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Influence line extraction by deconvolution in the
frequency domain

Gunnstein T. Frøseth∗, Anders Rønnquist, Daniel Cantero, Ole Øiseth

Norwegian University of Science and Technology (NTNU). Department of Structural
Engineering, Richard Birkelands vei 1A, 7491 Trondheim, Norway

Abstract

This paper proposes a new method for extracting static influence lines from
measurements on bridges. The response of a structure is the convolution of
the load and the influence line. Previous research has not embraced the fact
that convolution is very efficiently handled in the frequency domain. The new
method is based on the Fourier transform, which reduces the computational
complexity of influence line extraction by several orders of magnitude compared
to the conventional matrix method. The method can therefore be used to ex-
tract influence lines in near real time when implemented in low-powered devices,
high-sensor-count systems, under high sampling rates and/or long signal sizes.
It is shown that the inverse approach is ill-posed for certain vehicle configura-
tions. A regularization technique for the ill-posed inverse problem is provided
by a stabilizing filter. A numerical example is used to validate the regularization
technique. The feasibility of the proposed method on real-world applications is
demonstrated by a case study. The method is relevant to applications of and re-
search on B-WIM algorithms, damage detection in structural health monitoring
applications as well as model validation and model updating in the model-based
evaluation of bridges.

Keywords: Influence lines, Bridge weigh-in-motion, Deconvolution, Traffic
monitoring

1. Introduction

Infrastructure is aging worldwide following the rapid expansion of railways
and highways at the beginning of the 20th century. Simultaneously, the de-
mands on this infrastructure are increasing as a result of higher axle loads and
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operational speeds. The combination of older infrastructure reaching and sur-
passing their design life and operational conditions that were not considered
in the initial designs requires that infrastructure owners intensify maintenance
and monitoring of their assets. To make the most of limited resources for main-
tenance, for the renewal and strengthening of infrastructure, it is becoming
increasingly important for infrastructure owners to accurately estimate the re-
maining service life of each component in the network and to monitor critical
components to ensure sufficient safety levels and uptime. To achieve this goal,
it is necessary to obtain and analyze data from all aspects that affect the service
lives of infrastructure components.

Historic and present traffic conditions are among the most important vari-
ables in the service life estimation of infrastructure objects, and more precise
and accurate service life estimations are possible with improved knowledge of
traffic conditions.

Bridge weigh-in-motion systems (B-WIM) utilize measurements on bridges
to determine traffic data. The benefits of B-WIM algorithms compared to con-
ventional weigh-in-motion stations are that the installation and service of the
measurement station can be performed without disrupting traffic and that it
is possible to utilize and combine data extraction intended for other purposes
such as structural health monitoring (SHM) and service life estimation. The
cost of installing and maintaining B-WIM systems is therefore often lower due
to better accessibility and synergy effects with other projects when compared
to other traffic monitoring systems.

Current commercial B-WIM algorithms are based on the seminal work by Moses
[1]; see Lydon et al. [2] and Yu et al. [3]. These algorithms utilize the fact that
the response of a structure to a moving load is proportional to the product of
the influence line and the axle load. Moses [1] applies a theoretical influence line
based on the static system of the bridge in his work. Theoretical influence lines
seldom correspond well with actual or measured influence lines due to bound-
ary and load distribution effects [4]. The accuracy of the B-WIM algorithm
is determined by the accuracy of the estimated influence line of a structure.
Extracting influence lines from measured responses is therefore a key topic in
modern B-WIM algorithms [5].

Influence lines are also important in several other fields of research and appli-
cation. Influence lines have been successfully used to update structural models
to facilitate both the better prediction of responses from numerical models and
the enhanced assessment of engineering structures [6, 7]. Furthermore, influence
lines express structural condition and have been applied to identify and detect
structural damage [8–11]. This paper is therefore relevant to researchers and
practitioners working with model updating, SHM, damage detection, condition
assessment and service life estimation of bridges.

Influence lines can be extracted from response measurements in several ways.
McNulty and O’Brien [12] presents a manual step-by-step method of estimating
the influence line; however, a common critique of this approach is that the
quality depends on the ability of the operator and that it is a manual approach.

O’Brien et al. [13] describes an inverse approach to extracting influence
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lines. The method establishes a matrix from information about a calibration
vehicle. The influence line is then determined by inverting the matrix. The
solution time becomes substantial for responses obtained for long vehicles or
bridge spans due to large matrix dimensions Quilligan [5]. Yamaguchi et al. [14]
presents a similar inverse method based on the idea of representing the influence
line with a polynomial.

