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Abstract

In the results of the work presented in this thesis it has been shown theoretically
and demonstrated experimentally that lateral chromatic aberration in hard X-ray
transmission microscopy can be significantly reduced by focusing the illumination
into the center of the objective lens. Utilizing pink beam microscopy, radiography
with spatial resolutions better than 200 nm could be achieved at millisecond frame
rates, and tomography with the same resolution could be acquired in less than two
seconds.

Furthermore, Zernike phase contrast has been implemented for the first time in
compound refractive lens based microscopy, and estimations are presented that
indicates that the use of this phase contrast technique with non-monochromatic
illumination is possible, and is compatible with the lateral chromatic correction
scheme. It is also shown that with the illumination focused in the objective,
Zernike phase contrast can be achieved using modified CRLs, exemplified by em-
ploying a lenslet with a circular hole as a negative phase plate. This is essential for
pink beam imaging since the localization of a positive phase plate in the focal spot
could become quite challenging, considering the focal spot heat load.

Demonstrations of both monochromatic and non-monochromatic imaging with
HXTM are presented for various test cases, including in-situ eutectic solidific-
ation, colloidal crystals from micron sized polymer spheres, and ultra-fast high
resolution tomogram data collections.

Taking into account the effects of partial coherent illumination chromatic transmis-
sion cross-coefficients have been derived, and expressions for optimal coherence
lengths and numerical apertures for any bandwidth and resolution requirement,
are obtained. In addition, some convenient relations between numerical aperture
and longitudinal chromatic aberration have been derived linking the severity of
chromatic aberration of compound refractive lenses to their numerical aperture.
Finally, a modelling tool for fast evaluation of image quality was implemented and
described.
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Chapter 1

Motivation

With the constant advance of materials to meet with increasingly stringent and
specific demands, more attention is shifted to multi-scale and multiphase materi-
als. Gradually, increasing focus has been given to control material structure on the
mesoscopic scale, with characteristic lengths ranging from nanometers to micro-
meters. This is typically a spatiotemporal domain that connects ab-initio models
to continuum models. Experiments on the mesoscopic scale are vital for the guid-
ing and validation of simulation models, and of particular relevance for successful
linking of models working at different scales. Ultimately, such experiments are
essential to understand the physics behind the processes in question.

An important example of such is eutectic metal microstructure formation. Eutectic
microstructure can be classified into various categories, such as lamellar, rods,
platelets, fibers, and regular/irregular, depending on both the appearance of the
structures and the process through which they form. Significant research efforts
have been made into refining the microstructure to smaller characteristic length
scales in order to improve ductility while at the same time preserving strength
[63]. Ultra-fine eutectics may turn out to be a very promising route for production
of superplastic materials that could be cast directly into various shapes. The most
important eutectic systems, in terms of commercial market share, are Al-Si and
Fe-C. These are both irregular eutectics, meaning that one of the phases involved
grows faceted. Accurate theoretical models for irregular eutectics do not currently
exist due to the complexity of the system [6]. Only the simplest of eutectic solid-
ification scenarios, namely regular, near isothermal directional solidification, can
be described adequately theoretically by the existing Jackson Hunt model [36] and
extenstions to it [44, 45]. The matter becomes even more complicated if more than
two phases are to be considered.

3



4 Motivation

The study of eutectic microstrucure is also of great interest in the development of
lead free soldering alloys. The most widely used soldering alloy is the lead based
Sn–Pb alloy, however, the Pb content of soldering alloys has become restricted
by legislation in the European union (RoHS2 and WEEE), mainly due to its tox-
icity. In response to this, Pb-free soldering alloys, such as Sn-based [77], and Bi
based alloys [20] have received increased attention. Successful soldering depends
on several factors. Aside from being economically viable, the alloy needs to ad-
equately wet the metal surfaces commonly encountered in electronics, and have a
suitable melting temperature. In addition to this, the mechanical integrity of the
final soldering result is of critical importance. A very important determinant of the
mechnical integrity is the interface microstructure. A good understanding of the
reaction dynamics near the interface is crucial to achieve the desired result reli-
ably. In-situ observation of the actual formation of the interface microstructure is
therefore potentially very interesting [7, 83, 32].

Another interesting area of research is the study of colloidal particle systems. Col-
loidal particles are of interest to several research fields such as soft matter [48],
biology [65], photonic crystals [59], and fundamental solidification science [85].
Many experiments have been performed using visible-light confocal microscopy
[67, 68, 81], but it is desirable to be able to improve the resolution beyond the
visible light wavelength limit. Given the 3-dimensional nature of many colloid
systems, the capability to do tomographic imaging is an advantage. While con-
focal microscopy can provide some depth information, being able to do proper full
resolution rapid tomograms would open up new avenues for experimental in-situ
investigation.

These are just a few examples of science cases where 2 and 3D time-resolved mi-
croscopy with mesoscale spatial resolution would be of major importance. The
linking between first principle based and continuum based models is a rather gen-
eral challenge in materials science, and would apply to most scenarios involving
phase transitions of any kind or material response to external physical fields (mech-
anical, thermal, electromagnetic, etc.). Typically, phase transitions propagates in
systems departed from thermodynamic equilibrium, often with a spatiotemporally
varying phase front where attachment kinetics, heat- and mass transport conditions
across the interface are local, and ultimately decisive for the final material micro-
structure that forms. The ability to perform time resolved in situ microscopy at the
most relevant spatiotemporal scales set by the transport dynamics and transforma-
tion kinetics is of high relevance across the field.

X-radiography would be a reasonable approach to conducting in-situ experiments
of the processes mentioned above, if not for the fact that state-of-the-art detect-
ors for X-radiography and tomography experiments consist of a thin transparent
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scintillator that converts X-rays to visible light, and a visible light microscope that
casts a magnified image of the scintillator onto a CCD or CMOS array. Hence,
the nominal spatial resolution is, at best, comparable to that of optical microscopy.
Sub-optical resolution can be obtained by increasing the magnification with an
X-ray microscope that casts an image of the sample onto the scintillator.

The construction of a hard X-ray microscope at the ID6 beamline at the ESRF has
opened up the field of Hard X-ray Transmission Microscopy (HXTM). Although
X-ray microscopes in the soft- and intermediate X-ray regime are available [18,
84], HXTM is the first full field transmission microscope operating with 100 nm
resolution at X-ray energies above 15 keV [74].

Spatial resolution is always relevant when it comes to microscopy, but another
challenge is posed by the time scale of the phenomena to be studied. This is es-
pecially true for tomography, which requires longer total exposure time compared
to single image radiography. This thesis introduces pink beam microscopy as a
possible solution to this problem. Until now, microscopy based on CRLs has been
conducted exclusively with monochromatic beams. The monochromatic beam is
produced by filtering down the beam produced by undulators or bending magnets,
typically with a crystal monochromator. It is possible to increase temporal resol-
ution by forgoing the monochromator, and instead use a full undulator harmonic
as illumination. Broadening the bandwidth, however, begs the question: To what
extent will chromatic aberration affect image quality? The focus of this thesis
will be on how to best exploit the increased bandwidth by minimizing the loss of
spatial resolution, and maximizing the gain in temporal resolution for pink beam
microscopy.

Another important factor for temporal resolution is contrast. A common method of
optimizing absorption contrast is to use photon energies just above an absorption
edge of the sample material. However, as increased absorption implies more beam
induced heating damage, using an absorption edge may not be a solution for all
case studies with pink beam microscopy. The fact that phase modulation induced
by samples on X-rays is much stronger than the amplitude modulation, constitutes
a good argument to adapt some of the many phase contrast techniques already
popular in other branches of microscopy to HXTM. The present thesis will explore
the possibility of applying the well-known Zernike Phase Contrast technique to
CRL microscopy.



6 Motivation



Chapter 2

Fundamental X-ray Optics

This chapter will introduce the relevant fundamentals of optical systems. At the
heart of optics is the propagation of electromagnetic waves, and closely related
to waves is the concept of rays. A short description of the relevant theory of
wave propagation will be made, followed by a description of rays and ray transfer
matrices (RTMs) as they apply to microscopes based on refractive optics. It will
also be shown how wave propagation and RTMs may be combined via operator
notation. Another important concept related to waves is the notion of coherence.
This chapter will also present the basic principle of coherence, as well as the Van
Cittert-Zernike theorem, which is an important tool for intuitive understanding of
how the photon source influences coherence. Finally, once coherence have been
described, the concept of transfer functions will be described and defined. Transfer
functions functions are very useful for optimization of microscopes.

2.1 Wave propagation
As electromagnetic waves, X-rays obey Maxwell’s equations. While the electro-
magnetic field is vectorial, each orthogonal component behaves according to the
d’Alambert equation [9] (

∇2 − n2

c2
∂2

∂t2

)
ψ(r, t) = 0, (2.1)

where ψ is a scalar field, c is the speed of light in vacuum and n is the refractive
index of the medium in which the wave is propagating. For a monochromatic wave
in vacuum, (2.1) is reduced to the Helmholtz equation(

∇2 + k2
)
ψ(r) = 0. (2.2)

7
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with solutions on the form

ψ(r) =

∫
W
ψ̃(k)eikrd2k, (2.3)

where ψ̃(k) is an arbitrary complex function, and W is a spherical surface with
radius |k| = k. It is useful to define an optical axis, which here is labelled as the
z-axis. If ψ(x, y, z) is known in a plane defined by z = 0, then

ψ(x, y,∆z) =

∫
W
ψ̃(k)eikz∆zeikrd2k. (2.4)

Using the small angle approximation,

kz =
√
k2 − k2x − k2y ≈ k −

k2x + k2y
2k

, (2.5)

in (2.4) yields

ψ(x, y, z1 +∆z) ≈ eik∆z

∫
ψ̃(kx, ky)H(kx, ky)e

ikxx+ikyydkxdky, (2.6)

where
H(kx, ky) = e−

i∆z
2k (k

2
x+k2y). (2.7)

Note that changing the value of k to αk would be equivalent to changing the
propagation distance from ∆z to ∆z/α. The form of (2.6) is computationally
convenient because it represents propagation in terms of Fourier transforms and
multiplications. Using F to symbolize the Fourier transform operation in the xy-
plane, (2.6) can be written as

ψ(x, y, z1 +∆z) = eik∆zF−1HFψ(x, y, 0) (2.8)

Another convenient representation of propagation can be obtained by applying the
convolution theorem to (2.8). By substituting

h(x, y) = F−1H(kx, ky) =
ik

2π∆z
e
ik

2∆z (x
2+y2) (2.9)

into (2.8), one obtains:

ψ(x, y, z1 + ∆z) = e
ik∆z

(h ∗ ψ(x, y, 0)) (2.10)

=
ikeik∆z

2π∆z
e

ik
2∆z

(
x2+y2

) ∫
ψ(x

′
, y

′
)e

ik
2∆z

(
x′2+y′2

)
e
− ik

2∆z

(
xx′+yy′

)
dx

′
dy

′ (2.11)

Like (2.6), this can be expressed as a sequence of multiplication and Fourier trans-
form operations, but with (2.11), only one numerical Fourier transform is needed.
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2.2 X-ray interaction with bulk material
In the small angle approximation, already made in (2.5), propagation through an
inhomogeneous medium can be modelled by the inhomogeneous paraxial equation
[61].

2ik
∂

∂z
ψ̄(x, y, z) =

[
∇2

⊥ + k2(n2(x, y, z)− 1)
]
ψ̄(x, y, z) (2.12)

where ψ̄(x, y, z) is an envelope function defined so thatψ(x, y, z) = ψ̄(x, y, z)eikz ,
and ∇⊥ is the Laplace operator in the xy-plane. X-ray interaction with a sample
is often modelled sufficiently well with the so-called projection approximation,
where one assumes that the inhomogeneous medium is sufficiently thin along the
optical axis so that any change in ψ̄ due to propagation can be neglected. This is
equivalent to suspending the ∇2

⊥-term in (2.12). Letting ψ(x, y, z) and ψ′(x, y, z)
be the field, immediately upstream and downstream of the refracting object, re-
spectively, the projection approximation yields

ψ′(x, y, z) = e−
ik
2

∫
(1−n2(x,y,z))dzψ(x, y, z). (2.13)

When considering imaging with X-rays, (2.13) provides a useful tool for modelling
the effect of a sample in the path of the beam. As the refractive index for X-rays is
close to 1, it is common to express it

n = 1− δ + iβ, (2.14)

and use the approximation 1 − n2 ≈ 2δ − 2iβ [61]. If the object is homogenous,
with a thickness t(x, y) along the optical axis, (2.13) may be expressed as

ψ′(x, y) = e−ik(δ−iβ)t(x,y)ψ(x, y). (2.15)

2.3 Rays and Ray Transfer Matrices
The concept of rays is a very useful and flexible tool for reasoning about optical
systems, particularly when refractive optical elements are involved. In order to
describe rays, it is necessary first to define the optical path length

S =

∫
C
n(s)ds (2.16)

where the integral is along the path C. A ray is defined by Fermat’s principle as
the curve that minimizes S, i.e. the path that satisfies [11]

δS = 0 (2.17)
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where δS is a virtual displacement. For a paraxial optical system, considering only
1 dimension to simplify notation, a ray has a transversal position, x, and forms an
angle w with the optical axis for any given value of z, To simplify further, x and
w can be combined into a vector

x =

(
x

w

)
. (2.18)

A major reason for the utility of the ray picture are ray transfer matrices (RTMs).
In a paraxial system, the transformation of x along the optical axis can be described
by multiplying x with an RTM. The most important RTMs for X-ray optics are the
free space propagation matrix R(d), where d is the distance propagated along the
optical axis, and Q

(
− 1

f

)
, which represents refraction by a lens with focal length

f .

R(d) =

[
1 d

0 1

]
, (2.19)

Q

(
− 1

f

)
=

[
1 0

− 1
f 1

]
(2.20)

It will also be useful to define the scaling matrix,

ν
(
M−1

)
=

[
M 0

0 M−1

]
, (2.21)

which multiplies the position of a ray with M, and multiplies the angles by M−1.
The utility of RTMs lies in that they can be combined to form new RTMs repres-
enting larger systems. For example, a microscope consisting of a thin lens, placed
a distance p from the sample plane, and a distance q from a camera can be repres-
ented by

STL = R(q)Q

(
− 1

f

)
R(p) =

 1− q
f pq

(
1
p + 1

q −
1
f

)
− 1

f 1− p
f

 (2.22)

The microscope is said to be in imaging condition when STL,1,2 = 0. When that
is the case, all rays intersecting a point xi on the input plane of the system will
congregate at xo = STL,1,1xi in the output plane. This also suggests that STL,1,1

can be regarded as the magnification of the system. In a paraxial imaging system,
all rays can be expressed as a linear combination of the principle and marginal ray.
In order to define these two special rays, it is necessary to define the field stop and
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aperture stop. The field stop limits the real space area of the sample that will be
permitted through the optical system, while the aperture stop defines the angular
acceptance from the sample plane. The marginal ray passes through the center of
the field stop, and touches the edge of the aperture stop, while the principle ray is
defined as the ray that starts at the edge of the field stop, and passes through the
center of the aperture stop.

The aperture stop of the CRL microscope is not necessarily determined by an
actual pinhole or pair of slits. If the pupil function is Gaussian, then the aperture
stop is effectively defined by absorption in the CRL. In this case of CRLs, the
principle ray will be defined as the ray emanating from the edge of the field stop
that suffers the least attenuation.

2.4 Operators
A potent approach to studying optical systems is through the operator notation
presented by Nazrathy and Shamir. [49, 50, 51, 30, 52, 53]. In this work, three op-
erators, representing propagation, quadratic phase-shift, and scaling will be used.
The propagation operator is denoted R [d]. It represents a convolution of the input
field ψ, with the empty space propagator of the monochromatic wave equation.

R [d]ψ(x) =

(
k

i2πd

) 1
2
∫
ψ(x′) exp

(
i
k

2d
(x− x′)2

)
dx′. (2.23)

The quadratic phase-shift operator is denoted Q [c], and is simply a multiplication
of the input field with an exponential function.

Q [c]ψ(x) = exp

(
1

2
ickx2

)
ψ(x). (2.24)

The scaling operator is represented by ν [t], and defined as

ν [t]ψ(x) = ψ(tx). (2.25)

Note that |t| > 1 corresponds to de-magnification, while |t| < 1 corresponds to
magnification. Many interesting relationships between these operators are tabu-
lated in [53]. However, only one identity will be needed here, namely

R [d]Q [c] = Q
[(
c−1 + d

)−1
]
ν
[
(1 + cd)−1

]
R
[(
c+ d−1

)−1
]
. (2.26)

Comparing (2.26) to (3.1), it is clear that the effect of a lenslet with focal length
f can be represented by Q

[
− 1

f

]
, if absorption is ignored. The operator for a
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thin lens microscope, STLM, can be synthesized from the above operators in the
following way:

STLM = R [q]Q

[
− 1

f

]
R [p] (2.27)

Making use of (2.26), (2.27) can be rewritten as

STL = Q

[
1

q − f

]
ν

[(
1− q

f

)−1
]
R

[
p−

(
1

f
− 1

q

)−1
]

(2.28)

It is evident that the microscope can be thought of as free-space propagating the
field a distance (0 if in focus), followed by a magnification, and applying a quad-
ratic phase shift. More generally, if a system of lenses can be represented by the a
ray transfer matrix,

M =

[
A B

C D

]
, (2.29)

The output field, ψ′, as given in [50]1 becomes

ψ′ = Q

[
C

A

]
ν

[
1

A

]
R

[
B

A

]
ψ, (2.30)

where ψ is the input field. Thus, for any system represented by an RTM, the
magnification of the system is

M = A, (2.31)

and the argument of the propagation operator, which will be referred to as the
defocus distance, is

d =
B

A
. (2.32)

In this chapter, A, B, C, and D was assumed to be real numbers. A real CRL
microscope may in fact be more accurately represented by complex numbers. See
Appendix B for more on this topic.

2.5 Coherence
Coherence plays an important role in X-ray microscopy. Consider the image of
two point objects separated by the distance ∆x. Let ψ1 and ψ2 be the signal on the
image plane produced by the two points, individually. The intensity in the image
plane is

Ii(r) = 〈ψ1(r, t)
∗ψ1(r, t)〉+ 〈ψ2(r, t)

∗ψ2(r, t)〉+ 2Re (〈ψ2(r, t)
∗ψ1(r, t)〉)

(2.33)
1There are several ways to represent the system. This is one out of four fundamental representa-

tion given in [50].
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Figure 2.1: Illustration of effect of coherence on resolution.

The two first terms on the right hand side is simply the individual intensity images,
while the third term is an interference term. If the two signals ψ1(t) and ψ2(t) are
uncorrelated, i.e. the interference term is 0, the image is incoherent, whereas it is
coherent if they are perfectly correlated. Anything in between these two extremes
is partial coherence. The effect of coherence on the image contrast is illustrated in
Figure 2.1.

