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Abstract This paper combines fault-dependent con-

trol allocation with three different control schemes to

obtain fault tolerance in the longitudinal control of un-

manned aerial vehicles. The paper shows that fault-

dependent control allocation is able to accommodate

actuator faults that would otherwise be critical and it

makes a performance assessment for the different con-

trol algorithms: an L1 adaptive backstepping controller;

a robust sliding mode controller; and a standard PID

controller. The actuator faults considered are the par-

tial to total loss of the elevator, which is a critical com-

ponent for the safe operation of unmanned aerial vehi-

cles. During nominal operation, only the main actua-

tor, namely the elevator, is active for pitch control. In

the event of a partial or total loss of the elevator, fault-

dependent control allocation is used to redistribute con-
trol to available healthy actuators. Using simulations

of a Cessna 182 aircraft model, controller performance

and robustness are evaluated by metrics that assess

control accuracy and energy use. System uncertainties

are investigated over an envelope of pertinent variation,

showing that sliding mode and L1 adaptive backstep-

ping provide robustness, where PID control falls short.

Additionally, a key finding is that the fault-dependent
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control allocation is instrumental when handling actu-

ator faults.
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1 Introduction

Critical safety issues must be considered when dealing

with aircraft such as unmanned aerial vehicles (UAVs).

In order to minimize risk of fault and failures, com-

prehensive checks are performed and meticulous main-

tenance is done regularly. Failures nevertheless occur,

and actuator and control surfaces have particularly high

criticality. Actuator redundancy can deal with some of

the safety issues for UAVs, and fault-tolerant control

(FTC) strategies can be employed to utilise such re-

dundancy in the actuators.

Several different control methods have been applied

to improve aircraft reliability. An overview of the recent

development of FTC methods for aerial vehicles are

given in [1], [2], [3] and [4]. Specific fault diagnosis ap-

proaches are treated in [5], [6], [7] and [8] related to con-

trol surfaces, and in [9] to the airspeed sensor system.

Two control techniques, sliding mode control (SMC)

[10], [11] and L1 adaptive control [12], are claimed to

offer robust properties against matched uncertainties.

The performance of SMC for attitude control of a fixed-

wing UAV is investigated in [13] where SMC is able to
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handle partial loss of a control surface. To make the

system fault tolerant against the total loss of a control

surface, a sliding mode observer is introduced in [14],

making it possible to estimate a specific actuator fault.

The authors of [15] use SMC on a linear aircraft model

for FTC without the use of fault detection and isolation

(FDI), which is referred to as passive FTC. The same

authors implement SMC using control allocation in [16]

and apply this method on the SIMONA research simu-

lator in [17], showing that the controller is redistributed

to the functioning actuator when a fault happens on the

elevator. The L1 adaptive control technique is shown

in [18] to be robust against faulty actuators, while the

L1 adaptive backstepping control (L1-AB) technique is

used in [19] as the pitch autopilot for an agile missile.

Control allocation (CA) is based on separating the

control law from the signal distribution task, which

gives CA the possibility to be combined with many

different control laws. This is done in [20] by design-

ing a controller to provide a “virtual control” which is

mapped to the actual control signals sent to the actua-

tors. The CA approach can manage the redundancy of

an over-actuated system [21]. The combination of L1-

AB and CA is explored in [22] to control an F16 in a

fault-free case. In [23], a fault-dependent control alloca-

tion scheme was developed and combined with L1-AB.

In [1], SMC and CA is combined to analyse the perfor-

mance for FTC applications. A further improvement is

proposed in [24] using an integral sliding mode (ISM),

which combines a controller that handles uncertainties

of a system with the sliding mode control. If the sys-

tem is subjected to external bounded disturbances, the

ISM will compensate using sliding mode control while

the original controller handles the unperturbed system

[25]. In [26], an FTC structure which handles control

surface failure is introduced by a combined use of gen-

eralized dynamic inversion control and ISM control. An

over-actuated aircraft can easily maintain the required

forces and moments even though a fault has occurred

by applying the CA approaches suggested in [1] and

[25]. However, many small UAVs are not over-actuated

and hence using the CA from [1] is not possible.

This paper is based on the work in [23]. Here, we

suggest a new control allocation approach to handle the

non-over-actuated control surface configuration usually

found on smaller aircraft. Balancing obtainable forces

and moments, the CA is shown to help achieve a nec-

essary flight envelope in case of faults, and also being

able to prioritize such that stabilisability is preserved.

The fault-hiding property of the CA is then utilised by

stabilising control to obtain a total fault-tolerant con-

trol system. The achievable performance is compared

for three controller designs: A conventional PID, a ro-

bust controller in the form of sliding mode and an adap-

tive controller in the form of L1 adaptive backstepping.

The PID is employed being a widely used baseline de-

sign in industry. Simulation results are made using a

high-fidelity aircraft model [27] of a Cessna 182 with

non-redundant actuation: an elevator to control pitch;

a rudder to mainly control yaw; a pair of ailerons to

control roll; and a throttle to control forward thrust.

It is shown that the fault-dependent control allocation

makes it possible for all the considered controllers to

achieve excellent tracking performance even though a

fault is occurring, and that the controllers have the abil-

ity to compensate for internal uncertainties. Addition-

ally, it is shown that an adaptive controller in the form

of L1 adaptive backstepping and a robust controller in

the form of sliding mode perform better than the PID

controller.

