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ABSTRACT 

Patients with triple negative breast cancer (TNBC) are unresponsive to endocrine and anti-HER2 

pharmacotherapy, limiting their therapeutic options to chemotherapy. TNBC is frequently 

associated with abnormalities in the PI3K/AKT/mTOR signaling pathway; drugs targeting this 

pathway are currently being evaluated in these patients. However, response is variable, partly 

due to heterogeneity within TNBC, conferring a need to identify biomarkers predicting response 

and resistance to targeted therapy. In this study, we used a metabolomics approach to assess 

response to the mTOR inhibitor everolimus in a panel of TNBC patient-derived xenografts 

(PDX) (n=103 animals). Tumor metabolic profiles were acquired using high-resolution magic 

angle spinning magnetic resonance spectroscopy. Partial least squares-discriminant analysis on 

relative metabolite concentrations discriminated treated xenografts from untreated controls with 

an accuracy of 67% (p=0.003). Multilevel linear mixed-effects models (LMM) indicated reduced 

glycolytic lactate production and glutaminolysis after treatment, consistent with 

PI3K/AKT/mTOR pathway inhibition.  Although inherent metabolic heterogeneity between 

different PDX models seemed to hinder prediction of treatment response, the metabolic effects 

following treatment were more pronounced in responding xenografts compared to non-

responders. Additionally, the metabolic information predicted p53 mutation status, which may 

provide complimentary insight into the interplay between PI3K signaling and other drivers of 

disease progression. 
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INTRODUCTION 

Pharmacological treatment of breast cancer has progressed notably in the past decades, 

accounting for much of the improvement in patient survival1-2. Currently available systemic 

treatments include chemotherapy, endocrine therapy, and novel targeted therapies. 

Chemotherapy has been shown to be the most potent of these treatments3, but severe adverse 

effects may limit its use. Endocrine treatment was the first targeted therapy for breast cancer; it is 

considered to be safe and effective, but is only useful for the treatment of hormone (estrogen and 

progesterone) receptor positive patients3. Novel targeted therapies include the human epidermal 

growth factor receptor 2 (HER2) inhibitor trastuzumab, which can provide additional benefit to 

patients overexpressing the cell growth-promoting HER2 (ERBB2) protein3.  

Triple negative breast cancer (TNBC) refers to any breast cancer lacking expression of estrogen 

receptors (ER), progesterone receptors (PgR), and HER2 protein. These cancers are consequently 

unresponsive to both endocrine and anti-HER2 therapy, limiting the therapeutic option for these 

patients to chemotherapy alone. Breast tumor heterogeneity is not only found at the protein level; 

Perou and Sørlie et al. divided the disease into five naturally-occurring, clinically relevant 

subtypes based on gene expression4-5. TNBC displays a high degree of overlap with the basal-

like gene expression subtype, which is associated with the worst prognosis and a high frequency 

of abnormalities in the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway6-7 (Figure 

1). This pathway is involved in cell survival, proliferation, and growth, and has been shown to be 

deregulated in various human cancers8.  
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Figure 1. PI3K/AKT signaling pathway in cancer. PI3K can be activated by receptor tyrosine 

kinases (RTKs), G protein-coupled receptors (GPCRs), and RAS. Activated PI3K 

phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2), a plasma membrane phospholipid, 

and converts it into phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 binds to 3-

phosphoinositide dependent protein kinase-1 (PDK1) and AKT, recruiting them to the plasma 

membrane. This process is negatively regulated by PTEN and INPP4B, which convert PIP3 back 

to PIP2, and PIP2 back to phosphatidylinositol phosphate (PIP), respectively. Once at the plasma 

membrane, AKT is activated via phosphorylation by PDK1. Activated AKT then phosphorylates 

mTOR (mammalian target of rapamycin), which acts as a catalytic subunit in the protein 

complexes of mTORC1 and mTORC2. mTORC1 is involved in growth and protein synthesis, 
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while mTORC2 regulates metabolic reprogramming and activates AKT, creating a positive 

feedback loop. Via association with the FKBP-12 protein, of which mTORC1 is a direct target, 

everolimus indirectly binds to mTORC1, inhibiting its activity. In the present study, prediction of 

the expression of the proteins PTEN and pAKT (in gray, dashed boxes) using metabolic data was 

attempted.  

Various inhibitors of the PI3K pathway have been developed for use as cancer therapies. Many 

of these act upon the mammalian target of rapamycin (mTOR), one of the major effectors 

downstream of AKT. One such inhibitor is everolimus, a rapamycin analog that binds to the 

FKBP-12 protein of which mTOR complex 1 (mTORC1) is a direct target9. The everolimus-

FKBP-12 complex binds to mTORC1, inhibiting further downstream signaling of the PI3K/AKT 

pathway. Everolimus is approved for treatment of hormone receptor positive10-11 and HER2 

positive12 breast cancer in combination with hormonal or anti-HER2 therapy, respectively, with 

the addition of the mTOR inhibitor significantly prolonging progression-free survival (PFS). 

However, with abnormal PI3K signaling occurring very frequently in TNBC compared to the 

other breast cancer subtypes, everolimus has been considered a potential candidate for targeted 

therapy of this breast cancer subtype. 

TNBC, however, is a heterogeneous disease in terms of clinical, histological, and molecular 

aspects13. Tumor heterogeneity contributes greatly to the variability in breast cancer treatment 

response. Therefore, it is important to define reliable markers that can predict the outcome of 

treatment with targeted drugs. Previous studies have demonstrated variable responses to 

everolimus in TNBC, and robust molecular biomarkers for prediction of response/resistance to 

treatment are not yet identified14. Metabolites are more representative of the phenotype than 

genes and proteins, being both downstream products and upstream effectors of gene and protein 
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signaling, and altered metabolism is one of the more recently acknowledged hallmarks of 

cancer15. Consequently, it has been suggested that metabolic biomarkers or global metabolic 

profiles can guide patient selection for targeted drug treatment, and detect response/resistance to 

therapy16. High resolution (HR) magic angle spinning (MAS) magnetic resonance spectroscopy 

(MRS) allows for non-destructive, ex-vivo analysis of biological tissue samples and has been 

applied to study cancer-related metabolic pathways17-18. Cao et al.19 applied this technique to 

metabolically characterize TNBC and demonstrated that it was metabolically different from 

ER+/PgR+/HER2+ breast cancer. In addition, tumors from the same gene expression subtype 

have been shown to have a variety of different metabolic profiles, as assessed by HR MAS 

MRS20-21. The potential of HR MAS MRS in assessing response to therapy on a metabolic level 

has also been studied, with metabolic profiles discriminating responders from non-responders 

and relating metabolic changes after treatment in 5-year survival22-24 . Moestue et al. have 

demonstrated how response to treatment with a dual PI3K/mTOR inhibitor, BEZ235, was 

associated with altered levels of choline-containing metabolites as well as altered glucose and 

lactate levels in basal-like breast cancer xenografts7. 

The objective of this study was to assess whether metabolic profiles can predict response to 

treatment with everolimus in a heterogeneous panel of TNBC patient-derived xenografts (PDX). 