It is common to describe coherence in terms of the mutual coherence function.
Let ψ(r, t) be a time dependent, but statistically stationary signal. The mutual
coherence function is defined as

Γ(r1, r2, τ) = 〈ψ(r1, t)∗ψ(r2, t+ τ)〉 (2.34)

where 〈ψ(r1, t)∗ψ(r2, t+τ)〉 is the expected value of ψ(r1, t)∗ψ(r2, t+τ), which
under the assumption of ergodicity is also the time average. In the context of
polychromatic X-ray microscopy, it is more useful to consider the cross-spectral
density function, which is the spectral transform of the mutual coherence function.

Γ̃(r1, r2, ν) =

∫
Γ(r1, r2, τ)e

−iντdτ. (2.35)

This function has the property that it obeys a pair of Helmholtz equations [60](
∇2

1 + k2
)
Γ̃(r1, r2, ν) = 0 (2.36)(

∇2
2 + k2

)
Γ̃(r1, r2, ν) = 0 (2.37)

, (2.38)
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where the ∇2
i -operator is with respect to the argument ri. If the cross spectral

density at the source plane is Γ̃s(r1, r2, ν), then at the observation plane, z = z0,
it will be

Γ̃o(r1, r2, ν) = U1(zo, zs, ν)U2(zo, zs, ν)Γ̃s(r1, r2, ν) (2.39)

where Ui(zo, zs, ν) is the propagation operator that advances the field from zs to
zo. It is sometimes convenient to describe coherence in terms of the complex
coherence factor,

µν(r1, r2) =
Γ̃(r1, r2, ν)√
I(r1)I(r2)

. (2.40)

2.5.1 The Van Cittert-Zernike Theorem

In the special case when the source can be considered as a collection of incoherent
point sources, and the source plane is far enough from observation plane that the
Greens function may be approximated by plane waves, the spectral density at the
observation plane is

Γ̃o(r1, r2, ν) =
k2

4π2∆z2

∫
Is,ν (ξ) e

ik
∆z

ξ∆rd2ξ (2.41)

where Is,ν (ξ) = Γ̃s(ξ, ξ, ν) is the intensity in the source plane at frequency ν,
∆z is the distance between the source and observation planes, ξ refers to position
in the source plane, and ∆r = r1 − r2. This is the Van Cittert-Zernike theorem
[86]2, and is often given in terms of angles as

Γ̃o(r1, r2, ν) =

∫
Is,ν (wx, wy) e

ik(wx∆x+wy∆y)dwxdwy (2.42)

where wx and wy are angles, and Is,ν(wx, wy) is the intensity of the point source
at position ∆zwxx̂+∆zwyŷ. The right hand side of (2.42) can be regarded as the
Fourier transform of the angular intensity distribution.

2.5.2 The Generalized Van Cittert-Zernike Theorem

Rather than assuming that the source consists of independent point sources, the so-
called Generalized Van Cittert-Zernike Theorem [31, 15] takes partial coherence
into account by modelling the source as quasi-homogeneous. A quasi-homogeneous
source is a partially coherent source whose intensity distribution remains fairly

2The Van Cittert-Zernike theorem is often written for the mutual intensity function, J(r1, r2) =
Γ(r1, r2, 0), rather than the cross spectral density. However, as the propagation rules for the cross-
spectral density is the same as for the mutual intensity, it applies to both [31].
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constant over distances comparable to the coherence length. Accordingly it’s cross
spectral density can be expressed as

Γ̃s(r1, r2) = Is,ν(ξ̄, ν)µs,ν (∆ξ) , (2.43)

with ∆ξ = ξ2 − ξ1, and ξ̄ = (ξ2 + ξ1) /2, where ξ1 and ξ2 are the positions of
two points in the source plane. When this is the case, the cross-spectral density in
the observation plane

Γ̃o(r1, r2, ν) =
k2e−

ik
2∆z (|r2|

2−|r1|2)

4π2∆z2
κν(r̄)

∫
Is,ν

(
ξ̄
)
e−

ik
∆z

∆rξ̄d2ξ̄ (2.44)

where

κν(r̄) =

∫
µs,ν (∆ξ) e−

ik
∆z

∆ξr̄d2∆ξ. (2.45)

2.6 Transfer functions
As an optical imaging system will have finite N.A., not all spatial frequencies
will be permitted through the system. This results in a blurring of the image.
The amount defines the resolution of the system. In the coherent case, the field
amplitude in the image plane, ψi, is linear in terms of the object plane amplitude,
ψo, and may accordingly be expressed

ψi =

∫
G(ri, ro)ψo(ro)d

2ro, (2.46)

whereG(ri, ro) is the Greens function of the system. IfG(ri, ro) can be expressed
as G(ri/M− ro), the system is said to be shift invariant.

In the case of incoherent illumination, the image will be linear in intensity, and one
may express it

Ii =

∫
PSF(ri/M− ro)Io(ro)d

2ro, (2.47)

where PSF(r) = |G(r)|2 is the intensity point spread function. The PSF can
be thought of as the image of a point object. Similarly, the line spread function
(LSF), and edge spread function (ESF) are the resulting images of lines and edges,
respectively. A convenient way of writing (2.47) is

F [Ii] (q) = MTF(q)F [Io(ro)] (q), (2.48)

Where MTF(q) = F [PSF(r)] (q) is the modulation transfer function.
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In the case of partial coherence, a topic that will be revisited later, neither of (2.46)
and (2.47) are correct, and it may be necessary to express the image intensity in
terms of the transmission cross-coefficients (TCC) [35, 10], as follows:

Ii(r) =

∫ ∫
TCC(q′,q′′)F (q′)F (q′′)∗e−i∆qrd2∆qd2q̄ (2.49)

TCC(q′,q′′) =

∫
J(q)P (q+ q′)P (q+ q′′)∗d2q (2.50)

where J(q) relates to the angular extension of the source, P is the pupil function,
∆q = q′ − q′′, q̄ = (q′ + q′′)/2, and F (q) = F [f(r)] (q), with f(r) as the
complex sample transmission function. The application of (2.49) and (2.50) to
CRL-based X-ray microscopy is investigated in Paper 4 [25].



Chapter 3

Compound Refractive Lenses

This chapter will briefly justify the choice to use CRLs, as opposed to other types
of optical components. It will then define some CRL parameters and provide some
useful equations. From there on, the Numerical Aperture (N.A.) of a CRL will be
discussed in terms of ray paths, and connected to the so-called Rayleigh Criterion.
The conditions of optimal transmission will also be presented using the same ray
paths formalism. Finally, a vary brief discussion on the optimal CRL geometry for
maximum resolution.

3.1 Choice of X-ray optics
There are three main categories of X-ray optics, namely reflective, diffractive, and
refractive.

A strength of reflective optics is that they are achromatic, and can achieve resolu-
tion below 50 nm [46]. A drawback is the difficulty of alignment. A microscope
based on reflective optics is not easily reconfigured.

Diffractive lenses, i.e. Fresnel zone plates, can achieve very high resolution, how-
ever, due to the necessary aspect ratio of structures it becomes difficult to produce
efficient zone plates for high photon energies. Fresnel zone plates become prob-
lematic at photon energies above 15 keV, and are therefore not a feasible choice for
HXTM. It is worth mentioning that in the future, so-called multilayer Laue lenses
could be a solution to this problem. With Multilayer Laue lenses, spatial resolution
in the range of 15-50 nm could potentially be obtained[55, 57, 54].

Refractive optical elements, although currently limited in terms of resolution to
about 100 nm [74], have the strength of being efficient and flexible. All experi-

17
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Figure 3.1: Illustration of Lenslet.
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Figure 3.2: Illustration of CRL.

ments included as part of this thesis was based on refractive optical elements, and
for this reason, the introduction will cover only refractive optics.

3.2 Definitions and fundamental formulas
A refractive lens is a lens that relies on refraction, as opposed to diffraction or re-
flection, to redirect rays. A single lenslet, as illustrated in Figure 3.1, has thickness,
T , an apex radius of curvature, R, and a physical aperture R0. A double concave
parabolic lenslet has a thickness function t(x, y) = (x2 + y2)/R, where R is the
apex radius of curvature. Using (2.15), the interaction of the field with a lenslet is

ψ′(x, y) = e−ik (δ−iβ)
R

(x2+y2)ψ(x, y) = e
1
2
ik
[
− 1
f

]
(x2+y2)

ψ(x, y), (3.1)

where

f =
R

2δ
(3.2)

is the focal length of the lenslet. As δ is small, a single lenslet will typically have a
long focal length. To reduce the focal length, several lenslets can be compounded
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together into a compound refractive lens (CRL). A CRL has a number of lenslets,
N , and a length L, as illustrated in Figure 3.2. Several approximations to the focal
length of the CRL have been derived [43, 70], but as a first approximation, one can
imagine the CRL as a number of thin lenslets superimposed on each other, i.e. the
CRL is still imagined to be flat. In that case, the focal length, F , of the CRL is

F ≈ R

2δN
, (3.3)

This approximation is valid when the length of the CRL is small compared to
F . While (3.3) may be sufficient for the majority of experiments where CRLs
are involved, there are good reasons to take a closer look at the paths of rays
propagating through a CRL. An effective approach is to use RTMs. It can be
shown [72] that the RTM for a ray propagating from the entrance of a CRL to the
exit on the other side, is

MCRL =

[
cos (ωL) sin(ωL)

ω

−ω sin (ωL) cos (ωL)

]
, (3.4)

where L is the length of the CRL, and ω is a parameter related to the lens geometry
and material by ω = (fT )−

1
2 . The RTM for a microscope, as in (2.22), but using

a CRL rather than a flat lens, is

SCRL = R(q)MCRLR(p) = cos(ωL)

 1− q
F pq

(
1
q +

1
p + 1

pqFω2 − 1
F

)
− 1

F 1− p
F


(3.5)

where F is the back focal length1, as illustrated in Figure 3.2, and is given by

F =
1

ω tan(ωL)
, (3.6)

From (3.5) it is evident that the imaging condition for the CRL microscope is

1

q
+

1

p
+

1

pqFω2 − 1

F
= 0 (3.7)

and that the magnification is

M = cos(ωL)
(
1− q

F

)
= cos(ωL)− ωq sin(ωL). (3.8)

1Not to be confused with the effective focal length, Fe = 1
ω sin(ωL)

[71], which is the distance
between the focal plane and the principle plane.
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If the CRL is long enough, the back focal plane will be on the exit plane, or even
inside the CRL. It is practical to know the length LF=0 where the back focal plane
coincides with the exit plane. According to (3.6), the back focal length goes to
zero when

ωLF=0 =
π

2
. (3.9)

This is already an impractically long lens. However, it is still not the longest
possible lens that can be used for imaging. For a given q, the maximum length is
implicitly given by

ωLmax =
π

2
+ tan−1

(
1

ωq

)
. (3.10)

3.2.1 Numerical aperture

The numerical aperture of an optical system is defined as

N.A. = n sin(θm), (3.11)

where n is the index of refraction in the medium surrounding the sample, and θm is
the angle between the marginal ray and the optical axis. As n for X-rays is usually
close to 1 regardless of medium, and angles are small enough that the small angle
approximation can be used without concern, (3.11) can be reduced to N.A. = θm.
In X-ray microscopy, the N.A. is primarily of interest to estimate resolution.

The aperture of the CRL is not necessarily determined by the physical aperture,
but by the absorption in the periphery of the lens, where the X-rays have to pass
through more material. This gives rise to the notion of the effective aperture,
Aeff [43]. Aeff is the corresponding circular aperture diameter that will transmit
the same total intensity as the CRL, regarding the CRL as a thin object.

Aeff = 2R0

√
1− e−µNT

µNT
, (3.12)

It will, however, be of interest to investigate the transmission through the CRL
more closely. The following derivations are heavily based on derivations by Heugh
et al. [72]. Consider the transmission function, t, of a ray passing through a single
double concave lenslet of infinitesimal thickness dz,

t = t0e
− µ

RT
x2dz (3.13)

where µ is the linear attenuation coefficient of the lens material, x is the position
where the ray intersects the lens plane, and

t0 = e−µTw . (3.14)
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It will be convenient to express the exponent in terms of matrices

t = t0e
− 1

2
x′>Ox′dz (3.15)

where x′ is the ray vector at the lens plane and

O =

[ µ
RT 0

0 0

]
. (3.16)

Now imagine that the infinitesimal lens is one of many slices of a continuous CRL
at position z along the optical axis, with the opening of the CRL at z = 0. Let
MCRL(z) be the RTM corresponding to propagation from the CRL opening to
z = z′. Then one can make the substitution x′ = MCRL(z)x, where x is the ray
vector at the opening of the CRL.

t = t0e
− 1

2
x>MCRL(z

′)>OMCRL(z
′)xdz (3.17)

As the total transmission can be found by multiplying t for all slices that consti-
tutes the CRL, the exponent of the total transmission will be the integral over the
exponents of the slices. This yields

t(x,w) = tN0 e−
1
2
x>Σ−1x, (3.18)

where the matrix in the exponent is given by

Σ−1 =

∫ L

0
MCRL(z

′)>OMCRL(z
′)dz′

= kγ

[
ω (ω L+ cos (ω L) sin (ω L)) sin (ω L)2

sin (ω L)2 ω L−cos(ω L) sin(ω L)
ω

]
,(3.19)

where γ = β/δ, and the relation µ = 2kβ have been used. Here the integral in
(3.19) is to be performed over each matrix element separately. Finally, it is desir-
able to relate the transmission to ray vectors xo at the object plane of a microscope.
Substituting x = R(p)xo yields

t(x,w) = tN0 e−
1
2
x>
o Σ−1

o xo , (3.20)

Σ−1
o = R(p)>Σ−1R(p). (3.21)

Figure 3.3 shows the transmission for different xo. The numerical aperture is re-
lated to the angular acceptance of the system, which corresponds to the horizontal
width of the Gaussian. This implies that the numerical aperture is only determined
by the −1

2Σ
−1
o,2,2w

2
o-term in the exponent in (3.20), and thus given by

σ2N.A. =
1

Σ−1
o,2,2

(3.22)
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Figure 3.3: Transmission as a function of x and w, calculated by (3.21). The calculation
was performed for a system of 90 Be lenses with R = 50 µm, T = 1.6 mm, Tw = 30 µm,
E = 17 keV, p = 0.2 m, and q = 3 m.

3.2.2 Optimal transmission

Returning to Figure 3.3, it is clear that the transmission of a ray depends, not only
the angle, but also the initial position of the ray. In X-ray CRL microscopy this
can be significant as the effective aperture of the lens is comparable to the field
of view. Naturally the transmission will be higher when the ray passes through
less absorbing parts in the center of the lens. By focusing the illumination at a
particular distance, g, downstream of the sample, the relationship gwo = xo will
be imposed on incoming parallel rays, ignoring partial coherence and scattering by
the sample. The ray angle wopt(xo) that optimizes the transmission can be found
by minimizing the exponent in (3.20) with respect to wo.

wopt(xo) = −
Σ−1

o,1,2

Σ−1
o,2,2

xo. (3.23)

The value of g that optimizes the transmission is

1

gideal
=
wopt(xo)

xo
= −

Σ−1
o,1,2

Σ−1
o,2,2

. (3.24)

While focusing at gideal improves the transmission in the whole field of view, the
effect is most dramatic in the periphery, where transmission would be close to zero
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with a parallel beam, but remains appreciable under ideal focusing. This could be
taken to suggest that the field of view is larger under ideal focusing, compared to
parallel illumination, but in practice, the FOV usually ends up being smaller than
the parallel beam FOV due to the limited aperture of the upstream focusing lens.

3.2.3 The Rayleigh Criterion

The Rayleigh criterion defines the diffraction limited resolution of an optical sys-
tem in terms of its PSF. The PSF of a monochromatic imaging system with a
circular aperture of diameter Da is called an Airy disc. The Airy disc has a cent-
ral peak, surrounded by rings of minima and maxima. The Rayleigh criterion for
resolution defines that two points are resolvable if the central peak of Airy discs
are separated by more than the radius of the ring of the first minimum. By this
definition, the diffraction limited resolution, ρ, of the imaging system is given by
[3]

ρ =
0.61λ

N.A.
, (3.25)

The PSF of an X-ray CRLs is not an Airy pattern, but has a Gaussian shape. This
is true, even when the length of the CRL is taken into account [72]. As σN.A.

is the root mean square of the Gaussian aperture in units of radians, the standard
deviation of the field amplitude in Fourier space is

σq =
√
2kσN.A. (3.26)

The r.m.s. of the field amplitude in real space, σr, is related to σq by σrσq = 1.
From this, the r.m.s. of the intensity distribution is

σr,intensity =
σr√
2
=

1

2kσN.A.
=

λ

4πσN.A.
(3.27)

Comparing a Gaussian function with an Airy pattern of equal FWHM, the first
minimum of the airy pattern will be located at 2.7918 standard deviations from the
central peak. Using this radius as the resolution, the Rayleigh criterion becomes

ρ = 2.7918
λ

4πσN.A.
= 0.222

λ

σN.A.
(3.28)

Figure 3.4 shows a comparison between the Gaussian and Airy disc profile with
matching FWHM. There are of course other possible fitting choices. For example,
constraining the integrated intensity of the Gaussian PSF to be equal to that of the
Airy disc (with identical peak intensity) changes the prefactor on the right hand
side of (3.28)from 0.222 to 0.219.
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Figure 3.4: Comparison of Gaussian and Airy disc profile with matching FWHM.

As several formulas in optics include N.A. as a parameter, and assumes a circular
aperture, it is useful to have a relation between the σN.A. of a Gaussian aperture
and a circular one. Combining (3.25) and (3.28) yields

N.A. = 2.75σN.A.. (3.29)

(3.28) of course assumes that the numerical aperture of the lens is determined by
the Gaussian absorption profile, rather than the finite physical aperture. In the cases
where the physical aperture becomes relevant, the point spread will no longer be a
Gaussian function.

3.3 Optimal CRL geometry
In this section the physical limits of the achievable N.A. of CRL lenses will be
considered. All the formulas presented so far is under the assumption of constant
profile CRLs, meaning ω and R0 is constant throughout the CRL. However, in
the context of optimizing N.A., this is not the optimal shape. A higher numerical
aperture can be obtained by letting ω and R0 vary along the optical axis, and the
shape that optimizes the N.A. under this privilege is called the adiabatic lens [69].
Although the prospect of imaging with adiabatic lenses is an interesting one, such
CRLs have not yet been mad, so in this section only constant profile CRLs will be
considered.

