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Abstract: Air pollution has become one of the key environmental concerns in the urban sustainable
development. It is important to evaluate the impact of air pollution on socioeconomic development
since it is the prerequisite to enforce an effective prevention policy of air pollution. In this paper,
we model the impact of air pollution on the urban economic development as a Multiple Criteria
Decision Making (MCDM) problem. In particular, we propose a novel Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) analysis framework to evaluate multiple factors of
air pollutants and economic development. Our method can overcome the drawbacks of conventional
TOPSIS methods by using Bayesian regularization and the Back-Propagation (BP) neural network
to optimize the weight training process. We have conducted a case study to evaluate our proposed
framework.

Keywords: sustainability; air pollution; Multiple Criteria Decision Making (MCDM); TOPSIS;
neural network

1. Introduction

Air pollution has become one of the most important environment problems, which can
significantly affect the sustainable urban development. In particular, atmospheric pollutants not
only are harmful to health [1–4], but also can cause substantial economic loss [5], especially in many
developing countries. For example, it is shown in [6] that the economic loss due to air pollution
in China in 2010 reached 1.1 trillion (1 trillion = 1012) yuan, accounting for 13.7% of the total Gross
Domestic Product (GDP) of that year. Therefore, the prevention or control of air pollution has become
a top issue in socioeconomic development.

However, the policy of prevention or control of air pollution in developing counties has usually
lagged behind the socioeconomic development. As a result, ambient air quality has deteriorated
significantly. Air pollution is mainly due to the air pollutant emissions [7–9], the rapid urban
growth [10] and the shrinking green space [11]. Recently, a number of control technologies on
air pollution have been proposed and developed [12]. One of the most important prerequisites
of the effective prevention of air pollution lies in the evaluation of air pollution on socioeconomic
development.

A number of efforts have been put into evaluating the impact of air pollution on economic
development [13–18]. Most of these studies are mainly based on the evaluation of domain experts or
government officers. However, the evaluation results are often affected by the knowledge, experience
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and the emotional state of the experts or officers. As a result, the evaluation results are often biased or
subjective and cannot accurately reflect the real impact of air pollution. Therefore, it is necessary to
propose an accurate and objective evaluation framework to investigate the impact of air pollution on
the economic development.

The air quality is often affected by many factors, which fluctuates from time to time. For example,
Figure 1 shows that Air Quality Index (AQI) varies with air pollution indicators (such as SO2, NO2,
PM10, dustfall and pH) in Wuhan City in China from 1996 to 2016. Essentially, air pollution is a result of
multi-factor interaction in the complex atmosphere system. There are multiple pollutants affecting the
air quality [19]. Thus, the evaluation of air pollution and the economic development can be regarded
as a Multiple Criteria Decision Making (MCDM) problem that involves many conflicting evaluation
indicators, such as various air pollutants, AQI and GDP per capital.
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Figure 1. Indicators of air pollution and GDP from 1995 to 2015.

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [20,21] is a kind
of MCDM method. Compared with other MCDM methods, such as fuzzy-set theory [22,23] and the
Analytic Hierarchy Process (AHP) [24], TOPSIS has many merits such as the simplicity and insensitivity
to the number of alternatives (or indicators) [25]. However, TOPSIS has difficulties in determining the
weights of multiple alternatives and keeping the consistency of judgment [26]. For example, most of
the TOPSIS methods require the weight evaluations given by domain experts [27]; this inevitably leads
to the bias in the evaluation and the subjective decision [28]. Besides, most of studies on TOPSIS are
mainly focused on business decision making problems [29,30]. To the best of our knowledge, there are
few studies on the evaluation of the impact of air pollution on economic development by using the
TOPSIS method.

In this paper, we propose a novel TOPSIS-based MCDM method (named the Smart MCDM) to
evaluate the impact of air pollution on the economic development. The primary research contributions
of this paper can be summarized as follows:

• We propose the entropy method to obtain the initial weights of indicators of air pollution.
This method can overcome the disadvantages of conventional TOPSIS methods in determining
initial weights (recall that conventional methods obtain the weights given by domain experts).

• Besides, we integrate Bayesian regularization and the Back-Propagation (BP) neural network in
our Smart MCDM framework in order to obtain the objective weights since there is a correlation
between the weights. The benefit of using Bayesian regularization in the BP neural network lies
in the performance improvement in training the weights.
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• Moreover, we have applied Smart MCDM to evaluate the impact of air pollution on the economic
development of Wuhan City in China. The empirical study is conducted on data collected from
1996 to 2015, focusing on seven indicators (including six major air pollution indicators and one
economic indicator). The empirical results not only validate the effectiveness of our proposed
MCDM framework, but also provide many implications on balancing the economic development
and environment protection.

The rest of the paper is organized as follows. Section 2 presents the Smart MCDM framework.
We then present a case study in Section 3. Section 4 concludes the paper.

2. Smart MCDM Framework

In order to address the aforementioned concerns, we propose a Smart MCDM framework based
on TOPSIS. As shown in Figure 2, our framework consists of four key phases: feature transformation
(as shown in Section 2.1), feature selection (as shown in Section 2.2), weight training (as shown in
Section 2.3) and evaluation (as shown in Section 2.4). We then describe them in detail as follows.

Feature 

Correlation

Feature 

Discrimination

Weight Training

Feature 

Importance
Numerical 

Feature

Figure 2. Our proposed Multiple Criteria Decision Making (MCDM) framework.

