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Abstract— This paper presents an active output feedback
fault-tolerant model predictive control (MPC) scheme for sys-
tems with sensor faults. The proposed control scheme actively
steers the system in order to prevent loss of observability caused
by a sensor fault. To this end, the standard tracking objective
of the MPC controller is augmented with an observability cost
term which strongly penalizes unobservable state and input
trajectories. A numerical example illustrates the use of the
proposed approach on a target estimation and tracking control
problem with faulty sensors.

Index Terms— Sensor faults, Model predictive control, Non-
linear observability, Output feedback

I. INTRODUCTION

Model predictive control (MPC) is a model-based optimal-
control scheme, capable of handling complex multiple-inputs
multiple-outputs (MIMO) systems with hard constraints on
control inputs [1]. At every time step, an MPC controller uses
a model of the system to compute the optimal constrained
finite horizon state prediction that minimizes a given perfor-
mance index, and then applies only the first optimal input to
the system. Since the model of the system, the constraints,
and the performance index can be updated at every time step,
the MPC control scheme is particularly suited for embedding
fault tolerance [2].

Fault tolerant model predictive control (FTMPC) schemes
have been constructed with a variety of fault-diagnosis and
reconfiguration approaches, and for many different applica-
tions. The majority of FTMPC schemes are active fault-
tolerant control (FTC) schemes, based on reconfiguration
of the internal MPC model, the constraints or the objective
function subject to fault in an actuator (e.g. [3], [4], [5]) or
in a sensor [6], [7]. FTMPC schemes may also be designed
using a passive approach, thus relying on robustness of the
MPC controller, see e.g. [2], [8]. Some advances have also
been made towards embedding fault detection and isolation
within an MPC controller, see e.g. [9].

In this paper, we consider sensor fault tolerance in MPC
schemes, which conceptually is more complex to address
than actuator and component faults [2]. In particular, we
consider the problem of handling sensor faults in output
feedback nonlinear MPC (NMPC), where a state feedback

1Department of Engineering Cybernetics, Norwegian
University of Science and Technology, Trondheim Norway.
brage.knudsen@ntnu.no .
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NMPC controller is employed in combination with a state
observer [10]. Sensor faults may cause loss of observability,
and thereby result in poor or divergent state estimates.
These estimates are used as initial conditions for the MPC
prediction, and may therefore deteriorate the performance of
an output feedback MPC scheme, or in worst case jeopardize
stability and safety of the system. Loss of observability may
in fact be a challenge for output feedback NMPC without
consideration of sensor faults, see e.g. [11], [12], [13].

In this paper, we propose an active FTMPC scheme for
handling sensor faults which, upon external detection of a
sensor fault, actively steers the system so as to preserve
observability with the remaining healthy sensors. This is
achieved by exploiting the fact that for nonlinear systems,
contrary to linear systems, observability depends on the state
and inputs of the system, and can therefore be influenced by
the control action. In particular, we augment the standard per-
formance index of the MPC controller with an observability
index, which we parametrize on the specific fault scenario
to force the controller to take into account the set of healthy
outputs when computing the input signals for the system.

We organize the reminder of the paper as follows: In
section II we present the system and problem structure.
Section III contains a brief introduction to nonlinear ob-
servability and presents the set-up of the proposed FTMPC
scheme, while section IV presents a simulation example
to demonstrate merits of our proposed approach. Finally,
section V ends the paper with concluding remarks.

II. PROBLEM STATEMENT

A. System Description

Consider the nonlinear system

ẋ(t) = f (x(t),u(t)), x(0) = x0 (1a)
y(t) = h(x(t)), (1b)

where x(t) ∈Rn is the state, u(t) ∈Rm the input, and y(t) ∈
Rp the measured output. The inputs and states are subject to
polytopic constraints,

x(t) ∈ X ⊆ Rn, (2a)
u(t) ∈ U ⊆ Rm. (2b)

We assume that the system has multiple output measure-
ments, i.e. p > 1, but not available measurements for all of
the states n. Hence, we consider output feedback NMPC as
illustrated in Fig. 1, where an observer provides state esti-
mates to a state feedback NMPC controller. In particular, we
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Fig. 1: Schematic diagram of the sensor fault-tolerant NMPC
scheme.

consider a sampled-data receding horizon strategy, solving
at each sampling instant tk ∈ T := {t0, t1, . . .} the following
finite-horizon optimal-control problem:

min
ū(·)

∫ Tp

0
l(x̄(τ), ū(τ))dτ + lT (x̄(Tp)) (3a)

s.t. ˙̄x(τ) = f (x̄(τ), ū(τ)), (3b)
x̄(0) = x̂(tk) (3c)

(x(τ),u(τ)) ∈ X ×U (3d)
x̄(Tp) ∈ Ex (3e)

In (3), the cost functional (3a) is defined by a performance
index l(x̄, ū) over the prediction horizon Tp, and by a terminal
state cost lT (x̄). The bar over the input and states denotes
internal MPC controller variables, where x̄(·) constitutes the
solution to (1a) with initial condition x̂(tk) driven by the input
ū(·) ∈ U in the time interval τ ∈ [0,Tp]. The set Ex ⊆ Rn in
(3e) defines a terminal set. Observe that in (3c), the initial
condition x̂(tk) is the state estimate provided by the observer.