Figure 3.5 gives an impression of how the N.A. of a constant profile CRL scales
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Figure 3.5: Numerical aperture as function of CRL length, calculated using (3.22). The
calculation parameters were ω = 5.43, and µ = 0.41 cm−1, which corresponds to Be
lenslets with R = 50 µm and T = 1.6 mm at E = 17 keV. q was kept constant at 3 m,
while p was adjusted to satisfy imaging the condition.

with its length. A finite fixed value of q was used, while p is constrained to satisfy
the imaging condition. The maximum is found with the maximum CLR length,
i.e. where p = 0. Assuming that q is large enough so that

ωLmax ≈ π/2, (3.30)

according to (3.22),

σ2N.A. =
2ω

kγπ
. (3.31)

This would suggest that if one could make ω arbitrarily large, which under con-
stant q would only solidify the approximation made in (3.30), one could make an
arbitrarily large numerical aperture, regardless of γ. In reality, this is of course not
possible. For a given geometrical aperture, geometrical constraints set an upper
bound on the value of ω. For a CRL to be realizable, it is clear that

2 · R
2
0

2R
< T (3.32)

must be satisfied. By substituting R = f/2δ and ω = (fT )−
1
2 into (3.32), one
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Table 3.1: R0 is assumed to be the maximum for the given R and T , i.e. R0 =
√
RT .

Material R/µm T R0/µm ω/m−1 (at 17 keV) γ (at 17 keV) Reference
Be 50 1.6 mm 283 5.43 2.0 · 10−4 [28]
Al 200 5 mm 1000 1.9 4.3 · 10−3 [82]
Si 3.75 60 µm 15 122 5.4 · 10−3 [73]
Si 20 1.54 mm 175 10.4 5.4 · 10−3 [72]

Diamond 500 0.6 mm 548 4.10 4.1 · 10−4 [80]
PMMA 200 0.22 mm 200 6.48 5.3 · 10−4 [23]
SU-8 300 2.4 mm 840 1.67 5.5 · 10−2 [39]

can see that the maximum value of ω for a given R0 is

ωmax =

√
2δ

R0
. (3.33)

To estimate the geometrical aperture, consider a ray entering a CRL of length
L = Lmax at xi = 0 with an angle wi. If wi is larger than the critical angle,
θc =

√
2δ, the ray will escape the geometrical aperture of the lens [8]. Therefore,

as long as ωL > π/2, which is the case when L = Lmax, the critical angle sets the
geometrical limit of the numerical aperture. Substituting (3.33) int (3.31) yields

σ2N.A. =
2
√
2δ

kγπR0
. (3.34)

Thus σN.A., which relates to the numerical aperture as determined by absorption
only, can be made arbitrarily large by reducing R0. Therefore, if one had the cap-
ability to make CRLs with arbitrary precision, θc, which is independent of R0, is
the largest possible N.A.. Ignoring the fact that when R0 is small, both transmis-
sion and N.A. falls off rapidly if the sample is moved off axis, the above analysis
would imply that the materials with high electron density would be the best mater-
ials. In practice, however, the manufacturing quality, in combination with material
properties, determines what the most suitable material is. The most commonly
used materials for CRLs are listed in Table 3.1. The tabulated data gives an im-
pression of what is available with present technology. Note however that only the
three first entries are about 2D lenses. In the third entry, 2D lenses were composed
of two interdigitated sets of 1D lenses perpendicularly. The rest of the cases are
examples of lenses that were designed for focusing and other beam conditioning
purposes. Note also that the table lists no information on lens aberrations, which
is important when many lenses are used. Aberration characterization techniques
based on grating interferometry exist [39], but currently, data on lens aberrations
is scarce.
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Figure 3.6: Diffraction limit as a function of energy with fixed lenslet geometry. Paramet-
ers for Be and Al are taken from Table 3.1, while the Si parameters are set to R = 5 µm
as suggested in [72], and demonstrated to be possible for a 1D CRL [73]. The physical
aperture was set to R0 = 25 µm, and T = 125 µm, taking into account that pairs of
perpendicular lenslets are needed. Mass attenuation coefficinets are taken from the CXRO
[21] and NIST [58] database below and above 30 keV, respectively. The sudden jump in
the diffraction limit around 30 keV is related to the change of database.
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Chapter 4

Illumination and detection

Illumination and detection are critical components of a microscope. A microscope
is comprised of components both upstream and downstream of the sample position.
The focus has so far been mostly on the latter, but the former should be considered
equally important. This chapter will describe some properties of synchrotron ra-
diation sources, monochromators, decoherers, and illumination schemes involving
condenser lenses. It will also describe the most commonly used X-ray imaging
detector scheme, as well as tomography.

4.1 Synchrotron radiation
Synchrotrons produce X-rays by subjecting electrons moving at relativistic velo-
cities to magnetic fields.

Modern synchrotrons inject accelerated electrons into a storage ring, which serves
to keep the electron energy more or less constant and at the same time facilitate
fields used to produce the electromagnetic radiation for experiments.

One measure of the quality of a source is the brilliance, defined as [62]

B(E) =
Φ(E)

4πσxσθxσyσθy
, (4.1)

where Φ(E) is the total flux of photons at a 0.1% bandwidth around E. σx and
σy are the spatial extents of the source in the x and y direction, respectively, while
σθx and σθy are the corresponding divergences.

29
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4.1.1 Bending Magnet

In the magnetic field of a bending magnet, the electron moves in a circular path,
and electromagnetic radiation is emitted due to the acceleration of the electron.
With relativistic electrons, the angle of the radiation cone, is [2]

∆Ω =
1

γ
, (4.2)

where γ is the lorentz factor. The storage ring of European synchrotron radiation
facility, where all of the experiments described in this work took place, operates at
εe = 6.03 GeV, which yields γ−1 = 8.5× 10−5 rad. The characteristic frequency
νc of the bremsstrahlung is given by [2]

h̄νc[keV] = 0.665ε2e[GeV]B[T] (4.3)

where εe is the total energy of the electron, including its rest energy. The radiated
power is

P[kW] = 1.266ε2e[GeV]B2[T]L[m]I[A] (4.4)

where I is the storage ring current, and L is the distance each electron stays along
the circular path, i.e. the source length. Note that while changing B or εe will
affect the output power, it does not significantly, change number of photons emitted
(per electron) [2].

4.1.2 Undulator

An undulator is a series of magnets with alternating polarity so that the electron is
set in sinusoidal-like motion in the orbit plane orthogonal to the incident electron
momentum. The transverse acceleration of the electron causes the electron to give
of electromagnetic radiation. As the speed of the electrons is close to the speed of
light, the observed frequency of the radiation will be significantly Doppler shifted.
A simple way to model the undulator, that captures its main features, is to regard
the radiation as the signal emitted from a single magnet, convoluted by a sum of
2 × N Dirac δ-functions with alternating signs. Each delta function is located
at a position and time corresponding to where and when the electron passes each
magnet. By the convolution theorem, this would imply that the observed spectrum
is the spectrum emitted form a single magnet, multiplied by the Fourier transform
of the distribution of δ-functions. The Fourier transform of the δ-functions is

S(k) = F{
N−1∑
j=0

δ

(
x, y, z − jλu, t− j

λu

cβ̄

)
− δ

(
x, y, z − (j +

1

2
)λu, t− (j +

1

2
)
λu

cβ̄

)
}

=

(
1− e

i
2
λu

(
k
β̄
−kz

))
e
iNλu

(
k
β̄
−kz

)
− 1

e
iλu

(
k
β̄
−kz

)
− 1

(4.5)
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where ck was substituted for ν, and β̄ is the average velocity of the electron along
the optical axis, divided by c. An illustration of the amplitude of S(k) in reciprocal
space can be seen in Figure 4.1. The illustration demonstrates the characteristic
feature of the undulator, namely harmonic spectral peaks. The peak along the
optical axis can be found by calculating the value of k that satisfies

λu

(
k

β̄
− k

)
= n2π. (4.6)

β̄ can be found by estimating the trajectory of the electron inside the undulator.
Doing so yields the so called undulator equation

λn =
λu

2γ2n

(
1 +

K2

2
+ γ2θ2

)
(4.7)

where θ is the angle of observation relative to the optical axis, and K is the ratio
between the largest angle the electron path makes with the optical axis and ∆Ω,
and is given by

K =
eB

mec

λu
2π
. (4.8)

HereB is the magnetic field strength, me is the electron mass, and e is the electron
charge. The total flux in the central cone of the undulator is [2].

photons/second

0.1 %BW
≈ 1.43 · 1014NI[A] K2

1 +K2/2
(4.9)

By increasing B, the electron will be more delayed due to a longer path length,
which results in a longer wavelength. By tuning B, the harmonic peaks can be
moved to the desired wavelength. In practice, B is tuned by adjusting the vertical
gap between magnet pairs. Only odd harmonic peaks are present as it has been
assumed that the X-ray emission from magnets of opposite polarity differ only in
the sign. A slightly more accurate model is to assume that the signals are mirrored
around the yz-plane. When this is the case, even harmonics can appear as long as
the observer is not exactly on the optical axis.

The relative bandwidth of the harmonic peaks, evaluated by finding the FWHM of
|S(k)|2 along the kz axis, as illustrated in Figure 4.2(a), is [2]

∆ν

νn
=

0.886

nN
, (4.10)

where νn = 2π
cλn

is the frequency of the n-th harmonic peak. The amplitude of
the peak is proportional to N2. Note that it has been assumed that the path of the
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Figure 4.1: |S(k)|2 in the kzky-plane. The blue lines represents form an angle γ−1. The
axes are in units k1 = 2π

λ1
. Parameters used were λu = 18mm, β̄ = 1 − 4 × 10−9, and

γ = 1.17 × 10−4, which implies K = 0.48 and E1 = 2πch̄
λ1

= 17 keV. The nuber of
undulator periods were set to N = 16, which is low compared to typical values used in
real undulators, but makes the figure more presentable.
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Figure 4.2: (a) |S(k)|2 sampled along kz axis, and (b) measured spectrum at beam line
ID06 at the ESRF. The axes are in units k1 = 2π

λ1
. Parameters used were λu = 18mm,

β̄ = 1 − 4 × 10−9, and γ = 1.17 × 10−4, which implies K = 0.48 and E1 = 2πch̄
λ1

=
17 keV. The number of undulator periods were set to N = 110.

electron is perfectly periodic. If there is imperfection in the magnetic field, so that
there is an element of randomness to the electron path, then the N -th oscillation
may not be in phase with the first oscillation. If that is the case, then one can not
count all N oscillations as contributing coherently, resulting in a band broadening.
In addition, (4.10) assumes that only on-axis radiation will reach the observer,
neglecting the lower frequency off-axis radiation. In practice, unless the beam is
filtered by for example a pinhole [1], the observed spectrum from an undulator will
not look like Figure 4.2(a). Figure 4.2(b) shows a real undulator spectrum. The
measured FWHM was approximately twice the bandwidth predicted by (4.10), and
a tail caused by off-axis radiation can be seen on the lower frequency side.

When K is small, the apparent acceleration, of the electron is close to sinusoidal
and the radiation will mostly be concentrated in the first harmonic peak. If K
is increased, the apparent trajectory will transition from a sinusoidal to a more
triangle wave-like path, which results in increased power in the higher order har-
monics [2]. If the power is distributed over a large number of harmonics, then the
insertion device is called a wiggler1. For pink beam microscopy, it is desirable to
concentrate as much power as possible in a single peak. Thus undulators are more
suitable than wigglers.

1Although a wiggler does have harmonic peaks, the tail effect, seen in Figure (4.2(b)) is often so
severe that the spectrum is essentially an incoherent sum of single magnet spectra. [1].
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4.2 Monochromators
The spectral widths of synchrotron sources are larger than what is desirable for
most microscopy purposes. Monochromators are employed to select narrower
parts of the spectrum. There are two main classes of X-ray monochromators,
namely multilayer mirrors and crystal monochromators.

Crystal monochromators utilizes the Bragg condition to diffract X-rays over a nar-
row bandwidth. The bandwidth of the reflection curve, according to the Darwin
theory of dynamical diffraction [22, 4], is

ζD =
∆λ

λ
=

4

π

(
d

m

)2 r0 |Fh|
vc

(4.11)

where r0 is the classical electron radius, vc is the crystal unit cell volume, and |Fh|
is the structure factor amplitude, describing the kinematical scattering power of the
crystal with the reciprocal lattice vector h in Bragg condition. For a Si-111 crystal
reflection, the Darwin width is approximately ∆λ

λ ∼ 10−4 [4]. The crystals are
normally cut so that h is normal to the surface, and by applying two crystals rather
than a single one, it is possible to filter out any energy from the source without
having to realign all downstream components for every change in energy.

Multilayer mirrors are made from alternating layers of materials with different
electron density. Their properties are mainly determined by the thickness and re-
fractive indices of the layers. For a given set of multilayer parameters, the re-
flectivity curve is a function of the momentum exchange of the reflected photon, q.
The curve can be modelled using Parratt’s method [3, 64], see example in Figure
4.3. The main features of the curve are the peaks, and the total reflection region
near q = 0. When using a multilayer mirror, one is typically interested in using
the first peak. The peak positions are given by a modified Bragg’s law [78]

jλ = 2Λ sin(θj)

(
1− δ̄

sin(θj)2

)
, (4.12)

where δ̄ is the mean refractive index decrement, Λ is the layer period, and θj is the
angle of the jth reflection.

As both the crystal and the multilayer monochromators produce more or less har-
monic peaks, it may well happen that a noticeable amount of radiation from the
third undulator harmonic peak will reach the detector in a microscopy setup.

4.3 Illumination schemes
While it is possible to perform microscopy by using only an objective lens, there
are in some cases a lot to gain by employing a so-called condenser lens. A con-
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Figure 4.3: Reflectivity curve obtained by Parratt’s method. Parameters used were, ∆1 =
2.06 nm, ∆2 = 3.37 nm, δ1 = 7.79 ·10−6, δ2 = 1.7 ·10−6, β1 = 1.55 ·10−7, β2 = 5.17 ·
10−7, and the number of periods were set to 20. These parameters roughly corresponds to
the Ru/B4C multilayer used in one of the experiments related to this thesis [28], at 17 keV.

denser lens is a lens placed upstream of the sample, whose traditional role is to
condense radiation from the source onto the sample, providing more intense illu-
mination. Another important effect of the condenser is its influence on coherence,
and as a consequence, resolution. As partial coherent images can to an approxima-
tion be considered a sum of coherent images formed with plane wave illuminations
at different angles, it is instructive to consider the consequence of misalignment of
the condenser. This chapter will explain some general effects related to the con-
vergence and alignment with respect to the optical axis, followed by a description
of the most relevant illumination schemes.

4.3.1 Illumination misalignment effects

The ideal convergence of the beam is such that it comes to a focus at the entrance
pupil plane. The entrance and exit pupil planes are traditionally defined as the
images of the aperture stop at the object and image side, respectively. Recall that
the principle ray should cross the optical axis at the aperture stop, but as absorption
in the CRL is spread out longitudinally, there is no immediately obvious plane to
define the aperture stop. It will serve, however, to define the aperture plane as the
plane where the principle ray crosses the optical axis. The pupil planes may then
be defined as the images of the aperture plane. The distance to the entrance pupil
plane from the object plane will be gideal, as defined in (3.24), because focusing the
illumination at this plane maximizes the transmission, and will by the definition
above cross the optical axis at the aperture plane. Figure 4.4 demonstrates the
effect of not focusing at the pupil plane, but using a parallel beam instead. The
sample objects were an unresolved vertical grating, some stars, and some circles.
These objects were simulated as both phase shifting and absorbing. In addition
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to these, there were some objects that were simulated as pure phase objects. The
undistorted samples can be seen in Figure 4.5. Figure 4.6 shows the same situation
with properly converging illumination.

A related effect is the distortion that occur when the optical system is misaligned
with the optical axis. Figure 4.7 illustrates the same situation as in Figure 4.6,
differing only in that the illumination is off-axis. The off-axis illumination was
simulated by applying a constant phase gradient to the sample transmission func-
tion. A shading effect now appears on the edges of the stars. This is similar to the
shading effects in Figure 4.4, except for the fact that in this case, the shading is
biased in the direction of the misalignment, as opposed to being radially biased.

There are some shapes in Figure 4.7 that are barely visible in Figure 4.6. These are
objects in the sample that were simulated as pure phase objects, i.e. objects that
produce no absorption contrast. This demonstrates how the off-axis illumination
can be exploited as a simple and easy to implement phase contrast mechanism.

Another important point is that the grid that was barely resolvable in the aligned
image have become resolved in the off axis image. The reason for this is clear when
comparing 4.6(a) and 4.7(a). If the angle of the illumination changes significantly
during one exposure time, then the recorded image is an intensity average of the
several off axis images. Some of the images will have a resolved grating, and
others not. The shading effect, however, will not necessarily emerge because the
bias is averaged out. This is the role of coherence in microscopy.

4.3.2 Critical illumination

In the critical illumination scheme, the source plane is imaged onto the sample
plane via a condenser lens, as illustrated in Figure 4.8. A drawback of critical
illumination is that if the source has uneven intensity, it will result in uneven illu-
mination. The solution to the problem of source image structure is the so-called
Köhler illumination scheme, illustrated in Figure 4.9, where the source is imaged
onto the back focal plane of the objective. However, with undulator sources, this
is typically not an issue. The main contribution to uneven illumination tends to be
imperfections in the optical elements themselves.

The maximum field of view is restricted by the size of the image of the source.
It is of course possible to image the source with a larger magnification, however,
the larger the magnification, the more the condenser acts like a collimator, as il-
lustrated in Figure 4.10. A collimated beam results radial misalignment effects, as
shown in Figure 4.4, and is less effective at reducing coherence.
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(a) (b)

Figure 4.4: (a) Scalar field as it appears at the aperture plane with parallel beam illumina-
tion. The pupil function was a Gaussian, and the blue circle has a radius of 2.75σN.A.. (b)
Resulting image.

(a) (b)

Figure 4.5: Phantoms used in the simulations in this chapter, separated into (a) Sample
objects with β/δ = 0.05, and (b) Sample objects that only refract, and do not absorb. i.e.
β/δ = 0. (a) and (b) were superimposed in the simulations.
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(a) (b)

Figure 4.6: (a) Scalar field as it appears at the aperture plane with properly converging illu-
mination. The pupil function was a Gaussian, and the blue circle has a radius of 2.75σN.A..
(b) Resulting image.

(a) (b)

Figure 4.7: (a) Scalar field as it appears at the aperture plane, with off-axis illumination.
The pupil function was a Gaussian, and the blue circle has a radius of 2.75σN.A.. (b)
Resulting image.
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Figure 4.8: Illustration of critical illumination scheme.
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Figure 4.9: Illustration of Köhler illumination scheme.
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Figure 4.10: Illustration of critical illumination with magnified source.
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(a) (b)

Figure 4.11: Raw images of Siemens star test object (a) with and (b) without decoherer.
A condenser was used in both cases.

4.3.3 Illumination focused in objective

A solution to the small field of view from the critical illumination scheme is to
image the source some distance away from the sample. As explained in section
4.3.1, focusing the illumination into the pupil plane at a distance gideal, given in
(3.24), from the sample has the benefit of removing radial misalignment effects.
It also has some merit when it comes to chromatic aberration, as will be shown
later. The drawback of the scheme is that it produces a longer coherence length
compared to critical illumination.

