
 
1 INTRODUCTION 
Autonomous underwater vehicles (AUVs) are used 
in scientific, commercial and military surveys in or-
der to map the sea floor, locate objects of interest, 
and measure properties of the sea water (Yuh et al., 
2011). AUVs are mostly cigar shaped untethered 
vehicles which follow a preprogrammed mission 
path through the ocean. Future operations of AUVs 
will be combined with other unmanned systems, 
such as drones and autonomous surface vessels, e.g., 
for ice monitoring in arctic areas (Haugen et al., 
2011) or environmental impact studies (Niu et al., 
2009). For these operations, a high reliability is re-
quired to perform satisfactory and deliver the re-
quired data without loss of the involved vehicles. 

Although the term “autonomous” suggests a high 
level of independent decisions making, AUV capa-
bilities are quite limited. Autonomy is the capability 
of a machine to make decisions independently of a 
human operator. Autonomy is measured in discrete 
levels, e.g., NFA (2012) applies a six level scale: 1. 
Human operated, 2. Human assisted, 3. Human del-
egated, 4. Human Supervised, 5. Mixed Initiative, 6. 
Fully autonomous. Current automated/ autonomous 
systems are found in the autonomy levels 2 (human 
assisted; i.e., the system can perform activities in 
parallel with human input) and level 3 (human dele-
gated; the system can perform limited control activi-
ties on a delegated basis) (NFA, 2012). Hence, the 
input from the human operator has a high influence 
on current mission success. For further considera-

tion, AUVs in the third autonomy level will be dis-
cussed, but AUVs with higher levels of autonomy 
might also be relevant. 

A mission normally consists of four phases; (1) 
preparation and mission planning, (2) system test 
and deployment, (3) mission execution, and (4) 
AUV retrieval and data download. Manley (2007) 
states that mission files often contain errors due to 
typographic, sign or geographic datum errors, and 
wrong use of the mission programming software, 
which operators use for mission planning and prepa-
ration. Brito and Griffiths (2011) present, along with 
their Markov model for assessment of critical states 
of AUV operation, some incident data for the AU-
TOSUB 3 AUV; nine out of 28 failed or preliminary 
aborted missions can be attributed to human errors 
or influences. If the operator introduces errors in the 
mission plan, the AUV might not detect these errors 
and follow a path, which is potentially dangerous for 
the mission or AUV, e.g., passing fishing vessels 
(Kirkwood, 2009) or heading towards shallow water 
due to a wrongly implemented waypoint or drift. 
Hence, the AUV has to be monitored by evaluating 
its position and status messages about intentions and 
current actions for the operator to recognize if un-
planned behaviors occur. This excludes to detect 
faults of the system or subsystems, which could lead 
to loss of the vehicle or mission delay, e.g., loss of 
thrusters or low battery. Although this information is 
important with respect to understanding the actions 
of the AUV, the autonomy functions will allow the 
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AUV to realize these faults and act accordingly. 
Utne and Schjølberg (2014) identify among others 
several human and organizational factors (HOFs) 
that can act as hazards to the systems. Together with 
HOFs, technical aspects and environmental condi-
tions that influence the risk are risk-influencing fac-
tors (RIFs). Øien (2001 a) defines RIFs as “an aspect 
(event/ condition) of a system or an activity that af-
fects the risk level of this system/activity”. 

The objective of this paper is to present a Bayesi-
an Belief Network (BBN) model, which includes the 
influence of RIFs, in order to find the probability of 
a successful monitoring by a human operator of an 
AUV during mission. Risk in this context means the 
probability not to monitor the AUV correctly. Moni-
toring implies that the operator observes the status of 
the AUV via a human machine interface (HMI), un-
derstands the status and intentions of the AUV, sets 
this information into context with the planned mis-
sion and responds appropriately, if AUV intentions 
and the objectives of the planned mission are con-
flicting.  

The BBN model in this paper is the first step to-
wards the development of a larger risk model ad-
dressing mission outcomes of operations with multi-
ple AUVs, unmanned surface and aerial vehicles, 
and other unmanned underwater vehicles. The model 
can be used to analyze risk before a mission, to iden-
tify shortcomings of the mission plan and the con-
duction of operation. This is necessary to be aware 
of and counteract any shortcomings before the mis-
sion is executed.  

