
A Framework for Fault Diagnosis in
Managed Pressure Drilling Applied to

Flow-Loop Data

Anders Willersrud ∗ Lars Imsland ∗ Alexey Pavlov ∗∗
Glenn-Ole Kaasa ∗∗

∗Department of Engineering Cybernetics, Norwegian University of
Science and Technology, N-7491 Trondheim, Norway
(email: [anders.willersrud, lars.imsland]@itk.ntnu.no).

∗∗Department of Intelligent Drilling, Statoil Research Centre,
N-3905 Porsgrunn, Norway (email: [alepav, gkaa]@statoil.com).

Abstract: Data from a medium-scale horizontal flow loop test facility is used to test fault
diagnosis in managed pressure drilling. The faults are downhole incidents such as formation
influx, fluid loss, drillstring washout, pack-off, and plugging of the drill bit, which are important
to detect and handle in order to avoid downtime and possibly dangerous situations. In this
paper a fault diagnosis scheme based on an adaptive observer and the generalized likelihood
ratio test is applied on the experimental data. The different types of faults are detected and
their location are isolated using friction parameter estimates. Results indicate that the method
can in most cases identify the type of fault, whereas the location is sometimes more uncertain.
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1. INTRODUCTION

Drilling for oil and gas is always associated with risk. As
reservoirs become depleted or more difficult to reach, oper-
ations become more complex, and safety margins smaller.
It will then be increasingly important to improve monitor-
ing and control of the downhole drilling process to avoid
incidents and reduce downtime. In drilling the pressure
in the well must be carefully monitored and controlled
to be above the formation pore pressure and below its
fracture pressure. If the pressure is lower than the pore
pressure, formation fluids can start flowing into the well.
If the pressure becomes too high, the formation can start
to fracture leading to losses of drilling fluid (“mud”) to
the formation, damaging the reservoir. Managed pressure
drilling (MPD) is a method which seals off the annulus
around the drillstring and routes the return flow of the
drilling fluid through a controlled choke, making it possi-
ble to more carefully control the downhole pressure. See
Fig. 1 for a schematic overview. With this technology it is
possible to drill wells with narrow pressure margins. In this
case, detection and handling abnormal situation becomes
very important.
A situation which is critical to detect is an influx of
reservoir fluids, also known as a kick. An influx can happen
if some parts of the wellbore become underbalanced, i.e.,
with well pressure below formation pore pressure. If gas
enters the annulus, the hydrostatic pressure will decrease
due to lower mixed density. This can in turn increase the
influx, making the situation worse. If continued uncon-
trolled, the situation can develop into a blowout, which
is an uncontrolled flow of reservoir fluids into the well
and must be prevented at all costs. One of the causes

Fig. 1. Managed pressure drilling with possible faults.
Measurements are labeled in blue, actuators in green.

for the well to become underbalanced is lost circulation
of drilling fluid. If enough fluid is lost, the back-pressure
is lost which will decrease the hydrostatic head in the
annulus. Poor transport or accumulation of cuttings can
result in formation of a pack-off, which in turn changes
the annular friction and can also result in a stuck pipe.
Moreover, lost circulation of drilling fluid is important



from a cost perspective since the drilling fluid can contain
expensive chemicals. In addition to being a safety risk, the
mentioned incidents will increase the nonproductive time
during drilling, which on average is 20-25 % of the drilling
time and thus a major cost (Godhavn, 2010).
In this paper, data from a medium-scale flow loop is
used to study contingency and fault diagnosis in managed
pressure drilling. The test setup is made to mimic a real
drilling process as closely as possible, and manages to
reproduce many of the possible faults in a realistic manner.
The faults we study are illustrated in Fig. 1, which all
cause changes in pressure. Some faults are also related to
changes of mass flow through the system, such as influx
and lost circulation. In addition to topside pressure mea-
surements, distributed pressure sensors is used along the
drill pipe. This is a rather new communication technology
called wired drill pipe, which increases the number of
measurement points as well as data bandwidth (Nygaard
et al., 2008). These measurements are used in an adaptive
observer to estimate friction parameters throughout the
system. Applying a detection algorithm on the estimated
friction parameters, it is possible to detect and isolate the
different faults causing changes to friction and flow. The
position is isolated to be in between two pressure sensors.
This is done without using a flow meter downstream the
choke.
Detection of influx and loss is studied in Hauge et al.
(2013), where also the position is estimated. Reitsma
(2010) considers the stand pipe and choke pressures for
detection of influx and loss, but does not isolate the
position. He argues that it is beneficial to have fault
diagnosis without a coriolis flow meter downstream the
choke, due to intolerance to gas flow, limited space, and
vibrations offshore. In Gravdal and Lorentzen (2010),
wired drill pipe is used to detect and isolate a kick in
between pressure sensors.
This study is based on the methods developed in Willer-
srud and Imsland (2013), using an adaptive observer ap-
proach for fault diagnosis. The model and the adaptive
observer used are briefly presented in Sec. 2. The methods
for fault diagnosis are presented in Sec. 3, using statistical
methods to detect changes in estimated parameters. Some
details about the flow loop are presented in in Sec. 4, and
the fault diagnosis framework is demonstrated in Sec. 5
showing the main results. The results are discussed in
Sec. 6 and the paper is summarized in Sec. 7.

