di�erent �uids

will result in di�erent attenuation levels as a function of the shear viscos-
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Figure 3.8: Amplitude of startup noise peaks

ity, volume viscosity, sound frequency, density and speed of sound in the

�uid [14]. In addition the temperature in the �uid will have an e�ect on

the attenuation properties. When the �uid contains bubbles, this will lead

to scattering of the sound waves contributing further to the total transmis-

sion loss. As a consequence the transmission loss is a�ected by a number

of factors, some being speci�c for a certain type of �uid and some being

related to other factors that can be seen as noise. Whether or not the echo

amplitude provides useful information about the �uid in the tank depends
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Figure 3.9: Amplitude of echo 1 (top) and echo 2 (middle) and the factor
between them (bottom).

on how much noise there is hiding the potential useful information. In

Figure 3.9 the amplitude of the �rst and second echo is shown for the mea-

surements in di�erent �uids at di�erent temperatures. Furthermore, the

relative factor between the two amplitudes are shown. It can be seen that

the amplitude of the �rst echo reaches saturation at 1.65 V for most of the

data points. This is due to the digital �lter clipping the echo at this value,

hence the actual echo has a higher amplitude. This makes it hard to use

this amplitude directly as information about the real amplitude above 1.65

V is lost. However, the second echo is never strong enough to su�er from
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saturation and thus still contains information about the signal strength.

Because di�erent transducers have di�erent properties concerning signal

strength measuring echo amplitude directly is not necessarily comparable

between sensors. In addition, the signal strength of a transducer might

change over time, and it is also a�ected by temperature. For this reason,

to get a measurement of the transmission loss the damping factor between

the �rst and the second echo is preferable. However, because the �rst echo

often su�ers from saturation, simply dividing the amplitude of echo 1 with

the amplitude of echo 2 would result in a misleading damping factor. An

algorithm was made to overcome this di�culty and provide a more correct

estimate of the damping factor. This algorithm works by �nding the factor

a minimizing the euclidean distance between the �rst echo and the second

echo ampli�ed by the factor a, as described in Equation 3.3.

arg min
a
{‖(e1 − ae2)‖} (3.3)

Here e1 is the �rst echo and e2 is the second echo shifted in time to overlap.

Figure 3.10 shows an example of how the two di�erent methods of �nding

the damping factor works. At the top a plot is seen showing the second

echo shifted in time to overlap with the �rst echo by using the already

detected RTT value. In the middle the second echo has been ampli�ed by

the factor a found by using Equation 3.3. This leads to a good overlap

between the two echoes, although it is not a perfect match. This is due to

the distortion of the signal as it travels through the transmission channel.

The bottom plot in Figure 3.10 displays the second echo on top of the

�rst echo after it has been ampli�ed by the factor found by dividing the

amplitude of echo 1 by the amplitude of echo 2. As can be seen this leads

to a perfect overlap of the echoes at the peak marked by the red circle. On

the other hand the rest of the two echoes match poorly. The bottom plot

in Figure 3.9 shows the damping factor found by using Equation 3.3.
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Figure 3.10: Top: Echo 2 shifted to overlap with echo 1 . Middle: Damping
factor found by �nding the best �t between �rst and second echo using
Equation 3.3. Bottom: Damping factor found by dividing the amplitude
of echo 1 with the amplitude of echo 2.

3.2.4 Echo frequencies

As earlier mentioned, when sound propagates through �uids it is subject

to attenuation. The attenuation constant is amongst others dependent of

the sound frequency. The transducer used in the ultrasound sensor has

two resonance frequencies: one at about 600 KHz and one at about 1

MHz. In other words does the transmitted pulse consist of these two main

frequencies. The relative damping of the two frequencies might be di�erent

depending on the �uid. To see if it might be possible to extract useful
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Figure 3.11: Top: Max peak frequency spectrum. Middle: Factor between
1 MHz and 600KHz echo1. Bottom: Factor between 1 MHz and 600KHz
echo2.

information based on this property, the maximum peak strength of the

frequency spectrum was recorded for a set of ultrasound signals measured

in di�erent �uids at di�erent temperatures. In addition the factor between

the energy at 600 KHz and the energy at 1 MHz was recorded for both the

�rst and the second echo. All three features can be seen in Figure 3.11.

The ultrasound signal is �ltered through an active bandpass �lter, with

a pass band around 1 MHz, before it is digitized, this causes the 1 MHz

frequency to be the most prominent in the recorded signal. When the �uid
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contains bubbles, the frequencies in the transmitted signal will be damped

depending on the resonance frequencies of the bubbles which again are

related to the bubbles' radius. This means that the 600 KHz part of

the signal and the 1 MHz part of the signal might be damped di�erently

depending on the distribution of bubbles in the �uid. When the goal is

to use the relative damping of the two frequencies to classify the di�erent

�uids, the fact that bubbles with di�erent radius will damp the frequencies

di�erently contribute to obscure the useful information. This makes it

challenging to use this property as a feature for the classi�er.

3.2.5 Signal variance

The variance of the ultrasound signal has been measured not because it

reveals information about what �uid is present, but as a measurement of

how strong the returned echoes are. When the signal variance is high

this indicates that most of the signal energy is returned in the form of

echoes. When the signal variance is low this indicates that much of the

signal energy is absorbed in the transmission channel. This typically occurs

when there are a huge amount of bubbles and has proven to be correlated

with a higher fail rate in other features. The signal variance is therefore

used to evaluate how trustworthy a certain measurement is.

3.2.6 Conductivity

Conductivity was, as previously, stated measured for all the classes of

�uid at di�erent temperatures. The measured values were used directly

and no real preprocessing was needed. The resulting output is shown in

Figure 3.12.
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Figure 3.12: Top: Volt measured at Pin 4. Middle: Volt measured at Pin
3. Bottom: Volt measured at Pin 2.

3.2.7 Light absorption

As for the conductivity measurement the measured light absorption values

needed no prepossessing. However, the sensor had trouble with bubbles

and coating forming on the PET tubes distorting the light. This resulted

in the measured values not re�ecting the actual light absorbing properties

of the �uids. Using light absorption is regarded as interesting, but with the

results obtained with the current prototype it was discarded as a feature

for the classi�cation system. Examples of measurements obtained using

this sensor can be seen in Figure 3.13.
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(a) Light intensity measured in diesel

(b) Light intensity measured in Adblue 32.1%

(c) Light intensity measured in Adblue 15.8%

Figure 3.13: Measurements obtained using the light absorption sensor
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3.2.8 Temperature

The temperature in a �uid does of course not reveal any information about

what kind of �uid it is in its own right, but it is important because other

properties used as features change depending on the temperature. The

measured voltage level was translated into a temperature level on the Cel-

sius scale by calculating the corresponding resistance of the thermistor and

using a lookup table provided by Wema relating the resistance to temper-

ature.

3.3 Software for Feature Extraction

The Q-sensor-PCB alternates between sending four trigger pulses at 1 MHz

and sending one shorter pulse. This shorter pulse is sent to check that the

sensor is working properly. The LabVIEW program recording sensor data

will also record data when this check pulse is sent. These recordings are

removed in Matlab before feature extraction is performed. This is done by

checking the trigger signal which is stored in the �le �lename_us_trig.txt.

If only one pulse exists in this trigger signal the corresponding lines in the

�lename_us_signal.txt and �lename_arduino.txt �les are removed. The

program is called CleanUpRawData.m and can be found by following the

path speci�ed in Appendix B.

The amount of data, collected in the lab, far exceeded the amount

practical to work with when developing the feature extraction and classi�-

cation code. Consequently, software was made to extract a certain number

of samples from the complete set of raw data. The wanted number of data

samples is speci�ed by the user and the program will extract this number

of samples evenly spread from the original set of raw data and save them

in a new �le. The program is called Small_selection_of_�les.m and can

be found by following the path speci�ed in Appendix B.

To extract all the features previously presented a program was made
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in Matlab reading all the raw data �les from LabVIEW, extracting the

features and saving them to text �les to be further used by the classi-

�er algorithms. In addition to the �les containing the feature vectors,

�les containing the feature names were saved. The program is called fea-

ture_extraction.m and can be found by following the path speci�ed in

Appendix B. Most of the features could be extracted more or less straight

forward, but the RTT detection algorithm has been subject to more ex-

tensive work, searching to make it more robust to noise. This work has

been described in a Chapter 4.



Chapter 4

Development of a new RTT

detection algorithm

In the system that is currently used to detect the urea concentration of

Adblue, the urea concentration is related to the speed of sound in the �uid.

This property is directly related to the RTT of the transmitted ultrasound

pulse. Under certain conditions in the tank it has been noted that the

current RTT detection algorithm detects sudden jumps in the RTT. These

RTT jumps also have an impact on the urea concentration measurement.

As the RTT was assumed to be of great importance as a feature for the

classi�cation algorithms to be presented later in this report, a new RTT

detection algorithm was developed to eliminate the sudden jumps. The

considerations done about the jump phenomenon and the development

process will be presented in this chapter. At the end of the chapter the

results of this work are presented together with a discussion of what was

achieved.

35
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4.1 RTT detection algorithm used in the current

system

In the current system the RTT is detected by �nding the start of the �rst

echo using some criteria concerning the amplitude and frequency of a pulse

in order to be recognized as a true echo and not noise. When the start of

the echo is found, the point where the �rst zero crossing occurs is de�ned

as the position of the echo.

Figure 4.1: Distortion of echo by bubbles

The advantage of this method is the fact that it only uses the �rst echo

of the signal in order to detect the RTT. This is advantageous because the

presence of even small amount of bubbles in the �uid will have a strong

impact on the echo strength and further make later echoes very hard, and

sometimes impossible to detect. However, the presence of bubbles will

not only weaken the echo, but also distort it, and make it shift in time.

During practical use of the RTT detection it has been noticed that under

certain conditions sudden jumps in the detected RTT occur. The size
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of these jumps coincides with the time of one period in the transmitted

signal. The reason for these sudden jumps is the signal being distorted in a

way that is damping the �rst periods of the signal considerably more than

later periods. This may lead to the �rst period being damped su�ciently

to make it be discarded as noise, and hence result in a sudden jump of the

detected RTT. An example of this phenomenon can be seen in Figure 4.1.

