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Abstract

Today we are facing many challenges within our systems of transport
and tra�c. The world of transportation is huge, and the problems
are often di�cult to resolve. Intelligent transport systems (ITS) and
services are the future solutions for today’s transportation problems. For
the years to come the evolution of ITS will become more important
than ever before. Virtual Tra�c Light (VTL) is a self-organising tra�c
control concept proposed to manage tra�c at intersections for use in ITS.
This VTL concept is enabled by the design of local rules which allow
vehicles approaching an intersection to resolve the ensuing conflict in a
seamless and self-organising manner. Through the use of vehicle-to-vehicle
communication, the VTL protocol can dynamically optimise tra�c flow
at intersections without the need for any roadside infrastructure.

While the VTL has been extensively studied (in terms of technical and
business perspectives), the real testbeds for VTL has, to the author’s
knowledge not been adequately explored. This project thus aims to
fill this gap by using Diddyborg robot cars powered by Raspberry Pi 3
computers. We present a design and implementation or a functional VTL
testbed which is used to determine the e�ectiveness and feasibility of the
VTL concept. Simulation done with the VTL testbed show promising
results.





Sammendrag

I dag står vi overfor mange utfordringer innen transport- og trafikksys-
temer. Transportverden er stor, og problemene er vanskelige å angripe.
Intelligente transportsystemer (ITS) er fremtidens løsninger på dagens
transportproblemer. I årene som kommer vil utviklingen av ITS bli vikti-
gere enn noen gang før. Virtuelle trafikklys (VTL) er et selvorganiserende
trafikkonsept presentert for å administrere trafikken i veikryss for bruk
innen ITS. VTL-konseptet er realisert gjennom lokale regler som tillater
biler som nærmer seg et veikryss å løse den påfølgende konflikten på en
sømløs og selvorganiserende måte. Gjennom bruk av kjøretøy-til-kjøretøy
kommunikasjon, kan VTL-protokollen dynamisk optimere trafikkflyten i
veikryss uten behov for noen slags form for infrastruktur.

Mens VTL-konseptet har blitt grundig studert (i form av tekniske og
forretningsmessige perspektiver), har fysiske prototyper av konseptet,
så langt forfatteren vet, ikke blitt tilstrekkelig utforsket tidligere. Dette
prosjektet tar derfor sikte på å fylle dette tomrommet ved hjelp Diddy-
Borg robot-biler drevet av Raspberry Pi 3 datamaskiner. Vi presenterer
et design og en implementasjon av en funksjonell VTL prototype som
brukes for å se på e�ektiviteten og gjennomførbarheten av VTL-konseptet.
Prototypen er testet gjennom simulering med lovende resultater.
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Chapter1Introduction

Today we are facing many challenges within transport and tra�c systems. The world
of transportation is large, and the problems are di�cult to grasp.

Intelligent transport systems (ITS) are the future solutions to today’s transportation
problems. Systems and services that will contribute to a more e�cient and safe tra�c
flow. For the years to come the evolution of ITS is more important than ever before.
Streamlining goods and passenger transport while developing a transportation system
with a broader focus on security and environment, may save the society from large
expenses.

1.1 Motivation

The traditional answer to a problem within the transport sector, whether it’s a
road that has capacity problems or a road section prone to accidents, has been to
build new and better road systems [13]. Through ITS we will be able to exploit new
technologies in communication between vehicles and infrastructure to solve these
problems in new ways.

ITS is a field of study with rapid development and can act as a supplement, and
alternative to traditional infrastructure projects. ITS may contribute to a reduction
in the number of fatalities and serious injuries, a sharp reduction in travel times and
a significant reduction in environmental impact [13].

Problems with tra�c congestion prove to be increasing. Figures from the Norwegian
Automobile Federation (NAF) shows that the current situation is untenable. With
tra�c congestion in the major Norwegian cities costing as much as 2.5 million Nor-
wegian kroner (NOK) per minute. In Oslo, this problem costs up to 1.2 million NOK
per minute [2].
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2 1. INTRODUCTION

1.2 Scope and Objectives

The Self-Organized Tra�c Control [5] paper is working towards mitigation of tra�c
congestion by increasing tra�c flow at road intersections. Intersections is a crucial
part of the tra�c system and have a lot of room for improvement when it comes to
tra�c congestion. In [5] we are presented a VTL concept which uses vehicle-to-vehicle
(V2V) communication to establish in-vehicle tra�c lights without the need for any
road infrastructure. The goal of this study is to design and develop a functional
testbed setup of the VTL concept using several miniature robot cars. We use this
testbed to demonstrate the feasibility and e�ectiveness of the VTL protocol. We will
take a closer look on the VTL concept in Chapter 3.

This study has several objectives:

– Select suitable robots for the testbed setup.

– Configure the robot cars as network nodes, making them able to send and
receive data packets across an ad hoc network.

– Implement a VTL testbed from scratch using miniature robot cars.

– Determine the e�ectiveness and feasibility of the VTL concept through simula-
tion.

1.3 Methodology

During the work of this thesis, we have been through di�erent phases. The first
stage consisted of a literature study of the the VTL concept. This step was done
to get an in-depth understanding of how the VTL protocol works. Secondly, we
performed a technology study. The goal of this phase was to search for hardware
and robots eligible for use in our project. Thirdly we designed and determined the
system architecture of the following implementation phase. The next phase went by
to implement the proposed system architecture. In the last phase of this project, we
experimented with the system implementation, running a simulation to see how the
system works in practice.

