


Chapter 7. Numerical Experiments

The impermeability distribution in the two first and last iterations are presented in Figure
7.7. The evolvement of the objective function J and angle θ is shown in Figure 7.8. As
θ did not converge to a tolerance εθ when applying the numerically computed gradient,
insufficient change in the functional ‖Ji+1 − Ji‖L2 < εJ = 0.01 was used as stopping
criterion. The optimization algorithm terminated after 15 iterations.

Figure 7.8: Evolvement of objective function J and angle θ in the optimization procedure for the
diffuser problem.

The optimal design is presented together with the optimal design from [12] in Figure 7.9,
and the values for the objective functional J̃ and fluid fraction γ of these are presented in
Table 7.2. The values of J̃ are computed by the formula

J̃ =
1

Nt

Nt∑
n=1

(ptot
in (tn)− ptot

out(t
n)), (7.6)

where Nt = 15 is the number of time steps, and the inlet and outlet pressures, ptot
in and ptot

out
are averaged spatially over the inlet and outlet ports. (7.6) is collected from equation (35),
and the value of the objective function is obtained from Table III, both in [12].

The two optimal shapes presented in Figure 7.9 are computed with the same interpolation
penalty for the impermeability α, but in Figure 7.9b a fluid layer has been added in or-
der to resolve the unsteady flow close to the inlet. This was not done in our case, and in
addition our mesh has twice as many elements, due to the fact that FEniCS does not sup-
port quadrilateral elements, only simplices. The objective values presented in Table 7.2
are highly different, and must be a result of different ways of averaging the pressure. The
author has so far not assimilated how this has been calculated in [12]. The gradient-based
algorithm with a numerically computed gradient (using dolfin-adjoint), does not behave
in the same way as with the analytical topological gradient, as it is unstable for step size
κ = 1.0. A backtracking line search is applied in order to ensure sufficient decrease in
the objective J , but the algorithm performes better with a constant step size κ < 1. Com-
bining a default step size of κ = 0.5 with a backtracking line search show better results
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7.3 Coronary Artery Bypass Anastomosis Models

in few iterations, and is applied to the algorithm when using the numerically computed
gradient. In addition, the optimality criterion θ did not behave as expected when using the
numerically computed gradient, see Figure 7.8. This is another indication that the numer-
ical gradient is not fully a descent direction, and caution should be made when applying
this. Further work should investigate how the gradient behaves during mesh refinement.
The advantage of using the numerically computed gradient, is that it is not necessary to
derive the topological derivative when applying different objective functionals.

(a) Optimized diffuser design. (b) Diffuser design from [12].

Figure 7.9: Optimal designs for the diffuser problem.

Table 7.2: Functional value J and fluid fraction γ for the optimal design and design in [12] for the
diffuser problem.

J̃ γ
Fig. 7.9a 576.36 0.527
Fig. 7.9b 36 400 0.500

7.3 Coronary Artery Bypass Anastomosis Models

The gradient-based optimization algorithm is applied to a coronary artery bypass anasto-
mosis with the purpose of finding an optimal shape. We refer the reader to Section 1.2 for
background information and terminology on coronary artery bypass anastomoses.

In the literature, Quarteroni, Rozza and Agoshov [1, 8, 9, 10] have investigated the re-
duction in vorticity when optimizing a known shape of the toe of the bypass. Since we
are dealing with topology optimization, we have no prior information about the shape of
the bypass. This opens up for the possibility to optimize the whole domain of the bypass,
starting with just the obstructed artery. Instead of looking at the relative reduction of vor-
ticity, as we have no reference shape, we will investigate the optimal shapes with respect
to minimizing different objective functionals, including vorticity, for different domains.

The inlet velocity used in the bypass experiments is based on data from [11], and is plotted
in Figure 7.10, with a time period of T = 0.8 seconds, which corresponds to a pulse of 75
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beats per minute. Notice that the velocity is negative at around t = 0.1 s.

Figure 7.10: Velocity profile for the left anterior descending coronary artery. Data taken from [11].

