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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fulfillment of the requirements for the degree of philosophiae
doctor. This doctoral work has been performed at the Department of Computer
and Information Science, NTNU, Trondheim, with Associate Professor Magnus
Lie Hetland as main supervisor and with co-supervisors Professor Svein Erik
Bratsberg and Professor Arne Halaas.

The thesis has been part of the research project Information Access Disruptions
(iAd) project which is funded by the Norwegian Research Council. The main re-
search of iAd project is to develop the next generation of search and the delivery
technology in the information access domain.
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Summary

Similarity search has become one of the important parts of many applications in-
cluding multimedia retrieval, pattern recognition and machine learning. In this
problem, the main task is to retrieve most similar (closest) objects in a large data
set to a query efficiently by using a function that gives the distance between two
objects.

This thesis is presented as a collection of seven papers with a tutorial on the topic
and is mainly focused on efficiency issues of similarity search.

• Paper I provides a survey on state-of-the-art approximate methods for met-
ric and non-metric spaces.

• Paper II proposes an approximate indexing method for the non-metric Breg-
man divergences.

• Paper III shows how to transform static indexing methods into dynamic
ones.

• Paper IV presents a learning method to prune in metric and non-metric
spaces.

• Paper V improves the existing approximate technique that can be applied to
ball-based metric indexing methods.

• Paper VI presents an open source cross-platform similarity search library
and a toolkit called the “Non-Metric Space Library” (NMSLIB) for evalua-
tion of similarity search methods.

• Paper VII evaluates a metric index for approximate string matching.

5





Acknowledgements

First and foremost, I would like to thank my supervisor Magnus Lie Hetland. He
has always been available to discuss research ideas when I needed and has been
supporting me throughout this PhD work and helping me overcome a personal
hard time. He also taught me how to conduct experiments and write scientific
papers.

I would like to thank my supervisor Svein Erik Bratsberg for his support, research
ideas and inspiring discussions.

I would like also thank Professor Arne Halaas for being co-supervisor.

Dr. Øystein Torbjørnsen has been an unofficial advisor to me. Despite being busy
with his schedule, he led several fruitful meetings together with my supervisors
when I struggled to produce publications.

I would like to give a big thank to Leonid Boytsov for his collaboration and co-
authoring several papers and co-authoring our research Non-Metric Space Li-
brary and maintaining it. I would like to thank all people who contributed to
the library.

I would like to thank Professor Eric Nyberg for his support of our library.

Finally, I would like to thank my family and they have been supporting me all
time.

7





Contents

Preface 3

Summary 5

Acknowledgements 7

I Introduction and Overview 11

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Research goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background 17

2.1 Metric space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Distance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Similarity queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Space partitioning principles . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Pruning principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Space decomposition methods . . . . . . . . . . . . . . . . . . . . . 24
2.8 Approximate methods . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Methods based on clustering principle . . . . . . . . . . . . . . . . . 30
2.10 Projection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Graph methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Research Summary 39

3.1 Research method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Included papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

9



10

3.2.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.6 Paper VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.7 Paper VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Publication venue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Evaluation of contributions . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 NSMLIB in an approximate nearest neighbor

benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography 49

II Publications 55

A Paper I: Permutation Search Methods are Efficient, Yet Faster Search is

Possible 57

B Paper II: Bregman hyperplane trees for fast approximate nearest neigh-

bor search 73

C Paper III: Static-to-dynamic transformation for metric indexing struc-

tures (extended version) 89

D Paper IV: Learning to Prune in Metric and Non-Metric Spaces 107

E Paper V: Shrinking data balls in metric indexes 121

F Paper VI: Engineering Efficient and Effective Non-metric Space Library129

G Paper VII: An empirical evaluation of a metric index for approximate

string matching 145



Part I

Introduction and Overview





13

Chapter 1

Introduction

Outline
This thesis is a collection of papers with a basic introduction on similarity search.
This chapter presents the motivation and research goals of this work. Chapter 2
describes the theoretical background and a tutorial on similarity search. Chapter 3
summarizes the results and reviews the papers. It also discusses future work and
concludes the thesis. The research contribution of this thesis is defined by seven
research papers which can be found in Part II.

1.1 Motivation

Searching has become one of the crucial parts in our daily life and it allows us
to find useful information. Traditional text-based search can not be directly ap-
plied to more complex data types (such as multimedia data) which do not have
any text information (for instance, caption, description and tags). So-called sim-
ilarity search can be applied to those data types. In similarity search, domain
objects (such as strings and multimedia data) are modeled in a metric or non-
metric space and those objects are retrieved based on their similarity to some given
query.

For multimedia data, similarity search is often performed on the feature vectors
extracted from the real data. Feature vectors are usually represented as high-
dimensional data, so due to the so-called curse of dimensionality phenomenon,
the efficiency of the indexing structures deteriorates rapidly as the number of di-
mensions increases. This may be because there is a trend for the objects to be

Some of the text and figures included in this thesis are based on my PhD plan which was partially
included in a journal paper without my permission.



14 Introduction

almost equidistant from the query objects in a high-dimensional space.

Let us consider two use cases of similarity search in two different domains.

Multimedia retrieval - In image retrieval, similar images to a query image are re-
trieved by using image features such as shape, edge, position and color histogram.
So-called the Signature Quadratic Form Distance [5] (SQFD) is shown to be effec-
tive in image retrieval. In the method of Beecks [5], an image is mapped into a
feature space and then its features are clustered with the standard k-means clus-
tering algorithm. Each cluster is represented by a centroid and a cluster weight.
Figure 1.1 shows three example images and the visualizations of their correspond-
ing features as multiple circles. The centroid, weight and color of each cluster are
represented by the center, diameter and color of a circle, respectively. We can see
that the first two images are more similar to each other than the third one and that
observation is also true for their feature signatures.

Figure 1.1: Three example images at top and the corresponding visualizations of
their feature signatures at bottom.

Machine learning - In k-nearest neighbor classification, a test instance needs to be
assigned into one of the several classes. First, we need to find the k closest training
instances of the test instance. Then, the most occurred class is selected as the final
decision. Figure 1.2 shows an example of k-nearest neighbor classification where
k = 3. There are two classes of training examples which are marked as the blue
and green points. The query instance (marked as the red point) is classified as the
blue class since two points out of 3 nearest neighbors of the query are blue.

The term of metric indexing structure refers to data structures which are designed
to store our objects and allow us to find similar objects quickly.
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1
2

3

test

Figure 1.2: An example of k-nearest neighbor classification.

A naive approach to find similar objects in a data set to a query object is the linear
scan. Essentially, it compares every object in the data set with the query. How-
ever, it is impractical for large data sets. Also, some of distance functions are very
expensive to compute. For example, the distance computation of two text strings
with length n (by using the edit distance with time complexity of Ω(n2)) is more
expensive than the distance computation of two real valued vectors with dimen-
sion n (by using the Euclidean distance with time complexity of O(n)) in terms of
CPU costs.

Therefore, numerous index structures have been proposed in the field of similar-
ity search to reduce both of computational and I/O costs. Nowadays data sets
tend to be rapidly growing in practice and thus the overall search costs would be-
come unacceptable for those large data sets. A way to reduce the cost of similar-
ity query processing for large data sets, approximate search (relevant objects that
are missing from the result) and similarity search in parallel/distributed environ-
ment (using several processors/computers) are becoming increasingly important
and popular.

Similar Similar

Similar

Figure 1.3: Illustration of the transitivity property of the triangle inequality.

The triangle inequality is the key component of metric index structures. It holds
the transitivity property in a metric space. In Figure 1.3, we say that the man is
similar to the centaur and the centaur is similar to the horse. Then, because of the tran-
sitivity property, the triangle inequality would suggest us that the man is similar to
the horse, and vice versa [40]. But it does not match with our intuition. Therefore
in some applications, our intuitions of similarity are better modeled with non-
metric spaces [40]. However, we can not directly apply metric index structures to
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non-metric spaces.

Another problem is that the existing metric index structures are static. That means
that, once they are built for a given data set, adding (removing) more objects to
(from) the index may result in full re-construction of the index which is usually
time consuming and computationally intensive.

In this thesis, we addressed the problems mentioned above and mainly focused on
approximate methods since exact methods are not efficient in high dimensional
and non-metric spaces.

1.2 Research goals

Broadly speaking, the problem of similarity search can be divided into two main
categories:

1. Figure out how to represent the complex objects of a data domain and find
effective distance functions for that representations. In image retrieval, these
two tasks could be to extract image features (such as cluster weights) and
find distance functions (such as SQFD) that would retrieve most similar im-
ages using their features.

2. Design efficient similarity search methods for objects. In image retrieval,
the task could be to find most similar images using their features quickly.

The main objective of this PhD project belongs to the second category. Three more
specific research goals towards the main objective are defined as:

RG1. Propose new similarity search methods;

RG2. Improve and/or evaluate the efficiency of the existing similarity search
methods;

RG3. Broaden the applicability of similarity search methods.

I will review these goals in Section 3.4 together with the papers. The first two
goals aim at investigating the design and evaluation of efficient strategies for fast
similarity searches while the third goal investigates how methods can be applied
to various spaces. The efficiency of methods is measured in terms of the number
of distance computations or CPU time required to process a query.
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Chapter 2

Background

Outline
This chapter gives the basic theoretical knowledge relevant to understanding this
thesis and the problem description for the similarity search based on the metric
space model. First, we introduce the metric space model and a few examples of
distance functions. Similarity queries and problem description are given in the
two next sections. Then, a naive index structure, space partitioning principles
and pruning principles are presented in the following sections. Finally, various
types of methods are explained in the last several sections.

2.1 Metric space model

Definition 2.1. A metric space is a tuple 〈U, d〉 of a set U and a function d : U×
U → R which satisfies the following four properties for all x, y, z ∈ U:

• d(x, y) ≥ 0 (non-negativity);

• d(x, y) = 0 ⇔ x = y (identity);

• d(x, y) = d(y, x) (symmetry);

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

A distance function is called metric if it satisfies all of the four properties of a metric
listed above. We call a distance function semi-metric if it satisfies the properties of
non-negativity, identity and symmetry and does not satisfy the triangle inequality.
A distance function that does not satisfy the properties of symmetry and triangle
inequality notated as non-metric.



18 Background

x y

d(x, y)

d(y, x)

(a)

x y

d(x, y)

d(y, x)

(b)

Figure 2.1: Illustrations of (a) metric and (b) non-metric distance functions

Illustrations of metric and non-metric distance functions are shown in Figure 2.1.

2.2 Distance functions

Distance functions are used to access the similarity between two objects. The
smaller the distance between two objects, the more they similar. Distance func-
tions are defined with respect to their target domains and applications. In the
following, we provide a few examples of (dis)similarity measures.

The Minkowski distance - The distance between two n-dimensional vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) (for instance, color histograms) can be mea-
sured with the Minkowski distance which is defined as:

Lp(x, y) = p
√

∑n
i=1 |xi − yi|p

Some well-known special cases are L1 (Manhattan distance), L2 (Euclidean
distance) and L∞ (Chebyshev/maximum distance). However, the Cheby-
shev distance is defined with the following explicit formula:

L∞(x, y) = max
1≤i≤n

|xi − yi|

The time complexity of Minkowski distance is O(n).

The Edit distance - The similarity of two strings can be measured by the edit dis-
tance (or Levenstein distance). This measure computes the minimal number
of insertions, deletions, and replacements required to transform one string
into another. The time complexity of edit distance is Ω(n2).

The Hamming distance - The set of all 2n binary strings of length n is called the
Hamming space. The Hamming distance of two equal length binary strings
is defined as the number of positions for which the bits are different.
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(d) KL-divergence

Figure 2.2: The blue points are at the distance value of 0.5 from the red point (2, 2)
with the corresponding distance functions.

The Kullback–Leibler (KL) divergence - The distance between two probability
distributions x = (x1, . . . , xn) and y = (y1, . . . , yn) can be measured with
the KL divergence which is defined as:

d(x, y) =
n

∑
i=1

xi log
xi
yi

The KL divergence belongs to the family of non-metric distances so called
Bregman divergences [10].

The Signature Quadratic Form distance (SQFD) [5] - This function is designed
for measuring the similarity between two images. For two image features

Sx = {〈cx
i , wx

i 〉|i = 1 . . . n} and Sy = {〈cy
i , wy

i 〉|i = 1 . . . m}, the SQFD is
calculated as:

d f (Sx, Sy) =
√

w ·M · wT

where w = (wx
1, . . . , wx

n,−wy
1, . . . ,−wy

m) and M ∈ R(n+m)×(n+m) is the ma-
trix, in which each element mij is obtained by applying a similarity function

f (ci, cj) on c = (cx
1, . . . , cx

n, cy
1, . . . , cy

m). An example of f (ci, cj) is 1
1+L2(ci ,cj)

.

