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Abstract 

The construction of a suspension bridge with floating pylons or a submerged floating tunnel 

requires the installation of a mooring system. The option of taut vertical tethers, similar to 

those used in tension-leg platforms, has been suggested in preliminary designs. The 

environmental loading on the tether, mainly due to wind waves and swell, results in a 

parametrically excited system. Certain loading conditions develop instabilities that translate 

into large horizontal motion. However, the effects of parametric resonance on the tension 

values have rarely been investigated. This paper aims to clarify the relation between lateral 

displacement and tether tension and to quantify the extreme tension values in the event of 

parametric resonance. The presented analysis is based on a full numerical model of the tether 

that includes geometric and hydrodynamic nonlinear effects. This model is used to 

investigate a representative example that illustrates parametric resonance and multiple 

parametric studies to assess the effects of the excitation frequency, amplitude, initial 

pretension, tether length and inclination angle on the tether’s response. The results reported 

here provide the basis for a recommendation on designing a tether under parametric 

resonance regarding the ultimate extreme values and fatigue life. 
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1. Introduction 

 

The National Roads Authority (NRA) in Norway is planning to cross several fjords along the 

west coast of the country as part of the “Ferry-free E39” project [1]. These crossings are 

characterized by large widths (up to 5 km) and depths (up to 1 km) that require 

unconventional engineering solutions. The preliminary designs suggest the construction of 

floating suspension bridges and submerged floating tunnels, as illustrated in Figure 1. A 

floating bridge is not a new idea and several examples can be found worldwide [2]. However, 

no precedent exists of a suspension bridge with multiple floating towers. A submerged 

floating tunnel is a structural concept that has been considered several times during the last 

century [3]; this tunnel essentially consists of a watertight buoyant tube at a certain depth 

underwater. To date, no such structure has ever been built. Both a long floating bridge and a 

submerged floating tunnel require a mooring system (Figure 1) to position these floating 

structures and to resist any imposed motion due to environmental loading. Since these 

structures would be located near the end of the fjord next to the sea, they would be exposed to 

sea states with wind waves and swell. In particular, swells have a long period and can last for 

several hours with effects that decrease linearly with water depth. There are concerns that 
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these environmental loads can parametrically excite the tethers of the mooring system, 

leading to parametric resonance or Mathieu instability. 

 

a) b) 

 

 

Figure 1: a) Floating cable-stayed bridge (Source: The Norwegian Public Roads 

Administration; https://flic.kr/p/pcgEt3); b) Submerged floating tunnel (Source: Snøhetta; 

https://flic.kr/p/yGeftB) 
 

The taut mooring systems proposed in Figure 1 are similar to those used in Tension-Leg 

Platforms (TLP), which are usually made of steel tubes [4]. These tension pipes or tethers are 

designed to avoid slack cable configurations while also considering the peak and fatigue 

loading conditions [5]. As a result, these tethers have high pretension levels, zero net 

buoyancy and such massive dimensions that they cannot be considered to be compliant in the 

axial direction [4]. The environmental loads on the bridge towers or the submerged tunnel 

lead to varying tension levels and imposed motions on the tether that define a parametrically 

excited system. 

 

A tether excited by harmonically varying imposed displacements of one of its ends is a 

parametrically excited system. Under certain conditions, parametric excitation leads to 

parametric resonance, which is an unstable situation that produces excessive lateral motion. 

The principal parametric resonance occurs when the frequency of the upper support motion is 

twice the fundamental frequency of the tether, i.e., a 2:1 frequency ratio. However, there are 

many more frequencies that induce instability in the system. Reasonably small amplitudes of 

anchorage oscillations may lead to important steady-state tether responses [6,7]. Furthermore, 

the greater the amplitude of the support motion is, the more frequencies there are that lead to 

unstable motion. Parametric excitation has been extensively studied in the field of differential 

equations and dynamic systems [8] and is generally described by the nonlinear Mathieu 

equation, where the excitation appears as time-varying coefficients. In bridge engineering, 

this phenomenon has been theoretically studied [6], investigated in laboratory experiments 

[7] and examined in cable-stayed bridges [9] where girder or mast oscillations have 

parametrically excited the stay cables. 
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The response of a submerged tether differs significantly to that of a dry tether because of the 

influence of hydrodynamic drag, which is the most important nonlinear contribution [10] and 

acts as an additional line damping component. Moreover, it has been shown [11,12] that the 

out-of-plane motion can be neglected when calculating the response of submerged slender 

structures. For a tether in an unstable condition, the quadratic fluid damping force limits the 

amplitude of the lateral motion [13]. An example of instability analysis for TLP tethers is 

given in [14]. Reference [15] derives an approximate analytical expression of tether 

displacements including hydrodynamic effects for principal parametric resonance. Additional 

literature reviews of the instabilities of risers and immersed slender structures can be found in 

[16,17]. 

 

The majority of the publications that have studied the parametric excitation of cables (either 

dry or submerged) mainly focus on lateral motion. As indicated in [18], tension has been 

overlooked in many studies. However, displacement is not the most important load effect. In 

fact, tension and stress values are of greater relevance when designing a taut mooring line. 

Some publications have specifically investigated tension to some extent. For example, 

reference [6] numerically shows how tension values develop on a dry cable during parametric 

excitation. In addition, [19] studies numerically tension using an experimentally validated 

model, while [18] shows that to achieve correct tension values, the model must account for 

spatiotemporal variations of tension along the cable. Moreover, [20] shows that the difference 

in magnitude (in spatial distribution) between the maximum and minimum tensions increases 

for a cable with significant sag. Furthermore, [21] concludes that the increase in pretension is 

ultimately equivalent to the increase in damping. In addition, [22] includes tension in the 

numerical analysis and states the need for understanding the impacts of parametric excitation. 