The kinematic viscosity is ν = 0.04 cm2/s, the blood density ρ = 1.0 g/cm3, and the
arterial diameter isD = 0.35 cm [2, 9]. The mean velocity is set to ū = 20.0 cm/s, which
corresponds to a Reynolds number Re = ū ·D/ν of 175. This is reasonable according to
[3].

In order to model a bypass, we have made some assumptions. The design domain for the
bypass is set to L = 6.0 cm, and the inlet velocity has a Poiseuille profile. We assume
that the artery is fully occluded. The fluid penalization parameter β is affected by the size
of the domain, velocity magnitude and kinematic viscosity, and will be adjusted in every
case such that the bypass channel is sufficiently narrow. For the material distribution α,
we have chosen a penalty factor q = 0.1.

We will consider the energy dissipation functional

J1(u, α) =

∫ T

0

∫
Ω

(
ν|∇u|2 + α|u|2

)
dt+ β|ω|, (7.7)

and the vorticity functional

J2(u, α) =

∫ T

0

∫
Ω

(
ν|∇ × u|2 + α|u|2

)
dt+ β|ω|, (7.8)

where |ω| is the volume of the fluid in the design domain. For efficient switching between
functionals, all gradients are computed numerically using dolfin-adjoint [45].

7.3.1 Simple Bypass Model

A simple model, illustrated in Figure 7.11, is implemented for the bypass problem. The
area under the dashed line represents the coronary artery, and the area above is the design
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7.3 Coronary Artery Bypass Anastomosis Models

domain. A rectangle part of width 0.2 cm and height 0.35 cm is removed where the
occlusion is. The time-dependent inlet velocity presented in Figure 7.10 is applied with
a Poiseuille profile at the inlet, and a traction-free boundary condition is imposed at the
outlet. For every iteration, the level set function in the coronary artery sub-domain is
enforced to have negative value, ensuring fluid representation in this area. The mesh for
this model is created using gmsh [48], with a spatial step size of 0.05 cm around the
occlusion, and 0.1 cm elsewhere, in total 4534 cells. Figure 7.12 shows an illustration of
the mesh.

Figure 7.11: Illustration of the simple bypass model. All spatial measures are in cm.

Figure 7.12: Grid for the simple bypass model.

A preliminary experiment for the energy dissipation functional (7.7) with 10% of the inlet
velocity magnitude was implemented, corresponding to a Reynolds number ofRe = 17.5.
Figure 7.13 shows the optimal shape. A small opening around the occlusion is observed,
although little fluid movement is detected in the area. The opening is suspected to come
from the update of the level set function in the coronary artery domain at every iteration,
thus affecting the topological gradient. Experiments without the manual level-set update
were tested without satisfactory results, see Section 8.2 for a suggestion on further inves-
tigation.

The simple model for the bypass was implemented for the energy dissipation functional
with mean velocity ū = 20.0. The penalty parameter used was β = 500.0 and the time
step size ∆t = 0.002. The optimal shape was found after 20 iterations, and is presented
in Figure 7.14, together with an illustration of the fluid flow at end time T = 0.8 s and
the optimal shape with the mesh. It is easily observed that the optimal shape in Figure
7.14a differs from the one in Figure 7.13 with lower Reynolds number. This observa-
tion enhances the importance of implementing a model that represents the actual physical
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Figure 7.13: Optimal shape for the bypass problem with respect to the energy dissipation functional,
with 10 % of the velocity magnitude and β = 10.0.

properties of the system with the correct scaling of variables.

(a) Optimal shape iterations.

(b) Fluid flow in optimal shape at time T = 0.8 s.

(c) Optimal shape with mesh.

Figure 7.14: Optimial shape for the simple bypass model with respect to the energy dissipation
functional (7.7).

The simple model for the bypass was also implemented for the vorticity functional (7.8)
with mean velocity ū = 20.0. The penalty parameter used was β = 500.0 and the time
step size ∆t = 0.002. The optimal shape was found after 20 iterations, and is presented in
Figure 7.15 with the fluid flow at end time T = 0.8 s.
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Figure 7.15: Fluid flow at time T = 0.8 s in optimal shape for the simple bypass model with respect
to the vorticity functional (7.8).