Illustrations of some of the distance functions discussed above are shown in Fig-
ure 2.2, where the blue points are at the same distance from the red point in 2-
dimensional vector space.
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Figure 2.3: Examples of (a) sample data points in 2-dimensional Euclidean space,
(b) a range(q, r) query and (c) a k-NN(q, 3) query.

2.3 Similarity queries

Several types of similarity queries have been proposed in the literature. We re-
view the most common two of them. In order to ease the understanding of the
concept and content of this chapter, we use nine sample points {o1, . . . , o9} in 2-
dimensional Euclidean space which are shown in Figure 2.3a.

Range query - Given a query object q ∈ U and a maximum search distance r, it
retrieves all objects from a data set D whose distance to q are equal to or less
than r:

range(q, r) = {x ∈ D | d(x, q) ≤ r}

In the example given in Figure 2.3b, {o2, o3, o9} are reported as the result of
the query.

k-Nearest Neighbor (k-NN) query - Given a query object q ∈ U and the number
of requested objects k, it retrieves a set of k objects K from a data set D whose
distances to q are not larger than the distance of any remaining objects in D:

k-NN(q, k) = {x ∈ K | K ⊆ D, |K| = k, ∀y ∈ D \K, d(q, x) ≤ d(q, y)}

In the example given in Figure 2.3c, {o9, o2, o3} are reported as the result of
the query.

We note that there are two types of queries if the distance function is not symmet-
ric. We call left queries if an object compared to the query is the first argument of
d(x, y), while the query is the second argument.
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2.4 Problem description

Let D ⊂ U and d(x, y) be our data set and distance function, respectively. Our
task is to retrieve a small set of the most relevant objects (either all within a search
radius r, or the k nearest neighbors) in D for queries drawn from U at low compu-
tational costs (such as the total number of distance computations at query time)
as possible.

There are several important evaluation criteria for similarity search methods:

• The number of distance computations required to process a query;

• The quality measures of an approximate query, such as recall;

• CPU time and memory required to process a query;

• Applicability, such as only for vector space;

• Search modality, such as range, nearest neighbors and join queries;

• Scalability–that is, the search cost is independent of the size of data sets;

• Dynamicity–that is, support insert and delete operations of objects;

• Capability to be stored on and loaded from disk–that is, to deal with large
data sets;

• The number of disk access required to process a query;

• Capability to run in parallel and distributed environments.

2.5 Space partitioning principles

One way to speed up similarity retrieval is to divide our data set into several dis-
joint subsets and expect that some subsets may be discarded during search. Be-
cause of the lack of a coordinate system in general metric spaces, the partition-
ing can be defined with help of some selected objects (so called pivots) from the
data set. Let us consider the three basic metric partitioning principles for a subset
S ⊆ D.

Ball partitioning principle - It divides S into two subsets S1 and S2 using a pivot
p ∈ S and a spherical radius r. S1 contains a set of objects that are inside of
the sphere (i.e. S1 ← {oi ∈ S | d(p, oi) ≤ r}) while S2 contains the remaining
objects from S (i.e. S2 = S \ S1).

In Figure 2.4a, we selected o5 as the pivot and apply the ball partitioning
on the sample data points given in Figure 2.3a to obtain two subsets S1 =
{o2, o5, o6, o7, o9} and S2 = {o1, o3, o4, o8}.

Bisector partitioning principle - It divides S into two subsets S1 and S2 with re-
spect to two pivots {p1, p2} ∈ S. Thus, S1 consists of objects that are closer to
p1 than p2 (i.e. S1 ← {oi ∈ S | d(p1, oi) ≤ d(p2, oi)}) while S2 consists of the
remaining objects from S (i.e. S2 = S \ S1). Each partition has its own ball
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Figure 2.4: Illustrations of space partitioning principles

and the corresponding ball radius which is equal to the maximum distance
between the pivot and all objects in that partition.

In Figure 2.4b, we select two pivots o6 and o3 and apply the bisector parti-
tioning on the sample data points given in Figure 2.3a to obtain two subsets
S1 = {o4, o5, o6, o7} and S2 = {o1, o2, o3, o8, o9}.

Generalized hyperplane partitioning - This partitioning principle is similar to
the bisector partitioning, however, the hyperplane formed by two pivots is
used in space pruning during search instead of balls. Figure 2.4c gives an
illustration of the hyperplane partitioning principle.

2.6 Pruning principles

The triangle inequality is employed as a fundamental property of existing metric
index structures. The common usage of the triangle inequality is to estimate the
lower bound lb(q, o) of the actual distance d(q, o) between an (indexed) object o
in the index and a given query q using the precomputed distance d(p, o) between
the object and a pivot p. The lower bound lb(q, o) of d(q, o) based on the triangle
inequality is computed as:

lbΔ(q, o) = |d(q, p)− d(p, o)|

Figure 2.5a and 2.5b show examples of the computation of the lower bound lbΔ(q, o).

In general, if the lower bound of d(q, o) is greater than a query radius r, the object
can be safely discarded because d(q, o) ≥ lb(q, o) > r. Otherwise, d(q, o) needs to
be computed and compared with the radius. Thus, the performance of an index
structure directly depends on the number of objects that can be filtered out during
search. This filtering power could be improved with several pivots by selecting the
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Figure 2.5: Illustrations of (a-b) triangular lower bound lbΔ(q, o) with pivot p and
(c) ptolemaic lower bound lbp(q, o) with two pivots p and s.

maximum of lower bounds computed over those pivots. However, the computa-
tional cost for estimating lower bound with several pivots should be cheaper than
the cost for computing the actual distance. Otherwise, this effort would become
useless.

Recently, Hetland [35] has introduced ptolemaic indexing in which Ptolemy’s in-
equality is applied to estimate the lower bounds of distances. For any four objects
x, y, u, v, Ptolemy’s inequality states:

d(x, v) · d(y, u) ≤ d(x, y) · d(u, v) + d(x, u) · d(y, v)

For a query q, object o, and pivots p and s in a set of pivots P, the lower bound
lb(q, o) of d(q, o) based on Ptolemy’s inequality is computed as:

lbpt(q, o) = max
p,s∈P

|d(q, p) · d(o, s)− d(q, s) · d(o, p)|
d(p, s)

Ptolemy’s inequality holds for quadratic form metrics including the well-known
Euclidean distance. An example of lower bound lbp(q, o) is given in Figure 2.5c.
We see that the triangle inequality does not always give optimal bounds (see Fig-
ure 2.5b) and that is heavily depend on pivot selection. In Figure 2.5c, the object o
can not be discarded by using the two triangular lower bounds with pivots p and
s because the query radius is larger than both bounds. However, in this case, the
object o can be discarded with the ptolemaic bound. Ptolemaic indexing struc-
tures [36] have efficiently applied in content based image retrieval.

Let d(p1, o) ≤ d(p2, o). The triangular lower bound lb(q, o) of d(q, o) based on the
hyperplane partitioning with two pivots p1 and p2 is computed as:

lbΔ(q, o) = max{(d(q, p1)− d(q, p2))/2, 0}

Figure 2.6 shows an illustration of lower bound lbΔ(q, o) of d(q, o).
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Figure 2.6: Illustration of triangular lower bound lbΔ(q, o) of d(q, o) with the hy-
perplane (blue dashed-vertical line) formed by p1 and p2.

q p
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lbbreg

Figure 2.7: Illustration of Bregman lower bound lbbreg(q, o) of d(q, o).

Non-metric spaces are neither symmetric nor triangular and thus it is impossible
to apply the triangle inequality to estimate lower bounds for those spaces. Thus,
Cayton [13] showed that lower and upper bounds for Bregman balls can be com-
puted with a binary search. Figure 2.7 shows an example of Bregman lower bound
calculation. Four small vertical lines show that how the binary search can be done
to find the lower bound.

2.7 Space decomposition methods

Most of coordinate-based spatial [30, 33] and metric trees [9, 11, 21, 54, 57] belong
to this category. The main idea behind space decomposition methods is to divide
the data set recursively into either overlapping or non-overlapping hierarchical
regions. In these methods, the search algorithm often uses a best-first branch-
and-bound approach with pruning of irrelevant regions.

Let us have a look at two simple hierarchical index structures based on ball and
hyperplane partitioning principles.

The vantage point tree [57] (VP-tree) is a balanced binary tree based on ball par-
titioning principle. The VP-tree divides S into two subsets S1 and S2 according to
ball partitioning, where r is the median of distances between p and objects from S.
Starting with S = D, this method recursively selects a pivot, applies ball partition-
ing, and builds left and right subtrees for S1 and S2 respectively if the size of the
subsets is greater than an user-defined parameter. The range(q, r) search algorithm
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Figure 2.8: A VP-tree: (a) an illustration of hierarchical space partitions (b) an illus-
tration of a range query q with radius r (c) the corresponding tree (the highlighted
yellow regions are visited during the search).

recursively traverses the tree from the root to leaves. For a visited internal node
with p, it evaluates the distance d(q, p). The pivot p is reported if d(q, p) ≤ r.
The algorithm decides which subtrees to visit by defining lower bounds on the
distances from q to objects in the left and right subtrees. It is necessary to traverse
the left subtree only if d(q, p) + r < m, and, similarly, the right subtree only if
d(q, p)− r > m. If none of these conditions meet, it needs to traverse both sub-
trees. For leaf nodes, the search sequentially computes the distances between q
and all objects in the leaf node and reports qualified objects. We note that the
main problem with the ball partitioning is that it is almost impossible to partition
space without ball overlaps especially in high-dimensional spaces.

Figure 2.8 shows an example of a VP-tree in 2-dimensional Euclidean space. The
algorithm for a range query q with radius r starts from the left subtree with pivot
o2 of the node associated with o5 (because q is inside that region). We include o2
in the result set of the query. Then, it visits the left leaf node of the node o2. We
also report o9. Then, it needs to do backtracking to the node o2 and visits the right
leaf node that contains o6, o7. After that, it goes back to the node o2 and the root
node o5. This time it visits the right subtree o1 of the root node. The algorithm
prunes the left leaf node of the node o1 (because the query ball does not intersect
with that region). Then, it visits the right leaf and finally, we report o3.

The generalized hyperplane tree [54] (GH-tree) is also a binary tree and built sim-
ilar to VP-trees. The GH-tree selects two pivots and applies generalized hyper-
plane partitioning principle in every recursive call of the tree building. We note
that the resulting tree is not necessary to be balanced. The range(q, r) search al-
gorithm for GH-trees is also similar to that of VP-trees. The left subtree is vis-
ited if (d(q, p1) − d(q, p2))/2 ≤ r. And similarly, the right subtree is visited if
(d(q, p2)− d(q, p1))/2 ≤ r. We note that it is possible to visit both subtrees. Fig-
ure 2.9 shows an example of a GH-tree in 2-dimensional Euclidean space.
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Figure 2.9: A GH-tree: (a) an illustration of hierarchical space partitions (b) an
illustration of a range query q with radius r (c) the corresponding tree (the high-
lighted yellow regions are visited during the search).

2.8 Approximate methods

Exact similarity retrieval is inefficient in high-dimensional spaces due to the phe-
nomenon known as the curse of dimensionality. Chavez et al. [16] generalized the
curse of dimensionality in general metric spaces without coordinates and esti-
mated the intrinsic dimensionality of D as, ρ = μ2/(2σ2), where μ and σ2 are the
mean and variance of distance distribution in D. The intrinsic dimensionality
is high if objects are placed almost equidistant from each other (the variance be-
comes low with respect to mean distance).

Figure 2.10 shows the intrinsic dimensionalities of two sample data sets. For the
data set with high intrinsic dimensionality ρ = 38.91, distances are very concen-
trated around distance of 0.9.

Many of the space decomposition methods mentioned in Section 2.7 suffer from
the spaces with high intrinsic dimensionality. Because most of the regions would
be intersected with the query region. In worst case, these methods would perform
more or less same as the linear scan. An example of this behaviour is shown in
Figure 2.11a. We see that the performance of VP-trees degrades when the dimen-
sionality increases beyond 10. As shown in Figure 2.11b, the intrinsic dimension-
ality increases as the dimensionality increases.

Therefore, approximate similarity retrieval is becoming a new trend to handle this
problem, in which search results are relaxed by permitting errors while increasing
the query performance.

