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Problem description

Modern instrumentation allows studies of human movement at an unprecedented level of de-
tail in a vast number of contexts. The long-term aim of this project is to exploit this potential
to study, describe and eventually improve techniques and exercise regimens in top-level cross
country skiing.

The movement patterns in cross country skiing are characterized by two different classes of
techniques - the skating technique and the classical technique. Classical cross country skiing is
again divided into four major subtechniques: diagonal stride, double poling, double pole kick
and herring bone (steep uphill). For the skating technique mainly four subtechniques are em-
ployed; G2 (paddling), G3 (double dance), G4 (single dance) and G5 (skating without poling).
The skier must adapt these techniques to changes in terrain topography, skiing velocity and
snow conditions. The movement in cross country skiing is cyclic, and each cycle can generally
be classified as either one of the subtechniques or a transition between subtechniques.

The objective for the present project is to develop a valid method to (1) identify each cycle, (2)
calculate the cycle time for each cycle and (3) classify which cross country skiing technique
and sub-technique is being used in each cycle, based on data from a wearable IMU (Inertial
Measurement Unit) comprising accelerometers, gyroscopes, magnetometer and altimeter. The
identification and classification algorithm should be robust and work for different skiers on dif-
ferent levels without the need for separate calibration for different skiers or for different veloci-
ties. The classification technique should be applicable to near real-time classification and have
a complexity which makes implementation on a microcontroller possible. It is suggested that
the methods to be applied for the identification and classification is based on similarity trans-
forms and cross correlation.

Evaluation of the algorithms should be done by applying the algorithms to calculation of cycle
time and classification for three different skiers who each ski for 15 minutes in varying technique
and sub-technique according to the following scheme,

• Evaluate the percentage of the cycles for which the algorithms correctly identify the cor-
rect sub-technique. If a cycle is correctly identified as a transition cycle between two sub-
techniques, this should be taken as a correct identification.

• Evaluate the percentage of the cycles for which the algorithms correctly identify the cor-
rect sub-technique when near real-time classification is done (classification delivered less
than 3 seconds after a cycle is finished)

The project aims for the algorithms to classify at least 95% of the cycles correctly, including
transition cycles. A discussion of how the algorithms should be modified to improve the classi-
fication accuracy should be included.

Relevant data material will be provided by NTNU SenTIF. The following type of material will be
provided: (1) IMU data for each of the different sub-techniques, for different skiers, on different
levels, at different velocities, where each sub-technique is performed for periods of minimum
30-60 seconds by each skier. (2) IMU data along with accompanying video material for different
skiers doing approximately 15 minute runs where the skiers change sub-technique based on the
terrain and conditions.

The data material will be marked with the correct classification through visual inspection by the

student. Marking of data material will be done ahead of the algorithm evaluation.
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Summary

Published technique analysis tools for movement patterns in cross-country skiing have accu-

racies ranging from 88% up to 98.5%, but reviews of these studies reveals that none have thor-

oughly addressed classifier robustness across variations in terrain, athlete skill level and move-

ment intensity, in addition to none being proven able to classify both classical and skating tech-

nique without technique specific alterations. This thesis has therefore suggested an approach

of using a template matching based classifier, with its main goal being identifying and classify-

ing movement cycles of both cross-country skating and classical subtechniques, in addition to

providing estimates of cycle times for each cycle.

Investigations found variation in parameters of characteristics and terrain of significant im-

pact to the classifier, whilst variations in movement intensity had less effect. The final template

matching implementation was tested on three different athletes, doing full laps of varied terrain

and choosing technique freely. Video analysis of these recordings found 649 valid movement

cycles, of these 616 were detected correctly. A total of 575 of the correctly detected cycles were

classified correctly, resulting in an overall classification rate of 88.6%. Cycle time calculations

were implemented and compared against the video annotations, with results showing strong

consistency and coherence between them.

Specific challenges were tied to the most prominent misclassifications, and are believed

solvable through further investigations. If these issues were solved properly overall classifier

performance for the current implementation would elevate to 94.3%. Common challenges within

the field regarding turns and transitioning were also seen for this method. Real-time impli-

cations have been evaluated, conclusions being that conversion into real-time functionality is

possible through simple alterations to the sequential execution of the algorithm.

These results are considered promising in developing a classifier capable of handling move-

ment patterns of both classical and skating techniques, as the first method within the field to

handle both classical and skating without technique specific alterations. The method is based

solely on general templates representing movements, thus utilizing this algorithm on other

fields of cyclic movement should only require an alteration of the template base used.
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Sammendrag

Publiserte verktøy for teknikkanalyse av bevegelsesmønstre i langrenn har vist ytelse i klassifis-

eringsrate fra 88% opp mot 98.5%, men vurderinger av disste studiene har vist at ingen så langt

har undersøkt påvirkning som følge av variasjon i terreng, ferdighetsnivå og bevegelsesinten-

sitet, samt har ingen blitt vist til å kunne håndtere både klassisk- og skøyteteknikk uten endring

av implementasjonen. Gjennom denne studien er det derfor foreslått en ny tilnærming med å

bruke en “template matching”-klassifikator, med formål å kunne håndtere både identifisering

og klassifisering av bevegelsessykluser innen både klassisk- og skøyteteknikk, i tillegg til å gjøre

estimering av syklustid for hver identifiserte syklus.

Gjennom arbeidet har variasjon av terreng og bevegelseskarakteristikk blitt påvist å gi bety-

delig påvirkning i forhold til klassifikatorytelse, mens variasjoner i bevegelsesintensitet gav min-

dre grad av påvirkning. Den endelige klassifikatorimplementasjonen ble testet på tre forskjellige

utøvere, som tilsammen gjorde tre fulle runder med fritt valg av teknikk. Videoanalyse av opptak

fant 649 gyldige bevegelsessykluser, og av disse ble 616 korrekt detektert av algoritmen. I alt 575

av disse riktig detekterte syklusene ble klassifisert riktig, som resulterte i en overordnet klassifis-

eringsrate på 88.6%. Syklustidberegninger fra algoritmen ble sammenlignet opp mot resultater

fra videoanalyse og indikerte konsist samsvarende resultater.

Det ble funnet konkrete utfordringer relatert til de mest fremtredende feilklassifiseringene,

og disse er antatt løsbare gjennom videre arbeid med implementasjonen. Dersom disse ut-

fordringene blir løst vil ytelsen på den nåværende implementasjonen bli løftet til 94.3%, som

kan sies å være på høyde med bransjestandarden. Det ble også for denne metoden observert

utfordringer relatert til sving og transisjoner, som er generelle alle publiserte metoder. San-

ntidsaspekter for impementasjonen ble vurdert, med konklusjon om at konvertering til san-

ntidsfunksjonalitet er mulig gjennom enkle endringer i kjørestrukturen, uten endring av kjerne-

funksjonalitet.

Resultatene som er presentert er ansett for å være lovende i å utvikle en generell klassifikator

kapabel til å håndtere både klassisk- og skøyteteknikk, og er den første metoden innenfor feltet

som har gjort dette uten konkrete teknikk-relaterte endringer i implementasjonen. Siden meto-

den er utelukkende er basert på “templates” representativ for bevegelsene som klassifiseres er

det anledning til å tro at implementasjonen enkelt kan benyttes innenfor alle felt for klassifiser-

ing av sykliske bevegelse gjennom å endre template-basen.
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Acronyms

G2 Single time ski subtechnique

G3 Double time ski subtechnique

G4 Padle ski subtechnique

G5 Free skate ski subtechnique

DS Diagonal stride subtechnique

DP Double poling ski subtechnique

DPK Double pole kick ski subtechnique

HB Herringbone ski subtechnique

IMU Inertial Measurement Unit
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Chapter 1

Introduction

Analysing human movement patterns is a large field in sports biomechanics, with its research

trying to aid athletes in performing and preparing better for their activities Bartlett (2007). Analysing

the execution and choice of movement patterns can reveal useful knowledge related to athlete

skill, capacity and strategies, as one can study how such parameters affects performance and re-

sults which later can be used in planning of training regimes, race strategies, equipment choices,

and other relevant aspects for the sport.

Cross-country skiing is a complex locomotion that requires both high physical capacity and

good technical skills. Movement patterns in cross country skiing are characterized by two dif-

ferent classes of techniques - the skating technique and the classical technique, with both tech-

niques being divided into several underlying subtechniques. The movement in cross country

skiing is cyclic, and each cycle can generally be classified as either one of the subtechniques

or a transition between subtechniques. A large amount of studies have been published regard-

ing movement analysis of cross-country skiing technique, and amongst other aspects technique

execution and distribution has been shown to have an effect on performance (see for example

Smith (2003); Bolger et al. (2015); Øyvind Nøstdahl Gløersen (2014); Håvard Myklebust (2013);

Losnegard et al. (2016); Myklebust (2016)). With technique distribution and execution showing

relevance to performance, along with possibilities for studies of athlete skill, capacity and strate-

gies, being beneficial for planning of training regimes, race strategies, equipment choices,and

other relevant aspects, it is clear that development of tools made for technique analysis, able to

2
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quantify and classify the specific cross-country skiing movement patterns, is of both high value

and in demand.