Using HR MAS MRS, we aimed to identify metabolic biomarkers for response/resistance. We 

additionally explored whether the expression, phosphorylation, or mutation status of molecules 

regulating PI3K/AKT signaling could be determined based on metabolite information.  

MATERIALS AND METHODS 

Ethics 
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All procedures and experiments involving animals were carried out according to the institutional 

guidelines of the French Ethical Committee and the European Convention for the Protection of 

Vertebrates used for Scientific Purposes. 

Animal Models 

Thirteen TNBC PDX were previously established as described in 25; the models have been 

further subclassified based on gene expression profiles (Table 1). Treated animals (n = 4 per 

PDX model, ntreated=50) received everolimus (Novartis, Basel, Switzerland) at an oral dose of 2.5 

mg/kg three times a week for 4-5 weeks; fifty three animals (n = 4 per PDX model) were 

untreated controls, resulting in tumor tissue samples from a total of 103 animals (Figure 2)*.  The 

tumor tissue was harvested on the last day of treatment, snap-frozen immediately, and stored at -

80°C. TNBC xenograft molecular and histological traits, previously characterized, are 

summarized in Table 1; for further information on the effect of everolimus treatment on protein 

and gene expression for this cohort, refer to 14.  

 

 

 

 

 

 

 

                                                 

* Although the study was designed to include eight animals, i.e. n=4 treated animals and n=4 
untreated controls, per PDX model, this number varied due to e.g. limited tumor tissue 
availability or exclusion of spectra of poor technical quality. 
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Table 1. Patient-derived tumor xenograft characteristics. 

PDX 

model 

nTreated/ 

nControls 
TNBC subtype 

PTEN 

expression 

pAKT 

expression 

p53 

mutations 

Response 

Group 

HBCx2 4/4 
Luminal-like 

(AR+FOXA+) 
+ + p.A276D Non-Resp. 

HBCx12A 2/4 HER2 enriched - + WT Non-Resp. 

HBCx16 4/4 
Basal 

(KRT5+KRT17+) 
+ + WT Non-Resp. 

HBCx30 4/4 
Basal 

(KRT5+KRT17+) 
- - p.F134L Non-Resp. 

HBCx39 4/4 
Basal (KRT5+KRT17+) / 

HER2 enriched 
+ - p.Y220C Responder 

HBCx31 4/4 
Luminal-like 

(AR+FOXA1+) 
+ + p.R175H Responder 

HBCx66 4/4 
Basal 

(KRT17+) 
- + p.R273C Responder 

HBCx10 4/4 HER2 enriched - + p.Q144fs Responder 

HBCx51 3/2 HER2 enriched + - p.R337C Responder 

HBCx4B 7/8 
Basal 

(KRT5+ KRT17+) 
- + p.S149fs Responder 

HBCx52 3/4 
Luminal-like 

AR+ FOXA1+ 
+ NA p.E336X Responder 

HBCx24 4/3 
Basal 

(KRT5+) 
- + p.K292fs Responder 

HBCx63 3/4 unclassified - + p.R175H Responder 

All PDX models were of the invasive ductal carcinoma (IDC) histological type. 
AR: androgen receptor; FOXA: forkhead box protein A; KRT: keratin; NA: not 

available; Non-resp.: non-responder; PDX: patient-derived xenograft; TNBC: triple 
negative breast cancer; WT:wild type. 
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 9

 

Figure 2. Study Design. Thirteen triple negative breast cancer (TNBC) patient-derived 

xenograft (PDX) models were included in the study. Nine PDX models were found to respond to 

everolimus based on significant differences in relative tumor volume between treated animals 

and untreated controls. For each PDX model, approximately 4 animals were treated with 

everolimus and 4 were untreated controls. The total number of samples obtained were ntreated=50, 

and nuntreated=53.  

Evaluation of Treatment Response 

Response was classified based on relative tumor volume (RTV) measured using external 

calipers. For each PDX model, a Student’s t test was performed comparing the RTV of treated 

tumors with that of the untreated tumors at the end of the treatment period. PDX models 
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 10

exhibiting a significant difference (p≤0.05) in RTVs of treated and untreated animals were 

classified as responders, while those not meeting this criterion were classified as non-responders.   

HR MAS MRS analysis 

Tumor tissue samples (12.29 ± 2.97 mg) were prepared and analyzed as described in the HR 

MAS MRS protocol by Giskeødegård et al.26. In short, samples were cut on a dedicated, cooled 

work station to fit into 30 µL disposable inserts containing 3.0 µL of 24.29 mM sodium formate  

(VWR BDH Prolabo, France) in D2O (Armar Chemicals, Switzerland) for shimming and 

locking purposes. Each insert was set tightly into a 4 mm MAS zirconium rotor. Each sample 

was prepared within five minutes, and HR MAS MR spectra were subsequently acquired on a 

Bruker Avance DRX600 spectrometer (Bruker Biospin GmbH, Germany) equipped with 

a 1H/13C MAS probe. Samples were spun at 5 kHz while maintaining the probe temperature at 

5°C to minimize tissue degradation. Proton spectra were acquired using a spin-echo Carr-Purcell 

Meiboom-Gill (CPMG) sequence (cpmgpr1d, Bruker BioSpin, Germany) as previously 

described in 21, with effective echo time of 77 ms, a spectral width of 20 ppm (−5 to 15 ppm), 

and 256 scans. 

Immunohistochemical staining and mutation screening 

Formalin-fixed, paraffin-embedded samples were analyzed by immunohistochemistry for the 

expression of phosphatase and tensin homolog (PTEN) and pAKT as described in 14. Mutations 

in the tumor suppressor gene p53 were screened for as described in Supplementary Methods 

(Supporting Information).  

Data preprocessing 
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From the original sample cohort of 108 samples, four were excluded due to high levels of an 

unknown contaminant at 3.70 ppm and one for poor spectral quality, resulting in 103 samples for 

subsequent statistical analysis. Following acquisition, the free induction decays (FIDs) were 

Fourier transformed into 64k real points after 0.30 Hz line broadening. Phase correction was 

performed automatically for each spectrum using TopSpin 3.1 (Bruker BioSpin GmbH, 

Germany).  

The following spectral preprocessing steps were performed in Matlab R2013b (The Mathworks, 

Inc., USA). The spectral region between 1.40 – 4.70 ppm, containing the majority of low-

molecular weight metabolites, was selected for further processing. Chemical shifts were 

referenced to the creatine peak at 3.03 ppm. The spectra were baseline corrected using 

asymmetric least squares27 with parameters λ = 1e7 and p = 0.0001, after setting the lowest point 

in each spectrum to zero. Peak alignment was carried out using icoshift28. Lipid peaks at 4.33–

4.28, 4.18–4.13, 2.88–2.72, 2.30–2.21, 2.11–2.00, 1.65–1.55 ppm, and the contaminant peaks for 

the previously mentioned unknown compound and ethanol at 3.73–3.69 and 3.67–3.62 ppm, 

respectively, were excluded from further analysis. The resulting spectra were normalized to total 

area to correct for differences in sample size and tumor cell content.  