Corresponding to the conventional receding horizon con-
trol policy, the solution ū∗(·; x̂(tk)) to the optimal control
problem (3) is applied to the system from time tk up until
the next sampling instant tk +δ , defining the implicit NMPC
feedback control law

u(t; x̂(tk)) := ū∗(τ = 0; x̂(tk)), (4)

where δ is the sampling time which we assume constant.

B. Problem Description

The NMPC controller’s tracking performance and stability
properties depend on the accuracy of the state estimate x̂(t)
provided by the observer [10], and hence by properties of
the observer design. A fault in one or several sensors may
cause loss of observability or detectability, and hence impede
reconstruction of the state from the output measurements
[14]. This may cause a poor state estimate to propagate
in time through the internal NMPC prediction model (3b),
eventually diverging the observer state estimates and thereby
destabilizing the system. In particular, for nonlinear output
feedback control system, this may cause finite-time escape
of an unstable state [15]. Yet, in nonlinear systems, observ-
ability is a local concept in the sense that with a given output
configuration, certain regions of the state space may be
observable whilst others remain unobservable. This motivates

the following fault-reconfiguration problem for sensor faults
in output feedback NMPC:

Problem 1. Given a fault in l < p number of outputs, control
the system (1) using the NMPC controller (3)–(4) such that
the full state x(t) can be reconstructed using the remaining
p− l healthy outputs.

We focus in this paper on the problem of control-system
reconfiguration after faults in one or several sensors. Conse-
quently, we make the following assumption:
Assumption 1. If there is a fault in a sensor j ∈ {1, . . . , p}, a
fault-detection and isolation (FDI) unit is able to detect and
isolate the fault, and sends a switching signal σ j ∈ {0,1} to
the NMPC controller.

Fig. 1 illustrates the couplings between the FDI unit, the
observer, the NMPC controller and the system. Note that the
observer may as well be an integrated part of the FDI unit.
For simplicity, we limit the study to full sensor faults. For
details on fault-diagnosis methods for sensor faults, we refer
the reader to e.g. [16].

III. SENSOR FAULT-TOLERANT NMPC APPROACH

To alleviate the danger of state-estimate divergence and
destabilization of an output feedback NMPC controller dur-
ing a sensor fault, the controller (3)–(4) must be modified
or reconfigured to compensate for the possible loss of state
observability. The salient feature of our proposed approach
is to impose an explicit measure of the observability of (1)
in the NMPC optimization problem.

A. Nonlinear Observability

We use the following definition of nonlinear observability
for designing an observability index for the NMPC controller
(e.g. [17], [18], [19]).

Definition 1. Let

Q(x,u) :=


y(t)
ẏ(t)

...
y(r−1)(t)

=

 L
0
f h(x)

...
Lr−1

f h(x)

 (5)

denote the observability map of (1), where L f h(x) = ẏ(t)
denotes the Lie derivative of h in the direction of f , and
where

L j
f h(x) =

∂L j−1
f h(x)

∂x
f (x,u) (6)

is the jth order Lie derivative, with L0
f h(x) = h(x). The

observability rank condition is said to hold at a point x = x0
if the rp×n observability matrix

O(x,u) =
∂Q(x,u)

∂x
=
[
L0

f h(x)
∂x , . . . ,

Lr−1
f h(x)

∂x

]′
(7)

evaluated at (x0,u0) has full column rank.

While the observability of a system is a global concept
[18], nonlinear observability is normally considered locally,
as establishing global observability for nonlinear systems is



generally difficult. If a system satisfies the observability rank
condition at a point x0, then it is said to be locally weakly
observable at this specific state [18], which essentially means
that we can instantaneously distinguish x0 from all other
points x in a neighborhood of x0. Note that the observability
rank condition is a sufficient, but not necessary requirement
for local weak observability [18]. Furthermore, for nonlinear
systems there is no universal law for choosing the number
of derivatives r−1 in the definition of O(x,u) in (7).