2.1. Feature Transformation

Since the indicators (also named as features interchangeably throughout the whole paper) of
air pollutants are in different units, we need to normalize them before conducting feature selection.
In particular, we convert the absolute value of an indicator into the relative one. Moreover, the
positive indicator value and the negative indicator value represent different meanings. For example,
air pollution is the negative indicator, while GDP is the positive indicator. Therefore, we choose the
MAX-MIN scaling method to normalize the positive and negative values. More specifically, we have:

• Positive values:

xij =
uij −min(uij)

max(uij)−min(uij)
, (1)

• Negative values:

xij =
max(uij)− uij

max(uij)−min(uij)
, (2)

where uij represents the original value, xij represents the value after normalization, min(·) is the
minimum value and max(·) is the maximum value.

2.2. Feature Selection

Air pollution is a result of multi-factor interaction in the Earth’s complex atmosphere. There
are multiple pollutants having an influence on air pollution. To simplify our analysis, we need to
identify several major pollutants that have a significant impact on urban air pollution [31]. In this
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paper, we mainly consider the following major air pollutants according to China ambient air quality
standards (i.e., GB3095-2012 standard [32]): sulfur dioxide (SO2), nitrogen dioxide (NO2), Particulate
Matter with a diameter of 10 µm or less (PM10) and particulate matter with a diameter of 2.5 µm or
less (PM2.5). It is worth mentioning that PM2.5 has been considered only after 1 January 2016 when
China’s new ambient air quality standard came into force (though Wuhan City released the four-year
data of PM2.5 from 2012 to 2016 since it is one of the experimental cities in China). Since most of the
information of PM2.5 is missing for the years from 1996 to 2015, we do not consider PM2.5 in this paper.

2.3. Weight Training

Figure 3 shows the weight training procedure. In particular, we first use the entropy method to
obtain the initial weights for the indicators, as shown in Section 2.3.1. In order to solve the correlation
of initial weights, we then use Back-Propagation (BP) neural networks to train the weights, as shown
in Section 2.3.2.

Entropy Method

Train Weights

Weight  Training

TOPSIS Evaluate

Initial Weights

> limit

Figure 3. Weight training procedure.

2.3.1. Entropy Method to Determine Initial Weights

In information theory, entropy is a measure of uncertainty [33]. In this paper, we use the entropy
method [27] to determine the weights of the indicators. In particular, we have the following equation
to calculate the entropy denoted by H(χ) of information χ:

H(χ) = −
m

∑
i=1

P(χi) ln P(χi), (3)

where χi is the i-th value (there are in total m states) and P(χi) is the probability of the i-th state.
The entropy can be used to evaluate the randomness and the disorder degree of an event (or an

indicator). In other words, the bigger the indicator is, the higher the influence on the comprehensive
evaluation, implying smaller entropy. In this paper, we select m data samples and n indicators for
evaluation, which construct a matrix X = (xij)m×n.

We propose Algorithm 1 to generate the initial weights. The main idea of Algorithm 1 can be
summarized as the following steps.

1. Normalization of indicators: Since the indicators of air pollutants are in different units, we need
to normalize them first. In particular, we can use the feature transformation method in Section 2.1
to solve this issue.
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2. Calculation of the entropy measure: We then calculate the entropy measure of the i-th sample
under indicator j (j is ranging from one to n) by the following equation:

ej = −k ·
m

∑
i=1

p(xij) · ln p(xij), (4)

where k is the proportional parameter [34]. If we choose ej ∈ [0, 1], then k = (ln m)−1 [27].

We next have hj = 1− ej from Equation (4).
3. Calculation of the entropy weight: We then calculate the entropy weight of each j as follows,

wj =
hj

∑n
j=1 hj

. (5)

4. Calculation of redundancy (weight correction): When any element wj needs to be corrected (i.e.,
wj > 0.25), we first correct the weight as w∗k = 0.25. Then, the remaining part of wk − 0.25 will be
assigned to other m− 1 weights proportionally according to the following equation:

w∗j = wj +
wk

∑n
j=1 wj

· (wk − 0.25), (6)

where k is the index of the element that needs to be corrected and j 6= k. We then obtain the
corrected entropy weight W∗ = (w∗1 , w∗2 , w∗3 , ..., w∗n). If any weight in W∗ needs the correction
again (i.e., W∗k > 0.25), we repeat the above steps until no more corrections are need.

Algorithm 1 Improved entropy weight method.

1: k := 1/ ln(m)
2: for j := 1 to n do

3: calculate each ej := −k ·∑m
i=1 p(xij) · ln p(xij)

4: end for
5: hj := 1− ej
6: wj := hj/ ∑n

j=1(hj)
7: while w∗j > 0.25 do

8: correct the n weights according to Equation (6).
9: end while

2.3.2. Integration of Bayesian Regularization and BP Neural Networks to Train Weights

Although the entropy method is an objective evaluation method to obtain the initial weights,
there is a correlation between the weights. In order to obtain objective weights, we introduce the
Back-Propagation (BP) neural network to train initial weights obtained by the aforementioned entropy
method. Since the parameters of the neural networks are generally selected according to experiential
knowledge (resulting in the local optimum [35]), we use Bayesian regularization to improve the
training procedure of BP neural networks. Before the formal introduction of our method, we firstly
briefly review the Artificial Neural Network (ANN) as follows.

Artificial Neural Network

ANN [35] was proposed to simulate the intelligent process of the human brain. ANN is mainly
composed of artificial neurons, the ANN learning model and network topology. Figure 4 depicts a
neural network training procedure. In particular, there are four basic elements in ANN:

• A set of neurons (corresponding to the synapses of biological neurons).
• A unit to calculate the weighted sum (linear combination) of the input signals.
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• A non-linear activation function.
• A threshold θk.