The optimal shapes for the two functionals are very similar. Figure 7.16 shows the func-
tional values for the energy dissipation functional J1 and the vorticity functional J2 at each
iteration. It seems that the functional values at early iterations are strongly dependent on
the fluid penalization term, β|ω|, as the functional values follow the same pattern.

Figure 7.16: Evolvement of the objective functionals (7.7) and (7.8) for the simple model.

7.3.2 Extended Bypass Model

An extended model, illustrated in Figure 7.17, is also implemented for the bypass problem,
where 1.0 cm is added to the coronary artery on each side, in order to resolve the unsteady
flow close to the inlet and outlet. The mesh for the extended model is created using gmsh
[48], with a spatial step size of 0.05 cm along the upper part of the coronary artery, and
0.1 cm elsewhere, in total 6626 cells. Figure 7.18 shows an illustration of the mesh.
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Figure 7.17: Illustration of the extended bypass model.

Figure 7.18: Mesh for the extended bypass model.

The extended model for the bypass was used with the energy dissipation functional and
vorticity functional, with mean velocity ū = 20.0. The penalty parameter is set to β =
500.0 and the time step size ∆t = 0.002. The optimal shape for the energy dissipation
functional J1 was found after 19 iterations, and the optimal shape for the vorticity func-
tional J2 was found after 17 iterations. The optimal shapes are presented with fluid flow
at end time T = 0.8. in Figure 7.20. The optimal shapes for the two functionals are in this
case also very similar.

Figure 7.19: Evolvement of the objective functionals (7.7) and (7.8) for the extended model.
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Figure 7.19 shows the functional values for the energy dissipation functional J1 and the
vorticity functional J2 at each iteration. Also for the extended model, the functional values
follow the same pattern at early iterations, which means that also in this model the fluid
volume penalization term β|ω| dominates the functional value.

(a) Energy dissipation functional

(b) Vorticity functional

Figure 7.20: Fluid flow at time T = 0.8 s in optimal shape for the extended bypass model for the
different functionals.

7.3.3 Comparison of the Two Models

The evolvement of the objective function during each optimization procedure is presented
in Figure 7.21. The objective values seem to follow a similar pattern, even for the two
different models. The peak at iteration 7 is in all four cases caused by intermediate imper-
meability values inside of the channel. As this is not beneficial, the impermeability in the
channel is restored by the algorithm at iteration 8.

Table 7.3: Numerical results of the different bypass models with respect to the energy dissipation
functional J1 and vorticity functional J2.

Objective value β Number of iterations
Simple J1 2123 500.0 20
Simple J2 2076 500.0 20
Extended J1 2680 500.0 19
Extended J2 2711 500.0 17
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Figure 7.21: Evolvement of the objective functionals J1 (7.7) and J2 (7.8) for the simple and
extended model.

The objective functional values for the four different cases are presented in Table 7.3 to-
gether with penalty value β and number of iterations.

(a) Energy dissipation functional

(b) Vorticity functional

Figure 7.22: Comparing of the optimal shapes for the simple and extended bypass model. The
channel for the simple model is colored red.
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The optimal shapes for the simple and extended model are compared for both functionals
in Figure 7.22. Small differences, especially at the inlet and outlet of the design domain,
are observed. The optimal shapes for the simple model have a wider outlet than for the
extended model, which favors the extended model. As the dissipation energy and vorticity
was calculated on the whole domain, the functional values are not comparable in the two
models. This can easily be computed by calculating the energy dissipation and vorticity
in the common domains. See Section 8.2 for further discussion on improvement of these
models.
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Chapter 8
Conclusion and Recommendations
for Further Work

8.1 Conclusion

In this thesis, we have focused on developing a stable and efficient topology optimization
method for determining the shape design of unsteady two-dimensional biomedical flows.
Using the numerical method presented in this thesis, the optimal shape with respect to an
arbitrary objective functional of for instance a bypass can be found, given no information
about the initial shape.

To model the fluid flow, the unsteady incompressible Navier-Stokes equations have been
combined with Darcy’s equation. The inclusion of the Darcy term makes it possible to
determine the impermeability in the domain material, distinguishing solid from fluid. The
Navier-Stokes-Darcy (NSD) system has been discretized and solved using a finite element
approach with the numerical software FEniCS [46] and an incremental pressure correction
scheme (IPCS), see Chapter 5.