The model in this paper is limited to the operation 
of AUVs. Other types of autonomous vehicles will 
not be covered explicitly. The model presented is 
applicable to operation of multiple AUVs simulta-
neously even though the description in this paper re-
fers to one AUV, only. The analysis is focused on 
the assessment of monitoring success during a mis-
sion.  

2 RELATED WORK 

Several attempts to analyze the reliability and risk in 
AUV operation have been made, focusing on the 
technical aspects and faults of AUV systems. The 
AUTOSUB AUVs of the National Oceanography 
Centre, Southampton have been analyzed with re-
spect to reliability and risk associated to under ice 
operation (Griffiths et al., 2003, Griffiths and Brito, 
2008, Brito and Griffiths, 2009). The reliability was 
derived by expert judgement based on the fault logs 
of the vehicle. Brito and Griffiths (2011) used a 
Markov model to assess the reliability of the AU-
TOSUB 3. The aim was to identify the probability of 
critical states that might lead to loss of the vehicle. 
The transition rates were based on the aforemen-
tioned literature. 

Using expert judgment on the fault logs of a RE-
MUS 100 AUV, Griffiths et al. (2009) analyzed the 
probability of successful missions for these kind of 
AUVs in different scenarios. Thieme et al. (2015) 
develop a risk management framework incorporating 
HOFs, including a case study focusing on the opera-
tion of a REMUS 100 AUV. They rely mainly on 
the SPAR-H human reliability assessment (HRA) 
method. Two events from Thieme et al. (2015) refer 
to monitoring of the AUV during a mission; “Crew 
insufficiently monitors AUV during mission” and 
“Crew does not detect unexpected behavior”. 

Different applications of BBN are described in the 
literature. This paper refers to those in the marine 
and maritime environment, e.g., collision (Martins 
and Maturana, 2009), grounding risk (Akhtar and 
Utne, 2014), and offshore maintenance work 
(Vinnem et al., 2012). Mkrtchyan et al. (2015) give a 
wider overview of applications of BBN in HRA. 

3 MODELLING 

3.1 Bayesian Belief Network 

A BBN is an acyclic directed graph and consists of 
nodes and arcs. Each node is associated with a set of 
variables, representing the state of the node. An arc 
connects a parent node with a child node and is as-
sociated with a conditional probability table (CPT) 
that determines the probability distribution of the 
child node based on the parent nodes. The Bayesian 
reasoning law may be applied to these nodes to find, 
based on the child nodes, the state of the parent 
nodes (Jensen and Nielsen, 2009).  

Figure 1 shows the resulting model for Monitor-
ing Success. The nodes in Figure 1 are categorized 
in outcome, i.e., mission success (orange), RIFs as-
sociated with the human operator (blue), design and 
technical RIFs (yellow), organizational RIFs (grey), 
and environmental RIFs (green). The model in this 
paper was created with the computer program GeNIe 
(Decision Systems Laboratory of the University of 
Pittsburgh, 2013). 

Monitoring success related to AUV operation in-
cludes detecting the need for an action, identification 
of actions, and execution of the right actions. The 
need for action might arise if there is an unforeseen 
change in the operational conditions (weather, sea 
state), the vehicle follows a different path than 
planned or expected, other vessels (especially fish-
ing vessels) approaching the AUV, or bad vehicle 
performance (slow, wide turning radii, few messages 
received ) (Stokey et al., 1999, Manley, 2007, 
Kirkwood, 2009). The vehicle provides status mes-
sages regarding incidents that may occur during mis-
sion, especially problems with navigation, excessive 
energy consumption, mission abort due to a fault or 
excess of a set limit. Despite these messages, the op-



erator has to be aware of current intentions and ac-
tions of the AUV. 

3.2 Model description 

Ho et al. (2011) highlight Situational Awareness 
(SA) as a problem for AUV supervision. Ho et al. 
(2011) state that the influences on SA are Time De-
lays, Loss of Status Messages, Trust in the System 
and Additional Workload (AW) during the task. On-
ly intermittent status messages are sent with limited 
information, due to low data transfer rates. On the 
one hand, this makes continuous monitoring obso-
lete, but if an unforeseen event should occur, it is 
even more difficult for the operator to identify the 
correct actions to take. SA research in the context of 
AUV is limited in the scientific literature. The de-
veloped model in this paper includes two main RIFs 
on SA, namely the state of the Human Operator and 
the Quality of HMI. Table 1 describes the factors 
identified for the BBN model and associated 
sources. The most important ones are detailed be-
low. 