In [12], the dynamic tension values are measured for a submerged cable with sag in a scaled 

laboratory experiment, and recommendations are provided for the scaling and the support’s 

boundary conditions. Other examples in the literature study the cable tension, but they do not 

consider the particular case of parametric excitation. For instance, [23] derives an 

approximate analytical expression of dynamic cable tension, and [24] obtains an analytical 

approximation of the probability distribution of the dynamic tension envelope for a random 

sea state. Therefore, even though some investigations have considered tether tension, 

additional studies are needed to characterize parametrically excited taut mooring systems. 

 

Correct tether design should include the fatigue limit state [25] to avoid failure due to crack 

growth initiated from a welded joint in the tether. Detailed fatigue design recommendations 

can be found in [26]. The magnitude of the stress cycle and the number of load cycles are the 

key parameters that determine the accumulated fatigue damage of the studied member. 

However, based on the studies published to date, it is not possible to assess correctly the 

stress values of a taut mooring line with parametric resonance or its effects on the tether’s 

fatigue life. The total stress in a tether is the combined result of several load effects, namely 

the axial load, bending moments and hydrostatic pressures. In most parts of the tether’s 

length, the main contributor to the stress is the total (static + dynamic) tension, whereas 

bending moment has only a marginal effect [25]. On the other hand, bending moments can be 

very important near the tether ends. It is important to note, that this study does not evaluate 

all the aspects required for the design of a tether. The scope of this study is limited to the 

study of tension. 

 

Therefore, the goal of this paper is to provide a clear description of parametric excitation on 

taut mooring lines with an emphasis on tension values; additionally, special attention is given 
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to extreme tether tension values. Very high cable tension could produce tether breakage, 

while very small or no tether tension could result in a momentarily slack member, which 

might induce large impulse forces on the moored structure when the cable becomes a taut line 

again. Moreover, a better understanding of the difference between the maximum and the 

minimum tension will allow us to suggest appropriate design procedures with respect to the 

tether’s fatigue life. This paper also aims to clarify the relation between lateral displacement 

and tether tension in the event of parametric resonance. The presented analysis is based on a 

full numerical model of the tether that includes geometric and hydrodynamic nonlinear 

effects, which are difficult to include in an analytical study. In addition, realistic tether 

properties are used that are taken from preliminary designs of floating bridges and submerged 

floating tunnels. 

 

The rest of the document starts with a description of the numerical model used in the study in 

Section 2. Then, based on the results from an example with a 2:1 frequency ratio, Section 3 

clearly presents how parametric excitation originates and provides important comments on 

several aspects of the problem. Next (Section 4), a stability analysis for a wide range of 

frequency ratios and amplitudes is performed in terms of lateral displacements, total tension 

values and fatigue life calculations. The last section (Section 5) is a parametric study on three 

of the main design variables, namely, initial pretension, tether length and inclination angle. 

 

2. Numerical model 

 

Each tether of a mooring system can be modelled as a submerged beam. In addition, the wave 

loading on the bridge towers or the tube of the tunnel depends on the random sea state. 

However, due to the transfer function from wave action to structural movements, this random 

process leads to a narrow banded excitation of the mooring line [13,24]. Thus, the wave-

induced motion is represented as a sinusoidal imposed vertical displacement of the upper 

beam support. Figure 2 shows a schematic representation of the  tether and its support 

motion. Specifically, the numerical model is developed in ABAQUS [27] using 40 beam 

elements (B21) including nonlinear geometric effects. Each element consists of in-plane 

slender beam elements with two nodes and linear interpolation that translates to two degrees 

of freedom per node The type and number of elements was decided based on a convergence 

study (not reported here) that ensured accuracy and stability of the numerical results. Since 

large deformations are expected in the model, equilibrium is formulated in the deformed 

state, i.e. considering nonlinear geometric effects. The same configuration is used throughout 

this study. The contribution of the hydrodynamic effects (drag and added mass) is represented 

by the Morison equation using the Aqua toolbox in ABAQUS. A beam of total length L is 

assumed to have an initial pretension 𝑇0 and supports that are free to rotate (pin), while the 

upper support also follows a prescribed motion. The fundamental frequency 𝑓1 is calculated 

considering the beam’s self-weight and the added mass contribution of the surrounding water. 

The imposed cyclic motion of the upper support is defined by its amplitude A and frequency 

f. This numerical model is used to calculate the displacement and tension of several points of 

interest along the tether’s length. This analysis in ABAQUS was done with a direct numerical 

integration of the equations of motions, in order to correctly account for the nonlinear effects.  
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Figure 2: Sketch of tether and support motion 

 

The particular tether properties used in this study are listed in Table 1 and are used 

throughout the paper unless otherwise specified in the text. The values in Table 1 correspond 

to those suggested in the preliminary design of the mooring system for the floating bridge and 

submerged tunnel of the Bjørnafjord crossing, which is part of the “Ferry-free E39” project 

[1]. Moreover, similar tether dimensions and pretensions can be found in [14,25,28]. To 

correctly account for the hydrodynamic effects, two important parameters are needed, 

namely, the added mass coefficient 𝐶𝐴 and the drag coefficient 𝐶𝐷. The numerical values of 

these coefficients are listed in Table 1 and they are taken from the recommendations in [29]. 