There are already several methods presented for identifying and classifying cross-country move-

ment cycles, with accuracies ranging from 88% up to 98.5%. Constraints made to the classifica-

tion problem, in terms of which techniques and subtechniques are being classified, in addition

to variations in parameters such as terrain, athlete levels, number of sensors, sensor placements,

and number of athletes used in the studies have direct implications on the premises for success.

This makes direct comparisons between these studies difficult, however, a general review of the

methods and their implementations reveal certain common drawbacks.

In general all published methods of the field handle steady-state classification within a sub-

technique well, with problematic areas reported being classifying activity not cohering to well-

defined subtechniques, such as turning and transitioning between subtechniques. Other areas

not thoroughly addressed previously are classifier robustness and performance across varia-

tions in terrain, athlete skill level and movement intensity, along with classification of both clas-

sical and skating technique done by the same classifier. This leaves highly relevant aspects in

terms of creating an easy-to-use classifier meant for practical use and assessing the possibilities

of for utilization on a broad user group where these variations are present unanswered.

Because of these aspects, the objective for the present project is to develop a valid method to

identify and classify each movement cycle in an IMU generated series of cross-country skiing

data. The method will also do calculations of cycle times for each cycle, as this is a parameter

relevant for athlete evaluation in cross-country skiing. The identification and classification al-

gorithm aim to be robust and work for different skiers on different levels, without the need for

separate calibration for different skiers or for different velocities.
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1.1 Guidelines for the reader

This report is written both for readers with a background in engineering sciences and read-

ers with a background in movement sciences. The report is structured as follows: Chapter 2

documents background material to better prepare the reader for the theory presented later in

the report, along with a literature survey of relevant published studies in the field of classify-

ing cross-country skiing techniques. The details and implementations of the methods used is

explained in Chapter 3, and the results of experiments with these are further presented and

analysed in Chapter 4. Chapter 5 contains a final discussion and conclusions of work within in

the report.

1.2 Contributions

The following contributions have been made through this thesis:

• Litterature review of published methods for detecting and classifying subtechnique move-

ment cycles of cross-country skiing

• Development, implementation and evaluation of a template matching algorithm for

detecting and classifying individual cycles of movement patterns in cross-country skiing,

along with calculating the cycle time for each cycle.



Chapter 2

Background

Throughout this chapter relevant topics of background material for this thesis are presented.

2.1 Movement patterns in sports

Analysing human movement patterns is large field in sports biomechanics, with its research try-

ing to aid athletes in performing and preparing better for their activities Bartlett (2007). Analysing

the execution and choice of movement patterns can reveal useful knowledge related to athlete

skill, capacity and strategies, as one can study how such parameters affects performance and re-

sults which later can be used in planning of training regimes, race strategies, equipment choices,

and other relevant aspects for the sport. Throughout recent years there has been a great number

of studies related to pattern recognition in movement, and techniques of pattern recognition

have been applied to a great number sports, swim style classification Ohgi (2002), hockey and

soccer movements Mitchell et al. (2013), interdisciplinary activity recognition Jenny Margarito

and Bonomi (2016), and cross-country skiing techniques (table overview in appendix) to name

a few.

Technique analysis and pattern recognition methods used define opportunities and limitations.

Historical methods range from 2D video analysis to combining whole-body 3D kinematics, ki-

netics, and muscle activation. For cross-country skiing main drawbacks have been limited

capture volume, interference with the skier’s natural movement pattern, and the increased de-

5



CHAPTER 2. BACKGROUND 6

mands of in-field recordings compared to laboratory measurements Myklebust (2016). Today

the use of low-cost inertial measurement units (IMU) have been introduced as a new tool for

technique analysis in sports. These sensors have possibilities for providing high accuracy move-

ment data in large quantities, with the added benefit of being easy to setup and configure. This

combined with high sampling frequencies and ambulatory capabilities makes them excellent

for outdoor on-body data collection and monitoring Aminian and Najafi (2004); Kavanagh and

Menz (2008).

2.2 Movement patterns and technique in cross-country skiing

Cross-country skiing is a complex cyclical locomotion that requires both high physical capacity

and good technical skills. Movement patterns in cross country skiing are characterized by two

different classes of techniques - the skating technique and the classical technique, with both

techniques being divided into several underlying subtechniques. The movement in cross coun-

try skiing is cyclic, and each cycle can generally be classified as either one of the subtechniques

or a transition between subtechniques. A large amount of studies have been published regard-

ing movement analysis of cross-country skiing technique, and amongst other aspects technique

execution and distribution has been shown to have an effect on performance (see for example

Smith (2003); Bolger et al. (2015); Øyvind Nøstdahl Gløersen (2014); Håvard Myklebust (2013);

Losnegard et al. (2016); Myklebust (2016)). With technique distribution and execution showing

relevance to the cross-country skiing field of research it is clear that development of tools made

for technique analysis, able to quantify and classify these specific types of movement patterns,

is of high value and demand.

As mentioned, advances in sensor technology has allowed the use of inertial measurement units

in movement analysis, with Van Den Bogert et al. (1999) being the first to apply this in cross-

country skiing through its study of hip joint loading in various activities. IMUs in cross-country

skiing have also been used to identify and define separable characteristics for the various sub-

techniques utilized in both skating and classical techniques, and to develop algorithms for clas-

sifying movement data into corresponding subtechniques utilized by the athlete.
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The first study to utilize IMUs in technique analysis in cross-country skiing was Myklebust

et al. (2011) in its temporal pattern analysis and classification of subtechniques in ski skat-

ing. The study used temporal parameters of ski pole hits to do transition classification, and

achieved a classification rate of 88%. The following year Finn Marsland and Chapman (2012),

through visual analysis of IMU acceleration data from the athlete’s upper back, identified sep-

arable subtechnique characteristics, indicating the possibilities of developing algorithms for

classification of subtechniques. Subtechnique movement pattern characteristics have in gen-

eral been shown to be both inter- and intra-athlete reproducible (Finn Marsland and Chapman

(2012); Håvard Myklebust (2013); Øyvind Nøstdahl Gløersen (2014)), whilst detailed character-

istics within subtechnique movement patterns also have been shown to vary between athletes

Øyvind Nøstdahl Gløersen (2014).

Following the article of Myklebust et al. (2011) several studies have been made to research the

field of movement analysis and classification in cross-country skiing through the use of IMUs,

and a complete list of all studies utilizing IMUs in cross-country research is presented and sum-

marized in table 2.1. The studies regarding technique classification are presented through a

table in the appendix, and are further discussed in the next sub-chapter.

2.3 Classification of cross-country skiing

Generally, classification techniques used in movement pattern recognition are highly varied,

with heuristic, time-domain, frequency-domain and time-frequency being the most prominent

Preece et al. (2009). A review performed by Preece et al. (2009) comparing the performance of

different classifiers found indications of decision trees or artificial neural networks being the

methods which provides the highest classification accuracy, but differences were small, which

in turn might suggest that implementation and training is of higher importance than the choice

of classifier technology. Technique classification methods used in studies of cross-country ski-

ing have been temporal parameters Myklebust et al. (2011), decision trees Yoshihisa Sakurai and

Ishige (2014); Finn Marsland and Chapman (2015); Yoshihisa Sakurai and Ishige (2016), markov-
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chain Holst and Jonasson (2013); Thomas Stöggl and Holmberg (2014); Meland (2016), unsu-

pervised learning Thomas Stöggl and Holmberg (2014); Garsjø (2016), and similarity transform

template matching Meland (2016). Details of these studies are presented in a table presented in

the appendix.

The accuracy of the methods made for classifying cross-country subtechniques vary from 88%

up to 98.5%. Constraints made to the classification problem in terms of which techniques and

subtechniques are being classified varies greatly, which in turn impacts the resulting classifica-

tion accuracy. All the publications are also varied both in terms of sensor placements, numbers,

and technology, and also in classifier technique, terrain, athlete level, and number of athletes

used for testing and training. These aspects make direct comparisons between studies difficult,

as they might have varying premises for success. However, a general review of the methods and

their implementations is beneficial in considering aspects which remain unanswered or is han-

dled poorly and needs more research to give conclusive results.

In general all published methods handle steady-state classification within a subtechnique well,

with problem areas reported being classifying activity not cohering to the well defined sub-

techniques, with turning Yoshihisa Sakurai and Ishige (2014); Finn Marsland and Chapman

(2015); Yoshihisa Sakurai and Ishige (2016) and transitions between subtechniques Myklebust

et al. (2011); Holst and Jonasson (2013); Yoshihisa Sakurai and Ishige (2014); Thomas Stöggl and

Holmberg (2014); Yoshihisa Sakurai and Ishige (2016); Meland (2016); Garsjø (2016) being the

most prominent. As indicated in Preece et al. (2009), this further supports that the choice of

technique classification method might not be the most crucial factor in providing a high accu-

racy, but rather the implementation and training of this method. If the classification methods

of these published studies were trained for or made able to handle turns and transitions the ac-

curacy is likely to have been higher across all studies.