4.3.4 Decoherer

Another method of reducing coherence is by the use of a beam diffusing object,
also called decoherer or just a diffuser. A decoherer is a piece of strongly scattering
material placed upstream of the sample. It should be moving so that its diffraction
pattern will be averaged out during camera exposure. A typical implementation is
a spinning disc. As mentioned, the main sources of structure in the illumination
are imperfections in optical components, such as lenses, Beryllium windows, and
multilayer mirrors. While a decoherer reduces the coherence length, its biggest
impact on image quality is in its ability to smooth out structures in the illumination,
as illustrated in Figure 4.11. If the decoherer is placed too far upstream from a
lens or aperture, significant scattering losses may occur. Reasonable positions for
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 condenser

 sample

 objective

 source

 image

 decoherer

Figure 4.12: Maximum transmission configuration, with decoherer. Dashed lines rays
that are scattered from the decoherer. Dashed lines represent scattered rays.

standard applications are between sample and condenser. Placing it close to the
sample is more efficient in terms of scattering losses, however, in order to smooth
out structures, there should be some space between the diffuser and the object
plane to allow the beam to diffuse. The best suited distance depends on the size of
beam structure.

A schematic drawing of the maximum transmission illumination scheme with de-
coherer can be seen in Figure 4.12.

4.3.5 Measurement of decohering properties

In the imaging experiments described in this thesis, a decoherer was used to reduce
the coherence of the beam. Yet, as decoherer has spatial features of finite size, it
can not completely remove the coherence.

There are several ways of modelling the decohering properties but here it suffices
to stick to the projection approximation. It will be assumed that the decoherer has
a complex transmission function f(x, y, t) so that

ψ′(x, y, t) = f(x, y, t)ψ(x, y, t) (4.13)

where ψ and ψ′ is the field immediately upstream and downstream of the deco-
herer, respectively.

Assuming the decoherer to be isotropic and homogeneous on large scales, time
averaging is equivalent to a spatial averaging. Furthermore, it is assumed that the
decoherer spins fast enough for a statistically representative area to be sampled
during each exposure. Assuming further that f and ψ is uncorrelated, the cross-
spectral density can be written as

Γ̃s(ξ1, ξ2, ν) = 〈ψ(ξ1)∗ψ(ξ2)〉〈f(ξ1)∗f(ξ2)〉 (4.14)
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If the incident beam is much more coherent than the beam immediately down-
stream of the decoherer2, (4.14) can be approximated as

Γ̃s(ξ1, ξ2, ν) = Is,ν(ξ̄)〈f(0)∗f(∆ξ)〉. (4.15)

This expression is on the same form as (2.43), which allows the use of the gener-
alized Van cittert-Zernike theorem (2.44).

In order to investigate the decohering properties of the decoherer, a simple SAXS
experiment was performed. The experimental setup (illustrated in Figure 4.14)
consisted of the decoherer and a detector, separated by a distance ∆z = 3.67 m.
A condenser lens, consisting of 6 double concave Be-lenslets with R = 50 µm,
and was positioned to image the source, located 53 m upstream, onto the detector
plane. By focusing the incident beam on the detector, the far field scattering pat-
tern from the diffuser is imaged onto the detector, without adversely affecting the
validity of (2.42) [31].

The recoreded intensity distribution at the detector plane is according to (2.44),

Iν,o(r) = Γ̃o(r, r, ν)

=
k2e−

ik
∆z (|r|

2−|r|2)

4π2∆z2
κ(r)

∫
Is,ν

(
ξ̄
)
e−

ik
∆z

∆rξ̄d2ξ̄

=
k2

4π2∆z2
κ(r)

∫
Is
(
ξ̄
)
d2ξ̄

= const. · κ(r) (4.16)

From this one can identify the complex coherence factor as

µs,ν(∆ξ) =
4π2∆z2

Itotalk2

∫
Io,ν (r̄) e

ik
∆z

∆ξr̄d2r̄. (4.17)

The recorded scattering pattern from a spinning decoherer can be seen in Figure
4.13(a). For comparison, an image of a pattern obtained with the same decoherer
kept stationary i shown in Figure 4.13(b). The result of application of (4.17) to
the measurements is shown in Figure 4.15. Normalization was applied to ensure
µν(0) = 1, as demanded by (2.40). The results indicate a coherence length of
lc ≈ 150nm, if the criterion µ(lc) = e−1 is used. Note however that the field
of view did not capture all of the non-negligible intensity. In order to obtain the
curve in Figure 4.15, some extrapolation of the intensity data was necessary. The
extrapolation was based on the fitting of two Gaussian functions with their peaks
were in wx = 0. Comparison of the fit with the data can be seen in Figure 4.16.
The integrated intensity in the central spot is small compared to the rest of the
intensity, and was therefore not given any special attention.

2This is not necessarily the case when the actually being employed in a microscopy setup.
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Figure 4.13: Far field diffraction pattern from (a) spinning, and (b) stationary decoherer.
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Figure 4.14: Setup for diffuser diffraction experiment.
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Figure 4.16: Intensity fit.
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4.4 Indirect X-ray imaging detectors
High resolution X-ray imaging detectors typically consist of a scintillator screen,
a visible light microscope, and a CCD or CMOS pixel array. A schematic draw-
ing of a typical setup is shown in Figure 4.17. When X-rays are absorbed in the
scintillator, it produces light in the visible spectrum that can be manipulated with
visible light optics. The visible light microscope is configured to produce a mag-
nified image of the scintillator screen on the Pixel array. The effective pixel size
therefore not only depends on the physical pixel size of the CCD/CMOS-array, but
also on the magnification of the visible light microscope.

When an X-ray photon is absorbed in the scintillator, an electron is excited from
the valence band. The time it takes for the electron to de-excite is called the decay
time, and is typically on the order of micro seconds, or less. This is not to be
confused with the afterglow, which is caused by the excited electron possibly being
in states from which direct transition to the valence band is forbidden[33]. The
time it takes for afterglow to fade is typically much longer than the decay time. In
the experiments related to this thesis, a Europium doped Gd3Ga5O12 (GGG:Eu)
scintillator was used. This scintillator has a refractive index of 1.95, a light yield
of 44 photons/keV, and emits at 595 nm wavelength [33]. Precise data on the
afterglow and decay time of GGG:Eu is not readily available.

The number of X-ray photons passing through in the scintillator screen for a given
time interval is nx = Φxte, where Φx is the X-ray flux and te is the exposure time.
Using Poisson statistics, the variance of nx is equal to 〈nx〉. This variation in nx
gives rise to noise, and is referred to shot noise. The detective quantum efficiency
(DQE) of the detector is the ratio of the square SNR of the output and input signal,
where output and input refers to pixel values and number of X-rays, respectively.
For an X-ray imaging detector such as the one described above [5, 76, 38],

DQE =
SNRout

2

SNRin
2 ≈ ηabs

(
1 +

1 + η−1
v/e

ηcol(Ex/Ev)ηx/v

)−1

, (4.18)

where ηabs is the absorption efficiency of the scintillator screen, ηcol the collection
efficiency of the visible light microscope, ηv/e the quantum efficiency of the CCD
or CMOS, ηx/v the conversion efficiency of X-ray energy into visible light energy,
Ex the X-ray energy, and Ev the visible light photon energy.

CCDs and CMOS cameras suffer from so-called dark-current signal. The dark-
current signal is proportional to the exposure time. The dark current can be correc-
ted for by subtracting an image taken without any X-ray signal present. However,
the dark current signal will produce shot noise too, which of course is not elimin-
ated by the subtraction. In addition to shot noise, there are several sources of noise
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within the electronics of the camera, collectively referred to as read-out noise, mux
noise, or the noise floor [34]. This noise is added to the shot noise, irrespective of
the number of X-rays.

As an X-ray passes through the scintillator screen, it will deposit its energy not in
a single plane, but everywhere along the thickness of the scintillator. Therefore, an
appropriate relation between the scintillator thickness and the N.A. of the micro-
scope must be used. Defining the resolution as the full width that covers 90% of
the integrated LSF [38],

r =

√( c1
N.A.

)2
+ (c2tsN.A.)

2 (4.19)

where ts is the thickness of the scintillator screen. The coefficients c1, and c2, will
depend on the scintillator material.

As ηabs increases with increasing scintillator thickness, due longer beam paths
over which the X-rays can be absorbed, there is a trade-off between the DQE and
resolution. The maximum scintillator thickness for a given target resolution is [38]

ts,opt =
r2

2c1c2
(4.20)

If this thickness is chosen, the value of N.A. that must be used in order to achieve
the target resolution is [38]

N.A.opt =
√
2
c1
r
. (4.21)

4.5 Tomography
Tomography is a well-established imaging method based on 3D reconstruction
of sample volume from a set of 2D projection images covering different sample
orientations [13, 37].

All tomograms produced in this thesis were recorded with continuous scans, i.e.
projections were recorded while the sample rotated at a constant speed. As the
sample does not have to be accelerated and decelerated between recording each
projection image, continuous scans has a speed advantage over non-continuous
scan.

Reconstruction algorithms fall into two main categories, namely filtered back pro-
jection (FBP), and algebraic reconstruction algorithms. In the work related to this
thesis, only FBP was used. The FBP algorithm relies on the radon transform and
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Figure 4.17: Schematic drawing of imaging detector.

the Fourier slice theorem, which states that a projection, p, in real space corres-
ponds to a slice in Fourier space. For example, if pθ(ξ) is a 1-dimensional projec-
tion of the two dimensional function f(x, y), where θ, as illustrated in Figure 4.18,
is the angle of the projection direction, then pθ(ξ) is defined as

pθ(ξ) =

∫
f(ξ cos(θ) + η sin(θ), ξ sin(θ)− η cos(θ))dη, (4.22)

and the Fourier slice theorem states

f̃(q cos(θ), q sin(θ)) =

∫
pθ(ξ)e

iqξdξ. (4.23)

Therefore, recording projections is equivalent to recording slices of f̃ . f(x, y) can
be reconstructed from the projections using the inverse radon transform

f(x, y) =

∫ ∫
p̃θ(q)e

iq(x cos(θ)+y sin θ)h̃dθdq. (4.24)

where h̃ is a filter function that in the ideal case is equal to |q|. It is common to
modify h̃ to reduce high spatial frequency noise amplification.

The intensity images obtained with an X-ray transmission microscope are expo-
nential functions of the projections of the linear attenuation coefficient distribution,
i.e.

Iθ(ξ) = I0e
−
∫
µ(ξ cos(θ)+η sin(θ),ξ sin(θ)−η cos(θ))dη (4.25)
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Figure 4.18: Illustration of (ξ, η)-coordinate system.

Thus, f(x, y) corresponds to µ(x, y), while pθ(ξ) corresponds to − ln
(
Iθ(ξ)
I0

)
.

Ideally, the entire sample should fit inside the field of view, however it is not always
possible to meet this condition. Figure 4.19 shows the effect on the tomogram
when the sample is too large.
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Figure 4.19: Illustration of effect of limited field of view.
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Chapter 5

Zernike phase contrast

Zernike phase contrast (ZPC) [87] is a phase contrast technique that earned Frits
Zernike the Nobel prize in physics in 1953. It converts phase modulations into de-
tectable intensity variations in a focused real space image, and is ideal for imaging
of weakly absorbing matter. For X-rays, until now, the technique has exclusively
been used with microscopes based on Fresnel Zone Plates[56, 79, 19]. In this
chapter the working principle will be presented, followed by a brief discussion of
some practical considerations regarding implementation.

5.1 Working principle
The image formed by an optical system can be regarded as the sum of the scattered
wave field, ψSC(x, y) and the non-scattered background field, ψBG(x, y). In stand-
ard microscopy, the scattered wave is π/2 out of phase with respect to the back-
ground wave. The core principle of ZPC is to phase shift the background wave by
±π/2 so that it may interfere with the scattered wave, which allows phase modula-
tions by the sample to produce intensity variations in the image. Consider a sample
object with thickness function t(x, y). The field on the exit side of the sample can
be written

ψ′(x, y) = ψBGe
−ik(∆δ−i∆β)t(x,y) = ψBG(x, y) + ψSC(x, y) (5.1)

where ψBG is the background field, and

ψSC(x, y) = ψ(x, y)
(
e−ik(∆δ−i∆β)t(x,y) − 1

)
(5.2)

is the field scattered by the sample. If β is negligible compared to δ, which is
typically the case with X-rays, and if kδt(x, y) is small compared to π/2, then one
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may use the approximation

ψSC(x, y) ≈ −ikδt(x, y)ψ(x, y) (5.3)

The basic idea of ZPC is to apply a phase shift φ to either ψSC of ψBG. With an
ideal imaging system, the intensity image would take the form

I(x, y) = |ψBG|2 + |ψSC|2 − 2kδt(x, y)Re
[
iψBGψ

∗
BGe

−iφ
]

(5.4)

= |ψBG|2 + |ψSC|2 − 2kaδt(x, y) |ψBG|2 sin(φ) (5.5)

= |ψBG|2
(
1− 2kδt sin(φ) + (kδt)2

)
(5.6)

If kδt is small, then the (kδt)2-term is small compared to the kδt-term. Thus
choosing φ = ±π/2 yields a significant contrast enhancement. To apply the phase
shift, one can take advantage of the fact that the Fourier transform of ψBG will
be localized near the origin, provided coherent illumination, whereas the Fourier
transform of ψSC will be spread over a larger area. If a small diameter quarter
wave plate is placed on the optical axis in the Fourier plane, the plate will phase
shift ψBG, while letting most of ψSC pass unaffected. Positive and negative phase
contrast is defined according to the direction of the phase shift of the background.
Examples of negative and positive ZPC can be seen in Figure 5.1. For comparison,
the Figure also shows the same simulation without any phase plate.

5.2 Effect of plate dimensions
Ideally, only ψBG should be phase shifted. However, the phase plate will not be
able to perfectly discriminate between ψBG and ψSC. A small part of ψSC will
inevitably be phase shifted along with the background. This gives rise to ringing
artefacts around sample features, also called halo artefacts, or shade off effects.
The severity of the ringing depends on the radius of the phase plate. The larger
the reciprocal space radius, Rq, covered by the phase plate, the higher the spatial
frequency of the ringing. A rough estimate of the fringe period can be obtained
from the approximation λfringe ≈ 2π/Rq. If the size of the fringes is comparable to
the sample object it can become difficult to distinguish real features from artefacts.
An illustration of this is shown in Figure 5.2.

The ringing can be reduced to some extent by tapering or smoothing the thick-
ness of the phase plate [24]. Partial coherence will also have a smoothing effect,
however, if the coherence ratio is too low, part of the background illumination will
miss the phase plate, and will not contribute to the phase contrast. Thus the plate
size sets an effective maximum on the coherence ratio.

To evaluate the significance of this type of effects, one may use the simulation
method put forth in Appendix B
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(a) (b) (c)

Figure 5.1: (a) positive ZPC. (b) negative ZPC. (c) standard microscopy. The simulation
consisted of modulating the input field in Fourier space.

(a) (b)

Figure 5.2: Effect of phase plate radius on image of discs of varying size. (a) negative
ZPC. (b) positive ZPC.
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Chapter 6

Chromatic aberrations

With the introduction of increased bandwidth of the pink beam comes increased
X-ray flux. The drawback, on the other hand, is chromatic aberrations. Due to
chromatic aberrations, the extra photons can not be fully exploited. In order to
maximize the gain, it is important to understand how chromatic aberration in CRLs
responds to changes in different parameters. This chapter is an introduction to
chromatic effects in CRLs with chromatic illumination, and introduce the import-
ant interplay between noise and resolution. The latter is especially important when
considering temporal resolution.

6.1 Chromatic aberrations in CRL based Hard X-ray transmis-
sion microscopy

A microscope illuminated with a polychromatic beam, will form an image cor-
responding to the intensity sum of images formed at different photon energies. If
the image differs for different energies, the microscope suffers from chromatic ab-
errations. The focal length of a refractive lenslet depends on the photon energy.
Specifically, it follows the relation

f ∝ E2. (6.1)

This implies that F is energy dependent as well. The microscope may only be
in focus for one wavelength. It is convenient to express the photon energy, E, in
terms of the in-focus reference energy, E0, and the ratio

α =
E

E0
(6.2)
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so that the image is in focus when α = 1. As ω is proportional to f−
1
2 , the

relationship between α and ω is

ω =
ω0

α
. (6.3)

where ω0 is the value of ω at the E0. The energy dependence of ω will result in
an energy dependent RTM, which in turn will result in an energy dependence of
d and M. Chromatic aberration is often separated into longitudinal and lateral
components, related to the energy dependence of d and M, respectively.

If the bandwidth is sufficiently small, one may linearize d as a function of ∆α =
α− 1, i.e.

d ≈ ∂

∂α
d

∣∣∣∣
α=1

∆α (6.4)

The evaluation of ∂
∂αd
∣∣
α=1

will be investigated in section A.2. Under this ap-
proximation, the r.m.s. spread of defocus is related to the r.m.s. bandwidth, σα,
by

σd =
∂

∂α
d

∣∣∣∣
α=1

σα. (6.5)

A trade-off exists between σN.A. and chromatic aberration. While a high σN.A.

increases the diffraction limited resolution, it also disperses the out-of-focus more
than with a small σN.A.. Figure 6.1(b) gives an impression of how the LSF and
PSF changes with respect to σN.A.. Figure 6.1(a) shows how the resolution be-
haves with respect to σN.A.. The parameters used in the calculation correspond to
a realized microscope [28]. Resolution is here defined as the separation between
LSFs that yields a 26.4% contrast, assuming incoherent illumination. As the real-
istically attainable numerical apertures ( 10−4−10−3) are currently far short of the
optimal values, simply maximizing the σN.A. will be beneficial for the resolution
of pink beam microscopy. This conclusion is further reinforced in Section A.1,
where it will be shown that an inverse exists between σd and σN.A.. The choice of
resolution criterion will have influence on the exact shape of the curve, and may
in some cases lead to questionable conclusions. An example of such is illustrated
in Figure 6.1(b). The blue and the black curve are both assigned a resolution of
192 nm, whereas the black curve yields 130 nm.

The basic idea, however, behind using a pink beam rather than a monochromatic
beam is to improve temporal resolution. Rather than optimizing the resolution, it
might be more relevant to minimize the exposure time needed to produce an image
of sufficient quality. A commonly used criterion for whether or not an object can
be reliably detected by a human observer is the Rose criterion [66, 14], which
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Figure 6.1: (a) relation between σN.A. and resolution. The values of σd corresponds
approximately to a microscope with an objective consisting of 90 Beryllium lenslets with
R = 50 µm, and T = 1.6 mm, using a FWHM bandwidth of 10−2, at 17 keV. The
monochromatic case was also included for comparison. (b) comparison of LSFs using
parameters indicated by the black marks on the red curve in (a). The red and the blue
curve are judged to yield the same resolution by the 26.4% contrast criterion.
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states that a feature made up of npx pixels is detectable if the visibility satisfies

v = CNR
√
npx >∼ 5, (6.6)

where CNR is the contrast to noise ratio, defined as

CNR =
|If − Ibg|

σn
(6.7)

where If and Ibg are the intensity levels in the contrast feature and the background,
respectively, and σn is the noise r.m.s. The significance of feature size, contrast,
and noise is illustrated in Figure 6.2.

