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Abstract 

Introduction: Metabolomics investigates biochemical processes directly, potentially complementing 

transcriptomics and proteomics in providing insight into treatment outcome.  

Objectives: This study aimed to use magnetic resonance (MR) spectroscopy on breast tumor tissue to 

explore the effect of neoadjuvant therapy on metabolic profiles, determine metabolic effects of the 

antiangiogenic drug bevacizumab, and investigate metabolic differences between responders and non-

responders.  

Methods: Breast tumors from 122 patients were profiled using high resolution magic angle spinning 

MR spectroscopy. All patients received neoadjuvant chemotherapy, and were randomized to receive 

bevacizumab or not. Tumors were biopsied prior, during, and after treatment.  

Results: Principal component analysis showed clear metabolic changes indicating a decline in glucose 

consumption and a transition to normal breast adipose tissue as an effect of chemotherapy. Partial least 

squares-discriminant analysis revealed metabolic differences between pathological minimal residual 

disease patients and pathological non-responders after treatment (accuracy of 77%, p<0.001), but not 

before or during treatment. Lower glucose and higher lactate was observed in patients exhibiting a 

good response (≥90% tumor reduction) compared to those with no response (≤10% tumor reduction) 

before treatment, while the opposite was observed after treatment. Bevacizumab-receiving and 

chemotherapy-only patients could not be discriminated at any time point. Linear mixed-effects models 

revealed a significant interaction between time and bevacizumab for glutathione, indicating higher 

levels of this antioxidant in chemotherapy-only patients than in bevacizumab receivers after treatment.  

Conclusion: MR spectroscopy showed potential in detecting metabolic response to treatment and 

complementing other molecular assays for the elucidation of underlying mechanisms affecting 

pathological response. 

Keywords: bevacizumab, breast cancer, chemotherapy, HR MAS MRS, metabolomics, neoadjuvant 
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INTRODUCTION 

Breast cancer prognosis has improved during the past decades (Ferlay et al. 2013), attributed to earlier 

detection through effective mammography screening and improved therapy (American Cancer Society 

2011; Malmgren et al. 2014; Giordano et al. 2004). However, with the disease still being the leading 

cause of cancer death in women (Ferlay et al. 2013; American Cancer Society 2011), defining new 

tools to stratify patients to targeted therapy and to detect early response is warranted. 

Neoadjuvant or preoperative therapy is used to treat locally advanced breast tumors where size is too 

large for surgical mastectomy with acceptable margins or to allow for breast conserving surgery 

(Miller et al. 2014). The effect of neoadjuvant treatment on progression-free survival (PFS) and 

overall survival (OS) is comparable to adjuvant or post-operative therapy (van der Hage et al. 2001), 

enabling the possibility for molecular analyses on tumor samples before, during, and after therapy, and 

a direct visualization of the treatment effect by pathological examination after removal of the tumor. 

Angiogenesis, the formation of new blood vessels from existing vasculature, is a hallmark of cancer 

needed for the supply of nutrients and oxygen to the tumor (Hanahan and Weinberg 2000) and may be 

therapeutically targeted. Vascular endothelial growth factor (VEGF), a proangiogenic factor, can be 

inhibited by bevacizumab, a humanized monoclonal antibody  (Ferrara et al. 2004). Addition of 

neoadjuvant bevacizumab to chemotherapy has resulted in better responses or increase in PFS, but has 

not increased OS (Miller et al. 2007). As for all targeted anticancer agents used in breast cancer, a 

reliable marker for the selection of patients who benefit from antiangiogenic therapy is needed. 

Much of the variability in breast cancer treatment response has been attributed to tumor heterogeneity 

(Ng et al. 2012). Breast cancer has been divided into five molecular subtypes based on gene 

expression patterns found to have significant differences in clinical outcome (Perou et al. 2000; Sørlie 

et al. 2003). Metabolites are downstream of gene expression in the biochemical information flow 

known as the omics cascade, and altered metabolism is an emerging hallmark of cancer (Hanahan and 

Weinberg 2011).  High resolution (HR) magic angle spinning (MAS) magnetic resonance 

spectroscopy (MRS) of intact tissue has been applied to study metabolites involved in important 

pathways in different cancers (Moestue et al. 2011; Bathen et al. 2010) . HR MAS MRS has been 

employed to relate metabolic changes after treatment to 5-year survival in breast cancer patients 

receiving neoadjuvant single agent chemotherapy followed by endocrine adjuvant therapy (Cao et al. 