Furthermore, a small internal damping of only 0.1% is assumed to avoid any spurious 

numerical effects. Mooring system damping is difficult to assess precisely [30], but a higher 

internal damping can be expected. Therefore, the results presented here can be considered 

conservative. In the numerical simulation, 120 loading cycles of the upper support motion are 

computed for every simulated case presented here; this is more than sufficient for developing 

parametric resonance and/or reaching a steady-state situation. The numerical time integration 

of the solution is performed using a sufficiently small time step that gives a minimum 

sampling rate of 100 Hz. The numerical stability and accuracy of the solution was assessed in 

a preliminary convergence study that is not shown here. 

 

Table 1: Tether properties 

Description Symbol Value Unit 

Length L 400 m 

Young’s modulus E 2.1·10
11 

N/m
2 

Diameter D 1.119 m 

Thickness h 38 mm 

Density 𝛿 7800 kg/m
3 

Initial pretension 𝑇0 18.5·10
6
 N 

Inclination angle 𝛼 90 degrees 

Fundamental frequency 𝑓1 0.1299 Hz 

2
nd

 frequency 𝑓2 0.2648 Hz 

3
rd

 frequency 𝑓3 0.4096 Hz 

Added mass coefficient 𝐶𝐴 1 - 

Drag coefficient 𝐶𝐷 1.5 - 
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3. Tension during parametric excitation 

 

This section aims to clarify what parametric excitation is based on a particular example that 

features a frequency ratio (support motion frequency f to tether’s fundamental 𝑓1) of 2:1. 

Special attention is given to the tension values and their relation with the lateral 

displacements of the tether. The numerical model presented in Section 2 is computed for the 

tether with the properties listed in Table 1. The results from the example considered in this 

section are dissected to examine different aspects of the problem in detail, which are each 

presented in a different subsection. First, the influence of hydrodynamic effects is assessed by 

comparing the response of a dry tether to a submerged tether. Then, the parametric excitation 

phenomenology is explained graphically, providing clear insight into why instability occurs. 

In addition, the following subsections discuss the spatial distribution of the tension values, 

how to define a stability criterion and the definition of dynamic factors to assess the 

magnitude of extreme tension values. 

 

3.1 Dry tether 

 

A tether modelled as a linear system and parametrically excited at a critical frequency has an 

unbounded solution. The result is the classic parametric resonance of the linear Mathieu 

equation featuring exponential growth. In a truly linear system, the amplitude increases until 

the system is destroyed [8]. However, real physical systems do not exhibit unbounded 

responses. By including the nonlinear effects, a more realistic model is obtained. During 

parametric resonance, the nonlinearities limit the oscillation amplitudes. Therefore, the tether 

is modelled to include nonlinear geometric effects. Figure 3a shows the time-history of the 

mid-span lateral displacements, which exhibit exponential growth over time until a certain 

maximum (or minimum) value is reached. Then, the displacements decay and repeat the 

exponential growth again. For this particular example, the maximum displacement is 4.47 m, 

while the amplitude of the upper support motion is only 0.10 m. This beating-like behaviour 

during parametric resonance is also reported in [6,15,20]. 
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a) 

 
b) 

 
Figure 3: Dry tether response at the mid-span for a 2:1 frequency ratio: a) Horizontal 

displacement; b) Total tension (red lines = outer envelopes to response) 

 

Intuition suggests that the internal tether tension should have a similar evolution over time or 

should at least feature some extreme values at the same times as those reported for the 

displacements in Figure 3a; however, this is not the case. Figure 3b shows the time-history of 

the total tension at the upper support. Before instability is triggered, the tension values 

oscillate according to the imposed motion of the support. After parametric resonance has 

started, both the maximum tension values and the minimum tension values increase. 

Moreover, the difference between the tension extremes is lowest exactly when the maximum 

displacements occur. This counterintuitive behaviour of the tension was also reported in [6] 

and explained as the synchronous compensation of the tension oscillations by the support 

motions. 

 

3.2 Submerged tether 

 

As mentioned in the introduction, the hydrodynamic effects are the greatest contributors to 

the damping of the system. Parametric resonance of the submerged tether can still occur, but 

the displacement and tension responses differ significantly. The time-history response of the 

lateral displacement is given in Figure 4a, which also includes the hydrodynamic effects. The 

figure shows that the lateral displacement of the tether starts to increase rapidly after 100 s of 

excitation and reaches steady-state conditions after 220 s. This increase is mainly limited by 

the dissipative effects of the hydrodynamic contributions. The extreme lateral displacement 

values at mid-span are indicated by the labels 𝑢𝑥,𝑚𝑎𝑥
𝑚𝑖𝑑  and 𝑢𝑥,𝑚𝑖𝑛

𝑚𝑖𝑑 . For reference, the figure 

shows the amplitude of the vertical motion (±0.1 m) of the upper support in dashed black 
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lines; in addition, the envelopes of the time series are indicated with a solid red line. 

Parametric resonance plays an important role in the rapid growth. However, compared to the 

dry tether example (Section 3.1), the extreme displacements only reach 0.55 m, and more 

interestingly, no beating phenomenon is observed. These differences between dry tether 

(Figure 3a) and submerged tether (Figure 4a) can only be attributed to the additional damping 

of the hydrodynamic effects. 

 

a) 

 
b) 

 

c) 

 

d) 

 
Figure 4: Submerged tether response at the mid-span for a 2:1 frequency ratio: a) Horizontal 

displacement; b) Total tension; c) Zoomed view near 𝑇𝑚𝑎𝑥; d) Zoomed view near 𝑇𝑚𝑖𝑛 (red 

lines = outer envelopes to response) 
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Figure 4b presents the total tension of the submerged tether at the mid-span; this figure shows 

that the tension values are barely affected by the parametric resonance. For reference, the 

initial tether tension 𝑇0 is indicated in the figure. The horizontal dashed black lines labelled 

𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

 and 𝑇𝑚𝑖𝑛
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

 reveal the extreme quasi-static tension values expected due to 

the imposed cyclic motion (𝐴 = 0.1 𝑚). While the system response is stable (𝑡 < 100 𝑠), the 

tension values oscillate following the expected quasi-static response due to the imposed 

motion. However, when parametric resonance starts, only a small change can be observed. 