The blue line is the start of an echo under good conditions without the

presence of bubbles in the �uid. The purple line is the same echo after

bubbles have been introduced in the �uid by using a pump. The dotted

lines represent intermediate echoes. As we can see from the plot, the peaks

shift towards the left. In the pink echo the peak of the �rst period has

also been damped so much that it is barely visible. In this case what is

actually the second period of the echo will be detected as the start of the

echo by the zero crossing algorithm currently used in the system.

4.2 RTT detection algorithm comparing echoes

To prevent the sudden jumps from taking place in the RTT detection,

an algorithm based on comparing the �rst echo with the second echo was

tested. The idea behind this approach was that because both echoes pass

through the same �uid with the same noise conditions they will both su�er

from approximately the same distortion. Hence, if the �rst period of the

�rst echo disappears so will the �rst period of the second echo.

A traditional way of comparing two echoes is by using correlation. One

way is to �nd the autocorrelation [22] of the signal, written as:

Rxx(k) = E[xn+kxn] (4.1)

In this equation xn is sample number n in the ultrasound signal. This will

return the highest correlation at k = 0, meaning that the signal correlates

best with itself at zero time shift. Even complete random signals will
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have this property. When k equals the RTT a new high peak in the

autocorrelation will occur because the �rst echo aligns with the second

echo, the second echo aligns with the third echo and so on. Alternatively

one can roughly detect the �rst and second echo and calculate the cross

correlation of two windows each containing one of the echoes.

Ryx(k) = E[yn+kxn] (4.2)

Now x is the vector containing the �rst echo and y is the vector containing

the second echo. x and y is extracted from the ultrasound signal with a

certain time shift t. The k corresponding to the best correlation between

the two vectors is then used to adjust the �rst rough estimate t. This will

have the advantage of saving a number of computations, but it demands

some preprocessing in order to extract the two echoes.

For algorithms based on correlation to work well and have clearly de-

�ned peaks at intervals corresponding to the RTT the transmitted signal

should have a high correlation only when the echoes completely overlap.

The signal being transmitted in today's sensor does not ful�ll this prop-

erty. An example of a signal with said property is a Chirp signal [15].

To demonstrate this a chirp signal and its autocorrelation was generated

in MATLAB as can be seen in Figure 4.2. Algorithms using correlation

have still proven to return accurate estimates as long as the conditions of

the measurements are noiseless. If the measurements are done in an envi-

ronment with a high noise level the correlation algorithms will lose their

accuracy, however they still manage to return rough estimates missing with

a certain number of periods. The reason why correlation algorithms eas-

ily miss the true RTT value by a period is because there is a very high

correlation between an echo and the same echo shifted by the length of

a period. As previously stated, if the signal being transmitted did not

have this property, correlation algorithms would probably be more robust

to noise. However, this would require a new transducer and will not be
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discussed further in this report.

Figure 4.2: Chirp signal and its autocorrelation

Because the transmitted signal is not ideal for comparing echoes by

using correlation, a di�erent approach to �nd the best match between the

�rst and second echo was developed. This method was used to detect

RTT in the project of which this master thesis is a continuation [26]. This

method has been given the name �Minimum Error�. A quick explanation

of how it works will be presented later on, as this algorithm has not been

explained in the previous report. This is necessary because a new algorithm

has been developed, as part of this master thesis, building on the �Minimum

Error� algorithm.
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4.3 Motivation behind avoiding errors in the de-

tection of RTT

Figure 4.3: Correlation between �rst and second echo with today's trans-
ducer

As earlier mentioned, the motivation for developing a new algorithm

to compare two echoes was that the transmitted signal from the currently

used transducer is not ideal for using correlation. An example of this can

be seen in Figure 4.3. Here the �rst and second echo of a signal has been

detected and extracted. The cross-correlation of the two echoes has then

been calculated and is shown in the bottom plot. Notice how there is no
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clear peak in the correlation plot indicating the best mach. Instead there

are many peaks more or less equally strong. This makes it di�cult to know

which peak is indicating the correct RTT.

Figure 4.4: Speed of sound as function of temperature, Water and Adblue

Because the transmitted signal has a period of about 1 MHz, missing

the overlap of the echoes by a period is equivalent to detecting the RTT

with an error of 1 µs. The typical round trip time of the system lays around

70 µs. This results in an error of approximately 1.43%. This might seem

as an insigni�cantly small detection error. However, the RTT itself is not

of interest for the application of the system. It is used to calculate the urea

concentration of the Adblue, which ideally should be 32.5%. The way this

is done is by calculating the speed of sound based on the RTT and then

compare this result to the theoretical speed of sound in water and Adblue.

The speed of sound in �uids usually changes with the temperature in the

�uid, thus the theoretical speeds of sound is a function of temperature as

can be seen in Figure 4.4. The e�ect of missing by one period in the RTT
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detection will not lead to a constant error in the concentration estimation.

On the contrary it will be highly dependent of the true speed of sound in

the �uid and of the temperature. The speed of sound in the �uid is related

to the RTT by the formula:

v =
d

RTT
(4.3)

Where v is the speed of sound and d is the travel distance of the sound.

Now, to see how an error in the RTT detection a�ects the calculation of

v, imagine the RTT is detected with an error of k seconds. The true RTT

can be written as RTTtrue, and the detected RTT can be written as:

RTTdetected = RTTtrue + k (4.4)

The true speed of sound is

vtrue =
d

RTTtrue
, (4.5)

and the calculated speed of sound is

vdetected =
d

RTTdetected
=

d

RTTtrue + k
, (4.6)

The error of the calculated speed of sound can now be written as:

verror = vtrue − vdetected

=
d

RTTtrue
−

d

RTTtrue + k

=
dk

RTT 2
true +RTTtruek

(4.7)

By �nally inserting:

RTTtrue =
d

vtrue
, (4.8)
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the formula for the error in the calculated speed of sound verror as a func-

tion of speed of sound v, travel distance d and RTT error k can be written

as:

verror =
v2k

d+ vk
, (4.9)

This shows that verror approaches in�nity when v goes to in�nity. In other

words the higher the speed of sound the bigger the error will be, given

a �xed error in the RTT detection k. In addition, if the travel distance

d gets bigger the impact of the RTT error will get smaller. This means

that one way of minimizing the e�ect of error in the RTT detection is

to increase the travel distance. Although this might seem as a good idea

by simply looking at this formula, in practice it will lead to the sound

traveling a longer distance in the �uid and hence enhance the impact of

noisy conditions on the detected RTT. This might lead to a higher RTT

error k, overall resulting in an increased verror. In addition to the fact that

an increased travel distance d will not necessarily result in a smaller verror,

increasing the distance will also result in the sensor being physically bigger.

Whether or not this would be acceptable would have to be considered.

As the algorithms using correlation have a tendency to miss by multiple

lengths of periods, this implies that k = n/f, n = 0,±1,±2, · · · where f is

the frequency of the transmitted signal. By increasing the frequency of the

transmitted signal each miss by a period, in the RTT detection will have

a smaller impact on the calculated speed of sound. However, a change in

frequency will also have an e�ect on attenuation of the sound in the �uid

and the dispersion e�ect of bubbles. Thus, it is hard to conclude on the

overall e�ects of increasing the transmitted frequency.

Changing the physical properties of the ultrasound sensor is beyond

the scope of this report and the considerations presented here will not be

investigated further. Instead the focus of this report will be on developing
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software able to eliminate errors in the detected RTT caused by missing

by a number of complete periods.

Figure 4.5: Error in the speed of sound detection given a miss in the RTT
detection corresponding to a complete number of periods. Here the periods
of the signal is of length 1 µs and the travel distance of the sound is 0.109
meters.

To demonstrate the e�ect of missing by a number of periods, Figure 4.5

shows verror given 0, 1, 2 and 3 period misses in the detected RTT given

the true speed of sound being in the range 1400 to 1700 m/s. This range

corresponds to the typical working range of the system, as can be seen by

Figure 4.4, including the range of speed of sound in water and Adblue. The

distance d used in the making of this plot is 0.109 meters, corresponding to

the travel distance of today's sensor. As the speed of sound estimate is used

to calculate the urea concentration in Adblue it is interesting to see how

the detected speed of sound will be a�ected by these period misses. Using

the theoretical values of speed of sound in Adblue, shown in Figure 4.4,
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and adding the corresponding error due to period misses the plot shown

in Figure 4.6 was made. This �gure clearly demonstrates that missing by

just a few periods will have a signi�cant impact on the speed of sound

estimates.

Figure 4.6: Speed of sound calculated when measuring in Adblue 32.5%
and missing by a certain number of complete periods. The dotted line
represents the theoretical speed of sound in water.

To calculate the urea concentration in the �uid the function presented in

Equation 4.10 is used:

Urea concentration = 32.5% · vdetected − vwater

vAdblue32.5% − vwater
, (4.10)

In the case in which this function returns a negative value, zero will be

returned instead, as a negative concentration of urea in water is not pos-

sible. In the cases in which this still happens it can either be due to the

presence of other types of �uid in the tank with a speed of sound below

the speed of sound in water, or it can be due to an error in the detected
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Figure 4.7: Error in reported urea concentration given a certain number
of period misses in the RTT detection as function of temperature.

RTT. Assuming Adblue with a concentration of 32.5% urea is measured,

the e�ect, on the reported concentration, of missing by a number of pe-

riods in the RTT detection is shown in Figure 4.7. As can be seen here,

even missing by only 1 period will result in an error in the reported urea

concentration of about ±4% to ±13%, depending on the temperature in

the �uid.

Based on these considerations it seems clear that avoiding such period

misses in the detected RTT is crucial in order to report a reliable concen-

tration measurement. In addition, it might also be crucial if the speed

of sound in the �uid is to be used as a feature by a classi�cation system

detecting the presence of �uids not being Adblue. As a result of this, the

development of a new algorithm for RTT detection will be presented in

the following.
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Figure 4.8: A typical example of the ultra sound signal

4.4 Minimum Error algorithm for detection of RTT

A typical signal can be seen in Figure 4.8. The idea behind the Minimum

Error algorithm is to �nd the time shift minimizing the square of the

di�erence between the �rst and the second echo of the ultrasound signal.

This is done by initially extracting the �rst and second echo and storing

them in two separate vectors, echo1 and echo2. An error vector is then

created using equation 4.11.

error(i) =
∑N

n=1(echo1(n)− echo2(n+ i))2,

N = length(echo1),M = length(echo2)

i = (1−N), (2−N), · · · , (M − 1)

(4.11)

The index of the minimum value in the error vector indicates the shift

between the two vectors resulting in the best overlap. This index is now

used to correct the time shift of the initial extraction of echo1 and echo2.