Liljencrantz et al. [15] describes a forward approach for determining the in-
fluence line as an extension of the work by Quilligan [5]. The method relies on
an initial guess of the influence line or a set of candidate influence lines as well as
information about the calibration vehicle. The influence line is then found iter-
atively by minimizing the error between the predicted and measured responses
of a train passage. Žnidarič et al. [16] briefly describes an algorithm that is
implemented in a commercial B-WIM system. The influence line is modeled by
a cubic spline together with constraints imposed from assumptions about the
true influence line. The influence line is treated as an unknown and is obtained
by minimizing the difference between the measured and predicted responses
through a non-linear and non-gradient-based optimization algorithm. The is-
sues with the forward approach are that the influence line may not converge
to the correct influence line due to local minima in the objective function and
invalid assumptions about the influence line and that the computational cost of
extracting influence lines in this manner may be high due to low convergence
rates.

Furthermore, it is the authors’ opinion that both the inverse and forward
approaches are quite complex to implement in their present formulation.

This paper overcomes issues related to implementation complexity and com-
putational cost through the realization that the response of the structure is
the convolution of the influence line and the loading. From a computational
perspective, convolution is very efficiently handled in the frequency domain be-
cause the convolution integral transforms into an elementwise multiplication
operation. The realization complements current B-WIM theory and facilitates
a simpler formulation for both axle load determination and forward and inverse
influence line extraction algorithms.

The outline of this paper is as follows: The first part presents the connection
between the convolution of the influence line and the load function to the es-
tablished theory of B-WIM algorithms. The authors have not previously found
such a derivation in the B-WIM literature and consider this an important contri-
bution to the field. We then propose an alternative approach to extract static
influence lines. The methodology is based on the Fourier transform and the
highly efficient fast Fourier transform (FFT) algorithms. The inverse approach
is ill-posed for certain types of load configurations, and regularization of the
solution by a stabilizing filter is proposed to make the method applicable to
the general case. An example is used to demonstrate the regularization tech-
nique. The second part discusses the computational advantages of the proposed
method versus the conventional methods of extracting influence lines. The final
part presents a case study with real field measurements, where we compare both
the matrix-based approach and the FFT-based approach and demonstrate the
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feasibility of the method to real-world problems.

2. Theory

The influence line l(x) is defined as the response of a structure at a certain
measurable location to a unit load at location x. Fig. 1a provides an illustration
of the influence line of the bending moment at midspan of a simply supported
beam to a load moving along the beam-axis.

(a)

(b)

Figure 1: (a) illustrates the influence line for the moment at midspan of a simply supported
beam. The coordinate x defines the position of the unit load. (b) shows an example of the
load function 1, which represents a train with loads located at xi, where i corresponds to the
axle number of the train.

Assuming that the structure behaves linearly and the dynamic response is
negligible compared to the static response, it is possible to utilize the static
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influence line to generate the response of a structure to an arbitrary load f(x).
The load function for a vehicle is presented in the equation below:

f(x) =

Np∑
i=1

δ(x− xi)Pi (1)

where Np corresponds to the number of axles of the vehicle, Pi is the axle
load, xi is the location of an individual axle i, and δ(x− xi) is the Dirac delta
function; see Fig. 1b.

The response z(x) of the structure at the location where l(x) was obtained
to a vehicle, represented by f(x), is the convolution of the two, i.e.,

z(x) = (l ∗ f)(x) (2a)

=

∫ ∞
−∞

l(s)f(x− s) ds (2b)

=

∫ ∞
−∞

l(x− s)f(s) ds (2c)

where the commutative property of convolution (l ∗ f)(x) = (f ∗ l)(x) has
been used. The discrete representation of the convolution is, in matrix form,
given by

z = Lf (3a)

= Fl (3b)

where z ∈ RNz is the response vector, l ∈ RNl is the influence line vector,
and f ∈ RNf is the load vector. Note that the dimension of the response vec-
tor is related to the dimension of the influence line and the load vector, i.e.,
Nz = Nl + Nf − 1. Furthermore, L ∈ RNz×Nf and F ∈ RNz×Nl are Toeplitz
matrices converted from the zero-padded influence line vector and from the
zero-padded load vector, respectively. Note that major numerical libraries, e.g.,
SciPy, MATLAB, Julia and Octave, have standard functionality to generate
Toeplitz matrices from the base vectors, which further simplifies the implemen-
tation of B-WIM algorithms from the theory presented herein.

The load function in equation (1) can be represented by the axle load vec-
tor p =

[
Pi
]
∈ RNp and the unit impulse matrix D =

[
d1 d2 · · · dNp

]
∈

RNf×Np , where di ∈ RNf is the discrete representation of the Dirac delta func-
tion δ(x−xi), i.e., the unit impulse vector. The load vector can then be written
as

f = Dp (4)

Introducing the alternative formulation of the load vector, equation (4), into
the discrete convolution representation of the response, equation (3a), yields

z = LDp = ILp (5)
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where IL ∈ RNz×Np is the influence line matrix first established in the classi-
cal work by Moses [1]. The axle loads can be determined by solving the system
in equation (5). The problem may be ill-posed for certain types of vehicle config-
urations, and Tikhonov regularization has successfully been applied to alleviate
this issue [17]. Equation (5) is used to generate responses in forward-based
influence line and axle determination algorithms [15, 18].