2. DRILLING MODEL AND OBSERVER

The model of the drilling system used in this study is a
simplified hydraulics model (Kaasa et al., 2012) with two
control volumes, one for the drillstring and one for the
annulus, connected through the drill bit. See Fig. 1 for
a schematic overview. The model is represented by the
ordinary differential equations
dpp
dt

= βd
Vd

(qp − qbit) (1a)

dpc
dt

= βa
Va

(qbit + qbpp − qc) (1b)

dqbit

dt
= 1
M

(pp − pc − F (θ, qbit)− (ρa − ρd)ghTVD) (1c)

where pp is the drilling pump pressure, pc is the choke
pressure, and qbit the flow through the bit. The parameter
β is the bulk modulus, V is the volume, and ρ is the density
in the control volume. Subscripts d and a denote the
drillstring and annulus control volumes, respectively. The
constant g is the gravitational acceleration. The parameter
M is the integrated density over the cross section A, giving
an integrated value over the segment ∆Li = Li − Li−1 as

Mi =
∫ Li

Li−1

ρi(x)
Ai(x)dx.

The total integrated value from the the pump to the choke
is M = Md + Ma. Furthermore, the true vertical depth
hTVD is assumed known.
The choke flow can be represented by the choke equation

qc = θcCvg(uc)
√
pc − pc,0

where Cv is the choke constant, uc is the choke opening,
and pc,0 is pressure downstream the choke. The choke char-
acteristics g(uc) is found experimentally. The parameter θc
represents possible choke plugging, and is nominally equal
to 1. The total friction F (θ, qbit) is given by

F (θ, qbit) = (θd + θb + θa1 + θa2 + θa3 + θa4)q2
bit (2)

which is the sum of friction in the drillstring, bit, and
annular sections between pressure measurements, respec-
tively. This friction model is best matched when there
is turbulent flow of a Newtonian fluid. The vector of
unknown parameters is

θ = [θd, θb, θa1, θa2, θa3, θa4, θc]> . (3)
The relationship between the wired drill pipe pressure
measurements and the annular friction is given by

pbit,0 = pp − θdq2
bit +Gd(ρd) (4a)

pbit = pbit,0 − θbq2
bit (4b)

p1 = pc + θa1q
2
bit +G1(ρa) (4c)

p2 = p1 + θa2q
2
bit +G2(ρa) (4d)

p3 = p2 + θa3q
2
bit +G3(ρa) (4e)

pbit = p3 + θa4q
2
bit +G4(ρa) (4f)

where Gi(ρa) = ρag(hi−1 − hi), i ∈ 1, . . . , 4 is the hydro-
static pressure difference between the two measurement
points in the annulus, and Gd = ρdghTVD is the hydro-
static pressure in the drillstring. It is assumed that hi is
known.
Note that in Willersrud and Imsland (2013) the formation
of a pack-off giving unknown annular friction parameters
was studied, but where it was assumed that the bit and
drillstring parameters were known. In this paper there
are possible faults such as bit plugging and drillstring
washout, making it necessary to also have unknown bit
and drillstring parameters.
The adaptive observer in Willersrud and Imsland (2013),
which is based on Besançon (2000), is used to estimate
states and parameters. The system above can be written
on the form