Statistical Analysis 

Metabolite peak assignment was performed based on previous identification29. Seventeen 

metabolites were identified as measurable. Their relative levels were calculated by integrating 

fixed regions of preprocessed spectra corresponding to the metabolite of interest in Matlab 

R2013b. The metabolite ratios of lactate/glucose, taurine/creatine, and 

glycerophosphocholine/phosphocholine were determined, and were combined with the relative 

levels of individual metabolites to make a single dataset which will be referred to as metabolite 
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 12

integrals. All metabolite integrals were log10 transformed (Table S-1, Supporting Information) 

to satisfy prerequisite assumptions of normality of analyses of individual metabolites. 

Multivariate analysis 

Multivariate analysis was carried out for metabolite integrals in Matlab R2013b (The 

Mathworks, Inc., USA) using PLS Toolbox 7.8.2 (Eigenvector Research Inc., U.S.A). The log10 

transformed integrals were autoscaled prior to multivariate model building. Principal component 

analysis (PCA)30 was performed on metabolite data from the whole dataset, as well as from 

untreated controls and treated xenografts separately, to explore naturally-occurring trends for 

different PDX models. The optimal number of principle components (PCs) was selected based 

on visual inspection of residual explained variance plots. Partial least squares-discriminant 

analysis (PLS-DA)31 was used to build a classification model of all samples to discriminate 

treated xenografts from untreated controls. Additional classification models were also built for 

treated xenografts and untreated controls separately, to discriminate between responding and 

non-responding PDX models. Finally, PLS-DA was employed to build models of untreated 

controls discriminating tumors expressing (+) or not expressing (‒) PTEN and pAKT, as well as 

tumors with mutant or wild type p53. PCA and PLS-DA loadings plots were employed to relate 

variables or metabolites to samples or xenografts in the scores plots. For PLS-DA plots, 

orthogonal PLS (OPLS)32 was employed to condense the y-variance into the first latent variable 

(LV) when the number of optimal LVs >1. 

The PLS-DA classification performance parameters of accuracy, sensitivity, and specificity were 

obtained by employing double-layered cross validation (CV)33 to avoid model overfitting. This 

method optimizes the number of PLS LVs in the inner CV layer and assesses model predictive 

ability in the outer layer. The procedure consisted of splitting the samples into a training and test 
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set in each layer; this was performed by randomly selecting 20% of the samples to be excluded 

from model building, or training, for subsequent testing of the model built.  The splitting was 

repeated until each sample was used for testing once and only once, keeping all animals of the 

same PDX model type together in either the training or test set. A maximum of ten LVs were 

considered for optimization. The whole double CV procedure was repeated 20 times, with the 

final classification results and optimal number of LVs resulting from the mean and mode, 

respectively. For PLS-DA discrimination of p53 mutation status, double-layered CV was not 

possible because only two PDX model types had wild type p53 (Table 1). Therefore, for this 

PLS-DA model only, leave-one-PDX type-out CV was performed instead. Permutation testing33 

was carried out as an additional model validation. For this, the sample class labels were 

randomly shuffled (permuted) before PLS-DA model building. Permuted models were assessed 

in the same manner as their non-permuted counterparts using the previously determined optimal 

number of LVs from double-layered CV or leave-one-PDX type-out CV. A thousand 

permutations were performed for each non-permuted model being validated, obtaining a 

permuted accuracy distribution. Models were considered significant if the final accuracy 

obtained from non-permuted double CV was higher than 95% of the permuted accuracy values 

(p≤0.05).  

Analysis of individual metabolites 

To compare treated xenografts versus untreated controls and responding versus non-responding 

PDX models simultaneously, linear mixed-effects models (LMM)34 were employed as a 

multilevel approach. LMMs incorporate two types of effects to describe relationships between a 

response variable and different categorical factors. Fixed effects are controlled and systematic, 

originating from differences between factor levels, while random effects originate from the 
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between-PDX model variation, each being derived from a different patient. Here, a LMM was 

built in R 3.1.135 using the function lme from the nlme package36 and the method of restricted 

maximum likelihood. The response variable was the metabolite level, the fixed effects were 

treatment group (treated or untreated) and response group (responding or non-responding PDX), 

and the random effect was the PDX model. 

LMM was additionally employed to correct for repeated PDX model measurements while 

determining individual metabolite differences between treated xenografts and untreated controls 

in responding and non-responding PDX models separately.  These two LMM were built as 

described above, except that only the treatment group fixed effect was included, as samples were 

divided to perform the analysis on each individual response group.  All LMM were built without 

interaction terms after determining that interactions were not significant, as described in24. 

Obvious deviations from normality were not observed from LMM residual q-q plots and 

histograms. 

LMM p-values were corrected for multiple testing by the Benjamini Hochberg method for false 

discovery rate (FDR) adjustment in R 3.1.1 using the stats package35. Adjusted p (q-value) ≤ 

0.05 was considered to be statistically significant.  

RESULTS AND DISCUSSION 

Triple negative breast cancer is the most clinically challenging histopathological category of the 

disease owing to its highly aggressive nature, poor prognosis, and lack of available targeted 

therapies37. Activation of the PI3K signaling pathway is frequently seen in TNBC, and it has 

therefore been proposed that drugs targeting the PI3K/AKT/mTOR axis may be of particular 

benefit in these patients. It has been suggested that metabolic biomarkers may be used to predict 
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or monitor response to targeted drugs in breast cancer. In this study, we used MR spectroscopy to 

obtain metabolic profiles from patient-derived triple negative breast tumor xenografts following 

everolimus treatment and untreated controls, demonstrating more pronounced metabolic effects 

in responding xenografts compared to non-responders. Since this drug blocks PI3K signaling via 

mTOR inhibition, we additionally explored whether metabolic data reflects the expression of key 

proteins and mutation status for the tumor suppressor gene p53, which regulate signaling activity 

in this pathway. 

Metabolic effects of everolimus treatment 

PLS-DA of 20 metabolite integrals from all samples was performed to discriminate between 

treated xenografts and untreated controls (Figure 3A), achieving an accuracy of 67% (p=0.003) 

(Table 2). Treated xenografts exhibited higher glucose, glutamine, and alanine levels, and lower 

phosphocholine (PCh), glycerophosphocholine (GPC), and lactate/glucose (Lac/Glc) (Figure 

3B). However, no clear separation between treatment groups could be observed with PCA 

(Figure S-1, Supporting Information). Nevertheless, when employing LMM as a multilevel 

approach, the same metabolites deemed important through PLS-DA, with the exception of 

GPC/PCh instead of GPC, were found to be significantly different for the fixed effect of 

treatment group after multiple testing correction (Table 3), with coefficients agreeing with PLS-

DA loading trends; this indicates that both PLS-DA and LMM revealed the same metabolic 

alterations in TNBC patient-derived tumor xenografts, summarized by pathway in Figure 4, 

following everolimus treatment. Mean metabolite values for treated xenografts and untreated 

controls are presented in Table S-2 (Supporting Information).   
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Figure 3. PLS-DA scores (A) and loadings plots (B) of treated xenografts vs untreated 

controls (n=103), and mean spectra (C) of treated xenografts and untreated controls. 