Quilligan [5] and O’Brien et al. [13] start from equation (5) and derive the
matrix W ∈ RNl×Nl and vector ε ∈ RNl , which relates to the influence line in
the following manner:

Wl = ε (6)

Equation (6) is the normal equation to (3b), i.e., W = FTF and ε = FT z, the
first step in the normal equation method to solve least square problems. There
are a wide range of algorithms that solve the least square problem in (3b) in
addition to the normal equation method, e.g., QR factorization [19]. Regardless
of the algorithm used to solve the overdetermined system of equations, the
matrix method for influence line extraction is herein given by the least square
solution of equation (3b):

l = F†z (7)

where F† denotes the inverse of the matrix F in the least square sense.
Yamaguchi et al. [14] presents an idea for influence line extraction by assum-

ing that the influence line can be represented by a polynomial, i.e.,

l(x) =

Nq∑
j=0

qjx
j = xT (x)q (8)

whereNq is the order of the selected polynomial, x(x) =
[
1 x x2 · · · xNq

]T ∈
RNq is the coordinate vector, and q ∈ RNq is the coefficient vector. Discretizing
the polynomial influence line yields

l = Xq (9)

where X ∈ RNl×Nq is the Vandermonde matrix. Introducing equation (9)
into equation (3b) yields

z = FXq (10)

The influence line can then be obtained by solving (10) for the coefficient vec-
tor q and inserting the result back into equation (9). This method of extracting
the influence line is herein named the interpolation method. Note that details
regarding the implementation and performance of the interpolation method are
scarce; no studies have been found that addresses selecting the polynomial order
or optimal basis functions or that provide a comparison with the well-established
matrix method. The interpolation method is therefore not regarded further in
this paper.
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This concludes the theoretical background for influence line extraction in
the B-WIM literature.

2.1. Frequency-domain formulation

Previous works have not embraced the fact that convolution in the spatial
domain is very efficiently handled in the frequency domain. The Fourier trans-
form F {·} and the inverse Fourier transform F−1 {·} are defined by

G(ω) = F {g(x)} =

∫ ∞
−∞

g(x) exp {−iωx}dx (11a)

g(x) = F−1 {G(ω)} =
1

2π

∫ ∞
−∞

G(ω) exp {iωx} dω (11b)

where it is assumed that the Fourier transform of g(x) exists, i.e., it is
an integrable function in the spatial domain, and G(ω) denotes the frequency-
domain representation of the same function. Note that G(ω) is a complex-valued
function with a real part GR(ω) and imaginary part GI(ω), which can be written
in polar form with amplitude |G(ω)| and phase φG(ω), i.e.,

G(ω) = GR(ω) + iGI(ω)

= |G(ω)| exp {iφG(ω)}

The convolution theorem [20] states that if the Fourier transform of the func-
tions f(x) and l(x) exists, then the product of their transforms F (ω) = F {f(x)}
and L(ω) = F {l(x)} is the transform Z(ω) = F {z(x)} of the convolution
z(x) = (l ∗ f)(x). Taking the Fourier transform of equation (2) therefore yields

Z(ω) = F {(l ∗ f)(x)} = L(ω)F (ω) (13)

where the convolution integral in the spatial domain has turned into a mul-
tiplication in the frequency domain.

Deconvolution is performed by rearranging equation (13) and taking the
inverse Fourier transform back into the spatial domain. For influence line ex-
traction, the expression becomes

l(x) = F−1
{
Z(ω)

F (ω)

}
(14)

2.1.1. Addressing noise and ill-posed deconvolution

Direct deconvolution in the frequency domain as presented in (14) is sensitive
to noise in the response function. The measured signal ẑ(x) is assumed to
contain the true signal z(x) and additive noise n(x), i.e., the measured signal is
given by

ẑ(x) = z(x) + n(x)
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The estimated influence line can then be written as follows:

l̂(x) = l(x) + F−1
{
|N(ω)|
|F (ω)|

exp {i[φN (ω)− φF (ω)]}
}

Clearly, the estimated signal will have a large error term at frequencies where
the noise amplitude is large compared to the amplitude of the load signal, i.e.,

when the ratio |N(ω)|
|F (ω)| is large.

The load function presented in equation (4) can be transformed into the
frequency domain to obtain an analytical solution of the load F (ω); see equa-
tion (15).