ẋ = α(x, z, u) + β(x, z, u)θ (5a)
z = η(x, z, u) + λ(x, z, u)θ (5b)

where x(t) ∈ Rn are the states, z(t) ∈ Rm are ad-
ditional measurements, u(t) ∈ Rp are the inputs, θ ∈
Rq are unknown parameters we want to estimate, and



α(·), β(·), η(·) and λ(·) are locally Lipschitz. Specifically,
x = [pp, pc, qbit]>, z = [ pbit,0, pbit, p1, p2, p3, pbit]>,
u = [qp, qbpp, uc]>, and with system matrices

α(x, u) =


−βd
Vd

(x3 − u1)
βa
Va

(x3 + u2)
1
M

(x1 − x2 − (ρa − ρd)ghTVD)

 (6a)

η(x, z) = [x1 +Gd, z1, x2 +G1, . . . (6b)
z3 +G2, z4 +G3, z5 +G4]> (6c)

β(x, u) = [β3 β3 β3 β3 β3 β3 β2] (6d)
λ(x) = [λ1 λ2 λ3 λ4 λ5 λ6 0] (6e)

where β2 = βa

Va

[
0,−Cvg(u3)

√
x2 − pc,0, 0

]>,
β3 = 1

M

[
0, 0,−x2

3
]>, λ1 = λ2 = −x2

3ej , and λ3 = λ4 =
λ5 = λ6 = x2

3ej , where ej is the jth column of the identity
matrix I6 ∈ R6×6.
Theorem 1. Given an observer for system (5) on the form

˙̂x = α(x, z, u) + β(x, z, u)θ̂ −Kx(x̂− x) (7a)
˙̂
θ = −Γβ>(x, z, u)(x̂− x)− Λλ>(x, z, u)(ẑ − z) (7b)
ẑ = η(x, z, u) + λ(x, z, u)θ̂ (7c)

where Kx,Λ,Γ > 0 are tuning matrices, and assume θ̇ = 0.
Let ex = x̂ − x and eθ = θ̂ − θ be variables for the error
dynamics, where e = [e>x , e>θ ]> = 0 is an equilibrium point.
Then e = 0 is globally exponentially stable if

Γ−1Λλ>(·)λ(·)− β>(·)K>Kβ(·) > kIq (8)
for some constant k > 0, where Iq ∈ Rq×q is the identity
matrix, and K = 1

2
(
In −K−1

x

)
.

See Willersrud and Imsland (2013) for proof of Thm. 1.
Note that the assumption θ̇ = 0 is made to facilitate in
the convergence proof of the observer. In reality there are
faults and measurement noise, making θ stochastic.

3. FAULT DIAGNOSIS

Fault diagnosis is a term which typically describes methods
for detecting a fault, isolating its location, and identifying
the type of fault. Common for fault diagnosis methods
is that they rely on some residual sensitive to faults and
preferably insensitive to disturbances and modeling un-
certainties (Blanke et al., 2006; Ding, 2008). The residual
is typically designed to give zero value at the fault-free
normal case, and a nonzero value during a fault. Ding
(2008) describes two strategies to evaluate the residual.
One of them is norm based evaluation using robust control
theory. Another one is statistic testing using statistical
methods, which is used in this paper.
By estimating friction parameters throughout the system
it is possible to differentiate between pressure losses due to
change in flow from change in friction. If we then classify
sets of parameter changes it is possible to identify the
kind of fault, and to some extent its location. The friction
parameters can be estimated by an adaptive observer,
such as the one described in Sec. 2. In order to have
residuals sensitive to parameter changes with zero value

for the nominal case and nonzero for a faulty case, a change
detection algorithm is employed.

3.1 Change detection algorithms

The data used in this paper is quite noisy, and thus
a statistical evaluation of the estimated parameters (3)
is used to detect changes. These methods assume some
known probability distribution pθ(y) of a random variable
y with known parameter θ = θ0 for the fault-free case H0
and some known or unknown parameter θ1 for the fault
case H1. If θ1 is known, the cumulative sum (CUSUM)
type of algorithms can be used, if not the generalized
likelihood ratio (GLR) is typically applied. An excellent
overview of these algorithms is given in Basseville and
Nikiforov (1993).
A change between the two hypotheses

H0 : θ(i) = θ0 for 1 ≤ i ≤ k
H1 : θ(i) = θ0 for 1 ≤ i ≤ k0 and

θ(i) = θ1 for k0 ≤ i ≤ k
at time k0 is detected if a decision function g(k) increases
above a threshold h, namely

if g(k) ≤ h accept H0,

if g(k) > h accept H1.