Treated xenografts exhibit higher score values on latent variable (LV) 1 compared to untreated 

controls (A). Metabolites exhibiting higher loading values (B) are higher in treated xenografts 

compared to controls. Loadings are colored according to LV 1. Ala: alanine; Asc: ascorbate; 

Cho: choline; Cr: creatine; Glc: glucose; Gln: glutamine; Glu: glutamate; Gly: glycine; GPC: 

glycerophosphocholine; GSH: glutathione; Lac: lactate; mI: myo-inositol; PCh: phosphocholine; 

Succ: succinate; Tau: taurine; Tyr: tyrosine. 
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Table 2. Classification results from PLS-DA. 

Samples 

included in 

the model 

Discriminated 

Classes 
n 

No. of 

LVs 

Classification 

Accuracy (%) 

Sensitivity/ 

Specificity (%) 

Permutation 

p-value 

All 
Treated vs 
Untreated 

103 1 67 66/68 0.003* 

Untreated 
Resp. PDX vs 

Non-resp. PDX 
53 1 47 63/32 0.613 

Treated 
Resp. PDX vs 

Non-resp. PDX 
50 1 57 68/46 0.237 

Untreated PTEN+ vs PTEN- 53 1 63 68/57 0.069 
Untreated pAKT+ vs pAKT- 49# 1 57 21/94 0.244 
Untreated p53 mutant vs 

Wild type 
53 1 87 74/100 0.001* 

Sensitivity/Specificity are reported for Treated/Resp. PDX /PTEN+/pAKT+/p53 mutant. 
* indicates significant p-values (≤0.05). 
#4/53 samples were of a PDX model with undetermined pAKT expression, and were therefore excluded. 
n: number of samples; No. of LVs: number of latent variables; Resp. PDX: Responding patient-derived 
xenograft models; Non-resp PDX: non-responding patient-derived xenograft models; Class: classification. 

 

Table 3. LMM results for the fixed effects of treatment group and response group. 

Metabolite 
Treated xenografts vs untreated controls Responding vs non-responding PDX 

Coefficient Std. Error q-value Coefficient Std. Error q-value 

Glc 0.130 0.038 4.45E-03* -0.049 0.116 9.25E-01 
Asc 0.016 0.019 6.63E-01 0.186 0.063 2.51E-01 
Lac 0.015 0.018 6.63E-01 -0.057 0.055 8.39E-01 
Tyr -0.012 0.021 8.82E-01 0.045 0.065 9.09E-01 
Gly 0.015 0.017 6.63E-01 0.008 0.077 9.76E-01 
mI 0.007 0.018 9.24E-01 -0.054 0.126 9.25E-01 
Tau -0.004 0.021 9.24E-01 0.002 0.055 9.76E-01 
sI 0.038 0.040 6.63E-01 0.028 0.118 9.59E-01 

GPC -0.035 0.025 4.80E-01 0.093 0.165 9.25E-01 
PCh -0.129 0.028 1.26E-04** 0.032 0.093 9.25E-01 
Cho -0.006 0.022 9.24E-01 0.054 0.051 8.39E-01 
Cr -0.003 0.019 9.28E-01 0.103 0.112 8.39E-01 

GSH 0.007 0.027 9.24E-01 -0.054 0.057 8.39E-01 
Gln 0.144 0.021 2.59E-08** 0.115 0.098 8.39E-01 
Succ 0.019 0.018 6.63E-01 0.040 0.041 8.39E-01 
Glu 0.007 0.019 9.24E-01 -0.081 0.061 8.39E-01 
Ala 0.060 0.015 7.02E-04** -0.071 0.075 8.39E-01 

Lac/Glc -0.115 0.041 2.05E-02* -0.008 0.132 9.76E-01 
Tau/Cr 0.000 0.015 9.87E-01 -0.103 0.128 8.83E-01 

GPC/PCh 0.095 0.025 1.63E-03* 0.059 0.172 9.25E-01 

The coefficients reflect the difference in group mean metabolite levels. Metabolite level 
increase (positive coefficient) or decrease (negative coefficient) is shown for treated 
xenografts with respect to untreated controls, and for responding PDX models with respect to 
non-responding PDX models.  * and ** indicate significance (q≤0.05 and q≤0.001, 
respectively).  

Ala: alanine; Asc: ascorbate; Cho: choline; Cr: creatine; Glc: glucose; Gln: glutamine; Gly: 
glycine; Glu: glutamate; GPC: glycerophosphocholine; GSH: glutathione; Lac: lactate; mI: 
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myo-inositol; PCh: phosphoscholine; sI: scyllo-inositol; Std.: standard; Succ:  succinate; 
Tau: taurine; Tyr: tyrosine. 
 

 

Figure 4. Overview of pathways involving metabolites found to be significantly different 

between treated xenografts and untreated controls. Significantly different metabolites are 

marked in red, with arrows indicating the trend in treated xenografts with respect to untreated 

controls. Related enzymes are marked in gray. 

PI3K activation has been shown to drive glucose consumption and, subsequently, lactate 

production38. This is often reflected in low levels of glucose and high levels of lactate in tumor 

tissue39-41, and was found by Moestue et al. in basal-like xenografts following PI3K inhibition7. 

The expected reduced lactate-to-glucose ratio in everolimus-treated xenografts suggests that 

inhibition of mTOR led to a decrease in glucose consumption. 
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The decrease in PCh is also indicative of a positive effect of everolimus treatment. This 

metabolite is an intermediate in the synthesis of the cell membrane phospholipid 

phosphatidylcholine (Figure 4), and has been associated with malignant transformation42. The 

relationship between PCh and GPC is currently under discussion, with some studies suggesting 

increased PCh/GPC as a marker for malignancy42-43 while others have found the inverse 

GPC/PCh to be elevated in breast cancer subtypes with worse prognosis44-45. Here, GPC/PCh 

was observed to be significantly higher in the treated xenografts compared to untreated controls, 

while no significant differences were observed for either GPC or choline. This suggests that PCh 

is the total choline (tCho)-constituent most affected by everolimus, and its decrease may reflect a 

reduction in tumor malignancy and aggressiveness due to everolimus treatment.  

Cancer cells depend on glutamine to replace glucose, feeding the TCA cycle via production of 

alpha-ketoglutarate (Figure 4). In addition, it plays an important role in supplying carbon and 

nitrogen for macromolecular synthesis needed to sustain cell proliferation46. The significantly 

higher levels of glutamine observed in the treated xenografts suggests its lower consumption in 

this group, and may reflect a decrease in glutamine addiction with everolimus treatment. 

Metabolic differences between responding and non-responding PDX models 

The identification of biomarkers for the selection of patients expected to respond to anti-

PI3K/AKT/mTOR treatment was one of the current major challenges Hatem et al. aimed to 

address in 14, where the effect of everolimus treatment on protein and gene expression for the 

animal cohort included in this study was investigated. Response or resistance could not be 

successfully associated to the genes and proteins measured at baseline in the said study. Rather, a 

treatment-induced change, specifically in the phosphorylation of AKT, was suggested as a 
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potential biomarker for early drug response monitoring. We therefore investigated whether 

metabolomics could be a feasible approach for prediction of response to everolimus treatment.  