A step by step walkthrough of the algorithm will now be presented:

1. Remove startup noise. See Figure 4.9
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Figure 4.9: Ultrasound signal without the startup noise, due to internal
ringing in the piezo.

2. Calculate the signal energy distribution of the signal, see Figure 4.10a

and Equation 4.12.

energy(n) =
28∑
i=0

ultrasound_vector(n+ i)2 (4.12)

3. Look for the highest energy peak in the area where echo 1 can be

located, see Figure 4.10b.

4. Roughly determine the start of echo1 (move back from max peak

until a threshold is crossed), see Figure 4.10b. The threshold is a

dynamic value so that 20% of the vector elements are stronger than

the threshold.

5. Look for the highest energy peak where echo2 should be located.

This is adapted by the rough location of echo1. (Should be twice the

distance), see Figure 4.10c.

6. Detect the start of echo2 roughly (in the same way as for echo1 ),
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Figure 4.10: Steps to extract echo1 and echo2 from the ultrasound vector

see Figure 4.10c.

7. Store echo1 and echo2 in two vectors using a window around the

rough estimate of their location, see Figure 4.10d,e and f.

8. Generate the error vector using equation 4.11, see Figure 4.11a.

9. Use the index of the minimum error together with the start indexes

of the two vectors containing echo1 and echo2 to calculate the RTT,

see Figure 4.11b and Equation 4.13.

RTT = index+ start_echo2− start_echo1 (4.13)
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(a) Error vector

(b) Best match between echo1 and echo2, using the minimum error al-
gorithm

Figure 4.11: Minimum error algorithm to �nd best match between the �rst
and second echo of a ultrasound signal

4.5 Comparing methods for detection of RTT

The results using the Minimum error algorithm turn out to be the same as

using correlation as can be seen in Figure 4.12. A visual inspection of what

happens in the algorithms shows that both algorithms works as intended

but have the same di�culties caused by the distortion of the second echo

being stronger than of the �rst echo. This leads to the sudden jumps in

the detected speed of sound around 40◦C. It is important to emphasize

that the jumps are not due to the temperature in the �uid itself but due

to the conditions in the tank at this moment.

Because the original algorithm based on zero crossing detection only
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Figure 4.12: Speed of sound detection, cross-correlation vs. minimum error

uses the �rst echo, it handles noise slightly better as can be seen in Fig-

ure 4.13. But the zero crossing algorithm also fails, and when it does the

error is slightly bigger.

Figure 4.13: Speed of sound detection, zero crossing vs. minimum error
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4.6 Improving the RTT detection algorithm

Although the sudden jumps in the detected RTT re�ect the correct behav-

ior of all the algorithms so far treated in this report, sudden jumps in the

speed of sound do not occur. What happens is a distortion of the signal

gradually occurring over some time. The reason why all the algorithms

detect jumps instead of a smooth transition is that they all use the peri-

ods in the signal to de�ne the presence of an echo, and there will always

be some �xed limit for when the amplitude of a period is strong enough

to be perceived as part of an echo.

If an algorithm could be made comparing the position of the current

signal to the position of the last signal measured, one could in theory

calculate the rate of change in the position of the signal and sum this up

over time to keep track of the speed of sound in the �uid.

RTTi = RTTi−1 + dRTTi (4.14)

In Equation 4.14 RTTi is the current RTT, RTTi−1 is the last RTT de-

tected and dRTTi is the change detected between the last and the current

measurement. To �nd dRTTi one can use cross-correlation (Equation 4.2)

between the last and the current measurement of the signal to �nd the

lag, k, resulting in the best correlation. Or alternatively the minimum

error approach can be used (Equation 4.11), but then �nding the index i

resulting in the minimum error. The detected change of RTT can then be

calculated as:

dRTTi =
k

Fs
(4.15)

Fs being the sampling frequency. The advantage of this method is that a

complete signal can be compared to a complete signal or alternatively one

can simply compare two �rst echoes. Because the distortion of the signal
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occurs over some time, two following signals will result in a good correla-

tion. However, there are two obvious problems with this approach. One

being how to de�ne the initial RTT value. The second being drifting caused

by rounding errors in the numeric calculations. With a sampling frequency,

Fs = 14.29MHz, the minimum RTT step dRTT would be approximately

0.07µs with an error, dRTTerror, in the range dRTTerror ≤ ±0.035µs.

In an attempt to combine the advantages from the di�erent methods

and circumvent their disadvantages, an algorithm combining di�erent ap-

proaches is suggested. The algorithm will use parts o� the Minimum error

algorithm previously explained, �nding the time shift between the �rst and

second echo. In addition, a reference signal will be stored in order to com-

pare the complete signal to this reference signal and hence be able to detect

the change of the RTT over time. The reference signal will be updated

occasionally when certain conditions of the signal are met. The new algo-

rithm will in the following be referred to as the Improved Round-trip-time

Detection, IRD.

The IRD works as follows:

• Calculate the signal variance, σ2.

• Update the signal variance threshold, σ2t , according to the following

equation:

σ2t = max{σ2t , 0.99σ2} (4.16)

• If σ2 > σ2t calculate the RTT as described in section 4.4. Store the

current signal as a reference signal together with the detected RTT.

• If σ2 ≤ σ2t �nd the shift, dRTTi, between the current signal and

the reference signal. Calculate the new RTT measurement using

Equation 4.14. If 0.84µs ≤ abs(RTTi − RTTi−1) ≤ 1.12µs update

the reference signal to the previous signal together with RTTi−1 and
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recalculate RTTi using the new reference value. This is done because

jumps of about 1µs are probably due to distortion of the signal.

4.7 IRD algorithm compared with former meth-

ods

The results using the IRD algorithm have through testing shown to be

more robust to avoid sudden jumps in the detected speed of sound. The

combination of RTT detection using both echoes when conditions are be-

lieved to be good, and using a reference signal when conditions are believed

to be harsh have proven to yield promising results. A demonstration can

be seen in Figure 4.14 where three algorithms have been applied to the

same piece of raw data. Both the zero crossing and the minimum error

algorithm su�er from sudden jumps in the detected speed of sound whilst

the IRD algorithm returns a smooth curve with the exception of one out-

lier at about 50◦C. At low temperatures near zero degrees none of the

algorithms returns valid results, this is due to parts of the ultrasound sen-

sor being located in a block of ice, and no valid echoes are returned to the

sensor.

To further evaluate the performance of the IRD algorithm compared to

the zero crossing algorithm both algorithms were tested with ultrasound

signals retrieved by measuring over a broad temperature band in all the

�uids in question. The test was done by comparing the RTT returned

by the algorithms to the correct RTT value. In order to make such a

comparison the correct RTT value needed to be found. The speed of

sound in a �uid changes with the temperature. As a consequence of this,

the speed of sound can be seen as function depending on temperature.

One way to de�ne the correct values is to use polynomial regression to

de�ne polynomial functions best �tting the recorded data. Coe�cients

for a �fth order polynomial function have already been found for water,
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(a) Zero crossing (b) Minimum error

(c) IRD (d) Comparison

Figure 4.14: Comparison of speed of sound detection using Zero Crossing,
Minimum Error and the IDR algorithm

hereby referred to as the Marczak-coe�cients [20]. For the other classes

second order polynomials were found using data recorded at the Wema lab

in Bergen. This was done in the following way:

• For all the �uids considered the ultrasound signal was recorded over

a wide temperature range using today's ultrasound sensor. The tem-

perature was recorded by using the thermistor integrated in the ul-

trasound sensor.

• The RTT was detected by using both the zero crossing algorithm and

the IRD algorithm. All the data points were plotted as a function of

temperature, and the obvious outliers were removed manually before

using the MATLAB function poly�t [24] to �nd the coe�cients best

�tting the data.
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Order: 2th 1th 0th

Adblue321 −0.0146 1.4007 1617.0

Adblue158 −0.0158 1.9624 1553.1

Diesel 0.0084 −4.0526 1443.0

Glycol100 −0.0026 −1.7873 1834.5

Glycol50 −0.0079 −0.1207 1689.1

Table 4.1: Coe�cients for speed of sound curves based on recorded data

Algorithm Total Invalid Valid Correct Error

IRD #: 5537 778 4759 4343 416

IRD % 14.1 85.9 91.3 8.7

Zerocross(ZC) # 5537 877 4660 4213 447

Zerocross(ZC) % 15.8 84.2 90.4 9.6

IRD and/or ZC # 5537 419 5118 5004 114

IRD and/or ZC % 7.6 92.4 97.8 2.2

Table 4.2: Evaluation of the IRD and Zerocrossing algorithms
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Figure 4.15: Speed of sound curves approximated as second order polyno-
mials for the �uid classes as function of temperature

The resulting curves can be seen in Figure 4.15. Here * indicates a

data point used to �nd the polynomials. The corresponding coe�cients

can be seen in Table 4.1. By using these curves as reference the two

RTT detection algorithms were tested. Both algorithms have a tendency

to miss by a number of signal periods. This corresponds to about 14

samples in the raw ultrasound signal. The threshold for counting a RTT

detection as erroneous was therefore chosen to be missing by more than 7

samples compared to the reference value. The data set used to evaluate the

two algorithms can be seen in Figure 4.16. In Table 4.2 the performance

of the two algorithms has been presented. Here it can be seen how the

two algorithms performed on a data set consisting of 5537 measurements

at di�erent temperatures and in di�erent �uids. The evaluation of the

algorithms has three possible outcomes:

• Invalid. The algorithm fails to detect the RTT caused by too much

noise or no signal.

• Correct. The algorithm returns an RTT value less than 7 samples
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Figure 4.16: Evaluation of RTT detection using measurements from dif-
ferent types of �uids

o� the reference value.

• Error. The algorithm returns an RTT value more than 7 samples o�

the reference value.

In addition to presenting the performance of the two algorithms a combined

performance can be seen. In this case the three outcomes corresponds to

the following:

• Invalid. Both algorithms fail to detect the RTT caused by too much

noise or no signal.

• Correct. One or both of the algorithms returns an RTT value less

than 7 samples o� the reference value.

• Error. Both algorithms return an RTT value more than 7 samples

o� the reference value.

The table shows that the IRD algorithm performs slightly better than the

Zero crossing algorithm. It returns more valid results and when it does its
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success rate is higher than for the Zero crossing algorithm. However, their

performances are quite close. An interesting observation is that their com-

bined performance is signi�cantly better than their separate performance.