Then, the maximum tension values slowly increase to 𝑇𝑚𝑎𝑥, which is only slightly greater 

than 𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

 (Figure 4c). On the other hand, the minimum tension value 𝑇𝑚𝑖𝑛 occurs at 

the beginning of the time series because the minimum tension values actually increase over 

time, even if only marginally (Figure 4d). Therefore, the effect of parametric excitation on 

the dynamic tension is very small. This result is somewhat counterintuitive: a situation that 

has large lateral motion (Figure 4a) features only very small dynamic tension effects 

(Figure 4b). This can be explained analysing the lateral displacement response. Even though 

the parametric resonance has been triggered, the steady-state response features constant 

amplitude due to the energy dissipation effects of the hydrodynamic contribution. In addition, 

this amplitude is an order of magnitude smaller for the submerged tether (Figure 4a), 

compared to the dry example in Figure 3a. These smaller and stationary lateral motions are 

not big enough to induce significant changes in the tension variation compared to the quasi-

static response (Figure 4b). 

 

3.3 Phenomenology 

 

To better understand parametric excitation, the response of the tether can be illustrated using 

a 3D graphical representation. The time-histories of the horizontal displacement at mid-span 

(𝑢𝑥
𝑚𝑖𝑑) and the vertical motion at the upper support (𝑢𝑦

𝑢𝑝𝑝𝑒𝑟
) are plotted together in Figure 5 

for the 2:1 frequency ratio example. Both displacements are presented at the same scale to 

clearly visualize the large magnification observed during parametric resonance. Here, the 

colour code is proportional to the system’s energy content, where blue values indicate low 

energy levels and red values indicate high energy levels. Figure 5 shows only the part of the 

response that has a rapid growth due to parametric instability. First, due to the boundary 

condition motion, only vertical displacements with small energy values are observed. 

However, as soon as the parametric resonance is triggered, the horizontal displacements 

quickly increase to several times greater than the imposed vertical motion. While the vertical 

motion ranges between ±0.1 m, the lateral displacement ranges between ±0.5 m. 

 

 
Figure 5: 3D plot of the tether response at the mid-span 

 



11 

The physical explanation of why the lateral displacements of the tether increase so much is 

illustrated in Figure 6. The figure shows several instances (A-E) of one full cycle of the 

tether’s lateral motion. Because of the 2:1 frequency ratio, during a single cycle, the upper 

support moves vertically two full cycles. Every time that the tether is fully bent and is 

returning to its static equilibrium position (instances A, C and, E in Figure 6), the upper 

support is moving upwards. This positive vertical movement makes the tether move faster. 

For every repetition of this cycle, the imposed motion adds more energy to the system until it 

eventually becomes unstable. Section 4 shows that other frequency ratios can also lead to 

unstable responses, and that the instability mechanism for those cases is similar to the one 

presented in Figure 6. However, the 2:1 frequency ratio provides the most intuitive example 

and reaches instability more quickly (requires fewer cycles); therefore, this example is 

generally called principal parametric resonance. 

 

 
Figure 6: Multiple instances of one full cycle of tether lateral displacement for the 2:1 

frequency ratio (blue lines = tether lateral deformation; black dashed lines = static 

equilibrium position; black horizontal arrow = direction of movement; and red vertical arrow 

= imposed vertical motion) 

 

3.4 Spatial distribution 

 

Because of the contribution of higher modes of vibration, it can be argued that extreme load 

effects can be found anywhere along the tether. Generally, the maximum lateral displacement 

occurs at the mid-span, but this is not necessarily always the case. For instance, an ideal 

situation that excites only the 2
nd

 mode of the tether would lead to maximum motion at the 

quarter-span, while the mid-span section featured no lateral vibration. For this reason, every 

simulation in this study calculates the response of several points of interest along the tether 

length. The conclusions are based on the simultaneous analysis of multiple locations, thus 

including the effects of higher vibration modes. 

 

As noted in the introduction, to correctly evaluate the total tension, it is important to consider 

its spatial distribution along the tether, as verified by the results obtained for the 2:1 

frequency ratio example. The tension time-histories for all the elements in the model are 

extracted, and Figure 7 shows the instantaneous maximum and minimum tension values 
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along the tether in two separate curves. In other words, Figure 7 shows the envelope of 

maximum and minimum tension along the tether. At the beginning of the simulation 

(Figure 7a), some differences exist between the extreme values during the initial transient 

vibration phase because the sudden application of the imposed motion at the upper support 

produces additional vibrations that travel as compressive waves but vanish rapidly. In the 

remaining duration of the example, the maximum and minimum tension values anywhere 

along the tether are practically identical. This is also true when parametric resonance occurs 

and the system has reached its steady-state response (Figure 7b). This indicates that tension is 

constant along the tether length at any given time instant. Nevertheless, in subsequent 

simulations, a range of selected points of interest along the tether length is examined, similar 

to the lateral displacement. 