The log-likelihood between the known and unknown pa-
rameter is an expression for the probability of y having
either parameter value θ0 or θ1 and is given by

Skj (θ1) =
k∑
i=j

ln pθ1(y(i))
pθ0(y(i)) (9)

where k is the current sample time (Blanke et al., 2006).
With both change time k0 and parameter θ1 unknown the
GLR decision function is given by

g(k) = max
k−N+1≤j≤k

max
θ1

Skj (θ1), (10)

where we use a window of size N of the data series. If pθ(y)
is Gaussian and the variance known, the decision function
is given by

g(k) = 1
2σ2 max

k−N+1≤j≤k

1
k− j+ 1

 k∑
i=j

(y(i)− µ0)

2

(11)

which we will assume for the parameters in this paper. In
addition, we will use sgn(g(k)) = sgn(µ0−µ̂1) to determine
in which direction the parameter is moving. An underlying
assumption is that Gaussian parameter estimates is a
reasonable approximation.

3.2 Fault isolation and identification

In the previous section it was discussed how to detect a
change in a parameter. A change due to a fault is called a
symptom (Isermann, 2006; Ding, 2008). Since the different
faults generate different symptoms, it may be possible to
isolate and identify an occuring fault. In Tab. 1 the faults
are listed with the corresponding changes in parameters.
The naming used for the faults is done in the same way
as for the parameters, where fault i is a fault happening
between sensor pi−1 and pi. As an example, ‘fluid loss
4’ is a loss of fluids between sensors p3 and p4 in the



annulus. Following Isermann (2006); Blanke et al. (2006),
we see that all faults can be uniquely identified based on
the symptoms, but that two or more faults may not be
identified correctly simultaneously. It is not possible to,
e.g., detect fluid loss and drillstring washout simultane-
ously. This is not necessary a weakness in practice, since
downhole faults such as the ones described in this paper
are all quite severe, requiring some counter-measures to be
taken. By using the GLR decision function (11) on each of

Table 1. Fault symptoms with increasing (+),
decreasing (−) and unchanged (0) behavior.

θd θb θa4 θa3 θa2 θa1 θc

Fluid loss 1 0 0 0 0 0 − +
Fluid loss 2 0 0 0 0 − − +
Fluid loss 3 0 0 0 − − − +
Fluid loss 4 0 0 − − − − +
Drillstring washout 1 − − − − − − 0
Drillstring washout 2 − − − − − 0 0
Drillstring washout 3 − − − − 0 0 0
Drillstring washout 4 − − − 0 0 0 0
Gas influx 1 0 0 0 0 0 + −
Gas influx 2 0 0 0 0 + + −
Gas influx 3 0 0 0 + + + −
Gas influx 4 0 0 + + + + −
Bit plugging 0 + 0 0 0 0 0
Choke plugging 0 0 0 0 0 0 −

the parameters in Tab. 1 with a threshold vector h ∈ Rq,
all faults can possibly be detected, isolated and identified.
Note that this matrix only shows faults that are tested in
the experimental setup, whereas it can easily be extended
to diagnose faults such as pack-off and hole enlargement.

4. MEDIUM-SCALE FLOW LOOP

The experimental setup is a horizontal water-based flow
loop of 1400 meters, designed to match a real drilling rig
as closely as possible. It is developed by Statoil and set
up at the International Research Institute of Stavanger
in Norway. Parts of the loop is shown in Fig. 2. Pipes
and equipment are full-size with a high rate conventional
piston rig pump, 5 1/2”-7” outer diameter pipes, and
two parallel MPD chokes. The setup can emulate faults
such as gas influx, drillstring washout, loss of circulation,
bit plugging, and choke plugging, see Fig. 1. In addition
to topside measurements there are distributed pressure
sensors, giving the same information as with wired drill
pipe. The physical parameters for the flow loop used in
the hydraulic drilling model (1) is given in Tab. 2.