2012) and to reveal variability in metabolic profiles of breast tumors within the same gene-expression 

subtype (Borgan et al. 2010; Haukaas et al. 2016). Thus, MR metabolomics can provide 

complimentary insight into breast cancer treatment outcome. This study aimed to use MRS to explore 

the metabolic changes in breast tumor tissue occurring as an effect of overall neoadjuvant therapy, to 

investigate metabolic differences between therapy responders and non-responders, and to determine 

the metabolic effects of antiangiogenic treatment with bevacizumab. Particular focus was given to 
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metabolites involved in the pathways of glycolysis, choline phospholipid metabolism, and 

glutaminolysis, due to their high relevance for cancer.  

METHODS 

Patient and tumor characteristics 

Tumor tissue from 122 breast cancer patients included in the NeoAva study, a phase 2 randomized 

clinical trial, were examined. Women (age ≥ 18 years) with large (size ≥ 2.5 cm), non-metastatic, 

human epidermal growth factor receptor 2 (HER2) negative tumors were recruited in the period of 

November 2008 – July 2012. All patients received neoadjuvant chemotherapy in the form of FEC100 

(5-fluorouracil 600 mg/m2, epirubicin 100 mg/m2, cyclophosphamide 600 mg/m2) followed by 

taxane-based therapy, while they were randomized to receive bevacizumab or not (See Online 

Resource 1). Ultrasound-guided needle biopsies were sampled prior to treatment (TP1) and 12 weeks 

into treatment (TP2), while biopsies at 24 weeks (TP3) were obtained from the surgically removed 

tumor. For details on sample handling, see Online Resource 1. The study was registered in the 

http://www.ClinicalTrials.gov/ database with the identifier NCT00773695. Patient and tumor 

characteristics are shown in Table 1, and the study design is illustrated in Fig. S1 (Online Resource 2). 

Evaluation of treatment response 

Analysis of only cases with pathological complete response (pCR) (20/122 patients) would result in a 

loss of information from the patients experiencing a good response, but not achieving pCR (44/122). 

Therefore, in addition to the pCR endpoint, we introduced a cut-off value of 1 cm for the tumor 

diameter measured pathologically at the time of surgery (TP3) to classify patients as having 

pathological minimal residual disease (pMRD) or as pathological non-responders (pNRs) (diameter 

<1cm and >1cm, respectively). Furthermore, a ‘response ratio’ inversely proportional to tumor 

reduction was calculated as: tumor diameter at TP3/tumor diameter at TP1. Response ratio >1 

indicates an increase in tumor size with treatment. At TP1, the diameter was measured using magnetic 

resonance imaging (MRI). For patients with no available MRI measurement at TP1 (21/122 patients), 

the maximum value from ultrasound and/or mammography-measured diameters was used. Patients 

were categorized as having good, intermediate, or no response (GR, IR, NR) based on response ratio 

(≤0.10, >0.10 - <0.90, or ≥0.90, respectively). 

Gene expression subtyping 

Gene expression microarray data was acquired and processed as described in Online Resource 1. The 

PAM50 algorithm (Parker et al. 2009) was used to classify samples by gene expression subtype. Gene 

expression microarray data is available in the ArrayExpress database 

(http://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-4439. 
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HR MAS MRS Experiments and Data preprocessing 

Tissue samples (4.1 ± 1.3 mg) were analyzed by HR MAS MRS in accordance with (Giskeødegård et 

al. 2015) as described in Online Resource 1.Sample availability at each time point varied for each 

patient (n=325 total analyzed samples). Samples with high lipid content (n=23) and giving spectra of 

poor quality, i.e. poor shimming and insufficient water suppression (n=17), were excluded. 

Additionally, fifteen samples collected from patients with tumors not evaluable for pathological 

measurement of diameter at TP3 were excluded, resulting in 270 samples for subsequent statistical 

analysis. Preprocessing before selection of spectral regions for further analysis was carried out in 

Matlab R2013b (The Mathworks, Inc., USA) as described in Online Resource 1. Lipid peaks at 4.37-

4.27, 2.97-2.70, 2.31-2.23, 2.11-1.92, 1.64-1.49 ppm, and the contaminant peaks for ethanol and 

acetone at 3.71-3.63 and 2.23-2.21 ppm, respectively, were excluded. Regions containing peaks from 

lidocaine, a local anesthetic used for sampling biopsies at TP1 and TP2, at 3.38-3.30 and 2.21-2.17 

ppm, were also excluded. The spectra were subsequently PQN (Dieterle et al. 2006) normalized. 

Normalization after lipid removal corrects for differences in sample size and tumor cell content, as it 

can be assumed that the majority of the lipid signals arise from normal adipose cells within the tumor 

specimen obtained. 