Many of existing methods for approximate nearest neighbor search specifically
focus on ε-nearest neighbor queries.

Definition 2.2. A ε-nearest neighbor (ε-NN) retrieves an object x′ from D whose
distance to q is not larger than the distance between the actual nearest neighbor x
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Figure 2.10: Distance distributions of two data sets with low (ρ = 5.19) and high
(ρ = 38.91) intrinsic dimensionalities.
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Figure 2.11: Uniformly generated vectors with varying dimensionalities (a) NN-
search performance of VP-tree (b) Intrinsic dimensionality vs. dimensionality
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and q times (1 + ε), where ε > 0 (see Figure 2.12).

d(q, x)

(1 + ε)d(q, x)

q x x′

Figure 2.12: Example of an ε-NN. x′ is ε-NN of x.

In [4, 17, 20, 59], the search algorithm uses r/(1 + ε) instead of the real query ra-
dius r. It potentially would reduce the number of regions that intersect with the
query region and therefore that leads speeding-up approximate query process-
ing.

Another interesting type of approximate method is the early stopping technique
which is used by Liu et al. [41] and Cayton [13]. The search algorithm is a best-first
traversal in the tree and visits at most a specific number (a user-defined parameter)
of leaf nodes of the tree. The main idea behind this method is that the search
algorithm can find an object close to the actual nearest neighbor quickly.

Zezula et al. [59] proposed an early stopping technique based on distance distri-
bution. The cumulative distance distribution Fp(x) represents the set of objects
oi ∈ D for which d(p, oi) ≤ x. Fq(x) is unknown in advance and we assume that
query objects follow the same distribution as objects in D. Therefore the search
algorithm uses the global cumulative distance distribution F(x) that is calculated
for the entire data set. For a user-defined parameter t, the search algorithm stops
if F(d(q, ok)) ≤ t, where ok is the current k-NN found so far.

Amato et al. [1] introduced a pruning principle for metric balls based on distance
distribution. For a metric ball containing a set of objects oi, the search algorithm
estimates the probability pr such that d(q, oi) ≤ r and discards that ball if pr ≤ t,
where t is a user-defined parameter.

The TriGen method [51] transforms a semi-metric distance function into a metric
one by using a modifier function f (·). Since the method uses a modified version
of binary search algorithm, this modifier function should be concave or convex.
In its essence, the TriGen method applies various modifiers on a sample data that
drawn from the data set to optimize the best modifier that gives the minimum
intrinsic dimensionality for a given user-defined error threshold. The error is cal-
culated as the ratio between the number of triplets (i.e., f (d(x, y)), f (d(y, z)) and
f (d(x, z))) that violate the triangle inequality and the number of all examined
triplets. A concave function increases the intrinsic dimensionality because the
difference between all modified distances becomes almost same whereas a con-
vex function decreases the intrinsic dimensionality. A simple modifier that can be
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used in the TriGen method is the Fractional-Power base (FP-base) and it is defined
as:

f (d, w) =

{
d

1
1+w , for w > 0

d1−w, otherwise.

An example of FP-base is shown in Figure 2.13. Once we have the proper modifier,
we can use an existing metric indexing structures.
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Figure 2.13: Illustration of the FP-base with w = 1.5 and w = −1.5.

Roth et al. [49] presented so-called the constant shift embedding method that con-
verts a semi-metric distance function into a metric one by adding a positive con-
stant to the calculated distance value (see Figure 2.14). Lei Chen et al. [19] pro-
posed a method that relies on the constant shift embedding and supports both of
exact and approximate queries.

d(x, y) d(y, z)

d(x, z)

(a)

d(x, y) c d(y, z) c

d(x, z) c

(b)

Figure 2.14: Constant shift embedding method: (a) d(x, y) + d(y, z) < d(x, z)
(b) d(x, y)+ d(y, z)+ c > d(x, z) after adding a positive constant c to the distances.
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Figure 2.15: A list of clusters: leaf nodes are illustrated by dotted circles.

2.9 Methods based on clustering principle

The Sparse Spatial Selection tree [12] is a hierarchical unbalanced multiway tree.
The first object is selected as the center of the first cluster center. Each object in the
remaining set is selected as a new cluster center if the distance from the object to
its nearest center is greater than αM, where M is the maximum distance between
any two objects in the current set and α is a user-defined parameter. If the object
is not selected as a cluster center then the object is added to the bucket of the
cluster associated with its nearest center. The process is recursively applied to
those clusters if they contains more than a user-defined number of objects.

List of clusters [15] is an unbalanced VP-tree in which each left node has a bucket
which contains a certain number (a user-defined parameter) of objects whereas
the right nodes contain the remaining objects. The process is recursively applied
to the right node until the size of the node is below the parameter (Figure 2.15).
The search algorithm for list of clusters is similar to one in VP-trees.

The bregman ball tree [13] is a hierarchical binary tree which is designed to solve
nearest neighbor queries under Bregman divergences. The k-means algorithm is
employed as the space partitioning method. It yields two clusters at each internal
node and the resulting two clusters become the left and right nodes of the internal
node.

Another multiway tree that relies on the k-means clustering algorithm is the hier-
archical k-means tree [31] and its variant [44].

2.10 Projection methods

Projection methods are often based on a filter-and-refine principle. The basic idea
behind these methods are quite simple. Instead of performing search in the orig-
inal space, objects are transformed into the target space. Then, the search is per-
formed in much cheaper target space to obtain a set of candidate objects. The
candidate objects are refined in the original space. Figure 2.16 shows an illustra-
tion of projection method.
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Figure 2.16: Projection of objects from original to target space.

Locality Sensitive Hashing [38, 39] (LSH) is an approximate method which places
data points so that similar points end up in the same bucket with high probability.
A hash family H(r, ε, P1, P2) is called locality-sensitive if it satisfies the following
two properties for any x, y ∈ Rd:

• If x and y are close to each other (d(x, y) ≤ r) then they should be end up in
the same bucket with a high probability greater than or equal to P1:
PrH[h(x) = h(y)] ≥ P1;

• If x and y are far apart from each other (d(x, y) ≥ (1+ ε)r) then they should
be end up in the same bucket with a low probability P2 < P1:
PrH[h(x) = h(y)] ≤ P2.

For a given locality-sensitive hash family, approximate nearest neighbor queries
can be solved with a hashing method. The construction algorithm for the LSH
first builds l hash tables. Each hash table Ti is associated with a hash function gi(·)
which is defined by concatenating k randomly chosen hash functions h from H,
i.e., gi(x) = [h1(x), h2(x), . . . , hk(x)]. In other words, gi(x) represents the bucket
of Ti which contains x. Then for each Ti, the algorithm hashes all points from
the data set into Ti (see Figure 2.17). To perform a query q, the algorithm hashes
the query to find its corresponding buckets {g1(q), g2(q), . . . , gl(q)}. All points in
those buckets form a set of candidate points which are eventually refined with the
original distance function.

Approximate nearest neighbor search under the cosine distance between vectors
can be solved with so-called the random projection method [3] of LSH. In this
method, the hash function is defined as:

h(x) =

{
1, if vT · x ≥ 0
0, otherwise

where v is a random vector. For each gi, all vectors are approximated by k dimen-
sional bit vectors.
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Figure 2.17: (a) Sample data and query points (b) Illustration of a LSH index: the
squares are the buckets of the hash tables Ti and the points {o9, o3, . . . , o2} in the
highlighted buckets are selected as the candidate points.

Amato et al. [2] and Chávez et al. [32] proposed independently so-called permuta-
tion methods for approximate nearest neighbor search. In these methods, objects
are projected from the original space to the target permutation space. We select m
pivots at random from the data set. Then, each object is represented by a ranked
list of pivots (permutations) order by the distance to the object. The search algo-
rithm is based on an assumption that similar objects should have similar permu-
tations.

We explain the permutation method of Chávez et al. [32]. An example of this
method is shown in Figures 2.18. We select four objects o6, o5, o8, o9 and mark
them as four pivots p1, p2, p3, p4, respectively (see Figure 2.18a). For each object,
we compute the distances between the pivots and that object. Then, we order the
pivots by increasing distance to the object. For object o5, its first closest pivot is
p2. Similarly, its second, third, and forth closest pivots are p1, p4, and p3, respec-
tively. Thus the permutation for o5 is (p2, p1, p4, p3). Let us denote by perm(x) the
permutation of a object x. Also, let pivot_posx(pi) denote the position of a pivot
pi in a perm(x). The position of p1 in the permutation (p2, p1, p4, p3) is 2. Sim-
ilarly, the positions of p2, p3, and p4 are 1, 4, and 3, respectively. Then the pivot
position pivot_poso5 of the permutation induced by o5 are (2, 1, 4, 3). We repeat
the same steps for other objects to obtain their permutations and corresponding
pivot positions. We can see that two nearest neighbors of o1 are o8 and o3. Their
permutations and pivot positions are similar (see Figure 2.18b).

The search algorithm consists of two steps. In the filtering step, the pivot positions
of objects are compared with the pivot position of query using a rank correlation
metric. The rank correlation metrics include Kendall Tau, Spearman Footrule
(equal to L1) and Spearman Rho (equal to squared L2). Brute-force filtering of
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Figure 2.18: An illustration of the permutation method of Chávez et al. [32]
(a) pivot selection (b) permutation projection (c) calculation of the Spearman
Footrule on permutations.
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permutations and filtering based on incremental sorting are implemented in [32].
Objects with similar permutations to the permutation of query are selected as a set
of candidate objects. In the refinement step, the candidate objects are compared
with the query by computing the distance in the original space.

Figueroa et al. [28] used existing methods for metric spaces to index permuta-
tions.

We consider so-called the Metric Inverted File (MI-File) of Amato et al. [2]. The
construction of permutations in MI-File is performed in the same manner as in the
permutation index, but the most closest mi (mi ≤ m) and ms (ms ≤ mi) pivots are
used for indexing and searching, respectively. As we decrease mi the index will
be smaller whereas the search becomes faster if we decrease ms. Each element of
posting list is a pair (x, pivot_posx(pi)). The authors proposed several strategies
for indexing and searching, but we explain one of the simple versions. In example
given in Figure 2.19, we use mi = 3 and ms = 2. When performing a query,
we only need to access to the posting lists associated with ms closest pivots of
permq. That is p4 and p3 for our example. We note that pivot_posq(p3) = 2 and
pivot_posq(p4) = 1. When calculating the Spearman Footrule metric, we add
mi + 1 to the distance if the pivot position of a x is absent in the current processing
posting list (because all pivots may not used during the search).

Tellez et al. [53] proposed a variant of the MI-file in which most closest mi pivots to
objects are used for indexing. Posting lists contain only object identifiers. There-
fore, it is impossible to use a rank-correlation metric during the search. Thus,
objects whose permutations have more common pivots with the permutation of
the query are selected as candidate objects. The set intersection algorithm is used
for this purpose.

Pivots are indexed with unique numbers ranging from 1 to m. Thus one can treat
that permutations are strings over some pivot alphabet. Permutations with most
closest l ≤ m pivots are used to build so-called the Permutation Prefix Index [25]
(PP-Index) (see Figure 2.20). When searching the index with the permutation pre-
fix of length ls ≤ l of a query, we first find the subtree which shares a common
prefix of length ls with permq. If that subtree contains at least γ (a user-defined

parameter) objects then those objects are selected as candidates. Otherwise, we
repeat the same procedure with a shorter length ls = ls − 1. Let γ be 2 in our
example. There is no such subtree with the prefix of 431. So we have to try again
with the shorter prefix 43. This time, we obtain only o9. Thus, we repeat again the
same steps for the prefix 4 to obtain o2 and o9.

Another type of mapping of points in high-dimensional spaces into low-dimensional
spaces is proposed in FastMap [27] and MetricMap [55] so that the distance be-
tween points are preserved approximately. In FastMap, all points are perpendic-
ularly projected on k lines where k is the dimensionality of the target space and
each line is formed by two pivots. For each point, k projected coordinate values
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Figure 2.19: A Metric Inverted File (a) permutation projection and the pivots in
the orange area are used for indexing (mi = 3) (b) illustration of its correspond-
ing inverted index (c) calculation of the Spearman Footrule on two posting lists
associated with p3 and p4 (ms = 2).
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Figure 2.20: A Permutation Prefix Index: (a) permutation projection and the pre-
fixes of length l = 3 are used for indexing (b) its corresponding prefix index and
three shaded rectangles represent how the search is performed.
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represent that point in the target space. We note that distance computation in low-
dimensional spaces is less expensive than one in high-dimensional spaces.