More specifically, we can represent the above process as the following equation:

uk =
n

∑
j=1

wkjxj, vk = uk − θk, yk = φ(vk), (7)

where x1, x2, x3, ..., xn are input signals, wk1, wk2, wk3, ..., wkn are weights of neurons, vk is the value of
neural networks, uk is the linear combination, θk is the threshold, φ(∗) is activation function and yk is
the output.

Figure 4. Neural network training procedure.

Training Parameter Selection on the BP Neural Network

The BP neural network is a nonlinear general transformation unit composed of a feed-forward
network. There are two phases in the BP neural network: propagation and weight updating.
Specifically, an input vector is propagated in the layer-by-layer manner through the network until
it finally reaches the output layer. A comparison between the output and the desired output is then
conducted, and an error value is calculated for each neuron in the output layer. Then, the error
values are propagated back to the network starting from the output to each backward layer. In this
manner, each neuron is then associated with an error value (roughly representing the contribution to
the original output). This process will repeat until the error reaches an acceptable level.

In this paper, the idea of training weight is to use the existing features as the input vector. We
then choose the training sample set as the input sample. We next choose the initial weights as the
output so that we can determine the number of layers, the number of neurons in each layer and the
learning parameters. In the sample set, the factor quantization value is known (i.e., the factor score).
After initialization, the network weights are obtained through network training. In order to obtain
the corrected weights in features, we need to calculate the correlation between the network weights.
During the process, how to choose the appropriate training parameters is a key for the efficiency of BP
neural networks. We next analyze the selection of the training parameters.

• Expected error: In BP neural network training process, it is important to choose a proper value of
the expected error. For example, if the expected error is too small, the same set of sample data will
be used repeatedly, resulting in over-fitting, while choosing a larger value of the expected error
can also lead to a larger number of training times. In general, the empirical value is 0.0001, while
we choose 0.00049 by using the Bayesian regulation method (shown as follows) in this paper.

• Number of hidden nodes: In this paper, we use a method named the Trial-And-Error (TAE)
method to determine the number of hidden nodes. First, we set fewer hidden nodes in the
network. We then gradually increase the number of hidden nodes. When the error reaches the
minimum, we then obtain the number of the hidden nodes.
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• Number of layers: It is shown in [35] that the feed-forward network with a single hidden layer
can map all continuous functions. It is true that increasing the number of hidden layers can
reduce the training error while it can also result in the complex structure. In fact, as indicated
above, increasing the number of nodes can also reduce the training error. Therefore, we choose a
three-layer feed-forward network with a single hidden layer in this paper.

• Activation function: According to the characteristics of ANN approximation, the activation
function of the hidden layer is sigmoidal function that can be expressed as follows,

y = f (x) =
1

1 + e−λx . (8)

where λ is the modifier [35]. Without loss of generality, we choose λ = 1 in this paper.

Bayesian Regularization Improves the BP Neural Network

One of disadvantages of the BP neural network is that the learning process is easily trapped in the
local minimum resulting in poor network scalability. In this paper, we use regularization to limit the
scale of network weights so that we can improve the generalization of neural networks. In particular,
we consider Bayesian regularization, which is a method to estimate the regularization parameters
based on Bayesian methods [36]. It is worth mentioning that there are many methods to improve or
optimize the weights of the neural networks, including Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), etc. [37–39]. In this paper, we choose Bayesian regularization mainly because
the data in our study are scarce, and the Bayesian method can improve the performance of neural
networks (by reducing the training iterations) [36]. One of our future works is to use other methods,
such as GA and PSO, to optimize the weights in neural networks.

The main idea of Bayesian regularization is described as follows: (1) we first give a set of training
samples S = (p1, t1), (p2, t3), (p3, t3), ..., (pm, tm); (2) we then find the effective approximation function
to minimize the error through neural network learning process. Figure 5 depicts a Bayesian neural
network training procedure. In particular, we choose the mean square sum error function defined
as follows,

ED =
1
n

n

∑
t=1

(ti − ai)
2, (9)

where n is the number of samples, ti is the expected output value and ai = f (pi) is the actual output
value for the network. In order to improve the generalization ability, we can add the arithmetic average
of the network weights in the objective function. We then have the objective function as follows,

F = βED + αEW , (10)

where EW = 1
m ∑m

i=1 w2
i is the summation of the squares of the network weights, wi is the neural

network connection weight, m is the number of neural network connection weights and α and β are
the parameters of the objective function. Bayesian regularization can adjust α and β in the network
training process so that it can effectively control the complexity of the network under the promise of
the square sum error. In Section 3.2, we will demonstrate the significant performance improvement of
Bayesian regularization neural networks over the conventional neural networks.
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Figure 5. Bayesian training procedure.

2.4. Evaluation Based on TOPSIS

The main idea of TOPSIS is that the optimal evaluation object should have the shortest geometric
distance from the positive ideal solution and the longest geometric distance from the negative ideal
solution. In this paper, we use TOPSIS to evaluate the impacts of various air pollutants on the air
pollution. In particular, we first use Equation (1) or Equation (2) to normalize the original datasets.
More specifically, we denote Y =

(
y1, y2, y3, ..., yj

)
= yij by the normalized matrix.