 

a) b) 

  
Figure 7: Instantaneous maximum and minimum tension along the tether during: a) Initial 

transient vibration; b) Parametric resonance 

 

3.5 Stability criteria 

 

In parametric excitation studies, identifying when the system is unstable or has reached 

parametric resonance is of paramount importance. In theoretical studies that work directly on 

a mathematical description of the problem, instability can be defined as a mathematical 

condition [8]. However, when dealing with measurements or, as in this study, with simulated 

results, it is not trivial to clearly flag instability, and procedures to do so are generally not 

well documented. One possibility is using the Lyapunov exponents [31], as reported in [32] 

and [33]; however, in practice, this is not without problems and it can be computationally 

time consuming. Therefore, this study uses a ratio based on the Root Mean Square (RMS) 

values of the response. For instance, the horizontal displacement response of the tether in 

Figure 4a corresponds to an unstable situation. A convenient way to identify instability is by 

comparing the RMS (proportional to the energy content) of the signal to the RMS of the first 

few cycles. Ratios close to one indicate that the dynamic behaviour has not changed 

considerable and that the response is stable. However, as the RMS ratio increases, the system 

can be considered unstable. This definition of stability in relative terms allows us to easily 

apply the criterion to any point along the tether without previous knowledge of its expected 

stable behaviour. Here, the stability criterion is defined for a RMS ratio > 1.1 to allow for 
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small spurious increases that do not correspond to instability. For the particular case shown in 

Figure 4a, comparing the last four cycles to the first four cycles of the response gives a ratio 

of 10.73. 

 

3.6 Extremes evaluation 

 

To characterize the effects of parametric resonance on the total tension values of the tether, it 

is necessary to quantify both extremes, i.e., maximum and minimum tension values, which 

are convenient to analyse in terms of dynamic factors. Here, we introduce the Dynamic 

Amplification Factor (DAF) and the Dynamic Reduction Factor (DRF), which are defined in 

Eq. (1) and Eq. (2) respectively using the notation presented in Figure 4b. In essence, these 

factors are the normalizations of the dynamic tension increments with respect to the quasi-

static tension increments due to the imposed upper support motions. For the particular case 

shown in Figure 4b, DAF is 1.0094, which means that the quasi-static increment 

Δ𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

 has to be increased by only 0.94% to account for the dynamic effects. On the 

other hand, DRF is 0.9923, which is equivalent to decreasing Δ𝑇𝑚𝑖𝑛
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

 by 0.77%. 

Values of DRF that are less than one indicate that the total minimum tension is larger than the 

quasi-static minimum, as shown in Figure 4b. 

 

𝐷𝐴𝐹 =
Δ𝑇𝑚𝑎𝑥

Δ𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

=
𝑇𝑚𝑎𝑥 − 𝑇0

𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑇0

 Eq. (1) 

 

𝐷𝑅𝐹 =
Δ𝑇𝑚𝑖𝑛

Δ𝑇𝑚𝑖𝑛
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐

=
𝑇𝑚𝑖𝑛 − 𝑇0

𝑇𝑚𝑖𝑛
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑇0

 Eq. (2) 

 

4. Stability study and fatigue 

 

So far, this paper has presented results for a particular example where the imposed support 

motion has a 2:1 frequency ratio and a specific amplitude (0.1 m). However, in addition to 

occurring for multiple frequency ratios, parametric resonance is also strongly dependent on 

the amplitude of the imposed motion. Therefore, this section performs stability analysis for a 

wide range of frequency ratios (𝑓/𝑓1) and amplitudes (A) of the upper support motion. In 

particular, the frequency ratio is varied in a discrete space from 0.25 to 3.5 in increments of 

0.05, while the amplitude varies from 0.005 m to 0.1 m in 0.005 m increments, providing a 

total of 1320 simulated cases. The stability is studied first in terms of lateral displacement, 

then it is compared to the results of tether tension and finally the consequences on fatigue life 

calculation are evaluated. 

 

4.1 Lateral displacement 

 

Figure 8a shows the instability diagram based on the lateral displacement of the tether at the 

mid-span. Each of the studied 𝑓/𝑓1 and A combinations is represented as a dot. If the 

particular case renders a stable solution, it is depicted as a small black dot; when the 

combination leads to an unstable result, it is represented by a larger dot. As expected, the 

results clearly feature distinct areas with parametric resonance, which are usually called 

instability tongues. The biggest tongue emanates from the 2:1 frequency ratio and 

corresponds to the principal parametric resonance. In addition, several other tongues 

correspond to other frequency ratios, higher vibration modes and/or a combination of 
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harmonics. Figure 8a also shows the theoretical tongues associated to the Mathieu equation. 

These theoretical instability regions are drawn based on the analytical expressions reported in 

the Appendix. These analytical expressions derive from the theoretical analysis of a taut 

simply supported cable using the harmonic balance method considering two harmonic terms. 

The direct comparison of the numerical and theoretical instability regions shows a good 

agreement. 

 

a) 

 
b) 

 
Figure 8: a) Instability map for numerical results (stable = small dot, unstable = large dot) and 

theoretical instability tongues (see Appendix) associated to tether’s 1
st
 mode (Blue), 2

nd
 mode 

(Green) and 3
rd

 (Red) mode; b) Normalized lateral displacement values 

 

Figure 8a is the standard stability map, which is also called a Strut diagram. This map allows 

us to clearly identify the instability regions of the problem. However, it is difficult to assess 

the relative importance of each of the tongues. In theory, for infinitely long excitations, all 

unstable cases will reach steady-state and similar extreme displacement values. However, in 

practice, it is interesting to examine the maximum displacements achieved during parametric 

resonance for a finite duration of excitation. Figure 8b shows the maximum lateral 

displacements normalized by the amplitude of the support motion. In all the simulated cases, 

the excitation lasted for 120 cycles. The results clearly show that the 2:1 frequency ratio 

tongue has the highest values, indicating a quicker instability and confirming its importance 

compared to the other tongues. 