2.11 Graph methods

The basic idea behind k-NN graphs is to build a graph in which each node is
associated with exactly one object and is connected with its k nearest neighbors
(see Figure 2.21a). The search algorithm is based on a greedy search which starts
from a random node and moves to another node p that is closer to the query than
the current node. The algorithm stops when such node p is not found (see Fig-
ure 2.21b). In order to improve the result, multiple searches could be done.
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Figure 2.21: A k-NN graph: (a) each object is connected with its two nearest neigh-
bors (b) how the nearest neighbor query is performed.

The construction of an exact k-NN graph requires n(n − 1)/2 pairwise distance
computations which is unacceptable for large n. Therefore, there have been pro-
posed many approximation methods for k-NN graph construction problem.

Dong et al. [23] proposed an approximate k-NN graph construction method in
which each node is initially connected with random neighbors and then that node’s
neighbors are iteratively improved with the neighbors of the node’s neighbors.
This iterative algorithm is called neighborhood propagation.

A k-NN graph construction method based on the divide-and-conquer principle
is introduced by Zhang et al. [60]. The LSH method is used to partition objects
into several subsets. For each subset, the algorithm builds a k-NN graph us-
ing the brute force method. Then all resulting graphs are combined into a final
graph.

So-called method SW-graph for approximating k-NN graph is proposed by Malkov
et al. [42]. The graph construction algorithm relies on the greedy search algorithm
which is described at the beginning of the section. All objects are added to the
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graph one by one. For a new object, we create a node and find its nearest neigh-
bor nodes in the graph. Then, we add undirected edges between the new node
and the already found nearest neighbors.

2.12 Other methods

In the previous sections, I gave a brief survey of principles of metric-based index-
ing and approximation techniques (see tutorial [34], survey [18] and books [37, 58]
for more details about these methods).

Another type of methods that exploits the parallel and distributed computing
platforms has been reported in the literature. Cayton [14] proposed a method
that utilizes multicore CPU and GPU platforms. So-called methods M-Chord [47]
and MCAN [26] exploit the parallel query processing capabilities of distributed
architectures.
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Chapter 3

Research Summary

Outline
This chapter briefly summarizes the research underlying this thesis. First, Sec-
tion 3.1 discusses the research method used in my research. Section 3.2 gives a
list of the included papers, research process and the roles of the different authors.
Section 3.4 evaluates our contributions. Possible future work is discussed in Sec-
tion 3.6. Finally, Section 3.7 concludes the thesis.

3.1 Research method

During the last decades, researchers have been paid more attention to the practi-
cal implementations and evaluations of algorithms. Because there are some real-
world indicators (such as cache effects and memory latency) that would influence
the performance of algorithms and could be difficult to analyze theoretically [22].
So-called empirical algorithmics is a scientific methodology of studying the per-
formance and behaviour of algorithms and data structures empirically. In this
methodology [43], we need to define the following steps:

• Setup–that is, formulation of hypotheses, selection of data sets and pro-
gramming language, etc.;

• Measures of performance, such as running time and the number of calls to
an important subroutine1;

• Analysis and interpretation of results.

1In similarity search, this could be the number of distance computations.
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Thesis

Paper II Paper VI Paper IV Paper I

Paper V

Paper III

Paper VII

Figure 3.1: Relationship of the papers. The papers in the shaded rectangle address
approximate similarity search.

Practical evaluation of the performance of a method also helps us to figure out
bottlenecks and design more efficient methods.

3.2 Included papers

This section describes seven papers that are included in the thesis. The actual
papers can be found in Part II. Figure 3.1 shows how the papers relate with each
other.

3.2.1 Paper I

Bilegsaikhan Naidan, Leonid Boytsov and Eric Nyberg, Permutation Search

Methods are Efficient, Yet Faster Search is Possible. VLDB 2015.

Abstract

We survey permutation-based methods for approximate k-nearest neighbor search.
In these methods, every data point is represented by a ranked list of pivots sorted
by the distance to this point. Such ranked lists are called permutations. The un-
derpinning assumption is that, for both metric and non-metric spaces, the distance
between permutations is a good proxy for the distance between original points.
Thus, it should be possible to efficiently retrieve most true nearest neighbors by
examining only a tiny subset of data points whose permutations are similar to the
permutation of a query. We further test this assumption by carrying out an ex-
tensive experimental evaluation where permutation methods are pitted against
state-of-the art benchmarks (the multi-probe LSH, the VP-tree, and proximity-
graph based retrieval) on a variety of realistically large data set from the image and
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textual domain. The focus is on the high-accuracy retrieval methods for generic
spaces. Additionally, we assume that both data and indices are stored in main
memory. We find permutation methods to be reasonably efficient and describe a
setup where these methods are most useful. To ease reproducibility, we make our
software and data sets publicly available.

Research process and roles of the authors

For my personal research projects, I developed a variety of search methods for
generic spaces, which are called permutations methods. These methods were
used as benchmarks in our other papers, however, our data sets were not suffi-
ciently diverse. This is why I proposed to carry out a more thorough evaluation
of permutation methods. In particular, I contributed a non-trivial image data set
that used the Signature Quadratic Form Distance (SQFD). This required writing
an image feature extraction as well as an efficient implementation of the SQFD
itself. I further contributed to writing the manuscript and processing the results
(in particular, data related to projection quality). This evaluation was relying on
our Non-Metric Space Library. My contributions in creating this library are de-
scribed in section 3.2.6 concerned with Paper VI. Leonid Boytsov implemented
the Neighborhood Approximation Index (NAPP) as well as the classic filter-and-
refine projection method and wrote most of the text. Eric Nyberg provided sup-
port, guidance and feedback on all stages of the project (in particular, with respect
to the choice of diverse realistic data sets). He also participated in writing and re-
vising a manuscript.

3.2.2 Paper II

Bilegsaikhan Naidan and Magnus Lie Hetland, Bregman hyperplane trees for

fast approximate nearest neighbor search. IJMDEM 2012.

Abstract

We present a new approximate index structure, the Bregman hyperplane tree,
for indexing the Bregman divergence, aiming to decrease the number of distance
computations required at query processing time, by sacrificing some accuracy
in the result. The experimental results on various high-dimensional data sets
demonstrate that the proposed index structure performs comparably to the state-
of-the-art Bregman ball tree in terms of search performance and result quality.
Moreover, our method results in a speedup of well over an order of magnitude for
index construction. We also apply our space partitioning principle to the Bregman
ball tree and obtain a new index structure for exact nearest neighbor search that is
faster to build and a slightly slower at query processing than the original.

Research process and roles of the authors

After reading the paper for the Bregman ball tree [13], I came up with the idea to



42 Research Summary

propose hyperplane trees for Bregman divergences [10]. First I tackled the prob-
lem for exact k-NN search. However, it turned out that it is impossible. After
having meetings with Øystein Torbjørnsen, Magnus Lie Hetland and Svein Erik
Bratsberg, I tried only the approximate version of the tree. I did the implementa-
tion, conducted the experiments and wrote the initial version of the paper. Mag-
nus Lie Hetland guided me how to compare approximate methods with different
parameters and/or performance in a single plot and analyze the experiments. He
also edited the paper. Each of the authors contributed to writing of the final ver-
sions. In the extended journal version, we applied the hyperplane partitioning to
the Bregman ball tree.

3.2.3 Paper III

Bilegsaikhan Naidan and Magnus Lie Hetland, Static-to-dynamic transforma-

tion for metric indexing structures (extended version). Information Systems

2014.

Abstract

In this paper, we study the well-known algorithm of Bentley and Saxe in the con-
text of similarity search in metric spaces. We apply the algorithm to existing static
metric index structures, obtaining dynamic ones. We show that the overhead of
the Bentley-Saxe method is quite low, and because it facilitates the dynamic use
of any state-of-the-art static index method, we can achieve results comparable to,
or even surpassing, existing dynamic methods. Another important contribution
of our approach is that it is very simple—an important practical consideration.
Rather than dealing with the complexities of dynamic tree structures, for exam-
ple, the core index can be built statically, with full knowledge of its data set.

Research process and roles of the authors

Magnus Lie Hetland had the idea of using Bentley-Saxe method [6] for static met-
ric indexing structures. I contributed to the main idea and came up with a param-
eter tuning option for deletion. I did all the implementation, conducted the ex-
periments and wrote the initial version of the paper. Magnus Lie Hetland helped
me to design the experiments, analyzed the method theoretically and edited the
paper. Each of the authors discussed during the whole process and contributed
to writing of the final versions. In the conference version of the paper, the ex-
periments of deletions with dynamic spatial approximation (DSA-) tree [46] were
not performed due to a bug in the SISAP metric space library [29]. However, in
the journal version, we had support from one of the original authors of DSA-tree
and the bug was fixed and therefore we compared our method against DSA-tree
fully.
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3.2.4 Paper IV

Leonid Boytsov and Bilegsaikhan Naidan, Learning to Prune in Metric and

Non-Metric Spaces. NIPS 2013.

Abstract

Our focus is on approximate nearest neighbor retrieval in metric and non-metric
spaces. We employ a VP-tree and explore two simple yet effective learning-to-
prune approaches: density estimation through sampling and “stretching” of the
triangle inequality. Both methods are evaluated using data sets with metric (Eu-
clidean) and non-metric (KL-divergence and Itakura-Saito) distance functions. Con-
ditions on spaces where the VP-tree is applicable are discussed. The VP-tree with
a learned pruner is compared against the recently proposed state-of-the-art ap-
proaches: the bbtree, the multi-probe locality sensitive hashing (LSH), and per-
mutation methods. Our method was competitive against state-of-the-art meth-
ods and, in most cases, was more efficient for the same rank approximation qual-
ity.

Research process and roles of the authors

This project started, because I invited Leonid to jointly work on designing and
evaluating search methods for non-metric spaces. I also proposed to test our ideas
using the special class of non-metric methods called Bregman divergences. For
my personal research projects, I was also developing an evaluation framework
that we jointly turned into what is now called the “Non-Metric Space Library”.
My engineering contributions are described in section 3.2.6 on Paper VI. Leonid
developed a variant of the VP-tree that can tune a pruning function to the data
and wrote most of the manuscript. I was helping with writing, obtaining data
sets and running experiments.

3.2.5 Paper V

Bilegsaikhan Naidan and Magnus Lie Hetland, Shrinking data balls in metric

indexes. DBKDA 2013.

Abstract

Some of the existing techniques for approximate similarity retrieval in metric spaces
are focused on shrinking the query region by user-defined parameter. We modify
this approach slightly and present a new approximation technique that shrinks
data regions instead. The proposed technique can be applied to any metric in-
dexing structure based on the ball-partitioning principle. Experiments show that
our technique performs better than the relative error approximation and region
proximity techniques, and that it achieves significant speedup over exact search
with a low degree of error. Beyond introducing this new method, we also point
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out and remedy a problem in the relative error approximation technique, substan-
tially improving its performance.

Research process and roles of the authors

I came up with the idea, did the implementation and the experiments, and wrote
the initial version of the paper. Magnus Lie Hetland helped me to design the
experiments. He also added discussions about probability and distance distri-
butions and edited the paper. Each of the authors discussed during the entire
process and contributed to writing of the final versions. Øystein Torbjørnsen and
Svein Erik Bratsberg offered valuable feedback during the process.

3.2.6 Paper VI

Leonid Boytsov and Bilegsaikhan Naidan, Engineering Efficient and Effective

Non-metric Space Library. SISAP 2013.

Abstract

We present a new similarity search library and discuss a variety of design and per-
formance issues related to its development. We adopt a position that engineering
is equally important to design of the algorithms and pursue a goal of producing re-
alistic benchmarks. To this end, we pay attention to various performance aspects
and utilize modern hardware, which provides a high degree of parallelization.
Since we focus on realistic measurements, performance of the methods should
not be measured using merely the number of distance computations performed,
because other costs, such as computation of a cheaper distance function, which
approximates the original one, are oftentimes substantial. The paper includes
preliminary experimental results, which support this point of view. Rather than
looking for the best method, we want to ensure that the library implements com-
petitive baselines, which can be useful for future work.

Research process and roles of the authors

This library (NMSLIB) is based on my personal project, which I started in 2010. It
included both an evaluation framework as well as implementations of many clas-
sic metric access methods, including, but not limited to, the VP-tree, the GH-tree,
list of clusters, etc. It was further extended by implementations of several per-
mutation methods (e.g, the brute-force filtering of permutations, the MI-file, and
the PP-index). Leonid proposed to make this library a full-fledged framework
for searching in both metric and non-metric spaces. He also started refactoring
the evaluation part and implemented efficient distance functions. At this point,
I added an implementation of the BB-tree (a search method for Bregman diver-
gences) as well a wrapper for multi-probe LSH. Leonid added an implementation
of the VP-tree that can tune a pruning function to the data and, thus, be usable for
a variety of non-metric spaces. He also wrote most of the manuscript: I helped
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with comments and feedbacks and obtaining data sets, as well as with running
experiments. I also wrote a script that generates plots for the experiments.