The structure of the paper is as follows: A math-

ematical model, assumptions and fault modelling are

presented in Section 2; Section 3 deals with control al-

location; Section 4 presents the controllers developed

for the fixed-wing UAV; Section 5 includes definition

of metrics, simulation results and performance evalua-

tion obtained from the combination of the control laws

and the control allocation; while Section 6 concludes

the paper.

2 Aircraft Dynamics
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Fig. 1: Schematic of the longitudinal motion of an aircraft

Longitudinal aircraft motion is considered, where

the state vector xlon
4
= [θ,Q, α, Vt]

> is defined, with
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the components pitch angle θ [rad], pitch rate Q [rad/s],

angle of attack α [rad] and true airspeed Vt [m/s] , see

Fig. 1. The dynamics of the longitudinal aircraft model

can be stated as [28]:

θ̇ =Q (1)

IyQ̇ =m̄(Q,α, α̇, Vt, δe)

=q̄S̄c̄

(
cm0 + c∗mαα+ cmδeδe

+
c̄

2Vt

(
c∗mα̇α̇+ c∗mQQ

))
(2)

mVtα̇ =mg cos(θ − α)− T sin(α)− L+mVtQ (3)

mV̇t =T cos(α)−D −mg sin(θ − α), (4)

where m > 0 [kg] is the mass of the aircraft, g = 9.81

[m/s2] the gravity constant, Iy the y-moment of inertia,

q̄ = 1
2ρV

2
t the dynamic pressure, S̄ wing area, c̄ the

mean aerodynamic chord of the wing, ρ air density, δe
deflection angle of the elevator and T engine thrust,

which is modelled as

T =
ηδt
Vt
, (5)

where η is the propeller efficiency [%] and δt is input

power [W]. Furthermore, the relations between the drag

D, lift L, side force Y , roll moment l̄, pitch moment m̄,

yaw moment n̄ and the deflection of the control surfaces

are [28]:

D = q̄S̄[cD(xlon, δe) +∆D(xlon, δe)] (6)

L = q̄S̄[cL(xlon, δe) +∆L(xlon, δe)] (7)

Y = q̄S̄[cY (xlat, δa, δr) +∆Y (xlat, δa, δr)] (8)

l̄ = q̄S̄b[cl(xlat, δa, δr) +∆l(xlat, δa, δr)] (9)

m̄ = q̄S̄c̄[cm(xlon, δe) +∆m(xlon, δe)] (10)

n̄ = q̄S̄b[cn(xlat, δa, δr) +∆n(xlat, δa, δr)], (11)

where xlat
4
= [φ, ψ, P,R, β]> represents the lateral air-

craft states, b the wing span, δa the deflection angle

of the ailerons and δr the deflection angle of the rud-

der. The ∆i(x, δ) terms, where the index i refers to

forces and moments of (6)-(11), are unmodelled dy-

namics caused by uncertainty of the aerodynamic co-

efficients. It is assumed that ∆i(x, δ) are unknown but

bounded, as

||∆i(x, δ)|| ≤ υi(x, δ), (12)

where υi(x, δ) > 0 is a known function.

2.1 Assumptions

The control objective is to track a reference signal of the

pitch angle θd, see Section 4. In order to design a con-

troller which fulfils this control objective, it is assumed

that the true airspeed can be controlled separately and

therefore can be neglected from the pitch controller de-

sign.

The angle of attack and true airspeed need to meet

the conditions:

|α| ≤ αmax (13)

|α̇| ≤ α̇max (14)

Vt,min ≤ Vt ≤ Vt,max. (15)

The stall condition and the fear of structural damage

to the wings are the reasons for these assumptions. It

is assumed that uncertainties only exist in the coef-

ficients of the pitch moment m̄ and that the aerody-

namic coefficients cm0 and cmδe are known. In [29] and

[30], it is shown through system identification that these

coefficients are almost perfectly identified, which gives

the justification for this assumption about these coef-

ficients. In [31], uncertainty in the control signal and

external disturbances are also considered.

For the rest of the aerodynamic coefficients, the re-

lationship between the real and assumed coefficients is

parametrised as

c∗mα = σαcmα (16)

c∗mα̇ = σα̇cmα̇ (17)

c∗mQ = σQcmQ, (18)

where c∗mi represents the true coefficients, σα ∈ R+ is

the uncertainty associated with the coefficient of pitch

moment with respect to the angle of attack, σα̇ ∈ R+ is

the uncertainty associated with the coefficient of pitch

moment with respect to the derivative of the angle of

attack, and σQ ∈ R+ is the uncertainty associated with

the coefficient of pitch moment with respect to the pitch

rate. Additionally, it is assumed that σ̇α = σ̇α̇ = σ̇Q =

0, i.e. the uncertainties are constant or slowly varying

relative to the aircraft dynamics.