 

4.2 Tether tension 
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The effect of tether instability is evaluated in Figure 9 for the extreme tension values in terms 

of the dynamic factors DAF and DRF defined in Section 3.6. There is a clear correlation 

between the instability tongues shown in Figure 8 and the results in Figure 9. However, the 

actual numerical values of the factors are remarkably small. In the case of DAF in Figure 9a, 

the overall maximum value is 1.019, meaning that the maximum total tension (static + 

dynamic) is only 1.9% greater than that in the static case. The results in Figure 9b show that 

the minimum tension in the tether is either equal to or slightly less than the minimum static 

tension. In particular, the absolute minimum DRF value is 0.977, which corresponds to a 

2.3% decrease in the static tension. 

 

a) 

 
b) 

 
Figure 9: Tension dynamic factors: a) DAF; b) DRF 

 

The main conclusion drawn from the results in Figure 9 is that the dynamic tension 

contribution during parametric resonance is very small. It is also interesting to note that 

outside of the instability tongues, the dynamic factors are virtually equal to one. In other 

words, the total tension during stable conditions is the same as the total tension due to quasi-

static loading. Therefore, if the design of a tether is based on a maximum displacement 

criterion, the results in Figure 8 suggest that any possibility of parametric resonance should 

be avoided. However, in reality, a tether is designed with respect to the maximum stress 

levels. According to the results in Figure 9, the extreme tension levels are either close to or 

identical to the tension based on a quasi-static response, indicating that the dynamic effects of 

parametric resonance are very small. Furthermore, this conclusion can be refined when 

directly exploring the consequences on fatigue calculations. 

 

4.3 Fatigue 
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This section evaluates the effect of parametric excitation on the fatigue life calculations of 

tethers by introducing a new factor that facilities this analysis. The main parameter in any 

fatigue calculation is the stress range S; this range is directly proportional to the tension 

increment Δ𝑇, which can be written as: 

 

Δ𝑇 = 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 Eq. (3) 

 

Using the definitions of DAF and DRF given in Eq. (1) and Eq. (2): 

 

Δ𝑇 = 𝐷𝐴𝐹 · Δ𝑇𝑚𝑎𝑥
𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 − 𝐷𝑅𝐹 · Δ𝑇𝑚𝑖𝑛

𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐
 Eq. (4) 

 

In the case of taut tethers, it can generally be assumed that the static tension increment 

(Δ𝑇𝑚𝑎𝑥
𝑆𝑡𝑎𝑡𝑖𝑐) due to positive vertical displacement of the support is of the same magnitude but 

opposite sign as the static tension increment (Δ𝑇𝑚𝑖𝑛
𝑆𝑡𝑎𝑡𝑖𝑐) due to lowering the support motion. 

Thus, representing both tension increments as 
1

2
Δ𝑇𝑆𝑡𝑎𝑡𝑖𝑐, we can rewrite expression Eq. (4) 

as: 

 

Δ𝑇 =
(𝐷𝐴𝐹 + 𝐷𝑅𝐹)

2
· Δ𝑇𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 = 𝐷𝐹 · Δ𝑇𝑄𝑢𝑎𝑠𝑖−𝑆𝑡𝑎𝑡𝑖𝑐 Eq. (5) 

 

Eq. (5) introduces the Dynamic Factor (DF) and can be used to easily determine the total 

tension increment (including static and dynamic effects) by simply factoring the tension 

increment obtained from quasi-static analysis. Moreover, DF is the average of the DAF and 

DRF values. Figure 10 gives the numerical values of this new factor for the same frequency 

ratios and amplitudes studied in the previous subsections. Similarly, the results show the 

presence of multiple instability tongues, and the tongue emerging near the 2:1 frequency ratio 

shows the highest values. In particular, the maximum value in Figure 10 is 1.006, and the 

minimum value is 0.987, which are equivalent to 0.6% and -1.3% changes in the tension 

increment, respectively. The DF values for a given critical frequency ratio (say 2:1) may be 

either negative or positive depending on its excitation frequency with respect to the centre of 

the corresponding instability tongue. Therefore, the stress range S obtained from a quasi-

static analysis should be decreased or increased, effectively increasing or decreasing the 

calculated fatigue life of the member, respectively. However, the DF values are very small 

regardless of their sign, which supports the assertion that it is safe to perform only quasi-

static simulations for the fatigue calculations of a tether. Even if parametric resonance occurs, 

the dynamic effects on tension are sufficiently small to be covered by the general safety 

factors of the design process. 
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Figure 10: Tension Dynamic Factor (DF) 

 

5. Parametric studies 

 

The tether properties used in the previous sections and listed in Table 1 correspond to a 

representative example of the tethers to be used in the construction of a floating bridge and a 

submerged floating tunnel. However, these properties are derived from preliminary designs, 

and some variations can be expected. This section evaluates the influence of three of the main 

design variables faced in the project. In particular, the following subsections investigate the 

effect of the initial pretension, tether length and inclination angle. The studies evaluate their 

influence on system stability and, most importantly, its effect on the total tension. For these 

analyses, the frequency ratio is set to 2:1, and the amplitude A is 0.1 m. The fundamental 

frequency of the tether changes in each study and needs to be recalculated for each new tether 

configuration. 