3.2.7 Paper VII

Bilegsaikhan Naidan and Magnus Lie Hetland, An empirical evaluation of a

metric index for approximate string matching. NIK 2012.

Abstract

In this paper, we evaluate a metric index for the approximate string matching
problem based on suffix trees, proposed by Gonzalo Navarro and Edgar Chávez [45].
Suffix trees are used during the index construction to generate intermediate data
(pivot table) that to be indexed and the query processing. One of the main prob-
lems with suffix trees is their space requirements. To address this, we proposed
as an alternative a linear-time algorithm that simulates suffix trees in the suffix
arrays. The proposed algorithm is more space-efficient and is more suited for
disk-based implementation. Even so, experimental results on two real-world data
sets show that the metric index is beaten by straightforward, slightly enhanced
linear scan.

Research process and roles of the authors

Magnus Lie Hetland introduced me the method proposed by Gonzalo Navarro
and Edgar Chávez [45] and mentioned that we could use suffix arrays instead of
suffix trees. I came up with a linear-time algorithm that simulates suffix trees in
suffix arrays. I did all the implementation and experiments and wrote the initial
version of the paper. Magnus Lie Hetaland checked the correctness of the pro-
posed algorithm and edited the paper. Each of the authors contributed to writing
of the final version.

3.3 Publication venue

Paper I was published at International Conference on Very Large Data Bases (VLDB),
2015 which is one of the top conferences in Databases [50]. So far, this paper has
been cited 1 time.

The conference version of Paper II was published at International Workshop on
Multimedia Databases and Data Engineering (MDDE) workshop at VLDB 2012.
Eventually, it was invited to International Journal of Multimedia Data Engineering
and Management (IJMDEM) after the workshop.

This conference version of Paper III was published at International Conference
on Similarity Search and Applications (SISAP), 2012. SISAP is the only one con-
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ference specialized in similarity search. It was selected as one of the best papers
award and eventually was invited to Information Systems Journal.

Paper IV was published at Neural Information Processing Systems (NIPS), 2013
which is one of the top conferences in Artificial Intelligence [50]. This paper has
been cited 2 times.

Paper V was published at International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA), 2013.

Paper VI was published at SISAP 2013 and has been cited 3 times.

Paper VII was published at Norwegian Informatics Conference (NIK), 2012.

3.4 Evaluation of contributions

This section evaluates our contributions towards the research goals which are de-
fined in Section 1.2.

RG1. Propose new similarity search methods

• In Paper II, a new Bregman hyperplane tree for approximate nearest neigh-
bor search under Bregman divergences was proposed. The search algorithm
relies on the early termination principle which is described in Section 2.8.
The performance and quality of approximate queries with our method are
comparably to the state-of-the-art Bregman ball tree (BB-tree). However, our
method is faster than BB-tree by an order of magnitude in index construc-
tion.

• The construction cost of the BB-tree is high. Therefore, we applied our par-
titioning principle to the BB-tree in Paper II.

• So far, quite a few dynamic indexing methods have been proposed. In Pa-
per III, we presented the method of Bentley and Saxe (BS) in the context
of similarity search. The BS-method allows us to transform static indexing
methods into dynamic ones with less effort.

• In Paper IV, we proposed new learning to prune approaches. We applied our
method to the VP-tree. Our method is shown to yield better performance
than the state-of-the-art baselines in most cases.

RG2. Improve and/or evaluate the efficiency of the existing similarity search
methods

• In Paper I, permutation methods were tested extensively against state-of-
the-art methods on large diverse real-world metric and non-metric data sets
under various distance functions, including Bregman divergences and SQFD.
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• In general, indexing methods based on the ball partitioning principle (see
Section 2.5) tend to have not compact balls. In Paper V, this motivated us to
propose a slightly modified version of ε-NN technique which outperforms
the relative error approximation and region proximity methods.

• In Paper VII, we evaluated a metric index for approximate string matching
on DNA and protein data sets. The original method is based on suffix trees.
We proposed a new algorithm that simulates suffix trees in the suffix arrays.

RG3. Broaden the applicability of similarity search methods

• As we described in Section 2.7, the VP-tree is designed only for metric spaces.
In Paper IV, the VP-tree with a learned pruner is applied to non-metric Breg-
man divergences.

• In Paper VI, we presented so-called Non-Metric Space Library (NMSLIB)
which is mainly focused on non-metric spaces, flexibility and performance.

3.5 NSMLIB in an approximate nearest neighbor

benchmark

Recently, Erik Bernhardsson [8] at Spotify conducted benchmarks of approximate
nearest neighbor libraries including NMSLIB, Annoy [7], FLANN [44], KGraph [23]
and many popular others [24, 48, 52, 56]. At the time of writing (January 2016),
the SW-graph of NMSLIB is faster than the other libraries for the same preci-
sion.

3.6 Future work

k-NN graphs are shown to be efficient. As mentioned in Section 2.11, one limita-
tion of k-NN graph is the construction cost which is quite high for large data sets.
I believe that there is a still room for improvement and it is worth to investigate
how to speed up the constriction of a k-NN graph and efficient search strategies.
The following ideas could be investigated:

• To my knowledge, there is no divide-and-conquer approximate k-NN con-
struction method based on the k-means clustering algorithm. The basic idea
is to apply the k-means (or any clustering) algorithm to obtain k subsets. For
each subset, we build a k-NN graph using brute force method. Finally, sim-
ilar to [60], all small graphs are merged into a final graph.

• Instead of the clustering based method described above, we select several
pivots randomly and represent the objects as permutations. Then objects



48 Research Summary

with similar permutation prefixes end up in the same subset.

• The search algorithm for k-NN graph is often started from a random node.
Instead of that, we can apply some clustering method (for instance, one in
the SSS-tree) to find m objects (m � n) that are possibly far from each other.
Then we call them as fingers which point to graph nodes from which the
search can be started. For large m, we can index them using the existing
metric methods. I believe that the finger-based approach would accelerate
the search.

3.7 Conclusions

The main objective of this PhD thesis was to research the design and evaluation
of possible strategies that can achieve efficient similarity search. We presented
a number of contributions on approximate similarity search and algorithm en-
gineering. In particular, we proposed a new index structure for Bregman diver-
gences, a variant of ε-NN, and a learning-to-prune method. We surveyed state-of-
the-art approximate methods. We also evaluated the Bently-Saxe method in the
context of similarity search and a metric index in string matching domain. The
proposed methods were evaluated on real-world data sets with different distance
distributions to demonstrate their wide range of applicability.

Another practical contribution of this PhD work is the initiation of an open source
research framework called the “Non Metric Space Library“ (NMSLIB). We also
made our data sets publicly available. I believe that our NMSLIB is useful for other
researchers and commercial users as well. Therefore, I will keep contributing to
the library.
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ABSTRACT
We survey permutation-based methods for approximate k-
nearest neighbor search. In these methods, every data point
is represented by a ranked list of pivots sorted by the dis-
tance to this point. Such ranked lists are called permuta-
tions. The underpinning assumption is that, for both metric
and non-metric spaces, the distance between permutations
is a good proxy for the distance between original points.
Thus, it should be possible to efficiently retrieve most true
nearest neighbors by examining only a tiny subset of data
points whose permutations are similar to the permutation
of a query. We further test this assumption by carrying
out an extensive experimental evaluation where permutation
methods are pitted against state-of-the art benchmarks (the
multi-probe LSH, the VP-tree, and proximity-graph based
retrieval) on a variety of realistically large data set from
the image and textual domain. The focus is on the high-
accuracy retrieval methods for generic spaces. Additionally,
we assume that both data and indices are stored in main
memory. We find permutation methods to be reasonably
efficient and describe a setup where these methods are most
useful. To ease reproducibility, we make our software and
data sets publicly available.

1. INTRODUCTION
Nearest-neighbor searching is a fundamental operation em-

ployed in many applied areas including pattern recognition,
computer vision, multimedia retrieval, computational bi-
ology, and statistical machine learning. To automate the
search task, real-world objects are represented in a com-
pact numerical, e.g., vectorial, form and a distance function
d(x, y), e.g., the Euclidean metric L2, is used to evaluate the
similarity of data points x and y. Traditionally, it assumed
that the distance function is a non-negative function that
is small for similar objects and large for dissimilar one. It
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is equal to zero for identical x and y and is always positive
when objects are different.

This mathematical formulation allows us to define the
nearest-neighbor search as a conceptually simple optimiza-
tion procedure. Specifically, given a query data point q, the
goal is to identify the nearest (neighbor) data point x, i.e.,
the point with the minimum distance value d(x, q) among
all data points (ties can be resolved arbitrarily). A natu-
ral generalization is a k-NN search, where we aim to find
k closest points instead of merely one. If the distance is
not symmetric, two types of queries are considered: left and
right queries. In a left query, a data point compared to the
query is always the first (i.e., the left) argument of d(x, y).
Despite being conceptually simple, finding nearest neigh-

bors in efficient and effective fashion is a notoriously hard
task, which has been a recurrent topic in the database com-
munity (see e.g. [43, 20, 2, 28]). The most studied instance
of the problem is an exact nearest-neighbor search in vec-
tor spaces, where a distance function is an actual metric
distance (a non-negative, symmetric function satisfying the
triangle inequality). If the search is exact, we must guaran-
tee that an algorithm always finds a true nearest-neighbor
no matter how much computational resources such a quest
may require. Comprehensive reviews of exact approaches
for metric and/or vector spaces can be found in books by
Zezula et al. [45] and Samet [35].

Yet, exact methods work well only in low dimensional
metric spaces.1 Experiments showed that exact methods can
rarely outperform the sequential scan when dimensionality
exceeds ten [43]. This a well-known phenomenon known as
“the curse of dimensionality”.
Furthermore, a lot of applications are increasingly relying

on non-metric spaces (for a list of references related to com-
puter vision see, e.g., a work by Jacobs et al. [25]). This is
primarily because many problems are inherently non-metric
[25]. Thus, using, a non-metric distance permits sometimes
a better representation for a domain of interest. Unfortu-
nately, exact methods for metric-spaces are not directly ap-
plicable to non-metric domains.
Compared to metric spaces, it is more difficult to design

exact methods for arbitrary non-metric spaces, in particular,
because they lack sufficiently generic yet simple properties
such as the triangle inequality. When exact search methods
for non-metric spaces do exist, they also seem to suffer from
the curse of dimensionality [10, 9].

1A dimensionality of a vector space is simply a number of
coordinates necessary to represent a vector: This notion can
be generalized to metric spaces without coordinates [12].



Figure 1: Voronoi diagram produced by four pivots πi. The
data points are a, b, c, and d. The distance is L2.

Approximate search methods are less affected by the curse
of dimensionality [31] and can be used in various non-metric
spaces when exact retrieval is not necessary [38, 23, 13, 10,
9]. Approximate search methods can be much more efficient
than exact ones, but this comes at the expense of a reduced
search accuracy. The quality of approximate searching is
often measured using recall, which is equal to the average
fraction of true neighbors returned by a search method. For
example, if the method routinely misses every other true
neighbor, the respective recall value is 50%.

Permutation-based algorithms is an important class of ap-
proximate retrieval methods that was independently intro-
duced by Amato [3] and Chávez et al. [24]. It is based on
the idea that if we rank a set of reference points–called piv-
ots–with respect to distances from a given point, the pivot
rankings produced by two near points should be similar. A
number of methods based on this idea were recently pro-
posed and evaluated [3, 24, 19, 11, 2] (these methods are
briefly surveyed in § 2). However, a comprehensive evalu-
ation that involves a diverse set of large metric and non-
metric data sets (i.e., asymmetric and/or hard-to-compute
distances) is lacking. In § 3, we fill this gap by carrying
out an extensive experimental evaluation where these meth-
ods (implemented by us) are compared against some of the
most efficient state-of-the art benchmarks. The focus is on
the high-accuracy retrieval methods (recall close to 0.9) for
generic spaces. Because distributed high-throughput main
memory databases are gaining popularity (see., e.g. [27]),
we focus on the case where data and indices are stored in
main memory. Potentially, the data set can be huge, yet, we
run experiments only with a smaller subset that fits into a
memory of one server.