Assuming the noise is dominated by the shot noise contribution, it will scale as
σn ∝

√
Ibg. As both If and Ibg is proportional to the camera exposure time,

te, CNR will be proportional to
√
te. The implication for temporal resolution is

that smaller objects require longer exposure time than large ones, and that in order
to optimize the temporal resolution, one should maximize CNR at the required
resolution. This topic is advanced further in Paper 4 [25], where partial coherence
is taken into account as well.

It is also of interest to minimize the impact of chromatic aberrations. Derivations
have been made on how to minimize the chromatic aberrations of a CRL system.
The results can be found in A
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Figure 6.2: Illustration of the effect of feature size, contrast, and noise on the visibility of
an object. The test pattern is an array of disc objects with varying radius and contrast.



60 Chromatic aberrations



Part II

Results

61





Chapter 7

Papers

63



64 Papers



Paper 1

Correcting lateral chromatic aberrations
in non-monochromatic X-ray microscopy
Falch, Detlefs, Di Michiel, Snigireva, Snigirev, and Mathiesen

65



Correcting lateral chromatic aberrations in non-monochromatic X-ray
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Lateral chromatic aberration in microscopy based on refractive optics may be reduced significantly

by adjustments to the illumination scheme. By taking advantage of a broadened bandwidth

illumination, the proposed scheme could open for x-ray microscopy with spatial resolution in the

range 150–200 nm at millisecond frame rates. The scheme is readily implemented and is achiev-

able using only standard refractive x-ray lenses, which has the advantage of high efficiency. It also

maximizes the transmission and removes the spatial filtering effects associated with absorption in

x-ray lenses. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960193]

Today microscopy experiments at synchrotrons are per-

formed more or less exclusively with monochromatic radia-

tion, either from a bending magnet or an undulator source.

Undulator sources deliver a harmonic comb spectrum, and

subsequent monochromatization filters the beam to a band-

width typically 2–3 orders of magnitude narrower than those

of the harmonic undulator peaks. Accordingly, the use of

non-monochromatized undulator harmonics would yield two

orders of magnitude increase in flux. This could open for

new application areas, e.g., for faster structure dynamics to

be addressed by in situ X-microscopy experiments, under the

provision that challenges with increased bandwidth such as

chromatic aberrations can be circumvented. The possibility

of using combinations of refractive and diffractive optics to

construct achromats and apochromats for visible light was

pointed out already 3 decades ago.1 It was not seriously con-

sidered for x-rays until the early 2000 s,2,3 with applications

to x-ray telescopes in mind.4 More recently, microscopy

based on Kirkpatrick-Baez mirrors was performed, showing

negligible chromatic aberration in the 8–11 keV range, mak-

ing the technique suitable for spectromicroscopy.5 Focusing

X-ray optics is commonly based either on curved crystal mir-

rors,6–8 Fresnel zone plates,9 or compound refractive lenses

(CRLs).10 Using CRLs for microscopy has the advantage of

high efficiency, and scalability to higher energy x-rays,11

which is beneficial when sample transmission is a limiting

factor. While combination of CRLs with diffractive optics

can be arranged to correct chromatic aberration, the intro-

duction of a diffractive element in the microscope gives rise

to a considerable loss of photons. Focal spots in the

100–200 nm range have been achieved with CRLs at 8.2 keV

with a �2% bandwidth,12 which suggests that microscopy

with similar resolution is achievable. However, when it

comes to focusing, only longitudinal chromatic aberration is

important. The work presented here is an investigation into

the possibility of correcting lateral chromatic aberration in

microscopy purely based on CRLs.

When using a non-monochromatic beam for microscopy,

the final image can be considered to be an intensity sum of

images recorded with different photon energies. It can be

shown that the CRL focal length, f / E2, where E is the pho-

ton energy.13 Consider E0 as the reference energy at which

the microscope is in focus. Photons with energy E 6¼ E0 will

produce defocused and scaled variants of the in-focus image.

The defocusing and scaling are conventionally referred to as

longitudinal and lateral chromatic aberration, respectively.

Let the ray transfer matrix for the microscopy setup

depicted in Figure 1(a) be

M ¼
M Md

Mc M�1 þ dcM

" #
: (1)

As was shown by Nazarathy and Shamir,14 the operation of a

system represented by a matrix such as M on an input field is

FIG. 1. (a) Microscope with beam focused into the objective lens and (b)

Microscope with parallel beam illumination. Notice the distribution of the

rays on the detector plane.

a)Author to whom correspondence should be addressed. Electronic mail:

ragnvald.mathiesen@ntnu.no
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to propagate it a distance d, scaling it laterally by a factor

M, and applying a quadratic phase shift related to c. The lat-
ter is unimportant for imaging, provided sufficient exposure

time is used. Accordingly, the energy dependence of M and

d is related to lateral and longitudinal chromatic aberrations,

respectively. Let a ¼ E
E0

be a measure of the deviation from

the reference energy. Under the thin lens approximation

M ¼
1� q

f o0 a
2
�

1� q

f o0 a
2

� �
pþ q

f c0 a2 � 1ð Þ þ g0
1� q

f o0 a
2

� �
pþ q

� 1

f o0 a
2
�

1� p

f o0 a
2

f c0 a2 � 1ð Þ þ g0
1� p

f o0 a2

2
666666664

3
777777775
:

(2)

Here, f o0 and f c0 are the E0 focal lengths of the objective and

condenser lens, respectively. g0 is the distance from the E0

focal spot of the condenser to the sample. p and q are the dis-
tances from the objective lens to the sample and detector,

respectively. Under the assumption of a narrow bandwidth,

M and d may be Taylor expanded about a¼ 1 and g0 ¼ p to

yield

M ¼ M0 1� 2
Dg0
f o0

Da� 4
f c0
f o0
Da2

� �
þO Da3ð Þ þ O Da2Dg0

� �
þ O DaDg20

� �
(3)

and

d

a
¼ �2p 1þ p

q

� �
Daþ O Da2ð Þ þ O Da2Dg0

� �
; (4)

where M0 ¼ � q
p ; Da ¼ a� 1, and Dg0 ¼ g0 � p. The moti-

vation for expressing d=a rather than just d is to normalize

the propagation distance at E to the equivalent distance at

E0. By choosing g0 ¼ p; M becomes energy independent to

the first order in Da. Taylor expansion of the parallel beam

case, which is obtained by letting g0 go to infinity, results in

M ¼ M0 1� 2
p

f o0
Daþ 3

p

f o0
Da2

� �
þ O Da3ð Þ: (5)

Thus, if the energy bandwidth is small, the lateral chromatic

aberration can be reduced by a factor Dg0
p . Eq. (4), which is

also valid in the parallel beam case, shows that the longitudi-

nal chromatic aberration at small Da is minimized by keeping

p as small as possible, and to a lesser extent by keeping p
q as

small as possible. This in turn implies that f o0 should be rela-

tively short. Obviously, when focal lengths become too short

with respect to the length of the CRL, the thin lens approxi-

mation becomes invalid. However, the CRLs employed here

are not long enough to make a significant deviation from the

thin lens approximation. Therefore, a more comprehensive

treatment, accounting also for lens lengths,13,15–18 has been

omitted from Eqs. (2)–(5) but can be found as supplementary

material.

A test experiment has been performed at the ID06 beam-

line at the European Synchrotron Radiation Facility (ESRF).

The output spectrum of undulator sources is dominated by a

peak at the fundamental photon energy, accompanied by odd

harmonics. In the current experiment, a fundamental photon

energy of 17.2 keV was used. Upstream to downstream, the

setup consisted of the undulator source, a multilayer mirror, a

diffuser, a condenser CRL, the sample, an objective CRL, a

pair of slits, and an x-ray imaging detector. The mirror was a

Ru=B4C multilayer with a d-spacing of 5.40 nm and a band-

width of DE
E ¼ 4� 10�2, significantly larger than the band-

width of the undulator peak, measured to be DE
E ¼ 1:3� 10�2

from the power spectrum shown in Figure 2. The condenser

and objective CRLs consisted of 32 and 84 double concave

lenslets, respectively. Each lenslet had an apex radius of

50 lm. In the condenser, the spacing between lenslets was

2mm, while the objective was a mix of 14� 2mm and

70� 1.6mm thick lenslets. The numerical aperture of the

objective CRL was estimated to be 7.1� 10�4 (HWHM) by a

ray tracing method18 which included the physical aperture. In

order to suppress speckles and smooth out features in the inci-

dent illumination, a 1.2mm thick diffuser disc made from

amorphous carbon was placed approximately 10 cm upstream

of the condenser CRL. About 10 cm downstream of the objec-

tive, a pair of slits were placed. With an opening of

100 lm� 100 lm, the slits had no observable effect on the res-

olution but were useful for blocking a large portion of x-rays

from the higher harmonics of the undulator. The camera was a

PCO dimax CMOS, equipped with 10� visible light optics and

a 24:5lm thick Eu-doped GdGa-garnet crystal scintillator.

Relevant distances used were f o0 ¼ 270mm, q¼ 2600mm,

p¼ 300mm, and f c0 ¼ 670mm, yielding 4f c0 =f
o
0 ¼ 9:9 and d

� 670mm � Da. Evaluating d at the FWHM-energies gives

dFWHM ¼ 65:4mm. The test sample was a 4lm thick micros-

copy Copper mesh with 8lm diameter circular holes.

Figure 3 shows the experimental results with and with-

out condenser lens. There are two main differences between

the images. In the image recorded with the parallel beam

(Figure 3(a)), large fringes can be seen near the edges of the

holes, presumably stemming from a combination of chro-

matic aberration and inhomogeneous filtering in the objec-

tive lens.19 In the image recorded with the condenser (Figure

3(b)), the fringes are no longer visible. Focusing the beam

into the objective lens makes the filtering homogeneous and

reduces the lateral chromatic aberration. The second differ-

ence is in the radial blurring effect associated with lateral

chromatic aberration. In the parallel beam case, one can see

that the holes appear smeared. The smearing is almost absent

FIG. 2. (a) Measured multilayer reflectivity at the specific incident angle

used in the experiment and (b) Power spectrum of the undulator and

reflected spectrum.
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in the center of the image but becomes more and more pro-

nounced towards the image periphery. With the beam

focused in the objective, radial blurring more or less van-

ishes. A more intuitive physical explanation for the working

principle of the suggested scheme can be found by taking

into account that the angular distribution of the X-rays scat-

tered of the sample typically is peaked in the forward direc-

tion. If the illumination is aimed at a part of the objective

where it will be strongly refracted, the location of the peak

in the detector plane will depend on the energy, as illustrated

in Figure 1(b). By aiming the illumination at the center of

the objective, as in Figure 1(a), the peaks show up in the

same position in the detector for all energies. The field of

view (FOV) as determined by the full width at half maxi-

mum of the illumination intensity was 113lm. A drawback

of the scheme is that the FOV becomes limited by the diame-

ter of the condensed beam as opposed to the objective aper-

ture. Larger aperture condensers are desirable for increasing

the FOV.

By comparing the lines in Figure 3(c), it can be seen

that there appears to be a discrepancy in the magnification of

the two images. The image recorded with the parallel illumi-

nation is approximately 1.5% larger. It is not clear whether

this is a real discrepancy or simply due to confusion caused

by the fringes. If the microscope is perfectly focused, one

would expect the magnification to be independent of the illu-

mination. A 1.5% discrepancy would indicate that the sam-

ple was placed approximately 1.5% too far away from the

objective lens, assuming that Dg is small. With p � 306mm,

this comes to 4.6mm defocusing, which is not unreasonable

considering the bandwidth. The fact that the illumination can

only change the magnification if the microscope is out of

focus might serve as a basis for a simple focusing algorithm.

This would of course be applicable to both monochromatic

and polychromatic beams.

In the corners of the image recorded with a condenser

lens, one can still see that some fringes persist. This is pre-

sumably caused by illumination not focused to the correct

distance, which may not be unlikely considering that the

focal spot could have been slightly off. It is worth mention-

ing though that in the analysis presented above, no efforts

have been made to account for the effects of the diffuser. It

could be expected that scattering by the diffuser, in combina-

tion with a finite beam diameter, could influence the location

of the effective focal spot. Further experiments would be

required to determine the exact effect of the diffuser disc.

To evaluate the validity of the presented theory in prac-

tice, the microscope was replicated with a Si 111 double

crystal monochromator replacing the multilayer mirror. Due

to geometrical constraints, the exact distance from the sam-

ple to the detector could not be reproduced. The new distan-

ces were p¼ 304mm and q¼ 3200mm, resulting in a

reference magnification of M0 ¼ �10:4 when the length of

the objective is taken into account. Two series of images

with different photon energies were recorded, one with paral-

lel beam illumination and one with illumination focused in

the objective. The results are presented in Figure 4, along

with estimates based on ray transfer matrices for both thin

and long lenses, following the procedure of Simons et al.18

The magnification of each image was estimated by measur-

ing the distance between two features in the images. Two

second order polynomials were fitted to the experimental

data, and their intersection was taken as the reference length.

The intersection was found at E¼ 17.103 keV. The two best

focused images, judged by inspection, were found at

E¼ 17.10 keV and E¼ 17.12 keV. Note that the thin lens

estimate was normalized by M0 ¼ �10:5 which is slightly

larger in magnitude than in the long lens case. The experi-

mental curves fit well to the ray trace estimates. In the

focused beam case, the largest discrepancies between model

and polynominal fit can be attributed to Dg0 being in the

range of 30–40mm. It is evident that long lens calculations

give an improved fit for the parallel beam case. In conclu-

sion, the principle behind the presented lateral chromatic

aberration correction scheme appears to be valid.

FIG. 3. (a) and (b) are images recorded with parallel illumination and with

illumination focused in the objective, respectively. (c) Intensity plots sam-

pled from the black lines in (a) and (b).

FIG. 4. Theoretical and experimentally determined magnification of images

at different photon energies. The black curves are second order polynomial

fits.
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See supplementary material for calculation of long lens

relative magnification.
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A B S T R A C T 

Contrast enhancement by use of Zernike phase contrast for x-ray microscopy based on refractive optics is demonstrated. The phase contrast was achieved using only 

compound refractive lenses fitted with phase elements, circumventing the flux loss associated with the use of an annular diaphragm. The resolution is demonstrated to 

be sub-micron, and can be improved using already existing technology. The possibility of combining the technique with polychromatic radiation is considered, and a 

preliminary experiment was performed, with positive results. 

  

 

1. Introduction 

X-ray microscopy is a powerful technique that allows non-destructive study 

of a wide range of natural and man-made objects with sub-micron spatial 

resolution. In the most straight forward implementation, the main contrast 

mechanism is absorption. Consequently, it can be difficult or impossible to 

obtain high quality images in cases where the absorption contrast is weak. 

Zernike phase contrast (ZPC) is a microscopy technique that produces phase 

contrast by converting phase modulations in the image into detectable 

amplitude modulations. It has been used frequently with visible light optics 

since its introduction in 1942[1]. With X-rays, ZPC microscopy was first 

demonstrated in 1994 at photon energies ~0.5 keV, employing Fresnel Zone 

Plates (FZPs)[2]. Similar FZP based setups have since been used to obtain 

ZPC microscopy images with resolution in the 40-100 nm range at energies 

4-8 keV[3-5]. Scanning ZPC has also been demonstrated with promising 

results, allowing for spectroscopic mapping [6]. Furthermore, efforts have 

been made to extract quantitative phase information by alternating between 

negative and positive ZPC. Numerical results employing this technique 

were published quite recently [7]. 

The potential of ZPC makes it a promising direction for development of 

microscopy based on Compound Refractive Lenses (CRLs). While existing 

CRLs cannot match FZPs when it comes to resolution, they can be used at 

photon energies well above those currently feasible with FZP optics. Use of 

high energy x-rays is advantageous for microscopy of e.g. inorganic 

samples of appreciable thickness in order to have a usable amount of 

transmission through the sample, and often also to reduce sample alteration 

or damage associated with ionization. Microscopy based on CRLs has been 

demonstrated at energies up to 50 keV[8], and could quite readily be 

extended to operate at even higher energies. ZPC at 25 keV was reported in 

2003, based on refractive capillary lenses, and represents until now the only 

X-ray ZPC study reported based on refractive optics. Since then, however, 

refractive x-ray optics has vastly improved.  

2. Experimental setup 

An experiment was performed at the micro optics test bench at beamline 

ID06 at the European Synchrotron Radiation Facility. The experimental 

setup is illustrated in Figure 1. The microscope was operated on an 

undulator source with 17 keV radiation selected by liquid nitrogen cooled Si 

111 double-crystal fixed exit monochromator , and with the sample and 

detector placed 800 mm upstream and 4200 mm downstream of the 

objective, respectively. The detector was a pco.2000 CCD camera equipped 

with 10x visible light optics and a Eu-doped GdGa-garnet crystal 

scintillator. Both the condenser and objective were made by assemblies of 

double concave 50 μm apex radius Be-lenslets. The condenser consisted of 

16 lenslets with 2 mm spacing, resulting in a total thickness of 32 mm, 

while the objective contained 32 lenslets with thickness 1.6 mm. In the 

objective, a 5 mm spacer was inserted between the 16th and the 17th lenslet 

with its interior open for the beam to pass through and so that a phase plate 

could be suspended into the opening from above. Ideally, the phase element 

would be attached and aligned to the spacer. The total length of the 

objective, including the spacer, was 56 mm. 

 

Fig 1: Schematic illustration of the experi,mental setup. 

The phase plate was a 5 μm thick 30 µm diameter platinum disc mounted on 

a silicon nitride membrane, which at 17 keV induces a phase shift of 1.68π. 



The numerical aperture of the objective was estimated to N.A.=2.8×10-4 

considering the marginal rays from the sample. The geometrical aperture 

was significantly smaller than the Gaussian effective aperture. The root-

mean-square (RMS) source size at ID06 is 415 µm and 8.6 µm in the 

horizontal and vertical directions, respectively. The distance between the 

condenser and the source was 53 m while the distance between the 

condenser and the objective was 1.3 m. A rough estimate of the spot size on 

phase plate, Rbg, can be obtained by multiplying the horizontal source size 

by the demagnification of the source image, which yields Rbg≈10 µm. 

Another test experiment was performed at beamline ID31 at the 

European Synchrotron Radiation Facility. The setup was similar to the 

previous one with the sample and detector placed 425 mm and 5000 mm 

upstream and downstream of the objective, respectively. The objective and 

condenser contained 87 and 32 Be-lenslets, respectively, each with 50 μm 

apex radius. In this experiment the incident beam photon energy was 22.5 

keV selected by two multilayer mirrors, which results in a bandwidth of 0.3 

% rather than the typical 0.01% bandwidth from a Si(111) double-crystal 

monochromator. A collector lens consisting of 5 Be-Lenslets with 200 µm 

apex radii was situated about 31 m from the source, which was 117 m 

upstream of the sample position. The main objective for this study was to 

verify that ZPC imaging could be carried out with satisfactory results also 

with non-monochromatic radiation.  