F (ω) = |F (ω)| exp {iφ(ω)} (15a)

φ(ω) = − arctan

∑Np

j=1 Pj sinxjω∑Np

j=1 Pj cosxjω
(15b)

|F (ω)| =

√√√√ Np∑
i=1

Np∑
j=1

PiPj cos(xi − xj)ω (15c)

Deconvolution in the frequency domain, equation (14), becomes ill-posed
when the amplitude |F (ω)| of the frequency response function tends to zero.
Considering specific examples, it can be shown that a vehicle with two axles has
an amplitude spectrum bounded by

|ξ − 1| ≤
∣∣∣∣F (ω)|

P

∣∣∣∣ ≤ 1 (16)

where ξ = P1

P2
. From this relation, it is clear that the amplitude spectrum

becomes zero when the axle loads are identical, i.e., ξ = 1. This is obviously a
severe limitation because a two-axle vehicle is the rule rather than the exception
in the case of highway traffic. Two-axle vehicles are also present in railway
networks as well. There are other special circumstances that will render the
solution unstable. For instance, a train composed of an even number of axles
whereby the axle distances are multiples of each other and each axle is identically
loaded is also unstable. It is important to note that the circumstances that
make the solution unstable are quite particular and even unusual in practice,
especially for trains with multiple axles. The direct approach will work well
for the majority of practical configurations, as will be demonstrated in the case
study below. Nevertheless, to make the proposed method applicable to the
general case, an approach to regularize the solution is given below.

The idea is to create a stabilizing filter A(ω) that attenuates amplified noise
in L(ω). Tikhonov and Arsenin [21] presents the following general form of the
stabilizing filter:

A(ω) =
1

1 + α M(ω)
|F (ω)|2

(17)
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where α ≥ 0 is the regularization parameter and M(ω) is the regularization
function. Fig. 2 shows the frequency response of the general regularizing filter
as a function of the regularization coefficients.

10−610−510−410−310−210−1 100 101 102 103 104 105 106

α M(ω)

|F (ω)|2

−120

−100

−80

−60

−40

−20

0
A

(ω
)

[d
B

]

Figure 2: The frequency response of the general form of the stabilizing filter.

The passband (3dB or half power) is limited to frequencies where |F (ω)|2
M(ω) ≥ α.

From this relation, it is also obvious that the regularization parameter must be
set at a proper level to ensure that information about the true signal does not
become filtered out by the stabilizing filter. We return to the issue of selecting
the appropriate regularizing parameter throughout this section.

The regularizing function can be selected based on the available prior in-
formation. If both the spectral density of the noise |N(ω)|2 and the spectral
density of the influence line |L(ω)|2 are known, the Wiener filter can be used.
This minimizes the mean square error between the true and extracted influ-
ence lines [22] and therefore represents the optimal filter for deconvolution. The

Wiener filter uses the regularization function M(ω) = |N(ω)|2
|L(ω)|2 , which leads to

the signal-to-noise ratio SNR(ω) = |Z(ω)|2
|N(ω)|2 = |L(ω)|2|F (ω)|2

|N(ω)|2 being directly related

to the definition of the passband, i.e., the passband is determined by

SNR(ω) ≥ α (18)

In the case of the Wiener filter, the regularization parameter can be set to
α = 1 directly, which means that signal components where noise is contributing
more than the true signal will be filtered out.

Unfortunately, the spectral density of the influence line may be unknown
due to a lack of previous measurement and, in the case of SHM, where the
influence line has changed due to structural damage, and the bias introduced
by any assumption about the influence line might be unwanted. Similarly, the
noise spectral density may be challenging to determine due to transient noise ef-
fects induced by electrical vehicles or excessive structural vibrations. We briefly
mention that, if concrete information on either the influence line or the noise
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is available, such information can be included in the stabilizing filter to achieve
enhanced performance.

If no a priori information on the influence line or the noise is available,
M(ω) = 1 is a simple and practical choice that works well in stabilizing the
solution. The filter response and passband are only dependent on the power in
the load function, i.e., the passband is defined by

|F (ω)|2 ≥ α (19)

which means that all information for which the spectral density of the load
is below the regularization parameter will be filtered out. This is unbiased in
the sense that no assumptions are made on either the influence line or the noise.
M(ω) = 1 is therefore recommended in cases where changes to the influence
line or noise are expected due to structural damage or transient noise effects
induced by passing vehicles. It is infeasible to give a general recommendation
for the regularization parameter in this case. Other diagnostics must be used
to select the regularization parameter, as will be discussed below.

There are several methods to determine the optimal regularization parame-
ter α in cases where it cannot be determined by prior knowledge [23], e.g., by
minimizing the error between the measured and predicted response history [24]
and estimating the signal-to-noise-ratio regularization coefficients [25] from a
series of measurements. The L-curve is a simple and intuitive tool that can also
be used to select the optimal regularization parameter for the present regular-
ization problem, as we will demonstrate in a numerical example below.