1.4 Outline

Chapter 2 presents an overview of the technology used in the study. Here we include
hardware, communication technologies and software tools.

Chapter 3 gives an introduction to the VTL protocol. This is includes concepts
and rules which is essential to understand the following chapters.
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Chapter 4 introduce the overall system architecture, the network topology and how
the devices are set up and configured.

Chapter 5 presents a simulation scenario, how we conducted the simulation and
the results of the simulation.

Chapter 6 discusses the results from Chapter 5 comparing them with each other.
We discuss the e�ectiveness and feasibility the VTL protocol and comments the
implementation process. It also concludes this study with a section of further work.

1.5 Related Work

There has been conducted an extensive amount of articles related to the VTL protocol.
Self-Organized Tra�c Control [5] by Ferreira, Michel, et al. and VANET-Enabled
In-Vehicle Tra�c Signs [3] by Fernandes, Ricardo Jorge both presents the VTL
concept of VTL and conducts a data simulation of the protocol in a Manhattan-like
scenario using tra�c simulators. [5] states that the e�ectiveness of tra�c flow is
increased by over 60% using the VTL protocol in urban areas.

Feasibility of virtual tra�c lights in non-line-of-sight environments [12] by Neudecker,
Till, et al. and On the impact of virtual tra�c lights on carbon emissions mitigation [4]
by Ferreira, Michel, and Pedro M. d’Orey. both present a feasibility study of the VTL
protocol, though in two di�erent manners. [12] takes a look at the feasibility of VTL in
areas where buildings and other structure may interfere with the V2V communication.
The article concludes that non-line-of-sight environments have an impact on the
delay communication, but not significantly and a VTL seem to be feasible under such
challenging conditions. [4] looks at the environmental aspect of a VTL implementation.
It evaluates the impact in terms of Carbon Dioxide (CO2) emissions of VTLs [4].
Compared with an approximation of the physical tra�c light system they present
results that show a significant reduction in CO2 emissions when using VTLs, reaching
nearly 20% under high-density tra�c [4]

A prototype of Virtual Tra�c Lights on Android-based smartphones [11] by Nakamu-
rakare, Manuel, Wantanee Viriyasitavat, and Ozan K. Tonguz present a prototype
design on VTLs using Android-based smartphones. They conclude that the Android-
based VTL implementation clearly shows feasibility using hardware available in the
current smartphones.





Chapter2Background

This chapter presents background information about the technology used in the
development phase of this study. This includes communication technologies, hardware
and software tools.

2.1 DiddyBorg

The robot cars used in this project is the DiddyBorg robot [15]. This is a battery
powered miniature robot car and use six 6V DC gear motors [1] to control its six
wheels, three on each side. It has a Raspberry Pi [7] as its central computer which
makes is a powerful and highly suitable robot for our project. Figure 2.1 and 2.5
both show one of our assembled DiddyBorg robots seen from di�erent angles.

Figure 2.1: The DiddyBorg robot
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6 2. BACKGROUND

Several other robot cars would be suited for this project. But when selecting the right
robot, the criteria and assumptions of the VTL protocol defined in Chapter 3 had to
be fulfilled. The Diddyborg is an excellent choice because the robot is relatively easy
to assemble and runs on batteries. Its support for Raspberry Pi is what makes it
such a good option. The Raspberry Pi provides support for the wireless technology
we need. Also, it has a framework allowing easy control of its motors.

The DiddyBorg robot consist of several parts which we are going to get into in the
following subsections:

2.1.1 Raspberry Pi 3

The Raspberry Pi 3 is a credit-card sized computer provided at a low cost [8]. The
Raspberry Pi 3 is the third generation Raspberry Pi released by the Raspberry Pi
Foundation. It replaced the Raspberry Pi 2 Model B in February 2016. It has a
1.2GHz 64-bit quad-core ARMv8 CPU, 1GB RAM, full HDMI port, 4 USB ports,
40 GPIO pins and ethernet port. Di�erent from the previous model it also has
802.11n Wireless Local Area Network (WLAN) and support for Bluetooth 4.1 and
Bluetooth low energy [7]. Figure 2.2 shows a picture of a Raspberry Pi 3.

Figure 2.2: The Raspberry Pi 3

2.1.2 PicoBorg Reverse

PicoBorg Reverse is a powerful dual motor control board for Raspberry Pi. Connected
to a Raspberry Pi it can to control the motors on the DiddyBorg, also doing
speed control both forward and backwards [17]. The PicoBorg Reverse is shown
in Figure 2.3a



2.1. DIDDYBORG 7

(a) (b)

Figure 2.3: The PicoBorg Reverse [17]

2.1.3 BattBorg

The BattBorg is a power converter which allows us to power the DiddyBorg motors
and the Raspberry Pi o� batteries without needing a USB supply [14]. The BattBorg
is shown in Figure 2.4 and is mounted on top of the PicoBorg Reverse as shown
in Figure 2.3b.

(a) Battborg top (b) Battborg bottom

Figure 2.4: The Battborg [14]
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Figure 2.5: The DiddyBorg robot seen from underneath

2.2 Communication

2.2.1 Dedicated Short Range Communication

Dedicated short range communication (DSRC) is a two-way short-to-medium-range
wireless communications capability that permits very high data transmission critical in
communications-based applications. It is allocated 75 MHz of spectrum in the 5.9 GHz
frequency band for use by ITS vehicle safety and mobility applications [19]. DSRC
was developed with a primary goal of enabling technologies that support safety
applications and communication between vehicle-based devices and infrastructure to
reduce collisions [19].