 

Responding and non-responding PDX models could not be discriminated by multivariate PLS-

DA, neither using metabolic information from untreated controls nor treated xenografts (Table 

2). Similarly, for the multilevel LMM, no metabolites were significantly different for the 

response group fixed effect. In addition, PCA of untreated controls (Figure 5A) and treated 

xenografts (Figure 6A) did not reveal any separation between responding and non-responding 

PDX models. Separate PCA models of untreated controls including only responding (n=37) 

(Figure 5B) or only non-responding models (n=16) (Figure 5C) were built to explore inherent 

differences in metabolic profiles between PDX models. These showed clear groupings in the 

scores plot by PDX model, reflecting the metabolic heterogeneity among the PDX models. This 

metabolic heterogeneity was expected, as the PDX differed with regards to gene expression 

traits. Initial inter-tumor metabolic heterogeneity may have therefore contributed to the 

unsuccessful prediction of response to everolimus treatment. PDX model heterogeneity persisted 

after everolimus treatment, as evidenced by the groupings in separate PCA models of treated 

xenografts including only responding (n=36) (Figure 6B) or only non-responding PDX models 

(n=14) (Figure 6C). Our findings therefore reflect metabolic heterogeneity both independent of 

(untreated control group) and after everolimus treatment (treated group). 
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Figure 5. PCA of all untreated controls (A), untreated responding (Resp.) patient-derived 

xenografts (PDX) only (B), and untreated non-responding (Non-resp.) PDX only (C). 

Samples in B and C are colored according to PDX model. Xenografts from the same PDX model 

cluster together (B and C), reflecting a greater variability between PDX models than within PDX 

models. Ovals were drawn manually to illustrate clusters. 
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Figure 6. PCA of all treated patient-derived xenografts (PDX) (A), treated responding 

(Resp.) PDX only (B), and treated non-responding (Non-resp.) PDX only (C). Samples in B 

and C are colored according to PDX model. Xenografts from the same PDX model cluster 

together (B and C), reflecting a greater variability between PDX models than within PDX 

models. Ovals were drawn manually to illustrate clusters. 

Building the multilevel LMM including the random effect of PDX model should account for the 

between-PDX model heterogeneity, but differences between the response groups could still not 

be detected using this technique. The observed heterogeneity suggests that treatment 
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management of TNBC may benefit from further stratification of this histopathological subtype. 

Moestue et al.7 found that a basal-like, but not a luminal-like, breast cancer PDX responded to 

PI3K inhibitors, and basal-like cancers have been found to be more homogenous than TNBC47. 

In our cohort, however, both responding and non-responding PDX models included basal-like, 

luminal-like, and HER2-enriched tumors (Table 1), suggesting that other factors contributed to 

the heterogeneous treatment efficacy in terms of tumor growth inhibition within the gene 

expression subtypes. Additional sources of this heterogeneity, perhaps with an initial focus on 

basal-like breast cancers, may be worth investigating.   

When analyzing metabolite information from responding PDX models (n=73) and non-

responding PDX models (n=30) separately using LMM to correct for repeated PDX model 

measurements, individual metabolite differences between treated xenografts and controls were 

determined within these two groups. For responding models, treated xenografts exhibited 

significantly higher glucose, glutamine, and alanine, and significantly lower PCh, GPC/PCh, and 

Lac/Glc compared to untreated controls (Figure 7), which was similar to the findings from LMM 

of the whole cohort simultaneously (Table 3). For non-responding models, however, only PCh 

and glutamine were significantly lower and higher, respectively, with treatment (Figure 7). 

Collectively, these results indicate that the metabolic response to everolimus treatment is more 

pronounced in responding PDX models, with increased levels of metabolites representing the 

central carbon metabolism and decreased levels of phosphocholine. Mean metabolite values for 

each treatment group within responding and non-responding PDX are presented in Table S-3 

(Supporting Information). 
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Figure 7. LMM coefficients for treated xenografts compared to untreated controls carried 

out separately for responding models (Resp. PDX) and non-responding models (Non-resp. 

PDX). * and ** indicate significance (q≤0.05 and q≤0.001, respectively). Ala: alanine; Glc: 

glucose; Gln: glutamine; GPC: glycerophosphocholine; Lac: lactate; PCh: phosphocholine.  

Significant changes in metabolites involved in glycolysis only in the responding models is 

consistent with findings from Foster et al.48, who observed glucose-dependent growth in cells 

with mutations in PIK3CA, the gene encoding the alpha catalytic subunit of PI3K. In contrast, 

they found that both wild-type and PIK3CA-mutated cells depended on glutamine to grow. This 

supports our observed significant increase in glutamine with treatment, independent of whether 

tumor growth was significantly inhibited (responding PDX) or not (non-responding PDX). 

Previous work studying the same animal cohort examined here, however, found that PIK3CA 

mutations were rare and could not predict response to everolimus on their own14.  

Similarly as in Hatem et al.14, intrinsic metabolic differences (i.e. in the untreated controls) 

between responding and non-responding PDX could not be identified. Furthermore, we could not 
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see the differences in AKT activation they observed being translated to the metabolic level, as 

the metabolite information could not discriminate post treatment samples expressing or not 

expressing pAKT (results not shown). Findings related to response were not as easily identified 

as metabolic differences between treated and untreated xenografts. This reflects the findings of 

Hatem et al., demonstrating how breast cancer heterogeneity makes it difficult to identify generic 

biomarkers for response and resistance. 

It is important to note that the response criteria used here was based on tumor size, since this is 

the traditional approach. Imaging techniques are widely used in the clinic to assess response to 

treatment based on tumor size reduction49-50. There has been increasing interest in the 

development of imaging modalities that can detect biological and physiological changes in tissue 

rather than just imaging morphology51-52. Functional imaging approaches provide possibilities 

for treatment monitoring based on biological changes in the tumor, which may occur long before 

any reduction in size53. In line with this, we could detect metabolic differences between treated 

xenografts and untreated controls, pointing to biological changes occurring as an effect of 

treatment, in all PDX models, whether they exhibited a significant reduction in tumor volume or 

not. Furthermore, Cao et al.23 observed a subtle metabolic difference between responders and 

non-responders classified based on tumor size, while changes in the metabolic profiles following 

treatment could significantly distinguish long term survivors from non-survivors. Nevertheless, 

PDX models responding to everolimus therapy in our study exhibited a more significant 

metabolic response than resistant models. 

Metabolic discrimination of PI3K pathway protein expression and p53 mutation status 

Since the metabolic profile is affected by the genetic and proteomic make-up, we investigated 

the association between metabolite information and key molecules regulating PI3K/AKT 
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signaling measured by Hatem et al.14 in an effort to gain insight on PI3K signaling mechanisms. 