A gradient-based topology optimization algorithm proposed in [23] has been successfully
implemented. The algorithm is based on a level set method that determines the imper-
meability in every cell, and is updated using the topological derivative. For the NSD
system, the topological derivative associated with the energy dissipation functional has
been derived in Section 4.7 and used as descent direction in the gradient-based algorithm.
Knowledge of the adjoint solution for the NSD system is necessary in order to calculate
the topological derivative. The adjoint equations for the NSD system have been derived
and solved using a finite element method and a coupled solver. The implementation details
can be found in Appendix A.2.

Deriving the adjoint model and topological derivative can be a very difficult and time
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consuming task. Using the functionality of dolfin-adjoint [45], we have been able to in-
vestigate other functionals than the energy dissipation functional in a fast and easy way. In
few lines of code, we have computed the topolgical gradient numerically, based on the for-
ward solution of the Navier-Stokes-Darcy system. The core of the implementation using
dolfin-adjoint is listed in Appendix A.4.

The IPCS solver has been verified numerically on Taylor-Green flow and a problem with
manufactured solution in Chapter 6, showing convergence of 2nd order in space and 1st or-
der in time. For high values of the kinematic viscosity in problems with Dirichlet boundary
conditions, an erroneous boundary layer was discovered. This was diminished by lower-
ing the time step size sufficiently. The gradient computed using dolfin-adjoint has been
compared to the topolgical derivative, showing some dissimilarities, but a convergence in
space of order 1/2. The optimization algorithm has been applied and compared to exam-
ples in other publications on topology optimization for unsteady flow [12, 24], showing
similar results.

The optimization algorithm has been applied to a coronary artery bypass anastomosis in
Section 7.3 in order to optimize the bypass shape with respect to energy dissipation or
vorticity. This has been done for two different models of the bypass, and the optimal
shapes are very similar. A differently shaped channel was detected for lower Reynolds
numbers, which indicates that a simplified model with respect to length scales should be
avoided in order to get reliable results. An additional small channel close to the occlusion
is observed in the optimal shapes, but little fluid flow is detected through it. This is due to
a weakness in the algorithm. Apart from this erroneousness, in conclusion the topological
optimization algorithm seems to handle the biomedical fluid flow problem adequately.

8.2 Further Work

The further work of this thesis should include applying the optimization method to the
bypass problem with higher Reynolds number, as the highest number in this thesis was
Re = 175. In the literature [1, 8, 9, 10], a Reynolds number of order 103 is suggested.
In addition a longer model for the bypass problem should be tested, in order to find the
dependency in optimal shape with respect to the length of the design domain. Also, a
more detailed model, with for instance removal of some of the domain above the coronary
artery could be implemented, correcting the opening close to the occlusion. Due to time
constraints, this was not carried out in this thesis.

Another interesting topic would be to extend the model to 3D, and investigate techniques
for reducing the computational costs. Implementation in three dimensions is generally
not a trivial case, as one has to code in parallel and handle the large amount of data.
Not all models require three-dimensional simulations to give useful information about the
problem. However, for realistic simulations of blood flow, a three-dimensional model is
necessary. An extension to three dimensions would also enable the topology optimization
method for other problems where a more realistic model is required. As the mathematics
in this thesis are dimension-independent, only the implementation has to be extended.
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It would also be interesting to further investigate the difference between the gradient com-
puted using dolfin-adjoint and the topolgical derivative, and what this is caused by, as they
differed more than was expected. For instance, one could look at the solution with a very
fine grid, as the numerically computed gradient should approach the analytical when the
space step size becomes small. One could also apply the numerical gradient to the double-
pipe problem in Section 7.1 and compare the solution to the optimal shape and functional
evolvement computed with the topological derivative.
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Appendix A
Numerical Implementation

A.1 Navier-Stokes-Darcy Solver

from dolfin import *

class NSDSolver:

def __init__(self, problem):
self.mesh = problem.mesh
self.boundaries = problem.boundaries
self.T = problem.T
self.dt = problem.dt

def solve_IPCS(self, psi):