This indicates that the two algorithms perform well under di�erent kinds

of conditions. The number of invalid results are about half of what either

algorithm manages separately and 97.8% of the valid results are correct.

Using both algorithms in parallel could be an option to obtain a more ro-

bust RTT detection. In the case where only one of the algorithms returns

a valid result, this result is used. If both algorithms return valid but dif-

ferent results a decision would have to be made as to which result should

be used. However, the results shown in Table 4.2 demonstrate an ideal

situation where the algorithms are combined in a way so that the correct

result is always selected if present. Finding a good way to combine the

two algorithms would be of interest, but further improvement of the RTT

detection algorithm is not pursued in this report. Based on these results

the IRD algorithm was used to detect speed of sound as a feature for the

classi�cation system.
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Chapter 5

Development of Classi�er

Software

5.1 Minimum-error-rate

The minimum error rate classi�cation algorithm is based on assuming a

probability distribution and de�ne classi�cation rules to minimize the prob-

ability of erroneous classi�cations. The parameters of the assumed proba-

bility distribution are estimated using a training set consisting of feature

vectors with known classes.

5.1.1 Feature space based on physical features

Previously in this report a great number of features has been presented,

but it has not been investigated if they are all linearly independent. If two

or more features turn out to be linearly dependent this implies that they

provide the same piece of information about the problem, and hence the

number of features can be reduced without a loss of information. Reducing

the number of features implies a reduction of the dimensionality of the

problem. This is positive as it reduces computational cost. In addition to

61



62 CHAPTER 5. DEVELOPMENT OF CLASSIFIER SOFTWARE

the advantage of working with less features it is also necessary to remove

linearly dependencies from the set of features when using the Minimum-

error-rate classi�er. This is because the covariance matrix that will be used

to de�ne the decision rule can not be singular. The reason for this can be

seen in Equations 2.4, 2.5 and 2.6. In these equation the covariance matrix

is inverted. A singular matrix is not invertible. If two linearly dependent

variables are both kept when calculating the covariance matrix, this will

lead to the covariance matrix being singular. In addition to the necessity

of removing linear dependencies from the covariance matrix to avoid it

being singular the features should also be scaled properly. If the features

are badly scaled the covariance matrix might be close to singular, which in

turn will lead to noise in the feature vectors being ampli�ed and obscure

the results. As the features used in this classi�cation problem vary in scalar

size and units it is clearly necessary to preform some kind of scaling in order

to combine the features in a meaningful way. Unfortunately, there is no

standard indisputable way to scale the features in order to avoid a badly

scaled covariance matrix [12]. As a result, the scaling was performed based

on knowledge about the scale and natural range of the di�erent features.

The goal of the scaling is to obtain features with numerical entries with a

reasonable relative scaling. To keep the original numeric values as intact

as possible the scaling was limited to factors of ten. The temperature

scale was used as the default scaling. All other features were scaled to

approximate this scale.

Having scaled the features, and thus hopefully having avoided prob-

lems related to a near singular covariance matrix caused by badly scaled

features, linear dependencies between features were explored. This was

done by generating a covariance matrix based on the set of features for

each class. The rank of each covariance matrix was then calculated to �nd

out how many of the features are independent. However, the covariance

matrix is only meaningful when working with normally distributed data.
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min: max:

Temperature -13.581 84.54

Conductivity Pin 4 0 3.087

Conductivity Pin 3 0 3.41

Conductivity Pin 2 0 5.013

Startup noise peak strength Peak 1 0.19968 1.6685

Startup noise peak strength Peak 2 0.14323 1.6726

Startup noise peak strength Peak 3 0.07252 1.637

Startup noise peak strength Peak 4 0.050606 1.6371

RTT 55.983 85.934

Max amplitude echo1 0.205 1.6845

Max amplitude echo2 0.025 1.2715

Damping factor between echo1 and echo2 0.91 8.74

Max peak frequency spectrum 1.3935e-08 4.2205e-06

Factor between 1 MHz and 600KHz echo1 1.6561 24.028

Factor between 1 MHz and 600KHz echo2 0.52369 20.338

Signal variance 0.001018 0.14933

Signal variance after startup noise 0.001018 0.14933

Table 5.1: Minimum and maximum values for the features with original
scaling

Using the original scaling the minimum and maximum values, when in-
cluding all classes, of the di�erent features can be seen in Table 5.1. Based
on these values a scaling vector was manually chosen, it is shown in Equa-
tion 5.1.

scaling_vector = [1 10 10 10 10 10 10 10 1 10 10 10 1e7 1 1 100 100] (5.1)

This vector was then used to scale all the vectors in the set of feature
vectors. The resulting minimum and maximum values of the di�erent
features can be seen in Table 5.2.
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min: max:

Temperature -13.581 84.54

Conductivity Pin 4 0 30.87

Conductivity Pin 3 0 34.1

Conductivity Pin 2 0 50.13

Startup noise peak strength Peak 1 1.9968 16.685

Startup noise peak strength Peak 2 1.4323 16.726

Startup noise peak strength Peak 3 0.7252 16.37

Startup noise peak strength Peak 4 0.50606 16.371

RTT 55.983 85.934

Max amplitude echo1 2.05 16.845

Max amplitude echo2 0.25 12.715

Damping factor between echo1 and echo2 9.1 87.4

Max peak frequency spectrum 0.13935 42.205

Factor between 1 MHz and 600KHz echo1 1.6561 24.028

Factor between 1 MHz and 600KHz echo2 0.52369 20.338

Signal variance 0.1018 14.933

Signal variance after startup noise 0.1018 14.933

Table 5.2: Minimum and maximum values for the features after scaling
with the scaling vector seen in Equation 5.1
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Clearly, the temperature in the �uid is not normally distributed as it will

vary in a wide range a�ected by the surrounding environment. The sur-

rounding environment will in an operating system consist of the vehicle at

which the tank is mounted. The temperature in the �uid will, therefore,

change according to many factors, including the time of year, how long

the engine has been running, and the current workload of the engine. The

temperature is, therefore, not really a feature of the �uid being measured,

but a factor in�uencing some of the other features. Consequently, it must

be accounted for in spite of not being considered a feature. It is well known

that temperature a�ects the speed at which sound propagates through �u-

ids [20]. Although in theory a �uid will have a true speed of sound at

a given temperature, in a practical situation, where the speed of sound is

measured, there will always be uncertainties related to the measured speed

of sound. The RTT feature is directly related to the speed of sound by

Equation 4.3. As a consequence of this the RTT feature can be modeled

as a normally distributed stochastic variable with an expected value equal

to the assumed true RTT. Before calculating the covariance matrix the

RTT feature was therefore normalized by subtracting the expected RTT

value based on the speed of sound curves earlier presented in this report

(Figure 4.15), for water the curve de�ned by the Marczak-coe�cients were

used [20]. The expected RTT value for each class was then de�ned as

a function of temperature. Concerning the other features little is known

about their relation to temperature. Although some of the features seem

to have a certain correlation to temperature it is believed that other factors

as bubbles in the �uids have a greater impact on these properties. They

are, therefore, in the following assumed to be independent of temperature.

As the temperature was only used to adjust the RTT feature it has not

been included as a feature when calculating the covariance matrix. Con-

sequently six covariance matrices were estimated, one for each class, using

a feature set created by the program feature_extraction.m (explained in
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Section 3.3). For all the covariance matrices the rank was found to be 16

which is the same as their dimensionality. In other words the matrices

all had full rank. This implies that the features are all linearly indepen-

dent. However, there might still be linear dependencies hidden by noise in

the retrieved sensor data. An indication of this could be high covariance

between two features. In addition, if a covariance matrix has some very

small eigenvalues, this can be an indication that such linear dependencies

exist, but have been hidden by noise. If such dependencies exist between

features it will most likely be discovered by systematic testing of the clas-

si�ers performance using di�erent combinations of features. If adding or

removing a certain feature has little or no e�ect on the overall performance

of a classi�er this means that the feature either contains no relevant infor-

mation about the classes or it provides information already contained by

an other feature.

Finally, a classi�er based on Minimum-error-rate assuming normally

distributed data was trained. This was done by estimating the expected

value, µi , and covariance matrix, Σi, for all the classes, i being the class

index. For all i µi is a column vector of size 16 and Σi is a matrix of

size 16× 16, 16 being the number of features. As the expected RTT value

depends on temperature, µi can be written as a function of temperature

as demonstrated in Equation 5.2.

µi(t) =



µi,1
...

µi,7

µi,8(t)

µi,9
...

µi,16


(5.2)
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Class index: class: Expected RTT [µs] function:

1 Adblue321 µ1,8(t) =
10.9 · 104

−0.0146t2 + 1.4007t+ 1617.0

2 Adblue158 µ2,8(t) =
10.9 · 104

−0.0158t2 + 1.9624t+ 1553.1

3 Diesel µ3,8(t) =
10.9 · 104

0.0084t2 − 4.0526t+ 1443.0

4 Glycol100 µ4,8(t) =
10.9 · 104

−0.0026t2 − 1.7873t+ 1834.5

5 Glycol50 µ5,8(t) =
10.9 · 104

−0.0079t2 − 0.1207t+ 1689.1

6 Water µ6,8(t) =
10.9 · 104

a5t5 + a4t4 + a3t3 + a2t2 + a1t+ a0
*

*a0, a1, a2, a3, a4 and a5 are the Marczak-coe�cients[20]

Table 5.3: Functions de�ning the expected RTT values as a function of
temperature

µi,1, . . . , µi,7, µi,9, . . . , µi,16 are constants for all i. µi,8(t) are de�ned by the

functions shown in Table 5.3. The resulting probability density functions

p(RTT |temperature, class) is shown together in a 3d plot in Figure 5.1.

Note that µi and Σi, i = 1, . . . , 6, really de�nes six 16-dimensional normal

distributions varying with temperature. However, visualizing this in a plot

would not make sense.

5.1.2 Evaluation of Minimum-error-rate classi�er

With 16 available features, this allows for 65535 unique combinations of

features when an arbitrary number of features are to be used. This can

be derived by summing the binomial coe�cients [25]
(
n
k

)
for n = 16 and

k = 1, .., 16 as can be seen in Equation 5.3.

n∑
k=1

n!

(n− k)!k!
(5.3)
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Figure 5.1: p(RTT |temperature) for all classes of �uid

For all these 65535 combinations the classi�er was trained and tested. The

training of the classi�er was done by the code seen in Program Code 1.