Table 2. Parameters in the hydraulic model.
βd,a 22 000 bar Effective bulk modulus
ρd,a 1.0 kg/L Drilling fluid density
Ma 0.374 bar s2/L Integrated density per cross section
Md 0.581 bar s2/L Integrated density per cross section
Va 13.2 × 103 L Volume of fluid in annulus
Vd 8.56 × 103 L Volume of fluid in drillstring

hTVD 2.14 m True vertical depth of bit
Ld, La 703 m Length of drillstring/annulus

There are some aspects in a real drilling process the flow
loop cannot capture. Since the pipes are horizontal, gas
percolating up the annulus will not expand due to de-
creased hydrostatic pressure. Furthermore, since the loop
consists of circular pipes, annular effects and drillstring
rotation will not be captured.

Fig. 2. Flow loop with drillstring washout and gas injection
(left), and fluid loss and drill bit (right).

During analysis of the data a noticeable deadband problem
is found in the chokes. This can also be a problem on a
real rig using an MPD control system. The servo motor
angle is measured, not the actual choke opening. It will
thus be a possible discrepancy between logged and actual
opening which will affect the estimated choke parameter
θc. The data is therefore filtered such that when the choke
opening is going from opening to closing action, or vice
versa, it must first travel the deadband distance before
the opening position actually changes. Another issue in the
test facility is bias on the pressure measurements, which
also can occur on a real rig (Godhavn, 2010). This must be
handled in order to get correct parameter estimates. An
auto-calibration is applied on the pressure sensors when
there is no flow, since then the pressure drop is only
dependent on known hydrostatic pressure.

5. DIAGNOSIS OF EXPERIMENTAL DATA

The fault diagnosis framework in Sec. 3 is applied to
a series of data sets containing the faults bit plugging,
drillstring washout between sensors p1 and p2, fluid loss
between sensors p3 and p4, and finally gas influx between
sensors p1 and p2. These faults are named ‘bit plugging’,
‘washout 2’, ‘loss 4’, and ‘gas 2’, respectively. The time of
the actual faults occurring are shown in the lower panel
in Fig. 4. Note that this information is not known in the
fault diagnosis.

State and parameter estimation. The observer is initial-
ized with x̂(0) = [10, 20, 10]> and θ̂i(0) = 0, and applied
on the series of data sets which has a sample rate of
10 Hz. The observer gains used are Kx = diag{5, 5, 5},
Γ = 5× 10−4 × diag{1, 1, 1, 1, 1, 102} and Λ = 5× 10−4 ×
diag{1, 1, 1, 1, 1, 102}, where ‘diag’ denotes a diagonal ma-
trix. Tuning of observer gains are done primarily to get
correct scaling. Results for the state estimation is shown
in Fig. 3. Since topside pressures are measured, pressure
estimation shown in the upper panel is very good as
expected. Note that we measure the pump flow qp and not
the bit flow, shown in the lower panel, and that the bit
flow estimate closely follows the measured pump flow. If
the flow through restrictions such as the bit or the choke
is different from what the model expects, there will be
a change in estimates of θb or θc. This is used in the
fault diagnosis framework, where, e.g., θc increases when
there is a fluid loss. Parameter estimation is shown in



Fig. 3. State estimation of pressures and flow.

Fig. 4. Parameter estimation and true faults.

the two upper panels of Fig. 4. From these plots we see
that some faults such as bit plugging is easy to identify
directly, causing a large increase in θb at 4:38 and 11:37
minutes. Other faults can be difficult to identify, especially
with noisy parameter estimates. In the same period as
the bit plugging the estimate of θa1 oscillates quite much,
but from Tab. 1 we would not expect any changes in θa1
during a plugging of the bit. This motivates the use of
more sophisticated change detection algorithms.

Detection of change in parameters. The GLR decision
function (11) is applied on θ̂ with µ̂0 = E(θ̂), σ̂2

0 = VAR(θ̂)
calculated on intervals where we assume the fault free
case H0. Since the data sets are merged together and
not recorded consecutively, there can be some differences
between the sets, for example that manual chokes are
slightly moved or there are some drifting bias in the

measurements. We will thus use different µ̂0 and σ̂0 for
the different data sets in the concatenated time series.
On a real rig conditions are constant or slowly varying,
making it possible to get good estimates of the statistical
parameters at H0.
The fault diagnosis threshold vector used is

h = [200, 200, 30, 30, 30, 30, 200]>

with an GLR window of N = 10 samples. We require that
the threshold should be active for a successive 100 samples
in order to rule out symptoms due to transients. In order to
remove false alarms when changing between data sets, the
fault diagnosis is disabled around the transitions. Also note
that the diagnosis must be disabled when there is (close
to) zero flow due to lack of persistently exciting signals
((8) not being fulfilled). Physically this can be explained
by the fact that there is no friction loss when there is no
flow. This can be seen in the parameter estimates in Fig. 4,
which change quite drastically between 16 and 23 minutes.