Protein expression determined from immunohistochemistry and p53 mutation status for the PDX 

models is given in Table 1. PLS-DA results to classify untreated controls (n=53) according to 

expression or no expression of proteins PTEN and pAKT and to p53 mutation status are 

summarized in Table 2. Metabolite integrals were unable to predict pAKT expression, while 

PTEN expression discrimination approached significance (Accuracy=63%, p=0.069) (Figure 

8C).  
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Figure 8. PLS-DA scores (A) and loadings plots (B) of p53 mutant vs p53 wild type 

untreated controls, and PLS-DA scores (C) and loadings plots (D) of PTEN- vs PTEN+ 

untreated controls. Wild type p53 and PTEN + xenografts exhibit higher score values on latent 

variable (LV) 1 compared to mutant p53 (A) and PTEN – (C), respectively. Loadings plots (B 

and D) show similar metabolic trends differentiating p53 mutation status and PTEN expression, 

with metabolites exhibiting higher loading values being higher in Wild type p53 and PTEN + 

xenografts compared to mutant p53 and PTEN –, respectively. Loadings are colored according to 

LV 1. Ala: alanine; Asc: ascorbate; Cho:Choline; Cr: creatine; Gly: glycine; GPC: 

glycerophosphocholine; Lac:  lactate; PCh: phosphocholine; sI: scyllo-inositol; Tau: taurine. 

p53 mutation status was successfully discriminated with an accuracy of 87% (p=0.001) (Figure 

8A), with the mutant gene associated with increased ascorbate and creatine, and decreased GPC 

and choline (Figure 8B).  It should be noted, however, that double-layered cross validation could 

not be performed for the discrimination of p53 mutation status because only two PDX model 

types were p53 wild type. Leave-one-PDX type-out CV was therefore performed instead, which 

tends to produce a much more optimistic accuracy than double-layered CV. Still, wild type p53 

exhibited similar metabolic trends for creatine, GPC, and choline as PTEN expression (Figure 

8B, Figure 8D). Since PTEN is another tumor suppressor, this indicates that the expression of 

tumor suppressor genes regulating signal transduction in the PI3K pathway is reflected in the 

metabolic profile of the tumor.  

The potent tumor suppressor p53 is involved in cell cycle control via transcriptional regulation of 

its target genes. p53 increases guanidinoacetate methyltranferase (GAMT), which catalyzes the 

production of creatine from guanidinoacetate (GAA)54. Our observed differences in creatine 

levels between wild type and mutant p53 PDX models may therefore reflect a p53-associated 
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dysregulation of creatine synthesis. This may result as a compensation mechanism for impaired 

glycolytic energy production in mutants, since creatine metabolism is tightly connected with 

ATP homeostasis via the reversible phosphorylation of creatine by creatine kinase with 

ATP/ADP55.  

CONCLUSION 

Clear metabolic differences between everolimus-treated xenografts and untreated controls were 

detected, indicating reduced glycolytic lactate production and glutaminolysis after treatment, 

consistent with PI3K/AKT signaling pathway inhibition. Although inherent metabolic 

heterogeneity between different PDX models seemed to hinder prediction of treatment response, 

significant changes in glucose, alanine, lactate/glucose, and 

glycerophosphocholine/phosphocholine with treatment were detected in responding, but not in 

non-responding, PDX models. p53 mutation status could be predicted using MR based 

metabolite levels, which may provide complimentary insight into the interplay between PI3K 

signaling and other drivers of disease progression. 

Supporting Information. The following files are available free of charge: 

SupportingInformation.pdf. Supporting information including supplementary methods, 

supplementary figures, and supplementary tables. 

SupplementaryTable1.xlsx. Supplementary Table 1 containing metabolite relative levels per 

PDX model. 
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Abbreviations 

CPMG, Carr-Purcell Meiboom-Gill; CV, cross validation; ER, estrogen receptor; FDR, false 

discovery rate; FID, free induction decay; GAA, guanidinoacetate; GAMT, guanidinoacetate 

methyltransferase; GPC, glycerophosphocholine; GSH, glutathione; HER2, human epidermal 

growth factor receptor 2; HR MAS MRS, high resolution magic angle spinning magnetic 

resonance spectroscopy; IDC, invasive ductal carcinoma; Lac/Glc, lactate-to-glucose ratio; 

LMM, linear mixed-effects model; LV, latent variable; mTOR, mammalian target of rapamycin; 

PCA, principal component analysis; PCh, phosphocholine; PDX, patient-derived xenograft; PFS, 

progression-free survival; PgR, progesterone receptor; PI3K, phosphatidylinositol-3-kinase; 

PLS-DA, partial least squares-discriminant analysis; PTEN, phosphatase and tensin homolog; 

RTV, relative tumor volume; tCho, total choline; TNBC, triple negative breast cancer. 

REFERENCES 

1. Giordano, S. H.; Buzdar, A. U.; Smith, T. L.; Kau, S.-W.; Yang, Y.; Hortobagyi, G. N., Is 
breast cancer survival improving? Cancer 2004, 100 (1), 44-52. 
2. American Cancer Society, Global Cancer Facts & Figures 2nd Edition. American 
Cancer Society: Atlanta, GA, USA, 2011. 
3. Yiannakopoulou, E., Breast Cancer Therapy–Classical Therapy, Drug Targets, and 
Targeted Therapy. In Omics Approaches in Breast Cancer, Barh, D., Ed. Springer India: 2014; 
pp 483-498. 
4. Perou, C. M.; Sorlie, T.; Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S.; Rees, C. A.; 
Pollack, J. R.; Ross, D. T.; Johnsen, H.; Akslen, L. A.; Fluge, O.; Pergamenschikov, A.; 
Williams, C.; Zhu, S. X.; Lonning, P. E.; Borresen-Dale, A.-L.; Brown, P. O.; Botstein, D., 
Molecular portraits of human breast tumours. Nature 2000, 406 (6797), 747-752. 
5. Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J. S.; Nobel, A.; Deng, S.; 
Johnsen, H.; Pesich, R.; Geisler, S.; Demeter, J.; Perou, C. M.; Lønning, P. E.; Brown, P. O.; 
Børresen-Dale, A.-L.; Botstein, D., Repeated observation of breast tumor subtypes in 
independent gene expression data sets. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (14), 8418-8423. 
6. López-Knowles, E.; O'Toole, S. A.; McNeil, C. M.; Millar, E. K. A.; Qiu, M. R.; Crea, 
P.; Daly, R. J.; Musgrove, E. A.; Sutherland, R. L., PI3K pathway activation in breast cancer is 
associated with the basal-like phenotype and cancer-specific mortality. Int. J. Cancer 2010, 126 
(5), 1121-1131. 
7. Moestue, S. A.; Dam, C. G.; Gorad, S. S.; Kristian, A.; Bofin, A.; Mælandsmo, G. M.; 
Engebråten, O.; Gribbestad, I. S.; Bjørkoy, G., Metabolic biomarkers for response to PI3K 
inhibition in basal-like breast cancer. Breast Cancer Res. 2013, 15, R16. 