We then determine the optimal sample and the worst sample of each indicator. Specifically,
the optimal sample is constructed by using the maximum value of each indicator in all samples.
The minimum sample of each indicator is used to construct the worst sample. We denote the optimal
sample and the worst sample by Y+ and Y−, respectively. More specifically, they can be represented
by the following equations:

Y+ = (y+1 , y+2 , ..., y+n ), Y− = (y−1 , y−2 , ..., y−n ), (11)

where y+j = max
1≤i≤m

yij and y−j = max
1≤i≤m

yij, j = 1, 2, ...n.

We next calculate the relative distance from each sample point to the optimal sampling point
denoted by Ci, which can be calculated by the following equation,

Ci =
D−i

D+
i + D−i

, (12)

where D+
i is the distance from each sample point to the optimum sample point and D−i is the distance

from each sample point to the worst sample point. More specifically, D+
i =

√
∑n

j=1(yij − y+j )
2, D−i =√

∑n
j=1(yij − y−j )

2, i = 1, 2, ...m. In this paper, we mainly concentrate on the indicator of air

pollution denoted by C(Air Pollution) and the joint indicator of both air pollution and GDP
denoted by C(Air Pollution and GDP). In Section 3, we will evaluate them by using our proposed
MCDM framework.

3. Case Study

We choose the sample dataset of the air pollution of Wuhan City in China [40]. This dataset has
been issued by Wuhan Environmental Protection Bureau from 1996 to 2015. We select six major air
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pollutants according to the Chinese GB3095-2012 standard [32]. Moreover, we choose the sample
dataset about the Gross Domestic Product (GDP) of Wuhan City in China from 1996 to 2015, which has
been issued by the Wuhan Municipal Bureau of Statistics [41].

We apply the proposed analytical model (presented in Section 2) to evaluate the impacts of
air pollution on the economic development in the case study of Wuhan City of China. It is worth
mentioning that multiple criteria are imperfect and contain uncertain factors during the analysis. Thus,
our proposed Smart MCDM can offer the solution to this multi-criteria problem. Figure 6 depicts the
analytical process. We next describe the different phases in details.

Train Weight

Weight Training

TOPSIS Evaluation

Selection Feature 

Semi-supervisor

PCA Involvement

Feature FairY

W>W*(0.25)

N

Y

N

Feature Fair N

Fair

Y

N

Figure 6. Analytical framework.

3.1. Feature Selection

There are six major air pollutants according to China Ambient air quality standards (i.e.,
GB3095-2012 standard [32]): sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon
monoxide (CO), PM2.5 and PM10. Note that the information of PM2.5 is missing for the years from 1996
to 2015 since it has been considered only after 1 January 2016 when China’s new air quality standard
came into force. Therefore, we do not consider PM2.5 in this paper. Before applying our proposed
Smart MCDM model to TOPSIS evaluation, we need to quantify the importance of every indicator
in the sample data. Specifically, we choose the indicators that contribute the most to our model. In
this paper, we use Principal Component Analysis (PCA) [42] to extract the most influential indicators.
The problem of choosing the number of components is still open as indicated in [43], though it is
suggested that we should choose 5 to 10-times as many subjects as variables [44,45]. Therefore, we
follow the guidelines [42,46] to analyze the accumulative variance of these air pollutants and finally
choose the three most influential indicators, i.e., SO2, NO2 and PM10. As shown in Table 1, the three
most influential indicators (SO2, NO2, PM10 with bold fonts) contribute to 94.319% among all of the
indicators, satisfying the requirement of the guidelines according to [42,46]. In addition to the above
air pollutants, there are also other air pollution indicators, such as dustfall, potential of hydrogen (pH)
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of precipitation and the Air Quality Index (AQI), which will be used with the above three major air
pollutants to measure the air quality.

Table 1. Accumulative Variance based on the PCA method.

Indicator Total Value Variance (%) Accumulative Total (%)

SO2 2.724 54.479 54.479
NO2 1.162 23.248 77.727
PM10 0.830 16.592 94.319

O3 0.179 3.590 97.908
CO 0.105 2.092 100.000

3.2. Weight Training

We then conduct weight training on the air pollution indicators and GDP. In particular, we first
normalize the indicators according to Section 2.1. More specifically, SO2, NO2, PM10, dustfall and AQI
are negative indicators according to Equation (2) while pH and GDP are positive indicators according
to Equation (1). We next use entropy method according to Algorithm 1 to obtain the initial weights of
each indicator. Table 2 presents the initial weights of the indicators from 1996 to 2015.

Table 2. Initial weights obtained by the entropy method for Air Quality Index

Year SO2 NO2 PM10 Dustfall pH AQI

1996 0.0346 0.0252 0.0277 0.0002 0.1003 0.0590
1997 0.0346 0.0140 0.0078 0.0023 0.0974 0.0522
1998 0.0303 0.0001 0.0004 0.0098 0.0953 0.0431
1999 0.0519 0.0084 0.0001 0.0251 0.0694 0.0317
2000 0.0606 0.0631 0.0212 0.0436 0.0591 0.0703
2001 0.0519 0.0645 0.0537 0.0502 0.0850 0.0408
2002 0.0476 0.0617 0.0554 0.0409 0.0228 0.0227
2003 0.0390 0.0631 0.0606 0.0469 0.0002 0.0385
2004 0.0303 0.0617 0.0558 0.0633 0.0155 0.0340
2005 0.0260 0.0687 0.0641 0.0651 0.0269 0.0522
2006 0.0216 0.0700 0.0649 0.0530 0.0166 0.0522
2007 0.0043 0.0645 0.0654 0.0545 0.0124 0.0476
2008 0.0003 0.0561 0.0632 0.0565 0.0197 0.0612
2009 0.0303 0.0561 0.0667 0.0660 0.0238 0.0703
2010 0.0433 0.0519 0.0654 0.0624 0.0477 0.0680
2011 0.0519 0.0533 0.0688 0.0651 0.0767 0.0862
2012 0.0909 0.0561 0.0700 0.0732 0.0487 0.0928
2013 0.0779 0.0477 0.0584 0.0708 0.0477 0.0002
2014 0.1299 0.0547 0.0632 0.0738 0.0487 0.0295
2015 0.1426 0.0589 0.0671 0.0774 0.0860 0.0476

We then calculate the entropy measure according to Equation (4). Table 3 presents the results.