2.2.2 Vehical Ad-hoc Network

Vehicular ad-hoc network (VANET) is a decentralised wireless network meant for
automobiles and V2V communication. An ad-hoc network is not in need of any
infrastructure such as centralised routers and access points to function. The vehicles
act as network nodes in a self-organising dynamic manner. VANET is an important
application in the development of ITS enabling vehicles to communicate directly
with each other.
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2.3 Software tools

2.3.1 Raspbian Jessie

We are using Raspbian Jessie as operating system (OS) for the Raspberry Pi com-
puters in this study. The main reason we use this OS is because installation guide
of DiddyBorg [16] recommends it. Raspbian Jessie is a standard operating system
provided by the Raspberry Pi Foundation found on their website [18]. Raspbian
Jessie also has a graphic user interface which makes it easy to use along with the
command line tool.

2.3.2 Wireshark

Wireshark is a network protocol analyser which lets you analyse network information
down to a microscopic level [9]. Wireshark supports several communication protocols
and able to provide live capture on multiple interfaces. During a capture session
from a network interface Wireshark gives you data packet’s time of arrival, origin,
destination, payload among other useful information. Figure 2.6 shows a screenshot of
the Wireshark graphic user interface during a capture. Wireshark lets you highlight,
select and extract the information you need. This tool was very helpful during the
implementation phase of this study.

Figure 2.6: Wireshark graphic user interface during a capture





Chapter3Virtual Tra�c Light

VTL is a self-organising tra�c control concept presented in [5, 3]. The authors
propose a migration from roadside-based tra�c lights to in-vehicle signs supported
by V2V communication through DSRC. Elected vehicles act as temporary road
junction infrastructures and broadcast tra�c light messages that are presented to
the drivers through in-vehicle displays [5].

3.1 Assumptions

The implementation of the in-vehicle VTL system is based on the following assump-
tions [5]:

– All vehicles are equipped with DSRC devices.

– All vehicles share the same digital road map.

– All vehicles have a global positioning system Global Positioning System (GPS)
device that guarantees global time and position synchronisation with lane-level
accuracy.

– The security, reliability, and latency of the wireless communication protocol
are assumed to be adequate for the requirements of the VTL protocol.

3.2 Principle of Operation

The VTL system relies on having information on every vehicle in its vicinity. All
vehicles maintain a Location Table (LT) storing this information, constantly updating
the LT upon receiving messages from neighbouring vehicles. The location data is
distributed through VANET, periodically beaconing, letting every vehicle to broadcast
its position, speed and heading to all surrounding vehicles.

11



12 3. VIRTUAL TRAFFIC LIGHT

All vehicles have an Application Unit (AU) installed. The AU is responsible for
maintaining an internal database with information about where VTLs can be created.
When approaching an intersection, the AU should check if there is a VTL running,
or if there is a need for creating one. Using the LT the AU discovers if there are
ensuing crossing conflicts between approaching vehicles.

Figure 3.1: Leader election at intersection

Figure 3.1 shows a scenario where vehicles are approaching an intersection, creating
crossing conflict. The cars are passing a threshold distance from the intersection. At
this point, they should start looking for a VTL, which in this scenario does not exist.
The approaching vehicles have to cooperate and elect a leader who will be responsible
for establishing a VTL and broadcast tra�c light messages to the surrounding
vehicles. The leader is elected based on a pre-defined rule and information from
the LT. If a vehicle is approaching the intersection with no crossing conflicts ahead,
there is no need to create a VTL, and the vehicle may continue ahead.

The elected leader will act as a temporary VTL and should be presented a red light
and position itself as close to the intersection as possible. This vehicle is responsible
for broadcasting VTL messages to the network. This situation is shown in Figure 3.2

While the elected leader broadcast the VTL messages to surrounding vehicles, the
other vehicles act as passive nodes in the protocol, listening to the tra�c light
messages and just presenting them to the driver through the in-vehicle displays [5].

Once the current light cycle is finished, or there are no crossing vehicles at the green
light, the leader changes the virtual tra�c light message to apply the next phase. If
the leader is presented a green light, there must be elected a new leader election.
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Figure 3.2: Leader broadcasting VTL messages at intersection

The situation where there are vehicles stopped at a red light at the intersection
the current leader just selects one of these vehicles to become the new leader, that
continues the broadcast of the VTL messages. If the VTL no longer is needed, the
cycle can be interrupted, and vehicles proceed without stopping [5]. This situation is
illustrated in Figure 3.3

Figure 3.3: Disband of VTL at intersection





Chapter4Testbed Implementation

This chapter will introduce a detailed description of our testbed setup. As mentioned
in Chapter 3, [5] defines some assumptions tied to the implementation of the system.
These are assumptions made on the development of a real size VTL system. Naturally,
therefore a miniature testbed setup has its limitations. We present a complete system
architecture and how di�erent parts of the system interact with each other. Also, we
explain how we have translated the real size concept into a miniature testbed. The
source code for this project can be found as appendices.

4.1 Network Topology

The VTL concept proposes a VANET communication model over DSRC. Our response
to this is to configure an ad-hoc network over WLAN. Since we are using Raspberry
Pi 3 for the DiddyBorg robots, we take advantage of the onboard wireless interface
as our DSRC device.