The L-curve is used to determine the optimal regularization parameter by
balancing the quality of fit of the model to the data and the amount of damping
provided by the regularization term [26]. The fit of the model is quantified by the
residual norm ‖F−1 {F (ω)Lα(ω)}− ẑ(x)‖2, and the amount of damping by the
regularization term is quantified by the solution norm ‖lα(x)‖2, where Lα(ω)
and lα(x) denote the regularized extracted influence line. The optimal balance
between the two quantities is located in the characteristic corner produced in a
log-log graph (‖F−1 {F (ω)Lα(ω)}− ẑ(x)‖2, ‖lα(x)‖2) for selected values of the
regularization parameter α. The p-norm is for a general vector v ∈ RNv defined
by equation (20)

‖v‖p =

 Nv∑
j=1

|vj |p


1/p

(20)

2.2. Fourier-domain influence line extraction method

The final form of the proposed Fourier-domain method (FD method) for
influence line extraction is obtained by applying the regularizing filter in equa-
tion (17) to the equation for direct deconvolution, equation (14):

lα(x) = F−1
{

Z(ω)F ∗(ω)

|F (ω)|2 + αM(ω)

}
(21)
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where F ∗(ω) is the complex conjugate of F (ω).
It should be made clear that an FFT algorithm, e.g., [27], should be used

to obtain the forward and inverse Fourier transforms. There are two important
details to consider when addressing FFT algorithms.

1. For strictly real input, the Fourier transform results in a signal for which
the components around ω = 0 are complex conjugates of each other, i.e.,
Z(ωi) = Z∗(ω−i), which means that half the signal does not contain any
additional information. This can be exploited to further reduce hardware
requirements and increase computational efficiency [28]. FFT algorithms
exploiting this property are called real FFT algorithms and should be used
for increased computational speed in calculating the Fourier transform for
real signals such as the response, influence line and load function used
throughout this paper.

2. The length of the input vector g to a specific FFT algorithm is an im-
portant aspect in achieving optimum computational efficiency [28]. Zero
padding should be utilized to obtain the optimal vector lengths and max-
imize the computational efficiency of the FD method.

The analytical expression for the frequency-domain load function, provided
in equation (15), can be used in the final implementation. It may, however,
for a vehicle with a large number of axles be slower than establishing the load
vector f in the spatial domain and converting it to the frequency domain via
an FFT algorithm because the analytical implementation involves the outer
product of the frequency and the load position vector and subsequently matrix
multiplication between the resulting matrix and the load magnitude vector.

2.3. Example: Two-axle vehicle passing a simply supported bridge

The purpose of this example is to demonstrate that the proposed unbiased
stabilizing filter M(ω) = 1 can be applied to regularize the solution with the FD
method and to show that the well-known L-curve methodology can be utilized
to find the correct regularization parameter α.

Fig. 3a gives the example problem. The bending moment at midspan of a
simply supported beam with L = 5 is the measured quantity. The response
z(x) is generated at a spatial sampling rate of fx = 100 sampling points
per unit length, and Gaussian white noise n(x) with a signal-to-noise ratio(

SNR =
(
‖z(x)‖2
‖n(x)‖2

)2)
equal to 20 is added to the response signal. The sim-

ply supported beam is loaded by a two-axle vehicle with identical axle loads,
P1 = P2 = 1, with an axle distance of 3. The two-axle vehicle with identical
axle load renders the direct solution unstable, as shown by equation (16).

The L-curve for the present example is found in Fig. 3b, which confirms that
the solution is unstable for α = 0. Furthermore, it is clear that the character-
istic corner indicates that the optimal regularization parameter is α ≈ 10−6.
The figure also shows that the solution is not sensitive to the regularization
parameter; α =10−15 to 10−2 yields similar results to the optimal value.
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Figure 3: Influence line extraction from the response of a two-axle vehicle with identical
axle loads passing a simply supported bridge with regularization function M(ω) = 1. The
characteristic L-curve for the problem is depicted in (b). The extracted influence lines in (c)
and the responses in (d) are filtered with a moving average filter order of 25 to remove random
noise. The FD solution is regularized with α = 10−6.

Fig. 3c shows that, for the extracted influence line by the proposed FD
method with α = 10−6, the results compare well with both the true underlying
influence line and the solution provided by the matrix method. Note that the
difference between the extracted influence lines and the true influence line before
and after the simply supported beam in Fig. 3c is due to the added noise and
should not be mistaken for free vibration. Fig. 3d confirms that the influence
lines obtained with the proposed regularized FD method and the matrix method
correspond well. The difference in the influence lines extracted by the two
methods is, in practice, negligible. The unstable solution obtained by the direct
method has effectively been regularized by the stabilizing filter.

3. Computational complexity of influence line extraction

This section discusses the computational advantage of using the FD method
in comparison to the conventional matrix method. In this discussion, O(·) (“Big
O”) denotes the number of operations necessary to implement an algorithm in
the asymptotic sense. This helps assess the computational complexity of an
algorithm as the dimensions of the vectors and matrices associated with the
problem become large; see Golub and Van Loan [19].

12



The discussion assumes two extremes in regard to the implementation of the
algorithms: 1) implementation does not consider the underlying structure of
the matrices involved in influence line extraction, and 2) the sparsity, type and
structure of the matrices and vectors are considered in the implementation of
each method.

3.1. Structure of matrices and available algorithms for implementation

In regard to the type, sparsity and structure of the matrices and vectors
associated with the underlying theory of methods, note the following:

• The load vector f ∈ RNf is a sparse vector with Np non-zero elements
corresponding to the number of axles in the vehicle. Np << Nf for all
practical cases.

