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Abstract

In this thesis, we will apply a topology optimization method to unsteady fluid flow, using
a density model and level set method, in order to optimize the shape of a coronary artery
bypass anastomosis. The fluid movement is described by the unsteady, incompressible
Navier-Stokes equations combined with Darcy’s equation. These equations are discretized
using a finite element approach in space and a backward Euler method in time, and solved
using an incremental pressure correction scheme (IPCS). We will consider different ob-
jective functionals for the optimization problems. The topological derivative will be cal-
culated based on an adjoint formulation of the Navier-Stokes equations combined with
Darcy’s equation, and used as a search direction in a gradient-based algorithm, in order to
find the optimal channel shape.
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Sammendrag

I denne masteroppgaven presenteres en topologioptimeringsmetode for fluidstrømning, der
det brukes en tetthetsmodell og en levelsetmetode. Metoden vil anvendes til optimering av
formen på en bypass-anastomose i en koronar arterie. Fluidstrømningen beskrives av de
tidsavhengige inkompressible Navier-Stokes-ligningene kombinert med Darcys ligning.
Ligningene diskretiseres ved bruk av en endelig elementmetode i rom, og en baklengs
Eulermetode i tid, og løses ved bruk av et inkrementerende trykkorreksjonsskjema (IPCS).
Vi vil se på forskjellige kostnadsfunksjonaler for optimeringsproblemet. Den topologisk
deriverte vil bli regnet ut basert på en adjointformulering av Navier-Stokes-ligningene
kombinert med Darcys ligning, og brukt som søkeretning i en gradientbasert algoritme for
å finne den optimale kanalformen.
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Chapter 1
Introduction

”The art of structure is where to put the holes”
Robert Le Ricolais
French-American engineer and philosopher
(1894-1977)

1.1 Problem Description

In this thesis, we will apply a topology optimization method to time-dependent fluid flow,
using the density method and level set method. This method will be applied to optimize
the shape of a coronary artery bypass anastomosis, which is a vessel going around an
occluded artery in the heart. The fluid movement is described by the unsteady, incom-
pressible Navier-Stokes equations combined with Darcy’s equation. These equations are
discretized using a finite element approach in space and a backward Euler method in time.
We will consider different objective functionals for the optimization problems. The topo-
logical derivative will be calculated based on an adjoint formulation of the Navier-Stokes
equations. Using the adjoint solution, we are able to calculate the topological derivative
with significantly lower computational costs. The topological derivative will be used as a
search direction in a gradient-based algorithm in order to find the (locally) optimal channel
shape.

1.2 Medical Background

The motivation behind the topology optimization method is to design a shape of a coronary
artery bypass anastomosis. A bypass surgery is a surgical procedure to restore normal
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Chapter 1. Introduction

blood flow to an occluded coronary artery. Figure 1.1 shows an illustration of a bypass.

Figure 1.1: Simplified model of a bypass, collected from Quarteroni and Rozza [1]. The zone of the
incoming branch of the bypass into the coronary, marked with a circle, is known as the toe.

Bypass surgery can provide relief of angina, which is chest pain related to lack of blood
flow, but bypass surgery does not prevent future heart attacks. An understanding of coro-
naric diseases is very important to reduce surgical and post-surgical failures, as successful
grafts typically last 8-15 years. Approximately 8 % of patients risk bypass failure every
year, and 80 % of bypasses must be replaced within 10 years [1]. One of the principal
causes is anastomotic intimal hyperplasia (Cole et al. [2]), which is a physiologic healing
response to injury to the blood vessel wall. From clinical observations (Leuprecht et al.
[3]), we know that intimal hyperplasia mostly occurs at outflow anastomoses of bypass
grafts. Different shapes of coronary artery bypass anastomoses are available, such as Tay-
lor Patch [4] and Miller Cuff [5], so different surgery procedures are practiced, see Figure
1.2 for an illustration.

(a) Taylor patch. (b) Miller cuff.

Figure 1.2: Illustration of different bypass anastomosis shapes, collected from [6].

The left and right coronary arteries are the blood vessels that run on the heart surface,
and they regulate the blood flow levels to match the needs of the heart muscle, see Figure
1.3. These vessels are relatively narrow and can become blocked, causing angina or heart
attack. The coronary arteries are the only source of blood supply to the heart muscle, so
blockage of these vessels is critical, generally resulting in death of the heart tissue due
to lack of blood supply. An anastomosis is an area of vessels that are interconnected,
allowing dual blood supply to a region. This normally ensures blood flow even if there is
a partial blockage in another branch. Since the anastomoses in the heart are very small,
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1.3 Topology Optimization in Fluid Flow

blockage in a coronary artery often results in lack of blood supply and death of the heart
cells affected.

Figure 1.3: Coronary arteries on the heart, collected from [7]

Shape optimization of a coronary artery bypass anastomosis based on adjoint formulation
has been proposed by Quarteroni and Rozza [1] in 2003. In this work, the zone of the
incoming branch of the bypass into the coronary, also known as the toe, was optimized,
and the cost functionals for vorticity and wall shear stress were minimized. The flow was
modeled using steady Stokes flow, and resulted in an optimally shaped cuffed bypass,
with a shape that resembled the Taylor arterial patch, described in Cole et al. [4]. In
2005 Rozza [8] extended this work by solving the unsteady Navier-Stokes equations in
the original and final configuration of the shape proposed in [1], and a reduction of 40
% in vorticity was observed. In 2006 Agoshkov, Rozza and Quarteroni [9, 10] presented
a new approach based on small perturbation theory and adjoint formulation in the study
of aorto-coronary bypass anastomoses. One approach with steady Stokes flow [9], and
another with unsteady Stokes equations [10], both showed reduction in vorticity of about
30 %. All previous optimization problems were modelled in a two-dimensional geometry
and used a chosen velocity profile as inlet velocity. For future development it is suggested
to apply fully unsteady incompressible Navier-Stokes equations and extend the geometry
to three dimensions, in order to provide a more realistic design.

We will apply a topology optimization method to a coronary artery bypass anastomosis.
As cost functionals, we will consider vorticity, pressure drop and energy dissipation, and
the flow will be modeled in two dimensions using the unsteady incompressible Navier-
Stokes system combined with Darcy’s equation. We will use a flow rate waveform shape
for a left anterior descending coronary artery from Thomas et al. [11] as inlet velocity.

1.3 Topology Optimization in Fluid Flow

The goal of topology optimization is to modify the shape and connectedness of a domain,
such that the desired objective function is minimized. While shape optimization is limited
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Chapter 1. Introduction

to determining an existing boundary, topology optimization can be used to design fea-
tures within the domain, allowing new boundaries to be introduced into the design. This
makes topology optimization more robust than for instance shape optimization, since less
information about the goal shape is required.

Figure 1.4: An example of three steps of a fluid flow topology optimization procedure, collected
from [12].

The underlying idea of topology optimization is to describe a geometry via its material
distribution. By varying the material distribution, subdomains can be created or merged.
See Figure 1.4 for an illustration of fluid flow topology optimization, with material distri-
bution of fluid and solid. The density type method and level set method are two methods
used in the implementation of topology optimization. The density method was first used
for the design of stiffness and compliance mechanics and has been extended to many other
physical fields. See Campeao et al. [13] and its references for examples.

For several optimization problems, the level set method has been successfully applied to
compute optimal geometries without a priori knowledge about the connectedness of the
domain. The level set method is a numerical technique for tracking interfaces and shapes
in a domain using level sets. One of the advantages of the level set method is that you do
not have to parametrize the shapes. This makes it well suited for topology optimization,
for instance when a shape splits in two or a hole is developed. See for example Sethian
and Wiegmann [14].

Topology optimization applied to fluid mechanics was first introduced in 2003 by Bor-
rvall and Petersson [15] on stationary Stokes flow. Before this, only shape optimization
had been applied to fluid mechanics. In [15] a relaxed Stokes flow formulation was pro-
posed, where the impermeability works as a penalty factor on the flow velocity, inspired
by Darcy’s equation. Guest and Prévost [16] extended this work by applying a stabilized
finite element formulation for the Stokes and Darcy equations, treating the solid phase as
a porous medium.

Burger, Hackl and Ring [17] investigated the use of topological derivatives in combination
with the level set method for optimization problems. Amstutz and Andrä [18] proposed
a new algorithm for topology optimization using a level set method based only on the
topological gradient. The level set method in fluid flow optimization was proposed by
Challis and Guest [19]. This was suggested as an alternative to density-based approaches
using the topological sensitivity of the Stokes flow.

Topology optimization for fluid mechanics was first extended to the Navier-Stokes equa-
tions by Gersborg-Hansen et al. [20] in 2005. They propose an analytical sensitivity
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1.4 Organization of thesis

analysis using the adjoint method. Topological sensitivity was introduced by Sokolowski
and Zochowski in 1999 [21]. The adjoint equations for channel flows were proposed
by Othmer et al. [22], where a continuous adjoint formulation for the incompressible
Navier-Stokes equations with Darcy porosity term was derived. Sá et al. [23] proposed a
steepest descent algorithm based on the topological derivative formulation for the Stokes
and Navier-Stokes equations and their adjoint formulations, obtaining an optimal design
in few iterations.

Kreissl et al. [12] and Deng et al. [24, 25] applied topology optimization to the unsteady
incompressible Navier-Stokes for low to moderate Reynolds numbers. In this thesis, our
goal is to extend their work by combining the algorithm described in [23] with topological
derivatives applied to unsteady fluid flow.

1.4 Organization of thesis

This thesis is organized as follows. In Chapter 2 we will present the tools of topology
optimization. The topological derivative will be defined, and some basic examples related
to fluid flow topology optimization are presented. In addition, the representation of fluid
and solid will be be described through a level set function and impermeability constant.
Chapter 3 describes the modelling of fluid flow in topology optimization. The optimiza-
tion problem with respect to fluid flow problems will be presented, and a solution strategy
for the optimization procedure, including algorithms, will be proposed. In Chapter 4, the
adjoint method for both stationary and non-stationary partial differential equations is pre-
sented, and the adjoint equations for the steady and unsteady Navier-Stokes-Darcy systems
are derived. The adjoint equations are incorporated in the derivation of the topological
derivative with respect to the dissipation energy functional at the end of the chapter. The
mathematical theory presented in these chapters are dimension-independent.

In Chapter 5, the Navier-Stokes-Darcy equations are discretized in space using the finite
element method, and in time using a backwards scheme. Two different projection methods,
Chorin’s scheme and the Incremental Pressure Correction scheme, will be presented, and
the time-dependent adjoint equations from Chapter 4 are discretized in time. At the end
of the chapter, numerical software used for discretization is presented. In Chapter 6 we
will verify the discretization proposed in Chapter 5 in 2D, using the numerical software
presented. In addition, we will investigate the effect of Darcy’s equation combined with
the Navier-Stokes equations. We will also verify the numerically computed gradient, with
respect to the topological derivative proposed in Chapter 4. In Chapter 7, we will present
numerical experiments based on examples from the literature, also in 2D. In addition, the
model and result of the optimal bypass anastomosis will be presented and discussed.
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Chapter 2
Topology Optimization

Introducing the field of topology optimization, we will consider a very general case. As-
sume we have an open and bounded domain Ω ⊂ Rd, with d = 2 being the dimension
of the space in our case, although the presentation is independent of the dimension. The
optimization problem can be stated as

Minimize J,

subject to F = 0 on Ω,
(2.1)

where J is the goal functional and F is a set of state equations.

We will apply optimization techniques based on the topological derivative and level sets
to find the optimal topology. For a better understanding of the topological derivative, we
will first explain the basic concept, before we illustrate it with an example using material
distribution. At the end of this chapter, we will give a brief introduction to the level set
method in topology optimization.

2.1 The Topological Derivative

The topological derivative is a measure of the change in a topology with respect to some
functional. A topological change in Ω can be described by the removal of a circular ball
Bε(x̂) with radius ε centered at an arbitrary point x̂ in the interior of Ω, x̂ ∈ int(Ω). The
perturbed domain is then given by Ωε(x̂) = Ω\Bε(x̂). See Figure 2.1 for an illustration
of the perturbation of a domain.

Now, let us introduce a functional J associated with the unperturbed domain, J = J(Ω),
and find its topological derivative. The topological derivative is defined by the first order
correction of the asymptotic expansion of the functional with respect to a small perturba-
tion in the domain. For the perturbed domain, Ωε, we assume the associated functional
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Chapter 2. Topology Optimization

Figure 2.1: An illustration of a topological perturbation of a domain Ω by the removal of a circular
ball Bε with radius ε.

J(Ωε) admitting the following topological asymptotic expansion [26]

J(Ωε(x̂)) = J(Ω) + f(ε)DTJ(x̂) + o(f(ε)). (2.2)

The term f(ε)DTJ(x̂) can be seen as the first order correction of J(Ω) to approximate
J(Ωε(x̂)), and the function f : R+ → R+ must have the property f(ε) → 0 when
ε → 0+. DTJ(x̂) describes the change in J with respect to a perturbation at x̂, and is
called the topological derivative of J . From the expansion of J in equation (2.2) we obtain
the general definition for the topological derivative

DTJ(x̂) := lim
ε→0

J(Ωε(x̂))− J(Ω)

f(ε)
. (2.3)

A basic illustration of the topological derivative is to consider the functional associated
with the volume of a domain,

J(Ω) = |Ω| =
∫

Ω

1. (2.4)

The corresponding perturbed volume functional, where a ball of radius ε has been re-
moved, is given as

J(Ωε) =

∫
Ω

1−
∫
Bε

1 = J(Ω)− πε2. (2.5)

Comparing the topological expansion in (2.5) to equation (2.2), it is trivial to identify
f(ε) = πε2 and DTJ = −1 as the topological derivative. In this particular example, the
order term in (2.2) is equal to zero, and the topological derivative DTJ is independent of
x̂. The negative sign appears because we remove a part of the domain.

2.2 Topological Derivative with respect to a Fluid Subdo-
main

Restricting ourselves to fluid flow topology optimization, let us investigate the distribution
of fluid and solid material in a domain Ω. Denote a fluid subdomain by ω and the remaining
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2.3 Level Set Representation of Fluid and Solid

solid subdomain as Ω\ω̄. Consider now the topological derivative with respect to the
fluid domain, i.e. let the functional J be J = |ω|. If x̂ is in the fluid subdomain ω,
the perturbation would be to remove a ball Bε from ω, and we would obtain the same
topological derivative as in the basic volume example, namely DTJ = −1. If, on the
other hand, x̂ is stationed in the solid subdomain Ω\ω̄, the perturbation would be to add
a ball Bε to the fluid domain, and the sign would be positive. Hence, the topological
derivative of |ω| is described by

DT |ω| = k(x̂), (2.6)

with

k(x̂) =

{
+1 if x̂ ∈ Ω\ω
−1 if x̂ ∈ ω.

(2.7)

We will make use of this definition of k when we derive the topological derivative with
respect to a certain functional in Section 4.7.

2.3 Level Set Representation of Fluid and Solid

The level set method is a numerical technique for tracking interfaces and shapes in a do-
main using level sets [27]. A level set can be expressed as the set where some function f
is bounded by a constant c, {x |f(x) < c}. One of the advantages of the level set model
is thatit is not needed to parametrize the shapes since the shape is implicitly defined. This
makes it well suited for topology optimization, for instance when a shape is divided into
two pieces or a hole is developed [14].