Using these assumptions, the longitudinal motion in

(1)-(4) becomes

θ̇ =Q (19)

IyQ̇ =q̄S̄c̄

(
cm0 + σαcmαα+ cmδeδe

+
c̄

2Vt
(σα̇cmα̇α̇+ σQcmQQ)

)
. (20)
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2.2 Possible Faults

The following fault models are based on [1] and [15]. In

this paper, it is assumed that only the elevator can be

faulty. Elevator faults can be categorised as:

(a) Partial faults, which are commonly occurring in small

aircraft. A partial actuator fault can be modelled as

δe(t) = W(t)δ(t), (21)

where δe ∈ R3 is the effective control vector, δ ∈
R3 is the control vector and W(t) represents the

effectiveness of the actuators. The matrix W(t) ∈
R3×3 is defined as

W(t)
4
= diag(w1(t), w2(t), w3(t)) = I−K(t), (22)

where I ∈ R3×3 is the identity matrix and K(t) ∈
R3×3 is the multiplicative fault matrix, which is de-

fined for the aircraft as

K(t)
4
= diag(k1(t), k2(t), k3(t)) (23)

with ki(t) ∈ [0, 1), which is associated with the el-

evator, ailerons and rudder control surfaces. Here,

ki = 0 means that the ith control surface is in a

fault-free condition, while ki = 1 indicates that a

total loss of effectiveness on the ith control surface

has occurred.

(b) Total faults, which include

– Stuck-in-place, which is defined as an actuator

stuck at a fixed position being immovable

– Hard-over, which is a special case of a stuck-

in-place fault, where an actuator is stuck at an

extreme position being immovable

– Loss of control surface.

A total fault is modelled as

δei (t) = kiδi,f , (24)

where δi,f is the control input which the ith control

surface receives if it has a total fault. If the fault

that has occurred is a stuck-in-place actuator fault

then δi,f = c with c ∈ [δi,min, δi,max] and ċ = 0. A

hard-over fault is a special case of a stuck-in-place

fault where δi,f = δi,min or δi,f = δi,max. A total

loss of effectiveness on the ith control surface could

also occur if the control surface is detached from the

plane, i.e. δi,f = 0.

It is assumed in this paper that we have a fault

detection and isolation scheme which is able to estimate

the faults. For a real-world scenario, W(t) in (22) can

be obtained by a separate fault identification scheme,

see e.g. [1], [4], [9] and [32].

3 Fault-dependent Control Allocation

The role of the Control allocation (CA) is the following:

Given commanded forces and moments from the con-

trollers, calculate deflection of the control surfaces such

that the commands are fulfilled. “A control allocation

algorithm’s primary objective is to compute a control

input that ensures that the virtual control command is

produced jointly by the effectors at all time” [20]. A

general schematic of the proposed fault-dependent con-

trol allocation scheme is displayed in Fig. 2.

Three quantities are particularly important to de-

rive the deflection angles on control surfaces: lift force,

roll moment and yaw moment. The lift force ensures

the aircraft remains airborne, while the roll and yaw

moment are needed to stabilize the aircraft. We note

that the control allocation does not take into account

that some uncertainty exist in the pitch moment. For

notational simplicity, time t is omitted in the following.

Omitting the uncertainties ∆i(x, δ), the lift force, roll

moment and yaw moment in (7), (9) and (11) are

L = q̄S̄

(
cL(xlon) +

∂cL
∂δe

δe

)
(25)

l̄ = q̄S̄b

(
cl(xlat) +

∂cl
∂δa

δa +
∂cl
∂δr

δr

)
(26)

n̄ = q̄S̄b

(
cn(xlat) +

∂cn
∂δa

δa +
∂cn
∂δr

δr

)
. (27)

In the fault-free case, the deflection angles on the

control surfaces are

δe,nom =
1

q̄S̄ ∂cL∂δe

(
L− q̄S̄cL(xlon)

)
, (28)

δa,nom =
1

q̄S̄b ∂cl∂δa

(
l̄ − q̄S̄b

(
cl(xlat) +

∂cl
∂δr

δr

))
, (29)

δr,nom =
1

q̄S̄b
(
∂cl
∂δa

∂cn
∂δr
− ∂cl

∂δr
∂cn
∂δa

) (∂cn
∂δa

(
q̄S̄bcl(xlat)

−l̄
)

+
∂cl
∂δa

(
n̄− q̄S̄bcn(xlat)

))
, (30)

where it is assumed that the aerodynamic coefficients
∂cL
∂δe

, ∂cl
∂δa

, ∂cl
∂δr

, ∂cn
∂δa

and ∂cn
∂δr

are constant and nonzero

around a stationary condition. This assumption is based

on results from wind tunnel tests [33].

Saturation of deflection angle is

δi,min ≤ δi ≤ δi,max, (31)

where the index i refers to elevator, ailerons or rudder.



UAV Fault-tolerant Control 5

Effectiveness
Aircraft dynamics

Thrust controller  

Pitch controller  
Fault-dependent
control allocation

Fault

δee(t) = w1(t)δe(t)

δee(t)δe,nom(t)

δe,c(t)

δt(t)δa(t)

xlon(t)

Vt(t)

k1(t)k1(t)

Fig. 2: Schematic of the fault-dependent control allocation implementation

3.1 Handling of Faults

In the following example, we consider a scenario where

the elevator is faulty. However, this procedure can be

incorporated into a general case. To overcome a partial

or total elevator fault, the ailerons are subsequently re-

configured such that they work as a second set of ele-

vators. The deflection angle for the ailerons δa is then

recalculated for the drag force, lift force and pitch mo-

ment. In this paper, it is desired to control the pitch

moment, which also affects the other inputs in the lon-

gitudinal system. The deflection angle for the ailerons

δa is a function of effectiveness on the elevator, where

the goal is to maintain the pitch moment m̄

δa =
1

q̄S̄c̄∂cm∂δa

(
m̄− q̄S̄c̄

(
cm(xlon) +

∂cm
∂δe

w1δe

))
.