2. PERMUTATION METHODS

2.1 Core Principles
Permutation methods are filter-and-refine methods be-

longing to the class of pivoting searching techniques. Pivots
(henceforth denoted as πi) are reference points randomly
selected during indexing. To create an index, we compute
the distance from every data point x to every pivot πi. We
then memorize either the original distances or some distance
statistics in the hope that these statistics can be useful dur-
ing searching. At search time, we compute distances from
the query to pivots and prune data points using, e.g., the tri-
angle inequality [35, 45] or its generalization for non-metric
spaces [21].

Alternatively, rather than relying on distance values di-
rectly, we can use precomputed statistics to produce esti-

mates for distances between the query and data points. In
particular, in the case of permutation methods, we assess
similarity of objects based on their relative distances to piv-
ots. To this end, for each data point x, we arrange pivots πi

in the order of increasing distances from x. The ties can be
resolved, e.g., by selecting a pivot with the smallest index.
Such a permutation (i.e., ranking) of pivots is essentially a
vector whose i-th element keeps an ordinal position of the
i-th pivot in the set of pivots sorted by their distances from
x. We say that point x induces the permutation.
Consider the Voronoi diagram in Figure 1 produced by

pivots π1, π2, π3, and π4. Each pivot πi is associated with
its own cell containing points that are closer to πi than to
any other pivot πj , i �= j. The neighboring cells of two pivots
are separated by a segment of the line equidistant to these
pivots. Each of the data points a, b, c, and d “sits” in the
cell of its closest pivot.
For the data point a, points π1, π2, π3, and π4 are re-

spectively the first, the third, and the forth closest pivots.
Therefore, the point a induces the permutation (1, 2, 3, 4).
For the data point b, which is the nearest neighbor of a, two
closest pivots are also π1 and π2. However, π4 is closer than
π3. Therefore, the permutation induced by b is (1, 2, 4, 3).
Likewise, the permutations induced by c and d are (2, 3, 1, 4)
and (3, 2, 4, 1), respectively.
The underpinning assumption of permutation methods is

that most nearest neighbors can be found by retrieving a
small fraction of data points whose pivot rankings, i.e., the
induced permutations, are similar to the pivot ranking of
the query. Two most popular choices to compare the rank-
ings x and y are: Spearman’s rho distance (equal to the
squared L2) and the Footrule distance (equal to L1) [14,
24]. More formally, SpearmanRho(x, y) =

∑
i(xi − yi)

2 and
Footrule(x, y) =

∑
i |xi−yi|. According to Chávez et al. [24]

Spearman’s rho is more effective than the Footrule distance.
This was also confirmed by our own experiments.
Converting the vector of distances to pivots into a permu-

tation entails information loss, but this loss is not necessar-
ily detrimental. In particular, our preliminary experiments
showed that using permutations instead of vectors of origi-
nal distances results in slightly better retrieval performance.
The information about relative positions of the pivots can
be further coarsened by binarization: All elements smaller
than a threshold b become zeros and elements at least as
large as b become ones [39]. The similarity of binarized per-
mutations is computed via the Hamming distance.
In the example of Figure 1, the values of the Footrule

distance between the permutation of a and permutations of
b, c, and d are equal to 2, 4, and 6, respectively. Note that
the Footrule distance on permutations correctly “predicts”
the closest neighbor of a. Yet, the ordering of points based
on the Footrule distance is not perfect: the Footrule distance
from the permutation of a to the permutation of its second
nearest neighbor d is larger than the Footrule distance to
the permutation of the third nearest neighbor c.

Given the threshold b = 3, the binarized permutations in-
duced by a, b, c, and d are equal to (0, 0, 1, 1), (0, 0, 1, 1),
(0, 1, 0, 1), and (1, 0, 1, 0), respectively. In this example, the
binarized permutation of a and its nearest neighbor b are
equal, i.e., the distance between respective permutations is
zero. When we compare a to c and d, the Hamming dis-
tance does not discriminate between c and d as their binary



permutations are both at distance two from the binary per-
mutation of a.

Permutation-based searching belongs to a class of filter-
and-refine methods, where objects are mapped to data points
in a low-dimensional space (usually L1 or L2). Given a per-
mutation of a query, we carry out a nearest neighbor search
in the space of permutations. Retrieved entries represent a
(hopefully) small list of candidate data points that are com-
pared directly to the query using the distance in the original
space. The permutation methods differ in ways of producing
candidate records, i.e., in the way of carrying out the filter-
ing step. In the next sections we describe these methods in
detail.

Permutation methods are similar to the rank-aggregation
method OMEDRANK due to Fagin et al. [20]. In OME-
DRANK there is a small set of voting pivots, each of which
ranks data points based on a somewhat imperfect notion of
the distance from points to the query (e.g., computed via a
random projection). While each individual ranking is imper-
fect, a more accurate ranking can be achieved by rank aggre-
gation. Thus, unlike permutation methods, OMEDRANK
uses pivots to rank data points and aims to find an unknown
permutation of data points that reconciles differences in data
point rankings in the best possible way. When such a con-
solidating ranking is found, the most highly ranked objects
from this aggregate ranking can be used as answers to a
nearest-neighbor query. Finding the aggregate ranking is
an NP-complete problem that Fagin et al. [20] solve only
heuristically. In contrast, permutation methods use data
points to rank pivots and solve a much simpler problem of
finding already known and computed permutations of pivots
that are the best matches for the query permutation.

2.2 Brute-force Searching of Permutations
In this approach, the filtering stage is implemented as a

brute-force comparison of the query permutation against the
permutations of the data with subsequent selection of the γ
entries that are γ-nearest objects in the space of permuta-
tions. A number of candidate entries γ is a parameter of
the search algorithm that is often understood as a fraction
(or percentage) of the total number of points. Because the
distance in the space of permutations is not a perfect proxy
for the original distance, to answer a k-NN-query with high
accuracy, the number of candidate records has to be much
larger than k (see § 3.4).

A straightforward implementation of brute-force searching
relies on a priority queue. Chávez et al. [24] proposed to use
incremental sorting as a more efficient alternative. In our
experiments with the L2 distance, the latter approach is
twice as fast as the approach relying on a standard C++
implementation of a priority queue.

The cost of the filtering stage can be reduced by using
binarized permutations [39]. Binarized permutations can be
stored compactly as bit arrays. Computing the Hamming
distance between bit arrays can be done efficiently by XOR-
ing corresponding computer words and counting the number
of non-zero bits of the result. For bit-counting, one can use
a special instruction available on many modern CPUs. 3

The brute-force searching in the permutation space, un-
fortunately, is not very efficient, especially if the distance
can be easily computed: If the distance is “cheap” (e.g.,

3In C++, this instruction is provided via the intrinsic func-
tion builtin popcount.

L2) and the index is stored in main memory, the brute-force
search in the space of permutations is not much faster than
the brute-force search in the original space.

2.3 Indexing of Permutations
To reduce the cost of the filtering stage of permutation-

based searching, three types of indices were proposed: the
Permutation Prefix Index (PP-Index) [19], existing methods
for metric spaces [22], and the Metric Inverted File (MI-file)
[3].
Permutations are integer vectors whose values are between

one and the total number of pivots m. We can view these
vectors as sequences of symbols over a finite alphabet and
index these sequences using a prefix tree. This approach is
implemented in the PP-index. At query time, the method
aims to retrieve γ candidates by finding permutations that
share a prefix of a given length with the permutation of the
query object. This operation can be carried out efficiently
via the prefix tree constructed at index time. If the search
generates fewer candidates than a specified threshold γ, the
procedure is recursively repeated using a shorter prefix. For
example, the permutations of points a, b, c, and d in Fig-
ure 1 can be seen as strings 1234, 1243, 2314, and 3241. The
permutation of points a and b, which are nearest neighbors,
share a two-character prefix with a. In contrast, permuta-
tions of points c and d, which are more distant from a than
b, have no common prefix with a.
To achieve good recall, it may be necessary to use short

prefixes. However, longer prefixes are more selective than
shorter ones (i.e., they generate fewer candidate records) and
are, therefore, preferred for efficiency reasons. In practice,
a good trade-off between recall and efficiency is typically
achieved only by building several copies of the PP-index
(using different subsets of pivots) [2].

Figueroa and Fredriksson experimented with indexing per-
mutations using well-known data structures for metric spaces
[22]. Indeed, the most commonly used permutation dis-
tance: Spearman’s rho, is a monotonic transformation (squar-
ing) of the Euclidean distance. Thus, it should be possible
to find γ nearest neighbors by indexing permutations, e.g.,
in a VP-tree [44, 41].

Amato and Savino proposed to index permutation using
an inverted file [3]. They called their method the MI-file.
To build the MI-file, they first select m pivots and compute
their permutations/rankings induced by data points. For
each data point, mi ≤ m most closest pivots are indexed
in the inverted file. Each posting is a pair (pos(πi, x), x),
where x is the identifier of the data point and pos(πi, x) is
a position of the pivot in the permutation induced by x.
Postings of the same pivot are sorted by pivot’s positions.
Consider the example of Figure 1 and imagine that we

index two most closest pivots (i.e., mi = 2). The point
a induces the permutation (1, 2, 3, 4). Two closest pivots
π1 and π2 generate postings (1, a) and (2, a). The point b
induces the permutation (1, 2, 4, 3). Again, π1 and π2 are
two pivots closest to b. The respective postings are (1, b)
and (2, b). The permutation of c is (2, 3, 1, 4). Two closest
pivots are π1 and π3. The respective postings are (2, c) and
(1, c). The permutation of d is (3, 2, 4, 1). Two closest pivots
are π2 and π4 with corresponding postings (2, d) and (1, d).
At query time, we select ms ≤ mi pivots closest to the

query q and retrieve respective posting lists. If ms = mi =
m, it is possible to compute the exact Footrule distance (or



Table 1: Summary of Data Sets

Name Distance # of rec. Brute-force In-memory Dimens. Source
function search (sec) size

Metric Data

CoPhIR L2 5 · 106 0.6 5.4GB 282 MPEG7 descriptors [7]
SIFT L2 5 · 106 0.3 2.4GB 128 SIFT descriptors [26]
ImageNet SQFD[4] 1 · 106 4.1 0.6 GB N/A Signatures generated from

ImageNet LSVRC-2014 [34]

Non-Metric Data

Wiki-sparse Cosine sim. 4 · 106 1.9 3.8GB 105 Wikipedia TF-IDF vectors
generated via Gensim [33]

Wiki-8 KL-div/JS-div 2 · 106 0.045/0.28 0.13GB 8 LDA (8 topics) generated
from Wikipedia via Gensim [33]

Wiki-128 KL-div/JS-div 2 · 106 0.22/4 2.1GB 128 LDA (128 topics) generated
from Wikipedia via Gensim [33]

DNA Normalized 1 · 106 3.5 0.03GB N/A Sampled from the Human Genome2

Levenshtein with sequence length N (32, 4)

Spearman’s rho) between the query permutation and the
permutation induced by data points. One possible search
algorithm keeps an accumulator (initially set to zero) for ev-
ery data point. Posting lists are read one by one: For every
encountered posting (pos(πi, x), x) we increase the accumu-
lator of x by the value |pos(πi, x) − pos(πi, q)|. If the goal
is to compute Spearman’s rho, the accumulator is increased
by |pos(πi, x)− pos(πi, q)|2.

If ms < m, by construction of the posting lists, using
the inverted index, it is possible to obtain rankings of only
ms < m pivots. For the remaining, m −ms pivots we pes-
simistically assume that their rankings are all equal to m
(the maximum possible value). Unlike the case mi = ms =
m, all accumulators are initially set to ms · m. Whenever
we encounter a posting posting (pos(πi, x), x) we subtract
m− |pos(πi, x)− pos(πi, q)| from the accumulator of x.
Consider again the example of Figure 1. Let mi = ms = 2

and a be the query point. Initially, the accumulators of b, c,
and d contain values 4·2 = 8. Because ms = 2, we read post-
ing lists only of the two closest pivots for the query point a,
i.e., π1 and π2. The posting lists of π1 is comprised of (1, a),
(1, b), and (2, c). On reading them (and ignoring postings
related to the query a), accumulators b and c are decreased
by 4−|1−1| = 4 and 4−|1−2| = 3, respectively. The post-
ing lists of π2 are (2, a), (2, b), and (2, d). On reading them,
we subtract 4− |2− 2| = 4 from each of the accumulators b
and d. In the end, the accumulators b, c, d are equal to 0, 5,
and 4. Unlike the case when we compute the Footrule dis-
tance between complete permutation, the Footrule distance
on truncated permutations correctly predicts the order of
three nearest neighbors of a.
Using fewer pivots at retrieval time allows us to reduce

the number of processed posting lists. Another optimiza-
tion consists in keeping posting lists sorted by pivots posi-
tion pos(πi, x) and retrieving only the entries satisfying the
following restriction on the maximum position difference:
|pos(πi, x) − pos(πi, q)| ≤ D, where D is a method param-
eter. Because posting list entries are sorted by pivot posi-
tions, the first and the last entry satisfying the maximum
position difference requirement can be efficiently found via
the binary search.