Statistical analysis  

Multivariate analyses 

Multivariate analysis was carried out in Matlab R2013b (The Mathworks, Inc., USA) using PLS 

Toolbox 7.8.2 (Eigenvector Research Inc., U.S.A). Spectra were mean-centered prior to multivariate 

modelling. Principal component analysis (PCA) (Wold et al. 1987) was employed using residual 

explained variance plots to select the number of principal components (PCs). Partial least squares-

discriminant analysis (PLS-DA) (Wold et al. 2001) models were built for each separate time point to 

discriminate between pCR+ and pCR-, pMRD and pNR, the two extreme response ratio groups of  GR 

and NR, bevacizumab-treated and chemotherapy-only patients, and bevacizumab-treated pMRD and 

chemotherapy-only pMRD. PLS-DA models were validated using double-layered cross validation 

(CV) (Westerhuis et al. 2008) for separate latent variable (LV) number optimization and classification 

assessment, to avoid overfitting. Furthermore, permutation testing (Westerhuis et al. 2008) was 

employed to evaluate model statistical significance. Model validation is detailed in Online Resource 1. 

For PLS-DA plots, y-variance was condensed into the first LV through orthogonal-PLS (OPLS) 

(Eigenvector Research 2013) when the number of optimal LVs >1. 

Univariate analyses 
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Metabolites were assigned based on previous identification (Sitter et al. 2002) and relative levels were 

calculated by integrating fixed regions of preprocessed spectra (prior to normalization) corresponding 

to each metabolite in Matlab R2013b. The integrals were then subsequently PQN normalized to 

correct for differences in sample weight. The integral of the metabolite lactate (Lac) was not 

calculable in 116 samples due to presence of an overlapping peak originating from the C1H2 of the 

glycerol backbone of phospholipids and triglycerides at 4.13 ppm. For these samples, the Lac levels 

were imputed in R 3.1.1 (R Core Team 2014) using the package for the method of multivariate 

imputation by chained equations (MICE) (van Buuren and Groothuis-Oudshoorn 2011) set to 

predictive mean matching and 10 imputations (Rubin 1987). This procedure was validated as 

described in Online Resource 1. All metabolite integrals were log10 transformed before univariate 

tests were conducted to satisfy prerequisite assumptions of normality (Matlab R2013b). Student’s t-

tests were conducted to compare metabolite levels between different groups. Pearson correlations 

between metabolite relative levels and response ratio for each separate time point were calculated in 

SPSS Statistics 22.0, (IBM Corp., U.S.A.). 

Linear mixed-effects models (LMM) (Pinheiro and Bates 2000) for individual metabolite multilevel 

analysis of data grouped according to different classification factors were built in R 3.1.1 using the 

function lme from the ‘nlme’ package (Pinheiro et al. 2014) employing the method of restricted 

maximum likelihood. LMM describe relationships between a response variable and these factors 

incorporating two types of effects: fixed which are controlled and random which depend on each 

individual. Here, the response variable was the metabolite level while the fixed effects were time (TP1, 

TP2, or TP3), pMRD response (pMRD or pNR), and bevacizumab (bevacizumab-treated or 

chemotherapy-only) and the random effect was the patient ID. Significance of interactions between 

fixed effects was evaluated as described in Online Resource 1. Visual inspection of residual q-q plots 

and histograms did not reveal obvious deviations from normality. 

Multiple testing correction of the p-values resulting from Pearson correlations and LMM was 

performed by the Benjamini Hochberg method for false discovery rate (FDR) adjustment in R 3.1.1 

using the ‘stats’ package (R Core Team 2014). Statistical significance was considered for adjusted p 

(q-value) ≤ 0.05. 

RESULTS 

Metabolic effects of neoadjuvant chemotherapy 

The sample composition of the cohort according to gene expression subtype, time point, pMRD 

response group, and bevacizumab randomization group is summarized in Fig. S2 in Online Resource 

2. PCA was employed on all spectra to investigate trends in the sample cohort as a whole (Fig. 1). 
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Clear changes in metabolic profiles were observed with time (Fig. 1A). The scores plot labeled by 

gene-expression subtype (Fig. 1C) revealed a separation of the metabolic profiles of normal-like 

subtype samples from the rest. Comparing Fig. 1A and Fig. 1C, most TP3 samples were of the normal-

like gene expression subtype, also observed in Fig. S2F (Online Resource 2). The loadings plot (Fig. 

1D) clearly indicated elevated phosphocholine (PCh), glycerophosphocholine (GPC), and taurine 

(Tau) at TP1, while glucose (Glc) and lipids were higher with increasing time of treatment and in 

normal-like samples.  