Table 3. Entropy of each indicator

Indicator SO2 NO2 PM10 Dustfall pH AQI

Weights 0.9187 0.9600 0.9444 0.9490 0.9262 0.9632

We then calculate the entropy weight of each indicator according to Equation (5) and list the
results in Table 4.
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Table 4. Entropy weight.

Indicator SO2 NO2 PM10 Dustfall pH AQI

Weights 0.2401 0.1181 0.1642 0.1508 0.2179 0.1088

We next use BP neural networks to train the weights. In particular, we use Bayesian regularization
to improve BP neural networks in terms of training times to achieve the goal (i.e., the square sum of
the error). The experiments are conducted on a PC with Intel dual-core 2.3-GHz CPU, 8 GB DDR3
RAM and 500 GB HDD. Figure 7 shows the performance comparison between non-Bayesian BP neural
networks (non-Bayesian) and BP neural networks with Bayesian regularization (Bayesian NN). More
specifically, it is shown in Figure 7 that Bayesian NN only requires 228 iterations to achieve the goal
of 4.90× 10−4, while Non-Bayesian requires 373 iterations to achieve the goal of 9.89× 10−5. This
result implies that our proposed Bayesian regularization method can significantly reduce the number
of training times. After applying Bayesian regularization to BP neural networks, we then obtain the
trained weights as shown in Table 5.

� �� ��� ��� ��� ��� ��� �����������������������������
�	
����
�	���������

���	�

� ���������� �������� !"����� !"����� #$%&'
Figure 7. Non-Bayesian BP neural networks (non-Bayesian) versus BP neural networks with Bayesian
regularization (Bayesian NN) in terms of training times.

Table 5. Weights after training.

Indicator SO2 NO2 PM10 Dustfall pH AQI

Weights 0.2280 0.1023 0.1718 0.1602 0.2239 0.1125

In the next step, we take GDP per capita (perGDP) into account. Similarly, we also apply entropy
method to train seven weights together and obtain the results as shown in Table 6.

Table 6. Weights after training (including GDP).

Indicator SO2 NO2 PM10 Dustfall pH AQI PerGDP

Weights 0.1619 0.0797 0.1107 0.1017 0.1470 0.0734 0.3257

Since the weight of perGDP is too large and has to be adjusted, we then apply the improved
entropy method (according to Algorithm 1) to recalculate the weight and obtain the corrected weights
in Table 7.
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Table 7. Weights by improved entropy (including GDP).

Indicator SO2 NO2 PM10 Dustfall pH AQI PerGDP

Weights 0.0472 0.0126 0.0126 0.0126 0.0126 0.0126 0.25

Similarly, we use BP neural network to train the weights again and obtain the final results as
shown in Table 8.

Table 8. Weights after training (including GDP).

Indicator SO2 NO2 PM10 Dustfall pH AQI PerGDP

Weights 0.0557 0.0272 0.0093 0.0069 0.0230 0.0064 0.2353

3.3. TOPSIS Evaluation

We then use TOPSIS to evaluate all of the indicators of air pollution. In particular, we first construct
weighted decision matrix V = (vij)m×n after determining the weights in the previous procedure. Table
9 lists the results.

Table 9. Normalization for TOPSIS in air pollution.

Year SO2 NO2 PM10 Dustfall pH AQI

1996 0.00790 0.00258 0.00476 0.00002 0.02246 0.00663
1997 0.00790 0.00143 0.00134 0.00037 0.02181 0.00587
1998 0.00691 0.00001 0.00007 0.00157 0.02135 0.00485
1999 0.01184 0.00086 0.00002 0.00402 0.01555 0.00357
2000 0.01382 0.00646 0.00364 0.00699 0.01322 0.00791
2001 0.01184 0.00660 0.00922 0.00805 0.01903 0.00459
2002 0.01086 0.00631 0.00952 0.00655 0.00510 0.00255
2003 0.00888 0.00646 0.01041 0.00752 0.00005 0.00434
2004 0.00691 0.00631 0.00959 0.01014 0.00348 0.00383
2005 0.00592 0.00703 0.01101 0.01043 0.00603 0.00587
2006 0.00493 0.00716 0.01116 0.00849 0.00371 0.00587
2007 0.00099 0.00660 0.01123 0.00873 0.00278 0.00536
2008 0.00007 0.00574 0.01086 0.00905 0.00441 0.00689
2009 0.00691 0.00574 0.01145 0.01057 0.00534 0.00791
2010 0.00987 0.00531 0.01123 0.01000 0.01067 0.00765
2011 0.01184 0.00545 0.01183 0.01042 0.01717 0.00969
2012 0.02073 0.00574 0.01202 0.01172 0.01090 0.01044
2013 0.01777 0.00488 0.01004 0.01135 0.01067 0.00002
2014 0.02961 0.00560 0.01086 0.01182 0.01090 0.00332
2015 0.03251 0.00603 0.01153 0.01240 0.01926 0.00536

We next calculate the relative distance from the sample point to the optimal sampling point
according to Equation (12) and obtain the results as shown in Table 10. In addition, Table 10 also
lists the rankings of C(air pollution) ordered by years. In particular, it is shown in Table 10 that
C(air pollution) in year 2014 is the most serious, while the air quality in year 2010 is the best. This
result is contradictory to our common sense that the air quality is becoming worse, especially in China.
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Table 10. D+
i , D−i , C(Air Pollution).