• F ∈ RNz×Nl is a sparse Toeplitz matrix, each column fi ∈ RNz of which
consists of the vector f with zero padding. Each column therefore consist
of Np non-zero elements.

Furthermore, the discussion relies on implementation with well-established
algorithms available in typical numerical libraries. Specifically, the following
algorithms are assumed to be available for implementation:

• A forward and inverse FFT algorithm, which are O(Nz log2Nz) [27, 28].

• A least square solver for general-type matrices, i.e., methods that ignore
the structure of the systems. These are invariably O(NmN

2
n) algorithms,

where Nm > Nn [19].

• A sparse matrix-vector multiplication algorithm, e.g., compressed sparse
row (CSR)[29]. The matrix-vector multiplication FT fi is then O(NpNl) ≈
O(Nl). It follows that the sparse matrix-matrix multiplication FTF is
O(N2

l ).

• The Levinson-Durbin algorithm [19] for solving Toeplitz matrices. Solving
the system with the normal matrix FTF then has complexity O(N2

l ).

Note that previous work has not presented similar analysis of matrix struc-
tures in B-WIM applications or in the literature, and a typical implementation
should be regarded as involving the general least square solver presented above.

3.2. Analysis of algorithms

3.2.1. Frequency-domain method

The proposed FD method relies on an FFT algorithm for computing the
Fourier transforms of the load and response vector as well as the inverse FFT to
obtain the influence line. The FD method therefore has complexityO(Nz log2Nz).
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3.2.2. Matrix method

The matrix method can be solved by general least square solvers in O(NzN
2
l )

by solving equation (3b). However, the matrix FTF can be established in O(N2
l )

by a sparse matrix-vector algorithm, and the resulting system can then be solved
by the Levinson-Durbin algorithm [19] in O(N2

l ).
The matrix method therefore has computational complexity O(NzN

2
l ) in its

simplest and slowest form and O(N2
l ) in the fastest implementation.

The computational complexity of the two methods is summarized in table 1.

Table 1: Comparison of the computational complexity of the inverse methods available for
influence line extraction.

Method Complexity

FD O(Nz log2Nz)
Matrix O(N2

l ) – O(NzN
2
l )

3.3. Numerical experiment: Complexity ratio in practice

The actual time it takes for a computer to solve the equations depends
on the hardware, implementation of each algorithm, programming language
and operating system. This means that the same algorithm will have different
execution times between two computers. Regardless, a numerical experiment
was performed to augment the discussion on computational complexity and
validate the theoretical analysis of the algorithms in the previous section.

The simply supported beam in the previous example was utilized as a test
case. A vehicle with identical axle loads and four axles spaced at x = {0, 3, 16, 30}
was used to make the length of the influence line and load vectors equal, i.e.,
Nl = Nf . The size of the vectors was varied by altering the spatial resolution
fx.

The analysis was performed on a laptop running a 64-bit Linux operating
system with a 2.8 GHz quad-core processor and 16 GB of RAM. All algorithms
were implemented in 64-bit Python version 2.7.12 using the functionality of the
scientific library SciPy [30] v0.17.0. Note that SciPy is a frontend to the BLAS
and LAPACK libraries [31], which are the basis for several free and commercial
scientific computing languages. Each algorithm was executed 25 times to obtain
the average execution time.

The results from the numerical experiment are presented in Fig. 4.

3.4. Dimensions of the influence line extraction problem

To estimate the signal size in BWIM applications, it is first necessary to
discuss the desired resolution in the spatial domain.

High resolution is especially important in the inverse problem due to nu-
merical stability and discretization errors: the higher the resolution, the more
accurate the axles can be positioned and axle loads determined. The most
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Figure 4: The gray area indicates the range of the ratio between the asymptotic computational
complexity of the conventional methods for influence line extraction and that of the FD
method. The slow and fast matrix lines indicate the ratio of the execution time between the
respective matrix implementations and the FD method obtained in the numerical experiment.
Note that n = Nl = Nf ≈ Nz/2

.

closely spaced axles are located 1 m to 2 m apart, depending on whether the
B-WIM system is installed on a railway or highway bridge; a meter resolution
is therefore too coarse. Methods for identifying axles and calculating axle dis-
tances are on the order of 10cm [32]. At vehicle speeds of v = 90 km/h, this
corresponds to a temporal sampling frequency of 250 Hz, which is at the lower
end for current B-WIM systems [33].

Considering practical B-WIM applications, Zhao et al. [34] uses sampling
rates of 512 Hz, O’Brien et al. [13] uses 512 Hz and 1024 Hz, and Marques et al.
[18] presents sampling rates of 1000 Hz. Note that the sampling rate is not just
determined by influence line extraction on systems that serve other purposes as
well.

Based on the above discussion, a spatial sampling rate of fx = 10/m is
assumed, which should be considered conservative compared to what current
B-WIM systems use.