Parasuraman and Miller (2004) investigate Trust 
in automated/autonomous systems. RIFs on Trust 
were modeled, accordingly; namely Automation Et-
iquette and AW. Sheridan and Parasuraman (2005) 
identify influences affecting performance in human 
machine interaction. One influence highlighted and 
hence integrated in the present model (as a node) is 
Automation Etiquette. It describes the way a system 
presents information and status messages to the hu-
man operator. This both influences Trust in the Sys-
tem, because a disruptive system is less likely to be 
trusted and relied upon, and the Quality of HMI. The 

Quality of HMI summarizes the design properties of 
the human-machine interface, Loss of Status Mes-
sages and, aforementioned, Automation Etiquette. 

Environmental Conditions is not directly con-
nected to SA, although it is important to monitor the 
environment. Environmental Conditions affects the 
state of the Human Operator and partly the Quality 
of HMI. The reasons are that motion induced by 
waves and wind will influence operator performance 
in some way, as well as the usability of the equip-
ment. This is of course highly dependent on the ves-
sel the operation takes place on. 

Other models, e.g., Davoudian et al. (1994), Aven 
et al. (2006), Aas (2008), Vinnem et al. (2012), 
Groth and Swiler (2013), Akhtar and Utne (2014) 
give input to inclusion of more generic HOF, such as 
Communication, Training of Operators, Procedures, 
Human Fatigue and Weather.  

The literature does not directly mention the RIFs 
Human Operator, Quality of HMI and Environmen-
tal Conditions; these nodes were introduced in the 
present model to facilitate a future elicitation process 
by reducing the number of parent nodes on the node 
SA (cf. next Section). The last node without refer-
ences in Table 1 (Sea state) was added to highlight 
the underlying influences, as described above. 

3.3 Suggested states for the nodes 

Table 2 summarizes the proposed states for the 
nodes described in Table 1. The states represent a 
suggestion for a reasonable discretization of the var-
iables. For some nodes, the states are obvious, for 
the less obvious, the states will be described below. 

Figure 1 BBN model for monitoring success 

Colors: Orange – outcome, blue – RIFs associated with the human operator, yellow – design and technical RIFs, grey – or-

ganizational RIFs, green – environmental RIFs 



Human operator refers to the overall state of the 
operator, so “none” means, in this case, that the op-
erator/s are not prepared, enabled and/ or qualified 
for the monitoring task under the given circumstanc-
es. A “low” state of a human operator implies that 
the operator is prepared/ enabled for the task of 
monitoring the AUV, but not sufficiently. A “high” 

human operator is accordingly in a very good state 
for the monitoring task. An “adequate” human oper-
ator is in a state, such that she or he is able to handle 
the monitoring task adequately. 

AW has four states; none, low, adequate, high. 
“None” or “low” AW means that no other or only 
few other tasks are executed besides monitoring the 

Table 1 Description of factors in the BBN with the top node “monitoring success” 

 
Node Description Source 

Additional Work-

load 

Proportion of other tasks that have to be executed additional to 

monitoring, e.g., preparation of equipment or evaluating data from 

a previous mission.  

Parasuraman and Miller (2004), 

Ho et al. (2011), Fouse et al. 

(2012) 

Communication 
Quality and level of communication among operators and other 

crewmembers to relay information during operation. 
Included in other models1 

Environmental 

Conditions 
Summary node for all the RIF from the environment.  

Experience of 

Operators 

Level of experience of the operators with the AUV system and its 

operation. 

Manley (2007), Included in other 

models 

Human Fatigue 

Fatigue is defined by Gander et al. (2011) as: Inability to function 

at the desired level due to incomplete recovery from the demands of 

prior work and other waking activities. 

Akhtar and Utne (2014) 

Human Operator 
Summary node for all the RIF influencing the operator and repre-

senting the operator’s ability to be aware of the ongoing mission.  
 