The wireless network interface wlan0 has to be configured in ad-hoc mode. This is
done by editing the network interface file located at /etc/network/interfaces. We
added the following lines in our network setup:

auto wlan0
iface wlan0 inet static

address 192.168.1.12 #This address has to be unique
netmask 255.255.255.0
wireless-channel 1
wireless-essid adhoc_vanet
wireless-mode ad-hoc

By configuring all devices in our setup the same information, assigning each device
with its unique static IP address, we can communicate peer-to-peer or V2V in an

15



16 4. TESTBED IMPLEMENTATION

ad-hoc manner. Meaning devices seamlessly connect whenever they are in range of
each other without the need for any infrastructure.

Figure 4.1 shows the ad-hoc network topology in this project. All Raspberry Pi
computers are set up in ad-hoc mode with its unique IP address. Making them able
to communicate with every device in its vicinity.

Figure 4.1: Ad-hoc network with Raspberry Pi computers

4.2 System Architecture

The system we present is separated into several modules for handling di�erent parts of
the system. All software modules are developed with Python [6] as the programming
language. A high-level system architecture is illustrated in Figure 4.2

Figure 4.2: High-level system architecture
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4.2.1 Network Module

The network module of the system can be translated to act as the DSRC device
of the car. It handles all the communication with the network, both sending and
receiving messages. Therefore the module is separated into two parts, one for sending
and one for receiving messages. The code is found in Appendix A.

The VTL concept requires us to broadcast messages to the network through beaconing.
This feature is needed both when sending updates on the vehicles location and when
transmitting tra�c light messages. To handle this situation we are using the Python
socket module. This allows us to bind a socket to an IP address and a port for sending
and receiving packets across the network. In our setup, we are using the User Diagram
Protocol (UDP) for sending messages. We are then able to send packets rapidly over
the network without needing a confirmation message from the destination. To make
the socket able to broadcast messages to all devices within its vicinity, the socket has
to be tied up to the network broadcast address. In our network setup, the broadcast
address is 192.168.1.255. Upon receiving messages from the network, we establish a
server socket listening to messages sent to its IP address at a particular port.

Figure 4.3 shows a sequence diagram of a scenario where a message is sent to the
broadcast address and passes through the ad-hoc network. The Raspberry Pi A is
the origin of the message sent to broadcast. The message is then sent to all devices in
range of the source. From the Raspberry Pi B and C’s point of view, the message is
sent directly from the Raspberry Pi A. In this scenario, we have asked the receiving
entities to respond to the message received. The entities receiving the message
sends a response directly back to the originating entity. A Wireshark capture of this
message sequence is traced and shown in Figure 2.6 in Chapter 2.

Figure 4.3: Sequence diagram of a broadcast message scenario



18 4. TESTBED IMPLEMENTATION

4.2.2 Motor Control Module

The motor control module is the part of the system that controls the movement of
the robot. It initializes the motors connected to the robot connecting to the PicoBorg
Reverse. Handling movement forwards and backwards together with rotation to
both sides is the main tasks of the module. The motors are controlled by providing
equal voltage to all motors at the same time in a set time interval. Movement in a
straight forward direction is performed by ensuring that the motors on each side of
the robot are rotating the same way. Rotation of the robot is done by making the
motor on each side to rotate in di�erent directions. This makes the robot able to
turn 360 degrees on the spot. This module also handles calibration of the motors.
By calculating and setting the time the robot takes to do specific movements, we can
give instructions to the robot. As an example, if we want to move 10 cm forward
and rotate 90 degrees to the left, it will be possible to do this with proper calibration
and the right commands. The motor control module is provided in Appendix B

4.2.3 Location Module

The location module handles the location features of the system. The VTL system is
based on the assumption that every vehicle is equipped with a GPS with lane-level
accuracy. Also, it requires all vehicles to share the same digital road map. In our
testbed, the DiddBorg robots did not have an on-board GPS device. Acquiring
a GPS device precise enough achieve indoor lane-level accuracy proved to be di�cult.

In the testbed setup, we faced this challenge with what we have called a relative GPS.
During the initialization phase of the system, the location module is loaded with an
internal map and an initial position. The internal map contains information of the
road structure and the available VTL intersections presented as a coordinate system.
At the start of the system, we provide an initial position of the vehicle. The position
is updated whenever a movement is made. This way we can keep track our position
relative to our initial position. For debug reasons, we created a function to write
the map to the console. A screenshot of the internal map in a test scenario is shown
in Figure 4.4. Here the numbers symbolise di�erent things. The 1s is supposed to
represent the road structure. The 3s show where the intersections are placed. The
number eight show where our car is located. The 0s are meaning out of bounds.
In scenarios where there are other cars in the system, they are represented by the
number 4.

Another task assigned to the location module is keeping track of other cars in the
system maintaining the LT. The LT keeps track of what intersection all other cars
are heading against, in what direction and their distance to the intersection. Here
the distances are calculated using Manhattan distance, the sum of the horizontal
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and vertical coordinates. The location module engages the leader election if there is
a need for creating a VTL.

Figure 4.4: Screenshot of the internal map in a test scenario

4.2.4 Tra�c Light Module

The tra�c light module is activated if this vehicle is elected as the leader of the VTL
at an intersection. The module handles the initialization of the VTL and the
broadcasting of VTL messages to the network.