Sixteen metabolites were identified as measurable, and their relative intensities were calculated by 

peak integration and log10 transformed. The metabolite data is available in Online Resource 3. 

LMM revealed significant differences after multiple testing correction in 11/16 metabolites for the 

factor time (Table 2), including the metabolites detected in PCA with the exception of Tau. Four out of 

these 11 metabolites were significantly different for TP2 vs TP1, while all 11 of them were significant 

for TP3 vs TP2.  Seven metabolites exhibited a significant interaction between time and pMRD 

response, while a significant interaction between time and bevacizumab was detected only for 

glutathione (GSH) (Supplementary Table 3 in Online Resource 4).  

Metabolic differences between responders and non-responders 

Results from PLS-DA discrimination of patients at each time point based on three different response 

criteria using metabolic profiles are summarized in Supplementary Table 4 in Online Resource 4. 

Metabolic differences between pCR+ and pCR- were detected at TP3 (Fig. 2A), but not TP1 or TP2, 

with an accuracy of 69% (p=0.018). Similarly, a significant discrimination between pMRD and pNRs 

was achieved only at TP3 (Fig. 2C), with PLS-DA model performance improving greatly 

(accuracy=77%, p<0.001). Compared to pCR- and pNR, both pCR+ and pMRD, respectively, showed 

elevated Glc and Lac and decreased creatine (Cr), glycine (Gly), Tau, GPC, PCh, choline (Cho), 

succinate (Succ), and alanine (Ala) levels (Fig. 2B, Fig. 2D).  

PLS-DA significantly discriminated spectra from patients in the extreme response ratio groups of GR 

and NR at TP1 and TP3, but not TP2, with an accuracy of 76% (p=0.001) and 75% (p=0.002), 

respectively. The GR group showed lower levels of Glc and higher levels of ascorbate (Asc), Lac, Tyr, 

Cr, Gly, Tau, GPC, PCh, Cho, GSH, Succ, glutamate (Glu), and Ala compared to the NR group at TP1 

(Fig. 3A-3B), while the opposite was observed at TP3 (Fig. 3C-3D). In addition, relative levels of two 

and eight metabolites were significantly correlated with the response ratio at TP1 and TP3, 

respectively (Supplementary Table 5 in Online Resource 4, Fig. S3 in Online Resource 2), but not at 

TP2. A switch in the direction of the correlation trend (positive or negative) was observed in the two 

metabolites with significant correlations at both time points (Glc and Tau). 
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Applying the multilevel approach of LMM, Lac was the only significant metabolite for the factor 

pMRD response (Table 2). However, the interaction between time and pMRD response was significant 

for seven metabolites (Supplementary Table 3 in Online Resource 4), indicating that the effect of the 

pMRD response factor varies at different time points. pMRD response was significant at TP2 for Glc, 

Tyr, and Succ, while all seven metabolites were significant for this factor at TP3.  

The most relevant results pertinent to treatment effect and comparison between responders and non-

responders are summarized by pathway in Fig. 4, complemented by Supplementary Table 6 in Online 

Resource 4. 

Glutathione metabolism identified as possibly affected by bevacizumab  

PLS-DA could not discriminate bevacizumab-treated from chemotherapy-only patients at any time 

point. Both multivariate PLS-DA and univariate t-tests were employed to investigate differences 

between responding patients that were treated with additional bevacizumab and chemotherapy only. 

Significant metabolic differences between these groups could not be detected by either method at any 

time point (see Supplementary Table 7 and 8 in Online Resource 4).   

For the multilevel LMM, bevacizumab was the only factor for which no metabolite was significant 

after multiple testing correction. However, a significant interaction between time and bevacizumab 

was detected for GSH (Table 2). GSH was significantly higher in controls than in bevacizumab-treated 

patients at TP3 (p< 0.001) (Supplementary Table 3 in Online Resource 4). 

DISCUSSION 

In this study we used MR based metabolic profiling of breast cancer tissue to investigate the effect of 

neoadjuvant chemotherapy in a large cohort of HER2 negative breast cancer patients randomized to 

receive additional bevacizumab treatment or not. The study design included three sampling time points 

over the treatment course, which allowed for a multilevel approach to investigate metabolic 

differences between patient groups.  