Firstly, in order to avoid over �tting the classi�er to the training data, a

minimum standard deviation value min_sigma was chosen. Secondly the

vector µi was de�ned as a function of temperature. This is done in line 6

to 26 in the code. Further on, the covariance matrix is estimated and all

the diagonal elements are adjusted to ful�ll the minimum standard devia-

tion property. Lastly the discriminant function parameters are calculated

according to Equation 2.4, 2.5 and 2.6. These parameters are saved to a

new cell structure X_class_parameters. A discriminant function taking in

a feature vector and the classi�cation parameters along with the tempera-

ture was de�ned as shown in Program Code 2. Using this function and a

test set, the the classi�er was tested by the code seen in Program Code 3.

Here c is a confusion matrix [27]. The confusion matrix has the dimen-

sion c × c, c being the number of classes. Each column corresponds to
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1 %Training of the classifier =====================================

2 min_sigma =0.5;

3 %mu equals the mean for all features except for the RTT as this

4 %is a function of temperature.

5 for i=1: size(X_class ,1),

6 expected_RTT=@(t,class_index )...

7 1e6 *(0.109./ SOUND_VELOCITY_CUSTOM_POLYNOM (...

8 poly_coeff(class_index ,:), t));

9 if length(features_used )==1 & features_used ==10,

10 mu=@(t) [expected_RTT(t,i)];

11 else

12 mu=mean(X_class{i});

13 function_index=find(features_used ==10);

14 if isempty(function_index),

15 mu=@(t) [mu(features_used )'];

16 elseif function_index ==1,

17 mu=@(t) [expected_RTT(t,i); ...

18 mu(features_used(function_index +1:end))'];

19 elseif function_index == length(features_used),

20 mu=@(t) [mu(features_used (1: function_index -1))'; ...

21 expected_RTT(t,i)];

22 else

23 mu=@(t) [mu(features_used (1: function_index -1))'; ...

24 expected_RTT(t,i); mu(features_used(function_index +1:end))'];

25 end

26 end

27 coMat=cov(X_class{i}(:, features_used ));

28 for j=1: size(coMat ,1),

29 coMat(j,j)=max([coMat(j,j),min_sigma ^2]);

30 end

31 %Define the disxriminant function parameters =================

32 w0=@(t) -0.5*(mu(t)'/coMat)*mu(t) ...

33 -0.5*log(det(coMat ))+ log(Pclas );

34 w_=@(t) coMat\mu(t);

35 W=-0.5*inv(coMat );

36 X_class_parameters{i}={W,w_, w0,mu};

37 end

38 %===============================================================

Program Code 1: Training of Minimum error rate classi�er.



70 CHAPTER 5. DEVELOPMENT OF CLASSIFIER SOFTWARE

1 function [ g_max , i_max ] =...

2 g_minimum_error_rate( feature , X_class_parameters , temperature )

3 %g_minimum_error_rate Returns the classindex of the most likely class.

4 %[ g_max , i_max ]

5 %g_max: value of the g_function with highest value.

6 %i_max: class index

7 number_of_classes=size(X_class_parameters ,1);

8 number_of_features=size(X_class_parameters {1}{1} ,1);

9 W=zeros(number_of_features ,number_of_features ,number_of_classes );

10 w_=zeros(number_of_features ,number_of_classes );

11 w0=zeros(number_of_features ,number_of_classes );

12 %Save parameters for the discriminant function :====

13 for i=1: number_of_classes ,

14 W(:,:,i)= X_class_parameters{i}{1};

15 w_(:,i)= X_class_parameters{i}{2}( temperature );

16 w0(i)= X_class_parameters{i}{3}( temperature );

17 end

18 %===================================================

19 g_max=-Inf;

20 i_max =0;

21 for i=1: number_of_classes ,

22 temp=feature '*W(:,:,i)* feature+w_(:,i)'*feature+w0(i);

23 if temp >=g_max ,

24 g_max=temp;

25 i_max=i;

26 end

27 end

28 end

Program Code 2: Discriminant function for Minimum error rate classi�er.

1 %initialize confusion matrix ====================================

2 c=zeros(size(X_class_parameters ,1));

3 %perform test of classifier

4 for i=1: size(X_test ,1),

5 [classification_value , classification_index ]...

6 =g_minimum_error_rate( X_test(i,features_used )'...

7 , X_class_parameters , X_test(i ,2));

8 c(X_test(i,1), classification_index )...

9 =c(X_test(i,1), classification_index )+1;

10 end

11 %Calculate error rate ===========================================

12 P_error=sum(sum(c.*( ones(size(X_class_parameters ,1))...

13 -eye(size(X_class_parameters ,1)))))/ sum(sum(c));

14 %===============================================================

Program Code 3: Code for testing of the Minimum error rate classi�er.
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the assigned class index of an object in the test set and each row corre-

sponds to the true class index of the object. For each object in the test

set the position de�ned by the column of the assigned class index and the

row of the true class index is incremented. A correctly classi�ed instance

from the test set will, therefore, lie on the diagonal of the matrix, while a

wrongly classi�ed instance will lie outside of the diagonal. The advantage

of presenting the result in this way is that it will clearly show if two classes

are being mixed up by the classi�er. From the confusion matrix Perror

could be calculated by dividing the sum of all elements in the matrix not

on the diagonal by the sum of all the elements in the matrix, see Equa-

tion 5.4, 5.5 and 5.6. For each number of features used, the combination of

features resulting in the lowest numbers of erroneous classi�cations were

stored. In addition to this, the corresponding confusion matrix (denoted

C in the following) and the estimated chance, Perror, of making an er-

roneous classi�cations was stored. The resulting output can be seen in

Appendix A.1.1.

Error =
c∑

i=1

c∑
j=1

Cij , i 6= j (5.4)

All =
c∑

i=1

c∑
j=1

Cij (5.5)

Perror =
Error

All
(5.6)

As the Minimum-error-rate classi�er is a parametric method assuming

a certain probability distribution it was initially trained and tested using

the same data. This was done to see if the assumed probability distribution

managed to describe the actual distribution of the data well enough to

make a decent classi�cation of the data. If the classi�er does not manage

to correctly classify the same data that was used to train it, then it will not
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help to test it using an independent data set. Furthermore, it will reveal

if poor assumptions was made to train the classi�er. As can be seen from

the output of this evaluation strategy (Appendix A.1.1), the lowest error

rate, Perror was achieved when only using the feature RTT to classify the

data. This resulted in an error rate of 6.76%. Adding more features to

the classi�er resulted in higher error rates, as can be seen in Figure 5.2.

This shows that adding the extra features actually contribute as noise to

the classi�er. This might be because it was assumed that only the RTT

feature varied with the temperature. The other features might still contain

relevant information about the classes of �uid, but this information might

have been lost due to this oversimpli�cation.

Figure 5.2: Minimum error rates Perror achieved by the Minimum-error-
rate classi�er assuming normally distributed features. 1 to 16 features
used.
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5.2 Reducing dimensionality of feature space

In an attempt to reduce the number of features while still maintaining

most of the information in the original feature set, principal component

analysis [16] was considered. However, because principal component anal-

ysis does not distinguish between the classes when �nding the principal

components the method might not �nd the best components to make a

good classi�cation. This will be the case when two classes have some sig-

ni�cant features in common and a less signi�cant feature separating them.

To avoid this problem Multiple Discriminant Analysis [13] was tested.

5.2.1 Multiple Discriminant Analysis (MDA)

MDA has the advantage that it maximizes the between-class scattering

while it at the same time minimizes the within-class scattering. The details

of the method will not be discussed here but some key equations will

be presented as they have been used in the software written to test this

procedure. The goal of the method is to �nd a matrix,W , with dimensions

d×(c−1), where d is the original number of features available, and c is the

number of classes to be recognized. The columns in, W , will be referred

to as wi. W will be used to transform the set of feature vectors, x, to a

new set of transformed feature vectors, y, see Equation 5.7.

y = W tx (5.7)

Two matrices are de�ned, used as a measure of the within-class scatter, SW

(see Equation 5.8), and the between-class scatter,SB (see Equation 5.9).

SW =

c∑
i=1

∑
x∈Di

(x−mi)(x−mi)
t (5.8)
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SB =

c∑
i=1

ni(mi −m)(mi −m)t (5.9)

In Equation 5.8 and 5.9, ni is the number of feature vectors belonging to

class i, mi is the mean vector of the feature vectors belonging to class i,

m is the mean vector of all feature vectors, and Di is the subset of the

training set belonging to class i. In order to maximize the between-class

scatter and minimize the within-class scatter of y, the matrixW is found

by the following two operations. First solve the characteristic polynomial

shown in Equation 5.10, then solve Equation 5.11 for the vectors wi. This

will lead to a maximum of c − 1 nonzero eigenvalues λi, and their corre-

sponding weight vectors wi de�nes the matrix W . These equations have

been taken from the book Pattern Classi�cation [13], and a more complete

walkthrough of the method and the equations can be found there.

|SB − λiSW | = 0 (5.10)

(SB − λiSW )wi = 0 (5.11)

Software based on these equations was developed in Matlab. A feature set

consisting of vectors from all classes was imported and organized in a cell

structure X_class of dimension c = 6 (each cell containing the feature

vectors belonging to the corresponding class, can be thought of as Di),

to allow easy classwise access to the feature vectors. The feature set was

scaled by the earlier mentioned scaling vector, see Equation 5.1. The ma-

trices SW and SB were derived by straight forward numerical calculations

before the matrix W was derived with the code seen in Program Code 4.

First, the coe�cients de�ning the characteristic polynomial of Equation 5.10

is found and stored in the vector p. Secondly, the roots of the polynomial

are found and stored in the vector lambda. Finally, for each of the nonzero
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1 %Define characteristic polynomial =========================

2 syms lambda;

3 [p,~]= coeffs(det(S_B -lambda*S_W));

4 p=double(p); %convert to numeric

5

6 %find the roots ===========================================

7 lambda=roots(p);

8

9 %Solve for W==============================================

10 W=zeros(length(featuresX),size(X_class ,1) -1);

11 for i=1: size(X_class ,1)-1,

12 W(:,i)=null((S_B -lambda(i)*S_W),zeros(size(S_B ,1) ,1));

13 end

14 %=========================================================

Program Code 4: Code to �nd the transformation matrix W as part of
Multiple Discriminant Analysis.

values in lambda, Equation 5.11 is solved for wi and stored in the matrix

W as columns. Using this matrix a new feature set was derived by the

code seen in Program Code 5:

1 %%Transform the feature set X to the new set Y==================

2 Y_class=cell(size(X_class ,1) ,1);

3

4 for i=1: size(X_class ,1),

5 Y_class{i}=[ X_class{i}(:,1),(W'* X_class{i}(:, featuresX )')'];

6 end

7 %===============================================================

Program Code 5: Code to transform the original feature set, X, into the
new feature set, Y , resulting from Multiple Discriminant Analysis.