To model the distribution of fluid and solid in the domain Ω, we introduce a fictitious
time t, such that the evolvement of the domain can be viewed as a family (Ω(t))t≥0. This
evolution is represented by a level set function ψ(x, t) such that{

ψ(t, x) ≤ 0 for x ∈ ω(t)

ψ(t, x) > 0 for x ∈ Ω\ω̄(t),
(2.8)

where ω(t) is the time-dependent fluid domain. Note that k(x) = sign(ψ(t, x)) from
(2.7). Hence, the level set function ψ can be used as a design variable for the fluid-solid
distribution.

A common approach is to model the evolution of the level set function by the Hamilton-
Jacobi equation [17, 19], also known as the level set equation,

∂ψ

∂t
= −v|∇ψ|, (2.9)

where v is the speed of the moving domain boundary. In [17] Burger et al. investigate
the use of topological derivatives in combination with the level set function (2.9) in a new

9



Chapter 2. Topology Optimization

level set method. Another approach, first proposed in [18], is to use an evolution equation
in combination with the level set function, based only on the concept of the topological
derivative DTJ ,

∂ψ

∂t
= P (DTJ), (2.10)

where P (·) is some function. We will use this formulation and discuss it, in the light of
optimality conditions, in Section 3.3.

2.4 Material Distribution

We will distribute solid or fluid material at each point x of the domain Ω by letting an
impermeability parameter α(x) vary between two non-negative constants,

α(x) =

{
αL if x ∈ ω,
αU if x ∈ Ω\ω̄

(2.11)

with αU � αL ≥ 0. As in the previous section, ω denotes the fluid subdomain. We omit
explicitly writing the time-dependency to simplify notation.

Figure 2.2: Interpolation of α(ψ) for different values of penalty q.

In some cases, we need the material distribution to be continuously differentiable on the
domain, for instance when computing topological derivatives numerically. The imperme-
ability α can in this case be represented by an interpolation function

α(ψ) = αL + (αU − αL)
1

1 + e−ψ+q
(2.12)

10



2.5 Optimality Conditions

where ψ is the level set function defined in (2.8) and q is a penalty parameter that restricts
the elements with intermediate impermeability. An illustration of the interpolation can be
seen in Figure 2.2, with αL = 2.5 ·10−4 and αU = 2.5 ·104. Letting the penalty parameter
q = 0 corresponds to the case of no interpolation.

2.5 Optimality Conditions

In order to carry out topology optimization, we need some basic optimality conditions. A
locally necessary optimality condition is on the topological derivative defined in (2.3), is

DTJ(x) ≥ 0 ∀x ∈ Ω. (2.13)

The topological gradient with respect to the optimization problem, hereby denoted g, is a
function that measures the sensitivity of J with respect to a change in the topology, i.e.
the permeability. Hence, if the impermeability α changes from αL to αU , then the fluid
volume |ω| is increased, and the gradient must be positive, as opposed to when it changes
from αU to αL. Then |ω| is decreased, and the gradient must be negative, see [28] for
more details. The gradient g needs to be a descent direction, so we define it as

g(x) =

{
−DTJ(x) for x ∈ ω
+DTJ(x) for x ∈ Ω\ω̄

(2.14)

In this way, the local optimality condition (2.13) can be stated as

{
g(x) ≤ 0 for x ∈ ω
g(x) > 0 for x ∈ Ω\ω̄.

(2.15)

This optimality condition on the gradient will be used in the optimization algorithm in
Chapter 3.
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Chapter 3
Fluid Flow Optimization

The optimization problem for the flow of a fluid through a channel is the same as in the
general case 2.1,

Minimize J(u, α)

subject to F (u, α) = 0 on Ω,
(3.1)

where J(u, α) is a functional and F (u, α) is a set of equations. The parameter u describes
the movement of the fluid in the channel, and α is a control for fluid-solid distribution.
Hence, in order to carry out the optimization, we need to calculate the movement of the
fluid. Fluid motion can be described by the Navier-Stokes equations, which is an example
of equations on the form F (u, α) = 0. In order to incorporate the control α, we will
use the concept of porous media flow, which can be modelled by Darcy’s equation. In
the following section we will combine these two systems of equations. At the end of this
chapter, we will present a specific optimization problem, and a solution strategy for the
problem.

3.1 Combining Navier-Stokes’ and Darcy’s Equations

To describe the fluid flow, let us consider the unsteady Navier-Stokes equations for an
incompressible fluid.

∂u

∂t
− ν∆u + (u · ∇)u +

1

ρ
∇p = f in Ω, (3.2)

∇ · u = 0 in Ω, (3.3)

where t ∈ (0, T ) is the time, u is the velocity vector, p is the pressure, ν is the kinematic
viscosity, ρ is the density, f is the body force and Ω is the domain on which the fluid
flows. In addition we have suitable initial and boundary conditions, and these are discussed

13



Chapter 3. Fluid Flow Optimization

below. Because we want to model a fluid flow on subdomains with different materials, as
proposed in Section 2.4, we need a way to describe this. The approach used here is to
model certain subdomains as a porous medium using Darcy’s equation,

αu +∇p = 0, (3.4)

where α is the impermeability, or the inverse permeability, see [29]. The term α is also
called the Brinkman term after Brinkman [30]. The impermeability is a measure of the
ability of a porous material to allow fluids to pass through it. Low impermeability gives
rapidly moving fluid while high impermeability gives the opposite. In [15, 20, 25] it is
proposed to add an artificial friction force into the body force term in (3.2)

f = −αu. (3.5)

The coupling of Darcy’s law with the unsteady Navier-Stokes equation has been proved
to have a unique solution by Cesmelioglu et al.[31]. The inclusion of the Darcy term
αu in the Navier-Stokes system allows for punishing counterproductive cells – the central
component of topology optimization [22]. In this way we can model a domain with fluid
and solid subdomains simply by letting the impermeability α vary, as described in Section
2.4.

3.2 The Complete Navier-Stokes-Darcy (NSD) system

Including Dirichlet and Neumann boundary conditions on ∂ΩD and ∂ΩN , respectively,
the complete Navier-Stokes-Darcy system on strong form yields: find (u, p) such that

∂u

∂t
− ν∆u + (u · ∇)u + αu +

1

ρ
∇p = 0 in Ω, (3.6)

∇ · u = 0 in Ω, (3.7)
u = uD on ∂ΩD, (3.8)

ν(∇u) · n− 1

ρ
pn = gN on ∂ΩN , (3.9)

u(t0) = u0 in Ω, (3.10)

where n is the outward unit normal, gN is the traction and u0 is the initial velocity at time
t0. We will from here on refer to (3.6) - (3.9) as the Navier-Stokes-Darcy system or the
NSD system.

In fluid flow modelling, the inflow velocity is commonly known, hence a Dirichlet bound-
ary condition is applied to the inflow boundary. On the wall, a no-slip Dirichlet boundary
condition with uD = 0 is applied. For the outflow, we either know the outflow velocity,
like for instance in [19, 15, 23], or if the outflow profile cannot be determined a priori,
one can use a traction-free boundary condition, gN = 0, at the outlets [16, 22, 12, 24].
This is known as a do-nothing boundary condition [32], as it naturally appears when doing
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3.3 The Optimization Problem

integration by parts. In particular, this open boundary condition will be used on the outlets
in the numerical experiments presented in Chapter 7.

When solving partial differential equations using a finite element method, as we want here,
it is necessary to set up the weak formulation and solve that instead. Then the equations
are not required to hold absolutely, but has weak solutions with respect to certain test
functions. For the weak form, let

U = {u ∈ H1(Ω;R) : u|∂ΩD
= uD, u(t0) = u0} (3.11)

V = {u ∈ H1(Ω;R) : u|∂ΩD
= 0} (3.12)

Q = L2(Ω), (3.13)

denote the velocity spaces and pressure space, respectively, and let the test functions be
defined as v ∈ V and q ∈ Q. The NSD problem in weak form with initial and boundary
conditions then yields: find u ∈ U and p ∈ Q such that∫

Ω

∂u

∂t
· v + ν

∫
Ω

∇u · ∇v +

∫
Ω

(u · ∇)u · v +

∫
Ω

αu · v

−
∫

Ω

1

ρ
(∇ · v)p+

∫
∂ΩN

pn · v −
∫
∂ΩN

νn · ∇u · v = 0 ∀ v ∈ V, (3.14)∫
Ω

(∇ · u)q = 0 ∀ q ∈ Q. (3.15)

Note that we have included the Neumann boundary conditions (3.9) in the integral (3.14).
We will later on use the weak form in the derivation of the topological derivative and in
the numerical discretization.

3.3 The Optimization Problem

The optimization problem is to minimize a specific functional J in a fluid flow channel by
optimizing the channel shape. Given inflow and outflow conditions on the boundary of a
domain Ω, the aim is to distribute fluid and solid material to obtain the optimal shape with
respect to J . In addition, a constraint is introduced to put a bound on the total volume of
fluid.

If J is the cost functional to be minimized, the optimization problem can be stated in the
same way as in (2.1):

Minimize J(u, p, α)

subject to F(u, p, α) = 0 on Ω.
(3.16)

where u and p stands for velocity and pressure, respectively, and the impermeability pa-
rameter α serves the purpose of the design variable. F is the system of state equations,
more specifically the incompressible Navier-Stokes-Darcy system,

F(u, p, α) =

(
∂u

∂t
− ν∆u + (u · ∇)u + αu +∇p

∇ · u

)
. (3.17)
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Chapter 3. Fluid Flow Optimization

We have left out the boundary and initial conditions for readability. These will be treated
explicitly in each case. Now that we have formulated the equations needed to model our
problem, we can proceed to the solution strategy for the optimization problem.

In order to solve the optimization problem, we will use the topological derivative of the
objective functional J incorporated in a gradient-based algorithm. The topological deriva-
tive describes the change in J when the topology changes, and can be used as a steepest
descent direction in order to minimize the objective function. The topological deriva-
tive is dependent on the movement of the fluid through (u, p), but also their adjoint states
(ua, pa). Thus, we must solve both the Navier-Stokes-Darcy system and its adjoint system
in each iteration. This will be described thoroughly in Chapter 4 and 5.

The level set function, ψ, defines the state of the material distribution. It will, as defined in
(2.8), be non-positive in the fluid subdomain and positive in the solid subdomain. Hence,
the impermeability parameter α, describing the material constant, is directly dependent on
ψ. From the optimality condition (2.15), we see that it is fulfilled if the gradient g and ψ
coincide, i.e. g = τψ for some τ > 0. Hence, in the fluid domain ω we wish to increase
ψ where g > 0, and in the solid domain Ω\ω̄ we wish to decrease ψ where g ≤ 0.

Defining the level-set function ψ as proposed in [18], we have the equation

∂ψ

∂t
= g − 〈g, ψ〉ψ (3.18)

where the right hand side is the complement of the orthogonal projection of g onto ψ.
Here, and in further calculations, we refer to the L2(Ω) inner product when writing 〈·, ·〉
and let ‖ · ‖ denote the corresponding norm. If ψ tends to a stationary point, then (3.18) is
zero, and the level-set function ψ and g must coincide. Hence we have a local optimum.

Assume now that we can apply an Euler forward method in time to (3.18),

ψi+1 = ψi + ∆tPi, (3.19)

where Pi is the projection

Pi = gi − 〈gi, ψi〉ψi. (3.20)

Here we have denoted ψ(ti) = ψi, and the same applies to gi. We want the new level set
function to be normalized, ‖ψi+1‖ = 1, so we can represent it by a trigonometric relation.
Let

θi = arccos

(
〈gi, ψi〉
‖gi‖‖ψi‖

)
(3.21)

be the non-oriented angle between ψi and gi. For this value of θi there exists a step-size
κi ∈ [0, 1] such that the new normalized level-set function can be written as

ψi+1 = cos(κiθi)ψi + sin(κiθi)
Pi
‖Pi‖

, (3.22)

‖Pi‖ = ‖gi − 〈gi, ψi〉ψi‖ = sin θi‖gi‖, (3.23)
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3.4 Fluid Volume Penalization

where Pi is defined in (3.19). Note here that we get rid of the explicit time dependency.
Inserting the expression for Pi into (3.22) we obtain

ψi+1 =

(
cos(κiθi)−

cos θi sin(κiθi)

sin θi

)
ψi +

sin(κiθi)

sin θi

gi
‖gi‖

(3.24)

=
1

sin θi

(
sin ((1− κi)θi)ψi + sin(κiθi)

gi
‖gi‖

)
. (3.25)

We now have a way of updating the level-set function based on the topological gradient
gi, the angle θi between gi and the previous level-set function ψi, and a step size κi.

Since the optimization problem is non-convex [23], the solution is dependent on the initial
state, and a global minimum is not guaranteed. When θ reaches below some numerical
tolerance εθ, the solution is considered optimal and the algorithm terminates.

3.4 Fluid Volume Penalization

The solution strategy presented above has no constraints on the size of the fluid volume.
In fluid flow channel design optimization, it is reasonable to introduce a linear penalty
parameter β on the fluid domain volume, such that the new functional to be minimized
will be

J(u, p, α) + β|ω|, (3.26)

with topological derivative

DTJ(u, p, α) + k(x)β, (3.27)

were the last term is collected from (2.6). The topological derivative of a specific func-
tional will be derived in Chapter 4. One drawback with this approach is the introduction of
an additional parameter β specific for the optimization problem, which must be adjusted
in every case.