There are several possible measures of unobservability
based on (7), both for detecting rank deficiency and for
evaluating the difficulty of estimating the state from the
observations. To detect rank deficiency and hence singularity
of (7), we may use the determinant or the smallest singular
value, which are both zero at an unobservable point. The
condition number of O(x,u), which gives a measure of the
numerical sensitivity of the inverse of the map from (x,u) to
Q(x,u) in (5), provides a measure of (local) ill-conditioning
of the state estimation problem. Other possible observability
measures include the trace of O(x,u), and approaches based
on the Fisher information matrix or the Kalman Filter covari-
ance matrix [11]. The most suitable observability measure
depends on the application, in particular the system size
and the degree of nonlinearity of f and h, as well as the
necessary number of derivatives r− 1 in (5) to get a well
defined observability matrix.

B. Output Parametrization for Sensor Faults

Consider a fault in sensor j, transmitted from an FDI unit
to the NMPC through the binary switching signal σ j set to 0,
cf. Fig. 1. To integrate the fault signal σ j in an observability
measure, we formulate the output parametrization

ỹ(σ , t) :=


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σp




y1(t)
y2(t)

...
yp(t)

 . (8)

Using the parametrization ỹ(σ , t) of active (healthy) outputs,
we define a σ -parametrized observability map,

Q(x,u,σ) :=
[
ỹ(σ , t), ˙̃y(σ , t), . . .

]′
, (9)

and correspondingly a σ -parametrized observability matrix,

O(x,u,σ) :=
∂Q(x,u,σ)

∂x
, (10)

according to Definition 1. The parametrization (10) of the
nonlinear observability matrix allows us to impose an ob-
servability measure in the NMPC problem that depends on
the set of active outputs. To this end, we decompose the
performance index l(x,u) in (3a) into a tracking cost ltt(x,u)
and an observability index lO(x,u,σ),

l(x,u,σ) := ltt(x,u)+ lO(x,u,σ). (11)

To design the observability index (or cost) lO(x,u,σ), we
use a measure based on the determinant of O(x,u,σ), which
is generally easier to compute than its minimum singular

value or condition number. In particular, we impose the
observability index as

lO(x,u,σ) =
k√

det(O(x,u,σ)′O(x,u,σ))+ ε2
, (12)

where k > 0 is a scalar tuning parameter and ε > 0 is small
smoothing parameter. The n×n matrix O(·)′O(·) is positive
definite with non-zero determinant if and only if O(x,u,σ)
satisfies the observability rank condition for a given output
parametrization σ . If the system is rendered unobservable
in its current state by a fault in sensor j, the smoothing
parameter ε will prevent singularity of lO(·). Observe that the
proposed determinant-based observability index circumvents
the need to choose which n rows of O(·) to use for defining
its determinant, considering that O(·) typically is non-square.

The tracking cost ltt(x,u) in MPC is normally a quadratic
performance index penalizing the distance to a desired state
or trajectory. Combining the tracking and observability cost
in the performance index l(x,u,σ) naturally lends itself to
a dual or multi-objective NMPC formulation. Through a
dual-objective formulation, we seek to retain, if achievable,
the tracking performance also in fault-tolerant mode, in
particular if the system actually remains observable when
a sensor fails.

The output-parametrized performance index designed in
(11) and (12) can be used to specify four operating modes
of the proposed FTMPC scheme:

Mode 1. (Nominal mode)
In nominal, fault-free mode, the user may set σ ≡ 0, leaving
lO(x,u) = k

ε
, which is a constant and thereby results in the

conventional MPC tracking objective.

Mode 2. (Nominal mode with observability index)
Also in nominal mode, one may choose to set σ j = 1,∀ j ∈
{1, . . . p}, and hence encourage the controller to steer the
system through good observable trajectories. Even if the
system is (globally) observable, favoring good observable
trajectories may possibly increase the quality of the observer
state estimates.

Mode 3. (Fault mode)
The fault signal σ j = 0, transmitted from the FDI to the
NMPC controller and the observer, triggers a switching
of the controller and a re-parametrization of lO(x,u,σ),
leaving σi = 1,∀i ∈ {1, . . . p}\ j. This fault mode defines the
controller reconfiguration upon a sensor fault.

Mode 4. (Planned faults)
In this mode, the FDI unit may set σ j = 1 only to the
indices associated with sensors that it “trusts” or knows are
healthy. As an effect, using this mode the scheme can also
be applied to planned (or predicted) sensor faults. Planned
sensor faults may for instance be loss of a sensor for some
time during maintenance or replacement, or due to physical
barriers hampering the reliability of a measurement.

