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Abstract— The use of vision systems for industrial robot

guidance and quality control becomes much harder when the

manufactured products and their components are small and

possess reflective surface. To assure an effective automated

visual inspection of such components, novel solutions are

required, able to perform more advanced image analysis and

tackle noise and uncertainty. This paper proposes a concept

of multi-camera/multi-pose inspection station for star washers

inspection, and presents the first results of a functional pro-

totype implementation of it in a robotic cell. The processes

of vision-guided part picking from a flexible feeder and close-

range inspection in a dedicated rig are described. Solutions for

the vision-based tasks of parts identification, machine learning-

based classification, circular objects image analysis and star

washer teeth segmentation are presented, and further directions

are outlined.

I. INTRODUCTION

In today’s competitive environment, quality of manufac-
tured products becomes an important advantage. In many
cases, particularly in the automotive industry, one deals with
safety critical components, quality of which is a stringent
requirement that directly reduces potential risks.

Many of the automotive parts are small in size, and yet
they constitute an important role and place high requirement
on their production systems. Moreover, the smaller a compo-
nent, the more difficult it is to be manipulated and inspected
for quality. In addition, reflectivity, which is an inherent prop-
erty of metallic components, is a well-known challenge to
implementation of machine vision-based inspection systems.
Though the objects’ surface has a large impact on the vision
system, there is little correlation between surface quality and
product quality.

Cycle time and volume requirements are important factors
in the automotive industry. The cycle time sets high demand
on how fast the quality control has to be, and how it can
be performed. The volume results in the large variation set,
and makes it impossible for humans to do the inspection
manually, or be able to understand the complete data set
without use of computers and data analysis.

An example small yet important automotive components
are air brake couplings, used to connect tubes in the break-
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ing system of a vehicle. KArtridgeTM is product family
of couplings manufactured by Kongsberg Automotive AS.
They are multi-material products, comprised from composite,
rubber, and metallic parts. Of a big importance in the
KArtridgeTM couplings is a star washer, a general-purpose
metallic component that secures the grip function between a
coupling and its housing. Depending on the product size, the
outer diameters of star washers range from 15 to 26.5 mm.
In addition to the small dimension of the star washers, their
teeth, which perform the most important function, are much
smaller, ranging in the width from 1.4 to 2.11 mm.

An example of a good and a defective star washer is
presented on Figure 1.

In order to assure zero-defect manufacturing of the air
brake coupling, 100% quality inspection of star washers and
other components has to be done. Challenges to machine
vision-based inspection exist due to the inherent reflectivity
of the star washers’ metallic surface and batch-to-batch vari-
ability in color. In addition, the small size of the components
makes inspection sensitive to cameras’ and lighting setup.

To tackle difficulties of vision-based measurement of small
parts, the sophistication of the applied vision system can be
increased. Particularly, instead of analysis of one image in a
fixed pose, several poses can be registered. For instance, a
star washer can be imaged from the top, resulting in a frontal-
parallel view, and from the side, so that a more detailed
geometry of the teeth could be captured. For each pose
of interest, a different lighting condition can be created to
highlight the required visual features.

Clearly, such systems would require a complex mechan-
ical setup. It may resemble a dedicated assembly machine,
used for high-volume production, but, instead of performing
assembly tasks, the resulting system would be designed to
manipulate parts in order to position them in the required
measurement poses.

Fig. 1. An example a good star washer (left) and the one with various
teeth geometry defects (right)



Because of inherent mechanical complexity of a dedicated
solution, it is rather challenging to recreate it in the labora-
tory environment for the concept experimentation. On the
other hand, the task of multi-camera/multi-pose imaging can
be implemented with an industrial robot. In such a way,
one can obtain a compact reconfigurable solution for part
inspection, which can be continually developed and serve
as a playground for experimentation with various machine
vision solutions.

This paper presents the first results of the abovementioned
laboratory prototype implementation. Firstly, the architecture
of the robotic cell and conceptualization of the desired
workflow is outlined. Then the the results of two machine
vision tasks are presented, namely (1) identification of parts
on the feeder, and (2) close-range inspection. The two tasks
serve two principally different roles, namely robot guidance
and dimensional inspection. Hence, they are performed at
different levels of details in terms of image resolution and the
measured entities. However, a common approach for circular
objects analysis is used in both cases.

Because of the components’ size, it is difficult to directly
differentiate between two possible orientations when one is
lying on the feeder. To tackle this problem, machine learning
(ML) is applied, and several classifier are evaluated.