Whenever a VTL is created, the vehicle creating it gives them self a red light and
start broadcasting messages. When the light cycle is over, or there are no more
crossing vehicles the VTL is disbanded. If there still are vehicles waiting at the
intersection when this leader is leaving, the responsibility of the VTL is handed over
to another vehicle.

4.2.5 Car Module

The car module is the main module of our system. As shown in Figure 4.2 it connects
all the other modules together managing the flow of data through the system. This
module functions similar to how an actual car works. When the program is started,
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the motors and all the di�erent modules of the car are instantiated. To handle all
the di�erent processes we enable the use of threading in our system.

Upon the initialization of the car module we create two instances of the network
module (one for sending and one for receiving messages) and one instance of the
location, motor control and tra�c light modules. Figure 4.5 illustrates how important
data flow through the system.

Figure 4.5: Data flow of important processes between modules

4.2.6 Data Flow

Using Figure 4.5 as a base, we are going to take a look at some of the functions
and what mechanisms they initiate. At first, we start listening to messages on the
network. This is done by starting a receive() thread in the car module allowing
us to continuously handle incoming messages. Whenever a message is received, it
is sent to the messageHandler(). Based on the message topic, an action is made,
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and the information is taken care of. This may be messages about other vehicle’s
location or VTL messages.

To start a movement the doMove(direction) is called sending the task to the
performMove() function in the motor control unit. Making the vehicle move a
certain distance in a certain direction. When a movement is done the vehicle updates
its location and generates a call on the updateLocation() function in the location
module. This again forwards the process to the messageFactory(type) function
which initiates a broadcast of the vehicle’s location to the network.

When approaching an intersection, the location module checks its LT for potential
crossing conflicts. If there is an ensuing conflict, the vehicle closest to the intersection
does the leader election. This is a calculation based on several parameters such as
distance to intersection and the number of cars approaching from each side. When
the leader election is made, the leader is notified. Then the VTL leader starts a new
thread with the startLight() function broadcasting VTL messages to the network.
When the leader is leaving a new leader election is made if necessary.

4.3 Challenges and Lessons Learned

During the implementation of the system, we encountered some challenges. First
o�, it seemed almost impossible to configure and make the ad-hoc network function
properly. A lot of time were spent on this part of the study. After trying several
configurations, this problem turned out to be a hardware problem with the WLAN
dongles connected our Raspberry Pi 2 computers. This problem was not encountered
after upgrading to Raspberry Pi 3.

Secondly, the system is made from nothing with few projects similar to this. At
times it was frustrating having to improvise solutions as the internal GPS system.
In hindsight, this turned out to be both challenging and interesting.

The author had little or nothing experience with robot programming, especially not
building and assembling the robots. Even though the final system may look like
a simple solution, an extensive amount of time has been used to find solutions to
occurring problems. Resulting in the implementation phase taking longer time than
expected.





Chapter5Simulation

This chapter presents a simulation scenario, how the simulation was conducted, and
the results of the simulation phase.

5.1 Simulation Setup

In our simulation setup, we have assembled three DiddyBorg robots. All three robots
are set up with the system presented in Chapter 4. We run simulations on the system
implementation to measure the e�ectiveness and feasibility of the VTL protocol. An
internal map corresponding to the Figure 5.1 is loaded onto the DiddyBorg cars.
The map has two intersections with the possibility to create a VTL if needed. The
three coloured arrows illustrate three di�erent routes on the map. Each of our three
robots is assigned its route to follow autonomously from its initial position.

Figure 5.1: Test scenario
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5.2 Scenarios

The simulation was conducted as three di�erent scenarios. We measure the time it
takes for a car to drive from one side of the map over to the other side of the map.
The cars will be passing intersections on its way. The first scenario does not have
any tra�c lights. The second scenario is a case where we have the possibility to
establish VTLs. In the third and last scenario, we have standard centralised tra�c
lights. We measure the time it takes to cross the map, calculating the average of 50
crossovers for each car.

5.3 Results

After running the simulation, we calculated the average time in each case. The
results of the simulation are shown in Table 5.1.

Table 5.1: Simulation results

Car

Average time without

tra�c lights

Average time

with VTL

Average time with

standard tra�c light

Green car 28.7 s 35.5 s 42.3 s
Blue car 28.9 s 34.6 s 43.5 s
Purple car 44.6 s 52.4 s 61.3 s

From the numbers in Table 5.1 we derive that the e�ectiveness of the VTL protocol
in our testbed is approximately 18% more than the case of standard tra�c lights.



Chapter6Discussion, Conclusion and Further
Work

There is a great belief that the solution to problems of transportation is through
autonomous vehicles. The reason for this is that driverless cars will enable many new
possibilities, while they will make people’s lives easier. Theoretically, these cars can
drive closer together since they do not rely on a human reaction time. This applies
also in critical danger situations, where elimination of human error theoretically
could save more lives.

ITS makes the system of transportation more e�cient. The system is intended for
cars to communicate and adapt to each other, not only orient themselves by the
information they register and process themselves using cameras, sensors and lidar.
When vehicles communicate with each other, the system can be useful.

Although the VTL system requires all other vehicles to have the same on-board
equipment, the technology within the automobile industry developing fast. VTL
systems do not require expensive equipment, in fact it is rather cheap.

Another aspect of the VTL is that the improvement in tra�c flow do not only apply at
one individual intersection. The system has great scalability and able to create VTL
intersections almost anywhere. This allows us to maximise the throughput of the
complete road network, rather than the reduced number of road junctions that are
currently managed by tra�c lights [5].