Tellez et al. [40] proposed a modification of the MI-file
which they called a Neighborhood APProximation index
(NAPP). In the case of NAPP, there also exist a large set
of m pivots of which only mi < m pivots (most closest
to inducing data points) are indexed. Unlike the MI-file,
however, posting lists contain only object identifiers, but no
positions of pivots in permutations. Thus, it is not possible
to compute an estimate for the Footrule distance by read-
ing only posting lists. Therefore, instead of an estimate for
the Footrule distance, the number of most closest common
pivots is used to sort candidate objects. In addition, the
candidate objects sharing with the query fewer than t clos-
est pivots are discarded (t is a parameter). For example,
points a and b in Figure 1 share the same common pivot π1.
At the same time a does not share any closest pivot with
points d and c. Therefore, if we use a as a query, the point
b will be considered to be the best candidate point.
Chávez et al. [24] proposed a single framework that unifies

several approaches including PP-index, MI-file, and NAPP.
Similar to the PP-index, permutations are viewed as strings
over a finite alphabet. However, these strings are indexed
using a special sequence index (rather than a prefix tree)
that efficiently supports rank and select operations. These
operations can be used to simulate various index traversal
modes, including, e.g., retrieval of all strings whose i-th sym-
bol is equal to a given one.

3. EXPERIMENTS

3.1 Data Sets and Distance Functions
We employ three image data sets: CoPhIR, SIFT, Ima-

geNet, and several data sets created from textual data. The
smallest data set (DNA) has one million entries, while the
largest one (CoPhIR) contains five million high-dimensional
vectors. All data sets derived from Wikipedia were gener-
ated using the topic modelling library GENSIM [33]. The
data set meta data is summarized in Table 1. Below, we
describe our data sets in detail.
CoPhIR is a five million subset of MPEG7 descriptors

downloaded from the website of the Institute of the National
Research Council of Italy[7].



SIFT is a five million subset of SIFT descriptors (from
the learning subset) downloaded from a TEXMEX collection
website[26].4

In experiments involving CoPhIR and SIFT, we employed
L2 to compare unmodified, i.e., raw visual descriptors. We
implemented an optimized procedure to compute L2 that
relies on Single Instruction Multiple Data (SIMD) opera-
tions available on Intel-compatible CPUs. Using this imple-
mentation, it is possible to carry out about 20 million L2

computations per second using SIFT vectors or 10 million
L2 computations using CoPhIR vectors.
ImageNet collection comprises one million signatures ex-

tracted from LSVRC-2014 data set [34], which contains 1.2
million high resolution images. We implemented our own
code to extract signatures following the method of Beecks [4].
For each image, we selected 104 pixels randomly and mapped
them into 7-dimensional feature space: three color, two po-
sition, and two texture dimensions.

The features were clustered by the standard k-means algo-
rithm with 20 clusters. Then, each cluster was represented
by an 8-dimensional vector, which included a 7-dimensional
centroid and a cluster weight (the number of cluster points
divided by 104).
Images were compared using a metric function called the

Signature Quadratic Form Distance (SQFD). This distance
is computed as a quadratic form, where the matrix is re-
computed for each pair of images using a heuristic similarity
function applied to cluster representatives. It is a distance
metric defined over vectors from an infinite-dimensional space
such that each vector has only finite number of non-zero ele-
ments. For further details, please, see the thesis of Beecks [4].
SQFD was shown to be effective [4]. Yet, it is nearly two
orders of magnitude slower compared to L2.

Wiki-sparse is a set of four million sparse TF-IDF vec-
tors (created via GENSIM [33]). On average, these vectors
have 150 non-zero elements out of 105. Here we use a cosine
similarity, which is a symmetric non-metric distance:

d(x, y) = 1−
(

n∑
i=1

xiyi

)(
n∑

i=1

x2
i

)−1/2 ( n∑
i=1

y2
i

)−1/2

.

Computation of the cosine similarity between sparse vec-
tors relies on an efficient procedure to obtain an intersection
of non-zero element indices. To this end, we use an all-
against-all SIMD comparison instruction as was suggested
by Schlegel et al. [36]. This distance function is relatively
fast being only about 5x slower compared to L2.
Wiki-i consist of dense vectors of topic histograms cre-

ated using the Latent Dirichlet Allocation (LDA)[6]. The
index i ∈ {8, 128} denotes the number of topics. To create
these sets, we trained a model on one half of the Wikipedia
collection and then applied it to the other half (again using
GENSIM [33]). Zero values were replaced by small num-
bers (10−5) to avoid division by zero in the distance cal-
culations. Two distance functions were used for these data
sets: the Kullback-Leibler (KL) divergence:

∑n
i=1 xi log

xi
yi

and its symmetrized version called the Jensen-Shannon (JS)
divergence:

d(x, y) =
1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
.

4http://corpus-texmex.irisa.fr/

Both the KL- and the JS-divergence are non-metric dis-
tances. Note that the KL-divergence is not even symmetric.
Our implementation of the KL-divergence relies on the

precomputation of logarithms at index time. Therefore, dur-
ing retrieval it is as fast as L2. In the case of JS-divergence,
it is not possible to precompute log(xi + yi) and, thus, it is
about 10-20 times slower compared to L2.
DNA is a collection of DNA sequences sampled from the

Human Genome 5. Starting locations were selected ran-
domly and uniformly (however, lines containing the symbol
N were excluded). The length of the sequence was sam-
pled from N (32, 4). The employed distance function was
the normalized Levenshtein distance. This non-metric dis-
tance is equal to the minimum number of edit operations
(insertions, deletions, substitutions), needed to convert one
sequence into another, divided by the maximum of the se-
quence lengths.

3.2 Tested Methods
Table 2 lists all implemented methods and provides infor-

mation on index creation time and size.
Multiprobe-LSH (MPLSH) is implemented in the li-

brary LSHKit 6. It is designed to work only for L2. Some
parameters are selected automatically using the cost model
proposed by Dong et al. [17]. However, the size of the hash
table H, the number of hash tables L, and the number of
probes T need to be chosen manually. We previously found
that (1) L = 50 and T = 10 provided a near optimal per-
formance and (2) performance is not affected much by small
changes in L and T [9]. This time, we re-confirmed this ob-
servation by running a small-scale grid search in the vicinity
of L = 50 and T = 50 for H equal to the number of points
plus one. The MPLSH generates a list of candidates that
are directly compared against the query. This comparison
involves the optimized SIMD implementation of L2.

VP-tree is a classic space decomposition tree that recur-
sively divides the space with respect to a randomly chosen
pivot π[44, 41]. For each partition, we compute a median
value R of the distance from π to every other point in the
current partition. The pivot-centered ball with the radius
R is used to partition the space: the inner points are placed
into the left subtree, while the outer points are placed into
the right subtree (points that are exactly at distance R from
π can be placed arbitrarily).

Partitioning stops when the number of points falls below
the threshold b. The remaining points are organized in a
form of a bucket. In our implementation, all points in a
bucket are stored in the same chunk of memory. For cheap
distances (e.g., L2 and KL-div) this placing strategy can
halve retrieval time.
If the distance is the metric, the triangle inequality can

be used to prune unpromising partitions as follows: imag-
ine that r is a radius of the query and the query point is
inside the pivot-centered ball (i.e., in the left subtree). If
R − d(π, q) > r, the right partition cannot have an answer,
i.e., the right subtree can be safely pruned. If the query
point is in the right partition, we can prune the left subtree
if d(π, q) − R > r. The nearest-neighbor search is simu-
lated as a range search with a decreasing radius: Each time
we evaluate the distance between q and a data point, we

5http://hgdownload.cse.ucsc.edu/goldenPath/hg38/
bigZips/
6Downloaded from http://lshkit.sourceforge.net/



Table 2: Index Size and Creation Time for Various Data Sets

VP-tree NAPP LSH Brute-force filt. k-NN graph

Metric Data

CoPhIR 5.4 GB (0.5min) 6 GB (6.8min) 13.5 GB (23.4min) 7 GB (52.1min)
SIFT 2.4 GB (0.4min) 3.1 GB (5min) 10.6 GB (18.4min) 4.4 GB (52.2min)
ImageNet 1.2 GB (4.4min) 0.91 GB (33min) 12.2 GB (32.3min) 1.1 GB (127.6min)

Non-Metric Data

Wiki-sparse 4.4 GB (7.9min) 5.9 GB (231.2min)
Wiki-8 (KL-div) 0.35 GB (0.1min) 0.67 GB (1.7min) 962 MB (11.3min)
Wiki-128 (KL-div) 2.1 GB (0.2min) 2.5 GB (3.1min) 2.9 GB (14.3min)
Wiki-8 (JS-div) 0.35 GB (0.1min) 0.67 GB (3.6min) 2.4 GB (89min)
Wiki-128 (JS-div) 2.1 GB (1.2min) 2.5 GB (36.6min) 2.8 GB (36.1min)
DNA 0.13 GB (0.9min) 0.32 GB (15.9min) 61 MB (15.6min) 1.1 GB (88min)

Note: The indexing algorithms of NAPP and k-NN graphs used four threads.
In all but two cases (DNA and Wiki-8 with JS-divergence), we build the k-NN graph using the Small World algorithm [29].
In the case of DNA or Wiki-8 with JS-divergence, we build the k-NN graph using the NN-descent algorithm [16].
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Figure 2: Distance values in the projected space (on the y-axis) plotted against original distance values (on the x-axis). Plots
2a and 2b use random projections. The remaining plots rely on permutations. Dimensionality of the target space is 64. All
plots except Plot 2b represent projections to L2. In Plot 2b the target distance function is the cosine similarity. Distances
are computed for pairs of points sampled at random. Sampling is conducted from two strata: a complete subset and a set of
points that are 100-nearest neighbors of randomly selected points. All data sets have one million entries.
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Figure 3: A fraction of candidate records that are necessary to retrieve to ensure a desired recall level (10-NN search). The
candidate entries are ranked in a projected space using either the cosine similarity (only for Wiki-sparse) or L2 (for all the
other data sets). Two types of projections are used: random projections (rand) and permutations (perm). In each plot, there
are several lines that represent projections of different dimensionality. Each data (sub)set in this experiment contains one
million entries.



compare this distance with r. If the distance is smaller, it
becomes a new value of r. In the course of traversal, we first
visit the closest subspace (e.g., the left subtree if the query
is inside the pivot-centered ball).

For a generic, i.e., not necessarily metric, space, the prun-
ing conditions can be modified. For example, previously we
used a liner “stretching” of the triangle inequality [9]. In
this work, we employed a simple polynomial pruner. More
specifically, the right partition can be pruned if the query is
in the left partition and (R − d(π, q))βαleft > r. The left
partition can be pruned if the query is in the right partition
and (d(π, q)−R)βαright > r.

We used β = 2 for the KL-divergence and β = 1 for every
other distance function. The optimal parameters αleft and
αright can be found by a trivial grid-search-like procedure
with a shrinking grid step [9] (using a subset of data).
k-NN graph (a proximity graph) is a data structure in

which data points are associated with graph nodes and k
edges are connected to k nearest neighbors of the node. The
search algorithm relies on a concept “the closest neighbor of
my closest neighbor is my neighbor as well.” This algorithm
can start at an arbitrary node and recursively transition to a
neighbor point (by following the graph edge) that is closest
to the query. This greedy algorithm stops when the current
point x is closer to the query than any of the x’s neighbors.
However, this algorithm can be trapped in a local minima
[15]. Alternatively, the termination condition can be defined
in terms of an extended neighborhood [37, 29].