(32)

The CA approach for the elevator is evaluated in

Fig. 3 over the range [δe,min, δe,max] for the fault-free

case and with a partial loss on the elevator. The input

for the evaluation is the demanded deflection on the

elevator δe,nom, which has a limitation of [-22:18] de-

grees, and the output is the pitch moment which the

fault-dependent control allocation using the aileron re-

distribution manages to obtain. Fig. 3 also shows the

difference between the fault-free and the faulty cases

and from which set point it is possible to maintain the

same pitch moment by compensating the loss of the el-

evator with the ailerons. The span where the error is

zero will decrease with the loss of effectiveness of the

elevator.

A method to improve the allocation span is

δe =
δe,nom
w1 + %

(33)

δa =
1

q̄S̄c̄∂cm∂δa

(
m̄− q̄S̄c̄

(
cm(xlon) +

∂cm
∂δe

δew1

))
,

(34)

where % > 0 is a small positive constant. However, this

is only possible if the elevator is not saturated and only

if it is a partial fault. The result of the approach in

(33)-(34) gives a small improvement in the span where

the pitch moment of the fault-free and faulty cases are
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Fig. 3: Plots of the fault-free, faulty and difference between the fault-free and faulty cases with fault-dependent control
allocation for the pitch moment

the same.

In order to compensate for model uncertainties, a

robust controller in the form of sliding mode and an

adaptive controller in the form of L1 adaptive back-

stepping, which are known to handle unknown system

parameters, are implemented. Additionally, a PID con-

troller is implemented as a baseline.

4 Controller Design

This section presents procedures for a conventional PID

controller, a robust controller in the form of sliding

mode and an adaptive controller in the form of L1

adaptive backstepping for the longitudinal dynamics.

The controller receives the pitch angle θ and pitch rate

Q and gives a commanded control input as the de-

flection angle on the elevator δe,c, which is converted

into demanded force and moment in the control allo-

cation block. The control objective is to make |θ(t) −
θd(t)| → 0, where the desired pitch angle θd(t) is C2
and bounded. This reference signal is typically defined

by a human or generated by a guidance system. For

notational simplicity, time t is omitted in the following.

4.1 PID Control

The control law for a PID controller can be chosen as

δe,c = Kp,θ
τis+ 1

τis

τds+ 1

aτds+ 1
ep, (35)

where

ep
4
= θd − θ. (36)

By making an input-output linearisation of (19)-(20)

and since it is known from [33] that cm(·) < 0, the trans-

fer function has a negative numerator, which changes
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the control law to

δe,c = −Kp,θ
τis+ 1

τis

τds+ 1

aτds+ 1
ep, (37)

We have additionally introduced an anti-windup method

to the PID controller since the elevator can saturate.

4.2 Sliding Mode Control (SMC)

The SMC design is divided into two stages: The first

concerns the design of the sliding surface, while the sec-

ond stage is designing the control law where the sliding

mode is obtained. For the design of the control law, the

assumed model parameters in Section 2.1 are used.

4.2.1 Sliding Surface Design

First, a sliding surface is defined by S 4= {e : s = 0},
where e is vector of tracking errors and s is the switch-

ing function. The design of this sliding surface is for-

mulated in [10] and [34], while this paper will use an

approach inspired by [34].

The error signals are

e1
4
= θ − θd (38)

e2
4
= ė1 = θ̇ − θ̇d = Q−Qd, (39)

and their derivatives are

ė1 = e2 (40)

ė2 = Q̇− Q̇d. (41)

Let the sliding surface be

s = e2 +A1e1 = 0, A1 > 0. (42)

On this surface, the motion is governed by

ė1 = −A1e1. (43)

4.2.2 Control Law Design

The derivative of the switching function s can be ex-

pressed as

ṡ = ė2 +A1ė1

=
q̄S̄c̄

Iy

(
cm0 + cmαα+ cmδeδe

+
c̄

2Vt
(cmα̇α̇+ cmQ (s+Qd −A1e1))

)
− Q̇d +A1e2. (44)

For SMC, a sign function is ideally used to force s→ 0

in finite time. However, instead of the sign function, a

saturation function has been chosen to minimise chat-

tering. To ensure stability, the use of feedback control

needs to turn (44) into a negative definite function,

which is shown by (54). The input δe is chosen to be

δe,c =
−1

cmδe

(
cm0 +

Iy
q̄S̄c̄

(
A1e2 − Q̇d

)
− v
)
, (45)

where v is an additional control signal. Inserting δe from

(45) into (44), the switching function is rewritten as

ṡ =
q̄S̄c̄

Iy
(v + ζ) , (46)

where

ζ = cmαα+
c̄

2Vt
(cmα̇α̇+ cmQ (s+Qd −A1e1)) (47)

(48)

such that

|ζ| ≤ |cmα|αmax +
c̄

2Vt,min
(|cmα̇|α̇max

+|cmQ||s+Qd −A1e1|) . (49)

Then taking

v = −βsat
(s
ε

)
, ε > 0, (50)

and

β ≥ |cmα|αmax +
c̄

2Vtmin
(|cmα̇|α̇max

+|cmQ||s+Qd −A1e1|) + β0, (51)

where β0 > 0.