6.1 Conclusion

In this study, we present an implementation of a Virtual Tra�c light VTL testbed
we have designed and made from scratch using DiddyBorg robot cars. We have
configured the DiddyBorg robots to communicate across an ad-hoc network. A simu-
lation has been conducted on the implemented system demonstrating the feasibility
and e�ectiveness of the VTL concept. The simulation phase determine that our
implementation of aVTL is approximately 18% more e�cient compared to standard
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tra�c lights. These are promising results and show that the VTL concept is feasible
for implementation.

6.2 Further Work

This study was limited to three robot cars. It would have been interesting to see
the system implemented in a larger scale having more vehicles acting together. One
could also try to measure the feasibility in other scenarios with more intersections.
Another interesting outlook would be to reproduce this study using actual GPS
devices on the robots.
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AppendixAPyhton Network Module

Code inspired by forum post about UDP sockets in Python found here [10]

import socket
import sys

class Receive(object):

HOST = ’’
PORT = ’’
s = ’’

_ACTIVE = False
def get_ACTIVE(self):

return self._ACTIVE
def set_ACTIVE(self,state):

self._ACTIVE = state
ACTIVE = property(get_ACTIVE, set_ACTIVE)

def __init__(self):
self.HOST = ’’
self.ACTIVE = True

def setPort(self,port):
self.PORT = port

def bind(self,port):
self.setPort(port)
try :

self.s = socket.socket(socket.AF_INET,
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socket.SOCK_DGRAM)
print ’Socket created’

except socket.error, msg :
print ’Failed to create socket. Error Code : ’
+ str(msg[0]) + ’ Message ’ + msg[1]
sys.exit()

# Bind socket to local host and port
try:

self.s.bind((self.HOST, self.PORT))
except socket.error , msg:

print ’Bind failed. Error Code : ’ + str(msg[0])
+ ’ Message ’ + msg[1]
sys.exit()

print ’Socket bind complete’

def listen(self):
d = self.s.recvfrom(1024)
data = d[0]
if data.strip()==’quit’:

self.ACTIVE = False
return d

def setPort(self,port):
self.PORT = port

def setActive(self,state):
self.ACTIVE = state

def close(self):
self.s.close()

class Send(object):

HOST = ’’
PORT = ’’
s = ’’

def __init__(self,port):
self.HOST = ’192.168.1.255’
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self.PORT = port
# create datagram udp socket
try:

self.s = socket.socket(socket.AF_INET,
socket.SOCK_DGRAM)
self.s.setsockopt(socket.SOL_SOCKET,
socket.SO_BROADCAST, 1)

except socket.error:
print ’Failed to create socket’
sys.exit()

def sendPacket(self,message):
try :

self.s.sendto(message, (self.HOST, self.PORT))

except socket.error, message:
print ’Error Code : ’ + str(message[0])
+ ’ Message ’ + message[1]
sys.exit()

def close(self):
self.s.close()





AppendixBPyhton Motor Control Module

Code inspired by a DiddyBorg movement example code from piborg.org [16]

import PicoBorgRev
import time
import math
import sys

class MotorControl(object):

def __init__(self):
# Setup the PicoBorg Reverse

self.PBR = PicoBorgRev.PicoBorgRev()
self.PBR.Init()
if not self.PBR.foundChip:

self.boards = PicoBorgRev.ScanForPicoBorgReverse()
if len(self.boards) == 0:

print ’No PicoBorg Reverse found,
check you are attached :)’

else:
print ’No PicoBorg Reverse at address \%02X,
but we did find boards:’ \% (self.PBR.i2cAddress)
for board in self.boards:

print ’ \%02X (\%d)’ \% (board, board)
print ’If you need to change the I2C address
change the setup line so it is correct, e.g.’
print ’PBR.i2cAddress = 0x\%02X’ \% (self.boards[0])

sys.exit()
self.PBR.SetCommsFailsafe(False)
self.PBR.ResetEpo()
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# Movement settings
self.timeForward1m = 7.2
self.timeSpin360 = 6.2

# Power settings
self.voltageIn = 12.0 # Total battery voltage
self.voltageOut = 6.0 # Maximum motor voltage

# Setup the power limits
if self.voltageOut > self.voltageIn:

self.maxPower = 1.0
else:

self.maxPower = self.voltageOut / float(self.voltageIn)

# Function to perform a general movement
def PerformMove(self,driveLeft, driveRight, numSeconds):

percent = 0.8
speed = self.maxPower*percent

self.PBR.SetMotor1(driveRight * speed)
self.PBR.SetMotor2(-driveLeft * speed)

# Wait for the time
time.sleep(numSeconds)
# Turn the motors off
self.PBR.MotorsOff()

# Function to spin an angle in degrees
def PerformSpin(self,angle):

if angle < 0.0:
# Left turn
driveLeft = -1.0
driveRight = +1.0
angle *= -1

else:
# Right turn
driveLeft = +1.0
driveRight = -1.0

# Calculate the required time delay
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numSeconds = (angle / 360.0) * self.timeSpin360
# Perform the motion
self.PerformMove(driveLeft, driveRight, numSeconds)

# Function to drive a distance in meters
def PerformDrive(self,meters):

if meters < 0.0:
# Reverse drive
driveLeft = -1.0
driveRight = -1.0
meters *= -1

else:
# Forward drive
driveLeft = +1.0
driveRight = +1.0

# Calculate the required time delay
numSeconds = meters * self.timeForward1m
# Perform the motion
self.PerformMove(driveLeft, driveRight, numSeconds)