Address D+
i D−

i C(Air Pollution) Ranking

1996 0.0187 0.0235 0.5565 13
1997 0.0199 0.0239 0.5460 15
1998 0.0199 0.0230 0.5365 16
1999 0.0216 0.0203 0.4848 18
2000 0.0155 0.0221 0.5879 11
2001 0.0160 0.0264 0.6219 8
2002 0.0120 0.0178 0.5982 10
2003 0.0126 0.0174 0.5805 12
2004 0.0092 0.0172 0.6511 6
2005 0.0072 0.0187 0.7230 4
2006 0.0095 0.0170 0.6418 7
2007 0.0106 0.0165 0.6098 9
2008 0.0078 0.0173 0.6894 5
2009 0.0072 0.0189 0.7240 3
2010 0.0060 0.0217 0.7848 1
2011 0.0099 0.0270 0.7313 2
2012 0.0242 0.0298 0.5518 14
2013 0.0251 0.0261 0.5096 17
2014 0.0478 0.0358 0.4284 20
2015 0.0496 0.0418 0.4577 19

Similarly, we then use TOPSIS to evaluate all of the indicators including GDP (per capita) and
air pollution indicators. Table 11 presents the results. We next calculate the relative proximity from
sample point to the optimal sampling point according to Equation (12). Table 12 lists the positive and
negative distance values.

Table 11. Normalization for TOPSIS in air pollution and GDP.

Year SO2 NO2 PM10 Dustfall pH AQI GDP

1996 0.00193 0.00069 0.00026 0.00000 0.00231 0.00038 0.00007
1997 0.00193 0.00038 0.00007 0.00002 0.00224 0.00033 0.00065
1998 0.00169 0.00000 0.00000 0.00007 0.00219 0.00028 0.00107
1999 0.00289 0.00023 0.00000 0.00017 0.00160 0.00020 0.00144
2000 0.00338 0.00172 0.00020 0.00030 0.00136 0.00045 0.00157
2001 0.00289 0.00175 0.00050 0.00035 0.00195 0.00026 0.00212
2002 0.00265 0.00168 0.00052 0.00028 0.00052 0.00015 0.00268
2003 0.00217 0.00172 0.00056 0.00032 0.00000 0.00025 0.00329
2004 0.00169 0.00168 0.00052 0.00044 0.00036 0.00022 0.00465
2005 0.00145 0.00187 0.00060 0.00045 0.00062 0.00033 0.00595
2006 0.00121 0.00190 0.00060 0.00037 0.00038 0.00033 0.00762
2007 0.00024 0.00175 0.00061 0.00038 0.00029 0.00030 0.00970
2008 0.00002 0.00153 0.00059 0.00039 0.00045 0.00039 0.01340
2009 0.00169 0.00153 0.00062 0.00046 0.00055 0.00045 0.01535
2010 0.00241 0.00141 0.00061 0.00043 0.00110 0.00044 0.01834
2011 0.00289 0.00145 0.00064 0.00045 0.00176 0.00055 0.02191
2012 0.00506 0.00153 0.00065 0.00050 0.00112 0.00059 0.02618
2013 0.00434 0.00130 0.00054 0.00049 0.00110 0.00000 0.02982
2014 0.00723 0.00149 0.00059 0.00051 0.00112 0.00019 0.03326
2015 0.00794 0.00160 0.00062 0.00053 0.00198 0.00030 0.03623
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Table 12. D+
i , D−i , C in air pollution and GDP.

Year D+
i D−

i C(Air Pollution and GDP) Ranking

1996 0.0041 0.0023 0.3634 20
1997 0.0040 0.0031 0.4366 17
1998 0.0036 0.0030 0.4501 16
1999 0.0058 0.0036 0.3837 19
2000 0.0062 0.0043 0.4098 18
2001 0.0047 0.0044 0.4832 14
2002 0.0047 0.0041 0.4674 15
2003 0.0038 0.0043 0.5324 13
2004 0.0026 0.0051 0.6606 12
2005 0.0027 0.0062 0.6922 11
2006 0.0030 0.0077 0.7209 8
2007 0.0027 0.0097 0.7793 6
2008 0.0021 0.0135 0.8628 2
2009 0.0023 0.0151 0.8655 1
2010 0.0037 0.0182 0.8303 3
2011 0.0045 0.0218 0.8301 4
2012 0.0094 0.0263 0.7364 7
2013 0.0082 0.0302 0.7856 5
2014 0.0145 0.0339 0.7009 10
2015 0.0156 0.0369 0.7032 9

As shown in Table 12, the year 1996 has the lowest value of C(air pollution and GDP), implying
that there was serious air pollution in 1996 while the economic development was also behind.
In addition, Table 12 also indicates that the year 2009 has the highest value of C(air pollution and GDP),
implying that there was a significant increment in GDP in the year 2009 while the air pollution was
maintained low. This result indicates that the high-speed economic development can be obtained with
the low air pollution at the same time if we can take effective countermeasures.