The derived control law is assessed by using a posi-

tive definite control Lyapunov function (CLF)

VSMC,1 =
1

2
s2. (52)

Taking the derivative yields

V̇SMC,1 =sṡ = s
q̄S̄c̄

Iy

(
cmαα+

c̄

2Vt
(cmα̇α̇

+cmQ (s+Qd −A1e1))− β
)
. (53)

By inserting β, it can be said that for |s| ≥ ε,

sṡ ≤ −β0|s|
q̄S̄c̄

Iy
, (54)

which implies that the trajectories reach the boundary

layer {|s| ≤ ε} in finite time. Inside the boundary layer

ė1 = −A1e1 + s, (55)
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and choosing the CLF VSMC,2 = 1
2e

2
1 and where |s| ≤ ε,

the derivative is

V̇SMC,2 = e1ė1 = −A1e
2
1 + e1s ≤ −A1e

2
1 + |e1|ε. (56)

By taking A1 = 2

e1ė1 ≤ −2e21 + |e1|ε ≤ −e21 , ∀ |e1| ≥ ε. (57)

By choosing this method it is not possible to stabilise

the origin but it achieves ultimate boundedness with

an ultimate bound which can be reduced by decreas-

ing ε. From this knowledge, one should be aware of a

small stationary control error. Finally, the commanded

control signal becomes

δe,c =
−1

cmδe

(
cm0 +

Iy
q̄S̄c̄

(
2e2 − Q̇d

)
+β sat

(s
ε

))
. (58)

4.3 L1 Adaptive Backstepping Control (L1-AB)

The design of the L1 adaptive backstepping controller

can also be performed in two steps: The first stage con-

cerns the design of the adaptation laws, while the sec-

ond stage focus on the control law. The design is in-

spired by the approach in [19].

4.3.1 State Predictor

The prediction errors θ̃ and Q̃ are defined as

θ̃
4
= θ̂ − θ (59)

Q̃
4
= Q̂−Q, (60)

where θ̂, Q̂, θ and Q represent the estimated pitch an-

gle, estimated pitch rate, real pitch angle and real pitch

rate, respectively. The desired prediction error dynam-

ics are chosen to be

˙̃
θideal = −L1θ̃ (61)

˙̃Qideal = −L2Q̃, (62)

where the convergence rate is defined through the pos-

itive gains L1 > 0 and L2 > 0, to ensure that their

origins are exponentially stable. From the latter, the

state prediction dynamics are given as

˙̂
θ =− L1θ̃ +Q (63)

˙̂
Q =− L2Q̃+

q̄S̄c̄

Iy

(
cm0 + σ̂αcmαα+ cmδeδe

+
c̄

2Vt
(σ̂α̇cmα̇α̇+ σ̂QcmQQ)

)
, (64)

where σ̂α, σ̂α̇ and σ̂Q are the estimates of the aerody-

namic parameter uncertainties. The design of adapta-

tion laws for the uncertainties is based on Lyapunov

stability analysis. Substituting (19), (20), (63) and (64)

into (59) and (60), the prediction error dynamics be-

come

˙̃
θ =− L1θ̃ (65)

˙̃Q =− L2Q̃+
q̄S̄c̄

Iy

(
σ̃αcmαα+

c̄

2Vt
(σ̃α̇cmα̇α̇

+σ̃QcmQQ)

)
. (66)

Let’s consider the positive definite CLF

Vpred =
1

2

(
1

γα
σ̃2
α +

1

γα̇
σ̃2
α̇ +

1

γQ
σ̃2
Q

)
+

1

2
θ̃2 +

1

2
Q̃2.

(67)

Taking the time derivative of (67) yields

V̇pred =
1

γα
σ̃α ˙̃σα +

1

γα̇
σ̃α̇ ˙̃σα̇ +

1

γQ
σ̃Q ˙̃σQ − L1θ̃

2 − L2Q̃
2

+ Q̃

(
q̄S̄c̄

Iy

(
σ̃αcmαα+

c̄

2Vt
(σ̃α̇cmα̇α̇

+σ̃QcmQQ)

))
. (68)

Since it is assumed that σ̇α = σ̇α̇ = σ̇Q = 0, (68) can

be rewritten as

V̇pred =− L1θ̃
2 − L2Q̃

2 + σ̂α

(
1

γα
˙̂σα + Q̃

q̄S̄c̄

Iy
cmαα

)
+ σ̂α̇

(
1

γα̇
˙̂σα̇ + Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmα̇α̇

)
+ σ̂Q

(
1

γQ
˙̂σQ + Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmQQ

)
. (69)

To eliminate the uncertainty terms σ̂α, σ̂α̇ and σ̂Q, the

adaptive update laws are chosen as

˙̂σα = γαProj

(
σ̂α,−Q̃

q̄S̄c̄

Iy
cmαα

)
(70)

˙̂σα̇ = γα̇Proj

(
σ̂α̇,−Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmα̇α̇

)
(71)

˙̂σQ = γQProj

(
σ̂Q,−Q̃

q̄S̄c̄

Iy

c̄

2Vt
cmQQ

)
, (72)

where Proj(·) denotes the projection operator [12]. Then

(69) becomes

V̇pred = −L1θ̃
2 − L2Q̃

2 ≤ 0 ∀θ̃, Q̃ 6= 0. (73)



UAV Fault-tolerant Control 9

4.3.2 Control Law

We start by defining the error variables z1 and z2 as

z1
4
= θ − θd (74)

z2
4
= Q− α1, (75)

where α1 is a stabilising function to be designed.