Although the various studies use athletes of different skill levels between them, none of the stud-

ies have so far done any comparison of accuracy between athlete skill levels within the stud-

ied classification method. This leaves the question of performance across athlete levels unan-
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swered, which is relevant for a classification algorithm meant to hit a commercial consumer

market with athletes of all levels. In addition, none of the studies investigate classification ac-

curacy across varying intensities of techniques, which is highly relevant as a range of different

intensities is used in both training and competition environments. Similarly, the terrain used

for recording movement data ranges from asphalt roller-skiing to treadmill roller-skiing and on-

snow skiing, but there are no studies which have verified any portability between these terrains

in terms of classification. In Myklebust (2016) it is shown that subtechnique movement patterns

are different for on-snow skiing and roller-skiing, by means of distinct alterations in hip rotation

patterns, whilst roller-skiing on treadmill and asphalt have inter-athlete similarities. This indi-

cates that portability of a high accuracy classifier between different terrain might be difficult,

which in turn might restrict the area of application for certain methods or demand more exten-

sive training and even alterations in implementation to be able to handle variations in terrain.

The study of Jenny Margarito and Bonomi (2016) looks into classification across a variation of

activities, not including cross-country skiing, through the use of a template matching classifier.

The results were promising and found template matching to be a simple and robust classifier

which handled these variations well. In addition the classifier proved to be robust on data gen-

erated from previously unseen subjects with different biometric characteristics and motor skills,

with the conclusion that template matching is well suited for recognition of sporting activities of

periodic nature. These advantages play well into current difficulties in the field of pattern recog-

nition in cross-country skiing, and a preliminary study by Meland (2016) have already shown

promising results of utilizing template matching for this problem. In its study Meland (2016)

also states that already available classifiers lacks properties of simplicity and generality, this as

a result of all studies either specializing on either classical or skating, with none having a focus

on creating an general algorithm for the field as a whole, and suggests template matching to be

of interest in trying to solve these issues.

Conclusions and findings relatable to this study

From the general review of the existing methods of classification in cross-country skiing it is

apparent that consistency for reasonably high accuracies is already achieved, with most classi-
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fiers having a performance of >90% classification rate. This does however also indicate that a

classifier performance of 90-95% might not be dependant on the choice of classifier, but might

be just as much a result of how well the chosen method is trained and implemented. Another

point worth considering is that since current classifiers all struggle with similar issues in achiev-

ing even higher accuracies, efforts looking into solving these should benefit the field as a whole.

Along with the specific difficulties of achieving accuracies higher than 95% there are also unan-

swered aspects regarding these method’s robustness in terms of being able to classify through

variations in terrain, athlete skill level, movement intensity and technique, which should be

considered highly relevant for any implementation meant for a broad group of users. Such an

implementation will most likely benefit from a classifier with properties of simplicity and gen-

erality, in terms of being easy to implement and train for these variations. As technique analysis

tools which are precise and easy to use are of high value and demand a focus on performing well

across these variations, along with providing high accuracy performance, should be central for

further development in the field.

As the combined results of Jenny Margarito and Bonomi (2016) and Meland (2016) have indi-

cated promising results for the template matching classifier regarding these issues, this method

is chosen as the classifier used throughout this study.

2.4 Classification

In many practical problems classification is an important part, or even the main goal, of the

task. Classification is a term which is used for the process of deciding what something is or

which category to label something into. The process is based on identifying and evaluating dif-

ferent characteristics of the object being classified, and then assigning the object to a certain

class based on this evaluation. The algorithms doing these evaluations and classifications are

named classifiers. Discriminative characteristics of the objects are most often identified by ex-

amining a big set of representative sample objects, referred to as training the classifier. This

process helps identify the characteristics separating the classes from each other, which the clas-

sifier then later uses to classify new and unknown data. A classification system is mainly built
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Figure 2.1: Table showing key points of previous research on classification of cross-country ski-
ing.

up by feature extraction and classification, for a physical system one also needs some kind of

sensor(s) to create data for the feature extraction. A typical configuration of a classification sys-

tem is depicted in figure 2.2, taken from Johnsen (2016).

For the problem at hand the sensor will be an IMU gathering acceleration and rotational data

from the movement of a cross-country skier. The feature extraction will be the data processing

done to the raw signal from the sensor(s), identifying and enhancing the discriminative features.

These features will then be evaluated by the classifier to classify the unknown data into classes

corresponding to sub-techniques. Training of the classifier will be done utilizing a separate and

known data set. The classifier chosen for this study, reasoning explained in previous subchapter,

is based on the simple and robust principles of template matching, and the details and theory

behind template matching and its classifier is presented and discussed in the following sub-

chapters.
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Figure 2.2: A flowchart describing a typical classification algorithm, taken from Johnsen (2016).

2.5 Template matching

In doing classification and developing of classifiers there are an abundance of different meth-

ods available, each with drawbacks and advantages which might apply to the specific prob-

lem at hand. An underlying problem in automated analysis of cross-country skiing IMU data

is detecting and classifying periodically repeating movement pattern cycles. In the study of

Jenny Margarito and Bonomi (2016) template matching was shown to be a simple and robust

way of classifying a variety of activities, and found that template matching performs robustly on

data generated by previously unseen subjects with different biometric characteristics and mo-

tor skills. Their conclusion was being that template matching is well suited for the recognition

of sporting activities with inherent periodic properties. The main idea behind template match-

ing consists of two major steps: generating templates for each target class using entities with

particular patterns, and then comparing each new entity to this set of generated templates in

order to find the best fitting one. Thus, the unknown entities can be classified to the target class

represented by the selected template Jenny Margarito and Bonomi (2016).

Template matching has previously been successfully applied to great extent in several domains,

such as computer vision Brunelli (2009), speech recognition Deng et al. (2007), and gait anal-

ysis Zhang et al. (2011), but has seldom been applied for physical activity Jenny Margarito and

Bonomi (2016). There have been some studies utilizing template matching as a classifier for

motion patterns, e.g. identifying sport activities Jenny Margarito and Bonomi (2016) and hu-

man gait Vaaga (2008), and Meland (2016) even showed some preliminary promising results on

using the classifier from Vaaga (2008) on cross-country skiing data. The results of Meland (2016)
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Figure 2.3: Illustration of template matching.

suggested that the simplistic and versatile properties of template matching could prove ben-

eficial for some of the difficulties present in the field of classifying cross-country skiing, with

the possibilities of creating a single classifier for handling both classical and skating techniques

being the most important.

2.5.1 Template matching in cross-country skiing

The general principle of template matching classification is quite simple; compare a segment of

unknown data with previously generated templates and classify according to highest similarity.

In the field of cross-country skiing the classifier is most often not only used to classify a time-

line of data, but is in addition used to detect and segment each individual movement cycle of

the skier, which also is a predefined requirement for the classifier being developed in this study.

This additional requirement to the classifier algorithm further complicates the problem at hand,

and is usually solved by creating a way for the algorithm to segment the incoming data into cor-

responding movement cycles before doing classification of each individual cycle. The ways of

segmenting this data are solved in a varied number of ways, but generally these solutions either

work for the classical or skating techniques specifically, and a general method able to handle
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both techniques has yet to be presented.

The inherent nature of template matching will in cyclic data create peaks and troughs when the

template and data series gradually goes in and out of phase with each other. For cyclic move-

ment patterns such as in cross-country skiing the highest peaks and lowest troughs should rep-

resent the same frequency as the cycle rate of the skier, as long as the templates sufficiently

incorporate the characteristics of a full cycle of the subtechnique in question. Utilizing this to

do a similarity transformation on unknown data from cross-country skiing, with different tem-

plates representing different subtechniques, the resulting information should be enough to both

identify movement cycles and classify the subtechnique for the data in question in a single op-

eration. This solution effectively removes the need for a separate cycle identification algorithm,

and in turn should make the method general enough to be able to handle both classical and

skating techniques, as long as it incorporates all necessary subtechniques in its training process.

2.5.2 Cosine Similarity Transform

A template matching method compares two segments of data, providing a measure of simi-

larity between them later utilized by the classifier. The methods for creating such a similarity

measure are many and, similar to the many possibilities in classifiers, these all contain prop-

erties which can be seen as advantages or drawbacks to the problem at hand. In the study of

Jenny Margarito and Bonomi (2016) a comparison between five different similarity measures

utilized for template matching is made, specifically Euclidean distance, dynamic time warping

(DTW), derivative dynamic time warping (DDTW), correlation, and their own index combin-

ing distance and correlation metrics named Rce, with their results suggesting that correlation-

based mathing techniques generally outperformed the Euclidian, DTW and DDTW similarity

measures Jenny Margarito and Bonomi (2016). The study of Vaaga (2008) utilized the simplistic

correlation based similarity measure of the Cosine Similarity Transform on human gait detec-

tion with great results. This similarity measure was later also utilized in the study of Meland

(2016) on cross-country skiing data, which stated that the method was promising both in terms

of performance accuracy and its ease of implementation, with indications that such a simplistic
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method could prove beneficial in solving difficulties in creating a general classifier able to han-

dle both classical and skating techniques for cross-country skiing. Because of these aspects, the

usage of the Cosine Similarity Transformation will be continued throughout this study, with the

most prominent advantages being the methods combination of simplicity in implementation

and previous promisingly results on similar classification problems.



Chapter 3

Methods

In this chapter the experimental approach and details of the methods used and developed through-

out the work of this thesis are described. The first subchapter contains details of the data record-

ing process in creating the data sets used in this study, followed by a description of the instru-

ments and materials used, and a description of the video analysis process performed. The last

subchapters relates to the development process of the template matching method.