# Function spaces
V = VectorFunctionSpace(self.mesh, "CG", 2)
Q = FunctionSpace(self.mesh, "CG", 1)

ds = Measure("ds")(subdomain_data=self.boundaries)
n = FacetNormal(self.mesh)

# Define trial and test functions
u = TrialFunction(V)
p = TrialFunction(Q)
v = TestFunction(V)
q = TestFunction(Q)

u0 = Function(V, name=’u0’)
u1 = Function(V, name=’u1’)
p0 = Function(Q, name=’p0’)
p1 = Function(Q, name=’p1’)

k = Constant(self.dt)
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# Tentative velocity step
F1 = (1. / k) * inner(u - u0, v) * dx \

+ inner(grad(u0) * u0, v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ inner(grad(p0), v) * dx \
+ alpha(psi) * inner(u, v) * dx \
- nu * inner(dot(n, nabla_grad(u)), v) * ds(3) \
+ inner(p0 * n, v) * ds(3)

a1 = lhs(F1)
L1 = rhs(F1)

# Pressure update
a2 = inner(grad(p), grad(q)) * dx
L2 = inner(grad(p0), grad(q)) * dx \

- ((1. / k) + alpha(psi)) * div(u1) * q * dx

# Velocity update
a3 = (1. / k + alpha(psi)) * inner(u, v) * dx
L3 = (1. / k + alpha(psi)) * inner(u1, v) * dx \

- inner(grad(p1 - p0), v) * dx

# Assemble system
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

b1 = None
b2 = None
b3 = None

t = 0.0

# Save forward solution
u_list = []

while t < self.T:
bcu, bcp = problem.boundary_conditions(V, Q, t)
t += self.dt

# Tentative velocity
b1 = assemble(L1, tensor=b1)
[bc.apply(A1, b1) for bc in bcu]
solve(A1, u1.vector(), b1)

# Pressure correction
b2 = assemble(L2, tensor=b2)
[bc.apply(A2, b2) for bc in bcp]
solve(A2, p1.vector(), b2)

# Velocity update
b3 = assemble(L3, tensor=b3)
[bc.apply(A3, b3) for bc in bcu]
solve(A3, u1.vector(), b3)

# Ensure deep copy:
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u_temp = Function(V)
u_temp.assign(u1)
u_list.append(u_temp)

u0.assign(u1)
p0.assign(p1)

return u_list

A.2 Adjoint Solver

from dolfin import *

class AdjointSolver:

def __init__(self, problem):
self.mesh = problem.mesh
self.boundaries = problem.adjoint_boundaries
self.T = problem.T
self.dt = problem.dt

def solve_coupled(self, psi, u_list):

# psi is the level set function
# u_list contains forward solution

# Adjoint coupled:
P2 = VectorElement(’P’, ’triangle’, 2)
P1 = FiniteElement(’P’, ’triangle’, 1)
TH = P2 * P1
W = FunctionSpace(self.mesh, TH)

ds = Measure("ds")(subdomain_data=self.boundaries)
n = FacetNormal(self.mesh)

(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
w = Function(W)
(ua, pa) = split(w)

# in order to assign w.sub(0) to u_a
V = VectorFunctionSpace(self.mesh, "CG", 2)
assigner = FunctionAssigner(V, W.sub(0))

# Adjoint system with Neumann boundary conditions
F_a = (1. / k) * inner(u - ua, v) * dx \

- inner(dot(grad(u), u0), v) * dx \
- inner(dot(u0, grad(u)), v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ alpha(psi) * inner(u, v) * dx \
- div(u) * q * dx - div(v) * p * dx \
- 2 * nu * inner(grad(u0), grad(v)) * dx \
- 2 * alpha(psi) * inner(u0, v) * dx \
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- inner(p * n, v) * ds(3) \
+ nu * inner(dot(n, grad(u)), v) * ds(3) \
+ inner(dot(u0, u) * n, v) * ds(3) \
+ inner(dot(u0, n) * u, v) * ds(3)

a = lhs(F_a)
L = rhs(F_a)