Consider the positive definite CLF

Vctrl,1 =
1

2
z21 , (76)

whose derivative with respect to time along the z1 dy-

namics becomes

V̇ctrl,1 = z1ż1

= z1(θ̇ − θ̇d)
= z1(Q−Qd)
= z1(z2 + α1 −Qd). (77)

By substituting (75) into (77), the CLF becomes

V̇ctrl,1 = z1z2 + z1(α1 −Qd).

The stabilising function can be chosen as

α1 = −K1z1 +Qd, (78)

where K1 > 0, which gives

V̇ctrl,1 = −K1z
2
1 + z1z2. (79)

The CLF is then extended to

Vctrl,2 =
1

2
z22 + Vctrl,1, (80)

such that it includes both z1 and z2. The derivative of

the new CLF is

V̇ctrl,2 =z2ż2 + V̇ctrl,1

=z2

(
q̄S̄c̄

Iy

(
cm0 + σαcmαα+ cmδeδe

+
c̄

2Vt
(σα̇cmα̇α̇+ σQcmQQ)

)
− α̇1

)
−K1z

2
1 + z1z2

=−K1z
2
1 + z2

(
q̄S̄c̄

Iy

(
cm0 + σαcmαα+ cmδeδe

+
c̄

2Vt
(σα̇cmα̇α̇+ σQcmQQ)

)
− α̇1 + z1

)
.

The control law is chosen as

δe,com =
−1

cmδe

(
cm0 + σ̂αcmαα+

c̄

2Vt
(σ̂α̇cmα̇α̇

+σ̂QcmQQ) +
Iy
q̄S̄c̄

(z1 − α̇1 +K2z2)

)
, (81)

where K2 > 0. It is assumed that uncertainties can be

estimated perfectly through σ̂α, σ̂α̇ and σ̂Q using the

state predictor as a cascade system. This leads to

V̇ctrl,2 = −K1z
2
1 −K2z

2
2 < 0 ∀z1, z2 6= 0. (82)

The adaptation of the uncertainties may contain high-

frequency signals. To avoid introducing such frequencies

into the control input, a lowpass filter is introduced to

the control signals such that

δe,c = C(s)δe,com,

where

C(s) =
k

s+ k
,

is applied to the control signal and the gain k > 0 is a

design parameter.

5 Simulation Results and Performance

Evaluation

This section first states the parameters of the aircraft

model, followed by the initial states and control param-

eters used in the simulations. Subsequently, the metrics

used to evaluate performance are defined. Finally, re-

sults associated with the different controllers are shown

and discussed.

5.1 Simulation Setup

For simulation purposes, the controllers are implemented

in Matlab. A Cessna 182 from [33] will be used to

demonstrate the performance of the proposed methods.

The parameter values for the aircraft are listed in Table

1.

Table 1: Parameters for a Cessna 182 [33]

m 1202.02 [kg] cm0 0.04

g 9.81 [m/s2] c∗mα -0.613

Iy 56.72 [kg m2] cmδe -1.122

S̄ 16.17 [m2] c∗mα̇ -7.27

c̄ 0.46 [m] c∗mQ -12.4

q̄ 2 375.31 [N/m2]

The elevator δe and ailerons δa have a limitation of

[-22:18] and [-24:24] degrees in deflection angle, respec-

tively. Here, the effectiveness matrix W(t) from (22) is

assumed to be known. The aerodynamic constants for

the reconfigured ailerons are chosen to be cLδa = 2cLδe
and cmδa = 1

2cmδe .
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5.1.1 Initial States, Reference Signal, and Control

Parameters

The initial conditions of the aircraft are that it is flying

straight and level, which means Q̇ = θ̇ = α̇ = V̇t = 0

and θ = α ≈ 0. The simulation starts at an altitude of

1524 [m] and a true airspeed of 67 [m/s].

The uncertainties for the system are chosen as σα = 4,

σα̇ = 5 and σQ = 7. The initial values for the estimated

uncertainties are σ̂α(0) = σ̂α̇(0) = σ̂Q(0) = 1. The ele-

vator actuator fault is set to occur at 30 [s].

It is desired for the aircraft to track a constant pitch

angle θref = 10 [deg] from t = 0. To obtain a reference

signal of θd that is in C2 and bounded, the constant

pitch angle is put through a third-order lowpass filter

with the structure

θ̇d(t) = Aθd(t) + Bθref , (83)

where θd(t) = [θd, Qd, Q̇d]
> and

A =

 0 1 0

0 0 1

−ω3
0 −(2ζ + 1)ω2

0 −(2ζ + 1)ω0

 B =

 0

0

ω3
0

 .
(84)

The initial condition of the reference signal is chosen

to be θd(0) = [0 [deg], 0 [deg/s], 0 [deg/s2]]>. Addi-

tionally, it is desirable to lower the true airspeed to

the optimal climb speed of 50 [m/s], which is passed

through a similar third-order lowpass filter to obtain a

time-varying reference signal for the true airspeed.

The gain for designing the control law for the SMC

is chosen to be ε = 0.005 and β0 = 0.5.

The L1-AB controller has a lowpass filter integrated in

the control law to reject high frequency oscillations in

the estimation of the uncertainties. Utilising this ben-

efit, the control law for the L1-AB is designed with

K1 = 21 and K2 = 130. The gains for the state predic-

tor are chosen to be L1 = L2 = 300. The adaptation

gains for the estimation of the uncertainties are chosen

to be γσ,α = γσ,α̇ = γσ,Q = 4000. The gain for the low-

pass filter is chosen to be k = 300.