If ZPC is to be employed for ultra-fast imaging, like e.g. time-resolved 

in situ tomography, it would be an advantage if it could be used in 

combination with broadband radiation. However, the significantly increased 

photon flux could potentially cause substantial heating or even melting of 

the phase element, in particular taking into account that the phase element 

would be placed in the focal spot of the condenser. Therefore, rather than 

using a phase plate, a hole was made in the center of one of the lenslets. 

This lenslet will be referred to as a Zernike lenslet. The nominal web 

thickness of the lenslet was 30 μm, which gives the background wave a 

phase shift of φ=-π/2-0.23π. The diameter of the hole was 20 μm. After the 

microscope was aligned with a standard CRL objective, the central lenslet 

was replaced by the Zernike lenslet. 

3. Theory 

The ray transfer matrix for a complete microscope, from sample to detector, 

is 
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where p  and q  are the distances from the sample to the objective entrance 

and from the objective exit to the detector, as illustrated in Figure 2, and 

, where f and T are the focal length of a single lenslet and the 

spacing between lenslets, respectively. F is the focal length measured from 

the exit of the lens,  given by 
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with L as the length of the CRL. The imaging condition is met when the 

upper right element of Mp vanishes, i.e. when 
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The image formed by a microscope can be considered as a sum of the 

scattered wave field and the non-scattered background wave field. In 

absorption contrast, the scattered wave is approximately π/2 out of phase 

with respect to the background wave, assuming small phase variations in the 

sample. The core principle of ZPC is to phase shift the background wave by 

±π/2 so that it may interfere with the scattered wave. This way, phase 

variations in the scattered wave can produce intensity variations in the final 

image. The phase shift can be achieved by placing a phase shifting element, 

such as a plate- or a ring structure, in the Fourier plane where the scattered 

wave appears as the Fourier transform of the sample and the background 

wave comes to a focus. In the Fourier plane the scattered wave and 

background wave are separated, allowing the phase element to discriminate 

between the two. In the conceptually simplest form of ZPC imaging, the 

sample is illuminated by a coherent plane wave. In this case, the ideal phase 

element would be a disc placed in the back focal plane of the objective. By 

adding a condenser lens upstream of the sample, the focus of the 

background wave, and thus the ideal place for the phase element, is moved 

along the optical axis. 

Fig 2: Illustration of the meaning of CRL parameters.  

Fringes related to absorption in the objective are common artefacts in 

CRL-based microscopy[9].  The severity of the effect increases with 

decreasing effective objective aperture and with the distance from the 

sample feature to the optical axis. At high energies, where the effective 

aperture for a given resolution is likely to be smaller, the effect is expected 

to become more pronounced. The fringes occur because the Fourier plane is 

not located in the effective aperture stop plane. Often in CRL microscopy, 

the objective lens itself will act as the aperture stop. The fringes can be 

removed by moving the Fourier plane to the effective aperture stop. This is 

equivalent to aligning the background wave with the principle rays, which 

can be done with the help of a condenser lens. The principle ray through a 

system of CRLs without diaphragms is the ray that maximizes the 

transmission from the sample plane to the image plane. In most cases, 

simply focusing the background wave somewhere inside the objective is 

good enough.  

In cases with long objectives, the principle rays can be determined by 

finding the initial ray angle that maximizes the transmission. The 

transmission of a ray through a CRL is a Gaussian function of position, r, 

and angle, w, of the ray at the objective entrance.[Extended formalism for 

simulating compound refractive lens-based x-ray microscopes] It may 

therefore be expressed as 



 11
2( )

T
wT Nt e e   x xx , (4) 

Where Tw is the web thickness, µ is the mass attenuation coefficient of the 

CRL material, and X is a ray vector with r and w as its first and second 

element, respectively. and 	  is a 2×2 matrix whose elements depend on 

the CRL parameters. Specifically 
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From this, the transmission of a ray from the sample plane can then be 

found by mapping them to the objective entrance. The mapping is done by 

multiplying x with the free propagation matrix  
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Substituting xi=R(p)x into (4) yields 
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where 

 1 1( ) ( )T
i p p   R R . (8) 

For a given r , the angle wp of the principle ray must be the w0 that 

maximizes t0. This angle can be expressed in terms of the elements of  

as 
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Let g be the distance from the sample to where the illumination would come 

to a focus if objective lens was not present. By choosing  
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, (10) 

the illumination is aligned with the principle rays. By ray tracing, the 

distance L’ from the objective entrance to the Fourier plane can be related to 

g by 

  tan 'g p L  
, (11) 

which may be satisfactory approximated by g≈p+L’ for short or weakly 

refracting CRLs.  

In order to determine the appropriate size of the phase plate it is 

necessary to relate the spatial displacement in the Fourier plane to reciprocal 

components of the sample transmission function. For this, it is convenient to 

calculate the ray transfer matrix M’ that maps rays from the sample plane to 

the Fourier plane. 
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A displacement rFT in the Fourier plane can then be related to the reciprocal 

coordinate q by 

 

' FT

k

B
q r  (13) 

where k=2π/λ is the wavenumber,  λ the wavelength, and  

    ' cos ' sin 'B p L L   
 

(14) 

is the upper right element of M’. The mapping of the phase plate radius Rp 

to the radius Rq of the affected region in reciprocal space is 
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(15) 

The lower limit of Rp is determined by the numerical aperture of the 

condensing optics, the longitudinal alignment precision, and the 

illumination coherence length. At synchrotrons, assuming no diffusing 

element is being used, the coherence length is mainly related to the angular 

source size, which gives rise to a smearing of the intensity profile in the 

Fourier plane. As a result, the phase plate cannot effectively discriminate 

between the background and scattered wave when scattering angles become 

comparable to the angular source size. This implies that at high energies, the 

source size may have to be taken into consideration. 

The minimum size of Rp is related to the size of the background wave in 

the Fourier plane. It is assumed that the beam is condensed by a CRL with 

Gaussian aperture, and that the root-mean-square (RMS) source size is σs. 

Hence, the RMS size of the background wave can be expressed 
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where ms is the source demagnification, Δg is the misalignment between the 

Fourier plane and phase element, and σN.A is the RMS of the numerical 

aperture of condenser combined with any objective lenslets upstream of the 

phase plate. The third term on the right hand side of (16), relates to the 

diffraction limit, and is practically negligible. Although this expression   is 

specific to phase discs, the same qualitative results are expected for phase 

elements of other shapes. As a Gaussian function is non-zero in the whole 

domain, the phase plate is defined to be covering the beam when 

 
p bgR C  (17) 

is satisfied, corresponding to a coverage of the beam intensity profile at a 

C·σ level when the beam is centered on the phase plate. 

The upper limit of Rp is not as sharply defined as the lower limit. The 

larger the object, the smaller the phase plate needs to be. Although the shape 

of the object matters, a reasonable rule of thumb is to keep Rqρ≈1[10], 

where ρ is the radius of the largest object required to be fringe free. In real 

space, this translates to a maximum plate radius of 
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The pending question is how Rp,max develops with increase in the photon 

energy. For a given energy, B’ depends on the parameters of the objective as 

well as the geometry of the setup. A complete mapping of all possibilities is 

not reasonable as constraints set by the ability to produce lenslets with 

certain thicknesses and apex radii in the end will be the real limiting factors. 

Figure 3 was produced assuming Be-lenslets with T=1.6 mm and Ra=50 µm, 

corresponding to the most readily available Be-lenslets at present. The 

figure shows B’/k as a function of the diffraction limit rd for different 

energies. The calculation was done in the limit of infinite magnification, 

which maximizes the diffraction limit and is equivalent to p=F. 

 

Fig 3: B’/k as a function of rd. The energy range is 15-100 keV. 
There is a 2.5 keV gap between each line. The red and blue lines at 
the extremes represent 15 keV and 100 keV, respectively. The 
calculation was done by estimating B’/k and rd in the limit of 
infinite magnification. It is assumed that the illumination is focused 
so that the non-scattered wave follows the principle rays, in 
accordance with to (10). The common asymptote is related to the 
geometrical aperture, and can be calculated as B’/k.≈Ard/(0.61·4π), 
where A is the geometrical aperture. 

For it to be possible to satisfy both the upper and lower constraint one must 

have Cσbg<2πB’/kρ. The maximum photon energy where this occurs iss 
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Where  is the reduced Planck’s constant and c is the speed of light in 

vacuum. It should be kept in mind that in practice B’ as well as ms will be 

energy dependent. . 

It was recently demonstrated that lateral chromatic aberration is 

corrected by using the illumination scheme considered here [latt chrom lett]. 

The possibility of using ZPC with non-monochromatic illumination with 

band width is in the range ΔE/E~10-2, commonly referred to in the 

synchrotron radiation community as a pink beam, will now be considered. A 

numerical experiment considering a CRL microscope with unit 

magnification and parallel pink beam illumination has already 

givenpromising results [11]. The two main concerns when it comes to ZPC 

with a pink beam is the energy dependence of both the phase shift induced 

by the phase plate, and the spread of Fourier planes due to the chromaticity 

of the condenser. 

The phase shift, φ, induced by the phase plate is proportional to δ, 

which in turn is proportional to E-2. The amplitude of the intensity 

modulation due to interference between scattered and background wave is 

proportional to the deviation τ = sin(φ). Let the phase shift induced at the 

central energy in the ΔE energy range be denoted by φ0. The spread in phase 

shifts is 
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Using ΔE/E=10-2, assuming φ0=π/2, and evaluating τ at the marginal 

energies of the spectrum yields 

   241
2 4cos 1 10       . (21) 

This is close to one, and still would be even if the bandwidth was increased 

by an order of magnitude. Thus one may conclude that phase shift spread is 

not likely to be a problem with a pink beam illumination.  

The location of the Fourier plane will vary with energy. If Δgch is the 

Fourier plane misalignment of the lowest and highest contributing 

frequency in the spectrum, and if it is assumed that Δgch is significantly 

larger than the alignment accuracy,  
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4. Results and discussion 

For each recorded image, a flat field image and a dark frame was also 

recorded. The final results presented are the flat field corrected images, 

where both the raw images and flat fields were dark frame subtracted. The 

images in Figure 4-8 were recorded with the monochromatic setup, while 

the image in Figure 9 was recorded with the pink beam setup and a Zernike 

lenslet. 

 
(a) (b) 

 

 
(c) 

Fig. 4 : ZPC (a) and non-ZPC (b) image of a Simens star. (c) 
Intensity profile sampled from the black lines using bilinear 
interpolation. A half period of 350 nm is resolved. 

In order to compare the resolution of the ZPC and non-ZPC 

configuration, a ZPC and a reference image of a Simens star test object was 

recorded, see Figure 4. Figure 5-7 shows ZPC and reference images of 2 μm 

diameter polystyrene colloidal spheres, a 20 µm thick beryllium electron 

microscopy grid, and a boron fiber with an interior tungsten core, 

respectively. Exposure times of 1 s and 0.6 s for the ZPC and reference 

images, respectively, were chosen to stay well below the saturation limit of 

the CCD. Figure 8 contains images of the microstructure of an Al-Si alloy. 



The sample for the pink beam image seen in Figure 9 was a 2000 mesh Cu 

microscopy grid with 8 μm diameter holes. 

  

 
(a) (b) 

Fig 5: ZPC image (a) and reference image (b) of 2 μm polystyrene 
colloidal particles. 

 
(a) (b) 

Fig 6: Zernike phase contrast (a) and reference (b) images of a 
beryllium microscopy grid. 

 (a) (b) 
Fig 7 : Zernike phase contrast (a) and absorption contrast (b) 
images of a boron fibre with a tungsten core. 

(a) (b) 
 

 
(c) 

Fig 8: Zernike phase contrast (a) and non-ZPC reference (b) 
images of a 200 μm thick Al-Si alloy sample. 

	
Fig 9: Zernike phase contrast Image of a 2000 mesh Cu 
microscopy grid with 8 μm diameter holes, recorded with 22.5 keV 
radiation with 0.3% bandwidth. 

The smallest half period resolved from the images presented in Figure 4 

was ~350 nm, both in the ZPC and reference image, and close to the pixel 

resolution of 240 nm/pixel. It should be stressed that this does not by any 

means represent the highest resolution obtainable with CRLs. Using the 

same quality lenslets, resolution should be expected to improve by a factor 

of 2-3 by reducing the size of the phase plate, employing a shorter focal 

length objective, and a higher magnification. 

In Figure 4a the polystyrene spheres appear with inverted contrast with 

respect to the reference image Figure 4b, which is the expected result as 

both the platinum phase plate and the polystyrene spheres impart positive 

phase shifts. This is taken as clear evidence that ZPC was present. The 

attenuation through 2 μm polystyrene is approximately 0.01% at 17 keV, 

but the colloidal particles are still visible without any phase shifting element 

due to scattering and propagation-based phase contrast. Taking the radius of 

the spheres as ρ, Rqρ=1.7. Ringing artefacts are present, but faint. 	
The advantage of ZPC in hard x-ray microscopy is perhaps most 

evident in Figure 6. Although some scattering contrast and propagation-

based phase contrast appear in the reference image Figure 6b, the ZPC 

image reveals details that are barely visible in the reference. Likewise, in 

Fig 8, the boundaries between primary-phase Al-dendrites and Sr-modified 

fibrous Al-Si eutectic microstructures[12] are readily visible in the ZPC 

image. In the reference image, faint contrast features, barely detectable 

above the noise level, can be found between the coarse primary dendrites 

and the surrounding eutectic, whereas the finer internal eutectic 

microsctructure features remain unresolved.. The absorption contrast 

between Al and Si at 17 keV is negligible. As the eutectic regions consists 

of  3D layers of micron-sized overlapping features, it is not clear whether 

the ZPC image represents an accurate 2D projection of the sample, which is 

a necessity for tomographic applications. Further experiments are necessary 

to determine if the setup can be used to obtain tomograms of the eutectic 

microstructure. 

The spatial coherence of the illumination in combination with 

imperfections in beamline components used in the experiments typically 

gives a rise to speckles and features in the illumination intensity. The 

uneven illumination is particularly evident in Figure 5 and 6 where large 

horizontal fringes  are visible, presumably stemming from defects in the 

condenser. These features can be mitigated by decohering the illumination, 

simply by inserting a diffuser somewhere upstream of the sample. A 

suitable diffuser could be a rotating disc made from a low-absorbing semi-

amorphous or ultra-fine grained material. Unfortunately, decohering comes 

at the cost of smearing the focal spot in the Fourier plane. ZPC requires the 

diffuser to be gentle enough so that the background and the scattered wave 

still can be discriminated. 



Both ZPC and standard CRL based microscopy could benefit from a 

practical method of controlling the spatial coherence. Uneven illumination 

is also visible in Figure 9. Here, however, the effects can to a large extent be 

attributed to problems with the flat field image. Due to hardware 

difficulties, the flat field image was not a proper flat field, but rather a best 

fit of a displaced flat field. 

Halo artefacts are quite visible in Figure 7 and 9. Rqρ was 88.3 and 9.6, 

with ρ as the radius of the boron fibre and grid holes, respectively. A 

number of techniques exist for apodization[13-15], but adaptation of these 

techniques to CRL microscopy is not necessarily straight forward without 

sacrificing considerable amounts of flux. Smoothing the edge of the phase 

plate can also have a positive effect[10] An investigation into which 

apodization methods might be suitable for hard x-ray CRL microscopy 

could be a topic for future investigations. 

In Figure 9 the symmetry of the fringing around each hole suggests that 

the beam was well centered in the hole of the lens. No special alignment 

steps were necessary. The longitudinal alignment was done by simply 

placing the center of the objective CRL in the back focal plane of the 

condenser, which was estimated theoretically from (2). The fact that the 

symmetry of the fringes is homogenous over the FOV suggests that a 

theoretical estimation was sufficient for longitudinal alignment in this case. 

The longitudinal spread of the focal spot was approximately Δgch=±8.8 mm. 

The intensity in the focal spot could potentially reach a level where melting 

of the phase elements becomes an issue. In this case, the Zernike lenslet is a 

good choice of phase element. 

It is difficult to judge from Figure 9 alone if deviation from the ideal 

phase shift is a problem, however, the phase shift imparted by the phase 

plate in the monochromatic experiment was estimated to be 0.18π+3π/2. 

This deviation yielded ZPC, and is a much larger deviation than the inherent 

deviation associated with pink beam illumination. 

In the pink beam experiment, Δgch was estimated to 4.6 mm. The 

calculation takes into account the contribution to Δgch from the collector 

lenses. Assuming the central energy to be perfectly focused on the phase 

element, (22) result in σbg=1.6 µm, which is still not critically different from 

the idealized monochromatic value of σbg=1.3 µm. Had the monochromatic 

experiment been performed with ΔE/E=10-2, it would result in Δgch=±13.3 

mm. This gives σbg=5.6 µm, compared to σbg=5.1 µm in the monochromatic 

case. It is possible to reduce Δgch somewhat by using a condenser with a 

shorter focal length, but source size still dominates the ZPC performance 

with this modest band width. 

Note that (17) is somewhat strict when it comes to longitudinal 

misalignment. It is still possible to have ZPC even if the criterion above is 

not satisfied. If the spot is sufficiently small and wll aligned transversally, 

but with a substantial longitudinal misalignment, a projection image of the 

phase plate could appear in the image plane. Inside the projection image 

there may still be ZPC, but such considerations will not be taken any further 

here as they would demand lengthy discussions about the defocus and 

coherence related blurring of the projection image. 

The illumination scheme used in these experiments is useful for 

avoiding lateral chromatic aberration or artefacts from spatial filtering. It 

also allows for insertion of the phase element into the objective. With 

visible light a more common technique is to employ Köhler illumination 

passed through an annular diaphragm. With FZPs for soft x-rays it is 

possible to produce what is sometimes referred to as pseudo Köhler 

illumination by employing a segmented zone plate[4]. The shape of the 

phase element may be a ring, concentric rings[13], or an array of spots[16]. 

The off-axis illumination associated with the use of a phase ring is expected 

to improve the resolution. 

Unfortunately, hollow cone illumination as implemented with 

diaphragms or diffractive optics comes at the cost of reduced flux. With the 

advances made in manufacturing techniques of refractive optics, 

development of specialized condensers is possible. Perhaps by some 

adaptation of rolled prism lenses[17], or by thickness modulation of 

standard lenslets could serve as a refractive equivalent of sectored zone 

plates. Condensers could conceivably be tailored to provide illumination 

with the desired shapes in reciprocal space, such as rings, concentric rings, 

or spots. It would still be possible to place the Fourier plane inside the 

objective by combining with standard CRLs, so that the phase element still 

may be fixed to the objective. Condensers like these could conceivably be 

used with FZPs too. 