The length of the path from which the influence line is obtained, i.e., the
length of the bridge, is typically from 5 m to 100 m for railways, whereas it
is from 5 m to 1000 m for highway applications. Conversely, the length of the
loading is from 10 m to 1000 m for trains and from 2 m to 20 m for cars and
trucks. Under the assumed spatial resolution, this means that, for railway
applications, Nl ranges between 101 to 103, and Nf ranges between 102 to 104.
For highway applications, the vector sizes are on the same order but opposite
for the respective vector sizes.

3.5. Comparison of methods

Fig. 4 depicts the complexity ratio, i.e., the ratio between the approximate
number of operations of the conventional methods and that of the FD method.
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The gray area indicates the range in which the theoretical complexity ra-
tio between the matrix method and the FD method can be expected to lie
for different hardware and programming languages. The complexity ratio for
the matrix implementation and that for the FD method obtained from the nu-
merical experiment are shown as marked lines. The growth rate for both the
fastest and slowest implementation corresponds well to the theoretical bounds.
The lower bound for the theoretical complexity is in good agreement with the
fastest implementation of the matrix method, whereas the upper bound for the
theoretical complexity is too conservative in comparison to the numerical exper-
iment. The theoretical computational complexity does not reveal constant and
lower order computational costs associated with each algorithm, and it is to be
expected that the theoretical complexity will deviate from the numerical exper-
iment. Further discussion therefore focuses on the results from the numerical
experiment, as these are expected to represent reality for most implementations
in the presented range of signal lengths.

With signal lengths of n = 1000, the FD method is approximately 1000-
times faster than the general implementation of the matrix method and 100-
times more efficient than the fastest matrix implementation. The execution
time on the computer system presented in section 3.3 is approximately 1 second
for the slowest matrix implementation. This may not be a significant difference
on either current laptop and desktop computers or low-count sensor setups, but
it may be important on embedded or low-power systems installed off the power
grid. The difference may also be important on larger sensor networks, where
influence line extraction is conducted on a range of concurrent signals. Another
case would be SHM, where prompt information about the state of the structure
is critical, often on a computer system working on other tasks in parallel.

The difference between the proposed FD method and the matrix method
becomes more significant at longer signal lengths. It can be argued that the
slowest implementation becomes impractical for n > 1000 on modern personal
computers, as the time ratio rapidly reaches and exceeds 10000 in comparison to
the FD method. In regard to the fastest implementation of the matrix method,
the FD method is in general more efficient. For modern computers and low-
count sensor systems, the difference only becomes significant at the higher end
of the presented range for signal lengths.

In any case, the proposed FD method is in general at least one order of
magnitude more efficient than the matrix method and should be considered
when faced with issues related to computational load.

4. Case study – Hell railway bridge

4.1. Description of the Hell railway bridge, field measurements and preprocess-
ing of data

The Hell railway bridge (Fig. 5) crosses the river Stjørdalselva and lies on
Nordlandsbanen 29 km north of Trondheim, Norway. Construction of the bridge,
which is an open-deck Parker pony truss bridge with 5 identical spans, each 35 m
in length, was completed in 1902.
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Figure 5: Hell railway bridge.

Strain data from the lower flange of the quarter span of the first stringer
onto the bridge and the lower flange in the midspan of the fourth crossgirder
were utilized to demonstrate the feasibility of the proposed method; see Fig. 6.

Figure 6: Placement of straingages on crossgirder (SG1) and stringer (SG2).

The stringers are of rolled-type INP36 with nominal length 3.5 m, and the
crossgirder is a built up riveted I-section with nominal length 4.5 m. The strain
measurements were taken with 120 Ω quarter bridge strain gages together with
a data acquisition unit from National Instruments. The temporal sampling rate
was fs = 794 Hz.

A train with 8 axles consisting of a track vehicle, one empty flatbed trailer
and one loaded ballast hopper was used to calibrate the measurement system
and provide data for the influence line extraction. The train had known axle
loads in the range 3 t to 19 t and axle spacing between 1.8 m and 6.7 m. The
train passed the bridge 8 times at speeds between 10 km/h to 40 km/h, i.e.,
between crawl speed and the maximum allowed at the site. An estimate of the
actual speed at the site was obtained by the phase correlation method described
in Liljencrantz et al. [15].

Before analyzing the data further, each signal was resampled to a spatial
sampling frequency of fx = 10/m after applying an 8th-order Bessel anti-aliasing
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Figure 7: Raw and resampled strain obtained from measurements on the stringer (SG2) during
passage of the calibration train towards Bodø at a speed of 21.6 km/h.

filter, see Fig. 7 for an example of a raw and resampled signal.

4.2. Influence line extraction by matrix method and deconvolution

This section compares influence lines extracted by both the matrix and FD
methods to evaluate the performance of the proposed method applied to real
data. Influence line extraction with the matrix method is performed by solving
equation (7) with a general least square solver. The FD method is described
in section 2.2. No regularization for either method was used in extracting the
influence line.