Despite metabolic profiles not being able to predict pCR prior to treatment, a significant metabolic 

difference in pCR+ patients compared to pCR- was detected after neoadjuvant chemotherapy. This 

metabolic difference was even clearer when comparing pMRD patients and pNRs, with the former 

displaying similar metabolite trends as pCR+ patients. Moreover, a metabolic difference both before 

and after treatment was identified comparing patients with good response and no response. However, 

since the majority of cancer cells in pathological responders have responded to treatment, when 

comparing pMRD and pNRs at TP3, findings may also reflect metabolic differences between tumor 

and normal tissue. Previous studies using HR MAS MRS metabolic profiles of intact breast tumor 
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tissue have successfully identified patients with more than 5-year survival, while association to 

treatment response was more subtle (Cao et al. 2012; Cao et al. 2011). Findings from the NASBP B-40 

trial report a significant increase in OS of HER2 negative breast cancer patients receiving 

chemotherapy with addition of neoadjuvant bevacizumab continued post-operatively (Bear et al. 

2015). The significant discrimination of pathological response at surgery (TP3) based on metabolic 

profiles may be predictive of patients who would benefit from post-operative bevacizumab treatment. 

Metabolic signatures in patients with 5-year DFS, PFS and OS for this cohort will be investigated in 

due course.  

Clear metabolic differences between time points in accordance with tumor reduction were observed. 

The increase in glucose with treatment progression points to a decline in glucose consumption, which 

is characteristically rapid in cancer cells, referred to as a glycolytic phenotype, to fulfill their high 

energy demands (Vander Heiden et al. 2009). Glucose was also found to be significantly higher in 

pMRD patients compared to pNRs after completion of neoadjuvant therapy, indicating an even greater 

decline in the consumption of glucose in the former group. The increase of lipids towards TP3 

suggests a transition to normal breast adipose tissue. Lipid metabolism plays an important role in 

tumor cell apoptosis and necrosis resulting from treatment (Huang and Freter 2015). However, it can 

be assumed that most lipid signals arise from normal breast adipose cells. This is supported by 

samples at TP3 and of the normal-like subtype, which displays high expression of adipose cell genes 

(Perou et al. 2000), corresponding well in the PCA scores plot (Fig. 1A and 1C).  

Metabolites that significantly decreased with treatment progression include glycerophosphocholine, 

phosphocholine, and choline, with the latter two also being significantly lower in pMRD patients 

compared to pNRs at TP3. These metabolites are involved in the metabolism of phosphatidylcholine, 

the most abundant phospholipid in eukaryote cell membranes (Gibellini and Smith 2010). Although 

the underlying mechanisms governing abnormal choline metabolism in cancer are still not fully 

understood (Glunde et al. 2011; Moestue et al. 2012), increase in the levels of choline containing 

metabolites are thought to be an indicator of malignant transformation and cancer aggressiveness 

(Aboagye and Bhujwalla 1999). Decreased phospholipid metabolism may be an indicator of a 

reduction in tumor malignancy and aggressiveness due to neoadjuvant chemotherapy. Further, studies 

showing that the behavior of choline metabolites varies between breast cancer subtypes (Giskeødegård 

et al. 2010; Grinde et al. 2014) indicate that the stratification of patients for treatment targeting 

phospholipid metabolism may be beneficial. This is further supported by our recent study (Haukaas et 

al. 2016) in which we used metabolic profiles to derive naturally-occurring metabolic subgroups, 

revealing that one of these contained significantly higher phosphocholine and glycerophosphocholine 

levels and less active degradation of phosphatidylcholine determined by integrative pathway analysis. 
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LMM additionally revealed increased glutamine with treatment progression indicating a decrease in 

glutaminolysis. The normally non-essential amino acid glutamine becomes an important alternative 

source of carbon and nitrogen for glucose-deprived cancer cells, replenishing the TCA cycle and 

providing substrates for nucleotide, lipid, and protein biosynthesis (Hensley et al. 2013). Glutamine is 

converted to glutamate, a precursor of non-essential amino acids and glutathione. Glutathione is a 

major cellular antioxidant which protects cancer cells against apoptosis caused by reactive oxygen 

species (ROS) (Franco and Cidlowski 2009). A significant interaction between time and bevacizumab 

was detected for glutathione, with chemotherapy-only patients exhibiting significantly higher levels 

than patients receiving bevacizumab at TP3. This is coherent with previously reported reduced levels 

of glutathione with bevacizumab treatment of glioblastoma (Fack et al. 2015). Bevacizumab may thus 

play a redox destabilizing role in cancer cells, inducing oxidative stress to promote apoptosis. It may 

therefore be interesting to monitor oxidative stress with bevacizumab treatment. 