3.1 Data sets

When developing a template matching classifier for cross-country skiing the first step is to gather

representative training data which can be used for template creation. This data has to cover all

relevant movements which are to be classified, techniques and subtechniques of cross country

skiing in this case, and needs to be as representative as possible if one is to separate between the

similar movements of these different subtechniques. The gathered data for this study consisted

of information recorded from an inertial measurement unit (IMU), which included a 3-axis ac-

celerometer, 3-axis gyroscope, 3-axis magnetometer and a barometer. The IMU sensor used

when collecting data was mounted centrally on the subjects lower back.

These data sets were collected in Granåsen ski-center in Trondheim, Norway, during the spring

and winter seasons of 2016. All protocols and procedures were explained verbally to each skier.

The course, terrain, and snow quality were not controlled factors. All data collection was super-

16
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Figure 3.1: Example single axis data from an athlete recorded during cross country skiing.

vised by either one or more video cameras (Garmin VIRB Ultra 30) placed on the athlete’s own

torso and/or operated by an additional athlete following the subject with a head-mounted cam-

era pointing at the subject at all times. These video recordings were used to verify classification

by visually identifying cycle count and sub techniques utilized by the skier, and to investigate

any discrepancies in the classification results.

When collecting data for template creation the subjects were told to ski using the designated

sub-technique in a straight line, with G4 and herringbone recorded in uphill segments. The col-

lection of data used in classification tests was done in a non-specified course which varied in

terrain features (uphills, downhills, turns etc.). In the first round of recording a total of 3 ath-

letes, 2 female and 1 male, of former active elite level participated. For the second round of

recording a total of 8 male skiers volunteered for participating, with 5 being of elite skill level

and 3 of amateur skill level. The elite skiers were between national and international skill level,

the amateurs were recreational skiers.

In order to research possibilities for classification across variations in terrain a preliminary study

comparing templates from treadmill and on-snow recorded data was done. A study done by

Myklebust (2016) have already shown alterations in hip movement patterns between on-snow

and treadmill skiing, and this was expected to be reflected in templates. The results of this study
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are described further in chapter 4. The treadmill data was also used for investigating the im-

plications of varying intensity for template characteristics, results discussed in chapter 4, as the

recodrings included runs of low, medium and high intensities. The roller-skiing was performed

on a 5 × 3-m motor-driven treadmill (Forcelink B.V., Culemborg, The Netherlands). The inclina-

tion and speed were calibrated using the Qualisys Pro Reflex system and Qualisys Track Manager

software (Qualisys AB, Gothenburg, Sweden). The non-slip rubber surface of the treadmill belt

allowed the subjects to use poles (Madshus UHM 100, Biri, Norway) with special carbide tips.

Poles were available in five-centimeters intervals and the subjects chose the preferred length. A

safety harness secured the skiers during the treadmill testing. In order to minimize variations

in rolling resistance, all of the skiers used the same pair of IDT roller skating skis with standard

resistance category 2 wheels (IDT Sports, Lena, Norway).

3.2 Instruments and materials

The sensor unit used in this study is a single 9-axis Apertus IMU (Apertus Skiing Sensor, Apertus

AS, Asker, Norway) with integrated barometry, built up by an accelerometer, a gyroscope and a

magnetometer. To reduce confounding factors of classification the barometer and magnetome-

ter were not used in this study, as they are affected by external factors (human made magnetic

fields, altitude) not related to ski technique. The Apertus IMU was placed centrally above the

lower spine of the skier. Data was transmitted in real-time by Bluetooth, using a mobile phone

(Sony Xperia Z3 compact, Sony Inc., Tokyo, Japan), which received and stored the collected data

for post processing in Matlab R2016a (The MathWorks Inc., Natick, MA). All participants used

their own skis, boots and poles.

Axis Figure
Accelerometer x-axis FwdA
Accelerometer y-axis SideA
Accelerometer z-axis Up
Gyroscope x-axis Roll
Gyroscope y-axis Pitch
Gyroscope z-axis Yaw

Table 3.1: Table describing axes orientation in accordance with figure 3.2.
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Figure 3.2: Illustration of IMU placement (white square on athletes lower spine, left picture,)
and axis orientation, right picture, taken from Finn Marsland and Chapman (2012).

3.3 Video analysis

For verification of the template matching algorithm video analysis is utilized by manually iden-

tifying true cycle detections and classifications. This process is done by revising the recorded

videos of the test subjects and manually marking starting and end points for each movement

cycle, along with assigning it to its representative subtechnique. This video analysis is done

through usage of the ANVIL video annotation tool, which offers multi-layered annotation based

on user-defined coding schemes. This coding scheme is made representative to the subtech-

niques in question, with separate annotation layers for manual marked cycles and the cycles re-

sultant from the template matching method. In addition, layers for reviewing the performance

of the algorithm is included, with possibilities for separately annotating correctly detected cy-

cles, correctly classified cycles, undetected cycles and erroneously detected and classified cy-

cles. This process is exemplified in figure 3.3. The outputs from the template matching method

are converted into a format compatible with this ANVIL coding scheme, and can because of

this easily be imported into ANVIL for comparison with the manually marked cycles. For rough

alignment of the video marked cycles and the template matching cycles a manual offset is added

to the template matching data.
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Figure 3.3: Example of video analysis annotation comparisons.

3.4 Template creation

As mentioned earlier the performance of a template matching method is highly dependent on

accurate templates representing each specific pattern to be classified, and because of this the

template creation process is a crucial part of the development process. The templates needs to

be carefully selected in order to be as representative as possible, and in some cases there might

be a need for several templates to cover variations within a subtechnique.

To ensure a repeatable and accurate template creation process, a semi-automated algorithm

was developed. This developed script lets the user choose a segment of raw data through start

and end points for a single subtechnique, which the algorithm then processes into templates for

that subtechnique. The result of the process is shown visually for ease of inspection, with the

most critical aspect being proper cycle detection. The flow diagram for the developed template

creation algorithm is shown in figure 3.4, with its details explained in the following subchapters.
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Figure 3.4: Flowdiagram illustrating the template creation algorithm.

3.4.1 Data processing

The method of cycle detection in the template creation process utilizes low-pass filtering of

raw data to enhance the harmonic frequency of the movement. This low-pass filtering removes

noise and higher frequency movements, so that the signal resembles a pure sinusoidal with the

extremal points corresponding to the cycle rate of the subject. For cycle detection a single axis

from the 6-axis raw data available is chosen. This chosen axis is crucial for the resultant template

constructed, as not all axes will have an harmonic frequency corresponding to the cycle rate

of the subject. The process of choosing an axis for cycle detection was done through spectral

analysis for each axis using a Welch PSD estimate together with evaluating the performance of

the different possible axes through cycle detection. An example PSD is shown in figure 3.7, and

the resulting axes used for each subtechnique are presented in table 3.2. The Welch PSD was also

used when doing filter design for the sinusoidal enhancement. From the example figure 3.7 one

can see that the harmonic frequency is < 2Hz, which was true for all subtechniques in this study.

To reduce the impact of data processing lag, resulting in skewed extremal points, a zero-phase

filter was used. The filter design was done by using built-in functionality in Matlab. If the filter

did not perform optimally in removing all movements except for the sinusoidal, the filtering

process was simply repeated, effectively increasing the filter order. This can be done as the filter

is zero-phase, with no lag affecting the processed data, and the effects on amplitude does not

matter in terms of cycle detection. The initial filter order was chosen through experimentation.
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Figure 3.5: Plot illustrating raw data, low pass filtered data with cycle detection, and cycle re-
sampling.

Table 3.2: Overview of axes used for peak detection in template creation.
Class DS DP DPK HB
Axis gyro-x gyro-y gyro-y gyro-z

Class G2 G3 G4 G5
Axis gyro-z gyro-z gyro-z gyro-z
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3.4.2 Peak detection and cycle segmentation

The base harmony after low-pass filtering the signal corresponds to the base harmony of the

movement, and thus the peaks of this signal indicates the cycles of the motion pattern. These

peaks are used to segment the signal up in cycles, and after the segmentation each segment rep-

resent a cycle of raw data. When segmentations have been, processed each cycle will naturally

vary in length (time) corresponding to the variations in cycle time from the subject movements.

The template creation is based on finding representative templates for each subtechnique based

on the many cycles collected from a long segment of raw data. The variations in cycle length will

then cause irregularities in timing of the different characteristics within a cycle, which might re-

sult in a degradation template quality if not countered. To counter this the mean cycle length

from the collected segments is calculated and each cycle is resampled in length correspondingly,

causing the templates to be of equal length, and the characteristics within a cycle to be coherent.

The re-sampling is done through Matlab’s built-in function r esample(X ,P,Q), which resamples

the values, X , of a uniformly sampled signal at P/Q times the original sample rate Mathworks

(2016). When re-sampling a cycle to fixed length the P corresponds to the desired number of

points and the Q corresponds to the length of the original cycle being re-sampled. For further

details of this function the reader is referred to Matlabs documentation at Mathworks (2016). As

the templates and unknown data are results of concatenation of six-axis sensor data series their

lengths has to be multiplums of six, because each axis of the unknown has to represent a sixth of

the template. This always has to be considered when creating and resampling templates, and is

because of this handled automatically by both the template creation and resampling algorithm.