Fig. 2. An example of incorrect (left) and correct (right) orientations of a
star washer

The paper is organized as follows. Section II overviews
the related work. Section III overviews the details of the
cell setup. Section IV then describes the proposed solutions.
Section V presents the obtained results. Section VI concludes
the paper and sets the direction for the further work.

II. RELATED WORK

Vision-based robotic picking highly depends on the kind
of the manipulated object, which makes it very application-
specific to both the sensing and the manipulation tasks. In
this review, the focus is put on previous work that touched
upon aspects that are similar to those of star washers’ picking
and inspection, namely random placement of fed objects,
small size, reflectivity, and circular shape.

Fully-flexible assembly system concept is presented in [1],
[2]. The concept is based on simplification of mechanical
structure of an assembly system through a heavier usage
of vision systems for parts identification and measurements.
A typical solution of this kind comprises a flexible feeder
handling a range of different components, a robotic manipu-
lator, and an assembly station. Though this solution may be
unsuitable for high-speed production, its flexibility can allow
for such application as flexible small-batch production, 100%
inspection of parts in a measurement station, and flexible
feeding to high-speed production lines.

A solution for pose estimation of randomly placed highly
reflective industrial objects is presented in [3], which is based
on a multi-light imaging system combined with data-driven
pose estimation. Patch voting is used to estimate poses, and
efficient algorithm for database search is implemented using
random ferns.

Dimensional vision-based measurement system for small
eyeglasses components is presented in [4]. The components
are identified on a backlighted plane and then handled by a
robot to the measurement subsystem, where detailed vision-
based estimation of offset, thickness, holes and thread mea-
sures are performed. Working cycle of inspection is improved
by applying simultaneous measurement in two areas and part
handling.

A system for vision-based measurement of small solder
balls on a printed circuit board is presented in [5]. The solu-
tion is based on analysis of connected components, obtained
after robust thresholding and seed-fill noise removal.

A general-purpose method of circular object inspection,
based on building and analyzing radial intensity histograms,
is presented in [6].

III. PROTOTYPE SETUP DESCRIPTION

The implementation of a functional prototype for star
washer picking and inspection is being performed in the
robotic laboratory of SINTEF Raufoss Manufacturing AS
(Raufoss, Norway).

The architecture of the cell is presented on Figure 3. For
part picking and manipulation, an articulated robot Adept
Viper s850 is used. Interfacing with the robot controller
and robot programming is done from a separate desktop
environment, Adept Desktop, of version 4.2.2.8, which is
installed on a dedicated PC. The programming is done in
the proprietary V+ language.

Part feeding is done using an Anyfeed SX240 flexible
feeder. It is designed for random feeding of the parts and
usage in a conjunction with a vision system for pose es-
timation. The feeder is able to communicate with external
systems via RS-232 communication interface. The picking
surface of the feeder is backlighted, which simplifies further
image processing and parts identification.

As the part identification camera, a monochome Allied
Vision Prosilica GC1020 camera (1024x768 in resolution)
with PENTAX C1614-M lens (8 mm) is used. The inspection
rig is comprised of a stereo system with two monochrome
Allied Vision Prosilica GC1350 cameras (1360x1024 in
resolution) with Fujinon HF35HA-1B 35 mm lens. In the
current work, only one camera has been applied.

The stack of software components used to implement the
proposed solutions is described in more details further in
section V.

IV. PROPOSED SOLUTION

A. Workflow description

The workflow of the considered process is presented as a
sequence of operations diagram in Figure 4. The operations
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Fig. 3. Communication architecture of the demonstrator cell

tackled in this paper are outlined in bold. A more detailed
description of the workflow is described below.

The feeder used in the setup can be controlled via the
RS-232 interface to perform such actions as feeding more
parts to the feeding surface, flipping the parts on the feeding
surface, and moving the parts linearly. This is achieved by
vibrations of different forms and intensities.

A mono vision system on top of the feeder takes an
image of the feeding surface to find the positions of the
components available to pick. Among the all washers on
the surface (set W ) there is a subset of those in correct
orientation (Wcorrect ✓ W ). If there is no components in
correct orientation (Wcorrect = /0), the feeder flips, and the
abovementioned vision identification procedure needs to be
executed once more. If there is no components at all, the
feeder feeds the new ones from its upper part.

This paper excludes the feeding process and leaves its
description for the further work.

Identify	star	washers

Find	 the	first	star	washer	
!" ∈ $%&''(%)

Pick	!"