The raw influence lines were aligned with the maximum value at the location
of the sensor in the length direction of the bridge. A 3rd-order spline was then
used to collocate points along the two influence lines. The aligned influence
lines contained the signal 3 m before and after the bridge. A mean influence line
was produced for each of the two methods for comparison. The final step before
comparing the influence lines from either method was to filter random noise by
applying a 5th-order moving average filter.

The infinite norm ‖·‖∞ and the 2nd norm ‖·‖2 were calculated on the residual

vector l̂MAT− l̂FD to quantitatively compare the influence lines extracted by the
two methods.

The results from the 8 passages and the mean influence line are presented
in table 2.

The infinite norm ‖ · ‖∞ expresses the maximum point difference between
the influence lines, and the 2nd norm ‖ · ‖2 expresses the difference in an overall
sense between the influence lines extracted by the two methods. Table 2 shows
that the largest infinite norm and 2nd norm are found for the influence line
extracted from passages 3 and 2 for the data obtained from the crossgirder
and the stringer, respectively. The influence lines corresponding to the largest
deviation in regard to the infinite and 2nd norms are also presented in Figs. 8a-
8d to provide a qualitative comparison of the two methods. The maximum
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Table 2: Comparison of the influence lines extracted by the matrix method and by the pro-
posed FD method. The speed is given in units of km/h, and the units of the norms are µV/t.
Negative speed is defined as in the direction toward Trondheim. Bold characters indicate the
worst comparison between the influence lines for each of the norms.

Crossgirder Stringer

Passage Speed ‖ · ‖∞ ‖ · ‖2 ‖ · ‖∞ ‖ · ‖2
1 10.7 0.03 0.25 0.05 0.28
2 21.6 0.03 0.22 0.05 0.30
3 32.2 0.04 0.26 0.03 0.22
4 41.8 0.03 0.26 0.03 0.21

5 -10.7 0.02 0.16 0.03 0.20
6 -20.0 0.03 0.21 0.03 0.20
7 -30.7 0.03 0.21 0.03 0.21
8 -40.7 0.03 0.25 0.03 0.19

Mean – 0.03 0.19 0.03 0.20

point difference between the influence line extracted by the two methods is
0.04 µV/t for the crossgirder and 0.05 µV/t for the stringer. This corresponds
to approximately 3 % of the maximum amplitude (≈ 1.5 µV/t) of the influence
line.

Figs. 8e and 8f show the variation in the influence lines obtained for different
passages by the matrix method. The smallest maximum point difference, i.e.,
the best comparison, between the influence line and the mean influence line
is 0.04 µV/t for the crossgirder and 0.07 µV/t for the stringer. It is clear by
inspection of Fig. 8 that the difference between the influence lines extracted for
the same passage by the two methods is less than the variation to be expected
between two passages extracted by the matrix method alone.

5. Conclusion

This paper presented a new method for extracting static influence lines from
bridge structures subject to traversing loads. The method is based on the real-
ization that the response of a structure is the convolution of the influence line
and the load function. The method utilizes the Fourier transform and, more
specifically, the FFT algorithm to achieve a very efficient method for extracting
influence lines. The proposed method is ill-posed for certain types of vehicle
configurations, and a regularization technique based on a stabilizing filter was
presented. Two different stabilizing filters were suggested based on the a priori
information available on the influence line and noise spectrum. A numerical
example was used to demonstrate that the regularization technique stabilizes
the solution and shows how the regularization parameter can be chosen based
on the L-curve.
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(a) Passage 3, crossgirder.
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(b) Passage 2, stringer.
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(c) Mean, crossgirder.
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(d) Mean, stringer.
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(e) Matrix influence lines, crossgirder.
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(f) Matrix influence lines, stringer.

Figure 8: (a) and (b) show the worst influence lines according to the 2nd and infinite norms,
(c) and (d) show the mean influence lines extracted by the FD and matrix methods, and (e)
and (f) show the mean influence line (solid black) together with the individual influence lines
obtained by the matrix method.
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Analysis of algorithms and a numerical experiment showed that the FD
method is faster than the well-established matrix method for influence line ex-
traction. The practical difference between the two methods is not significant
on modern personal computer systems for small signal sizes n < 103. Proper
implementation of the matrix method becomes important to avoid significantly
longer run times than the proposed methodology at signal sizes of n = 103. At
even larger signal sizes, proper implementation of the matrix method is nec-
essary to obtain results in a reasonable computing time. For multiple-sensor
setups, low-power systems and limited-resource systems, the computational ad-
vantage of the proposed methodology is considered to be relevant at all signal
sizes.

A case study on the Hell railway bridge was presented to demonstrate the
feasibility of the FD method. Influence lines were extracted from strain mea-
surements on one stringer and crossgirder. The results obtained by the FD
method were virtually identical to those obtained by the well-established ma-
trix method.
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