Page 30 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 31

8. Vara, J. Á. F.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M., 
PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004, 30 (2), 193-204. 
9. Houghton, P. J., Everolimus. Clin. Cancer Res. 2010, 16 (5), 1368-1372. 
10. Baselga, J.; Campone, M.; Piccart, M.; Burris, H. A.; Rugo, H. S.; Sahmoud, T.; 
Noguchi, S.; Gnant, M.; Pritchard, K. I.; Lebrun, F.; Beck, J. T.; Ito, Y.; Yardley, D.; Deleu, I.; 
Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G. N., 
Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. N. Engl. 

J. Med. 2012, 366 (6), 520-529. 
11. Ejlertsen, B.; Heinrich, G.; Jerusalem, M.; Hurvitz, S. A.; De Boer, R. H.; Taran, T.; 
Sahmoud, T.; Burris, H. A., BOLERO-6: Phase II study of everolimus plus exemestane versus 
everolimus or capecitabine monotherapy in HR+, HER2- advanced breast cancer. J. Clin. Oncol. 

2013, 31 (abstr TPS660). 
12. André, F.; O'Regan, R.; Ozguroglu, M.; Toi, M.; Xu, B.; Jerusalem, G.; Masuda, N.; 
Wilks, S.; Arena, F.; Isaacs, C.; Yap, Y.-S.; Papai, Z.; Lang, I.; Armstrong, A.; Lerzo, G.; White, 
M.; Shen, K.; Litton, J.; Chen, D.; Zhang, Y.; Ali, S.; Taran, T.; Gianni, L., Everolimus for 
women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a 
randomised, double-blind, placebo-controlled phase 3 trial. The Lancet Oncology 2014, 15 (6), 
580-591. 
13. Metzger-Filho, O.; Tutt, A.; de Azambuja, E.; Saini, K. S.; Viale, G.; Loi, S.; Bradbury, 
I.; Bliss, J. M.; Azim, H. A.; Ellis, P.; Di Leo, A.; Baselga, J.; Sotiriou, C.; Piccart-Gebhart, M., 
Dissecting the Heterogeneity of Triple-Negative Breast Cancer. J. Clin. Oncol. 2012. 
14. Hatem, R.; Botty, R. E.; Chateau-Joubert, S.; Servely, J.-L.; Labiod, D.; Plater, L. d.; 
Assayag, F.; Coussy, F.; Callens, C.; Vacher, S.; Reyal, F.; Cosulich, S.; Diéras, V.; Bièche, I.; 
Marangoni, E., Targeting mTOR pathway inhibits tumor growth in different molecular subtypes 
of triple-negative breast cancers. Oncotarget 2016. 
15. Hanahan, D.; Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 2011, 144. 
16. Palmnas, M.; Vogel, H., The Future of NMR Metabolomics in Cancer Therapy: Towards 
Personalizing Treatment and Developing Targeted Drugs? Metabolites 2013, 3 (2), 373. 
17. Bathen, T. F.; Sitter, B.; Sjøbakk, T. E.; Tessem, M.-B.; Gribbestad, I. S., Magnetic 
Resonance Metabolomics of Intact Tissue: A Biotechnological Tool in Cancer Diagnostics and 
Treatment Evaluation. Cancer Res. 2010, 70 (17), 6692-6696. 
18. Moestue, S. A.; Sitter, B.; Bathen, T. F.; Tessem, M.-B.; Gribbestad, I., HR MAS MR 
Spectroscopy in Metabolic Characterization of Cancer. Curr. Top. Med. Chem. 2011, 11 (1), 2-
26. 
19. Cao, M. D.; Lamichhane, S.; Lundgren, S.; Bofin, A.; Fjøsne, H.; Giskeødegård, G. F.; 
Bathen, T. F., Metabolic characterization of triple negative breast cancer. BMC Cancer 2014, 14 
(1), 1-12. 
20. Borgan, E.; Sitter, B.; Lingjærde, O. C.; Johnsen, H.; Lundgren, S.; Bathen, T. F.; Sørlie, 
T.; Børresen-Dale, A.-L.; Gribbestad, I. S., Merging transcriptomics and metabolomics - 
advances in breast cancer profiling. BMC Cancer 2010, 10 (1), 1-14. 
21. Haukaas, T. H.; Euceda, L. R.; Giskeødegård, G. F.; Lamichhane, S.; Krohn, M.; 
Jernström, S.; Aure, M. R.; Lingjærde, O. C.; Schlichting, E.; Garred, Ø.; Due, E. U.; Mills, G. 
B.; Sahlberg, K. K.; Børresen-Dale, A.-L.; Bathen, T. F., Metabolic clusters of breast cancer in 
relation to gene- and protein expression subtypes. Cancer & Metabolism 2016, 4 (1), 1-14. 

Page 31 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 32

22. Cao, M. D.; Sitter, B.; Bathen, T. F.; Bofin, A.; Lonning, P. E.; Lundgren, S.; Gribbestad, 
I. S., Predicting long-term survival and treatment response in breast cancer patients receiving 
neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2012, 25 (2), 369-78. 
23. Cao, M. D.; Giskeødegård, G. F.; Bathen, T. F.; Sitter, B.; Bofin, A.; Lønning, P. E.; 
Lundgren, S.; Gribbestad, I. S., Prognostic value of metabolic response in breast cancer patients 
receiving neoadjuvant chemotherapy. BMC Cancer 2012, 12 (1), 1-11. 
24. Euceda, L. R.; Haukaas, T. H.; Giskeødegård, G. F.; Vettukattil, R.; Engel, J.; Silwal-
Pandit, L.; Lundgren, S.; Borgen, E.; Garred, Ø.; Postma, G.; Buydens, L. M. C.; Børresen-Dale, 
A.-L.; Engebraaten, O.; Bathen, T. F., Evaluation of metabolomic changes during neoadjuvant 
chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy. 
Metabolomics 2017, 13 (4), 37. 
25. Marangoni, E.; Vincent-Salomon, A.; Auger, N.; Degeorges, A.; Assayag, F.; de 
Cremoux, P.; de Plater, L.; Guyader, C.; De Pinieux, G.; Judde, J.-G.; Rebucci, M.; Tran-
Perennou, C.; Sastre-Garau, X.; Sigal-Zafrani, B.; Delattre, O.; Diéras, V.; Poupon, M.-F., A 
New Model of Patient Tumor-Derived Breast Cancer Xenografts for Preclinical Assays. Clin. 