3.4.3 Template post-processing

The cycle detection algorithm will sometimes detect a false or erroneous cycle, with character-

istics differing significantly from the mean of the subtechnique characteristic. To counter this,

outlier removal is implemented to remove data points which is far from the mean distribution

for each point. This is done through moving points outside the .25 and .75 quantiles of the in-

dividual point normal distribution to the .5 quantile (mean) for each point. This ensures that
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Figure 3.6: Plot illustrating segmented cycles, from the G4 (padle) subtechnique, compiled into
overlapping templates. The second subplot illustrate results from outlier removal.

there is no outlier point greatly affecting the resultant template characteristics. Results of out-

lier removal is illustrated the lower subplot of figure 3.6.

The final template from each creation process is created from the mean of all individual, outlier

corrected, templates found in the segment of raw data chosen.

Normalised template set

In order to reduce complexity and computational load of the algorithm, a goal is to create a re-

duced template set by processing all available templates into a minimalistic yet representative

template set. To make analysis of subtechnique templates across athletes possible, all templates

are grouped into sets corresponding to their representative subtechnique. For such a grouping

to be possible the templates has to correspond in terms of template length, and this is ensured

by normalising the template lengths within subtechniques by resampling all templates of a sub-

technique to the mean template length of that specific subtechnique. The resulting groups are

then analysed by doing clustering of their contained templates in an attempt to reveal any char-

acteristical subsets within each subtechnique. If such subsets are identified the groups are di-
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vided accordingly in order to preserve unique characteristics, as these are crucial to the classifier

performance. All final template groups are then reduced to single templates by creating a rep-

resentative mean template for each group. These resulting templates are then representative

of their subtechnique both in terms of their unique subtechnique characteristics and their nor-

malised template length.

3.5 Template matching

This chapter outlines and describe the details of the template matching model developed dur-

ing the work of this thesis. A flow diagram for the template matching algorithm developed is

illustrated in figure 3.9.

3.5.1 Data processing

To ensure the best conditions possible for the template matching method it is desireable to re-

move unwanted frequency components from the raw sensor data. For this classification algo-

rithm one wants to remove high frequency components which are unrelated to the movements

of the skier. Most signals of real-world implementations have a component of high frequency

Gaussian white noise, but high frequency noise could also be from external sources such as the

electrical components of the sensor or uncontrolled high frequent movement from the imper-

fections of the skiing surface.

Filtration of data actually has two purposes in this study, high frequency noise removal and

enhancement of the lowest harmonic frequency component. The lowest harmonic frequency

component will for certain axes represent the cycle rate of the athlete. Through removing all

other frequencies, leaving only the frequency corresponding to cycle rate, will allow automatic

detection of cycles in the dataseries, which is utilized in the template creation process for the

template matching method.

In doing filtration of unwanted components, an analysis of the frequency components of the

raw signal must be done to create a basis for filter design. The frequency distribution of the raw
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signal is revealed through calculating the power spectral density. This can be done in several

different ways, and for this study Welch’s method has been chosen. The calculated Welch’s PSD

is shown in figure 3.7. Peaks in a PSD represents frequencies which are dominantly present in

the raw signal. From the PSD plot one can see harmonic frequency components in the lower re-

gions of the spectrum, and one finds that above 5-10Hz there are no prominent peaks and that

the lowest harmonic frequency is below 2Hz, meaning that 2Hz and 10Hz are suitable cut-off

frequencies for this application.

Since both cases of filtration aims to remove frequencies higher than the ones enhanced, a low-

pass filter is suitable. The low-pass filter design is done through utilizing Matlabs built in func-

tionality, which simply requires the filtertype, cut-off frequency, desired filter order and nor-

malized sampling rate of the signal as inputs. Filtertype and cut-off frequencies are chosen as

described above, whilst the filter order is chosen by experimentation. The normalized sampling

rate is calculated from the true sampling rate of the sensor.

The resulting filters used are shown in figures 3.8, and the effects of these filters on raw data are

shown in figure 3.7.

3.5.2 Algorithm implementation details

The algorithm developed for this thesis is specifically aimed at being able to identify and clas-

sify movement cycles and cycle rates in cross country skiing. The model operates through com-

paring known templates of representative subtechnique movement cycles with unknown data

series of continuous skiing. The similarity between each template and the unknown data series

is calculated through iteratively using the cosine similarity transform on segments of the un-

known data, with equal length to the template being used.

This comparison results in n new data series containing similarity values for each point of un-

known data for each template, with n being the number of templates. These similarity value

data series will have peaks and troughs representing the template going in and out of phase

with the unknown data movement cycles, which are used for cycle detection and classification.
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Figure 3.7: Plot illustrating the power spectral density of raw IMU cross-country data and the
effects of filtering. The PSD is calculated using Welch’s method.
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Figure 3.9: Flowdiagram illustrating the template matching algorithm. ’n’ equals number of
templates.

The process of cycle detection is is done by isolating and detecting all similarity peaks above a

certain threshold, and grouping the peaks from different templates together. These groups of

similarity points will then contain a value from each template having a high enough similarity

with the unknown data. The cycle detection index and class is then assigned according to the

point in the group having the highest similarity score, using the original index and template

class tied to that specific similarity point. Further details of this implementation is described in

the following subchapters.

Cosine similarity transform

A cosine similarity transform uses the geometrical relation of the dot product, length, and an-

gle between two vectors as a measure of similarity. The cosine of two vectors can be derived by

using the Euclidean dot product formula shown in equation 3.1. It is common to use similarity

and not cos(θ) as the annotation for this transformation, and the equation can thus be rewritten

to equation 3.2 Vaaga (2008).
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Figure 3.10: Illustration of the cosine similarity transform, with θ being the measure of similarity
between the vectors V and S.

a ·b = ‖a‖‖b‖cos(θ) (3.1)

si m = cos(θ) = v · s

‖v‖ ·‖s‖ (3.2)

With a known vector S, used as a template, one can do a cosine similarity transform on a data

set. For each sample point of the data set one extracts a vector, V , of same length as the known

vector S. The cosine of the angle between them is calculated using equation 3.2, and represents

a measure of how similar they are. When this is done throughout the whole data set one gets

a measure of where and how much the data segment represented by S is present throughout

the series of unknown data. This new data series of similarity values will have extremal points

where the known vector, template, fits the uknown data set Vaaga (2008). The values represent

the similarity value between the template and data series, ranging from -1 to 1, with 1 being an

exact match, 0 giving no similarity at all, and -1 an exact inverse relationship between the tem-

plate and data.

Calculating a similarity value for a segment of unknown data is done through comparing this

segment with the template. The length of the segment being investigated thus has to be the

same length as the template, and you get a single value of similarity for this specific segment.

This process is run iteratively through the whole length of the unknown data series, resulting
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Figure 3.11: Plot illustrating the cosine similarity transform on cross-country skiing data. The
upper plot shows the gyro-z axis segment of the template, plotted in the scale of the data for
context illustration. The lower data shows the results of the similarity transform, with peaks
above threshold marked in red.

in “N - n” similarity points, where N is the length of the data series and “n” the length of the

template. The method used on cross-country skiing data with a single template is illustrated in

figure 3.11.

Resolution of similarity transform calculations

A parameter related to computational load and accuracy for the similarity transform is the in-

crementation step used. As the similarity between the template and movement data gradually

goes in and out of phase one can linearly reduce the computational load by incrementing the

segment of movement data evaluated by steps greater than 1, e.g. incrementing the data seg-

ment by 4 data points instead of 1 will result in a x4 reduction in calculations. This reduction

in computational load does however at the same time impact the resolution of the cycle detec-

tion. With an incrementation step of 1 the similarity transform has a resolution corresponding

to the sample frequency, and in this study a sample frequency of 100Hz is used. Increasing the

incrementation from 1 to 4 this sample frequency is effectively reduced to 25Hz, which in turn

is a reduction in accuracy by altering the cycle detection resolution from 10ms to 40ms. In the
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experiments of this study several incrementation steps were tested and a step of 4 was found to

be accurate, stable, and providing decent reductions of computation time.

Peak detection of similarity values

The similarity comparison results in n data series of similarity values for each point of unknown

data for each template, with n being the number of templates. These similarity value data se-

ries will have peaks and troughs representing the template going in and out of phase with the

unknown data movement cycles. These peaks and troughs are the basis used for cycle detec-

tion and classification. The main challenge of using these extremal points is that the values of

similarity will naturally fluctuate when the template and sections of the unknown data has par-

tially similar characteristics, resulting in a data series almost solely consisting of a fluctuation

between extremal points. However, the out-of-sync partial hits in similarity will have a much

lower similarity value than the in-sync peaks, and the problem of isolating the peaks is solved

by assigning the values below a certain threshold to zero - leaving only the peaks of interest in

the similarity data series followed by running a peak detection of these smaller above-threshold

segments detecting the single highest value representing the true original peak of the similarity

data. This process is illustrated in figure 3.12. When the peaks in similarity values for each tem-

plate has been detected, the peak index, template class and similarity value is stored for further

use in the cycle detection and classification process.