To further illustrate the relation between air pollution and GDP, we present the TOPSIS evaluation
scores of C(air pollution) and C(air pollution and GDP), respectively, as shown in Figure 8 according
to time series (from 1996 to 2015). As shown in Figure 8, the evaluation scores of GDP have been
rising steadily with time, implying the high-speed economic development. Moreover, Figure 8 also
shows that the evaluation scores of air pollution have fluctuated from time to time. In other words,
the evaluation scores of air pollution have grown in some years while having dropped in some years.
It is contradictory to our common sense that the air quality always becomes worse. More specifically,
it is shown in Figure 8 that the evaluation scores of air pollution have first grown and have reached
the peak in the year 2010 while having dropped down after 2010. This may be owed to the new
environment protection measures that the Chinese government has taken recently.

Figure 8. Air pollution and GDP time series.
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4. Conclusions and Future Works

Air pollution has a significant impact on the sustainable development of cities, especially for cities
in developing countries. How to effectively evaluate the impacts of air pollution on socioeconomic
development is an important issue in the sustainability of city development. However, it is quite
difficult to conduct an effective evaluation on the impact of air pollution since the conventional
evaluation is mainly based on the experience or the domain knowledge of environment experts,
which inevitably have bias or subjectivity, consequently leading to a deviation or inaccuracy in air
pollution evaluation.

In this paper, we propose a novel Multiple Criteria Decision Making (MCDM) framework to
address the above concerns. In particular, our proposed MCDM method is based on an improved
TOPSIS, in which Bayesian regularization and BP neural networks have been used to train the weights
of multiple indicators. We apply our framework to evaluate the air pollution and the economic
development of Wuhan city, which is a typical developing city in China. Our empirical results show
that the evaluation scores of air pollution have fluctuated from time to time; this effect is contradictory
to the common sense that air pollution always becomes worse. In fact, our results imply that sustainable
socioeconomic development can be achieved without environment deterioration if we can take effective
environment protection measures. We believe that the appropriate pollution control technologies, the
enforcement of emissions reduction policy and the adjustment of industry layout will reduce the air
pollution and support the sustainable urban development. One of our future studies is to conduct
a fine-grained study on the impacts of various environment protection measures on air pollution
and socioeconomic development, which is also an MCDM problem and is expected to be solved in a
different approach.

Acknowledgments: The authors would like to thank Gordon K.-T. Hon for his constructive comments. The
authors would also like to thank the anonymous reviewers for their useful comments.

Author Contributions: Qingyong Wang proposed the idea, conducted the data analysis and wrote the draft.
Hong-Ning Dai supervised the work, motivate the paper and revised versions. Hao Wang formulated the problem,
conducted the data analysis and literature survey.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer
Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002,
287, 1132–1141.

2. Pope, C.A.; Jerrett, M.; Burnett, R.T. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009,
360, 1085–1095.

3. Lepeule, J.; Bind, M.A.C.; Baccarelli, A.A. Epigenetic Influences on Associations between Air Pollutants and
Lung Function in Elderly Men. N. Engl. J. Med. 2014, 122, 1085–1095.

4. Tanaka, S. Environmental regulations on air pollution in China and their impact on infant mortality.
J. Health Econ. 2015, 42, 90–103.

5. Rao, S.; Klimont, Z.; Smith, S.J.; Dingenen, R.V.; Dentener, F.; Bouwman, L.; Riahi, K.; Amann, M.;
Bodirsky, B.L.; van Vuuren, D.P.; et al. Future air pollution in the Shared Socio-economic Pathways.
Glob. Environ. Chang. 2017, 42, 346–358.

6. Li, P. 1.1 Trillion Yuan in Economic Losses from Pollution in 2010, China Report Says. Available online:
http://www.scmp.com/news/china/article/1201364/11-tr-yuan-economic-losses-pollution-2010-china-report-says
(accessed on 29 May 2017).

7. Cheng, H.; Small, M.J.; Pekney, N.J. Application of nonparametric regression and statistical testing to identify
the impact of oil and natural gas develop mentonlocal air quality. Atmos. Environ. 2015, 119, 381–392.

8. Nduwayezu, J.B.; Ishimwe, T.; Niyibizi, A. Quantification of Air Pollution in Kigali City and Its
Environmental and Socio-Economic Impact in Rwanda. Am. J. Environ. Eng. 2015, 5, 106–119.



Sustainability 2017, 9, 911 16 of 17

9. Alvarado, M.; Gonzalez, F.; Erskine, P.; Cliff, D.; Heuff, D. A Methodology to Monitor Airborne PM10 Dust
Particles Using a Small Unmanned Aerial Vehicle. Sensors 2017, 17, 343.

10. Cho, H.S.; Choi, M.J. Effects of Compact Urban Development on Air Pollution: Empirical Evidence from
Korea. Sustainability 2014, 6, 5968–5982.

11. Liu, H.L.; Shen, Y.S. The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study
of the Taipei Metropolitan Area. Sustainability 2014, 6, 8827–8855.

12. Vallero, D.A. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems
Focus. Sustainability 2016, 8, 1216.

13. Zhao, J.; Chen, S.; Wang, H. Quantifying the impacts of socio-economic factors on air quality in Chinese
cities from 2000 to 2009. Environ. Pollut. 2012, 167, 148–154.