A significant LMM interaction between time and response was detected for succinate, showing 

significantly lower levels in pMRD patients compared to pNRs at TP2 and TP3. Succinate is the 

substrate of succinate dehydrogenase (SDH), a tricarboxylic acid (TCA) cycle enzyme which has been 

identified as a tumor suppressor (Selak et al. 2005). Inactivation of SDH leads to accumulation of 

succinate, which mediates signaling pathways promoting resistance to apoptotic signals and inhibits 

the degradation of HIF alpha, a transcription factor that promotes the glycolytic phenotype 

characteristic of cancer cells (King et al. 2006). Decreased succinate in responders, observed at both 

TP2 and TP3, is therefore in accordance with a less malignant phenotype. 

Unexpectedly, a significant increase in lactate with treatment progression and in pMRD patients 

compared to pNRs was detected, similarly as for glucose. Both increased lactate production and rapid 

glucose consumption are characteristic of the Warburg effect, which is the metabolic switch from 

anaerobic to aerobic glycolysis observed in most cancer cells (Vander Heiden et al. 2009). Lactate has 

been associated with poor prognosis in ER positive breast cancer (Giskeødegård et al. 2012) as well as 

in other cancers (Saraswathy et al. 2009; Walenta and Mueller-Klieser 2004; Walenta et al. 2000). 

Still, the glycolytic phenotype is not absolute in cancer cells, as a better-oxygenated subpopulation 

uses lactate as the main energy source fueling oxidative phosphorylation (Hanahan and Weinberg 

2011; Semenza 2008; Feron 2009). A dual metabolic effect in cancer cells has been suggested (Xie et 

al. 2014), where lactic acidosis, although a consequence of the Warburg effect, can convert the usually 

dominant Warburg effect to a non-glycolytic phenotype, decreasing glucose consumption. Elevated 

lactate promoting this non-glycolytic phenotype is a possible explanation for glucose and lactate not 

behaving oppositely as expected. Another possibility is that chemotherapy may produce 

morphological changes in tissue that impede adequate lactate cellular excretion, leading to its 

accumulation. An issue to be kept in mind is that imputation was employed to calculate the relative 
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levels of lactate for 116/270, which can be considered a limitation of this study. However, the 

imputation process was validated achieving a root mean square error (RMSE) of 0.006 and a 

coefficient of determination (R2) of 0.9996, indicating high confidence for the predicted lactate values. 

Regarding the multivariate comparison between good response and no response groups based on the 

response ratio, glucose and lactate behaved oppositely in both groups at both TP1 and TP3, contrary to 

them exhibiting trends in the same direction in pMRD patients and pNRs at TP3. However, when 

including samples from all three response ratio groups, glucose and lactate were both significantly 

negatively correlated with tumor size increase at TP3. The contradictory lactate/glucose behavior 

using different response criteria may therefore be due to the exclusion of 69/122 patients when 

comparing the two extreme response ratio groups. Lower glucose and higher lactate in the good 

response group before treatment points to a higher Warburg effect compared to the no response group, 

which is subsequently reversed in these groups by the end of treatment. In the same way, compounds 

associated with a more malignant phenotype including the choline containing metabolites, glutathione, 

glutamate, and succinate were elevated in the good response group before treatment, while the 

opposite was observed at the end of treatment. Although models built with these extreme groups 

cannot be used for prediction of treatment response, since a large part of the population has been 

excluded, these findings suggest that patients with a more malignant metabolic profile are more prone 

to benefit from treatment in terms of tumor reduction.  

Changes in glutathione metabolism were identified as a possible effect of bevacizumab based on a 

significant interaction between time and bevacizumab using LMM for this metabolite. A substantial 

metabolic effect due to chemotherapy in both bevacizumab-treated and chemotherapy-only patients 

was evidenced, suggesting the potent chemotherapeutic effect may mask many of the effects of 

bevacizumab. In addition, the increase in lactate observed with increasing time on therapy may 

counteract VEGF inhibition by bevacizumab, as it has been found that excreted lactate from tumor 

cells stimulates angiogenesis dependent of a different proangiogenic factor: interleukin 8 (IL-8) 

(Végran et al. 2011). IL-8 signaling has been found to compensate for inhibition of VEGF-dependent 

angiogenesis in bevacizumab-resistant cells of head and neck squamous cell carcinoma (Gyanchandani 

et al. 2013). Altered lactate metabolism as a mechanism of bevacizumab resistance should therefore be 

further investigated.   