Peak detection threshold

The threshold chosen for the peak detection in similarity value series is an important perfor-

mance parameter. If this threshold is chosen too high there is an increased chance of cycles

being undetected by simply having a similarity value below the threshold, and if the threshold

is too low the chances of saturation in the peak detection increases. The dysfunction caused by

a low threshold is a result of detecting too many low-value peaks in between the high valued

peaks, causing a saturation in the centroid detection of the binning process of cycle detection,

effectively masking the high valued peaks also resulting in undetected cycles.

From this it is apparent that the choice of the similarity peak value threshold is crucial in expect-
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Figure 3.12: Plot illustrating peak detection in similarity values.

ing a well-performing algorithm. Through testing a threshold of 0.65 is chosen and used on all

final results of this study. Utilizing a dynamic threshold was considered but not implemented,

later studies might benefit from looking into this for improving the accuracy of the template

matching method.

Grouping of similarity values

A challenge still remaining when all peaks of similarity have been identified and stored, is that

the peak values from different templates will not necessarily have the same index, meaning that

one cannot simply chose the highest value for all indexes and classify accordingly. A seem-

ingly easy solution to this is to always choose the highest value within a certain index range, i.e.

within the length of a template, but this is non-trivial as the template lengths are highly variable

in representing different athletes individual subtechnique execution and also in representing

different frequencies of execution within the same subtechnique. To overcome this problem a

method of grouping the peaks from different templates have been developed. A flow diagram

for this algorithm is shown in figure 3.13.

The technique utilizes a method of histogram bin counts with dynamical adjustment of each
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Figure 3.13: Flow diagram illustrating the grouping algorithm.
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Figure 3.14: Plot illustrating the grouping algorithm.
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edge based on all peaks detected in the similarity data. The dynamical calculation of bin edges

is initialized by creating a new zero-initialized vector and adding in a fixed value for each de-

tected similarity peak at the original index of this peak. This results in a discrete cumulative

distribution of the peaks detected. The distribution is then converted into a continuous cumu-

lative distribution by running a moving average across this dataseries. The peaks of the contin-

uous distribution is then roughly representative of the center for each cluster of similarity peaks

across all templates. These central peaks can then be used to create dynamical edges for bins

used to group the similarity peaks, by calculating the middle value between the center points.

The grouping process is simply done by assigning the similarity peaks into its corresponding

bin by using the original similarity point indexes. This is done by utilizing Matlab’s built in his-

togram bin count method, histcounts, which groups a vector of specified points into bins with

the bin edges specified by a separate vector given to the function. An example of the grouping

process is shown in figure 3.14.

Classification and cycle detection

These groups of peak points will then contain a single value from each template having a high

enough similarity value within reasonable distance from each other. The cycle identification

and cycle class is then assigned according to the point in the group having the highest similarity

score, using the original index and template class tied to that certain similarity point.

Template resampling

The templates from the template creation process have lengths corresponding to the cycle rate

of the subjects at the time of recording. When utilizing the method of similarity transform, the

timing of characteristics between the template and the unknown data has to match in order to

produce a high similarity value.

If the cycle rate represented in a template and true cycle rate of movement in the unknown

data does not match, the similar characteristics of the template and data has no way of fully

aligning. This results in similarity values being lower than had a full alignment occurred. This

shows that the length of the templates is an important factor in generating good results from

template matching.
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In preparation for data collection, a study was made to investigate differences between charac-

teristics of same-subtechnique templates of different execution intensities. The results of this

study was that the differences in amplitudinal characteristics were small and the differences in

template lengths were substantial, which is not unexpected as a higher intensity corresponds

to a higher cycle rate and shorter cycle time. The details of this study are presented in chap-

ter 4. This further substantiates that the template lengths are of great importance. It does also

imply that if one has a template representing a certain intensity of a subtechnique, and have

ways of modifying it in length, it should be possible to use this template in classifying a varia-

tion of intensities for that specific subtechnique. This not only reduces complexity in reducing

the number of unique templates needed, but also reduces the amount of data collection that

has to be made when training the classifier.

A way of changing template length without altering the amplitudinal characteristics is to per-

form a resampling of the template. A resampling will either stretch or compress the templates

in time according to a new sampling rate, by either decimating or interpolating the original

template. The decimating and interpolation are respectively mainly used for compressing and

stretching. The process of resampling is however delicate, as one has to make sure that the new

sampling rate is uniform and that the process does not add any form of noise, in the form of un-

wanted components. If the decimating and/or interpolation methods do not account for this,

the template characteristics might be unevenly affected, resulting in corrupt templates. Because

of this both decimating and interpolation might be used interchangeably in the resampling pro-

cess. In this study the complex task of resampling is performed by utilizing the built in function-

ality of Matlab, to ensure consistently good results. The Matlab function r esample(x, p, q) re-

samples the input sequence, x, at p/q times the original sample rate, and applies an antialiasing

FIR lowpass filter to x to compensate for the delay introduced by the filter Mathworks (2016).

3.5.3 Cycle time calculations

For detection of cycle time there are several methods which can be applied. In a template

matching method the most obvious approach is to utilize the peaks within the similarity data,
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Figure 3.15: Plot showing the effects of resampling templates of the same subtechnique from
different athletes to equal length.
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Figure 3.16: Plot showing the effects of using resampled versions of the same template in the
similarity transform.
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more specifically the peaks chosen in the cycle detection and classification algorithm. These

peaks correspond to the end of the template which produced it, and thus the end of the cycle is

detected. These can further be used to calculate the corresponding cycle lengths, if the starting

point of each cycle is found.

Different approaches are possible for finding the starting point corresponding to each detected

cycle end point. A first approach is using the previous end point as a starting point for the next

cycle, and another approach is using the corresponding template length of the template used in

detecting the cycle. Each of these approaches does however have drawbacks in regards to accu-

racy of the cycle time calculation. A drawback for the approach of solely using similarity peaks to

define cycle times is that cycle times will be stretched in length for sporadic cycles, an example

being if the athlete pauses in between cycles, ex. downhill tuck, the cycle time for the next cycle

has its starting point at the end of the last cycle which makes this cycle time include both the cy-

cle itself and the period of downhill tuck. Drawbacks with the approach of solely using template

lengths is the resulting predefined resolution, with cycle times not being able to differ from the

predefined template lengths used in cycle detection, along with the possibility of overlapping

cycles if the template lengths are longer than the interval between the similarity peaks. An ad-

vantage of using template lengths is that each cycle has the ability to be isolated from others,

countering the drawback of only using similarity peaks for calculating starting points. What is

apparent when reviewing these advantages and drawbacks is how they counter each other when

combined, with the similarity peaks advantage of non-overlapping and ability of variable cycle

times working well together with the properties of non-stretching of cycle times through tem-

plate lengths. A third approach is thus to use this through having template lengths as a starting

point for cycle times, along with adjusting these starting points to the previous similarity peak

in cases of overlapping cycle times.



Chapter 4

Results

In this chapter results produced and found throughout the work of this thesis are presented.

The first subchapters contains various analytical results relevant to the development and im-

plementation of the template matching method, followed by the results of performance for the

template implementation algorithm. The results presented are discussed further in chapter 5.

4.1 Differences in template characteristics

A premis for the work of creating a well-performing template matching method is having the

characteristical differences between subtechniques reflected in the templates made. To ensure

this, a study of the differences in characteristics of different subtechnique was made, described

in detail here.

One of the most differentiating characteristic entity of the G3 technique in comparison to G2

and G4 is the variation in template length (shown in figure 4.2). The template length for G3

is significantly longer than that of the other skating techniques, across all intensity levels (LIT,

MIT, HIT). Because of this one might want to avoid stretching and compressing templates too

much during the resampling process of the template matching algorithm, as this might reduce

the differences between the templates and as a result making the process of separating these

subtechniques more difficult for the classifier.

38
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In figure 4.1 templates of different subtechniques are shown together. From figure 4.1 one can

observe that characteristics for templates within the skating techniques are similar when rep-

resented in a form of equal length, but with differences in the gyro-X axis (at approx. sample

points 670-850 in figure 4.1) separating them.

For the classical techniques, differences between templates are more distinct. Figure 4.1 shows

double poling being the most divergent from the others, whilst the diagonal stride technique

has some similarities with the skating techniques, whilst still containing some significant dif-

ferences in certain axes, predominantly in the acc-Y axis (at approx. sample points 170-340 in

figure 4.1). The double pole kick technique is not illustrated in figure 4.1, but has shown to have

separable characteristics from double poling in the gyro-Y axis.

These results show that templates of different subtechniques generally show similarities be-

tween them, but also inhibit distinctive differences in characteristics, indicating that a template

matching classifier should be able to separate subtechniques from each other.

4.2 Intensity related differences for subtechniques

For development and classifier performance it is relevant to investigate if it is possible to do

classification across varying intensities with a single intensity template, or if a variation in ath-

lete movement intensities also requires templates representative of these intensities.