The baseline PID controller for the pitch motion has

been implemented with the gains Kp,θ = 1.5, τi = 1.5,

τd = 0.15 and a = 0.1 obtained through tuning by as-

suming that the parameters cmα, cmα̇ and cmQ are the

true values. These control gains are chosen conserva-

tively in order to cope with uncertainties in the aircraft

model.

To control the airspeed during the simulation, a

PI-controller has been implemented in a speed control

loop. The gains KP,V t = 20 and KI,V t = 0.5 have been

chosen for the proportional and integral gains, respec-

tively.

5.1.2 Performance Metrics

To evaluate and compare the performance of the differ-

ent control algorithms, it is advantageous to use per-

formance metrics. These include the integral of the ab-

solute error (IAE), integral of the square of the error

(ISE) and integral of the absolute error multiplied by

time (ITAE). Here, the error e is defined as the pitch

angle error

e
4
= θ − θd. (85)

The formula for the IAE is given as

IAE =

∫ t

0

|e|dτ, (86)

which simply describes the temporal evolution of the

absolute value of the error without adding any weight

to the error. The ISE is defined as

ISE =

∫ t

0

e2dτ (87)

and penalises large errors more than smaller ones, in-

dicating how good the particular algorithm is at elimi-

nating large errors. The computation of ITAE is given

as

ITAE =

∫ t

0

τ |e|dτ, (88)

which penalises errors which have been present for a

long time more heavily than those at the beginning.

ITAE will show if there is a steady error present in the

system.

A final performance metric is also proposed, namely

the integral of the absolute error multiplied by the en-

ergy consumption (IAEW), which can be computed by

IAEW =

∫ t

0

|e|dτ
∫ t

0

Pdτ, (89)

where

P = |Qδe,c|, (90)

which represents the mechanical power and not the ac-

tual power consumption. Notice that commanded con-

trol input δe,c, which is before the control allocation, is
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used for the calculation of P . The reason for considering

IAEW is to get an indication of which control algorithm

has the best combination of tracking performance and

energy consumption.

5.2 Results

In the following sections, the simulation results of the

different controllers are illustrated for both a fault-free

and a faulty case. The performance metrics defined pre-

viously are used to evaluate the performance of the con-

trollers.

5.2.1 Fault-Free Case

Fig. 4 displays the desired and actual trajectories of the

state of the aircraft in the fault-free case, which shows

that the methods are able to track the pitch angle and

pitch rate. The PID controller is slower than the oth-

ers, which is a trade-off by tuning it conservatively such

that it can handle uncertainties. Additionally, it takes

some time to achieve the desired true airspeed, which

depends on how well the airspeed PI-controller has been

tuned. Be advised that the length of the time axis is dif-

ferent in figures 4, 5 and 6, in order for the reader to

easily see the properties of controllers.

The control signals are shown in Fig. 5, where the three

controllers have the same control signal after 0.3 sec-

onds. Both the L1-AB and SMC have some high-frequency

oscillations on the elevator in the start of the simula-

tion. Since there is no fault present in the system there

is no control signal distribution to the ailerons.

The tracking errors of the pitch angle and rate are dis-

played in Fig. 6, showing that the two nonlinear con-

trollers track the pitch angle and rate fast, while the

PID controller requires almost 20 seconds for the pitch

angle error to go to zero. Additionally, the L1-AB has

a small overshot and the PID is oscillating on the pitch

angle, which makes them use more time to track the ref-

erence signal compared to the SMC. However, the L1-

AB and PID controllers have the advantage that they

do not result in a stationary tracking error. The SMC

is a robust controller without integral action, which is

why it has a stationary tracking error.

5.2.2 Faulty Case: Total Elevator Loss without

Fault-dependent Control Allocation

In the faulty case, the elevator goes to zero at 30 sec.

The states in Fig. 7 show that the aircraft is no longer

able to track the desired pitch angle and true airspeed
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Fig. 4: States in the fault-free case

after the fault has occurred.

From Fig. 8 it can be concluded that this scenario has

a high risk of going into an irreversible stall or spin.

Since the elevator is stuck, there is no redundancy and

the engine is already producing the maximum amount

of power.

5.2.3 Faulty Case: Total Elevator Loss with

Fault-dependent Control Allocation

As in Section 5.2.2, the elevator goes to zero and holds

this position from 30 seconds. The results of loosing

the elevator completely is displayed in Fig. 9-11. The

only noticeable difference in the states compared to the

fault-free case is the angle of attack, which has a smaller

stationary value.
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Fig. 5: Inputs in the fault-free case
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Fig. 6: Errors in the fault-free case

By inspecting the inputs in Fig. 10, the change in the

angle of attack α is caused by the amount of engine

power. Additionally, Fig. 10 shows that when the effect

of the elevator is lost, the ailerons become active since

the control signal is reallocated to the ailerons.