 

5.1 Pretension 

 

The influence of pretension is first evaluated in terms of the normalized mid-span tether 

displacement in Figure 11a, which clearly shows a decrease with increasing pretension. That 

is, the system’s stability increases with increasing pretension. This fact is also shown as an 

increase in the number of cycles needed to trigger parametric resonance, as plotted in 

Figure 11b. Similarly, the dynamic factors that quantify extreme tension increments (DAF for 

maximum and DRF for minimum) also decrease with increasing pretension. Nevertheless, the 

numerical values of these factors are still quite small. Even for the lowest pretension level, 

tension increases of less than ±3% need to be accounted for. For the DF values, the dynamic 

factor for fatigue calculations remains constant and very close to one, which confirms that the 

quasi-static calculation is sufficient for any of the considered pretension levels. 
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a) c) 

 

 

b) 

 
Figure 11: Influence of pretension: a) Normalized lateral displacement at mid-span; b) 

Number of cycles to initiate parametric resonance; c) Dynamic factors 

 

5.2 Length 

 

The length of the tether clearly depends on the depth of the seabed. The distance between the 

floating construction (either bridge tower or submerged tunnel) and the anchoring point of the 

mooring line varies significantly along the length of the structure. This study evaluates the 

influence of parametric resonance on tethers with different lengths. All the cases are 

simulated for a support motion with the same amplitude of 0.1 m. Thus, the extreme static 

tension values are greater for shorter tether lengths (Figure 12a) because the elastic stiffness 

of the system is inversely proportional to the length. In other words, shorter tethers are stiffer 

and lead to greater tension values for the same imposed support motion. As a result, the 

higher quasi-static tension oscillations observed in shorter tethers lead to instabilities with 

larger lateral displacements, as shown in Figure 12b. Similarly, the extreme total tension 

values also increase (or decrease) for shorter tethers (Figure 12c). However, as observed 

throughout this paper, these dynamic factors are remarkably small. In this case, only ±5% 

tension variations are expected for the shortest mooring line. Nevertheless, the dynamic 

factor for fatigue DF remains nearly constant and can be approximated as equal to one. 

 



19 

a) c) 

 

 

b) 

 
Figure 12: Influence of tether length: a) Static tension values; b) Normalized lateral 

displacement at mid-span; c) Dynamic factors 

 

5.3 Inclination angle 

 

A vertical mooring system such as the one investigated in this study so far imposes little or 

no restraint in the horizontal plane. Therefore, large lateral motions could be induced if the 

floating structure is too flexible or the lateral loading is sufficiently strong. One possibility 

for providing additional lateral stiffness is to include pairs of inclined mooring lines in 

opposite configurations. This study assesses the impact of the tether inclination angle on the 

system’s stability. According to the definitions in Section 2, an angle of 90° corresponds to a 

vertical mooring line. Figure 13a shows the tether response in terms of the normalized 

horizontal displacement. Smaller angles are shown to give a stable response, while angles 

closer to vertical feature instability. This finding is supported by the results in Figure 13b that 

show the number of cycles needed to trigger parametric resonance. For configurations with 

small inclination angles, no results are shown because the parametric resonance is not 

triggered. In general, stability increases with a decreasing inclination angle; this can be 

explained by the combination of two effects. First, the actual tether length increases at 

smaller angles, which leads to greater system stability, as shown in Section 5.2. Second, the 

imposed vertical motion is effectively divided into two parts, namely, the perpendicular and 

tangential components. Only the tangential component parametrically excites the system, 

which decreases with decreasing inclination angle. The perpendicular component produces a 

normal external load and has a much smaller effect on the dynamics of the tether. Finally, 

Figure 13c shows the effect of tether inclination on the total tension dynamic factors. The 

stability of the system greatly influences the numerical values of the factors, obtaining higher 

(or lower) values in the event of unstable configurations. However, and in accordance with 

the previous results, the actual numerical values are very small. In this case, all the results 

indicate reductions smaller than ±1% compared to the static solution. 

 



20 

a) c) 

 

 

b) 

 
Figure 13: Influence of tether inclination: a) Normalized lateral displacement at mid-span; b) 

Number of cycles to initiate parametric resonance; c) Dynamic factors 

 

Conclusions 

 

This document has investigated the effect of parametric excitation on the response of taut 

mooring lines. Particular emphasis is given to the total tension values in the tether. The 

analysis is done using a nonlinear numerical model of a tether based on preliminary designs 

of floating bridges and submerged floating tunnels. The results from a 2:1 frequency ratio 

example show that the tension values are barely affected by the parametric resonance. This 

outcome is somewhat counterintuitive, indicating that unstable situations with large lateral 

motions feature very small dynamic tension effects. This conclusion is also confirmed by an 

investigation that considers a wide range of frequency ratios and amplitudes. Despite the 

clear correlation between instability tongues (due to lateral displacements) and extreme total 

tension values, the actual increment in tension due to parametric resonance is remarkably 

small. The results are expressed in terms of dynamic factors to evaluate the extreme 

(maximum and minimum) tension values and the effects on the fatigue life calculations. For 

stable configurations, the total tension can be correctly approximated using a quasi-static 

analysis. On the other hand, during parametric resonance, the dynamic effects are generally 

small and can be regarded as negligible. Therefore, if the design of a tether is based on the 

extreme tension levels, this study repeatedly shows that no dynamic analysis is needed to 

account for the effects of parametric resonance. Instead, a quasi-static response due to the 

expected vertical motion of the support is sufficiently accurate. This is applicable for 

calculating the extreme tension values in an ultimate limit state analysis as well as for the 

stress range and cycle counting needed in a fatigue limit state analysis. 

 

Appendix. Analytical expressions of transition curves 

 

This appendix provides the analytical expressions of the transition curves for a taut cable 

parametrically excited by inline harmonic support motion. Note that the final expressions 

reported here correspond to adapted and improved versions of the equations published by the 

authors in [34], where additional details on the derivation can be found. In particular, the 
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derivation outlined below corresponds to a simply supported cable of length 𝐿, with an initial 

axial force 𝑁 and a support motion Δ𝑥(𝑡) = 𝐴 cos(Ω𝑡), where 𝐴 is the amplitude and Ω is the 

frequency of the motion. The lateral displacements 𝑢(𝑥, 𝑡) of such a cable can be described 

by the equation of motion Eq. (A1), where 𝑚 and 𝑐 are respectively the mass and viscous 

damping per unit length and Δ𝑁(𝑡) is the variation of the axial force due to the support 

motion. 