Differences are most prominent in terms of template lengths (cycle time), and the templates of

different intensities show increased similarity when resampled to an equal amount of sample

points. From the resampled templates one can observe that there are minor differences in both

timing and amplitude between the intensities, but these are less significant than the differences

in cycle time. These findings are true across all subtechniques and mainly reveal two things,

first; for classifying a subtechnique across intensities with a single template there is most likely

a need for stretching and compression in regards to length of the template, second; compress-

ing and stretching in regards to amplitude might have an effect in terms of accuracy, but this is
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Figure 4.1: Comparison of templates from different subtechniques
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Figure 4.2: Illustration of differing template lengths for templates from different subtechniques

likely to be of much less significance than resampling in length. Figure 4.3 illustrates differences

in characteristics within subtechnique templates of different intensities for the double poling

subtechnique.

The variations in length according to variations in intensity are likely to be different between

different athletes. Creating a template base through resampling a representative normalised

template through compression and stretching should be a good approach in avoiding having a

large athlete-count template base covering the various possible template lengths, and through

this reducing the computational loads of the algorithm as each template adds an iteration of

computation in the method.

The variation in amplitudes varies between athletes, but this is much less significant than the

variations in template length. The variation in amplitude of raw versus mean templates of an

athlete could also be less than the variation within a single intensity. Because of this, stretching
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Figure 4.3: Illustration of differing characteristics between different intensities for templates
within the same subtechnique

and compressing in terms of amplitude is expected to have less of an impact on classifying accu-

racy, albeit it might have a reasonable effect and further studies could prove this to be beneficial.

The most significant difference in amplitude characteristics is observed between MIT and HIT

intensity, which indicates that both MIT and HIT might be useful in template matching, whilst

LIT and MIT are more similar and MIT should suffice in covering these.

4.3 Preliminary assessment of cross-terrain classification

To assess the possibility of a general algorithm with possibilities for cross-terrain classification

between on-snow, treadmill and roller skiing, characteristic differences of movement cycles

recorded for these variations were looked into and tested in terms of classification performance.

A study done by Myklebust (2016) show clear variations in hip movement between on-snow and

treadmill movement patterns for the skating technique, which indicated that there should be

differences in template characteristics created on different terrain.
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To a certain degree the results of Myklebust (2016) were also seen in this study, with G2 showing

the most significant differences. The G4 templates showed a higher degree of similarity, with

only the gyro-Y axis showing significant differences. For G3 templates no significant differences

were found, with templates being similar throughout all axes. Preliminary cross-terrain classi-

fication tests, using templates of treadmill skiing to classify on-snow data and vice versa, gave

poor results in both classification and cycle detection rate, predominantly for the G2 subtech-

nique.

It should be emphasized that these results only indicate cross-terrain classification possibilities

to be non-trivial, and further in-depth investigations might find ways of processing templates

into being cross-terrain compatible. As the tools for classification were in need of further devel-

opment at the time of this analysis the matter was not pursued further. Classical templates were

not a part of this analysis, but are believed to be more compatible with cross-terrain classifica-

tion.

4.4 Effects of characteristics and resampling

To investigate the effects of different templates and the effects of resampling, several test were

run on test data from a straight line recording. The straight line course was chosen for these

initial tests to reduce the amount of cycles containing turns and transitions, as these are known

problem areas in classifying cross country subtechniques, discussed in chapter 2. The tests were

done in a systematic manner in first using a single-athlete template base for classification, fol-

lowed by using an all-athlete template base, and lastly using the normalised template set (de-

scribed in chapter 2).

In analysing the impact of resampling, the first two tests were done both with and without re-

sampling of template length. As resampling was found beneficial all later tests were done solely

with inclusion of resampled templates. The test subjects were not part of the training set for any

test performed. The results from all tests are presented in table 4.1.
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Table 4.1: Straight line course classification

Template set Test subject Technique
Classification rate

No resampling
Classification rate

Resampling, 70%-130%
A1 Athlete M Skating 75.0% 80.6%
A3 Athlete M Skating 66.7% 66.7%
A4 Athlete M Skating 97.2% 94.4%
A6 Athlete M Skating 100% 97.2%
A7 Athlete M Skating 86.1% 88.9%
A8 Athlete M Skating 75.0% 88.9%

All athletes Athlete M Skating 97.2% 97.2%
All athletes Athlete T Skating 92.9% 95.2%
All athletes Athlete C Skating 87.8% 97.6%
Normalised Athlete M Skating - 97.2%
Normalised Athlete T Skating - 95.2%
Normalised Athlete C Skating - 100%
Normalised Athlete M Classical - 95%
Normalised Athlete T Classical - 64.3%

The initial straight line tests were done on a single subject, Athlete M, skating run with a vari-

ation of single-athlete template bases. Large fluctuations in successful cycle classification rate

was shown, ranging from 67.7% to 100% for different athlete template bases, with an overall

mean classification rate of 83.3%. Utilizing resampling of template lengths gave a slight increase

(2.8% percentage points) in overall classification, with approximately the same variation. The

tests gave a cycle detection rate of 100%. The large variation in classification rate for different

template bases indicates differences in characteristics to be significant in terms of performance.

The following straight line course study utilized the complete template base, including all ath-

letes used in training, and were tested on three different subjects utilizing skating subtech-

niques. The complete template set without resampling showed a variation of 87.8% to 97.2%,

with an overall mean classification rate of 92.6%. The same test redone with resampling gave

a variation of 95.2% up to 97.2%, with an overall classification rate of 96.7% (4.1% percentage

points increase). The tests gave a cycle detection rate of 100%.

As a next step the normalised mean template set was tested on the same three skating straight
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Figure 4.4: Example of straight course classification results

line runs in addition to two classical straight line runs, with results being classification rates

95.2%, 97.2% and 100% for skating, and 64.3% and 95.0% for classical, overall mean classifica-

tion rates being 97.6% and 79.6% respectively. A cycle detection rate of 100% for skating and

95% and 64.3% for classical was observed.

For all straight line skating studies misclassifications for the high-classification rate results were

related to either transition cycles or cycles with movement intensity differing greatly from the

intensity of the movements recorded for template creation. In the classical technique study

all misclassifications and missed cycle detections were related to diagonal stride performed in

uphill terrain.
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Figure 4.5: Dataset overview

4.5 Full lap classification

For the final study, classifications were done on data recorded through full laps of varied ter-

rain and subjects choosing technique freely. There were two different courses used for the two

rounds of data collections. Two sets (one skating, one classical) of the first round, and one set

(skating) of the second were used as test data, with the remaining four data sets of the first round

used as training data. The training set used were the processed normalised template base, de-

scribed in chapter 2. Only one set of the available first round recordings was used as test data,

as these sets had little variation in terrain with a dominantly large portion of uphill segments,

and using several might have produced biased results. Prior to classification, video analysis of

the recordings were done to create true cycle counts and classifications which the results of the

template matching were compared against. From this the classification rate, overall classifica-

tion rate and cycle detection rate were calculated. These parameters, along with the number of

undetected and erroneously detected cycles are presented in figure 4.6.

Overall performance

Three laps were used in testing, with a total of 649 true cycles predetermined from the video

analysis process, 249 of classical and 400 of skating technique. Of these 616 (94.9%) were de-

tected correctly, with a total of 23 undetected cycles. In addition there was a total of 40 erro-
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Figure 4.6: Table showing results from full lap template matching

Table 4.2: Confusion matrix for correctly detected cycles
G2 G3 G4 G5 DS DP DPK HB Total

G2 36 1 37
G3 12 64 1 14 91
G4 250 250
G5 1 16 17
DS 74 15 89
DP 1 77 78
DPK 5 59 64
HB 0 0

neously detected cycles, 10 of which were also labeled as misclassifications. A total of 575 of

the correctly detected cycles were classified correctly, giving a classification rate of 93.3% for the

correctly detected cycles, and an overall classification rate of 88.6% related to the video cycle

count. A confusion matrix for the correctly detected cycles is shown in table 4.2.

Classical technique specific observations

Misclassifications and undetected cycles from the classical technique results were mostly re-

lated to the digonal stride subtechnique performed in uphill terrain. Reasons for this was inves-

tigated in detail, with the results being that the uphill diagonal stride differs significantly from

diagonal stride performed on flat terrain. This implicates that the uphill diagonal stride is not

well reflected in the training set utilized by the template matching method. For analytic pur-

poses an evaluation of the classical results with these cycles ignored was made. Ignoring the

errors related to diagonal stride uphill gave a cycle detection rate of 97.7% and an overall clas-

sification rate of 95.5%, with a 76% decrease in erroneously detected cycles and 72% decrease

in undetected cycles. This indicates that the difficulty regarding diagonal stride performed in
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Figure 4.7: Table showing results with ambiguous cycles ignored

uphill terrain should be solvable through proper and representative training of this movement

pattern.

Skating technique specific observations

For the skating data a significant number of erroneously detected cycles were related to double

poling being detected within the G3 subtechnique. To assess the performance of the classifier

without these errors, classification was done with a template base consisting solely of skating

subtechniques on the run containing these problems. This resulted in a 61% decrease in erro-

neously detected cycles, with the classification rate increasing from 86.9% up to 92.1% and the

cycle detection rate increasing from 93.2% up to 98.4%.

Analytical overall performance

Looking at overall results with errors related to uphill diagonal stride and double poling within

the G3 subtechnique ignored, most remaining anomalies are related to ambiguous cycles of

movement. Ambiguous cycles are cycles where a true classification is hard to define, as the

cycle might not be a full movement cycle of the specified subtechnique or the movement it

self might differ greatly from the normal movement of that subtechnique. Ambiguous cycles are

predominantly related to direction altering movements and transitions between subtechniques.