Interface Design 

The adequacy of the physical interface, which is used to monitor 

the system, e.g., computer terminal in control room, or use of ergo-

nomic design principles. 

Garcia et al. (2010) 

Loss of Status 

Messages 

The proportion of messages that are not received by the transponder 

and lost. 
Ho et al. (2011) 

Mission Duration The amount of time the operator(s) have to monitor the AUV. 
Time (e.g., work scheme) Includ-

ed in other models 

Monitoring Suc-

cess 

Probability to successful monitor the AUV and detect faults, deteri-

orating operational conditions or deviations that are not detected by 

autonomous functions. 

 

Procedures 
Documentation that describes operation and provides guidance for 

the operator. 

Giese et al. (2013), Included in 

other models 

Quality of HMI 
Summary node for the overall quality of the human machine Inter-

face (HMI), used to obtain an overview of operation. 
Ho et al. (2011) 

Sea State Expected wave height during a mission.  

Situational 

Awareness 

Ability to monitor the system, comprehend the information and 

take the right decisions. 

Baxter and Bass (1998), Ho et al. 

(2011), Johnson and Lane (2011) 

Automation Eti-

quette 

The way information is presented to the operators and important in-

formation is highlighted. 

Parasuraman and Miller (2004), 

Garcia et al. (2010), Ho et al. 

(2011) 

Time Delay 

The delay of time between a message being sent from the AUV and 

being received by the operator. This delay is proportional to the dis-

tance between AUV and transponder on the monitoring vessel. 

Ho et al. (2011) 

Training of Oper-

ators 

The amount of training Operators received to monitor the AUV and 

decision making in abnormal cases. 
Included in other models 

Trust in the Sys-

tem 

Reflects the operator’s belief in the autonomous capabilities of the 

AUV. 

Parasuraman and Miller (2004), 

Johnson et al. (2007), Ho et al. 

(2011) 

Weather 
Condition of the atmospherically weather during operation, in this 

case wind is assumingly the main influence.  
Partly included in other models 

1 These factors were found partly in other frameworks or models and seem applicable here, such as Davoudian et al. (1994), 

Aven et al. (2006), Aas (2008), Vinnem et al. (2012), Groth and Swiler (2013), Akhtar and Utne (2014)  

 

 



AUV. This might lead to Human fatigue in terms of 
monotony. A “high” AW may lead to negligence of 
the monitoring task. An “adequate” AW is a state 
where other tasks keep the operator busy so he/she is 
not bored, but on the other hand not to too occupied 
to neglect her/ his monitoring task.  

 
Table 2 Proposed states for each node 

 
Node Proposed states 

Additional Workload None, Low, Adequate, High 

Communication None, Bad, Adequate, Good  

Environmental Conditions 

Beyond operational conditions, 

Close to operational limit, Medium, 

Good 

Experience of Operators 

None, Low, Nominal, High  

(e.g., less than a half year, one half 

to one years, two to five years, 

more than five years) 

Human Fatigue High, Nominal, Low 

Human Operator None, Low, Adequate, High 

Interface Design Inadequate, Low, Adequate, Good 

Loss of Status Messages Low, Medium, High 

Mission Duration 

Short (Less than 2 hours), Medium, 

Long (more than 8 hours, longer 

than one shift) 

Monitoring Success Success, Failure 

Procedures 
None available, Less than Ade-

quate, Adequate, Good 

Quality of HMI Inadequate, Low, Adequate, High 

Sea State 
Smooth, Small Waves, Operational 

limit 

Situational Awareness None, Low, Adequate, High 

Automation Etiquette Disruptive, Adequate, Helpful 

Time Delay Short, Medium, Long 

Training of Operators None, Low, Adequate, High 

Trust in the System Distrust, Adequate, Overreliance 

Weather Calm, Windy, Storm 

 
The states of Automation Etiquette reflect the 

way system informs the operator about events, e.g., 
status updates. A “Disruptive” etiquette, for exam-
ple, pushes new information to the foreground of the 
interface, although the operator is occupied with an-
other task and is interrupted by this message. A 
“Helpful” Automation Etiquette will prompt status 
updates if necessary, in a way that the operator can 
finish his/her current task without interruption. 
These states are based on research by Parasuraman 
and Miller (2004)  

Trust in the system includes two opposing states. 
“Distrust” expresses that the operator will be skepti-
cal towards the information given and might be re-
luctant to react to some information, until it is con-
firmed by several status updates. “Overreliance” 
expresses the state when an operator assumes that 
the AUV status messages and monitoring system 

will inform her or him if an important event should 
occur, disregarding possible failures to do so. 