AppendixCPyhton Location Module

class Location(object):
# Sets scenario, internal map and initial position of car

locationTable = {}

map = [[0 for j in range(61)] for i in range(40)]
intersections = []

_myPos = (None,None)
def get_myPos(self):

return self._myPos
def set_myPos(self,val):

self._myPos = val
myPos = property(get_myPos, set_myPos)

def __init__(self, x,y, scenario):
self.initMap(scenario)
self.setInitPos(x,y)
self.initIntersections(scenario)

def initMap(self,scenario):
if scenario == 1:

self.map[19] = [1 for j in range(61)]
self.map[20] = [1 for j in range(61)]

for i in range(40):
self.map[i][19] = 1
self.map[i][20] = 1
self.map[i][40] = 1

37



38 C. PYHTON LOCATION MODULE

self.map[i][41] = 1
return self.map

def initIntersections(self, scenario):
if scenario == 1:

self.intersections.append((19,19,1,1))
self.intersections.append((19,20,1,2))
self.intersections.append((20,19,1,3))
self.intersections.append((20,20,1,4))

self.intersections.append((19,40,2,1))
self.intersections.append((19,41,2,2))
self.intersections.append((20,40,2,3))
self.intersections.append((20,41,2,4))

return

def setInitPos(self,x,y):
self.myPos = (x,y)
return

def drawMap(self):
tempMap = self.initMap(1)
self.addIntersections(tempMap)
self.addlocationTable(tempMap)
self.addMyPos(tempMap)
tempMap[0][0] += 1
for row in tempMap:

print (row)
#print self.myPos
print (’\n’)

def addMyPos(self,map1):
map1[self.myPos[1]][self.myPos[0]] = 8
return map1

def myPosX(self):
return self.myPos[0]

def myPosY(self):
return self.myPos[1]
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def addIntersections(self,map1):
for inter in self.intersections:

interX=inter[0]
interY=inter[1]
map1[interX][interY]= 3

return map1

def addlocationTable(self,map1):
for car,pos in self.locationTable.iteritems():

carX=pos[0][0]
carY=pos[0][1]
map1[carX][carY]= 4

return map1

def updatelocationTable(self,idC,pos,dist,interID,direction,
approaching):

self.locationTable[idC]=[pos,dist,interID,direction,
approaching]

def deleteCar(self,idC):
del self.locationTable[idC]

def updatePos(self,direction):
if direction==’u’:

self.myPos = (self.myPos[0], self.myPos[1]-1)
return

elif direction==’d’:
self.myPos = (self.myPos[0], self.myPos[1]+1)
return

elif direction==’l’:
self.myPos = (self.myPos[0]-1, self.myPos[1])
return

elif direction==’r’:
self.myPos = (self.myPos[0]+1, self.myPos[1])
return

else:
return

def distanceToIntersection(self):
minDist = 120
for inter in self.intersections:
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interX = inter[1]
interY = inter[0]
dist = abs(self.myPosX()-interX)
+abs(self.myPosY()-interY)
if (dist< minDist):

minDist=dist
interID = inter[2]
interDir = inter[3]

return [minDist,interID,interDir,0]



AppendixDPyhton Car Module

import time as t
import threading
import Location as Loc
import Networking as Net
import sys
import MotorControl as MC
’’’
Class Car
’’’
class Car(object):

ME = ’’
GPS = ’’
RECEIVE = ’’
SEND = ’’
MOTORCONTROL = ’’
VTL = ’’

def __init__(self,car):
if car == 1:

self.ME = ’192.168.1.6’
self.GPS = Loc.Location(0,20,1) #car1

elif car == 2:
self.ME = ’192.168.1.7’
self.GPS = Loc.Location(19,0,1) #car2

else:
self.ME = ’192.168.1.12’
self.GPS = Loc.Location(40,0,1) #car3
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self.RECEIVE = Net.Receive()
self.SEND = Net.Send(8888)
self.VTL = Light()
#self.MOTORCONTROL = MC.MotorControl()

def main(self,car):
t1 = threading.Thread(target = self.receive)
t2 = threading.Thread(target = self.startLight,
args = (0,1,1,1))
t1.start()

if car == 1:
self.loop1() #car1

else:
self.loop2() #car2 and car3

#self.RECEIVE.ACTIVE == False
#self.MOTORCONTROL.PBR.MotorsOff()
#sys.exit()

def send(self,message):
self.SEND.sendPacket(message)

def receive(self):
self.RECEIVE.bind(8888)
while self.RECEIVE.ACTIVE:

d = self.RECEIVE.listen()
self.messageHandler(d)

def messageFactory(self,mType):
if mType == 1:

m = str(mType)+’:’+str(self.GPS.myPos[1])+’:’
+str(self.GPS.myPos[0])
return m

elif mType == 2:
m = str(mType)+’:’+str(self.GPS.myPos[1])+’:’
+str(self.GPS.myPos[0])
return m

elif mType == 3:
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m = str(mType)+’:’+str(self.intersectionID)+’:’
+str(self.state1)+’:’+str(self.state2)+’:’
+str(self.state3)+’:’+str(self.state4)
print m
return m

elif mType == 4:
distance = self.GPS.distanceToIntersection()
m = str(mType)+’:’+str(self.GPS.myPos[1])+’:’
+str(self.GPS.myPos[0])+’:’+str(distance[0])+’:’
+str(distance[1])+’:’+str(distance[2])+’:’+str(distance[3])
print m
return m