3.5 Backtracking Line Search

The step size κi has to be determined for each iteration. A backtracking line search with
the Armijo condition [33] has been investigated, with the topological gradient g as search
direction. When using the topological derivative, this shows poor results, as the inner
product 〈g, g〉 takes on a very large value, hence it is hard to find a descent direction
fulfilling the Armijo condition. Instead we implement a line search where κi is decreased
until the objective function decreases, J(u, p, α(ψi+1)) < J(u, p, α(ψi)). If the step size
κi reaches below some numerical tolerance εκ, the solution at a local minimum, and the
algorithm will terminate.
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Chapter 3. Fluid Flow Optimization

One drawback of a backtracking line search is that it requires us to solve the Navier-Stokes-
Darcy system for every update of κi, which can be very costly. Therefore, an approach of
letting κi = 1.0 until a threshold θ < θκ is obtained, can be considered, since according
to [23], the step size parameter generally starts to diminish only at the end of the iterative
process, that is, when θi is small. It will be stated in each experiment in Chapter 7 whether
this approach is applied or not. The line search is inspired by [28], and is performed as
follows:

Algorithm 1: Backtracking Line Search
Choose initial step κ0 = 1.0
At iteration i ≥ 1, update κi = min(1.0, 1.5κi−1)
while J(ψi) > J(ψi−1) do
κi ← κi/2
if κi < εκ then
J(ψi) local minimum, terminate

end if
update ψi according to (3.25)
solve the Navier-Stokes-Darcy system to obtain u, p

end while

3.6 Gradient-Based Algorithm

The optimization algorithm is a gradient-based method proposed in Sá et al.[23]. In the
numerical algorithm, the gradient g defined by (2.14) will for the Navier-Stokes-Darcy
system be

g(x) = sign(ψ)(DTJ(u, p, α) + k(x)β) (3.28)
= k(x)DTJ(u, p, α) + β, (3.29)

since sign(ψ) = k(x). DTJ(u, p, α) will also be dependent on the adjoint states of the
velocity and pressure, ua and pa, respectively, so both the primal and adjoint system must
be solved in each iteration. To solve these systems, knowledge of α which depends on ψ
is necessary. The adjoint equations for the Navier-Stokes-Darcy system will be derived
in Chapter 4. Combining the solution strategy presented above with the fluid volume
penalization and backtracking line search, the gradient-based algorithm can be stated as
follows:

The implementation of the gradient-based algorithm can be found in Appendix A.3.
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3.6 Gradient-Based Algorithm

Algorithm 2: Gradient-Based Algorithm
Initialize ψ0 s.t. ‖ψ0‖ = 1.0, κ0 = 1.0
while θ > εθ do
αi ← α(ψi)
solve Navier-Stokes-Darcy system to obtain u, p
solve adjoint system to obtain ua, pa

gi ← k(x)DTJ(u, p,ua, pa, α) + β

θ ← arccos
(
〈gi,ψi〉
‖gi‖‖ψ‖

)
κi ← backtracking line search
ψi+1 ← 1

sin θi

(
sin ((1− κi)θi)ψi + sin(κiθi)

gi
‖gi‖

)
end while
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Chapter 4
The Adjoint Method and
Topological Derivative

In order to carry out fluid flow optimization, we need to find the direction in which some
functional of interest J decreases. This direction can be calculated using topological
derivatives. Let us consider the optimization problem (3.1) where F (u, α) = 0 is a sys-
tem of partial differential equations and J(u, α) is the functional of interest. Since α is
our control parameter, we want to evaluate the change in J(u, α) with respect to α by
calculating the derivative

dJ

dα
=
∂J

∂u

du

dα
+
∂J

∂α
. (4.1)

In this thesis we will apply a gradient-based optimization algorithm to find an optimal
solution. Because the number of parameters in fluid flow optimization is generally quite
large, this motivates the use of so-called adjoints. A nice property for the adjoints is
that the number of computations is independent of the number of parameters for which
you want the gradient. Incorporating the adjoint solution in the topological gradient, the
computational costs will decrease significantly.

4.1 The Concept of Adjoints

Let us start with the basic definition of adjoint operators. The adjoint of an operator A,
also called the Hermitian adjoint, is denoted A∗. Suppose H is a Hilbert space with inner
product 〈·, ·〉H and A : H → H . Then the adjoint operator A∗ is satisfying

〈Au, v〉H = 〈u,A∗v〉H . (4.2)
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For more details, see for instance [34] Chapter 6. Suppose now that A is the time-
differential operator ∂/∂t with initial conditions at t = 0 integrated over a time interval,

〈Au, v〉 =

∫ T

0

〈 ∂
∂t
u, v〉dt+ 〈u, v〉|t=0. (4.3)

By evaluating the inner product, integration by parts shows that∫ T

0

〈 ∂
∂t
u, v〉dt+ 〈u, v〉|t=0 = −

∫ T

0

〈u, ∂
∂t
v〉dt+ 〈u, v〉|t=T . (4.4)

Hence, the adjoint of the operator is

〈u,A∗v〉 = −
∫ T

0

〈u, ∂
∂t
v〉dt+ 〈u, v〉|t=T . (4.5)

We note the negative sign in (4.4), and this happens for all odd derivatives. We will make
use of this when deriving the adjoint equations for the non-stationary Navier-Stokes-Darcy
system in Section 4.6.

Another approach for understanding adjoints is the adjoint method in optimization. The
adjoint method formulates the gradient of a functional by evaluating the dual form of the
optimization problem. It can be used to calculate the gradient efficiently. Let us investigate
the adjoint of the optimization problem (2.1) by looking at the derivative of the functional
J in equation (4.1). The following is inspired by the work of Funke and Farrell [35].

Let us assume that the derivative of the PDE constraint with respect to the control param-
eter α,

dF

dα
=
∂F

∂u

du

dα
+
∂F

∂α
= 0, (4.6)

is solvable, i.e. (dF/du)−1 exists. We can then insert the expression

du

dα
= −

(
∂F

∂u

)−1
∂F

∂α
(4.7)

into (4.1), to obtain a new expression for derivative of the functional J with respect to the
control α,

dJ

dα
= −∂J

∂u

(
∂F

∂u

)−1
∂F

∂α
+
∂J

∂α
. (4.8)

Let us now assign the variables differentiated with respect to u to a new variable λ such
that

dJ

dα
= −λT ∂F

∂α
+
∂J

∂α
. (4.9)
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The new variable λ is called the adjoint variable, or Lagrangian multiplier, and is obtained
by the adjoint equation

∂F

∂u

T

λ =
∂J

∂u

T

. (4.10)

By taking the transpose of ∂F/∂u, we reverse the flow of information in the system. One
can think of it as when a lower triangular matrix is transposed to an upper triangular matrix.
Then the system has to be solved with a backwards method, so the information propagates
the opposite way. (∂J/∂u)T is the source term of the adjoint equation, and makes the
adjoint solution specific to a particular functional. The advantage of the adjoint method is
that the equation (4.10) is linear in u, which makes it is possible to compute the gradient
of J with respect to any parameter α, in (4.9), extremely efficiently when the number of
parameters α is large.

The adjoint approach can be summarized in the following steps:

i) Choose an initial α.

ii) Solve F (u, α) = 0 and equation (4.10) for u and λ, respectively.

iii) Calculate dJ/dα from equation (4.9) and use as gradient in gradient-based opti-
mization algorithm, which gives a new value of α.

iv) If dJ/dα is close to zero, terminate. Otherwise, go to ii)

What we have done in this section, is equivalent to deriving the Lagrangian equations for
the PDE constrained optimization problem. The first-order necessary optimality condi-
tions for (2.1), also known as the KKT conditions [33], include the Lagrangian

L(u, α, λ) = J(u, α)− λTF (u, α). (4.11)

where λ is the Lagrangian multiplier. This is the same as the adjoint variable from (4.10).
The KKT conditions state that for all local minima (ū, ᾱ), there exists a λ̄ such that

∂L
∂u

(ū, ᾱ) =
∂J

∂u
(ū, ᾱ)− λ̄T ∂F

∂u
(ū, ᾱ) = 0, (4.12)

∂L
∂α

(ū, ᾱ) =
∂J

∂α
(ū, ᾱ)− λ̄T ∂F

∂α
(ū, ᾱ) = 0, (4.13)

∂L
∂λ

(ū, ᾱ) = F (ū, ᾱ) = 0. (4.14)

The first equation (4.12) can be recognized as the transposed of the adjoint equation (4.10).

4.2 Stationary Adjoint Method

In this section we will present the adjoint method for the incompressible steady Navier-
Stokes-Darcy system, (3.6) - (3.10), with respect to a general functional J(u, p, α), using
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the Lagrangian equation (4.11). Notice that the previous variable u now is represented by
the vector (u, p) where u and p represent the velocity and pressure, respectively.

Let the Lagrangian multiplier be written as λ = (ua, pa) where ua is the adjoint velocity
and pa is the adjoint pressure. Using the stationary Navier-Stokes-Darcy equations as
residuals,

F(u, p, α) =

(
−ν∆u + (u · ∇)u + αu +∇p

∇ · u

)
= 0, (4.15)

where F is a three-dimensional system corresponding to F in (4.11), we obtain the La-
grangian function

L(u, p, α) = J(u, p, α)−
∫

Ω

(ua, pa)TF(u, p, α) (4.16)

= J(u, p, α)−
∫

Ω

ua · (−ν∆u + (u · ∇)u + αu +∇p)

−
∫

Ω

pa(−∇ · u). (4.17)

To calculate the gradient of J(u, p, α) with respect to the control parameters α, we differ-
entiate the Lagrangian (4.16) with respect to the variables u, p, α,

dL
dα

=
∂L
∂u

du

dα
+
∂L
∂p

dp

dα
+
∂L
∂α

(4.18)

=
∂J

∂u

du

dα
+
∂J

∂p

dp

dα
+
∂J

∂α

−
∫

Ω

d

dα
(ua, pa)T F(u, p, α)︸ ︷︷ ︸

= 0

−
∫

Ω

(ua, pa)T
(
∂F

∂u

du

dα
+
∂F

∂p

dp

dα
+
∂F

∂α

)
= 0. (4.19)

Note that we have neglected the variation of the eddy viscosity, ν = µ/ρ, since we are in
2D. In the case of 3D, this is correct only for laminar flows. For turbulent flows, neglecting
this variation is a common approximation, also known as frozen turbulence [22]. After
rearranging (4.18) with respect to the implicit derivatives, we get

dL
dα

=
∂J

∂α
−
∫

Ω

(ua, pa)T
∂F

∂α

+

(
∂J

∂u
−
∫

Ω

(ua, pa)T
∂F

∂u

)
du

dα

+

(
∂J

∂p
−
∫

Ω

(ua, pa)T
∂F

∂p

)
dp

dα
. (4.20)

We can choose the Lagrangian multipliers (ua, pa) such that the last two terms in (4.20)
vanish simultaneously,

∂L
∂u

du

dα
+
∂L
∂p

dp

dα
= 0. (4.21)
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Hence, the sensitivity of the Lagrangian with respect to α, using that

∂F

∂α
=

(
u
0

)
, (4.22)

is simply

dL
dα

=
∂J

∂α
−
∫

Ω

uaTu. (4.23)

4.3 Adjoint Equations for the Stationary NSD System

The condition in (4.21) gives rise to the adjoint equations. For the terms containing implicit
derivatives to vanish from the Lagrangian sensitivity equation (4.20), it is trivial to see that
we need them to vanish individually, giving the expressions

∂J

∂u
−
∫

Ω

(ua, pa)T
∂F

∂u
= 0, (4.24)

∂J

∂p
−
∫

Ω

(ua, pa)T
∂F

∂p
= 0, (4.25)

which are the adjoint equations on general form. Let the variables du and dp be arbitrary
functions that represent small variations in u and p, respectively, such that u + du and
p + dp satisfy the Navier-Stokes-Darcy equations. Using the state equations in (4.15) as
residuals F, the derivatives with respect to u and p are

∂F

∂u
=

(
−ν∆du + (∇du)u + (∇u)du + αdu +∇p

∇ · du

)
, (4.26)

∂F

∂p
=

(
∇dp

0

)
. (4.27)

Let us decompose the functional J into interior and boundary parts, such that

J =

∫
Ω

JΩ +

∫
∂Ω

J∂Ω. (4.28)

We then insert (4.26) and (4.27) into the general adjoint equations (4.24) and (4.25), re-
spectively. After integration by parts such that the equations are decomposed into interior
and boundary integrals, we obtain two new equations,∫

Ω

(
∂JΩ

∂u
− (−ν∇2ua − (u · ∇)ua −∇ua · u + αua +∇pa)

)
· du

+

∫
∂Ω

(
∂J∂Ω

∂u
− (νn · ∇ua + ua(u · n) + n(ua · u)− pan)

)
· du

+

∫
∂Ω

ν(n · ∇)du · ua = 0, (4.29)
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∫
Ω

(
∂JΩ

∂p
− (−∇ · ua)

)
dp+

∫
∂Ω

(
∂J∂Ω

∂p
− ua · n

)
dp = 0. (4.30)

The equations (4.29) and (4.30) should hold for any du and dp, respectively, which satisfy
the stationary Navier-Stokes-Darcy equations (4.15). This can only be accomplished if
the integrals vanish individually, hence, the integrands must be zero. From the interior
integrals we get out the adjoint equations for the stationary Navier-Stokes-Darcy system:

−ν∆ua −∇ua · u− (u · ∇)ua + αua +∇pa =
∂JΩ

∂u
, (4.31)

−∇ · ua =
∂JΩ

∂p
. (4.32)

The disappearance of the boundary integrals in (4.29) and (4.30) give rise to the adjoint
boundary conditions,

0 =

∫
∂Ω

(
∂J∂Ω

∂u
− (ν(n · ∇)ua + ua(u · n) + n(ua · u)− pan)

)
· du

+

∫
∂Ω

ν(n · ∇)du · ua, (4.33)

0 =

∫
∂Ω

(
∂J∂Ω

∂p
− ua · n

)
dp. (4.34)

Here, we have to distinguish between Dirichlet boundary conditions (3.8) and Neumann
boundary conditions (3.9) for the primary values u and p.

4.4 Boundary Conditions for the Adjoint Equations

The Dirichlet boundary conditions have a fixed primal velocity u = u0. For instance,
the no-slip value u0 = 0, and at the inlet u0 takes some prescribed value. Consequently
we have du = 0 on the Dirichlet boundary, and the first integral in equation (4.33) van-
ishes. For the second part of (4.33), we decompose the adjoint velocity into a normal and
tangential part

ua = uan + uat . (4.35)

Using that

∇ · du = (n · ∇)dun +∇t · dut = 0, (4.36)

with ∇t being the tangential component of ∇, and that dut = 0 along the Dirichlet
boundary. It follows that (n · ∇)dun = 0, and ∇ · du = (n · ∇)dut, and the boundary
integrals of (4.33) and (4.34) reduce to∫

∂Ω

ν(n · ∇)dut · uat = 0, (4.37)∫
∂Ω

(
∂J∂Ω

∂p
− ua · n

)
dp = 0, (4.38)
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respectively. Hence, we can conclude that the adjoint Dirichlet boundary conditions must
be

uat = 0, (4.39)

uan =
∂J∂Ω

∂p
. (4.40)

We do not get any conditions on the adjoint pressure pa. This is because the Navier-Stokes-
Darcy equations only impose zero gradient boundary condition of the primal pressure p.
This condition is also applied to the adjoint pressure, so

n · ∇pa = 0. (4.41)

For the Neumann boundaries, we often have the open boundary conditions

ν(n · ∇)du− pn = 0, (4.42)

at the outlet of a ducted flow. The pressure p is usually set to zero at the outlet, which
means that dp = 0, so equation (4.34) is therefore zero. This implies that ν(n ·∇)du = 0,
so the second integral of equation (4.33) vanishes. The remaining integral vanishes if the
integrand is zero,

∂J∂Ω

∂u
− ν(n · ∇)ua − ua(u · n)− n(ua · u) + pan = 0. (4.43)

Equation (4.43) is the adjoint boundary condition for open Neumann boundaries.