5. Conclusion 

In summary, ZPC using x-ray CRLs was investigated and successfully 

implemented at 17 keV using Be-CRLs as the only photon efficient 

refractive x-ray lenses. A ~350 nm half-period pattern was resolved. While 

the traditional hollow cone illumination scheme is more appropriate when 

the goal is to optimize spatial resolution, there is still room for improvement 

of the resolution within the scheme described here, for example by reducing 

the size of the phase plate, using a shorter focal length objective, and 

increasing the magnification. It was also demonstrated that ZPC is 

achievable with illumination bandwidth of ΔE/E=0.3×10-2. 
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A B S T R A C T 

Analytical expressions for the transmission cross-coefficients for x-ray microscopes based on compound 

refractive lenses are derived based on Gaussian approximations of the source shape and energy spectrum.  

The effects of partial coherence, defocus, beam convergence, as well as lateral and longitudinal chromatic 

aberrations are accounted for and discussed. Taking the incoherent limit of the transmission cross-

coefficients, a compact analytical expression for the modulation transfer function of the system is 

obtained, and the resulting point, line and edge spread functions are presented. Finally, analytical 

expressions for optimal numerical aperture, coherence ratio, and bandwidth are given. 

 

 

1. Introduction 

Full field synchrotron X-ray microscopy experiments are typically carried 

out with monochromatic radiation produced by filtering the incident 

polychromatic beam from the source through a double-crystal 

monochromator, most commonly using the Si(111) reflection. This 

practically eliminates chromatic aberrations of refractive or diffractive 

optics which in turn improves the spatial resolution of the microscope, but 

at the cost of photon flux. The loss can be critical in experiments which 

require high frame rates, e.g. fast in situ X-ray imaging experiments in 2 or 

3D. It is therefore of general interest to examine in detail to which extent 

monochromatisation can be relaxed before chromatic effects become 

detrimental. In the present study the transmission cross-coefficients are 

examined to derive compact analytical expressions for the performance of a 

full-field transmission microscope based on compound refractive lenses 

(CRLs) as function of the bandwidth of the illuminating x-rays. 

The typical source for high performance X-ray microscopy at a 3rd 

generation synchrotron is an undulator. The undulator produces radiation 

with a comb-like spectrum of odd harmonic peaks. A completely non-

monochromatised beam is referred to as a white beam, whereas an isolated 

harmonic peak commonly is referred to as a pink beam. The typical 

bandwidth of a harmonic peak is ΔE/E~10-2, roughly 2 orders of magnitude 

larger than the typical bandwidth of a Si(111) double crystal 

monochromator. Both pink and white beams are used for fast lensless 

projection imaging [2-4], and more recently, the possibility of using 

compound refractive lenses (CRLs) with pink beams for focusing 

nanoprobes and microscopy have been demonstrated [1, 5-7]. 

Currently there is no simple and accurate estimate available for the 

modulation transfer function (MTF) of CRL-based transmission 

microscopes. Consequently, simple estimates for essential image forming 

characteristics such as point spread function (PSF), line spread function 

(LSF), or edge spread function (ESF) are missing. When partial coherence 

is to be taken into account, the straight forward integration over source 

points can be quite time consuming for optimization purposes, where 

simulations may have to be repeated when parameters are shifted. A first 

approximation of adding root mean square (r.m.s.) values in quadrature is 

sometimes used to estimate spot sizes [6-8], but this approach has a limited 

range of validity and can be misleading when it comes to optimization. The 

Hopkins method [9], sometimes also referred to as the transmission cross 

coefficient (TCC) method, is an effective method for simulating imaging 

with partial coherence. So far, direct analytical application of the Hopkins 

method to CRLs has not been reported. 

2. Theory 

Hopkins’ equation is as follows [9]: 

  *
( ) ( ', '') ( ') ( '') exp - ( '- '') d ' d '' .I x TCC q q F q F q i q q x q q     (1) 

Here, ( )I x  is the image intensity, F  the Fourier transform of the complex 

sample transmission function, and ( ', '')TCC q q  the transmission cross-

coefficients. Substituting ( ' '') / 2q q q  , and ' ''q q q    allows 

recasting (1) into a Fourier transform with respect to q ,  
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which is convenient for numerical evaluation. In the monochromatic case, 

the transmission cross-coefficients are given by  

*1 1

mono 2 2
( , ) ( ) ( ) ( ) d ,TCC q q J q P q q q P q q q q         (3) 

 

where P is the pupil function, and J  the angular source distribution. The 

integral in (3) must be calculated for all values of q  and q . Fortunately, 

the pupil function of an x-ray CRL has the mathematically convenient 

Gaussian shape, even for CRLs of arbitrary length [10, 11]. Therefore, 
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where σN.A. is the root mean square (r.m.s.) of the transmission function of 

the aperture, and 2 /k   , with   as the photon wavelength. It is 

assumed that the pupil function is fully determined by the absorption in the 

CRL material, and that therefore the physical aperture is much larger than 

σN.A.. For typical microscopy applications, this is a good approximation [10, 

12]. 

Furthermore the angular source distribution, as seen by the sample 

through any condensing optics and decoherers, is also approximated by a 

Gaussian, 
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where S is the ratio between the r.m.s of the angular source distribution and 

σN.A.. Under these assumptions, (3) can be integrated analytically, yielding  
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(5) 

i.e. the TCC becomes the product of two Gaussians depending on q  and 

q only. 

In the above equations it has been assumed that the filtering action of 

the pupil function is homogenous over the field of view. This is 

approximately the case if the FOV is small compared to the aperture of the 

objective, which may not necessarily be the case for CRL microscopy. 

Inhomogeneous filtering gives rise to directionally dependent fringing at 

edges in the sample [13], but can be eliminated by  focusing the 

illumination in the appropriate spot, gideal, downstream of the object plane. It 

is possible, however, to include an inhomogeneous filtering effect in the 

TCC formalism. If gideal is known, any deviation between the ideal and the 

actual focus, g, can be simulated imposing a quadratic phase shift on the 

sample transmission function, F, replacing it with 
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where x is the real space coordinate. In the case of a thin lens, gideal will be 

the distance from the sample to the objective lens position. For thick CRLs, 

the correct convergence of the beam can readily be calculated by means of 

ray tracing matrices [8, 10].  

To include chromatic effects, it is necessary to integrate the intensity 

distribution given by (2) over the energy spectrum. The image formed by 

out-of-focus energies will be defocused and scaled versions of the 

monochromatic in-focus image. Instead of considering the bandwidth 

directly, it is convenient to consider the spread of defocus distances. Let 

d(α) represent the defocus distance at energy E, with α=E/E0 where E0 is the 

in-focus energy. If the bandwidth of the pink beam is modest, d(α) may be 

linearized in terms of α as 
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The power spectrum is assumed to be reasonably well represented by a 

Gaussian function of α, with an associated r.m.s. σΔE/E. Linearization of d(α) 

implies that the defocus distribution also attains a Gaussian form,  
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with r.m.s. given by 
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In order to capture the effect of increased flux with increasing bandwidth, 

(8) have intentionally not been normalized. The full integral expression for 

the chromatic transfer cross coefficients is 
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Carrying out the integration over both d and q yields  
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The values of Km,n are given in Table 1. Note that only longitudinal 

chromatic aberration has been accounted for so far.  

Lateral chromatic aberrations are related to the energy dependence of 

the image magnification. Similar to the case of inhomogeneous filtering, the 

lateral chromatic aberration can be eliminated, to the first order in d at least, 

by focusing the illumination in the appropriate distance gch from the  sample 

[1]. The effect can be taken into account in the same way as the 

inhomogeneous filtering, i.e. by applying a quadratic phase shift to the 

sample transmission function,  
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Fortunately, gch will be equal to gideal as long as all CLR between the sample 

and detector planes are of one material. In most experiments involving 

CRLs so far, only one type of lens material is used at a time. When this is 

not the case it will not be possible to represent scaling and spatial filtering 

by (6) and (12) simultaneously, however, using gch = gideal may still yield 

good approximations. 

 
Table 1: Expressions for Km,n. 
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Once the expression for TCC is known, the evaluation of (2) can be 

performed numerically using a diagonal sum method  [14]. With 
*( ') ( '')F q F q   represented on a square 2D grid, and the TCCs  evaluated 

in the grid points, integration over q can be performed by taking the 

diagonal sum. The remaining integral over Δq takes the form of a Fourier 

transform, and can be evaluated by the fast Fourier transform algorithm. An 

alternative  method is the so-called sum over coherent systems method 

(SOCS)[15]. As SOCS involves singular value decomposition of the TCCs, 

it is not suitable for frequent re-evaluation of (2) with different parameters.  

The modulation transfer function (MTF) can be calculated by going to 

the incoherent limit of (11), i.e. taking S to infinity.  The MTF is of interest 

due to its simplicity and independence of q . Assuming d0 = 0, a relatively 

simple expression for the MTF can be derived, and the result is 
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when normalizing so that MTF(0)=1. The result is generalizable to two 

dimensions simply by replacing Δq with the magnitude of the two 

dimensional momentum exchange vector, Δq. The incoherent LSF and PSF 

can be obtained from the MTF via numerical Fourier transformation. 

Optimization 
As the sample to a large extent will determine the choice of photon 
energy, optimization with respect to this parameter is of little general 
relevance, and will not be carried out here. For optimization purposes, a 
generic sample is chosen, represented by a small sinusoidal thickness 
modulation of a uniform slab. The transmission function of the sample is 

 ( ) 1 cos( )F x qx 
. (14) 

Here q is the spatial frequency and ε the complex amplitude of the 

modulation. Using (14) in (2) yields an expression on the form  

 2

0 1 2( ) Re( ) cos( ) cos(2 )I x A A qx A qx     (15) 

Assuming ε to be small, the ε2-term can be ignored. The figure of merit to 

optimize is  
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and is proportional to the contrast to noise ratio (CNR). It is assumed that 

the noise is dominated by shot noise, and can be adequately modeled as 

Gaussian. The transmission function and FOM used here are chosen mainly 

due to the resulting mathematical simplicity, and do not necessarily 

represent the image quality as judged by a human observer [16]. Despite 

being a simple model for image quality, it captures the dependence on 

spatial frequency of the sample. The system also resembles one potential 

application of the hard x-ray pink beam microscope, namely the study of 

self-assembling periodic lamellar patterns in solidifying metal alloy 

microstructures [17]. Up to a certain point, increasing the bandwidth 

increases both contrast and noise, but beyond this point the noise 

contribution becomes dominant.  In other words, there is an optimal 

bandwidth with respect to the CNR. The right hand side of (16) can be 

maximized analytically with respect to σd, for a given q yielding 
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In the incoherent limit, σd, opt reduces to 
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while in n the coherent limit,  
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where ZT = 4πk/q2 is the Talbot length related to q. It should be stressed that 

the positive contribution of increasing σd, stems entirely from enhanced 

photon flux. Increasing σd, by enlarging d    has no positive effect. A 

smaller d    improves the CNR, regardless of bandwidth. Similarly, 

when considering optimization of CNR with respect to S, attention must be 

given to whether the total flux increases, or not. If the effective source size 

is determined by occlusion, increasing the source size will increase the 

photon flux linearly with S. In that case, the FOM should be multiplied by 

S1/2 to account for it. Optimization with respect to S yields 
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(18) 

In the case where the illumination intensity remains constant while the 

angular source changes, the optimal S is  
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The expression for the optimal numerical aperture is impractically large, 

and has been included as supplementary material. Fortunately, optimization 

of the MTF yields  
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(20) 

which is a much more compact and agreeable expression. 

 
3. Results and discussion 

Figure 1 shows the LSF and PSF calculated for the pink beam case by using 

(13), together with the monochromatic case were the PSF and LSF are 

identical.  Evidently and perhaps not surprisingly, the chromatic spread 

functions have tails, and those of the LSF are more severe than for the PSF. 

In the monochromatic case, adding a third line (equally spaced) makes little 

contribution to the contrast between the first two, provided that they are 



separated by a distance comparable to the diffraction limit. In the pink beam 

case, however, the presence of additional lines can make significant 

contributions to contrast between the other two. The sinusoidal sample 

model used here assumes an infinite periodic sample and will therefore take 

into consideration the long tail of the LSF. 

 

 
Figure 1: The LSF and PSFs for the pink beam and monochromatic 
beam cases. The LSF is determined by an inverse Fourier 
transform of the 1D MTF, and a slice of the PSF has been extracted 
by applying the Fourier slice theorem to the 2D MTF. The ESFs 
were calculated by convoluting the LSF with a step function. The 
parameters used in the calculation were σd=5.4 mm and 
σN.A.=1.5·10-4. 

Figure 2 compares 1D images of two Gaussian shaped objects at different 

defocus lengths. Depth of field (DOF) with monochromatic illumination is 

mostly a matter of numerical aperture. It is evident that with pink-beam 

illumination, σd can come into play in a significant manner as well. A 

coherence ratio of 0.5 was used to create the images in Figure 2. It should 

be noted that in (c) and (d), such an increase in DOF is not achieved when a 

highly coherent beam is used, due to emergence of interference patterns. 

Figure 2: Simulated 1D images at different defocus d0. (a) and (b) are monochromatic and pink beam images, respectively, of
a Gaussian with 10 nm r.m.s. value, which is small compared to the diffraction limit of 75 nm. (c) and (d) are monochromatic
and pink beam images, respectively, of a grating with period of 150 nm. A coherence ratio of S=0.5 was used in the 
simulations. The other parameters used were E0=35keV, and σN.A. = 1.05·10-4. In the pink beam case, σd=2.55 mm was used, 
while σd=0 was used in the monochromatic case. 



Figure 3 illustrates the effect of varying σd. Artificial noise was added 

to Figure 3 a) to capture the detrimental effect of low flux. Although 

optimizing FOM does not necessarily optimize the image quality as judged 

by a human observer, it seems to come rather close in this case. Increasing 

the bandwidth beyond the optimal is of course detrimental to the resolution, 

but it should be noted that the DOF at the optimal bandwidth is comparable 

to the monochromatic DOF. Significant gain only occurs when σd is 

increased beyond the optimal. Figure 3 b) shows the FOM for three 

different values of q, with S = 0.7, and with perfect coherence. Both the 

perfectly coherent and partially coherent curves starts off with an incline 

proportional to σd 
1/2, which suggests that the exposure time required to 

reach a given CNR is proportional to σd, as should be expected. In the 

coherent case there is a rather sharp cutoff near the optimum, where FOM 

declines rapidly, while with a partial coherence, the descent is much slower. 

Figure 4 shows simulated 1D image with varying N.A.. It is evident 

that there is quite a bit of contrast to be gained by maximizing the aperture 

to a specific spatial frequency. It is of course difficult to determine which 

spatial frequency to optimize for in most cases. However, for application to 

microscopy of lamellar structures, the approximate lamellar spacing may be 

known in advance.  

Figure 3: a) Simulated 1D images with noise, computed for different bandwidths. The black line indicates the optimal bandwidth
as given by (17). The green and red curves indicate Si-111 monochromatic and pink beam case, respectively, with rate of defocus
at  = 0.6. The monochromatic bandwidth was set to 10-4 (FWHM), and the pink beam bandwidth was set to 10-2 (FWHM).
The figure appearances depend on several parameters choices, where the most decisive ones are E0 = 17keV, S = 0.5, and σN.A. =
1.75, corresponding to a diffraction limit of 93nm. 

Figure 4: (a) Simulated 1D images of a sinusoidal wave with gradually changing  period. The simulation is based on the MTF.
Each horizontal line is an individual image, simulated with different N.A.. The horizontal axis is labeled with the length of the
period. The black line indicates the N.A. that optimizes MTF(q), according to (20). Parameters used were E = 17 keV, σd = 2.5 mm.
(b) MTF as a function of σN.A. at different values of q. 



The theory and optimization presented here is concerned with perfect 

lenses. Real CRLs, of course, have aberrations that will influence the image 

quality. Figure 5 shows two images taken from a previously published 

experiment [1], recorded with an objective and condenser consisting of 84 

and 32 double concave 50 µm apex radius Be lenslets, respectively. The 

condenser was positioned to focus the illumination into the center of the 

objective, and a beam decoherer was placed approximately 10 cm 

downstream of the condenser.  The sample was a 4 µm thick Copper mesh. 

Figure 6 compares simulations based on the presented theory to the 

experimental results sampled from the black lines in Figure 5. The defocus 

in the simulations was set to d0 = 4.6 based on an estimate that considered 

the apparent difference in magnification of the experimental curves [1].  

There is a notable mismatch between the simulation and the 

experimental data, the most significant of which is the exaggerated contrast 

in the simulation presented in a).  In b) there is a reasonable agreement that 

gets progressively worse towards the periphery of the FOV, i.e. as x 

increases. It is notable, however, that in the region between 15-30 µm, the 

agreement is quite good, especially considering that the simulation 

parameters were simply taken from estimates, without parameter fitting. 

The fit is somewhat better when using g=-30 cm, which corresponds to 

regarding the decoherer as the effective source plane.  

While it is tempting to attribute the improvement to the decoherer, it 

cannot be ruled out that spherical aberrations might be the real cause. 

Spherical aberration in the type of lenses that were used in the experiment, 

namely 50 µm apex radius Be lenses, have been reported [6, 18]. If 

spherical aberration was present, it would, in the parallel beam case, 

produce a defocused image by an amount that differs over the FOV. Figure 

7 shows the same simulations as in Figure 6, repeated with d0 = -4 mm. The 

x = 15-30 µm region is no longer a good fit, however the x=0-10 µm region 

is now in much better agreement than in Figure 6. Furthermore, the contrast 

level in the focused beam simulation is close to that of the experiment, 

albeit with some new fringe features. It should be mentioned that the 

appearance of fringes is rather sensitive to the choice of S. The contrast 

level largely depends on the transmission of rays representing low spatial 

frequencies, which in the focused beam case travel mostly through the 

center the lens where spherical aberration is least prominent. This might 

suggest that the defocus that gives a good fit in the center of the FOV would 

also give a better estimate of the contrast. Thus spherical aberrations seem 

to be an important source of discrepancy between the simulations and 

experiments.  

4. Conclusion 

Figure 6: Comparison with experimental results [1]. x=0 is in the center of the FOV. a) Beam focused into objective. b)
Parallel beam illumination. Note that g is the only parameter that was changed in the simulations. All other parameters were
the same for all three simulations. d0 was set to 4.6 mm, as estimated in [1, 2] . Other parameters used were σd = 3.6 mm,
σN.A. = 1.75·10-4, E = 17 keV, S = 0.7, and gideal = 30 cm. The curves were flat field corrected with a simulated featureless
sample, to compensate for vignetting of the FOV. 

Figure 5: Experimental images of a copper mesh from a
previously published experiment [1]. (a) and (b) were
recorded with parallel illumination and with converging
illumination, respectively. The convergence was due to a
condenser lens configured to focus the source inside the
objective. 