The new set was called Y_class and was declared to be a cell structure of

six cells, one for each class (same structure as X_class). The �rst element

in each vector is the class index which is used when evaluating the classi-

�ers. This element is, therefore, not included by the transformation and is

simply copied from X_class to Y_class. The rest of the vectors contain

the actual features and have been transformed by applying theW matrix.

The dimensions of the vectors in the new feature set have now been re-
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duced from the original 17 to c−1 = 5. However, the ability to identify the

di�erent features as certain physical properties has been lost, as the new

features are weighed sums of the original 17 features. Having implemented

the transformation it has hopefully transformed the data into a new, �ve

dimensional, feature space with good spread between the classes, and thus

making the feature set more eligible for classi�cation. As the feature space

has �ve dimensions it is hard to show the complete picture in one plot.

Instead the vectors in the new feature set are plotted in two three dimen-

sional plots as seen in Figure 5.3a and 5.3b. By visual inspection of these

two plots the classes seem to be separated into well de�ned regions in the

new feature space. The Multiple Discriminant Analysis does not perform

any form of classi�cation, but it might be a good preprocessing step before

training a classi�er.

5.3 Minimum-error-rate, after performing MDA

The resulting feature space after performing Multiple Discriminant Anal-

ysis seems to be more eligible to be described by a normal distribution

than the original feature space. The Minimum-error-rate classi�er was

therefore trained and tested using features in the new feature space. With

a �ve dimensional feature space this results in a total number of 31 pos-

sible combinations of features, as can be derived by Equation 5.3. Again,

for all feature combinations the classi�er was trained and tested for each

number of features being used. Some minor changes were done to the code

training and testing the classi�er as the vector µi no longer was a function

of temperature. However, the code is not repeated here, but can be found

by following the path in Appendix B. The results of the best combination

were saved and printed to a �le. First the same set of feature data was used

for both training and testing to see if the features could be described by a

normal distribution. The output can be seen in Appendix A.2.1. The error
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rate, Perror, as a function of how many features were used by the classi�er,

can be seen in Figure 5.4. This time the error rate decreases when adding

more features. The lowest error rate was achieved when using four features

with only 0.21% erroneous classi�cations. This implies that the features

in the new feature space are well represented by the normal distribution.

As a consequence of the promising results the classi�er was tested with a

new test set being di�erent from the training set. The output of this test

can be seen in Appendix A.2.2, and the error rates have been plotted in

Figure 5.5. The results are almost as good as when training and testing

with the same data. Again the lowest error rate was achieved by using four

features with a Perror of 0.57%. Using �ve features resulted in the same

error rate. From the plots it seems that using four features is the ideal

choice, as adding the �fth feature has little or no e�ect on the performance

of the classi�er.

5.4 k-Nearest-neighbor, after performing MDA

Using k-Nearest-neighbor classi�cation is useful as no assumptions needs

to be made about the distribution of the feature vectors. The result ob-

tained when using the k-Nearest-neighbor classi�er will, therefore, often

be as good as what is possible with the available features. Because the

method is very computational expensive it was not practically possible to

preform a systematic testing of all possible permutations using all 17 fea-

tures. Therefore, a systematic test was performed on the feature space

obtained after performing MDA. The software used to test this method is

based on the Minimum-error-rate software but changing the decision rule

to the kNN-decision rule with the function seen in Program Code 6.

No training of classi�er parameters was necessary as the training set is used

directly by the decision rule. The number of neighbors, k, used to classify

was chosen to be 20. The output can be seen in Appendix A.3. The Perror
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1 function [ output ] = NclosNeighbor(x, Y, N)

2 %Finds N closest neightbors to x in the set Y and returns the most frequent

3 %class index of those neighbors.

4 min_distance=zeros(N,1);

5 class_index=zeros(N,1);

6 for i=1:N,

7 min_distance(i)=norm(x-Y(i,2:end)');

8 class_index(i)=Y(i,1);

9 end

10 [current_max , current_max_index ]=max(min_distance );

11

12 for i=4: size(Y,1),

13 temp = norm(x-Y(i,2: end)');

14 if temp <current_max ,

15 min_distance(current_max_index) = temp;

16 class_index(current_max_index )=Y(i,1);

17 [current_max , current_max_index ]=max(min_distance );

18 end

19 end

20 output= mode(class_index );

21 end

Program Code 6: Discriminant function used by the kNN classi�er.

for each number of features used can be seen in Figure 5.6. The lowest

Perror was achieved using three, four and �ve features for classi�cation

with an error rate at 0.12%.

5.5 Least-mean-square, after performing MDA

As an alternative method to the Minimum-error-rate classi�er, Least-

mean-square classi�cation was tested. Again most of the software could

be reused but the training and test code for the classi�er needed to be

changed into what can be seen in Program Code 7 and Program Code 8

respectively.

The code for training of the classi�er simply generates the B and Y ma-

trices as described by Equation 2.9 and 2.11. Finally, the A matrix is

calculated by applying Equation 2.12. Furthermore, the decision rule is

de�ned by the function g_lms. Using this decision rule, the code testing
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1 %Training of the classifier =====================================

2 B=[];

3 Y=[];

4 for i=1: size(Y_class ,1),

5 B_i=zeros(size(Y_class{i},1), size(Y_class ,1));

6 B_i(:,i)=1;

7 B=[B; B_i];

8 Y_i=ones(size(Y_class{i},1), length(features_used )+1);

9 Y_i(:,2:end)= Y_class{i}(:, features_used );

10 Y=[Y;Y_i];

11 end

12 A=(Y'*Y)\(Y'*B);

13 %Desision rule: When [v, i]=g_lms(y), choose class i.

14 g_lms = @(y) max(A'*y);

15 %===============================================================

Program Code 7: Training of the Least-mean-square classi�er.

the classi�er was implemented in the same way as for the other classi�ers.

1 %initialize confusion matrix ====================================

2 c=zeros(size(Y_class ,1));

3 %perform test of classifier

4 for i=1: size(Y_test ,1),

5 [classification_value , classification_index ]...

6 =g_lms([1, Y_test(i,features_used )]');

7 c(Y_test(i,1), classification_index )...

8 =c(Y_test(i,1), classification_index )+1;

9 end

10 %Calculate error rate ===========================================

11 P_error=sum(sum(c.*( ones(size(Y_class ,1))...

12 -eye(size(Y_class ,1)))))/ sum(sum(c));

13 %===============================================================

Program Code 8: Test code for the Least-mean-square classi�er.

The output can be seen in Appendix A.4, and the Perror for each number

of features used can be seen in Figure 5.7. As the �gure shows, the error

rate decreases as the number of features used increases. Consequently the

lowest error rate was achieved by using all �ve features with a Perror of

5.72%.
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(a) Good spread between Diesel, Water Glycol100 and Glycol50. Adblue321
and Adblue158 with some overlap.

(b) Good spread between Adblue321 and Adblue158.

Figure 5.3: Three dimensional plots of points in the �ve dimensional fea-
ture space after performing Multiple Discriminant Analysis.
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Figure 5.4: Minimum error rates Perror achieved by the Minimum-error-
rate classi�er after performing MDA on the feature set. 1 to 5 features
used. Training and testing with same data set.

Figure 5.5: Minimum error rates Perror achieved by the Minimum-error-
rate classi�er after performing MDA on the feature set. 1 to 5 features
used. Training and testing with separate data sets.
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Figure 5.6: Minimum error rates Perror achieved by the kNN classi�er after
performing MDA on the feature set, k=20. 1 to 5 features used.

Figure 5.7: Minimum error rates Perror achieved by the Least-mean-square
classi�er after performing MDA on the feature set. 1 to 5 features used.



Chapter 6

Discussion & Future work

6.1 Discussion

The main goal of this master thesis was to develop a classi�er able to cope

with temperature changes and noise, typically in the form of bubbles.

The work was a continuation of a project where classi�cation under stable

noiseless conditions at room temperature was achieved. In order to develop

the wanted system a variety of tasks has been performed extending from

circuit design, some mechanical design to programming. Every part of the

system has been developed to be able to cope with the new challenge of

changing temperature. Although the same theoretical basis has been used

for the classi�ers, as was used in the former project, implementation has

been redone to �t the new requirements. The introduction of Multiple

Discriminant Analysis in the system turned out crucial to the results of

the classi�ers.

The �rst implementation of the minimum-error-rate classi�er using the

original features space did not manage to take advantage of the new fea-

tures introduced to the system. On the contrary it preformed best when

only using RTT to perform classi�cation. The main reason for the clas-

83
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si�er not getting better from adding more features is believed to be due

to an overly simpli�ed model, assuming that only RTT is dependent of

temperature.

By performing Multiple Discriminant Analysis a new feature space with

only �ve dimensions was achieved. After �nding the transformation ma-

trix maximizing the between-class scatter and minimizing the within class

scatter, it was hoped that classi�cation would be easier as the e�ect of

temperature on the other features no longer needed to be compensated

for. As these e�ects would be accounted for by the transformation. With

the new feature space all three classi�cation strategies tested performed

rather well, although the Least-mean-square method performed slightly

worse than the two others. As the nearest neighbor classi�er is very com-

putationally heavy it is not recommended to be used as part of a �nished

system as long as other methods perform equally well. As a consequence

of this the Minimum-error-rate classi�er can be said to be the best choice

of classi�er given the results seen in this report.

A second goal of this thesis was to compare the classi�cation results

obtained by only using sensors currently present in the Q-sensor with what

could be gained by adding new sensors. The only sensor that was added

was the light absorption sensor. As it turned out to be di�cult to achieve

satisfying measurements with the developed prototype, the work e�ort was

concentrated towards only using the currently used sensors. No classi�ca-

tion results based on light absorption have been made. Instead comments

were made about the di�culties met when trying out this measurement

principle. Both bubbles and coating forming on the PET tubes had a sig-

ni�cant impact on the sensor output. Also bubbles �oating freely in the

�uids had an impact on the result, although this could probably be �ltered

out by a low pass �lter. It is still believed that the measuring principle

can achieve good results in nice stable conditions in a lab. As part of a

system performing classi�cation on an operational vehicle it might be use-
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ful to detect �uids with clearly di�erent light absorption properties than

Adblue.