4.5 Time-dependent Adjoint Method

Assume now that the objective functional and the system of PDEs are time-dependent,
such that the objective functional J̃ is defined as

J̃ =

∫ T

0

J(u(t), p(t), α) dt, (4.44)

and the residuals are the unsteady incompressible Navier-Stokes-Darcy equations,

F(u, p, α) =

(
∂u
∂t − ν∆u + (u · ∇)u + αu +∇p

∇ · u

)
= 0. (4.45)

For the time-dependent adjoint method [36], the Lagrangian can be written as

L(u, p, α) =

∫ T

0

(
J(u(t), p(t), α)−

∫
Ω

(ua(t), pa(t))TF(u(t), p(t), α)

)
dt. (4.46)

Now, we want to differentiate (4.46) with respect to α. To calculate the gradient of
J(u(t), p(t), α) with respect to the control parameters α, just like in the stationary case,

27



Chapter 4. The Adjoint Method and Topological Derivative

we differentiate with respect to the different variables. The difference is that the derivatives
depend on time.

dL
dα

(u, p, α) =

∫ T

0

∂J

∂α
+
∂J

∂u

du

dα
+
∂J

∂p

dp

dα
dt

−
∫ T

0

∫
Ω

(ua, pa)T
∂F

∂α
+
∂F

∂u

du

dα
+
∂F

∂p

dp

dα
dt. (4.47)

Rearranging (4.47) with respect to implicit derivatives, we get

dL
dα

(u, p, α) =

∫ T

0

∂J

∂α
−
∫

Ω

(ua, pa)T
∂F

∂α
dt

+

∫ T

0

(
∂J

∂u
−
∫

Ω

(ua, pa)T
∂F

∂u

)
du

dα
dt

+

∫ T

0

(
∂J

∂p
−
∫

Ω

(ua, pa)T
∂F

∂p

)
dp

dα
dt. (4.48)

We want to choose the time-dependent adjoints ua, pa so that the last two terms in (4.48)
vanish.

4.6 Adjoint Equations for the Non-Stationary NSD Sys-
tem

Following the same procedure as for the stationary Navier-Stokes-Darcy system, we get
the unstationary adjoint equations on the general form∫ T

0

(
∂J

∂u
−
∫

Ω

(ua, pa)T
∂F

∂u

)
dt = 0, (4.49)∫ T

0

(
∂J

∂p
−
∫

Ω

(ua, pa)T
∂F

∂p

)
dt = 0. (4.50)

Let the variables du and dp be arbitrary functions such that u+ du and p+ dp satisfy the
unsteady Navier-Stokes-Darcy equations. The derivatives with respect to u and p of the
residuals F in (4.45) are

∂F

∂u
=

(
∂(du)
∂t − ν∆du + (∇du)u + (∇u)du + αdu +∇p

∇ · du

)
, (4.51)

∂F

∂p
=

(
∇dp

0

)
. (4.52)

We insert (4.26) and (4.27) into the general unsteady adjoint equations (4.49) and use
the decomposition of J as in (4.28) to find the weak form of the adjoint equations. Let
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us in particular investigate what happens when we use integration by parts on the time-
differentiated term in (4.51),∫ T

0

∫
Ω

∂u

∂t
· ua =

∫
Ω

∫ T

0

(
∂(u · ua)

∂t
− u · ∂u

a

∂t

)
dt (4.53)

=

∫
Ω

(u · ua)|t=T − (u0 · ua)|t=0 −
∫ T

0

∫
Ω

∂ua

∂t
· u dt. (4.54)

By moving the time-differentiation operator from the primal velocity u to the adjoint ve-
locity ua, this can be interpreted as taking the adjoint of the primal inner product with
initial condition at t = 0, analogously to the example in equation (4.4). We get a nega-
tive sign on the time-differentiated adjoint velocity, and an ’initial’ condition at end time
t = T , as the adjoint is computed backwards in time. Using integration by parts on the
other terms, analogously to the stationary case, we get the equations

−
∫ T

0

∫
Ω

(
−∂u

a

∂t
− ν∆ua − (u · ∇)ua −∇ua · u + αua +∇pa

)
· du dt

+

∫ T

0

∫
Ω

∂JΩ

∂u
· du dt+

∫
Ω

(ua · du)|t=T +

∫
∂Ω

ν(n · ∇)du · ua dt

+

∫ T

0

∫
∂Ω

(
∂J∂Ω

∂u
− (νn · ∇ua + ua(u · n) + n(ua · u)− pan)

)
· du = 0, (4.55)∫ T

0

∫
Ω

(
∂JΩ

∂p
− (−∇ · ua)

)
dp dt+

∫ T

0

∫
∂Ω

(
∂J∂Ω

∂p
− ua · n

)
dp dt = 0. (4.56)

The equations (4.55) and (4.56) hold for any du and dp, respectively, that satisfy the non-
stationary NSD equations (4.45). This can only be accomplished if the integrals vanish
individually. Hence, the integrands must be zero, and from the interior integrals we get the
adjoint equations for the non-stationary NSD system,

−∂u
a

∂t
− ν∆ua −∇ua · u− (u · ∇)ua + αua +∇pa =

∂JΩ

∂u
, (4.57)

−∇ · ua =
∂JΩ

∂p
. (4.58)

Notice that in equation (4.57), the first term has a negative sign. The condition on the
adjoint velocity at t = T ,

ua(T ) = 0 in Ω. (4.59)

appears since the information is propagating backwards in time.

The boundary conditions are the same as in the stationary case, with noslip on the Dirichlet
boundaries,

uat = 0, (4.60)

uan =
∂J∂Ω

∂p
, (4.61)
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and open Neumann boundaries,

∂J∂Ω

∂u
− ν(n · ∇)ua − ua(u · n)− n(ua · u) + pan = 0. (4.62)

4.7 Exact Topological Derivative of the Dissipation En-
ergy Functional

We will in this section make use of the adjoint formulation of the Navier-Stokes-Darcy
system to derive the topological derivative for a given functional. The relation between
the primal and adjoint solution will be presented in equation (4.82), and the topological
derivative in equation (4.88).

The dissipation energy functional over a time interval can be expressed as

J̃(u, α) =

∫ T

0

J(u, α)dt, (4.63)

where J(u, α) can be expressed as

J(u, α) =

∫
Ω

ν|∇u|2 +

∫
Ω

α|u|2. (4.64)

Here | · |2 denotes the standard Euclidean l2 inner product. Let us consider a small pertur-
bation of the domain Ω, where we remove a ball of radius ε at an arbitrary point x̂ ∈ Ω.
The perturbed domain is defined as Ωε = Ω\Bε(x̂). To look at the variation in (4.64), we
need the dissipation energy functional associated with the perturbed domain,

Jε(uε, α) =

∫
Ωε

ν|∇uε|2 +

∫
Ωε

αε|uε|2. (4.65)

Here, αε = γεα is the topologically perturbed impermeability. The actual topological
perturbation can be defined as

γε =

{
1 if x ∈ Ω\B̄ε
γ if x ∈ Bε,

(4.66)

where γ is a contrast parameter that permits the impermeability to switch value. In this
way, the permeability α(x) changes its value if x ∈ Bε(x̂) and remains unchanged other-
wise. With the definition of α in (2.11), we can define the contrast parameter as

γ =

{
αL/αU if x ∈ Ω\ω̄
αU/αL if x ∈ ω,

(4.67)

such that if x is located in the perturbed area, α will change from αL to αU or αU to αL,
depending on whether the perturbed area is changed to solid or fluid domain.
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4.7 Exact Topological Derivative of the Dissipation Energy Functional

Using the definition of the topological derivative, defined in (2.3), we need to calculate the
the difference between the perturbed and unperturbed functionals,

Jε(uε)− J(u) =

∫
Ω

ν
(
|∇uε|2 − |∇u|2

)
+

∫
Ω

(
αε|uε|2 − α|u|2

)
. (4.68)

To simplify the notation, we will denote |v|2 by v2. Let us expand the viscosity terms,

|∇uε|2 − |∇u|2 = 2∇u · ∇(uε − u)− 2∇u · ∇uε + (∇u)2 + (∇uε)2 (4.69)

= 2∇u · ∇(uε − u) + (∇uε −∇u)2, (4.70)

and the Darcy terms,

αε|uε|2 − α|u|2 = αε(u
2
ε − 2uεu + u2) + 2αεuεu− αεu2 − αu2 (4.71)

= αε(uε − u)2 + 2αγεu(uε − u) + (γε − 1)αu2. (4.72)

Using the definition of the contrast parameter γ in (4.66), the Darcy expansion (4.72) with
integrals yields∫

Ω

αγεu(uε − u) =

∫
Ω\B̄ε

αu(uε − u) +

∫
Bε

γαu(uε − u) (4.73)

=

∫
Ω

αu(uε − u)−
∫
Bε

(1− γ)αu(uε − u), (4.74)

and combined with the viscosity terms, we get a new expression for (4.68)

Jε(uε)− J(u) = 2ν

∫
Ω

∇u · ∇(uε − u) + ν

∫
Ω

(∇uε −∇u)2

+

∫
Ω

αε|uε − u|2 + 2

∫
Ω

αu(uε − u)

− 2

∫
Bε

(1− γ)αu(uε − u)−
∫
Bε

(1− γ)α|u|2. (4.75)

We use the weak form of the NSD equations and corresponding adjoint weak form to
derive the relation between the primal and adjoint velocities u and ua. Using this relation,
which will be presented in equation (4.82), we can substitute some of the terms in (4.75),
in order to derive the topological derivative from the definition (2.3).

The weak form of the NSD equations with divergence-free velocity spaces yields: find
u ∈ Ũ such that

ν

∫
Ω

∇u · ∇v +

∫
Ω

(u · ∇)u · v +

∫
Ω

αu · v = 0 ∀v ∈ Ṽ, (4.76)

where Ũ = {v ∈ U : ∇ ·v = 0} and Ṽ = {v ∈ V : ∇ ·v = 0}. U and V are defined in
(3.11). The pressure term disappears because the test-function v is divergence free. The
weak form of the perturbed divergence-free system yields: find uε ∈ Ũ such that

ν

∫
Ω

∇uε · ∇v +

∫
Ω

(uε · ∇)uε · v +

∫
Ω

αεuε · v = 0 ∀v ∈ Ṽ. (4.77)
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Let us now subtract (4.76) from (4.77) and use integration by parts on the non-linear term,

ν

∫
Ω

∇(uε − u) · ∇v +

∫
Ω

((uε · ∇)uε − (u · ∇)u) · v +

∫
Ω

(αεuε − αu) · v

= ν

∫
Ω

∇(uε − u) · ∇v +

∫
Ω

((u · ∇)v + (∇v)u) · (uε − u)

+

∫
Ω

(∇(uε − u))(uε − u) · v +

∫
Ω

α(uε − u) · v −
∫
Bε

(1− γ)αuε · v = 0. (4.78)

Setting the adjoint velocity as test function, v = ua in (4.78), we get the equation

ν

∫
Ω

∇(uε − u) · ∇ua +

∫
Ω

((u · ∇)ua + (∇ua)u) · (uε − u)

+

∫
Ω

α(uε − u) · ua

= (1− γ)

∫
Bε

αuε · ua −
∫

Ω

(∇(uε − u))(uε − u) · ua. (4.79)

The weak form of the divergence-free adjoint equation associated with the energy dissipa-
tion functional is: find ua ∈ Ũ such that

ν

∫
Ω

∇ua · ∇v +

∫
Ω

((u · ∇)ua + (∇ua)u) · v +

∫
Ω

αua · v

=

∫
Ω

2ν∇u · ∇v +

∫
Ω

2αu · v ∀v ∈ Ṽ, (4.80)

where the right hand side is the differentiated dissipation energy functional ∂J/∂u. Setting
v = (uε − u) in (4.80), we get the equation

ν

∫
Ω

∇ua · ∇(uε − u) +

∫
Ω

((u · ∇)ua + (∇ua)u) · (uε − u)

+

∫
Ω

αua · (uε − u) = 2ν

∫
Ω

∇u · ∇(uε − u) + 2

∫
Ω

αu · (uε − u). (4.81)

Comparing equation (4.79) to (4.81), we get the important relation

2ν

∫
Ω

∇u · ∇(uε − u) + 2

∫
Ω

αu · (uε − u)

= (1− γ)

∫
Bε

αuε · ua −
∫

Ω

(∇(uε − u))(uε − u) · ua, (4.82)

which can be substituted into equation (4.75) to obtain a new expression for the difference
between the perturbed and unperturbed functionals,

Jε(uε)− J(u) = (1− γ)

∫
Bε

αuε · ua −
∫
Bε

(1− γ)α|u|2

−
∫

Ω

(∇(uε − u))(uε − u) · ua + ν

∫
Ω

(∇uε −∇u)2

+

∫
Ω

αε|uε − u|2 − 2

∫
Bε

(1− γ)αu(uε − u). (4.83)
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We collect all the terms containing (uε − u) in the expression

E(ε) =

∫
Ω

|∇uε −∇u|2 +

∫
Ω

αε|uε − u|2 − 2

∫
Bε

(1− γ)αu(uε − u)

+

∫
Bε

(1− γ)αua · (uε − u)−
∫

Ω

(∇(uε − u))(uε − u) · ua, (4.84)

and it is possible to show that E(ε) = O(ε2), such that it vanishes when ε → 0, i.e. the
perturbation is small. The perturbed energy shape functional can then be expressed as

Jε(uε) = J(u)−
∫
Bε

(1− γ)αu · (u− ua) + E(ε) (4.85)

= J(u)− |Bε|(1− γ)α(x̂)u(x̂)(u(x̂)− ua(x̂)) + E(ε), (4.86)

where the last equality comes from the Lebesgue differentiation theorem [37]. Again, us-
ing the definition of the topological derivative (2.3), we recognize |Bε| as the term f(ε) and
using the definition of the contrast parameter γ in (4.66), we get the topological derivative
with respect to a point x as,

DTJ(x) = −k(x)(αU − αL)u(x)(u(x)− ua(x)), (4.87)

where k(x) is given by (2.7). Summing up the contributions over time, the topological
derivative of the functional J̃(u, α) in equation (4.63) is given by

DT J̃(u, α) = −k(x)(αU − αL)

∫ T

0

u(x)(u(x)− ua(x))dt. (4.88)
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Chapter 5
Numerical Discretization

To solve the problems numerically, a finite element approximation of the velocity and pres-
sure functions is applied. Although the mathematical presentation is dimension-independent,
the numerical experiments assume a triangular grid in 2D. We assume that the domain Ω
is discretized into finite elements in 2D with the parameter h denoting the characteristic
size of the largest element.

5.1 Discretization in Space of the NSD Equations

Let the spaces V = [H1(Ω)]d and Q = L2(Ω) denote the velocity and pressure spaces,
respectively. For the discretized velocities and pressures, uh and ph, we need spaces
Vh ⊂ V and Qh ⊂ Q, which are families of finite-dimensional spaces that depend on
a discretization parameter h, see [38] for more details. The Navier-Stokes-Darcy system
discretized in space can be written as

∂uh
∂t
− ν∆uh + (uh · ∇)uh + αuh +∇ph = 0, (5.1)

∇ · uh = 0. (5.2)

To find the weak form, let us now define test functions for the velocity and pressure, vh
and ph, respectively. The weak form is derived by multiplying the test functions with
(3.6) and integrate over the domain Ω. The Galerkin approximation in space of the NSD
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problem then yields: find uh ∈ Uh and ph ∈ Qh such that∫
Ω

∂uh
∂t
· vh + ν∇uh · ∇vh + (uh · ∇)uh · vh + αuh · vh +∇ph · vh

−
∫
∂Ω

νn∇uhvh = 0 ∀ vh ∈ Vh, (5.3)∫
Ω

(∇ · uh)qh = 0 ∀ qh ∈ Qh. (5.4)

Time is here kept continuous, and will be discretized below.