Move	!" to	the	inspection	
rig

Inspect	!"
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Fig. 4. Workflow diagram

Since there is only one camera used for part identification,
the coordinates of the washers are estimated as 2D points,
expressed in pixels, on the image plane ImagePlane ⇢ R2.
Having the part identification camera calibrated using the
chessboard-based procedure [7], [8], [9], the known intrinsic
parameters of the camera and one known pose of a chess-
board lying of the feeder can be used to perform mapping
from the image plane to the feeder plane as a homography
transformation:

Hf eeder : ImagePlane ! FeederPlane (1)

Because the points on FeederPlane are expressed in
millimeters, it is further possible to attach a coordinate frame
to its origin and calibrate its pose expressed in the robot’s
coordinate system. This part of the work, together with the
picking process itself, are not considered in this paper and
will be described in the following publications.

After the identification, the robot picks the first part in the
correct orientation and moves to the inspection rig. Here,
a pert is inspected using a dedicated camera system in the
close range (Figure 5), and further palletized.

Fig. 5. Robot in the inspection pose

B. Star washers identification

Once an image of the feeder Ioriginal is acquired, the
components are identified as follows:

1) Ioriginal is thresholded using the Otsu’s method [10], i.e.
the optimal threshold value is found which maximized
inter-class variance between the classes of white and
black pixels; It is obtained.

2) It is used to separate the connected components. As
a result, a label image Ilabel is obtained, together with
the following descriptor of each connected component:
(xle f t ,ytop,w,h,a,xcenter,ycenter), corresponding to the
left column coordinate, top row coordinate, width,
height, area, and center coordinates respectively. All
descriptors are stacked-up into a data frame D 2
Rnlabels⇥7, with each row describing the particular con-
nected component.

3) Data frame D is filtered to describe only those con-
nected components that correspond to the star washers;
D

w

is thus obtained.



Because star washers are circular objects, having D

w

, it
is easy to extract sub-images from Ioriginal that contain each
individual component in a form of a bounding box with top
left corner at (xle f t ,ytop), width w, and height h.

C. Circular object analysis with polar transformation
A different view on a circular object can be obtained

by transforming it from the Cartesian coordinate system
to the polar coordinate system. The latter represents an
arbitrary point as tuple (r,q), where r is a length of a ray
from the origin point, and q is an angle of the ray. With
the known Cartesian coordinates of the origin of the polar
coordinate system x

0

= [x0,y0]T and the given pair (r,q),
the corresponding Cartesian coordinates x

1

= [x1,y1]T can
be computed as follows:

x1 = x0 + rcos(q)
y1 = y0 + rsin(q) (2)

As in the case of star washers, the estimated coordinates
of the center of each washer is already known as a result
of connected component analysis. Given that r = h/2, an
image of a circular star washer can be unwrapped into a
polar image. Specifically, for each angle q = iDq (where
Dq = 2p/nangles is a small angular increment), it is possible
to obtain a profile along the segment from (x0,y0) to (x1,y1).
Because of the biggest interest is part of the image with the
actual metallic component, and not the inner empty area, a
part of a radial profile of length lignored can be ignored, thus
taking into account only the segment from x

start

to x

1

, where
x

start

= [xstart ,ystart ]T is computed as follows:

xstart = x0 + lignoredcos(q)
ystart = y0 + lignoredsin(q) (3)

The length of the resulting profile can be specified in a
fixed number of pixels npixels. Each radial profile of this
kind correspond to a row of a matrix P 2 Rnangles⇥npixels . P

(Figure 6), which constitutes a polar image, can be further
used for edge detection and other image analysis operations.
In addition, each row and column of P can be used as-is:
P(i, :) represents a radial line profile for angle qi, and P(:, j)
represents a profile around a circle of radius r j:

qi = i
2p

nangles

r j = lignored + j
|x

start

,x
1

|
npixels

(4)

It is important to stress the following aspect. Traditionally
the coordinate system of an image is positioned in the top
left corner, with x-axis pointing to the right and y-axis
pointing down, thus making [x,y]T the coordinates of xth
column and yth row. Positive rotation in this case would
appear in clockwise direction on the image (as opposed to
the traditional counterclockwise direction). To eliminate this
source of confusion, it is handy to flip the coordinate frame,
so that x-axis represents rows and y-axis represents columns.
This notations would also be more consistent with traditional
matrix indexing, and since images are typically handled as

Fig. 6. An example of a star washer subimage (left) and the corresponding
P matrix (right)

matrices, the flipped coordinate system would result in a
simpler indexing when interacting with existing matrix-based
procedures.