14. Yang, C.; Yang, H.; Guo, S.; Wang, Z.; Xu, X.; Duan, X.; Kan, H. Alternative ozone metrics and daily mortality
in Suzhou: The China Air Pollution and Health Effects Study (CAPES). Sci. Total Environ. 2012, 426, 83–89.

15. Tang, D.; Li, T.Y.; Chow, J.C. Air pollution effects on feral and child development: A cohort comparison in
China. Environ. Pollut. 2014, 185, 90–96.

16. Almanza, V.; Batyrshin, I.; Sosa, G. Multi-criteria selection of an Air Quality Model configuration based on
quantitative and linguistic evaluations. Expert Syst. Appl. 2014, 41, 869–876.

17. Preisler, H.K.; Schweizer, D.; Cisneros, R.; Procter, T.; Ruminski, M.; Tarnay, L. A statistical model for
determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite
imagery of smoke. Environ. Pollut. 2015, 205, 340–349.

18. Jaramilloa, P.; Mullerb, N.Z. Air pollution emissions and damages from energy production in the U.S.:
2002–2011. Energy Policy 2016, 3, 202–211.

19. Donga, L.; Liang, H. Spatial analysis on China’s regional air pollutants and CO2 emissions: Emission pattern
and regional disparity. Atmos. Environ. 2014, 92, 280–291.

20. Yoon, K.P.; Hwang, C.L. Multiple Attribute Decision Making: An Introduction; Vol. 104 Sage Publications, 1995.
21. Chen, J.K.; Chen, I.S. Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP,

and TOPSIS as an innovation support system for Taiwanese higher education. Expert Syst. Appl. 2010,
37, 1981–1990.

22. Kahraman, C. Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments; Springer
US: New York, NY, USA, 2008; Volume 16.

23. Ferreira, L.; Borenstein, D. A fuzzy-Bayesian model for supplier selection. Expert Syst. Appl. 2012, 39,
7834–7844.

24. Sipahi, S.; Timor, M. The analytic hierarchy process and analytic network process: An overview of
applications. Manag. Decis. 2010, 48, 775–808.

25. Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Op. Res. 2013,
10, 56–66.

26. Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications.
Expert Syst. Appl. 2012, 39, 13051–13069.

27. Hafezalkotob, A.; Hafezalkotob, A. Extended MULTIMOORA method based on Shannon entropy weight
for materials selection. J. Ind. Eng. Int. 2016, 12, 1–13.

28. Dymova, L.; Sevastjanov, P.; Tikhonenko, A. An approach to generalization of fuzzy TOPSIS method. Inf. Sci.
2013, 238, 149–162.

29. Büyüközkan, G.; Çifçi, G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and
fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications 2012, 39, 3000-3011.

30. Baykasoglu, A.; Kaplanoglu, V.; Durmusoglu, Z.D.; Sahin, C. Integrating fuzzy DEMATEL and fuzzy
hierarchical TOPSIS methods for truck selection Expert Systems with Applications 2013, 40, 899-907.

31. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
32. Ministry of Envirmental Protection of the People’s Republic China. Ambient Air Quality Standards; Ministry

of Envirmental Protection of the People’s Republic China: Beijing, China, 2012.
33. Gray, R.M. Entropy and Information Theory; Springer: Berlin, Germany, 2011.
34. Lotfi, F.H.; Fallahnejad, R. Imprecise Shannon’s entropy and multi attribute decision making. Entropy 2010,

12, 53–62.
35. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson: London, UK, 2009.



Sustainability 2017, 9, 911 17 of 17

36. Ticknor, J.L. A Bayesian regularized artificial neural network for stock market forecasting. Expert Syst. Appl.
2013, 40, 5501–5506.

37. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016,
96, 120–133.

38. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; dos S. Coelho, L. Multi-objective grey wolf optimizer: A novel
algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119.

39. Mirjalili, S.; Jangir, P.; Saremi, S. Multi-objective ant lion optimizer: A multi-objective optimization algorithm
for solving engineering problems. Appl. Intell. 2017, 46, 79–95.

40. Wuhan Environmental Protection Bureau. Air Quality of Wuhan City (1996–2015); The Communique of
Ambient Air Quality of Wuhan Publised by Wuhan Environmental Protection Bureau; Wuhan Environmental
Protection Bureau: Wuhan, China.

41. Wuhan Annual Gross Domestic Product (GDP). Yearbook of Wuhan Municipal Bureau of Statistics (1996–2015),
Wuhan, China.

42. Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002.
43. Abdi, H.; Williams, L.J. Principal component analysis. In Wiley Interdisciplinary Reviews: Computational

Statistics; Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 2, pp. 433–459.
44. De Winter, J.D.; Dodou, D.; Wieringa, P. Exploratory factor analysis with small sample sizes. Multivar. Behav.

Res. 2009, 44, 147–181.
45. Bandalos, D.L.; Boehm-Kaufman, M.R. Four common misconceptions in exploratory factor analysis.

Statistical and Methodological Myths and Urban Legends: Doctrine, Verity and Fable in the Organizational and Social
Sciences; Routledge/Taylor & Francis Group: New York, NY, USA, 2009; pp. 61–87.

46. Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. How many principal components? Stopping rules for
determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 2005, 49, 974 – 997.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Smart MCDM Framework
	Feature Transformation
	Feature Selection
	Weight Training
	Entropy Method to Determine Initial Weights
	Integration of Bayesian Regularization and BP Neural Networks to Train Weights

	Evaluation Based on TOPSIS

	Case Study
	Feature Selection
	Weight Training
	TOPSIS Evaluation

	Conclusions and Future Works