# save adjoint solution
ua_list = []

# Constant Dirichlet boundary conditions
bcu = problem.adjoint_boundary_conditions(V)

k = Constant(self.dt)
t = self.T

for u0 in reversed(u_list):
t -= self.dt

problem = LinearVariationalProblem(a, L, w, bcu)
solver = LinearVariationalSolver(problem)
solver.solve()
(ua, pa) = split(w)

# ensure deep copy
u_a = Function(V)
assigner.assign(u_a, w.sub(0))
ua_list.append(u_a)

# return reversed ua_list such that it has the same ordering
# as u_list
return ua_list[::-1]

A.3 Gradient-Based Method

from dolfin import *

class GradientMethod:

def __init__(self, problem):
self.problem = problem
self.V0 = FunctionSpace(problem.mesh, "CG", 1)
self.PSI = "-1"
self.n_max = 20
self.tol_theta = 0.01
self.tol_kappa = 0.001

def functional(self, psi, u_list):
J = 0.0
N = len(u_list)
for u in u_list:

J += problem.dt * assemble(alpha(psi) * inner(u, u) * dx
+ nu * inner(grad(u), grad(u)) * dx)

J += assemble(self.beta * fluid_domain(psi) * dx)
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return J

def gradient(self, g, u_, ua_):
N = len(u_)
g.vector().zero()
for i in range(N):

u = u_[i]
ua = ua_[i]
direction = - (ALPHA_U - ALPHA_L) * inner(u, u - ua)
g_temp = project(direction + self.beta, self.V0)
g.vector().axpy(1./N, g_temp.vector())

def angle(self, g, psi):
dot_prod = assemble(dot(g, psi) * dx)
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi, psi) * dx))
return acos(dot_prod / (nrm_g * nrm_psi))

def new_psi(self, psi, kappa, theta, psi_ref, g):
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
k1 = sin((1 - kappa) * theta) / (sin(theta) * nrm_psi)
k2 = sin(kappa * theta) / (sin(theta) * nrm_g)
psi.vector().zero()
psi.vector().axpy(k1, psi_ref.vector())
psi.vector().axpy(k2, g.vector())

def run_gradient_method(self):

kappa = 1.0

# Design parameter
psi_ref = project(Expression(self.PSI, degree=1), self.V0)
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
psi = project(Expression(self.PSI) / nrm_psi, self.V0)
g = Function(self.V0)

NSD = NSDSolver(self.problem)
adjoint = AdjointSolver(self.problem)

u_list = NSD.solve_IPCS(psi)
ua_list = adjoint.solve_coupled(psi, u_list)

J = self.functional(psi, u_list)

# Iterate until convergence
for n in range(self.n_max):

print "Iteration #: " + str(n+1)

self.gradient(g, u_list, ua_list)
theta = self.angle(g, psi)
if theta < self.tol_theta:

print "Theta smaller that tolerance!"
break

kappa = min(1.0, kappa*1.5)
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# Store old psi and update new psi
psi_ref.assign(psi)
self.new_psi(psi, kappa, theta, psi_ref, g)

# Solve forward and adjoint system
u_list = NSD.solve_IPCS(psi)
ua_list = adjoint.solve_coupled(psi, u_list)

# calculate new functional
J_new = self.functional(psi, u_list)

# Line search
while J_new > J and kappa > self.tol_kappa:

# Did not find smaller J, decreasing kappa."
kappa = kappa*0.5

# Update psi and calculate new J
self.new_psi(psi, kappa, theta, psi_ref, g)
u_list = NSD.solve_IPCS(psi)
J_new = self.functional(psi, u_list)

if J_new < J:
J = J_new

else:
# Did not find smaller J, terminating
return psi, J

return psi, J

A.4 Implementation with dolfin-adjoint

from dolfin import *
from dolfin_adjoint import *

class NSDsolver:

def __init__(self, problem):
self.problem = problem
self.mesh = problem.mesh
self.boundaries = problem.boundaries

def solve(self, psi):

adj_reset()
timestep = problem.dt

# Function spaces
V = VectorFunctionSpace(self.mesh, "CG", 2)
Q = FunctionSpace(self.mesh, "CG", 1)

ds = Measure("ds")(subdomain_data=self.boundaries)
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n = FacetNormal(self.mesh)