Conclusion  

MR based metabolic profiles of non-metastatic breast tumor tissue reflected changes in all patient 

groups as an effect of chemotherapy. Metabolic profiles discriminated pNRs from pMRD patients 

after neoadjuvant chemotherapy, which may complement other molecular assays for the elucidation of 

the underlying mechanisms affecting pathological response. Although metabolic differences based on 
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bevacizumab administration were not prominent, glutathione was identified to be possibly affected by 

the antiangiogenic drug.  
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R2: coefficient of determination; SDH: succinate dehydrogenase; Succ: succinate; Tau: taurine; TCA: 

tricarboxylic acid; TP: time point; VEGF: vascular endothelial growth factor. 
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Tables 

Table 1. Patient and tumor characteristics. 
 

 
Total 

Bevacizumab- 
treated 

Chemotherapy 
Only 

Number of patients  122 60 62 

     

Mean age (range) years 49.0 (25 – 70) 49.6 (27-70) 48.4 (25-68) 
     

Therapy Response     

     Pathological complete  
     response (pCR) 

pCR 20 13 7 

No pCR 102 47 55 

     

     Pathological minimal  
     residual disease (pMRD) 

pMRD 44 24 20 
Pathological non-
responder (pNR) 

78 36 42 

     

     Response ratio Good response (GR) 31 18 13 

 Intermediate response (IR) 69 32 37 

 No response (NR) 22 10 12 

     

Histology Ductal 98 47 51 

 Lobular 21 12 9 

 Other 3 1 2 

     

T status at TP1 T1 0 0 0 

 T2 36 17 19 

 T3 74 37 37 

 T4 11 5 6 

 NA 1 1 0 

     

T status at TP3 T1 49 21 28 

 T2 36 20 16 

 T3 14 5 9 

 T4 0 0 0 

 NA 23 14 9 

     

Node status at TP3 N0 45 23 22 

 N1 30 14 16 

 N2 14 5 9 

 N3 4 0 4 

 NA 29 18 11 

     

ER status + 101 48 53 

 - 21 12 9 

     

PgR status + 70 32 38 

 - 51 27 24 
 NA 1 1 0 
     

NA: not available 
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Table 2. LMM results for the fixed effects of time, pMRD response, and bevacizumab.  

 TP2 vs TP1 TP3 vs TP2 
pMRD vs 

pNR 
Bev-treated vs 
Chemo-only 

Significant 
Interactions# 

Glc 
0.130* 
(0.065) 

0.309** 
(0.064) 

-0.155 
(0.078) 

0.096 (0.055) Time × Response 

Asc 
-0.036* 
(0.015) 

-0.107** 
(0.014) 

-0.016 
(0.017) 

0.005 (0.017) None 

Lac 
0.173** 
(0.050) 

0.398** 
(0.048) 

0.157** 
(0.049) 

0.053 (0.047) None 

Tyr 
-0.047* 
(0.023) 

-0.121** 
(0.022) 

0.052* 
(0.026) 

-0.023 (0.016) Time × Response 

mI 
0.050** 
(0.016) 

0.035** 
(0.015) 

-0.014 
(0.021) 

-0.003 (0.020) None 

Gly 
-0.029 
(0.017) 

0.004 
(0.016) 

0.011 
(0.021) 

0.018 (0.020) None 

Tau 
<0.001 
(0.021) 

0.042* 
(0.021) 

-0.059* 
(0.026) 

0.014 (0.018) Time × Response 

GPC 
-0.032 
(0.018) 

-0.057** 
(0.017) 

-0.001 
(0.022) 

-0.022 (0.021) None 

PCh 
-0.061** 
(0.023) 

-0.101** 
(0.023) 

0.057 
(0.029) 

-0.024 (0.021) Time × Response 

Cho 
-0.055** 
(0.018) 

-0.043** 
(0.018) 

0.051* 
(0.022) 

-0.034* (0.015) Time × Response 

Cr 
-0.015 
(0.017) 

-0.048** 
(0.016) 

-0.034 
(0.018) 

0.007 (0.017) None 

GSH 
0.022 

(0.030) 
-0.045 
(0.030) 

0.044 
(0.029) 

0.057* (0.029) 
Time × Response; 

Time × Bevacizumab 

Gln 
0.021 

(0.022) 
0.119** 
(0.021) 

-0.011 
(0.026) 

-0.007 (0.025) None 

Succ 
-0.035 
(0.037) 

0.035 
(0.036) 

0.048 
(0.042) 

-0.032 (0.027) Time × Response 

Glu 
0.018 

(0.021) 
0.014 

(0.020) 
0.064* 
(0.025) 

0.045 (0.024) None 

Ala 
0.042 

(0.029) 
0.096** 
(0.028) 

-0.016 
(0.028) 