Fault isolation and identification. The resulting fault
diagnosis is shown in Fig. 5. This figure is generated
by using the threshold h on the GLR estimates, and
isolating and identifying the faults according to Tab. 1.
Each row represents one kind of fault, and the true faults
are indicated in black. The first faults occurring are two
pluggings of the drill bit. They are correctly identified
at 4:43 and 11:42 minutes, respectively, with some short
instances of unidentifiable faults. The next fault is a
drillstring washout starting at 27:17. The washout is
gradually increasing, and identified at 30:04. Here we see
that the real fault of ‘washout 2’ is a bit difficult to
isolate, although the framework successfully identify the
fault as a washout and not, e.g., a loss. The reason for
the inaccuracy may be caused by the fact that detection
of small changes in parameters may be lost due to noise.
Also note that the position of the drillstring washout is
very close to sensor p2, meaning that the real fault could
just as much be categorized as ‘washout 3’. In that sense
can an isolation of alternation between ‘washout 3’ and
‘washout 4’ be considered quite good. Next a very short
burst of fluid ‘loss 4’ occurs at 54:18. The type of fault
is correctly identified, although its position is not so easy
to determine. Also here, the reason may be that there are
small changes in the parameters. The last faults are two
influxes of gas at the same well position as the washout,
namely between sensor p1 and p2, but very close to p2. The
real fault is thus ‘gas 2’. By studying Fig. 5 we see that both
influxes are detected as some faults. The first one is clearly
identified as ‘gas 1’, meaning that we see some change in
θa1 but not θa2. Again, this can be caused by a small signal
to noise ratio. The next influx is more unclear. Here it is
an indication that the cause of parameter change is due to
gas in the system. For some samples, it is identified as ‘gas
1’, for others its position is uncertain, and for the rest the
type of fault is also uncertain.

6. DISCUSSION

In the fault diagnosis in Sec. 5 it can be seen that
the different faults are correctly identified and to some
extent its position is estimated as well. Moreover, there
may be some delay between the time of fault occurrence



Fig. 5. Fault identification: Bit plugging, drillstring washout, fluid loss and gas kick. True faults are indicated in black.

and detection. One of the reasons is that the method in
this paper is somewhat sensitive to parameter estimation,
where a good estimate of the fault free case H0 is required.
If the parameter estimation has much noise, changes will
not be detected. Hence will there be a tuning trade-off
between false and missed fault detection.
The fault diagnosis framework in this paper is tested in a
flow loop with full-size equipment such as rig pump and
chokes, as well as long pipes with typical diameters. It is
thus believed that the method could be applied on a real
rig with managed pressure drilling installed. A significant
difference is that a real rig will have a true vertical depth
of up to several thousand meters. This will change the
conditions during a gas influx drastically. If the drilling
fluid is oil based and not water based, gas can be dissolved
in the fluid at high pressure and liberated as it comes to
lower depth. In addition will cuttings and non-Newtonian
drilling fluid change the friction behavior. These aspects
will have to be taken into consideration in a fault diagnosis
system for a real rig.

7. CONCLUSION AND FUTURE WORK

A novel framework is proposed for fault detection, isolation
and identification of downhole faults in managed pressure
drilling. The framework is based on a simple and easy
configurable hydraulic process model, a nonlinear adaptive
observer, and threshold tests of generalized likelihood ratio
functions. One of the challenges is to detect small changes
when there are noisy signals. The method requires that
we know when we are in a fault-free scenario, but it is
not limited to knowing the magnitude of the faults. We
apply the framework to data from a medium-scale flow
loop and show that we can successfully detect and to some
extent isolate and identify faults such as bit and choke
plugging, drillstring washout, fluid loss, and gas kick by
using distributed pressure sensors.
As future work it would be interesting to include fault esti-
mation in the framework, i.e., estimating the magnitude of
the faults, such as gas influx or fluid loss flow rate. Another
improvement is to estimate the position of different faults
with a larger accuracy than in between measurements.
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