# Initial velocity and pressure
u0, p0 = problem.initial_values()

# Declare velocity functions
u = Function(V, name="u")
v = TestFunction(V)

# Weak form for tentative velocity
F1 = (1./timestep) * inner(u - u0, v) * dx \

+ inner(grad(u) * u0, v) * dx \
+ nu * inner(grad(u), grad(v)) * dx \
+ alpha(psi) * inner(u, v) * dx \
+ inner(grad(p0), v) * dx \
- nu * inner(dot(n, nabla_grad(u)), v) * ds(2) \
+ inner(p0 * n, v) * ds(2)

# Declare pressure functions
p = Function(Q, name="p")
q = TestFunction(Q)

# Pressure correction weak form
F2 = inner(grad(p - p0), grad(q)) * dx \

+ (1. / timestep) * div(u0) * q * dx

# Velocity update weak form
F3 = (1./timestep)*inner(u - u0, v) * dx \

+ inner(grad(p - p0), v) * dx

t = 0.0
psi_tmp = psi.copy(deepcopy=True)

adj_time = True
annotate = True
adj_start_timestep()

while t < problem.T:

# u and p are trial functions
# u0 and p0 are newest value

# Boundary conditions, Pousille flow at inlet
bcu, bcp = problem.boundary_conditions(V, Q, t)

solve(F1 == 0, u, bcu)
u0.assign(u, annotate=annotate)
solve(F2 == 0, p, bcp)
solve(F3 == 0, u, bcu)

psi.assign(psi_tmp, annotate=annotate)
u0.assign(u, annotate=annotate)
p0.assign(p, annotate=annotate)

# plot(u0, interactive=True)
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t += float(timestep)
if adj_time:

adj_inc_timestep(t, t > problem.T)

# dolfin-adjoint only needs the last solution of u and p
return u0, p0

class GradientMethod:
def __init__(self, problem):

self.problem = problem
self.mesh = problem.mesh
self.boundaries = problem.boundaries
self.V0 = FunctionSpace(self.mesh, "CG", 1)
self.PSI = "-1"
self.n_max = 20
self.kappa_tol = 0.001

def new_psi(self, kappa, psi, g):

dot_prod = assemble(dot(g, psi) * dx)
nrm_g = sqrt(assemble(dot(g, g) * dx))
nrm_psi = sqrt(assemble(dot(psi, psi) * dx))

theta = acos(dot_prod / (nrm_g * nrm_psi))
k1 = sin((1 - kappa) * theta) / (sin(theta) * nrm_psi)
k2 = sin(kappa * theta) / (sin(theta) * nrm_g)

psi = project(k1 * psi - k2 * g, self.V0, annotate=False)
return psi

def run_gradient_method(self):

ds = Measure("ds")(subdomain_data=self.boundaries)
kappa = 0.5

# Design parameter
psi_ref = project(Expression(self.PSI, degree=1), self.V0)
nrm_psi = sqrt(assemble(dot(psi_ref, psi_ref) * dx))
psi = project(Expression(self.PSI, degree=2) / nrm_psi,

self.V0, annotate=True)

# Initialize problem and Navier-Stokes-Darcy solver
nsd = NSDsolver(self.problem)
u, p = nsd.solve(psi)

# Dolfin-adjoint functional
J = Functional((p * ds(1) - 3. * p * ds(2)) * dt

+ beta * fluid_domain(psi) * dx * dt)

for i in range(self.n_max):
print "\nIteration #" + str(i+1)

g = compute_gradient(J, Control(psi), forget=False)
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# Store old values of J and psi:
Jm = ReducedFunctional(J, Control(psi))
J_old = Jm(psi)
psi_ref.assign(psi)

# Update psi and calculate new J
kappa = min(0.5, kappa * 1.5)
psi = self.new_psi(kappa, psi_ref, g)
u, p = nsd.solve(psi)

J = Functional((p * ds(1) - 3. * p * ds(2)) * dt
+ beta * fluid_domain(psi) * dx * dt)

Jm = ReducedFunctional(J, Control(psi))

return psi, J
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