Comparing the results with the fault-free case concern-

ing the pitch angle and pitch rate tracking errors in fig-

ures 6 and 11 shows no degradation in the performance

even when the elevator is faulty.
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Fig. 7: States in the faulty case without fault-dependent con-
trol allocation

5.2.4 Performance Evaluation

Figures 12 and 13 display the curves of IAE, ISE, ITAE

and IAEW for the pitch angle tracking error. Fig. 12

clearly indicates that the L1-AB has the best perfor-

mance both in terms of tracking and handling quickly-

varying signals. It is easier to see to from Fig. 12 that

SMC has a stationary error since the IAE is constantly

growing.

The ITAE shown in Fig. 13 clearly indicates that L1-

AB yields convergence of the pitch angle tracking error

to zero. The plots of the ITAE illustrate that the SMC

has a better performance than the PID until 75 sec-

onds. In the evaluation between tracking performance

versus energy consumption when uncertainties are af-

fecting the system, the L1-AB controller performs best,
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Fig. 8: Inputs in the faulty case without fault-dependent
control allocation

while the SMC performs better than the PID controller.

The SMC has an increasing IAEW because it has a sta-

tionary error which is multiplied with a constant high

energy use.

The simulations also show that the nonlinear con-

trol algorithms perform better than the PID controller.

However, utilising the benefit which L1 adaptive back-

stepping control gives, we are able to choose higher

adaptation rates and minimising the effects of high-

frequency oscillations in the control signal and there-

fore get a better tracking performance than for SMC.

The considered controllers have both advantages and

disadvantages:

– The PID has a simple design, which makes it require

less computational power than the nonlinear con-

trollers. However, the PID is conservatively tuned

since the aircraft model include uncertainties, which

results in a slower tracking performance.

– The sliding mode controller is able overcome the

model uncertainties, but it does not have integral

action, which leads to a stationary tracking error.

– The L1 adaptive backstepping controller is able to

overcome the model uncertainties and track the ref-

erence signal. However, in order to do so it requires

a large amount of power for a small period of time

and it has some high-frequency oscillations in the

control signal.

In Table 2, the results of the following properties

are listed on a scale of 1-5:
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Fig. 9: States in the faulty case with fault-dependent control
allocation

– Energy: The amount of energy the controller re-

quires to perform the task.

– Convergence speed: How fast the controller converges

to a set point.

– Robustness: How good the controller is in accom-

modating for uncertainties in the system.

– Control accuracy: How the controller’s ability is to

converge to and stay on target.

– Actuator stress: How much stress the controller puts

on the actuator in order to perform the given task.

To validate that the advanced controllers are able

to run in real time, the controllers were implemented

as discrete-time algorithms running a sampling rate of

200 Hz. Using Matlab/Simulink we are able to mea-

sure the execution time of the three controllers. The

results are presented in Table 3, which shows that all
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Fig. 10: Inputs in the faulty case with fault-dependent con-
trol allocation

Table 2: Strengths and weaknesses of the particular control
algorithms in this evaluation. On a scale 1(worst) to 5 (best)

PID SMC L1-AB

Energy 3 2 2
Convergence speed 3 4 5
Robustness 3 5 5
Control accuracy 3 2 4
Actuator stress 3 3 2

Total 15 16 18

the controllers easily run in real time and the advanced

controllers have an execution-time penalty that is be-

low a factor of 2 compared with the PID. Hence, the L1

adaptive backstepping controller gives a better tracking
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Fig. 11: Errors in the faulty case with fault-dependent con-
trol allocation
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Fig. 12: The IAE and ISE of the pitch angle error in the
fault-free scenario

performance in exchange for a slightly increased execu-

tion time.

Table 3: Execution time for the three controllers in a discrete
simulation for modeling real-time performance

Controller Execution Time

PID 90 µs
SMC 137 µs
L1-AB 160 µs
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Fig. 13: The ITAE and IAEW of the pitch angle error in the
fault-free scenario

6 Conclusion

This paper combined fault-dependent control allocation

with three different control schemes to obtain fault tol-

erance in the longitudinal control of unmanned aerial

vehicles. The paper has shown that fault-dependent

control allocation is able to accommodate actuator faults

that would otherwise be critical, and made a perfor-

mance assessment for the different control algorithms:

an L1 adaptive backstepping controller; a robust sliding

mode controller; and a standard PID controller. This

approach allowed the controllers to operate in nomi-
nal fault-free conditions using only the main actuator,

which is the elevator. By adding fault-dependent con-

trol allocation which redistributes the control signal to

redundant actuators, the system was shown to be fault

tolerant against the total effective loss of the main ac-

tuator. A comparative analysis of the controllers was

made in order to find out which had the best perfor-

mance. Simulations were conducted on a high-fidelity

model of a Cessna 182, showing that the considered

controllers all have good tracking performance and the

ability to compensate for model uncertainties. The re-

sults indicate that the fault-dependent control alloca-

tion scheme ensures excellent performance for both the

nominal and faulty cases since the system is uniformly

able to track a reference signal. The simulations also

show that the nonlinear control algorithms perform bet-

ter than the PID controller. From the performance met-

rics, it can be concluded that the L1 adaptive back-

stepping controller has the best overall performance.

The advantages and disadvantages of the different con-

trollers have been discussed. Also, by combining a con-

troller with fault-dependent control allocation, it was

shown that fault tolerance for the nonlinear longitudi-

nal motion of an aircraft could be achieved.

Future work includes comparing the adaptive con-

troller with an integral sliding mode controller, and

proving stability and robustness of the closed-loop sys-

tems. Additionally, it is desirable to experimentally ver-

ify the results by implementing the methods on a UAV

in a controlled environment.
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