Weather only includes states that refer to wind, 
since this influences vessel motion, while rain and 
temperature have a minor influence on the operators. 
However, the states depend on the area of operation 
and the vessel/ operation control room.   

3.4 Utilization of the BNN 

The following example demonstrates the application 
of the BBN model. Two experienced operators con-
duct a subsea pipeline inspection  with an AUV. Op-
eration takes place under good weather conditions. 
The current shift uploaded the mission plan and 
started it. As additional work, the operators have to 
evaluate mission data collected during a prior mis-
sion. The shift is going to be relieved soon and the 
risk level during the next shift is assessed. During 
the next shift, a storm is expected. The operators in 
the next shift have been working with this particular 
AUV system only for a short time and they did not 
spent much time working together. This implies a 
low experience, low communication, and operational 
conditions close to the operational limits. A decrease 
of monitoring success probability from the first shift 
to the second shift is expected. This decreased suc-
cess probability and associated lower situational 
awareness can be counteracted by, e.g., decreasing 
additional workload or changing the settings for sta-
tus update prompting, so the operators are better in-
formed and focus more on monitoring, if the opera-
tional conditions require this. 

3.5 Conditional probability tables 

The quantitative relationship between parent nodes 
and children nodes can be determined by conditional 
probability tables CPT (Jensen and Nielsen, 2009). 
Elicitation of CPT can be resource demanding. Cur-
rently, a data driven approach to derive the CPT is 
not applicable, since only few incident reports have 
been published regarding operation of AUVs and 
monitoring success. Including expert judgments for 
development of the CPT is possible, and is subject to 
further work.  

An option could be to weight the influence of the 
parent nodes on the child node with the analytical 
hierarchy process (AHP) (Saaty and Vargas, 2012). 
To find the state of the child, the ratings must be 
transformed from the verbal scale to a numerical 
scale. The weighted sum of the states can be used to 
find the mean rating of the child node, around which 
the probabilities for the child’s states are distributed 
with, e.g., the triangular distribution or the beta-
distribution (Vinnem et al., 2012). Further investiga-
tion is necessary to determine adequate distributions 
for this case. 



3.6 Quantification of the model 

The overall aim of the BBN model is to find the 
probability of a successful mission. Only part of the 
model, focusing on Monitoring Success, is presented 
in this paper. The CPT and the initial states of the 
input nodes determine this probability. Input nodes 
are only parent nodes. Some of these states, e.g., 
Mission Duration, Sea State or Weather, can be pre-
dicted quite reliably. For the initial states of the hu-
man and organizational RIF (e.g., Training of opera-
tors, Communication, Experience, Procedures, 
Automation Etiquette) questionnaire surveys or in-
terviews among operators can be used. The initial 
states could be distributed accordingly around the 
mean rating of operators.  

For some of the RIF organizational risk indicators 
could be used, e.g., procedures (how often are pro-
cedures violated, procedures and documentation 
available per task) or experience (mean experience 
of operators). Further examples are given by, e.g., 
(Øien, 2001 b). 

4 DISCUSSION 

4.1 BBN model 

The qualitative model developed in this paper repre-
sents the relationships between the nodes described 
in Table 1 and Table 2 without creating a too com-
plex network. 

One RIF that has been excluded from the model 
is the individual personality of an operator. Individ-
ual personality includes the mindset of an operator, 
her/ his mood, attitudes, personal problems (Alco-
hol, Drug abuse), etc. This RIF is difficult to assess 
and would exceed the scope of this paper.  

Situational awareness includes perception and 
comprehension of a situation, decision-making and 
execution and implementation of a decision. These 
processes are not modelled separately, but as a com-
bined influence on monitoring success. It is believed 
that a separate modelling would increase the model 
size and complexity without adding new insights in-
to operation. Another RIF, which is not explicitly 
included, is task complexity, included in e.g., Groth 
and Swiler (2013). This is assumed part of the node 
AW, since a higher workload will increase task 
complexity and vice versa. Operators are, in most 
cases, involved in mission planning, which reduces 
task complexity from the operators point of view, 
since she/ he is more familiar with the mission. 