5.2 Finite Elements and Inf-Sup Stability

As the Navier-Stokes-Darcy problem (3.6) is of order 1 in p and of order 2 in u, it makes
sense to use piecewise polynomials of degree

k for Vh, (5.5)
k − 1 for Qh, (5.6)

for the basis functions. This is known as Taylor-Hood elements, in general written Pk −
Pk−1, k ≥ 2. One popular choice is quadratic piecewise polynomials for the velocity
components and linear piecewise polynomials for the pressure [39], in other words k = 2.
See Figure 5.1 for an illustration of P2 − P1 Taylor-Hood elements. The Ladyzenskaja-

P1 P2
Figure 5.1: P1 and P2 Taylor-Hood elements.

Babuska-Brezzi (LBB) condition, also known as the inf-sup condition, states that there
exists a constant χ independent of the grid size h such that

inf
qh∈Qh

sup
vh∈Vh

〈∇ · vh, qh〉
‖vh‖Vh

‖qh‖Qh

≥ χ > 0, (5.7)

see see 16.3 in [32]. This condition guarantees solvability and stability of the Navier-
Stokes problem. Hence we must choose the element spaces Vh, Qh in such a way that the
LBB condition (5.7) is satisfied. Elements that do not satisfy the LBB condition may not
converge to the solution, and if they do, they may not converge as fast as the order of the
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elements would suggest. The Taylor-Hood elements satisfy the LBB condition, and are a
stable choice for the Navier-Stokes problem, according to [40].

The level set function ψ, defined in (2.8), will be discretized in space by P1 elements.
As a consequence, one can not expect convergence of more than 1st order in space when
including the Darcy term α, which is dependent on the level set function, see Section 2.4.

5.3 Discretization in Time of the NSD Equations

The incompressible Navier-Stokes-Darcy equations can be solved simultaneously with a
coupled solver, using for instance a Newton solver. Coupled solvers are known to be
robust, stable and accurate. The downside is that they demand a lot of memory, and may
not be efficient. Since we have a time-dependent optimization problem, we want to use a
method that is faster, but be can allow less accuracy. The most popular numerical solution
strategies for the incompressible Navier-Stokes equations are based on operator splitting,
also known as projection methods [39].

Consider the first part of the discretized Navier-Stokes-Darcy system (5.1). The equation
must be discretized in time, so we introduce the first-order backwards differencing operator
at time step k + 1,

Dtu =
1

∆t
(uk+1 − uk), (5.8)

where ∆t is the time step size. We omit writing the h in uh for better readability. The
equation (5.1) with a backward difference scheme in time now becomes

1

∆t
(uk+1 − uk) + [(u · ∇)u]k+1 − ν∆uk+1 + αuk+1 +∇pk+1 = 0. (5.9)

The weak form of this equation will be presented later in Section 5.5.

We need a way to discretize the second, non-linear term [(u · ∇)u]k+1. One option that
is suggested in the literature [39, 41, 42] is a simple linearization (uk · ∇)uk+1, which is
a first order accurate form. Another faster, but not so accurate form is to just use the old
value (uk ·∇)uk. If the latter option is used, the matrix on the left hand side of the equation
is independent of time, and can be computed once. This saves a lot of computational time,
and is a good choice in our case.

5.4 Time Discretization and Stability

Numerical experiments for the Navier–Stokes-Darcy equations (3.6) indicate that the first
order discretization in time is stable under the Courant–Friedrichs–Lewy (CFL) conditions
proposed in [43], where a diffusive and convective stability constraint are proposed. The
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diffusive stability constraint states

ν
∆t

∆x2
≤ (

1

2
)d (5.10)

where the dimension d = 2 in our case. The convective stability constraint, which is the
usual CFL type,

‖u‖L∞
∆t

∆x
≤ 1. (5.11)

The stability is highly affected by the Reynolds number [44], Re = UL/ν where U is a
characteristic velocity, L is a characteristic length and ν is the kinematic viscosity. If ν
is small (large Reynolds number), implicit treatment of the viscous term does nothing to
stabilize the convection term, so (5.11) is critical. For large ν (small Reynolds number),
(5.10) dominates (5.11).

When ν is large, the time step has to be very small in order to keep the scheme stable. As
an example, if the spatial discretization ∆x = 1/40, U = 1 and the viscosity ν = 1.0, then
the diffusive stability constraint (5.10) requires a time step ∆t ≤ 0.00015 for the system
to be stable while the convective stability constraint (5.11) requires only ∆t ≤ 0.025.

5.5 Projection Methods

Projection methods are based on the idea of splitting the system (3.6) into a series of
simpler, familiar equations. The first step is neglecting the incompressibility condition and
computing a tentative velocity. In the next step, the velocity is corrected by performing a
projection onto the divergence free vector fields. The tentative velocity u∗ is computed by
solving the equation

1

∆t
(u∗ − uk) + (uk · ∇)uk − ν∆u∗ + αu∗ + ξ∇pk = 0, (5.12)

where ξ is an adjustable factor for flexible control of the pressure information. Note here
that it is actually the weak form of (5.12) that will be solved, but for readability, we use
the strong form for the explanation of the projection methods. At the end of this section,
we will present the weak form of the equations to be solved. If ξ is set to zero, we get the
non-incremental pressure correction scheme, also known as Chorin’s method [39]. Taking
ξ = 1, we get the incremental pressure correction scheme, also known as IPCS [42]. The
boundary conditions for u∗ are the same as for the original problem. Since u∗ does not
fulfill the incompressibility equation (5.2), we need to correct it. This is done by evaluating
the pressure and velocity in certain terms at time step k + 1

1

∆t
(uk+1 − uk) + (uk · ∇)uk − ν∆u∗ + αuk+1 +∇pk+1 = 0. (5.13)

Subtracting (5.12) from (5.13), we end up with

1

∆t
(uk+1 − u∗) + α(uk+1 − u∗) +∇(pk+1 − ξpk) = 0. (5.14)
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Now we take the divergence of the equation (5.14) to get rid of the unknown velocity,
using that∇ · uk+1 = 0, and get a Poisson equation for the pressure pk+1

δ(pk+1 − ξpk) = (
1

∆t
+ α)∇ · u∗. (5.15)

We observe from (5.14) that∇(pk+1−ξpk) ·n|∂ΩD
= 0 since uk+1 and u∗ have the same

value on ∂ΩD. This implies that

∇pk+1 · n|∂ΩD
= ξ∇pk · n|∂ΩD

= . . . = ξk+1∇p0 · n|∂ΩD
. (5.16)

These non-physical Neumann boundary conditions will introduce a numerical boundary
layer [42]. This may result in large errors near the boundary, and often an error of O(1) is
experienced in a boundary layer with width ≈

√
ν∆t, according to [39].

Solving for the pressure pk+1, there remains only one unknown in equation (5.14), and
the velocity uk+1 can be computed. The updated velocity will be divergence free, but not
satisfy the boundary conditions exactly. It is possible to enforce boundary conditions on
the velocity update.

The pressure correction scheme in weak form can be summed up in three equations to be
solved:

i)
∫

Ω

(
1

∆t
+ α

)
u∗ · v + ν∇u∗ · ∇v =

∫
Ω

1

∆t
uk · v − (uk · ∇)uk · v − ξ∇pk · v,

ii)
∫

Ω

∇pk+1 · ∇q =

∫
Ω

ξ∇pk · ∇q − (
1

∆t
+ α)(∇ · u∗) · q,

iii)
∫

Ω

(
1

∆t
+ α

)
uk+1 · v =

∫
Ω

(
1

∆t
+ α

)
u∗ · v −∇(pk+1 − ξpk) · v.

These three steps can be described as i) tentative velocity, ii) pressure correction and iii)
velocity update. It now becomes clear that the matrices on the left hand are independent
of the solution at time k, and only needs to be assembled in the first iteration.

5.6 Discrete Time-Dependent Adjoint Equations

For the discrete time-dependent adjoint equations, let us divide the time interval [0, T ] into
Nt equidistant time steps, such that we have Nt + 1 residual systems of equations. In this
way, we can express the objective function as a sum

J̃(u, p, α) =

Nt∑
0

J(u(i), p(i), α) =:

Nt∑
0

J (i), (5.17)
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and each system of residuals can be expressed as a function of the state history,

R(i) := R(u(i),u(i−1), . . .u(0), p(i), p(i−1), . . . , p(0), α), (5.18)

where the superscript denotes the time step number. Based on this, the Lagrangian can be
written as

L(u, p, α) =

Nt∑
i=0

(
J (i) −

∫
Ω

(ua, pa)(i)TR(i)dΩ

)
. (5.19)

Now, we want to differentiate (5.19) with respect to α, and calculate the sensitivities. In
order to calculate the gradient of J(u, p, α) with respect to the control parameters α, just
like the stationary method, we differentiate with respect to each variable. The difference
now, is that the derivatives depend on state variables from different time steps, so the
expression becomes quite comprehensive.

dL
dα

(u, p, α) =

Nt∑
i=0

(
∂J (i)

∂α
+

i∑
k=0

∂J (i)

∂u(k)

du(k)

dα
+

i∑
k=0

∂J (i)

∂p(k)

dp(k)

dα

)

−
Nt∑
i=0

(∫
Ω

(ua, pa)(i)T

(
∂R(i)

∂α
+

i∑
k=0

∂R(i)

∂u(k)

du(k)

dα

+

i∑
k=0

∂R(i)

∂p(k)

dp(k)

dα

)
dΩ

)
. (5.20)

Rearranging (5.20) with respect to implicit derivatives, we get

dL
dα

(u, p, α) =

Nt∑
i=0

∂J (i)

∂α
−

Nt∑
i=0

(∫
Ω

(ua, pa)(i)T ∂R
(i)

∂α

)
+

(
∂J (Nt)

∂u(Nt)
−
∫

Ω

(ua, pa)(Nt)
T ∂R(Nt)

∂u(Nt)

)
du(Nt)

dα

+

Nt−1∑
i=0

(
Nt∑
k=i

(
∂J (k)

∂u(i)
−
∫

Ω

(ua, pa)(k)T ∂R
(k)

∂u(i)

))
du(i)

dα

+

(
∂J (Nt)

∂p(Nt)
−
∫

Ω

(ua, pa)(Nt)
T ∂R(Nt)

∂p(Nt)

)
dp(Nt)

dα

+

Nt−1∑
i=0

(
Nt∑
k=i

(
∂J (k)

∂p(i)
−
∫

Ω

(ua, pa)(k)T ∂R
(k)

∂p(i)

))
dp(i)

dα
. (5.21)

We seek the values of ua, pa such that the implicit terms vanish, which means we want
the four last lines of (5.21) to disappear. This gives rise to the adjoint equations for the
unstationary Navier-Stokes-Darcy system.
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For the four last terms in (5.21) to vanish, it is obvious that the solution of {(ua, pa)(i)} is
given by∫

Ω

(ua, pa)(Nt)
T ∂R(Nt)

∂u(Nt)
=
∂J (Nt)

∂u(Nt)
,∫

Ω

(ua, pa)(Nt)
T ∂R(Nt)

∂p(Nt)
=
∂J (Nt)

∂p(Nt)
,∫

Ω

(ua, pa)(i)T ∂R
(i)

∂u(i)
=
∂J (i)

∂u(i)
+

Nt∑
k=i+1

(
∂J (k)

∂u(i)
+

∫
Ω

(ua, pa)(k)T ∂R
(k)

∂u(i)

)
,

∫
Ω

(ua, pa)(i)T ∂R
(i)

∂p(i)
=
∂J (i)

∂p(i)
+

Nt∑
k=i+1

(
∂J (k)

∂p(i)
+

∫
Ω

(ua, pa)(k)T ∂R
(k)

∂p(i)

)
.

(5.22)

To compute the adjoints, we need access to the whole primal velocity and pressure {u(i), p(i)}.
This can be done by storing the velocity and pressure at each time step in memory. If the
solution is too big, a possibility is to use a checkpointing scheme [45], where the solution
is stored at chosen intervals. The missing solutions can be reconstructed from the near-
est available checkpoint when it is needed. Once the missing solution is available, the
corresponding adjoint can be computed. For instance, a checkpoint interval can be of the
size corresponding to the required memory capacity, in order to minimize the number of
checkpoints.

5.7 Numerical Software

The solution uh and ph of the Navier-Stokes-Darcy system is obtained by using the FEn-
iCS environment [46]. FEniCS is a collection of open source software components made
to enable automated solution of differential equations. The differential equations can be
specified in near-mathematical notation, such as finite element variational problems, and
hence it is very useful tool for computational mathematics. The language used to express
weak forms is called UFL (Unified Form Language). FEniCS can be programmed in both
C++ and Python, using a library called DOLFIN which functions as the main user inter-
face of FEniCS. A just-in-time compiler called FFC (FEniCS Form Compiler) generates
efficient low-level C++ code from the high-level mathematical description (UFL) of the
variational problem.

To demonstrate, a small part of a simple Python program that solves the Navier-Stokes-
Darcy problem with P2 − P1 elements and Chorin’s method is presented under.

# Function spaces for velocity and pressure:
V = VectorFunctionSpace(mesh, "CG", 2)
Q = FunctionSpace(mesh, "CG", 1)

# Functions
u = TrialFunction(V)
p = TrialFunction(Q)
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v = TestFunction(V)
q = TestFunction(Q)

u0 = Function(V)
u1 = Function(V)
p1 = Function(Q)

# Boundary conditions
bcu = DirichletBC(V, (0, 0), "on_boundary")

# Tentative velocity
F1 = (1./dt)*inner(u - u0, v)*dx + inner(u0*grad(u0), v)*dx \

+ nu*inner(grad(u), grad(v))*dx + alpha*inner(u, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Pressure update
a2 = inner(grad(p), grad(q))*dx
L2 = -(1./dt)*div(u1)*q*dx - alpha*div(u1)*q*dx

# Velocity update
a3 = (1./dt + alpha)*inner(u, v)*dx
L3 = (1./dt + alpha)*inner(u1, v)*dx - inner(grad(p1), v)*dx

while t < T:
t += dt
solve(a1 == L1, u1, bcu)
solve(a2 == L2, p1)
solve(a3 == L3, u1, bcu)
u0.assign(u1)

dolfin-adjoint [45] exploits the high-level structure of the finite element method and builds
on the FEniCS Project. As the forward model is executed through FEniCS, dolfin-adjoint
records and analyzes the dependencies and structure of the equations. The resulting ex-
ecution graph stores a symbolic mathematical representation of these equations and cap-
tures the entire information flow through the simulation. By reasoning about this graph,
dolfin-adjoint can linearize the equations to derive a symbolic representation of the dis-
crete tangent linear equations, and reverse the propagation of information through the
graph to derive the corresponding adjoint equations. By invoking the FEniCS automatic
code generator on these equations, dolfin-adjoint obtains solutions of the adjoint models.

In our case, dolfin-adjoint will be used to compute the topological derivative for different
objective functionals, and used as gradients in the gradient-based optimization algorithm.
The advantage of computing the gradient numerically is that one omits deriving the adjoint
model and topological derivative, which can be quite comprehensive and time consuming.
The disadvantage is that the gradient is not exact.
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The Navier-Stokes-Darcy problems is solved using a finite element method in space and a
pressure correction scheme, either Chorin’s scheme or IPCS, in time, see Chapter 5. It is
expected to get a convergence of second order in space and first order in time for all cases.
In further results, we ended up using IPCS, as it is more stable and gives more accurate
solutions.