0.039 (0.026) None 

Metabolite increase (positive estimate) or decrease (negative estimate) is shown for TP2, TP3, 
pMRD, and bevacizumab-treated patients in relation to TP1,TP2, pNR, and chemotherapy-only 
patients, respectively. Standard errors are shown in parenthesis. * and ** indicate significance 
(p≤0.05) before and after multiple testing correction, respectively.  
#Final LMMs shown here were built including significant interaction terms, but interaction 
results are presented separately in Table 3.  
pMRD: pathological minimal residual disease; pNR: pathological non-responder; Bev-treated: 
Bevacizumab-treated; Chemo-only: Chemotherapy-only; Glc: glucose; Asc: ascorbate; Lac: 
lactate; Tyr: tyrosine; mI: myo-inositol; Gly: glycine; Tau: taurine; GPC: glycerophosphocholine; 
PCh: phosphoscholine; Cho: choline; Cr: creatine; GSH: glutathione; Gln: glutamine; Succ:  
succinate; Glu: glutamate; Ala: alanine. 
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Figure Legends 

Fig. 1. PCA including all samples. (A) The scores plot shows a trend in the direction of the arrow 

with increasing time point. (B) PQN-normalized mean spectra at each time point. Gray bars indicate 

removed spectral regions. (C) The normal-like gene expression subtype is most clearly separated from 

the rest in the scores plot, showing a similar distribution as TP3 in A. (D) The loadings plot indicates 

higher phosphocholine, glycerophosphocholine, and taurine at TP1 and increasing glucose and lipids 

with increasing time of treatment and in normal-like samples. Loadings are colored according to LV1. 

LumA=luminal A; LumB=luminal B; Norm-like=normal-like; NA=not available; Glc=glucose; 

Asc=ascorbate; Lac=lactate; mI=myo-inositol; Tyr=tyrosine; Cr=creatine; Gly=glycine; Tau=taurine; 

GPC=glycerophosphocholine; PCh=phosphoscholine; Cho=choline; GSH=glutathione; 

Gln=glutamine; Succ=succinate; Glu=glutamate; Ala=alanine. 

 

 

Fig. 2. PLS-DA scores (A) and loadings (B) plots of pathological complete responders (pCR+) vs 

patients with no pathological complete response (pCR-) at TP3, and PLS-DA scores (C) and 

loadings (D) plots of pathological minimal residual disease patients (pMRD) vs pathological non-

responders (pNRs) at TP3. Both pCR+ (A) and pMRD (C) display lower scores along LV1 than 

pCR- and pNRs, respectively. Loadings show pCR+ (B) and pMRD (D) having higher glucose and 

lactate compared to pCR- and pNRs, respectively, and lower levels of the choline containing 

metabolites, creatine, glycine, taurine, succinate, and alanine. Loadings are colored according to LV1. 

Glc=glucose; Lac=lactate; Lip=lipids; Cr=creatine; Gly=glycine; Tau=taurine; 

GPC=glycerophosphocholine; PCh=phosphoscholine; Cho=choline; Succ=succinate; Ala=alanine.   

 

Fig. 3. PLS-DA scores and loadings plots of good response (GR)  vs no response (NR) patient 

groups at TP1 (A-B) and TP3 (C-D). (A) At TP1, the GR group displays lower scores along LV1 

than the NR group, with loadings showing the former group having lower glucose, and higher levels of 

lactate, taurine, the choline containing metabolites, glutathione, and succinate, among others (B). (C) 

At TP3, the GR group also displays lower scores along LV1, but the loading profile (D) is inverted 

when compared to TP1, indicating a metabolic switch related to tumor reduction with treatment time. 

Loadings are colored according to LV1. Glc=glucose; Asc=ascorbate; Lac=lactate; Tyr=tyrosine; 

Cr=creatine; Gly=glycine; Tau=taurine; GPC=glycerophosphocholine; PCh=phosphoscholine; 

Cho=choline; GSH=glutathione; Succ=succinate; Glu=glutamate; Ala=alanine.   

 

Fig. 4. Illustration of treatment effect and differences between responders and non-responders. 

Cancer-relevant pathways shown include glycolysis (brown), tricarboxylic acid (TCA) cycle (black), 

choline phospholipid metabolism (orange), glutaminolysis (gray), and glutathione biosynthesis (blue), 
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with altered metabolites and related enzymes marked in red and purple, respectively . General trends 

in metabolite levels with increasing treatment time (Tx) and differences in pathological minimal 

residual disease patients compared to pathological non-responders (pMRD) and in the response ratio 

group of good response compared to the no response group (GR) at each time point (TP) indicated 

with arrows are shown in red boxes. TCA cycle reactions that are recruited by glutaminolysis are 

marked ◊. 
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