The node AW itself is quite undeveloped. It com-
prises several RIFs and might have to be further ana-
lyzed to identify underlying RIFs. The literature re-
lated to this RIF focuses mostly on the relationship 
between performance and AW, e.g., Fouse et al. 
(2012). 

Human Fatigue and underlying influences is a re-
search topic on its own. In the BBN, it is included as 
solely dependent on AW and Mission Duration, 
which is a limitation. As mentioned, individual per-
sonality is not included, which may influence Hu-
man Fatigue. Mission Duration and its influence is 
included, although mission planning errors or setup 
errors in most cases manifest themselves in the early 
stages of a mission. Some planning errors might 
manifest itself quite late, e.g., a coordinate error for 
one of the last waypoints. 

Three summarizing nodes, Human Operator, 
Quality of HMI and Environmental Conditions, are 
added in the model. These nodes have two ad-
vantages: Firstly, the deduction process of the CPT 
for SA is reduced. Secondly, modelling of synergies 
and negating effects can be included in the CPTs. 
An example is that good experience could negate the 
effect of low quality procedures. 

Concerning the RIF from other models and 
frameworks, each of the publications included in 
Table 1 presents a variety of RIFs, but only the rele-
vant and applicable ones were included in the pre-
sent model. For Example, higher management deci-
sions were not included, in contrast to, e.g., Vinnem 
et al. (2012). 

4.2 States and Quantification 

A general point for discussion is the choice of states 
for the nodes. The literature ranges from two states 
per node (Akhtar and Utne, 2014) to six states per 
node (Vinnem et al., 2012). Few states simplify the 
process of CPT elicitation, but might not reflect suf-
ficiently the possible states a RIF may have in reali-
ty. A high number of states per node will lead to bet-
ter resolution, but increases the number of necessary 
elicitations exponentially. Three states for each seem 
adequate in the presented case. 

Finding the probability of monitoring success 
needs input from operators. They need to assess the 
current state of the input nodes affecting the human 
operator and on HMI design. Quantification could 
also be achieved by using organizational risk indica-
tors, which require a continuous collection of data 
for a certain operating period in order to be signifi-
cant and representable. The assessment of states may 
also give input to the improvement of operation, by 
highlighting weaknesses and influence on risk. A 
sensitivity analysis may point out the factors that 
need most attention, but also those factors that have 
to be assessed with care, because of their high influ-
ence on the model outcome. 

CONCLUSION AND FURTHER WORK 

This paper presents a Bayesian Belief Network 
(BBN) to determine the monitoring success of an 



Autonomous Underwater Vehicle (AUV) mission. 
Risk Influencing factors (RIF) for the BBN were 
found in the literature and influences were modeled, 
accordingly. Very limited work has been done pre-
viously to model these interactions for AUV with a 
BBN. It is believed that the risk model is not only 
applicable to AUV operation, but also to unmanned 
aerial and unmanned surface vehicles. For these op-
erations, however, modifications to the BBN might 
be necessary.  

According to the literature; Trust in the System, 
Automation Etiquette, Additional Workload, Time 
Delay and Loss of Status Messages are the main in-
fluences on Situational Awareness and, accordingly, 
on Monitoring Success of the AUV. RIF that were 
included, but so far are not mentioned in the litera-
ture in connection with monitoring of AUV opera-
tions are Human Fatigue and Environmental Condi-
tions (including Weather and Sea state). The aspects 
in the model should be considered in future AUV 
operations and in the design of new AUV and inter-
faces. Even though the BBN model has not been 
quantified yet, it is believed that the model will help 
improve operations by clarifying the strength of rela-
tionships between risk and HOF, and highlighting 
any challenging areas.  

Future work is to quantify the relationships and 
evaluate the model quantitatively. The model pre-
sented in this paper is part of a larger model, which 
is currently under development. The total model will 
assess mission performance of multiple unmanned 
and autonomous vehicles in marine environments 
and associated risks, prior to the mission. 
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