The transmission cross-coefficients for an x-ray microscope based on 

compound refractive lenses were derived using Gaussian approximations of 

the source shape and energy spectrum.  The effects of partial coherence, 

defocus, beam convergence, as well as lateral and longitudinal chromatic 

aberration are included in the solution. An analytical expression for the 

MTF was obtained, as well as for optimal numerical aperture, coherence 

ratio, and bandwidth. Comparison with experimental data shows qualitative 

agreement, however, it is likely that a more detailed model of illumination 

or lens aberrations, or both have to be taken into account in order to produce 

better simulations. 
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Chapter 8

Conclusions and outlook

Paper 1 demonstrates improved image quality and correction of lateral chromatic
aberration by focusing the illumination into the objective lens, which also optim-
izes transmission from object to image plane. To determine definitively that the ab-
erration was corrected, a monochromatic energy scan was performed, from which
it could be concluded that lateral aberration was indeed corrected.

There may, however, be other factors contributing to the improved image quality.
Spherical aberration in the lens shapes may, in the parallel beam case, contribute
to a significant field curvature. Focusing the illumination into the objective likely
has the added benefit of flattening the field. An experiment to confirm this might
be worthwhile.

Methods have been developed to characterize the aberration, however, it may be
possible to quickly asses spherical aberration of an entire CRL stack by measuring
the field curvature. If the aberration is predominantly spherical, it might be pos-
sible to produce phase element to compensate for spherical aberration. Significant
improvement to the resolution might be gained, without tailoring a phase plate to
a specific CRL.

Paper 2 demonstrates ZPC in a CRL microscope, and shows that ZPC can be im-
plemented with the scheme presented in paper 1. Estimations were presented that
indicates that the use ZPC with a pink beam is possible without alterations to
the scheme. The fact that the beam is focused in the objective allows ZPC to be
achieved by using modified CRLs. This was demonstrated by employing a lenslet
with a circular hole as a negative phase plate.

The resolution was limited due to the need for long propagation distance to allow
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the scattered field to separate properly from the background field. A significant
gain in resolution can be expected if a smaller diameter phase element is employed,
allowing shorter focal lengths to be used. Implementation of traditional hollow
cone illumination is also expected to improve resolution, but at the cost of photon
flux. However, modification of refractive condenser optics could be a reasonable
approach to hollow cone illumination with minimal loss of photons.

Paper 3 Demonstrates that HXTM can be operated both in monochromatic and
non-monochromatic modes. It was shown that with pink beam illumination, full
tomograms can be recorded in 1–2 s, with spatial resolutions below 200 nm, us-
ing 1ms frame exposure times. Potential application areas of fast 2D and 3D
microscopy were demonstrated with a few selected test cases, including regular
and irregular eutectic solidification microstructure formation, and self-assembly
of colloidal crystal systems composed of polymer particles with diameters in the
micrometer range.

Paper 4 prescribes optimal coherence lengths and numerical apertures for any
bandwidth and resolution requirement. It also identifies the bandwidth that is use-
ful for a given resolution, which helps to identify the conditions under which a
pink beam is preferable to a monochromatic beam.

A natural concern regarding the scheme presented in paper 1 is that resolution is
lost due to the longer coherence length. An investigation into practical methods of
tuning the coherence length with minimal loss of flux could be of interest, espe-
cially for ZPC, where it is desirable to tune the illumination to the phase shifting
element. Paper 4 provides tools to evaluate the trade-off between flux and coher-
ence length.

Some convenient relations between numerical aperture and longitudinal chromatic
aberration have been derived. As the optimal σN.A. for maximizing resolution
with pink beams is well above what is currently achievable, the fact that σd de-
creases rapidly with σN.A. suggests that efforts to optimize the resolution of a pink
beam microscope is currently well aligned with efforts to optimize resolution in
the monochromatic case, with the possible exception that different lens materials
might be of interest due to the σd ∝ 1/γ relationship.

Finally, A light-weight numerical modelling tool, based heavily on previous work
[41, 42, 75], was developed for fast evaluation of image quality.

As for further improvement of temporal resolution, there is still a lot to be gained
in terms of detector DQE. While the development of X-ray detectors is a very
active field of research, some measures using only available technology are pos-
sible. By simply increasing the magnification of the CRL microscope, the detector
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resolution requirements can be relaxed. For example, if the detector resolution
requirement is reduced by a factor of 3, the scintillator plate is allowed to be 9
times thicker, which increases the fraction of absorbed X-rays. Furthermore there
is an on-going effort to reduce the pixel size of highly efficient solid state detect-
ors. If their pixel size can reach the 20 µm range, they could become useful for
microscopy if > 100 magnification is employed.
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Appendix A

Minimization of chromatic
aberration of CRL systems

In paper 1 [28] it was demonstrated that lateral chromatic aberration can be correc-
ted by focusing the illumination inside the objective. The theory presented there
was based on approximating the objective as a thin lens.This chapter will elaborate
the theory to account for arbitrary systems of CRLs. Two simple relationships will
be derived that relates lateral and longitudinal chromatic aberrations, in terms of
σN.A.. To the knowledge of the author, this work is original.

A.1 Lateral chromatic aberration
Lateral chromatic aberration can be analysed with RTMs. The change in magni-
fication of a system represented by an ABCD-matrix is

∂M
∂α

=
∂A

∂α
(A.1)

With a thin lens microscope under parallel beam illumination,

∂M
∂α

= −2p

f
M0, (A.2)

whereas in the case of the constant profile CRL microscope, one obtains

∂M
∂α

= (L sin(ωL) + ωLq cos(ωL) + q sin(ωL))
ω0

α2
. (A.3)

It is possible to change dM
dα by pre-multiplying the RTM with a matrix corres-

ponding to focusing the illumination a distance g from the sample. Letting MP
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be the parallel beam illuminated system, the new RTM with focused illumination
becomes

Mg =MP

[
1 0

−1
g 1

]
=

 AP − BP
g BP

CP − DP
g DP

 , (A.4)

from which one may derive the following relation:

dMg = dAP − 1

g
dBP +

BP

g2
dg. (A.5)

The dg-term accounts for the possibility that the condensing optics may not be
achromatic. Assuming BP = 0, the distance gch that eliminates lateral chromatic
aberration, to the first order in α, is

gch =
dBP

dAP
(A.6)

Computing gch analytically from (A.6), although somewhat laborious, is straight
forward. It is also easily computed by numerical differentiation. However, gch
must be equal to gideal as long as all lenslets in the system are made from only
one type of material. This conclusion can be arrived at by considering the change
in optical path length in response to a change in the refractive index of the CRL.
When the microscope is in imaging condition, all rays emanating from a point Po

in the object plane and terminating in a point Pi in the image plane will have the
same optical path length. Now suppose an infinitesimal change dn is added to the
CRL refractive index, nCRL. Let Cwo,xo be the ray defined so that it intersects
the object plane at xo at an angle wo. The infinitesimal change to the optical path
length is

Φ = d

(∫
Cwo,xo

n(s)ds

)
= Θdn+ δ

∫
Cwo,xo

n(s)ds, (A.7)

where
Θ =

∫
Cwo,xo

ρCRL(s)ds,

and ρCRL(s) is the CRL material density, which is zero outside the CRL and equal
to x2

R inside it. The second term on the right hand side in (A.7) vanishes due to
Fermat’s principle. Note that Θ is the same integral as the one computed to eval-
uate the attenuation of the rays. The ray that minimizes Θ is the ray of maximum
transmission. It also stands out as the ray with the minimum change in optical path
length in response to a change in nCRL. Consider a point Po in the object plane
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Pi

P ′

i

κ W

W ′

(a)

Pi

P ′

i

κ W

W ′

(b)

Figure A.1: Illustration of wave fronts in (a) the initial system, and (b) the perturbed
system. The perturbation causes the image of the point source to move from Pi to P ′

i , but
W and W ′ is tangential in κ. The line intersecting both κ and Pi remains tangential to the
wave fronts in both systems, and is therefore a valid ray in both systems.

located a distance x0 from the optical axis. Let κ be the point on the image side
of the system where the ray that minimizes Θ intersects a wave front, W . Further-
more, let W ′ be the wave front that includes κ, after a small change in refractive
index have occurred. The infinitesimal optical path length difference, Φ, between
W and W ′, along the rays of the original system, is equal to the geometrical dis-
tance. Furthermore, because κ is defined as containing the ray that minimizes the
optical path length response, Φ will have either a minimum or maximum at κ,
which implies that W and W ′ will be tangential at κ, and that the angle of the ray
joining Po and κ does not change to the first order in dn. Thus it can be concluded
that the point in which the ray intersects the detector plane will be unchanged to
the first order of dn. As this is the criterion for correction of lateral chromatic
aberration, it is evident that

gch = gideal (A.8)

as long as γ is constant throughout the CRL. This argument is valid for arbitrary
systems of CRLs, as illustrated in Figure A.2.
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Figure A.2: Ray traces through randomized system of CRLs with parallel and ideally
focused illumination in the top and bottom image, respectively.

A.2 Longitudinal chromatic aberration
With small bandwidths, d may be linearised as a function of α by differentiating
(2.32).

∂

∂α
d =

1

A

∂B

∂α
− B

A2

∂A

∂α
. (A.9)

For a thin lens microscope, regardless of the value of g the rate of defocusing is

∂

∂α
d = −2p

(
1 +

p

q

)
. (A.10)

For long CRLs, the matter is more complicated. While it is possible to linearize
d(α) by explicitly differentiating ABCD-matrix elements, another approach will
be presented here that provides a simple relationship between ∂

∂αd and σN.A.. In
the same fashion as Σ−1 and Σ−1

i was defined in (3.19) and (3.21), V and Vi will
be defined here as

V =

∫ L

0
MCRL(z

′)>O′MCRL(z
′)dz′ =

1

γ
Σ−1, (A.11)

where

O′ =

[
−2kδ

RT 0

0 0

]
, (A.12)

and

Vo = R(p)>V R(p) = −1

γ
Σ−1
o . (A.13)
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Ignoring the web thickness, Θ in (A.7) may be expressed as

Θ = −1

2
x>Vox (A.14)

It is clear from Figure A.1 that the perturbation of the wave front in response to a
small change in refractive index is the same as the response to a small displacement
of the image. The rate of the displacement with respect to α is, by the displacement
theorem [12],

∂

∂α
d = −2

k
Vo,2,2. (A.15)

If γ is constant (throughout the CRL system), the following relationship exists
between the longitudinal aberration and σN.A. (of the system):

∂

∂α
d = − 2

kγσ2N.A.

(A.16)
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Appendix B

Simulation of pink beam
microscopy based on complex
RTMs

Although the propagator of a single CRL imaging system have been derived in
earlier works [41, 42, 75], a more general formalism exists that applies to arbitrary
first order optical systems, including systems with absorbing lenses [50, 51]. As
the formalism is based on complex ray transfer matrices, it significantly simplifies
notation.

Fast simulation based on this formalism is a useful tool to quickly asses field of
view, lens aberration effects, and sensitivity to misalignment. It can also be used
to evaluate the effects of phase elements and arbitrary shaped aperture stops. Im-
plementation of the simulation tool may, however, offer a few technical hurdles.
This section will present the basic theory, and show how to resolve the difficulties
related to numerical implementation.

B.1 Theory
A first order optical system is a system in which the small angle approximation is
valid, and all optical elements are described by polynomials of second order, or
lower. If the ray transfer matrix of the system is

M =

[
A B

C D

]
, (B.1)
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whereA,B, C, andD are arbitrary complex parameters that satisfiesAD−BC =
0, the Greens function of any first order optical system can be expressed in terms
of the elements of A, B, C, and D, including the cases where the lens material has
a complex refractive index[51],

G(x′, x) =

(
i
2πB

k

) 1
2

e
ik
2B (Dx′2−2xx′+Ax2), (B.2)

where x and x′ are the input and output coordinates of the system, respectively,
and k = 2π

λ is the wavenumber. The expression can be made computationally
convenient by factorizing into x′, (x′ − x), and x terms.

G(x′, x) =

(
i
2πB

k

) 1
2

e
ik
2 (

D−1
B )x′2

e
ik
2B

(x′−x)2e
ik
2 (

A−1
B )x2

(B.3)

Employing this form, propagation through the first order system can be expressed
as a multiplication, followed by a convolution, and another multiplication,

ψ′ (x′) = (i2πB
k

) 1
2

e
ik
2 (

D−1
B )x′2

∫
e
ik
2B

(x′−x)2e
ik
2 (

A−1
B )x2

ψ (x) dx (B.4)

B.2 Implementation
In terms of operators, (B.4) can be written as

ψ′ =

(
i
2πB

k

) 1
2

Q

[
D − 1

B

]
R [B]Q

[
A− 1

B

]
ψ. (B.5)

where Q [c] represents a multiplication with the function exp(12 ikcx
2), and R [d]

is a convolution with the function exp( ik2d∆x
2), which is equivalent to a propaga-

tion if d is a real number. The form of (B.5) is not one of the fundamental rep-
resentations given by Nazarathy and Shamir [50]. The reason for not using the
fundamental representations is that they contain scaling operators, which in the
general case could contain a complex argument. Computation of a complex scal-
ing/rotation is circumvented by using (B.5), which contains only the Q and R
operators, both of which are easily implemented numerically using only multiplic-
ation and Fourier transforms.

There are several ways to implement the propagation operation. As the real part of
B will typically be small for microscopy, a reasonable choice is to use

R [B] = F−1Q

[
−B

k2

]
F . (B.6)
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As an X-ray microscope will typically magnify the beam, a straight forward imple-
mentation of (B.5) could therefore imply the risk that the numerical field of view
could be too small to cover the beam at the output plane. To prevent this from
occurring, it is helpful to demagnify the output image multiplying the RTM with a
scaling matrix, to obtain

Mscaled =

[
1/m 0

0 m

][
A B

C D

]
=

[
A/m B/m

mC mD

]
, (B.7)

where m is a real number that should more or less correspond to the magnification
of the system. If the imaginary part of the argument of the first Q-operator, on
the right hand side in (B.5) is positive, it has the potential to cause computational
issues due to large real values in the exponent. It is always possible to cancel the
imaginary part by choosing

m = Re(A)− Re(B)
Im(A)

Im(B)
(B.8)

When the microscope is in focus, i.e. when Re(B) = 0, this reduces to m =
Re(A). It is important to note that when Re(B) is zero, even small deviations
from (B.8) will cause the algorithm to fail.

B.3 Calculating aperture and defocus from the complex RTM
parameters

The numerical aperture can by estimated using Gaussian beam propagation [40],
but also by considering (B.2), with a δ-function as input. Doing so results in

a Gaussian output function with root mean square parameter
√
Im
(

B
Dk

)
, which

corresponds to

σ2N.A. =
M2

2k
Im

(
D

B

)
(B.9)

where M is the magnification of the system. The defocus distance can be calcu-
lated from the RTM by taking the real part of (2.32)

d = Re

(
B

A

)
. (B.10)

B.4 Simulation results
Figure B.1 demonstrates that lateral chromatic aberration is accounted for with
this method. The sample object is a hexagonal grid of circular holes. The images
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(a) (b) (c)

Figure B.1: Demonstaration of scaling of defocused images. The values of α was 0.95, 1,
and 1.2 in (a), (b), and (c), respectively, with E0 = 17 keV.

show simulations results where m have been selected to properly scale the in-
focus image shown in B.1(b). Figure B.1(a), and B.1(c) shows the same system,
but defocused by choosing lower and higher photon energy, respectively, relative to
B.1(b). This may be utilized to evaluate the severity of lateral chromatic aberration.

Longitudinal chromatic aberration is also evident in the images, as near field fringes
are plainly visible. The defocus distances were d = 2.5 cm and d = −8.5 cm in
B.1(a) and B.1(a), respectively.

In B.1(a) it can be seen that in the case of magnification, the periphery of the
original image will disappear over the boarders of the numerical field of view and
reappear on the opposite side, giving rise to interference fringes. This should be
cropped away in the final result.

It is possible simulate the effect of objects placed in the aperture plane by modu-
lating with the complex transmission function of that object, after the first Fourier
transform in (B.6) have been applied. Lens aberrations, physical aperture stops,
etc. can easily be simulated this way.

Figure B.2 demonstrates the ability to evaluate vignetting effects caused by both
a combination of the Gaussian and the geometrical aperture. The parameters for
the objective CRL corresponded to 100 Si lenslets with R = 5 µm, T = 125 µm,
and R0 = 25 µm. These parameters are similar to the one presented suggested by
Simons et al. [72]. An opaque circular, 50 µm diameter aperture was inserted in
the aperture plane to represent the geometrical aperture. As expected, the field of
view is largest when g is chosen according to (3.24), and can be several times larger
than the physical lens aperture. Fringing related to the aperture stop can be seen
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(a) (b) (c)

Figure B.2: Standard monochromatic imaging. The sample object is a 3 µm thick sheet
of copper with circular holes with diameter 2.6 µm, spaced 4 µm between hole centres.
The simulation was performed on a 2048× 2048 pixel grid.

in the periphery of image B.2(b) and B.2(c). The exact appearence of the fringes
depends on the sharpness of the aperture edge. In this simulation, a Gaussian blur
of 50 nm r.m.s. was applied to the aperture stop, mainly to avoid aliasing.

It is also possible to simulate other microscopy techniques, such as differential
interference contrast[17], spiral phase contrast[29], or Zernike phase contrast[87].
Figure B.3(b) demonstrates a simulation of Zernike phase contrast with a mono-
chromatic beam. The phase element was a 10 µm diameter quarter wave plate
inserted in the aperture plane. A concern when it comes to ZPC with a pink beam
is that the chromaticism of the condenser could cause loss of ZPC for parts of the
bandwidth. The effect of severe longitudinal misalignment of the source image,
with respect to the phase element, can be seen in Figure B.3(a) and B.3(c). A
projection image of the phase object appears when g is too far away from its ideal
value. ZPC is present inside the projection image, while only faint absorption con-
trast is visible outside it. A concern when it comes to ZPC with a pink beam is
that the chromaticism of the condenser could cause loss of ZPC for parts of the
bandwidth. Figure B.4 shows the results of a pink beam ZPC simulation, using
1.5% bandwidth. The image was simulated by adding (with appropriate weight-
ing) images formed at 60 different energies. The convergence was assumed to be
produced by a CRL condenser, and the value of g was changed for each energy
to reflect the energy dependence of the condenser focal length. The objective and
condenser lens consisted of 90 and 32 beryllium lenslets, respectively, each with
R = 50 µm and T = 1.6mm. The photon energy wasE = 17 keV. No projection
image can be seen in the image with these parameters.
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(a) (b) (c)

Figure B.3: Monochromatic ZPC with perfect non-absorbing quarter wave plate. The
values of g that were used were g = ∞, g = gideal, and g = 0.65gideal for (a), (b), and
(c), respectively. The sample object is as in Figure B.2, differing only in that the material
is Beryllium rather than copper.

Some distance from the center of the star , where the spokes are thicker, the shade-
off effect described in 5.2 becomes visible. This illustrates another point that can
be evaluated with this type of simulation.
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Figure B.4: Pink beam ZPC with non-absorbing quarter wave plate. The sample object is
as a Siemens star pattern with refractive indices corresponding to that of Al and Si.
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