To verify the solutions, we consider various test problems, and use the method of man-
ufactured solutions to calculate the source term. The Navier-Stokes-Darcy problem (3.6)
can in 2D be written in component form as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
− ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ αu = fx, (6.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
− ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ αv = fy, (6.2)

∂u

∂x
+
∂v

∂y
= 0, (6.3)

where u and v are the x- and y-components of u, respectively, and fx and fy are the x-
and y-components of the source term f , respectively. The density ρ is set to 1 in all cases.

Since mainly two values for α will be used, representing fluid and solid material, we will
check convergence in both cases. The velocities within solid material and along solid-fluid
interface (no-slip condition) need to vanish. Figure 5 in [12], section 3.1 suggests that a
maximum impermeability of 104 is sufficient to enforce zero velocity. Inspired by the
work of Borrvall and Peterson [15], the numerical values used for α in all experiments are

αL =
2.5ν

1002
, (6.4)

αU =
2.5ν

0.012
. (6.5)
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In Kreissl et. al [12], they investigate the maximum impermeability needed to enforce
zero velocity. They find that for different values of Reynolds number and velocity norms,
αU > 104 is sufficient.

The numerical solution u is computed on aN×N mesh at end time T , and is compared to
the analytical solution ue. The error is calculated by taking the L2-norm of the difference
between the solutions, ‖u − ue‖, using the FEniCS function errornorm. This module
computes the error by first interpolating both u and ue to a common space with finer
discretization, then subtracting the two fields and then evaluating the integral. A code
snippet is included below to illustrate how the error is calculated using Python and the
FEniCS environment.

def errornorm(u, u_e, Ve):
u_= interpolate(u, Ve)
u_e_ = interpolate(u_e, Ve)
e_ = Function(Ve)
e_.vector()[:] = u_.vector().array() - u_e_.vector().array()
error = e_**2*dx
return sqrt(assemble(error))

6.1 Taylor-Green Flow

First, we will verify the Navier-Stokes solver without the Darcy term, because in this case
we have an analytical solution. Taylor-Green flow is an analytical solution to the non-
stationary incompressible Navier-Stokes equations on a domain with periodic boundary
conditions. The exact solution in 2 dimensions is given by

u = − cos(πx) sin(πy)e−2π2νt, (6.6)

v = cos(πy) sin(πx)e−2π2νt, (6.7)

p =
1

4
(cos(2πx) + cos(2πy)) e−4π2νt, (6.8)

with the source term f = 0. Because we have an additional Darcy-term in our problem,
we have to compute the new source term, which is simply f = −αu.

The Taylor-Green flow is computed using Chorin’s method on a domain Ω = [0, 2] ×
[0, 2] with periodic boundary conditions in both spatial directions. The kinematic vis-
cosity is ν = 0.01 and the errors are computed at end time T = 1.0. The conver-
gence in space is presented in Figure 6.1, with mesh size N = [8, 16, 32, 64] and time
step ∆t = 0.02. The convergence in time is presented in Figure 6.2 with time step size
∆t = [1.0, 0.5, 0.25, 0.125] and grid size N = 200. As expected, we have a convergence
of second order in space and first order in time.
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6.1 Taylor-Green Flow

(a) Low α (b) High α

Figure 6.1: Convergence rates in space on velocity in L2-norm for Taylor-Green flow at T = 1.0.

(a) Low α (b) High α

Figure 6.2: Convergence rates in time on velocity in L2-norm for Taylor-Green flow at T = 1.0.

The computed solution at time T = 1.0 can be seen in Figure 6.3.

(a) Taylor Green velocity (b) Taylor Green pressure

Figure 6.3: Computed solution of Taylor-Green flow at T = 1.0.
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6.2 Convergence of Chorin’s Method vs IPCS

In this section, we will compare Chorin’s method to IPCS, in order to see which method
is better to proceed with. Because the optimization problems will have Dirichlet boundary
conditions, it is reasonable to include the verification of such a model. We choose the
analytical solution

u = − cos(πx) sin(πy)e−t, (6.9)

v = cos(πy) sin(πx)e−t, (6.10)
p = sin(πx) cos(πy), (6.11)

and use the method of manufactured solutions to calculate the source term. Inserting (6.9)
into (6.1), we get the source terms

fx =− αe−t sin(πy) cos(πx)− 2νπ2e−t sin(πy) cos(πx)

+ π cos(πx) cos(πy)− πe−2t sin(πx) sin(πy)2 cos(πx)

− πe−2t sin(πx) cos(πx) cos(πy)2 + e−t sin(πy) cos(πx), (6.12)

fy =αe−t sin(πx) cos(πy) + 2νπ2e−t sin(πx) cos(πy)

− π sin(πx) sin(πy)− πe−2t sin(πx)2 sin(πy) cos(πy)

− πe−2t sin(πy) cos(πx)2 cos(πy)− e−t sin(πx) cos(πy), (6.13)

and zero divergence. The source terms are computed using the python library SymPy [47].
The manufactured solution is computed using both Chorin’s method and the IPCS method
on a domain Ω = [0, 1] × [0, 1], and the analytical solution (u, v) is applied as Dirichlet
boundary conditions on the whole boundary. The pressure pk+1 is normalized in each
iteration, i.e. the mean value of the pressure is subtracted from the pressure solution to
keep it in the same range. This is done because p is only defined up to a constant by the
Navier-Stokes-Darcy equations (3.6).

As mentioned in Section 5.5, an erroneous boundary layer with width ≈
√
ν∆t can occur

when Dirichlet boundary conditions are applied. This prevents the scheme from being
fully second-order in space and first-order in time [42]. By letting the time step ∆t be
very small, and increasing the kinematic viscocity to ν = 1.0 to get a lower Reynold’s
number, we were able to compute convergence rates at end time T = 0.1.

The convergence of Chorin’s method in space is presented in Figure 6.4 , with mesh size
N = [4, 8, 16, 32] and time step ∆t = 0.0000025. The convergence of Chorin’s method in
time is presented in Figure 6.5 with time step size ∆t = [0.000002, 0.000001, 0.0000005,
0.00000025] and grid size N = 400. The convergence in space appears to be of third
order, which may be an effect of a regular mesh. The convergence in time is of first order,
as expected.
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(a) Low α (b) High α

Figure 6.4: Chorin’s scheme convergence rates in space on velocity inL2-norm for (6.9) at T = 0.1.

(a) Low α (b) High α

Figure 6.5: Chorin’s scheme convergence rates in time on velocity in L2-norm for (6.9) at T = 0.1.

Convergence was very hard to achieve for the Chorin scheme, due to the artificial boundary
layer. A convergence test was also performed for the IPCS method. With this scheme, we
managed to get the same order of convergence using a much bigger time step ∆t, and
thus calculated the error at end time T = 1.0. It seems that including the pressure in the
tentative velocity step, as shown in equation (5.13), has a huge impact on the erroneous
boundary layer when using Dirichlet boundary conditions.

The convergence of the IPCS method in space is presented in Figure 6.6, with mesh size
N = [4, 8, 16, 32] and time step ∆t = 0.001. The convergence of the IPCS method in time
is presented in Figure 6.5 with time step size ∆t = [0.1, 0.05, 0.025, 0.0125] and grid size
N = 60. The order of convergence is of third-order in space and of first-order in time. In
other words, the same result is obtained using much larger time steps ∆t and smaller grid
size N . This result indicates that we should proceed with the IPCS method when solving
the NSD problem.
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(a) Low α (b) High α

Figure 6.6: IPCS convergence rates in space on velocity in L2-norm for (6.9) at T = 1.0.

(a) Low α (b) High α

Figure 6.7: IPCS convergence rates in time on velocity in L2-norm for (6.9) at T = 1.0.

6.3 Channel Problem with Darcy Term

To verify the accuracy of the scheme with respect to material distribution, we compare the
results of the flow in a fluid channel using the Darcy term α against the reference solution
of a body-fitted mesh with α = 0. The boundary conditions are Poiseuille flow with
maximum velocity 1.0 at the inflow, open boundary conditions gN = ν(∇u)n− pn = 0
at the outflow, and no-slip on the remaining boundaries. An illustration of the problems
can be seen in Figure 6.8.
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Figure 6.8: Illustration of the channel for Navier-Stokes-Darcy (left) and Navier-Stokes (right).

The solution of the channel problem is computed on a domain Ω = [0, 1] × [0, 1] with
a mesh containing 4224 cells. The reference solution is computed on a domain Ω̃ =
[0, 1] × [0.3, 0.7], and the mesh is a subset of the initial mesh, thus having only 1696
nodes, as its volume is 4/10 of the initial domain.

Figure 6.9: Illustration of the meshes for the channel problem.

The meshes are created in gmsh [48], and a coarse version can be seen in Figure 6.9.
It is here easy to observe that the meshes have the exact same structure in the channel
area. Both problems are solved using the IPCS-scheme with time step ∆t = 0.001. The
solutions are compared at end time T = 1.0, and the L2(Ω̃)-norm of the error is 0.0018.
The velocity solution to the Navier-Stokes-Darcy channel problem is plotted in Figure 6.10
together with the error with respect to the reference solution. The error is most significant
in the boundary area, where the impermeability constant α changes its value.
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(a) Velocity for Navier-Stokes-Darcy. (b) Absolute value of difference in velocities.

Figure 6.10: Velocity plots for the channel problem with Darcy term. The l2-norm of the difference
in velocities is 0.0018

6.4 Verification of Gradient Using dolfin-adjoint

Dolfin-adjoint [45] is a software developed for computing adjoints and functional gradients
numerically. In order to use the gradient computed in dolfin-adjoint, we will verify it by
comparing it to the topological derivative derived in Section 4.7, where the objective is the
dissipation energy functional averaged over all time steps,

J(u, α) = ∆t

Nt∑
n=1

(∫
Ω

(
ν|∇u|2 + α(ψ)|un|2

)
+ β|ω|

)
, (6.14)

where Nt is the number of time steps, |ω| is the volume of the fluid domain and β is a
penalty parameter. The dolfin-adjoint gradient will be computed using the python com-
mands

J = Functional((alpha(psi)*inner(u, u) + nu*inner(grad(u), grad(u)))*dx*dt
+ beta * fluid_domain(psi) * dx * dt)

g_a = compute_gradient(J, Control(psi))

while the topological gradient will be computed using the expression derived in Section
4.7, with the additional fluid volume penalization,

gt = ∆t

Nt∑
n=1

(−(αU − αL)un(u− ua)n + β) . (6.15)
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Figure 6.11: Computational domain for the diffuser problem.

Figure 6.11 shows an illustration of the design domain. The kinematic viscosity is set to
ν = 0.01 and the penalty parameter β = 90.0. The outlet has traction-free Neumann
boundary conditions (3.9), g = 0, and the inlet has a time-varying parabolic velocity with
value

uin(t) = sin
( π

2T
t
)

(6.16)

The gradients are computed on a [0, 1] × [0, 1] domain with 60 × 60 triangular elements.
The time step size is ∆t = 0.0001 and number of time steps Nt = 60.

(a) Dolfin-adjoint gradient (b) Topological gradient (c)

Figure 6.12: Comparison of gradients for the diffuser problem.

The L2-norm between the two gradients, ‖ga − gt‖ = 0.1889, and looking at the plot of
the differences in Figure 6.13, it is obvious that the biggest difference is in the active areas.
The relatively big difference in norm can be explained by the fact that dolfin-adjoint uses
the trapezoidal rule to compute the time integral (6.14), while the topological gradient has
been computed at every time step. Figure 6.14 shows a plot of the l2-norm for different
grid sizes, and a convergence of order 1/2 is observed.
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Figure 6.13: Difference between gradients for the diffuser problem.

Figure 6.14: L2-norm of the difference in gradients for different mesh sizes N = [16, 32, 64, 128]
with time step ∆t = 0.01 and total time T = 0.15. A convergence of order 1/2 is observed.
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Numerical Experiments

In this chapter, numerical experiments are presented to demonstrate the features and util-
ity of the proposed topological optimization algorithm for unsteady Navier-Stokes-Darcy
flow. In particular, two examples from Deng et al.[24] and Kreissl et al.[12] are imple-
mented to verify the topological optimization method for unsteady flow. At the end of this
chapter, the optimization method is applied to a biomedical flow problem to optimize the
topology of a coronary artery bypass anastomosis. The exact topological derivative for
dissipation, see Section 4.7, and the topological gradient computed using dolfin-adjoint
[45], will be applied in the experiments. It will be specified in each case which one is
used. Listings of the code can be found in Appendix A.

The values of the impermeability constants are set toαL = 2.5ν/1002 andαU = 2.5ν/0.012,
as discussed in Section 6. The stopping criterion on the angle θ, presented in Section 3.6, is
εθ = 0.01. For the line search in Section 3.5, the step size tolerance is set to εκ = 0.0001.

At the end of every experiment, a discussion of the results is included, and a summary of
the discussions is presented in Chapter 8.

7.1 Double Pipe with Analytical Topological Derivative

The double pipe optimization problem with varying inflow condition is proposed in [24],
and will be reconstructed here in order to compare the resulting topology. The design
domain is shown in Figure 7.1, and the mesh consists of 43 × 43 triangular elements, see
Figure 7.2. The kinematic viscosity is ν = 1, the density ρ = 1 and the velocities imposed
at the two inlets are time-varying, given by

u1 = −144(y − 4/6)(y − 5/6) cos(t)n, (7.1)
u2 = −144(y − 1/6)(y − 2/6) sin(t)n, (7.2)
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Figure 7.1: Design domain for the double pipe problem

with t ∈ [0, 2π]. At the outlets, traction free Neumann boundary conditions are imposed,
g = 0, see (3.9). The time step used is ∆t = 0.00002.

Figure 7.2: Mesh for the double pipe problem.

The objective functional used in this case is the same as in equation (4.64), with an extra
term for fluid volume penalization

J(u, α) =

∫ T

0

∫
Ω

(
ν|∇u|2 + α|u|2

)
dt+ β|ω|, (7.3)

where |ω| denotes the fluid volume. The penalty parameter β is set to 200, and the gradi-
ent is the topological derivative in equation (4.7). In order to increase the accuracy of the
adjoint solution, a coupled solver is used, see Appendix A.2 for the implementation. The
impermeability parameter α is not interpolated, corresponding to a penalty value of q = 0
in equation (2.12), since the exact topological derivative does not require it to be differen-
tiable. In other words, the material distribution is discontinuous, which can be observed in
the resulting shape.

The stopping criterion for the optimization procedure, is that the angle θ reaches below the
tolerance εθ = 0.01. The optimization algorithm terminated after 20 iterations, and some
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7.1 Double Pipe with Analytical Topological Derivative

snapshots of the optimization procedure are presented in Figure 7.3. The evolvement of
the objective function J and angle θ are shown in Figure 7.4.

(a) Iteration 1 (b) Iteration 5 (c) Iteration 7

(d) Iteration 9 (e) Iteration 13 (f) Iteration 20

Figure 7.3: Optimization procedure for double pipe problem.

Figure 7.4: Evolvement of objective function J and angle θ in the optimization procedure for the
double pipe problem.