The third and last goal was to expand the number of �uids for the

classi�er to deal with. This has not been done, instead e�ort has been

concentrated on developing a working system with fewer �uids. However,

the only thing needed to expand the number of �uids is to perform new

measurements in the lab using the developed measurement setup and train

the classi�ers including the new measurements. There are no practical

limitations to use the developed code with more than six classes.

6.2 Future work

In Section 4.7 it was observed that the combined performance of the new

IRD algorithm and the old algorithm based on zero crossing was signi�-

cantly better than their separate performance. However, �nding a good

way to combine the two algorithms was not pursued in this report. This

is suggested as a further study.

As the tank environment a �nished system will work in can be consid-

ered to be an uncontrolled environment, there are limitless possibilities as

to which �uids the system might meet. In this view, limiting the classi�er

to distinguish between a certain number of speci�c �uids might not be

optimal. Multivariate Calibration is suggested as a further study, as this

method allows for not only distinguishing between discreet classes, but also

mixtures of the di�erent classes of �uids.
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Appendix A

Results

A.1 Output systematic testing of Min-err

A.1.1 Minimum-error-rate using 1 to 16 features

1 ====================================

2 Feature(s): 10: RTT

3 817 1 0 1 105 2

4 3 830 1 1 0 6

5 0 0 936 0 0 21

6 8 0 0 992 0 0

7 86 104 0 2 551 1

8 0 0 0 0 0 592

9 P_error: 0.067589

10 ====================================

11 ====================================

12 Feature(s): 3: Conductivity Pin 4

13 Feature(s): 10: RTT

14 924 0 2 0 0 0

15 3 830 0 1 0 7

16 0 0 957 0 0 0

17 172 0 0 825 0 3

18 17 0 0 0 521 206

19 0 0 0 0 0 592

20 P_error: 0.081225

21 ====================================

91
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22 ====================================

23 Feature(s): 3: Conductivity Pin 4

24 Feature(s): 10: RTT

25 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

26 923 0 2 0 1 0

27 9 824 0 1 0 7

28 0 0 957 0 0 0

29 247 0 0 750 0 3

30 21 0 0 0 519 204

31 0 0 0 0 0 592

32 P_error: 0.097826

33 ====================================

34 ====================================

35 Feature(s): 3: Conductivity Pin 4

36 Feature(s): 4: Conductivity Pin 3

37 Feature(s): 10: RTT

38 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

39 924 0 2 0 0 0

40 0 834 0 1 0 6

41 0 0 957 0 0 0

42 208 2 0 714 0 76

43 0 4 0 0 650 90

44 0 1 0 0 0 591

45 P_error: 0.077075

46 ====================================

47 ====================================

48 Feature(s): 3: Conductivity Pin 4

49 Feature(s): 4: Conductivity Pin 3

50 Feature(s): 5: Conductivity Pin 2

51 Feature(s): 10: RTT

52 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

53 912 12 2 0 0 0

54 0 834 0 0 1 6

55 0 0 957 0 0 0

56 6 306 0 615 1 72

57 0 5 0 0 603 136

58 0 1 0 0 0 591

59 P_error: 0.1083

60 ====================================

61 ====================================

62 Feature(s): 3: Conductivity Pin 4

63 Feature(s): 4: Conductivity Pin 3

64 Feature(s): 8: Startup noise peak strength Peak 3,
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65 Feature(s): 10: RTT

66 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

67 Feature(s): 18: Signal variance after startup noise

68 926 0 0 0 0 0

69 287 544 0 0 3 7

70 0 0 957 0 0 0

71 30 0 0 938 0 32

72 0 2 0 4 660 78

73 61 0 0 1 0 530

74 P_error: 0.099802

75 ====================================

76 ====================================

77 Feature(s): 3: Conductivity Pin 4

78 Feature(s): 5: Conductivity Pin 2

79 Feature(s): 8: Startup noise peak strength Peak 3,

80 Feature(s): 10: RTT

81 Feature(s): 11: Max amplitude echo1

82 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

83 Feature(s): 18: Signal variance after startup noise

84 925 0 0 0 0 1

85 174 580 0 0 2 85

86 1 0 956 0 0 0

87 10 4 0 946 0 40

88 22 0 0 7 600 115

89 55 0 0 1 0 536

90 P_error: 0.10217

91 ====================================

92 ====================================

93 Feature(s): 3: Conductivity Pin 4

94 Feature(s): 4: Conductivity Pin 3

95 Feature(s): 5: Conductivity Pin 2

96 Feature(s): 8: Startup noise peak strength Peak 3,

97 Feature(s): 9: Startup noise peak strength Peak 4,

98 Feature(s): 10: RTT

99 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

100 Feature(s): 18: Signal variance after startup noise

101 926 0 0 0 0 0

102 299 526 0 0 2 14

103 0 0 957 0 0 0

104 8 14 0 937 0 41

105 0 5 0 0 692 47

106 92 0 1 1 0 498

107 P_error: 0.10356
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108 ====================================

109 ====================================

110 Feature(s): 3: Conductivity Pin 4

111 Feature(s): 4: Conductivity Pin 3

112 Feature(s): 6: Startup noise peak strength Peak 1,

113 Feature(s): 8: Startup noise peak strength Peak 3,

114 Feature(s): 9: Startup noise peak strength Peak 4,

115 Feature(s): 10: RTT

116 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

117 Feature(s): 17: Signal variance

118 Feature(s): 18: Signal variance after startup noise

119 922 0 0 4 0 0

120 317 498 0 0 2 24

121 0 0 957 0 0 0

122 26 4 0 934 0 36

123 1 0 0 7 693 43

124 70 0 0 1 0 521

125 P_error: 0.10573

126 ====================================

127 ====================================

128 Feature(s): 3: Conductivity Pin 4

129 Feature(s): 4: Conductivity Pin 3

130 Feature(s): 5: Conductivity Pin 2

131 Feature(s): 6: Startup noise peak strength Peak 1,

132 Feature(s): 8: Startup noise peak strength Peak 3,

133 Feature(s): 9: Startup noise peak strength Peak 4,

134 Feature(s): 10: RTT

135 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

136 Feature(s): 17: Signal variance

137 Feature(s): 18: Signal variance after startup noise

138 926 0 0 0 0 0

139 318 499 0 0 7 17

140 0 0 957 0 0 0

141 0 16 0 943 0 41

142 1 0 0 0 669 74

143 65 0 1 1 0 525

144 P_error: 0.10692

145 ====================================

146 ====================================

147 Feature(s): 3: Conductivity Pin 4

148 Feature(s): 4: Conductivity Pin 3

149 Feature(s): 5: Conductivity Pin 2

150 Feature(s): 6: Startup noise peak strength Peak 1,
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151 Feature(s): 8: Startup noise peak strength Peak 3,

152 Feature(s): 9: Startup noise peak strength Peak 4,

153 Feature(s): 10: RTT

154 Feature(s): 14: Max peak frequency spectrum

155 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

156 Feature(s): 17: Signal variance

157 Feature(s): 18: Signal variance after startup noise

158 926 0 0 0 0 0

159 311 500 0 0 7 23

160 0 0 957 0 0 0

161 0 18 0 938 0 44

162 1 0 0 0 599 144

163 63 0 1 1 0 527

164 P_error: 0.12115

165 ====================================

166 ====================================

167 Feature(s): 3: Conductivity Pin 4

168 Feature(s): 4: Conductivity Pin 3

169 Feature(s): 5: Conductivity Pin 2

170 Feature(s): 6: Startup noise peak strength Peak 1,

171 Feature(s): 8: Startup noise peak strength Peak 3,

172 Feature(s): 9: Startup noise peak strength Peak 4,

173 Feature(s): 10: RTT

174 Feature(s): 13: Damping factor between echo1 and echo2

175 Feature(s): 15: Factor between 1 MHz and 600KHz echo1

176 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

177 Feature(s): 17: Signal variance

178 Feature(s): 18: Signal variance after startup noise

179 926 0 0 0 0 0

180 275 503 0 0 1 62

181 5 0 952 0 0 0

182 1 19 0 790 0 190

183 2 0 0 0 656 86

184 49 0 1 1 0 541

185 P_error: 0.13676

186 ====================================

187 ====================================

188 Feature(s): 3: Conductivity Pin 4

189 Feature(s): 4: Conductivity Pin 3

190 Feature(s): 5: Conductivity Pin 2

191 Feature(s): 6: Startup noise peak strength Peak 1,

192 Feature(s): 8: Startup noise peak strength Peak 3,

193 Feature(s): 9: Startup noise peak strength Peak 4,
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194 Feature(s): 10: RTT

195 Feature(s): 12: Max amplitude echo2

196 Feature(s): 14: Max peak frequency spectrum

197 Feature(s): 15: Factor between 1 MHz and 600KHz echo1

198 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

199 Feature(s): 17: Signal variance

200 Feature(s): 18: Signal variance after startup noise

201 926 0 0 0 0 0

202 318 499 0 0 7 17

203 0 0 957 0 0 0

204 0 20 0 737 0 243

205 2 0 0 0 587 155

206 63 0 1 1 0 527

207 P_error: 0.16344

208 ====================================

209 ====================================

210 Feature(s): 3: Conductivity Pin 4

211 Feature(s): 4: Conductivity Pin 3

212 Feature(s): 5: Conductivity Pin 2

213 Feature(s): 6: Startup noise peak strength Peak 1,

214 Feature(s): 8: Startup noise peak strength Peak 3,

215 Feature(s): 9: Startup noise peak strength Peak 4,

216 Feature(s): 10: RTT

217 Feature(s): 12: Max amplitude echo2

218 Feature(s): 13: Damping factor between echo1 and echo2

219 Feature(s): 14: Max peak frequency spectrum

220 Feature(s): 15: Factor between 1 MHz and 600KHz echo1

221 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

222 Feature(s): 17: Signal variance

223 Feature(s): 18: Signal variance after startup noise

224 926 0 0 0 0 0

225 286 494 0 0 0 61

226 5 0 952 0 0 0

227 0 19 0 613 0 368

228 3 0 0 0 584 157

229 58 0 0 1 0 533

230 P_error: 0.18933

231 ====================================

232 ====================================

233 Feature(s): 3: Conductivity Pin 4

234 Feature(s): 4: Conductivity Pin 3

235 Feature(s): 5: Conductivity Pin 2

236 Feature(s): 6: Startup noise peak strength Peak 1,
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237 Feature(s): 7: Startup noise peak strength Peak 2,