D. Classification of star washers’ orientation on a feeder
A challenging task from the computer vision point of view

is determining orientation of each individual star washer on
the feeder in order to guide the robot to pick only those
belonging to Wcorrect . Let each star washer w, seen on the
image of the feeder surface, be characterized with its center
coordinate x

w

2 ImagePlane and a binary orientation label
ow 2 {0,1}, such that w 2Wcorrect if ow = 1:

w = (x
w

,ow) (5)

Determining ow is not easy, since there are no evident
visual clues on a frontal image of a feeder, which would help
to determine whether a washer is correctly oriented or not. In
addition, because of the reflective surface of the components,
they have different appearance on different regions of the
feeder. Since the direct measurement is not possible in the
given situation, a classification procedure based on machine
learning is proposed.

Various supervised learning algorithms are focused on
learning an unknown function f : X ! Y from a set of
training samples {x

i

,yi}, where x

i

2 X ,yi 2 Y , and yi =
f (x

i

). In case of classification problem, Y = {0,1} or Y =
{0,1,2, . . . ,K � 1}, where K is the number of classes. The
dimensionality of feature vectors x

i

is typically large.
In order to classify star washers, i.e. predict the value of

ow for a washer w, the following solution is proposed. The
feeder surface is manually filled in by a large number of
star washers (e.g. 120), depending on how many of them
fit, all in the correct orientation. An image of the feeder is
taken and saved as I1. The same is done when all washers
are positioned incorrectly, giving the image I0. Having the
implementation of star washers identification and Cartesian-
to-polar transformation, in both I1 and I0 the possible sub-
images of the washers are extracted and transformed into
the corresponding P-matrices. Regardless the varying sizes
of sub-images, the P-matrices will all be of the same size, i.e.
nangles ⇥ npixels. Having each P-matrix flattened, it becomes
a feature vector of the unified size.



Assuming that one has obtained m0 and m1 feature vectors
from images I0 and I1 respectively, each of the sets (X0, X1)
have to be partitioned in the training and testing subsets:

X0 = Xtrain
0 [Xtest

0
X1 = Xtrain

1 [Xtest
1

(6)

Further, feature vectors in set Xtrain
0 , labeled with y = 0,

and in set Xtrain
1 , labeled with y = 1, can be used for

training the chosen ML classifier. The correctness of various
classifiers can be benchmarked using the sets Xtest

0 and Xtest
1 .

E. Inspection of star washer teeth

Unlike the picking task, in which the entire feeder sur-
face is imaged, during the inspection, a high-resolution
image of each single star washer is acquired and analyzed.
Nevertheless, the techniques described above and used for
star washers’ identification and classification, can be reused
for a high-resolution analysis. In particular, the connected
component analysis allows for a quick segmentation of the
object, even if its pose in relation to camera varies over time.
Creation of the polar image (matrix P), especially with a fine-
grained angular resolution, simplifies segmentation of each
individual tooth. The latter approach will be further described
below.

Let P

B

be a binary image derived from P by thresholding,
in which 0-pixels correspond to background and 1-pixels
correspond to the washer. Index j describe a column of
matrix P

B

. Let jlast denote the last column with all ones
(P

B

(:, jlast) = 1 and there is no j > jlast such that P(:, j) = 1).
In such a way, a slice of P

B

to the right from jlast would
correspond to the teeth area.

After jlast is obtained, the task is to find jright > jlast which
would allow to select P

R

, a right-side slice of P

B

that would
contain all teeth as isolated connected components:

P

R

= P

B

(:, jright : width(P
B

)) (7)

The algorithm 1 is proposed for determining jright .

Algorithm 1 Computation of jright column index
wPB = width(P

B

)
P

teeth

= P

B

(:, jlast +1 : wPB)
w = width(P

teeth

)
h = height(P

teeth

)
f =�1
for i = 1 to h do

for j = 1 to w do

if (P
teeth

(i, j) = 0)^( j > f )^( j < w� jlast
4 ) then

f = j
break

end if

end for

end for

jright = jlast + f
return jright

After jright and P

R

are obtained, the connected component
analysis can be done upon P

R

, similarly to the process of
finding parts on the feeder (subsection IV-B). In the case
of P

R

, for each of the connected components, ytop will
correspond to the angle at which the given tooth begins
(qstart ), and ytop + h will correspond to the angle at which
the given tooth ends (qstop):

qstart = ytop
2p

nangles

qstop = (ytop +h)
2p

nangles

(8)

Having these angles, each star washer tooth can be seg-
mented into an individual rotated image. Figure 7 shows a
fragment of a PB and P matrices with the segmentation results
described above. The red line correspond to jlast , the green
line - jteeth, and the cyan and magenta lines depict the starting
and ending angles of each tooth.