 

𝑚
𝜕2𝑢

𝜕𝑡2
+ 𝑐

𝜕𝑢

𝜕𝑡
− (𝑁 + Δ𝑁(𝑡))

𝜕2𝑢

𝜕𝑥2
= 0 Eq. (A1) 

 

The solution can be expressed as the sum of 𝑛 modes of vibration Φ𝑗 factored by the 

generalized coordinates 𝑈𝑗: 

 

𝑢(𝑥, 𝑡) = ∑ 𝑈𝑗(𝑡)𝜙𝑗(𝑥)𝑛
𝑗=1 ;           𝜙𝑗(𝑥) = sin (

𝑗𝜋𝑥

𝐿
) Eq. (A2) 

 

The variation in axial force Δ𝑁(𝑡) can be written as the sum of two contributions (Eq. (A3)), 

namely the tension changes due to cable length increment and due to lateral displacements, 

which can be approximated using a Taylor expansion. 

 

Δ𝑁(𝑡) =
𝐸𝐴

𝐿
(Δ𝑥(𝑡) + ∑

𝑗2𝜋2𝑈𝑗(𝑡)2

4𝐿2

𝑛

𝑗=1

) Eq. (A3) 

 

Substituting Eq. (A3) into Eq. (A1) and performing a Garlerkin projection on the partial 

differential equation gives a set of uncoupled Mathieu equations, one for each mode 

considered. The final equation for mode-j is: 

 

𝑚𝐿2𝑈�̈� + 𝑐𝐿2𝑈�̇� +
𝑗4𝜋4𝐸𝐴

4𝐿2
𝑈𝑗

3 + 𝑗2𝜋2 (𝑁 +
𝐸𝐴 Δ𝑥

𝐿
) 𝑈𝑗 = 0 Eq. (A4) 

 

The transition curves define the boundaries that separate stable from unstable solutions of 

Eq. (A4). It is possible to derive expressions of these transition curves using the harmonic 

balance method. This method essentially approximates the solution as a Fourier series 

(Eq. (A5)) considering 𝑁 harmonic terms. Substituting Eq. (A5) into Eq. (A4), multiplying 

the result by the basis {sin (Ω𝑡), cos(Ω𝑡), … , sin(𝑛Ω𝑡), cos (𝑛Ω𝑡)}, integrating over one full 

cycle and balancing harmonic terms gives a system of equations with the Fourier coefficients 

Υ𝑖 as the unknowns. Solutions of the system provide the Fourier coefficients that define 

periodic solutions for Eq. (4). The transition curves are thus defined when the determinant of 

the coefficient matrix of the system is zero [34]. 

 

𝑈𝑗(𝑡) = ∑ Υ(2𝑛−1) sin(𝑛Ω𝑡) + Υ2𝑛 cos(𝑛Ω𝑡)

𝑁

𝑛=0

 Eq. (A5) 

 

The analytical expression of the transition curves in the amplitude-frequency plane (𝐴, Ω) is 

given by Eq. (A6) and Eq. (A7), which is expressed in terms of auxiliary variables defined in 
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Eq. (A8) to Eq. (A17). Depending on the considered period 𝑇 (either 2𝜋 or 4𝜋) there exist 

two sets of solutions that correspond respectively to the sum of all even and odd n values in 

Eq. (A5). The number of harmonic terms considered is two (𝑁 = 2). 

𝐴(Ω) = ±𝐵1√𝐵2(𝐵3 ± √𝐵4)  𝑓𝑜𝑟 𝑇 = 2𝜋 Eq. (A6) 

𝐴(Ω) = ±𝐶1√𝐶2 ± √𝐶3  𝑓𝑜𝑟 𝑇 = 4𝜋 Eq. (A7) 

 

The auxiliary variables are defined below. 

 

𝐴1 = 𝑚 𝐿2Ω2 Eq. (A8) 

𝐴2 = 𝑁 𝑗2𝜋2 Eq. (A9) 

𝐴3 = 𝑐 Ω 𝐿2 Eq. (A10) 

𝐵1 =
2𝐿

𝐸𝐴𝐵2𝜋2𝑗2
 Eq. (A11) 

𝐵2 = 8𝐴1 − 3𝐴2 Eq. (A12) 

𝐵3 = 2(2𝐴1 − 𝐴2)(𝐴3
2 + (𝐴1 − 𝐴2)(4𝐴1 − 𝐴2)) Eq. (A13) 

𝐵4 = 8(2𝐴1
2 + 2𝐴1𝐴2 − 𝐴2

2)𝐴3
4 

+(128𝐴1
4 − 128𝐴1

3𝐴2 + 36𝐴1
2𝐴2

2 + 16𝐴1𝐴2
3 − 7𝐴2

4)𝐴3
2 

+(𝐴1 − 𝐴2)2(4𝐴1 − 𝐴2)4 

Eq. (A14) 

𝐶1 =
𝐿√2

4𝐸𝐴𝜋2𝑗2
 Eq. (A15) 

𝐶2 = 12𝐴3
2 + (9𝐴1 − 4𝐴2)(11𝐴1 − 12𝐴2) Eq. (A16) 

𝐶3 = −432𝐴3
4 + 8(117𝐴1

2 − 168𝐴1𝐴2 − 176𝐴2
2)𝐴3

2 

+(13𝐴1 − 20𝐴2)(9𝐴1 − 4𝐴2)3 
Eq. (A17) 
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