The resulting closed-loop behavior in these different
modes depends on the system characteristics and the form
and relative scaling of the two objective terms in (11). The



augmented observability index lO(·) may cause the system
to be steered to a steady state or along a trajectory different
from the reference trajectory, thereby causing a tracking
offset. A different possible outcome is that the controller
prevent the system from operating in steady state, causing
periodic or oscillatory behavior with excitation from the
reference in order to retain observability. We demonstrate
this by an example in the next section.

Remark 1. We impose the observability index lO(x,u,σ) by
offline computing the algebraic expression for (12) through
symbolic computations (e.g. Matlab Symbolic Toolbox).
Symbolically computing the nonlinear observability matrix
(7) is naturally limited to relatively small systems, and the
r− 1 number of derivatives in (5) must be low. Adding an
algebraic observability term may significantly increase the
computational complexity and the number of local optima.
Yet, smoothness of the closed-loop trajectories and reduced
solution times can often be achieved by properly warm-
starting the MPC solver. For larger systems, it would be
possible to use automatic differentiation to include lO(x,u,σ)
in the MPC performance index.

Remark 2. It is important to notice that, while the proposed
scheme encourages the system to undertake good observable
trajectories, the existence of such trajectories is a structural
problem. Clearly, there is no guarantee that a certain subset
or even a singleton of the feasible region of the NMPC
controller is observable with the remaining p− l healthy
measurements. This issue should be considered during the
controller design, by for instance analyzing offline the ob-
servability measure (12) for a given sensor configuration.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the proposed sensor
FTMPC scheme on a unicycle-like follower-target problem
adopted from [13] and [20], where the objective is to track a
target and estimate its position. The dynamics of the follower
vehicle is given by

ṗ =

(
v cosθ

v sinθ

)
, θ̇ = ω, (13)

where p = [px, py]
′ is position, θ heading, v linear velocity

and ω angular velocity of the follower vehicle. The input
velocities u = [v,ω]′ are bounded by the box constraints

|v| ≤ 2, |ω| ≤ π. (14)

We assume that the dynamics of the target can be described
by the same model as the follower vehicle, i.e. with unicycle
dynamics. Since the MPC controller will require a prediction
of the position of the target, we must parametrize the future
input of the target vehicle and estimate these in the observer.
Note that the future input of the target is of course unknown
to the FTMPC controller. Still, in the controller design, we
assume that target-vehicle velocities are slowly varying, and
hence approximate these parametrized inputs as constants.
See [13] for more details. These assumptions results in the

target vehicle dynamics

ṗt =

(
vt cosθt
vt sinθt

)
, θ̇t = ωt , (15a)

v̇t = 0, ω̇t = 0, (15b)

where pt = [ptx, pty]
′ is position, θt heading, vt linear velocity

and ωt angular velocity of the target vehicle.
We assume that the follower observes the target position

through a bearing measurement using an omnidirectional
camera, and through a range measurement, both located at
the center of the follower vehicle. The bearing measurement
yb(t)∈R2 provides the relative direction of the target vehicle
but no information about the distance, and can be modeled
as the perspective observation model (e.g. [13])

yb(σ1, t) = σ1
pt − p
||pt − p| |

. (16)

The range measurement yr(σ2, t) ∈ R, on the other hand,
provides the distance to the target but not the direction. We
model this measurement as

yr(σ2, t) = σ2 ||pt − p| |. (17)

We assume that a Global Positioning System (GPS) or
an Inertia Measurement Unit (IMU) provides a continues
measurement

y f = h f (px, py,θ) ∈ R3, (18)

of the position and heading of the follower vehicle. Com-
bined, the outputs from the bearing, range and follower-
position measurements provides observability for the esti-
mation of the target position. However, if either the bearing
or range measurement is lost due to a sensor fault, there
are motions of the follower-target system that are known to
render the target position unobservable [21], in particular,
any parallel motion of the follower and target vehicle.

We apply an Extended Kalman filter (EKF) to estimate
the position, heading and parametrized inputs of the target
vehicle modeled in (15), using the measurements (16)–(18).
We add small noise terms rs = 10−2 and qs = 10−3 as
standard deviation of the measurement and process noise,
respectively. For the observability index lO(x,u,σ) in (12)
we set k = 4×104 and ε = 10−2. The target-tracking applies
the controller design proposed in [22] for ltt(·), lT (·) and εx,
with prediction horizon Tp = 0.3s and sampling time 0.1s.
See [22] for details. The FTMPC scheme is implemented
in Matlab, using ACADO [23] to solve the optimal control
problems.