Fig. 7. A fragment of teeth segmentation

V. RESULTS

The solutions and algorithms described in section IV were
implemented using Python stack for data analysis and scien-
tific computing, and the associated tools for computer vision,
image processing and machine learning: NumPy [11], SciPy
[12], Matplotlib [13], Pandas [14], OpenCV [9], Scikit-Image
[15], and Scikit-learn [16].

Images used for verification of the solutions, were acquired
in the laboratory environment using the available industrial
cameras (see section III).

As described in IV-D, different ML classification algo-
rithms has to be tested upon the available data to verify the
applicability of ML solutions in general and to determine
the most accurate classifiers. Recalling the data sets in (6),
the set Xtest = Xtest

0 [Xtest
1 is used for testing the quality of

classification.
Let T P (true positives) denote a number of data samples in

Xtest
1 (in the correct orientation) that were correctly classified,

i.e. yielding ow = 1; FP (false positives) a number of data
samples in Xtest

0 (in the incorrect orientation) that were
classified as ow = 1; T N (true negatives) a number of data
samples in Xtest

0 that were classified as ow = 0; FN (false
negatives) a number of data samples in Xtest

1 that were
classified as ow = 0.

Having the above numbers, the following performance
metrics can be computed: precision P, recall R, F-score F .



P =
T P

T P+FP
R =

T P
T P+FN

F =
2PR

P+R

(9)

The used dataset contained 120 data samples extracted
from a single image (both for the case with ow = 0 and
ow = 1). 90 samples were used for training of classifiers, and
30 for their testing, i.e. |Xtrain

0 |= |Xtrain
1 |= 90 and |Xtest

0 |=
|Xtest

1 |= 30.
For training and testing of classifiers, their Scikit-

learn implementation was used. The following
classifiers were tested: support vector machine
(SVC), multinomial naive Bayes (MultinomialNB),
Gaussian naive Bayes (GaussianNB), decision
tree (DecisionTreeClassifier), adaptive
boosting (AdaBoostClassifier), random forest
(RandomForestClassifier), k-nearest neighbors vote
(KNeighborsClassifier). Table I summarizes the
quality characteristics of the above classifiers.

TABLE I
COMPARISON OF CLASSIFIERS

name tp tn fp fn prec rec fs
SVC 30 0 30 0 0.500 1.000 0.667
MultinomialNB 27 29 1 3 0.964 0.900 0.931
GaussianNB 29 30 0 1 1.000 0.967 0.983
DecisionTreeClassifier 27 24 6 3 0.818 0.900 0.857
AdaBoostClassifier 29 30 0 1 1.000 0.967 0.983
RandomForestClassifier 27 30 0 3 1.000 0.900 0.947
KNeighborsClassifier 24 29 1 6 0.960 0.800 0.873

One can see that classifiers that produced the best results
are adaptive boosting and random forest classifier, which
resulted in 1 and 3 false negatives respectively. Neither of
them produced false positives, which is particularly useful
for preventing failed robotic picking.

VI. CONCLUSION AND FURTHER WORK

This paper presented the first results of a functional
prototype implementation of a star washer inspection system.
At the given point, the architecture of the robotic cell,
overwieved in this paper, serves as a guiding framework
for practical implementation. So far, the individual parts of
the systems has been developed, and the further goal is to
integrate these parts into a single system.

Solutions described in this paper concern the machine
vision tasks: identification of star washers on the feeder,
classification of their orientation, and segmentation of a star
washer’s teeth as a part of close-range inspection. Techniques
used to solve the latter problems include connected com-
ponent analysis, Cartesian-to-polar transformation, analysis
of polar images of various resolutions, and classification
using supervised machine learning. It was found, that even
though there are no clear visual clues that differentiate the
orientation of star washers, by training a machine learning
system, it is possible to achieve satisfactory classification

results. The most accurate classifiers for the given case are
of the ensemble type: adaptive boosting classifier and random
forest classifier.

Further work will put an emphasis on robot/vision integra-
tion, multi-pose imaging the inspection rig, testing different
illumination modes, more detailed image-based measurement
during inspection, and system integration.
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