The optimal design is presented together with the optimal design proposed in [24], in
Figure 7.5, and the values for the objective functional J and fluid fraction γ of these are
presented in Table 7.1. The values of J come from eq. (7.3) and Table 2 in [24].

55



Chapter 7. Numerical Experiments

Table 7.1: Functional value J and fluid fraction γ for the optimal design and design in [24] for the
double pipe problem.

J γ
Fig. 7.5a 111.3 0.3797
Fig. 7.5b 113.8 0.3333

(a) Optimal design. (b) Optimal design in [24].

Figure 7.5: Optimal designs for the double pipe problem.

The two optimal shapes presented in Figure 7.5 have been found using different opti-
mization algorithms, and the most obvious difference is the smoothness, or lack of, in the
material distribution. Nevertheless, the shapes are quite similar, and the objective values
in Table 7.1 likewise, so it is reasonable to assume that the gradient-based algorithm with
the exact topological derivative as gradient is capable of optimizing a shape for unsteady
fluid flow.

7.2 Diffuser with Approximate Topological Derivative

The diffuser optimization problem, originally from Borrvall and Peterson [15], is proposed
for unsteady flow in Kreissl et al.[12], and will be reconstructed here in order to compare
the optimization algorithms. The design domain is a unit square, [0, 1] × [0, 1], shown in
Figure 7.6, and the mesh consists of 42×42 triangular elements. The kinematic viscosity is
ν = 0.01, the density ρ = 1.0 and the velocity at the inlet is time dependent and parabolic
shaped, given by

u1(t) = sin
( π

2T
t
)2

(1− (2y − L)2)n (7.4)

where the inlet length L = 1.0 in our case. At the outlet, traction-free Neumann boundary
conditions are imposed, g = 0, see (3.9). The time step used is ∆t = 0.0001, and total
time T = 15∆t, as suggested in [12].
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7.2 Diffuser with Approximate Topological Derivative

Figure 7.6: Computational domain for the diffuser problem.

The objective functional is the pressure difference between the inlet and outlet, and the
fluid volume penalization term,

J(u, α) =

∫ T

0

pin(t)− pout(t)dt+ β|ω(ψ)|, (7.5)

where pin(t) is the pressure averaged spatially over the inlet and correspondingly for the
outlet in pout. The gradient is computed using the dolfin-adjoint python call

J = Functional(( p * ds(inlet) - p * ds(outlet) / (1./3)) * dt
+ beta * fluid_domain(psi) * dx * dt)

g = compute_gradient(J, Control(psi))

where ds(inlet) and ds(outlet) are the inlet and outlet boundary measures, respec-
tively. The factor 1/3 comes from the averaging over the outlet length, see Figure 7.6.
The penalty parameter β is set to 95.0. Because we use dolfin-adjoint for the gradient
computation, we need the impermeability on the domain to be differentiable. Hence, we
apply an interpolation of α described in (2.12), with penalty parameter q = 0.1. Another
observation, is that the optimization algorithm is unstable if the step size κ = 1.0 is used,
so the backtracking line search algortihm, see Section 3.5, is applied in every iteration to
find a decrease in the functional J .

(a) Iteration 1 (b) Iteration 2 (c) Iteration 15 (d)

Figure 7.7: Optimization procedure for diffusion problem.

57



Chapter 7. Numerical Experiments

The impermeability distribution in the two first and last iterations are presented in Figure
7.7. The evolvement of the objective function J and angle θ is shown in Figure 7.8. As
θ did not converge to a tolerance εθ when applying the numerically computed gradient,
insufficient change in the functional ‖Ji+1 − Ji‖L2 < εJ = 0.01 was used as stopping
criterion. The optimization algorithm terminated after 15 iterations.

Figure 7.8: Evolvement of objective function J and angle θ in the optimization procedure for the
diffuser problem.

The optimal design is presented together with the optimal design from [12] in Figure 7.9,
and the values for the objective functional J̃ and fluid fraction γ of these are presented in
Table 7.2. The values of J̃ are computed by the formula

J̃ =
1

Nt

Nt∑
n=1

(ptot
in (tn)− ptot

out(t
n)), (7.6)

where Nt = 15 is the number of time steps, and the inlet and outlet pressures, ptot
in and ptot

out
are averaged spatially over the inlet and outlet ports. (7.6) is collected from equation (35),
and the value of the objective function is obtained from Table III, both in [12].

The two optimal shapes presented in Figure 7.9 are computed with the same interpolation
penalty for the impermeability α, but in Figure 7.9b a fluid layer has been added in or-
der to resolve the unsteady flow close to the inlet. This was not done in our case, and in
addition our mesh has twice as many elements, due to the fact that FEniCS does not sup-
port quadrilateral elements, only simplices. The objective values presented in Table 7.2
are highly different, and must be a result of different ways of averaging the pressure. The
author has so far not assimilated how this has been calculated in [12]. The gradient-based
algorithm with a numerically computed gradient (using dolfin-adjoint), does not behave
in the same way as with the analytical topological gradient, as it is unstable for step size
κ = 1.0. A backtracking line search is applied in order to ensure sufficient decrease in
the objective J , but the algorithm performes better with a constant step size κ < 1. Com-
bining a default step size of κ = 0.5 with a backtracking line search show better results
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in few iterations, and is applied to the algorithm when using the numerically computed
gradient. In addition, the optimality criterion θ did not behave as expected when using the
numerically computed gradient, see Figure 7.8. This is another indication that the numer-
ical gradient is not fully a descent direction, and caution should be made when applying
this. Further work should investigate how the gradient behaves during mesh refinement.
The advantage of using the numerically computed gradient, is that it is not necessary to
derive the topological derivative when applying different objective functionals.

(a) Optimized diffuser design. (b) Diffuser design from [12].

Figure 7.9: Optimal designs for the diffuser problem.

Table 7.2: Functional value J and fluid fraction γ for the optimal design and design in [12] for the
diffuser problem.

J̃ γ
Fig. 7.9a 576.36 0.527
Fig. 7.9b 36 400 0.500

7.3 Coronary Artery Bypass Anastomosis Models

The gradient-based optimization algorithm is applied to a coronary artery bypass anasto-
mosis with the purpose of finding an optimal shape. We refer the reader to Section 1.2 for
background information and terminology on coronary artery bypass anastomoses.

In the literature, Quarteroni, Rozza and Agoshov [1, 8, 9, 10] have investigated the re-
duction in vorticity when optimizing a known shape of the toe of the bypass. Since we
are dealing with topology optimization, we have no prior information about the shape of
the bypass. This opens up for the possibility to optimize the whole domain of the bypass,
starting with just the obstructed artery. Instead of looking at the relative reduction of vor-
ticity, as we have no reference shape, we will investigate the optimal shapes with respect
to minimizing different objective functionals, including vorticity, for different domains.

The inlet velocity used in the bypass experiments is based on data from [11], and is plotted
in Figure 7.10, with a time period of T = 0.8 seconds, which corresponds to a pulse of 75
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beats per minute. Notice that the velocity is negative at around t = 0.1 s.

Figure 7.10: Velocity profile for the left anterior descending coronary artery. Data taken from [11].

The kinematic viscosity is ν = 0.04 cm2/s, the blood density ρ = 1.0 g/cm3, and the
arterial diameter isD = 0.35 cm [2, 9]. The mean velocity is set to ū = 20.0 cm/s, which
corresponds to a Reynolds number Re = ū ·D/ν of 175. This is reasonable according to
[3].

In order to model a bypass, we have made some assumptions. The design domain for the
bypass is set to L = 6.0 cm, and the inlet velocity has a Poiseuille profile. We assume
that the artery is fully occluded. The fluid penalization parameter β is affected by the size
of the domain, velocity magnitude and kinematic viscosity, and will be adjusted in every
case such that the bypass channel is sufficiently narrow. For the material distribution α,
we have chosen a penalty factor q = 0.1.

We will consider the energy dissipation functional

J1(u, α) =

∫ T

0

∫
Ω

(
ν|∇u|2 + α|u|2

)
dt+ β|ω|, (7.7)

and the vorticity functional

J2(u, α) =

∫ T

0

∫
Ω

(
ν|∇ × u|2 + α|u|2

)
dt+ β|ω|, (7.8)

where |ω| is the volume of the fluid in the design domain. For efficient switching between
functionals, all gradients are computed numerically using dolfin-adjoint [45].

7.3.1 Simple Bypass Model

A simple model, illustrated in Figure 7.11, is implemented for the bypass problem. The
area under the dashed line represents the coronary artery, and the area above is the design
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domain. A rectangle part of width 0.2 cm and height 0.35 cm is removed where the
occlusion is. The time-dependent inlet velocity presented in Figure 7.10 is applied with
a Poiseuille profile at the inlet, and a traction-free boundary condition is imposed at the
outlet. For every iteration, the level set function in the coronary artery sub-domain is
enforced to have negative value, ensuring fluid representation in this area. The mesh for
this model is created using gmsh [48], with a spatial step size of 0.05 cm around the
occlusion, and 0.1 cm elsewhere, in total 4534 cells. Figure 7.12 shows an illustration of
the mesh.

Figure 7.11: Illustration of the simple bypass model. All spatial measures are in cm.

Figure 7.12: Grid for the simple bypass model.

A preliminary experiment for the energy dissipation functional (7.7) with 10% of the inlet
velocity magnitude was implemented, corresponding to a Reynolds number ofRe = 17.5.
Figure 7.13 shows the optimal shape. A small opening around the occlusion is observed,
although little fluid movement is detected in the area. The opening is suspected to come
from the update of the level set function in the coronary artery domain at every iteration,
thus affecting the topological gradient. Experiments without the manual level-set update
were tested without satisfactory results, see Section 8.2 for a suggestion on further inves-
tigation.

The simple model for the bypass was implemented for the energy dissipation functional
with mean velocity ū = 20.0. The penalty parameter used was β = 500.0 and the time
step size ∆t = 0.002. The optimal shape was found after 20 iterations, and is presented
in Figure 7.14, together with an illustration of the fluid flow at end time T = 0.8 s and
the optimal shape with the mesh. It is easily observed that the optimal shape in Figure
7.14a differs from the one in Figure 7.13 with lower Reynolds number. This observa-
tion enhances the importance of implementing a model that represents the actual physical
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Figure 7.13: Optimal shape for the bypass problem with respect to the energy dissipation functional,
with 10 % of the velocity magnitude and β = 10.0.

properties of the system with the correct scaling of variables.

(a) Optimal shape iterations.

(b) Fluid flow in optimal shape at time T = 0.8 s.

(c) Optimal shape with mesh.

Figure 7.14: Optimial shape for the simple bypass model with respect to the energy dissipation
functional (7.7).

The simple model for the bypass was also implemented for the vorticity functional (7.8)
with mean velocity ū = 20.0. The penalty parameter used was β = 500.0 and the time
step size ∆t = 0.002. The optimal shape was found after 20 iterations, and is presented in
Figure 7.15 with the fluid flow at end time T = 0.8 s.
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Figure 7.15: Fluid flow at time T = 0.8 s in optimal shape for the simple bypass model with respect
to the vorticity functional (7.8).

The optimal shapes for the two functionals are very similar. Figure 7.16 shows the func-
tional values for the energy dissipation functional J1 and the vorticity functional J2 at each
iteration. It seems that the functional values at early iterations are strongly dependent on
the fluid penalization term, β|ω|, as the functional values follow the same pattern.

Figure 7.16: Evolvement of the objective functionals (7.7) and (7.8) for the simple model.

7.3.2 Extended Bypass Model

An extended model, illustrated in Figure 7.17, is also implemented for the bypass problem,
where 1.0 cm is added to the coronary artery on each side, in order to resolve the unsteady
flow close to the inlet and outlet. The mesh for the extended model is created using gmsh
[48], with a spatial step size of 0.05 cm along the upper part of the coronary artery, and
0.1 cm elsewhere, in total 6626 cells. Figure 7.18 shows an illustration of the mesh.
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Figure 7.17: Illustration of the extended bypass model.

Figure 7.18: Mesh for the extended bypass model.

The extended model for the bypass was used with the energy dissipation functional and
vorticity functional, with mean velocity ū = 20.0. The penalty parameter is set to β =
500.0 and the time step size ∆t = 0.002. The optimal shape for the energy dissipation
functional J1 was found after 19 iterations, and the optimal shape for the vorticity func-
tional J2 was found after 17 iterations. The optimal shapes are presented with fluid flow
at end time T = 0.8. in Figure 7.20. The optimal shapes for the two functionals are in this
case also very similar.

Figure 7.19: Evolvement of the objective functionals (7.7) and (7.8) for the extended model.
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Figure 7.19 shows the functional values for the energy dissipation functional J1 and the
vorticity functional J2 at each iteration. Also for the extended model, the functional values
follow the same pattern at early iterations, which means that also in this model the fluid
volume penalization term β|ω| dominates the functional value.

(a) Energy dissipation functional

(b) Vorticity functional

Figure 7.20: Fluid flow at time T = 0.8 s in optimal shape for the extended bypass model for the
different functionals.

7.3.3 Comparison of the Two Models

The evolvement of the objective function during each optimization procedure is presented
in Figure 7.21. The objective values seem to follow a similar pattern, even for the two
different models. The peak at iteration 7 is in all four cases caused by intermediate imper-
meability values inside of the channel. As this is not beneficial, the impermeability in the
channel is restored by the algorithm at iteration 8.

Table 7.3: Numerical results of the different bypass models with respect to the energy dissipation
functional J1 and vorticity functional J2.

Objective value β Number of iterations
Simple J1 2123 500.0 20
Simple J2 2076 500.0 20
Extended J1 2680 500.0 19
Extended J2 2711 500.0 17
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Figure 7.21: Evolvement of the objective functionals J1 (7.7) and J2 (7.8) for the simple and
extended model.

The objective functional values for the four different cases are presented in Table 7.3 to-
gether with penalty value β and number of iterations.

(a) Energy dissipation functional

(b) Vorticity functional

Figure 7.22: Comparing of the optimal shapes for the simple and extended bypass model. The
channel for the simple model is colored red.
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The optimal shapes for the simple and extended model are compared for both functionals
in Figure 7.22. Small differences, especially at the inlet and outlet of the design domain,
are observed. The optimal shapes for the simple model have a wider outlet than for the
extended model, which favors the extended model. As the dissipation energy and vorticity
was calculated on the whole domain, the functional values are not comparable in the two
models. This can easily be computed by calculating the energy dissipation and vorticity
in the common domains. See Section 8.2 for further discussion on improvement of these
models.
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Chapter 8
Conclusion and Recommendations
for Further Work

8.1 Conclusion

In this thesis, we have focused on developing a stable and efficient topology optimization
method for determining the shape design of unsteady two-dimensional biomedical flows.
Using the numerical method presented in this thesis, the optimal shape with respect to an
arbitrary objective functional of for instance a bypass can be found, given no information
about the initial shape.

To model the fluid flow, the unsteady incompressible Navier-Stokes equations have been
combined with Darcy’s equation. The inclusion of the Darcy term makes it possible to
determine the impermeability in the domain material, distinguishing solid from fluid. The
Navier-Stokes-Darcy (NSD) system has been discretized and solved using a finite element
approach with the numerical software FEniCS [46] and an incremental pressure correction
scheme (IPCS), see Chapter 5.