elif mType == 5:
m = str(mType)+’:’+str(self.GPS.myPos[1])+’:’
+str(self.GPS.myPos[0])
t2.start()
return m

else:
return

def messageHandler(self,message):
data = message[0].split(’:’)
carID = message[1][0]
#if carID == self.ME:
# return
mType = data[0]

if mType == ’3’: # VTL update
self.isGreen(data[1:])
return

elif mType == ’4’: # Location update
if carID == self.ME:

return
carPos = (int(data[1]),int(data[2]))
carDist = int(data[3])
interID = int(data[4])
carDir = int(data[5])
approach = int(data[6])
self.GPS.updatelocationTable(carID,carPos,carDist,
interID,carDir,approach)
return
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elif mType == ’5’: # Message of starting a VTL
startLight(myDirection = self.GPS.distanceToIntersection()[2])
return

else:
return

def strToBool(self,bStr):
if bStr == ’True’:

return True
else:

return False

def doMove(self,direction):
distance = self.GPS.distanceToIntersection()
self.GPS.drawMap()
if distance[0] == 1 and not self.stateMe:

while not self.stateMe:
print ’stopping’
t.sleep(0.5)

elif distance[0] <= 10:#and not leaving:
print ’approaching’

else:
print ’far away’

self.GPS.updatePos(direction)
self.send(self.messageFactory(4))
self.MOTORCONTROL.PerformDrive(-0.1)

def doTurn(self,direction):
#self.GPS.drawMap()
self.GPS.updatePos(direction)
self.send(self.messageFactory(4))
print ’turning’
self.MOTORCONTROL.PerformSpin(-100)
self.MOTORCONTROL.PerformDrive(-0.05)
self.MOTORCONTROL.PerformSpin(-100)

def loop1(self):
while True:

for i in range(60):
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self.doMove(’r’)
self.doTurn(’u’)
for i in range(60):

self.doMove(’l’)
self.doTurn(’d’)

def loop2(self):
while True:

for i in range(39):
self.doMove(’d’)

self.doTurn(’r’)
for i in range(39):

self.doMove(’u’)
self.doMove(’l’)

STATE1 = [’010’, 2]
STATE2 = [’100’, 10]
STATE3 = [’110’, 2]
STATE4 = [’001’, 10]
state1 = False
state2 = False
state3 = False
state4 = False
intersectionID = None

def leaderElection():

clusterMe
clusterYou

return

def isLeaving(self):
return False

def isGreen(self,lights):
myDirection = self.GPS.distanceToIntersection()

if myDirection[1]:
self.state1 = self.strToBool(lights[0]])
self.state3 = self.strToBool(lights[1])
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self.state2 = self.strToBool(lights[2])
self.state4 = self.strToBool(lights[3])
self.stateMe = self.strToBool(lights[myDirection[2]])

#TRAFFIC LIGHT PART OF SYSTEM
def startLight(self, interID, state,clusterMe,clusterYou):

self.state1 = False
self.state3 = False
self.state2 = False
self.state4 = False
self.intersectionID = interID
myDirection = self.GPS.distanceToIntersection()[2]
if (myDirection == 1 or myDirection == 3):

odd = True
else:

odd = False

self.STATE2[1] = clusterMe*3
self.STATE4[1] = clusterYou*3
state = int(state)
#while True:
state = state % 4
if state == 0:

self.state1 = False
self.state3 = False
self.state2 = False
self.state4 = False
self.send(self.messageFactory(3))
t.sleep(self.STATE1[1])
t.sleep(2)
state+=1

if state == 1:
if odd:

self.state1 = False
self.state3 = False
self.state2 = True
self.state4 = True

else:
self.state1 = True
self.state3 = True
self.state2 = False
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self.state4 = False
self.send(self.messageFactory(3))
crossingCars = True
while crossingCars:

t.sleep(self.STATE2[1])
crossingCars = False

state+=1
if state == 2:

self.state1 = False
self.state3 = False
self.state2 = False
self.state4 = False
self.send(self.messageFactory(3))
t.sleep(self.STATE3[1])
state+=1

if state == 3:
if not odd:

self.state1 = False
self.state3 = False
self.state2 = True
self.state4 = True

else:
self.state1 = True
self.state3 = True
self.state2 = False
self.state4 = False

self.send(self.messageFactory(3))
crossingCars = True
while crossingCars:

t.sleep(self.STATE4[1])
crossingCars = False

t.sleep(2)
state+=1

if __name__ == ’__main__’:
myCar = Car(1)
myCar.main(1)


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Methodology
	Outline
	Related Work

	Background
	DiddyBorg
	Raspberry Pi 3
	PicoBorg Reverse
	BattBorg

	Communication
	Dedicated Short Range Communication
	Vehical Ad-hoc Network

	Software tools
	Raspbian Jessie
	Wireshark


	Virtual Traffic Light
	Assumptions
	Principle of Operation

	Testbed Implementation
	Network Topology
	System Architecture
	Network Module
	Motor Control Module
	Location Module
	Traffic Light Module
	Car Module
	Data Flow

	Challenges and Lessons Learned

	Simulation
	Simulation Setup
	Scenarios
	Results

	Discussion, Conclusion and Further Work
	Conclusion
	Further Work

	References
	Pyhton Network Module
	Pyhton Motor Control Module
	Pyhton Location Module
	Pyhton Car Module