To illustrate the fault-tolerant properties of the proposed
FTMPC controller, we simulate the following fault scenario.
After t = 10s, the range measurements fails, i.e. σ2 = 0,
and is fixed again at t = 68s. Then at t = 85s, the bearing
measurement fails, i.e. σ1 = 0, and is fixed again at t =
120s. The initial velocities of the target vehicle are set to
vt(0) = 1 and ωt(0) = 0. To study the controller and observer
performance subject target motions that differs from the
assumed future target inputs (15b), we impose the following
target motion unknown to the controller: After t = 17s, the
target suddenly stops, and resumes its motion at t = 50s,



but with a velocity vt = 0.5m/s. Then at t = 105s, the target
doubles its linear velocity. These particular target motions act
as type of disturbance in the Kalman filter. Fig. 2 displays the
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Fig. 2: Trajectories of the target and follower vehicle with
the proposed FTMPC approach.

motion of the follower and target vehicles. For the case where
all measurements are healthy, the NMPC controller operates
in Mode 1, in which the follower is seen to tightly track
the target. When the range measurement fails, the controller
switches to Mode 3, and the follower starts making small
oscillations around the target trajectory to retain observability
and estimate the target position. When the target stops, the
follower starts orbiting around the target (seen by the thick
blue line in Fig. 2) to continuously estimate its position,
and continues this motion when the target starts moving
again. The follower then tightly tracks the target once the
range measurement becomes healthy (around px = 30m,
Mode 1). When the bearing measurement fails, the follower
switches to Mode 3 and again starts orbiting around the
target, however, with a different pattern than during loss
of the range measurement. When the target accelerates, the
follower vehicle makes a large turn to regain observability,
thereby clearly sacrificing the tracking performance for some
time.

The target estimation errors with the proposed FTMPC
approach are shown in Fig. 3, where the vertical black-doted
lines indicate the time of a fault or repair of an output
measurement as described above, while the vertical cyan-
doted lines indicates a change in the target motion. The figure
demonstrates that the proposed FTMPC controller efficiently
retains good state estimates during the simulated time inter-
vals of sensor faults. The follower clearly undertakes motions
that deteriorate the tracking performance in order to preserve
observability and thereby compensate for the faulty sensor.
When the target motions differs from those assumed in the
model (15), both the target state and input estimates oscillates
for some time before quickly converging to zero.

For comparison, we show in Fig. 4 the trajectory of the
follower without any observability measure in the NMPC for-
mulation, corresponding to Mode 1 of the proposed FTMPC
scheme, and as such with decoupled observer and NMPC
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Fig. 3: Estimation errors for the states and parametrized
inputs of the target vehicle with the proposed FTMPC
approach. The black-doted vertical lines indicates the time
of a fault or repair of a measurement, while the vertical
cyan-doted lines indicates a change in the target motion,
unknown to controller. The loss of a sensor is seen not to
affect the estimation errors, while a change in target motion
(cyan vertical lines) gives a transient estimation error which
quickly converges to zero.

design. The corresponding target state and input estimates
are displayed in Fig. 5. When the range measurement fails at
time t = 10s, the controller retains good tracking performance
and state estimates for a short time simply by keeping the
control input of the follower as before the fault. However,
once the target stops or accelerates, the fault in the range or
bearing measurement (respectively) can be seen to cause both
the target position estimation and hence the target tracking
to fail. This clearly demonstrates that, without compensating
for the loss of observability due to a sensor fault, the output
feedback NMPC controller fails.

V. CONCLUDING REMARKS

In this paper, we have presented a sensor fault-tolerant
NMPC scheme. The scheme is based on a parametrization of
healthy outputs together with an auxiliary observability index
in the NMPC controller. Through simulations of a unicycle
follower and target system, we have demonstrated that the



Position [m]
-10 0 10 20 30 40 50 60 70

P
o
si
ti
o
n
[m

]

-10

-5

0

5

10

15

20

pt(t) - target
p(t) - follower

Fig. 4: Trajectory of target and follower vehicle without fault-
tolerant scheme, i.e. without any observability measure in the
NMPC formulation.
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Fig. 5: Estimation errors for the states and parametrized
inputs of the target vehicle without including an observability
index in the NMPC controller. Observe that the y-axis
resolution is different from Fig. 3.

proposed approach efficiently mitigates loss of observability
due to a sensor fault, by computing control inputs that forces
the system to follow observable trajectories.

REFERENCES

[1] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[2] J. M. Maciejowski, “Modelling and predictive control: Enabling tech-
nologies for reconfiguration,” Annu. Rev. Control, vol. 23, pp. 13–23,
1999.

[3] A. Yetendje, M. M. Seron, and J. A. D. Doná, “Robust multiactuator
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