238 Feature(s): 8: Startup noise peak strength Peak 3,

239 Feature(s): 9: Startup noise peak strength Peak 4,

240 Feature(s): 10: RTT

241 Feature(s): 11: Max amplitude echo1

242 Feature(s): 12: Max amplitude echo2

243 Feature(s): 13: Damping factor between echo1 and echo2

244 Feature(s): 15: Factor between 1 MHz and 600KHz echo1

245 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

246 Feature(s): 17: Signal variance

247 Feature(s): 18: Signal variance after startup noise

248 926 0 0 0 0 0

249 268 498 0 0 0 75

250 1 0 956 0 0 0

251 0 17 0 512 0 471

252 0 0 0 0 550 194

253 58 0 0 0 0 534

254 P_error: 0.21423

255 ====================================

256 ====================================

257 Feature(s): 3: Conductivity Pin 4

258 Feature(s): 4: Conductivity Pin 3

259 Feature(s): 5: Conductivity Pin 2

260 Feature(s): 6: Startup noise peak strength Peak 1,

261 Feature(s): 7: Startup noise peak strength Peak 2,

262 Feature(s): 8: Startup noise peak strength Peak 3,

263 Feature(s): 9: Startup noise peak strength Peak 4,

264 Feature(s): 10: RTT

265 Feature(s): 11: Max amplitude echo1

266 Feature(s): 12: Max amplitude echo2

267 Feature(s): 13: Damping factor between echo1 and echo2

268 Feature(s): 14: Max peak frequency spectrum

269 Feature(s): 15: Factor between 1 MHz and 600KHz echo1

270 Feature(s): 16: Factor between 1 MHz and 600KHz echo2

271 Feature(s): 17: Signal variance

272 Feature(s): 18: Signal variance after startup noise

273 901 0 0 0 0 25

274 249 497 0 0 0 95

275 1 0 956 0 0 0

276 0 17 0 512 0 471

277 0 0 0 0 544 200

278 55 0 0 0 0 537

279 P_error: 0.21996
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280 ====================================

A.2 Minimum-error-rate after performing MDA

A.2.1 Using the same feature data to train and test the

classi�er

1 ====================================

2 Feature(s): 3

3 206 27 4 16 0 0

4 44 52 0 106 0 3

5 1 0 395 0 0 0

6 26 21 3 127 0 5

7 0 0 0 0 189 0

8 50 14 1 25 0 82

9 P_error: 0.24767

10 ====================================

11 ====================================

12 Feature(s): 2

13 Feature(s): 4

14 224 29 0 0 0 0

15 4 201 0 0 0 0

16 0 0 396 0 0 0

17 1 1 0 141 39 0

18 0 0 0 27 161 1

19 0 5 0 0 0 167

20 P_error: 0.076593

21 ====================================

22 ====================================

23 Feature(s): 1

24 Feature(s): 2

25 Feature(s): 4

26 222 31 0 0 0 0

27 9 196 0 0 0 0

28 0 0 396 0 0 0

29 1 5 0 173 3 0

30 0 0 0 0 188 1

31 0 5 0 0 0 167

32 P_error: 0.03937

33 ====================================

34 ====================================

35 Feature(s): 2
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36 Feature(s): 3

37 Feature(s): 4

38 Feature(s): 5

39 253 0 0 0 0 0

40 0 205 0 0 0 0

41 0 0 396 0 0 0

42 1 0 0 181 0 0

43 0 0 0 0 189 0

44 1 1 0 0 0 170

45 P_error: 0.0021475

46 ====================================

47 ====================================

48 Feature(s): 1

49 Feature(s): 2

50 Feature(s): 3

51 Feature(s): 4

52 Feature(s): 5

53 253 0 0 0 0 0

54 0 205 0 0 0 0

55 0 0 396 0 0 0

56 3 0 0 179 0 0

57 0 0 0 0 189 0

58 1 1 0 0 0 170

59 P_error: 0.0035791

60 ====================================

A.2.2 Using separate feature data to train and test the

classi�er

1 ====================================

2 Feature(s): 3

3 201 30 3 18 0 0

4 43 54 0 102 0 7

5 0 0 395 0 0 0

6 28 17 3 124 0 11

7 0 0 0 0 188 0

8 43 16 3 27 0 84

9 P_error: 0.25125

10 ====================================

11 ====================================

12 Feature(s): 2

13 Feature(s): 4
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14 221 30 1 0 0 0

15 7 199 0 0 0 0

16 0 0 395 0 0 0

17 0 1 0 132 49 1

18 0 0 0 24 163 1

19 0 5 0 0 0 168

20 P_error: 0.085183

21 ====================================

22 ====================================

23 Feature(s): 1

24 Feature(s): 2

25 Feature(s): 4

26 222 29 1 0 0 0

27 10 196 0 0 0 0

28 0 0 395 0 0 0

29 3 3 0 173 3 1

30 0 0 0 0 187 1

31 0 8 0 0 0 165

32 P_error: 0.042233

33 ====================================

34 ====================================

35 Feature(s): 2

36 Feature(s): 3

37 Feature(s): 4

38 Feature(s): 5

39 249 3 0 0 0 0

40 0 206 0 0 0 0

41 0 0 395 0 0 0

42 4 1 0 178 0 0

43 0 0 0 0 188 0

44 0 0 0 0 0 173

45 P_error: 0.0057266

46 ====================================

47 ====================================

48 Feature(s): 1

49 Feature(s): 2

50 Feature(s): 3

51 Feature(s): 4

52 Feature(s): 5

53 249 3 0 0 0 0

54 0 206 0 0 0 0

55 0 0 395 0 0 0

56 4 0 0 178 0 1
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57 0 0 0 0 188 0

58 0 0 0 0 0 173

59 P_error: 0.0057266

60 ====================================

A.3 Output systematic testing kNN after perform-

ing MDA, k=20

1 ====================================

2 Feature: 2

3 472 32 0 0 0 4

4 25 364 0 0 0 21

5 1 0 784 9 0 0

6 0 0 99 5 0 0

7 0 0 0 0 397 0

8 37 70 5 0 0 220

9 P_error: 0.11906

10 ====================================

11 ====================================

12 Feature: 1

13 Feature: 2

14 486 18 0 1 0 3

15 24 386 0 0 0 0

16 0 0 794 0 0 0

17 0 0 0 104 0 0

18 0 0 0 0 397 0

19 0 0 0 0 0 332

20 P_error: 0.018075

21 ====================================

22 ====================================

23 Feature: 1

24 Feature: 2

25 Feature: 4

26 505 0 0 0 0 3

27 0 410 0 0 0 0

28 0 0 794 0 0 0

29 0 0 0 104 0 0

30 0 0 0 0 397 0

31 0 0 0 0 0 332

32 P_error: 0.0011788

33 ====================================
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34 ====================================

35 Feature: 1

36 Feature: 2

37 Feature: 4

38 Feature: 5

39 505 0 0 0 0 3

40 0 410 0 0 0 0

41 0 0 794 0 0 0

42 0 0 0 104 0 0

43 0 0 0 0 397 0

44 0 0 0 0 0 332

45 P_error: 0.0011788

46 ====================================

47 ====================================

48 Feature: 1

49 Feature: 2

50 Feature: 3

51 Feature: 4

52 Feature: 5

53 505 0 0 0 0 3

54 0 410 0 0 0 0

55 0 0 794 0 0 0

56 0 0 0 104 0 0

57 0 0 0 0 397 0

58 0 0 0 0 0 332

59 P_error: 0.0011788

60 ====================================

A.4 Output systematic testing Least-mean-square

after performing MDA

1 ====================================

2 Feature: 4

3 462 0 0 0 0 1

4 153 0 173 0 0 87

5 103 0 204 0 0 156

6 272 0 82 0 0 88

7 252 0 52 0 0 36

8 5 0 5 0 0 281

9 P_error: 0.60738

10 ====================================
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11 ====================================

12 Feature: 3

13 Feature: 4

14 462 0 0 0 0 1

15 140 0 162 3 53 55

16 52 0 315 95 0 1

17 97 0 114 214 1 16

18 5 0 1 0 332 2

19 3 0 5 0 22 261

20 P_error: 0.34328

21 ====================================

22 ====================================

23 Feature: 1

24 Feature: 3

25 Feature: 4

26 454 0 9 0 0 0

27 106 0 192 103 0 12

28 0 0 463 0 0 0

29 25 0 2 408 0 7

30 5 0 0 1 332 2

31 0 0 0 20 25 246

32 P_error: 0.21103

33 ====================================

34 ====================================

35 Feature: 1

36 Feature: 3

37 Feature: 4

38 Feature: 5

39 459 1 1 2 0 0

40 51 286 23 50 0 3

41 0 0 463 0 0 0

42 12 36 0 388 0 6

43 5 0 0 1 332 2

44 1 4 1 13 10 262

45 P_error: 0.09204

46 ====================================

47 ====================================

48 Feature: 1

49 Feature: 2

50 Feature: 3

51 Feature: 4

52 Feature: 5

53 460 2 1 0 0 0
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54 64 347 0 1 0 1

55 0 0 463 0 0 0

56 11 34 0 393 0 4

57 3 0 0 2 335 0

58 1 8 0 0 6 276

59 P_error: 0.057214

60 ====================================



Appendix B

Software

• path to LabVIEW software: SoftwareAppendix->LabVIEW

• path to CleanUpRawData.m: SoftwareAppendix->CleanUpRawData

• path to Small_selection_of_�les.m: SoftwareAppendix->SmallSelectionOfFiles

• path to feature_extraction.m: SoftwareAppendix->FeatureExtraction

• path tominimum_error_rate_systematic_testing_original_feature_space.m:

SoftwareAppendix->MinimumErrorRate

• path tomin_err_syst_test_after_mda.m: SoftwareAppendix->MDA-

>minerr

• path to least_mean_square_syst_test_after_mda.m: SoftwareAppendix-

>MDA->lms

• path to kNN_syst_test_after_mda.m: SoftwareAppendix->MDA-

>kNN
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