When disregarding these ambiguous cycles, along with the alterations for skating and classical

technique considered above, an overall classification rate of >95% and a cycle detection rate of

99% is observed. These results are of analytical interest in later discussions of the method. This

analysis is illustrated in figure 4.7.
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Figure 4.8: Results of cycle time and frequency comparison between manually marked and al-
gorithm produced cycles.

4.6 Cycle time evaluations

As high precision evaluation of the cycle time calculations proved challenging, due to shaking

and movement of video recordings and a slight drift in IMU sampling rate, the first apporach

described in chapter 3 of solely using detected cycle end points was utilized. These calculations

were compared to the manual markings made through video analysis, which both were con-

verted into cycle times and athlete frequency. The comparison was done on the results of the

skating run performed by athlete 6, with classical templates removed from the template match-

ing method. From the overlaid results shown in the figure a clear coherence between the manual

and algorithm produced data is shown, which indicates that even this simplified version is ca-

pable of producing consistent results. Utilizing the third apporach described in chapter 3 could

provide even more accurate results, and should be tested through utilizing a more controlled

environment for recordings. The described results are illustrated in figure 4.8.



Chapter 5

Discussion

In this chapter the results presented in chapter 4 and its implications are discussed.

Cycle detection

Cycle detection is found to be stable and consistent, with some specific problematic areas re-

lated to false cycles of double poling detected within G3 cycles and difficulties in detecting cycles

of diagonal stride in uphill terrain. For analytical purposes a study of results with these problem

areas ignored was done, and revealed possible cycle detection rates of >99%, indicating that if

these two specific difficulties are solved properly the outlook for the template matching algo-

rithm is very promising.

Solutions to these difficulties requires further investigations. For double pole false detections,

utilizing the lower similarity values of the falsely detected peaks to detect and disregard these

or implementing a utilization of cycle times to avoid within-cycle detections might be possi-

ble. Another approach could be doing a second classification run with classical templates re-

moved from the template base. This was tested during this study and gave promising results

as it removed all false detections of double poling within the G3 subtechnique. In a real-time

implementation one could utilize this by first doing initial rough calculations for determining

the main technique utilized by the athlete followed by adjusting the template base to reflect this

accordingly.

50
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Difficulties related to uphill diagonal stride should prove solvable by simply doing specific train-

ing through template creation of representative segments for this movement, as this was not

done in the training process for this study.

Cycle classification

From the confusion matrix presented in table 4.2 one can see most misclassifications are due

to diagonal stride being classified as herringbone, and G3 being classified as G2. The diagonal

stride misclassifications suffers from templates being unrepresentative for the uphill variation

of this technique, and is likely reduced or removed by proper training. The G3 misclassifications

into G2 are predominantly related to transitions between subtechniques, either into or from G3.

This is likely to be caused by the G3 template start body position being different from the cycle

start body position of the transition made by the athlete. As an example, the template could

represent a cycle start body position with the right foot being fully engaged in the skating mo-

tion whilst the transition into G3 for the subject being initiated with a left foot skating motion.

This causes the template matching similarity peak not to occur before the subsequent right-

foot started cycle has been completed, one and a half cycle later than the actual transition. This

leaves half a cycle not covered by the G3 template during the transition, which in turn to some

degree will be covered by the G2 templates, resulting in a source of misclassification into G2.

The difficulty of transitions not being sufficiently covered by the G3 templates could be solvable

through having templates representing both initiation and endings of G3 segments of both right

and left start body positions. This in turn might create a need for some added functionality to

avoid false detection of double frequency, as these templates will be opposite in phase and to-

gether will provide a doubled frequency in similarity data. The problem might also be solvable

by dividing the G3 templates into halves, and through this detecting half-cycles instead of com-

plete cycles.

The overall classification rate for the classifier of the current implementation has shown to be

88.6% across three separate runs, with individual rates at 84.3%, 95.2%, and 86.9%. Compared to

other classifiers of the field the implementation of this study places itself somewhere in the mid-
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dle, with classifier performance rates varying from 88% up to 98.5%, as presented in figure 2.1.

However, these results should be considered promising, as this method is the first one in the

field to incorporate both classical and skating classifications without technique specific alter-

ations, with its problematic areas being well-defined and solveable. With these areas resolved,

analysis indicates that the method will be on-par with the top-performaing classifiers within the

field. The implementation does also have the challenges common for all classifiers classifying

cross-country subtechnique, more specifically difficulties regarding undefinable and ambigu-

ous cycles, related to turns and transitioning between subtechniques. There probably several

ways of countering these common challenges in an improved manner, and investigations and

development of those should prove beneficial for the field as a whole.

That being stated, there is also an aspect of these challenges which should not be ignored, in

that the ambiguous cycles makes the classification problem in itself not completely definable,

and thus an optimal classification accuracy of 100% should not be expected as it is likely not

possible. Explained more in detail, as this problem come as a result of cycles which can be mul-

tiply defined as several subtechniques they cannot be completely defined nor classified even by

human interpretation, and thus an automated method have no way of reaching classification

rates of 100% if the human interpretations can not. As these ambiguous cycles are present there

will always be an undefined element of uncertainty within the problem of classifying movement

cycles in cross-country skiing.

Advantages and drawbacks of the template matching implementation

In summary, this study has successfully implemented a template matching algorithm which

tackles the classification problem of identifying and classifying subtechnique movement cycles

of cross country skiing, and in this the template matching method has shown both advantages

and drawbacks compared to other methods in solving this problem.

One of the most profound advantages of the template matching method is its generality and

mathematical simplicity, with generality being the ability to detect and classify across ranges

of skill level and both classical and skating main techniques of cross-country skiing, along with
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being a method which easily can be altered into classifying other fields of cyclical data. Another

advantage is its ability to detect and identify cycles and do classification simultaneously, remov-

ing the need for a separate cycle detection algorithm.

As for drawbacks the most protruding ones specific to this method are the difficulties described

earlier, in regards to false detections within the G3 subtechnique and the poor cycle detection

rate and misclassifications related to uphill diagonal stride. These problems are however spe-

cific, and should be solvable through continued investigations and efforts in development. The

template matching approach also suffers from the same difficulties which are common across

the field for all methods trying to solve this particular classification problem, more specifically

transitions and direction altering movements, and solutions to these difficulties should prove

beneficial for all methods of the field.

Cycle time calculations

For cycle time calculation several methods were proposed and implemented, with a combina-

tion of using similarity peaks and template lengths being indicated as the most promising one.

However, as accurate assessment of cycle time calculations proved difficult, caused by shaking

and movement in camera recordings and a slight drift in the IMU sampling rate, along with

challenges in converting cycle times from the manually marked data, the simplified approach

of only utilizing similarity peaks (corresponding to cycle end points) for cycle time calculations

was pursued, as this method could also be directly used on the manually marked data. The

assessment of the algorithm and manually made cycle times gave promising results through

strong coherence, indicating consistency between the video analysis and template matching

method.

Real-time considerations

A real time version of the template matching algorithm, doing cycle detection and classification

within a 3 second time limit for each cycle, can easily be realized by doing simple alterations to

the offline-implementation. The offline-implementation does all its calculations and decision
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making on a time horizon shorter than 3 seconds, and by segmenting the data instead of do-

ing calculations on the whole data series a real-time model is achieved. More specifically, the

data series can be segmented into three-second-segments, with an incrementation step of one

second for each batch of data. Using the offline-template-matching mechanics on this segment

will provide duplicate cycle detections, which are reduced into single points by simply merging

nearby duplicates. With these simple alterations the offline implementation is converted into a

real-time implementation, with all the same principles in mechanics. As the method function-

ality stays the same, the same results found for the offline-implementation is expected.

5.1 Conclusions

With an overall cycle detection rate of 94.9% and an overall classification rate of 88.6%, the re-

sults of the template matching algorithm of this thesis are considered promising in developing

a classifier capable of handling both movement patterns of classical and skating techniques in

cross-country skiing. This method is the first in the field to handle both classical and skating

without technique specific alterations, and should provide a good foundation for further devel-

opment.

The current implementation does have specific challenges in terms of misclassifications related

to diagonal stride performed on uphill terrain and double poling being erroneously detected

within G3 skating cycles. However, these challenges are well-defined, and remedies such as

extended training of templates to include uphill diagonal stride and algorithm alterations to de-

tect technique and adjusting the template base accordingly have already been suggested, and

should elevate the performance of the template matching method to be on-par with the highest

performing in the field.

In addition, as the method is based solely on general templates for each movement, utilizing

this technique on other fields of cyclic movement should only require an alteration of the tem-

plate base used, increasing its value in terms of versatility and field of general use even more.
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5.2 Recommendations for Further Work

• Investigations into finding solutions for the specific problems described revolving mis-

classifications regarding double pole detections within G3 subtechnique and uphill diag-

onal stride. A redone template creation process with representative segments for uphill

diagonal stride are believed to suffice in handling misclassifications within G3.

• Assessment of cycle time calculations through utilization of a more controlled environ-

ment in terms of video recrodings.

• Studies related to solving challenges related to ambiguous cycles.
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