A gradient-based topology optimization algorithm proposed in [23] has been successfully
implemented. The algorithm is based on a level set method that determines the imper-
meability in every cell, and is updated using the topological derivative. For the NSD
system, the topological derivative associated with the energy dissipation functional has
been derived in Section 4.7 and used as descent direction in the gradient-based algorithm.
Knowledge of the adjoint solution for the NSD system is necessary in order to calculate
the topological derivative. The adjoint equations for the NSD system have been derived
and solved using a finite element method and a coupled solver. The implementation details
can be found in Appendix A.2.

Deriving the adjoint model and topological derivative can be a very difficult and time
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consuming task. Using the functionality of dolfin-adjoint [45], we have been able to in-
vestigate other functionals than the energy dissipation functional in a fast and easy way. In
few lines of code, we have computed the topolgical gradient numerically, based on the for-
ward solution of the Navier-Stokes-Darcy system. The core of the implementation using
dolfin-adjoint is listed in Appendix A.4.

The IPCS solver has been verified numerically on Taylor-Green flow and a problem with
manufactured solution in Chapter 6, showing convergence of 2nd order in space and 1st or-
der in time. For high values of the kinematic viscosity in problems with Dirichlet boundary
conditions, an erroneous boundary layer was discovered. This was diminished by lower-
ing the time step size sufficiently. The gradient computed using dolfin-adjoint has been
compared to the topolgical derivative, showing some dissimilarities, but a convergence in
space of order 1/2. The optimization algorithm has been applied and compared to exam-
ples in other publications on topology optimization for unsteady flow [12, 24], showing
similar results.

The optimization algorithm has been applied to a coronary artery bypass anastomosis in
Section 7.3 in order to optimize the bypass shape with respect to energy dissipation or
vorticity. This has been done for two different models of the bypass, and the optimal
shapes are very similar. A differently shaped channel was detected for lower Reynolds
numbers, which indicates that a simplified model with respect to length scales should be
avoided in order to get reliable results. An additional small channel close to the occlusion
is observed in the optimal shapes, but little fluid flow is detected through it. This is due to
a weakness in the algorithm. Apart from this erroneousness, in conclusion the topological
optimization algorithm seems to handle the biomedical fluid flow problem adequately.

8.2 Further Work

The further work of this thesis should include applying the optimization method to the
bypass problem with higher Reynolds number, as the highest number in this thesis was
Re = 175. In the literature [1, 8, 9, 10], a Reynolds number of order 103 is suggested.
In addition a longer model for the bypass problem should be tested, in order to find the
dependency in optimal shape with respect to the length of the design domain. Also, a
more detailed model, with for instance removal of some of the domain above the coronary
artery could be implemented, correcting the opening close to the occlusion. Due to time
constraints, this was not carried out in this thesis.

Another interesting topic would be to extend the model to 3D, and investigate techniques
for reducing the computational costs. Implementation in three dimensions is generally
not a trivial case, as one has to code in parallel and handle the large amount of data.
Not all models require three-dimensional simulations to give useful information about the
problem. However, for realistic simulations of blood flow, a three-dimensional model is
necessary. An extension to three dimensions would also enable the topology optimization
method for other problems where a more realistic model is required. As the mathematics
in this thesis are dimension-independent, only the implementation has to be extended.
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It would also be interesting to further investigate the difference between the gradient com-
puted using dolfin-adjoint and the topolgical derivative, and what this is caused by, as they
differed more than was expected. For instance, one could look at the solution with a very
fine grid, as the numerically computed gradient should approach the analytical when the
space step size becomes small. One could also apply the numerical gradient to the double-
pipe problem in Section 7.1 and compare the solution to the optimal shape and functional
evolvement computed with the topological derivative.
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Appendix A
Numerical Implementation

A.1 Navier-Stokes-Darcy Solver

from dolfin import *

class NSDSolver:

def __init__(self, problem):
self.mesh = problem.mesh
self.boundaries = problem.boundaries
self.T = problem.T
self.dt = problem.dt

def solve_IPCS(self, psi):

# Function spaces
V = VectorFunctionSpace(self.mesh, "CG", 2)
Q = FunctionSpace(self.mesh, "CG", 1)

ds = Measure("ds")(subdomain_data=self.boundaries)
n = FacetNormal(self.mesh)

# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)

u0 = Function(V, name=’u0’)
u1 = Function(V, name=’u1’)
p0 = Function(Q, name=’p0’)
p1 = Function(Q, name=’p1’)

k = Constant(self.dt)
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# Tentative velocity step
F1 = (1. / k) * inner(u - u0, v) * dx \

+ inner(grad(u0) * u0, v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ inner(grad(p0), v) * dx \
+ alpha(psi) * inner(u, v) * dx \
- nu * inner(dot(n, nabla_grad(u)), v) * ds(3) \
+ inner(p0 * n, v) * ds(3)

a1 = lhs(F1)
L1 = rhs(F1)

# Pressure update
a2 = inner(grad(p), grad(q)) * dx
L2 = inner(grad(p0), grad(q)) * dx \

- ((1. / k) + alpha(psi)) * div(u1) * q * dx

# Velocity update
a3 = (1. / k + alpha(psi)) * inner(u, v) * dx
L3 = (1. / k + alpha(psi)) * inner(u1, v) * dx \

- inner(grad(p1 - p0), v) * dx

# Assemble system
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

b1 = None
b2 = None
b3 = None

t = 0.0

# Save forward solution
u_list = []

while t < self.T:
bcu, bcp = problem.boundary_conditions(V, Q, t)
t += self.dt

# Tentative velocity
b1 = assemble(L1, tensor=b1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1)

# Pressure correction
b2 = assemble(L2, tensor=b2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2)

# Velocity update
b3 = assemble(L3, tensor=b3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3)

# Ensure deep copy:
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u_temp = Function(V)
u_temp.assign(u1)
u_list.append(u_temp)

u0.assign(u1)
p0.assign(p1)

return u_list

A.2 Adjoint Solver

from dolfin import *

class AdjointSolver:

def __init__(self, problem):
self.mesh = problem.mesh
self.boundaries = problem.adjoint_boundaries
self.T = problem.T
self.dt = problem.dt

def solve_coupled(self, psi, u_list):

# psi is the level set function
# u_list contains forward solution

# Adjoint coupled:
P2 = VectorElement(’P’, ’triangle’, 2)
P1 = FiniteElement(’P’, ’triangle’, 1)
TH = P2 * P1
W = FunctionSpace(self.mesh, TH)

ds = Measure("ds")(subdomain_data=self.boundaries)
n = FacetNormal(self.mesh)

(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
w = Function(W)
(ua, pa) = split(w)

# in order to assign w.sub(0) to u_a
V = VectorFunctionSpace(self.mesh, "CG", 2)
assigner = FunctionAssigner(V, W.sub(0))

# Adjoint system with Neumann boundary conditions
F_a = (1. / k) * inner(u - ua, v) * dx \

- inner(dot(grad(u), u0), v) * dx \
- inner(dot(u0, grad(u)), v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ alpha(psi) * inner(u, v) * dx \
- div(u) * q * dx - div(v) * p * dx \
- 2 * nu * inner(grad(u0), grad(v)) * dx \
- 2 * alpha(psi) * inner(u0, v) * dx \
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- inner(p * n, v) * ds(3) \
+ nu * inner(dot(n, grad(u)), v) * ds(3) \
+ inner(dot(u0, u) * n, v) * ds(3) \
+ inner(dot(u0, n) * u, v) * ds(3)

a = lhs(F_a)
L = rhs(F_a)

# save adjoint solution
ua_list = []

# Constant Dirichlet boundary conditions
bcu = problem.adjoint_boundary_conditions(V)

k = Constant(self.dt)
t = self.T

for u0 in reversed(u_list):
t -= self.dt

problem = LinearVariationalProblem(a, L, w, bcu)
solver = LinearVariationalSolver(problem)
solver.solve()
(ua, pa) = split(w)

# ensure deep copy
u_a = Function(V)
assigner.assign(u_a, w.sub(0))
ua_list.append(u_a)

# return reversed ua_list such that it has the same ordering
# as u_list
return ua_list[::-1]

A.3 Gradient-Based Method

from dolfin import *

class GradientMethod:

def __init__(self, problem):
self.problem = problem
self.V0 = FunctionSpace(problem.mesh, "CG", 1)
self.PSI = "-1"
self.n_max = 20
self.tol_theta = 0.01
self.tol_kappa = 0.001

def functional(self, psi, u_list):
J = 0.0
N = len(u_list)
for u in u_list:

J += problem.dt * assemble(alpha(psi) * inner(u, u) * dx
+ nu * inner(grad(u), grad(u)) * dx)

J += assemble(self.beta * fluid_domain(psi) * dx)

82



return J

def gradient(self, g, u_, ua_):
N = len(u_)
g.vector().zero()
for i in range(N):

u = u_[i]
ua = ua_[i]
direction = - (ALPHA_U - ALPHA_L) * inner(u, u - ua)
g_temp = project(direction + self.beta, self.V0)
g.vector().axpy(1./N, g_temp.vector())

def angle(self, g, psi):
dot_prod = assemble(dot(g, psi) * dx)
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi, psi) * dx))
return acos(dot_prod / (nrm_g * nrm_psi))

def new_psi(self, psi, kappa, theta, psi_ref, g):
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
k1 = sin((1 - kappa) * theta) / (sin(theta) * nrm_psi)
k2 = sin(kappa * theta) / (sin(theta) * nrm_g)
psi.vector().zero()
psi.vector().axpy(k1, psi_ref.vector())
psi.vector().axpy(k2, g.vector())

def run_gradient_method(self):

kappa = 1.0

# Design parameter
psi_ref = project(Expression(self.PSI, degree=1), self.V0)
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
psi = project(Expression(self.PSI) / nrm_psi, self.V0)
g = Function(self.V0)

NSD = NSDSolver(self.problem)
adjoint = AdjointSolver(self.problem)

u_list = NSD.solve_IPCS(psi)
ua_list = adjoint.solve_coupled(psi, u_list)

J = self.functional(psi, u_list)

# Iterate until convergence
for n in range(self.n_max):

print "Iteration #: " + str(n+1)

self.gradient(g, u_list, ua_list)
theta = self.angle(g, psi)
if theta < self.tol_theta:

print "Theta smaller that tolerance!"
break

kappa = min(1.0, kappa*1.5)
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# Store old psi and update new psi
psi_ref.assign(psi)
self.new_psi(psi, kappa, theta, psi_ref, g)

# Solve forward and adjoint system
u_list = NSD.solve_IPCS(psi)
ua_list = adjoint.solve_coupled(psi, u_list)

# calculate new functional
J_new = self.functional(psi, u_list)

# Line search
while J_new > J and kappa > self.tol_kappa:

# Did not find smaller J, decreasing kappa."
kappa = kappa*0.5

# Update psi and calculate new J
self.new_psi(psi, kappa, theta, psi_ref, g)
u_list = NSD.solve_IPCS(psi)
J_new = self.functional(psi, u_list)

if J_new < J:
J = J_new

else:
# Did not find smaller J, terminating
return psi, J

return psi, J

A.4 Implementation with dolfin-adjoint

from dolfin import *
from dolfin_adjoint import *

class NSDsolver:

def __init__(self, problem):
self.problem = problem
self.mesh = problem.mesh
self.boundaries = problem.boundaries

def solve(self, psi):

adj_reset()
timestep = problem.dt

# Function spaces
V = VectorFunctionSpace(self.mesh, "CG", 2)
Q = FunctionSpace(self.mesh, "CG", 1)

ds = Measure("ds")(subdomain_data=self.boundaries)
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n = FacetNormal(self.mesh)

# Initial velocity and pressure
u0, p0 = problem.initial_values()

# Declare velocity functions
u = Function(V, name="u")
v = TestFunction(V)

# Weak form for tentative velocity
F1 = (1./timestep) * inner(u - u0, v) * dx \

+ inner(grad(u) * u0, v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ alpha(psi) * inner(u, v) * dx \
+ inner(grad(p0), v) * dx \
- nu * inner(dot(n, nabla_grad(u)), v) * ds(2) \
+ inner(p0 * n, v) * ds(2)

# Declare pressure functions
p = Function(Q, name="p")
q = TestFunction(Q)

# Pressure correction weak form
F2 = inner(grad(p - p0), grad(q)) * dx \

+ (1. / timestep) * div(u0) * q * dx

# Velocity update weak form
F3 = (1./timestep)*inner(u - u0, v) * dx \

+ inner(grad(p - p0), v) * dx

t = 0.0
psi_tmp = psi.copy(deepcopy=True)

adj_time = True
annotate = True
adj_start_timestep()

while t < problem.T:

# u and p are trial functions
# u0 and p0 are newest value

# Boundary conditions, Pousille flow at inlet
bcu, bcp = problem.boundary_conditions(V, Q, t)

solve(F1 == 0, u, bcu)
u0.assign(u, annotate=annotate)
solve(F2 == 0, p, bcp)
solve(F3 == 0, u, bcu)

psi.assign(psi_tmp, annotate=annotate)
u0.assign(u, annotate=annotate)
p0.assign(p, annotate=annotate)

# plot(u0, interactive=True)
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t += float(timestep)
if adj_time:

adj_inc_timestep(t, t > problem.T)

# dolfin-adjoint only needs the last solution of u and p
return u0, p0

class GradientMethod:
def __init__(self, problem):

self.problem = problem
self.mesh = problem.mesh
self.boundaries = problem.boundaries
self.V0 = FunctionSpace(self.mesh, "CG", 1)
self.PSI = "-1"
self.n_max = 20
self.kappa_tol = 0.001

def new_psi(self, kappa, psi, g):

dot_prod = assemble(dot(g, psi) * dx)
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi, psi) * dx))

theta = acos(dot_prod / (nrm_g * nrm_psi))
k1 = sin((1 - kappa) * theta) / (sin(theta) * nrm_psi)
k2 = sin(kappa * theta) / (sin(theta) * nrm_g)

psi = project(k1 * psi - k2 * g, self.V0, annotate=False)
return psi

def run_gradient_method(self):

ds = Measure("ds")(subdomain_data=self.boundaries)
kappa = 0.5

# Design parameter
psi_ref = project(Expression(self.PSI, degree=1), self.V0)
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
psi = project(Expression(self.PSI, degree=2) / nrm_psi,

self.V0, annotate=True)

# Initialize problem and Navier-Stokes-Darcy solver
nsd = NSDsolver(self.problem)
u, p = nsd.solve(psi)

# Dolfin-adjoint functional
J = Functional((p * ds(1) - 3. * p * ds(2)) * dt

+ beta * fluid_domain(psi) * dx * dt)

for i in range(self.n_max):
print "\nIteration #" + str(i+1)

g = compute_gradient(J, Control(psi), forget=False)

86



# Store old values of J and psi:
Jm = ReducedFunctional(J, Control(psi))
J_old = Jm(psi)
psi_ref.assign(psi)

# Update psi and calculate new J
kappa = min(0.5, kappa * 1.5)
psi = self.new_psi(kappa, psi_ref, g)
u, p = nsd.solve(psi)

J = Functional((p * ds(1) - 3. * p * ds(2)) * dt
+ beta * fluid_domain(psi) * dx * dt)

Jm = ReducedFunctional(J, Control(psi))

return psi, J
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