Cancer Res. 2007, 13 (13), 3989-3998. 
26. Giskeodegard, G. F.; Cao, M. D.; Bathen, T. F., High-resolution magic-angle-spinning 
NMR spectroscopy of intact tissue. In Metabonomics: Methods and Protocols, Bjerrum, J. T., 
Ed. Springer New York: New York, NY, 2015; Vol. 1277, pp 37-50. 
27. Eilers, P. H. C., Parametric Time Warping. Anal. Chem. 2004, 76 (2), 404-411. 
28. Savorani, F.; Tomasi, G.; Engelsen, S. B., icoshift: A versatile tool for the rapid 
alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202 (2), 190-202. 
29. Sitter, B.; Sonnewald, U.; Spraul, M.; Fjosne, H. E.; Gribbestad, I. S., High-resolution 
magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002, 15 (5), 327-37. 
30. Wold, S.; Esbensen, K.; Geladi, P., Principal component analysis. Chemometr Intell Lab 

1987, 2 (1), 37-52. 
31. Wold, S.; Sjöström, M.; Eriksson, L., PLS-regression: a basic tool of chemometrics. 
Chemometr Intell Lab 2001, 58 (2), 109-130. 
32. Eigenvector Research Orthogonalizepls. 
http://wiki.eigenvector.com/index.php?title=Orthogonalizepls (accessed February 2017). 
33. Westerhuis, J.; Hoefsloot, H. J.; Smit, S.; Vis, D.; Smilde, A.; van Velzen, E. J.; van 
Duijnhoven, J. M.; van Dorsten, F., Assessment of PLSDA cross validation. Metabolomics 2008, 
4 (1), 81-89. 
34. Pinheiro, J. C.; Bates, D. M., Linear Mixed-Effects Models: Basic Concepts and 
Examples. In Mixed-Effects Models in S and S-PLUS, Springer New York: New York, NY, 
USA, 2000; pp 3-56. 
35. R Core Team (2014) R: A language and environment for statistical computing, R 
Foundation for Statistical Computing: Vienna, Austria. URL http://www.R-project.org/. 
36. Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team (2014), nlme: Linear and 
Nonlinear Mixed Effects Models. R package version 3.1-117, URL: http://CRAN.R-
project.org/package=nlme. 2014. 
37. Kaplan, H. G.; Malmgren, J. A., Impact of Triple Negative Phenotype on Breast Cancer 
Prognosis. The Breast Journal 2008, 14 (5), 456-463. 
38. Plas, D. R.; Thompson, C. B., Akt-dependent transformation: there is more to growth 
than just surviving. Oncogene 0000, 24 (50), 7435-7442. 

Page 32 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 33

39. Gribbestad, I. S.; Petersen, S. B.; Fjosne, H. E.; Kvinnsland, S.; Krane, J., 1H NMR 
spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-
involved breast tissue. NMR Biomed. 1994, 7 (4), 181-94. 
40. Tessem, M.-B.; Selnæs, K. M.; Sjursen, W.; Tranø, G.; Giskeødegård, G. F.; Bathen, T. 
F.; Gribbestad, I. S.; Hofsli, E., Discrimination of Patients with Microsatellite Instability Colon 
Cancer using 1H HR MAS MR Spectroscopy and Chemometric Analysis. J. Proteome Res. 

2010, 9 (7), 3664-3670. 
41. Bathen, T. F.; Geurts, B.; Sitter, B.; Fjøsne, H. E.; Lundgren, S.; Buydens, L. M.; 
Gribbestad, I. S.; Postma, G.; Giskeødegård, G. F., Feasibility of MR Metabolomics for 
Immediate Analysis of Resection Margins during Breast Cancer Surgery. PLoS One 2013, 8 (4), 
e61578. 
42. Aboagye, E. O.; Bhujwalla, Z. M., Malignant transformation alters membrane choline 
phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999, 59 (1), 80-4. 
43. Iorio, E.; Ricci, A.; Bagnoli, M.; Pisanu, M. E.; Castellano, G.; Di Vito, M.; Venturini, 
E.; Glunde, K.; Bhujwalla, Z. M.; Mezzanzanica, D.; Canevari, S.; Podo, F., Activation of 
phosphatidylcholine-cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 2010, 
70 (5), 2126-2135. 
44. Moestue, S.; Borgan, E.; Huuse, E.; Lindholm, E.; Sitter, B.; Borresen-Dale, A. L.; 
Engebraaten, O.; Maelandsmo, G.; Gribbestad, I., Distinct choline metabolic profiles are 
associated with differences in gene expression for basal-like and luminal-like breast cancer 
xenograft models. BMC Cancer 2010, 10. 
45. Giskeodegard, G. F.; Grinde, M. T.; Sitter, B.; Axelson, D. E.; Lundgren, S.; Fjosne, H. 
E.; Dahl, S.; Gribbestad, I. S.; Bathen, T. F., Multivariate modeling and prediction of breast 
cancer prognostic factors using MR metabolomics. J. Proteome Res. 2010, 9 (2), 972-9. 
46. Hensley, C. T.; Wasti, A. T.; DeBerardinis, R. J., Glutamine and cancer: cell biology, 
physiology, and clinical opportunities. J. Clin. Invest. 2013, 123 (9), 3678-84. 
47. Bertucci, F.; Finetti, P.; Cervera, N.; Esterni, B.; Hermitte, F.; Viens, P.; Birnbaum, D., 
How basal are triple-negative breast cancers? Int. J. Cancer 2008, 123 (1), 236-240. 
48. Foster, R.; Griffin, S.; Grooby, S.; Feltell, R.; Christopherson, C.; Chang, M.; Sninsky, J.; 
Kwok, S.; Torrance, C., Multiple Metabolic Alterations Exist in Mutant PI3K Cancers, but Only 
Glucose Is Essential as a Nutrient Source. PLoS One 2012, 7 (9), e45061. 
49. Therasse, P.; Arbuck, S. G.; Eisenhauer, E. A.; Wanders, J.; Kaplan, R. S.; Rubinstein, 
L.; Verweij, J.; Van Glabbeke, M.; van Oosterom, A. T.; Christian, M. C.; Gwyther, S. G., New 
Guidelines to Evaluate the Response to Treatment in Solid Tumors. J. Natl. Cancer Inst. 2000, 
92 (3), 205-216. 
50. Eisenhauer, E. A.; Therasse, P.; Bogaerts, J.; Schwartz, L. H.; Sargent, D.; Ford, R.; 
Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; Rubinstein, L.; Shankar, L.; Dodd, L.; 
Kaplan, R.; Lacombe, D.; Verweij, J., New response evaluation criteria in solid tumours: 
Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45 (2), 228-247. 
51. Juweid, M. E.; Cheson, B. D., Positron-Emission Tomography and Assessment of Cancer 
Therapy. N. Engl. J. Med. 2006, 354 (5), 496-507. 
52. Gutte, H.; Hansen, A. E.; Johannesen, H. H.; Clemmensen, A. E.; Ardenkjær-Larsen, J. 
H.; Nielsen, C. H.; Kjær, A., The use of dynamic nuclear polarization (13)C-pyruvate MRS in 
cancer. Am. J. Nucl. Med. Mol. Imaging 2015, 5 (5), 548-560. 
53. Brindle, K., New approaches for imaging tumour responses to treatment. Nat. Rev. 

Cancer 2008, 8 (2), 94-107. 

Page 33 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 34

54. da Silva, R. P.; Clow, K.; Brosnan, J. T.; Brosnan, M. E., Synthesis of guanidinoacetate 
and creatine from amino acids by rat pancreas. Br. J. Nutr. 2014, 111 (4), 571-7. 
55. Ide, T.; Chu, K.; Aaronson, S. A.; Lee, S. W., GAMT joins the p53 network: branching 
into metabolism. Cell Cycle 2010, 9 (9), 1706-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 34 of 35

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	Title_Page
	Submitted_270217