Constructing an exact k-NN graph is hardly feasible for
a large data set, because, in the worst case, the number of
distance computations is O(n2), where n in the number of
data points. While there are amenable metric spaces where
an exact graph can be computed more efficiently than in
O(n2), see e.g. [30], the quadratic cost appear to be un-
avoidable in many cases, especially if the distance is not a
metric or the intrinsic dimensionality is high.
An approximate k-NN graph can be constructed more ef-

ficiently. In this work, we employed two different graph con-
struction algorithms: the NN-descent proposed by Dong et
al. [16] and the search-based insertion algorithm used by
Malkov et al. [29]. The NN-descent is an iterative proce-
dure initialized with randomly selected nearest neighbors.
In each iteration, a random sample of queries is selected to
participate in neighborhood propagation.
Malkov et al. [29] called their method a Small World

(SW) graph. The graph-building algorithm finds an inser-
tion point by running the same algorithm that is used during
retrieval. Multiple insertion attempts are carried out start-
ing from a random point.
The open-source implementation of NN-descent is publicly

available online.7. However, it comes without a search algo-
rithm. Thus, we used the algorithm due to Malkov et al. [29],
which was available in the Non-Metric Space Library [8].
We applied both graph construction algorithms. Somewhat
surprisingly, in all but two cases, NN-descent took (much)
longer time to converge. For each data set, we used the
graph-construction algorithm that performed better on a
subset of the data. Both graph construction algorithms are
computationally expensive and are, therefore, constructed
in a multi-threaded mode (four threads). Tuning of k-NN
graphs involved manual selection of two parameters k and

7https://code.google.com/p/nndes/

the decay coefficient (tuning was carried out on a subset of
data). The latter parameter, which is used only for NN-
descent, defines the convergence speed.
Brute-force filtering is a simple approach where we ex-

haustively compare the permutation of the query against
permutation of every data point. We then use incremental
sorting to select γ permutations closest to the query per-
mutation. These γ entries represent candidate records com-
pared directly against the query using the original distance.

As noted in § 2, the cost of the filtering stage is high.
Thus, we use this algorithm only for the computationally
intensive distances: SQFD and the Normalized Levenshtein
distance. Originally, both in the case of SQFD and Normal-
ized Levenshtein distance, good performance was achieved
with permutations of the size 128. However, Levenshtein
distance was applied to DNA sequences, which were strings
whose average length was only 32. Therefore, using uncom-
pressed permutations of the size 128 was not space efficient
(128 32-bit integers use 512 bytes). Fortunately, we can
achieve the same performance using bit-packed binary per-
mutations with 256 elements, each of which requires only 32
bytes.

The optimal permutation size was found by a small-scale
grid search (again using a subset of data). Several values of
γ (understood as a fraction of the total number of points)
were manually selected to achieve recall in the range 0.85-
0.9.

NAPP is a neighborhood approximation index described
in § 2 [40]. Our implementation is different from the propo-
sition of Chávez et al. [24] and Tellez et al. [39] in at least
two ways: (1) we do not compress the index and (2) we
use a simpler algorithm, namely, the ScanCount, to merge
posting lists [13]. For each entry in the database, there is a
counter. When we read a posting list entry corresponding to
the object i, we increment counter i. To improve cache uti-
lization and overall performance, we split the inverted index
into small chunks, which are processed one after another.
Before each search counters are zeroed using the function
memset from a standard C library.

Tuning NAPP involves selection of three parameters m
(the total number of pivots), mi (the number of indexed
pivots), and t. The latter is equal to the minimum number of
indexed pivots that has to be shared between the query and
a data point. By carrying out a small-scale grid search, we
found that increasing m improves both recall and decreases
retrieval time, yet, improvement is small beyond m = 500.
At the same time, computation of one permutation entails
computation of m distances to pivots. Thus, larger values
of m incur higher indexing cost. Values of m between 500
and 2000 provide a good trade-off. Because the indexing
algorithm is computationally expensive, it is executed in a
multi-threaded mode (four threads).
Increasing mi improves recall at the expense of retrieval

efficiency: The larger is mi, the more posting lists are to
be processed at query time. We found that good results are
achieved for mi = 32. Smaller values of t result in high recall
values. At the same time, they also produce a larger number
of candidate records, which negatively affects performance.
Thus, for cheap distances, e.g. L2, we manually select the
smallest t that allows one to achieve a desired recall (using
a subset of data). For more expensive distances, we have an
additional filtering step (as proposed by Tellez et al. [39]),
which involves sorting by the number of commonly indexed



pivots.
Our initial assessment showed that NAPP was more ef-

ficient than the PP-index and at least as efficient MI-file,
which agrees with results of Chávez et al. [11]. We also com-
pared our NAPP implementation to that of Chávez et al. [11]
using the same L1 data set: 106 normalized CoPhIR descrip-
tors. At 95% recall, Chávez et al. [11] achieve a 14x speed
up, while we achieve a 15x speed up (relative to respective
brute-force search implementations). Thus, our NAPP im-
plementation is a competitive benchmark. Additionally we
benchmark our own implementation of Fagin et al.’s OME-
DRANK algorithm [20] and found NAPP to be more effi-
cient. We also experimented with indexing permutations
using the VP-tree, yet, this algorithm was either outper-
formed by the VP-tree in the original space or by NAPP.

3.3 Experimental Setup
Experiments were carried out on an Linux Intel Xeon

server (3.60 GHz, 32GB memory) in a single threaded mode
using the Non-Metric Space Library [8] as an evaluation
toolkit. The code was written in C++ and compiled using
GNU C++ 4.8 with the -Ofast optimization flag. Addi-
tionally, we used the flag -march=native to enable SIMD
extensions.

We evaluated performance of a 10-NN search using a pro-
cedure similar to a five-fold cross validation. We carried
out five iterations, in which a data set was randomly split
into two parts. The larger part was indexed and the smaller
part comprised queries 8. For each split, we evaluated re-
trieval performance by measuring the average retrieval time,
the improvement in efficiency (compared to a single-thread
brute-force search), the recall, the index creation time, and
the memory consumption. The retrieval time, recall, and the
improvement in efficiency were aggregated over five splits.
To simplify our presentation, in the case of non-symmetric
KL-divergence, we report results only the for the left queries.
Results for the right queries are similar.

Because we are interested in high-accuracy (near 0.9 re-
call) methods, we tried to tune parameters of the methods
(using a subset of the data) so that their recall falls in the
range 0.85-95. Method-specific tuning procedures are de-
scribed in respective subsections of Section 3.2.

3.4 Quality of Permutation-Based Projections
Recall that permutation methods are filter-and-refine ap-

proaches that map data from the original space to L2 or
L1. Their accuracy depends on the quality of this mapping,
which we assess in this subsection. To this end, we explore
(1) the relationship between the original distance values and
corresponding values in the projected space, (2) the rela-
tionship between the recall and the fraction of permutations
scanned in response to a query.

Figure 2 shows distance values in the original space (on
the x-axis) vs. values in the projected space (on the y-axis)
for eight combinations of data sets and distance functions.
Points were randomly sampled from two strata: a complete
subset and a set of points that are 100-nearest neighbors
of randomly selected points. Of the presented panels, 2a
and 2b correspond to the classic random projections. The
remaining panels show permutation-based projections.

8For cheap distances (e.g., L2) the query set has the size
1000, while for more expensive ones (such as the SQFD), we
used 200 queries for each of the five splits.

Classic random projections are known to preserve inner
products and distance values [5]. Indeed, the relationship
between the distance in the original and the projected space
appears to be approximately linear in panels 2a and 2b.
Therefore, it preserves the relative distance-based order of
points with respect to a query. For example, there is a high
likelihood for the nearest neighbor in the original space to re-
main the nearest neighbor in the projected space. In princi-
ple, any monotonic relationship—not necessarily linear–will
suffice [38]. If the monotonic relationship holds at least ap-
proximately, the projection typically distinguishes between
points close to the query and points that are far away.

For example, the projection in panel 2e appears to be quite
good, which is not entirely surprising, because the original
space is Euclidean. The projections in panels 2h and 2d
are also reasonable, but not as good as one in panel 2e.
The quality of projections in panels 2f and 2c is somewhat
uncertain. The projection in panel 2g–which represents the
non-symmetric and non-metric distance–is obviously poor.
Specifically, there are two clusters: one is close to the query
(in the original distance) and the other is far away. However,
in the projected space these clusters largely overlap.

Figure 3 contains nine panels that plot recall (on x-axis)
against a fraction of candidate records necessary to retrieve
to ensure this recall level (on y-axis). In each plot, there
are several lines that represent projections of different di-
mensionality. Good projections (e.g., random projections
in panels 3a and 3b) correspond to steep curves: recall ap-
proaches one even for a small fraction of candidate records
retrieved. Steepness depends on the projection dimension-
ality. However, good projection curves are steep even in
relatively low dimensions.

The worst projection according to Figure 2 is in panel
2g. It corresponds to the Wiki-128 data set with distance
measured by KL-divergence. Panel 3f in Figure 3, corre-
sponding to this combination of the distance and the data
set, also confirms the low quality of the projection. For
example, given a permutation of dimensionality 1024, scan-
ning 1% of the candidate permutations achieves roughly a
0.9 recall. An even worse projection example is in panel 3e.
In this case, regardless of the dimensionality, scanning 1%
of the candidate permutations achieves recall below 0.6.

At the same time, for majority of projections in other
panels, scanning 1% of the candidate permutations of di-
mensionality 1024 achieves an almost perfect recall. In other
words, for some data sets, it is, indeed, possible in most cases
to obtain a tiny set of candidate entries containing a true
near-neighbor by searching in the permutation space.

3.5 Evaluation of Efficiency vs Recall
In this section, we use complete data sets listed in Table 1.

Figure 4 shows nine data set specific panels with improve-
ment in efficiency vs. recall. Each curve captures method-
specific results with parameter settings tuned to achieve re-
call in the range of 0.85-0.95.
It can be seen that in most data sets the permutation

method NAPP is a competitive baseline. In particular, pan-
els 4a and 4b show NAPP outperforming the state-of-the art
implementation of the multi-probe LSH (MPLSH) for recall
larger than 0.95. This is consistent with findings of Chávez
et al. [11].

In that, in our experiments, there was no single best
method. k-NN graphs substantially outperform other meth-
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Figure 4: Improvement in efficiency vs. recall for various data sets (10-NN search). Each plot includes one of the two
implemented k-NN graph algorithms: Small World (SW) or NN-descent (NN-desc).



ods in 6 out of 9 data sets. However, in low-dimensional data
sets shown in panels 4d and 4e, the VP-tree outperforms the
other methods by a wide margin. The Wiki-sparse data set
(see panel 4i), which has high representational dimensional-
ity, is quite challenging. Among implemented methods, only
k-NN graphs are efficient for this set.
Interestingly, the winner in panel 4f is a brute-force filter-

ing using binarized permutations. Furthermore, the brute-
force filtering is also quite competitive in panel 4c, where it is
nearly as efficient as NAPP. In both cases, the distance func-
tion is computationally intensive and a more sophisticated
permutation index does not offer a substantial advantage
over a simple brute-force search in the permutation space.

Good performance of k-NN graphs comes at the expense of
long indexing time. For example, it takes almost four hours
to built the index for the Wiki-sparse data set using as many
as four threads (see Table 2). In contrast, it takes only 8
minutes in the case of NAPP (also using four threads). In
general, the indexing algorithm of k-NN graphs is substan-
tially slower than the indexing algorithm of NAPP: it takes
up to an order of magnitude longer to build a k-NN graph.
One exception is the case of Wiki-128 where the distance is
the JS-divergence. For both NAPP and k-NN graph, the in-
dexing time is nearly 40 minutes. However, the k-NN graph
retrieval is an order of magnitude more efficient.

Both NAPP and the brute-force searching of permutations
have high indexing costs compared to the VP-tree. This
cost is apparently dominated by time necessary to compute
permutations. Recall that obtaining a permutation entails
m distance computations. Thus, building an index entails
N ·m distance computations, where N is the number of data
points. In contrast, building the VP-tree requires roughly
N · log2 N/b distance computations, where b is the size of the
bucket. In our setup, m > 100 while log2 N/b < 20. There-
fore, the indexing step of permutation methods is typically
much longer than that of the VP-tree.

Even though permutation methods may not be the best
solutions when both data and the index are kept in main
memory, they can be appealing in the case of disk-resident
data [2] or data kept in a relational database. Indeed, as
noted by Fagin et al. [20], indexes based on the inverted files
are database friendly, because they require neither complex
data structures nor many random accesses. 9 Furthermore,
deletion and addition of records can be easily implemented.
In that, it is rather challenging to implement a dynamic
version of the VP-tree on top of a relational database.

We also found that all evaluated methods perform rea-
sonably well in the surveyed non-metric spaces. This might
indicate that there is some truth to the two folklore wis-
doms: (1) “the closest neighbor of my closest neighbor is my
neighbor as well”, (2) “if one point is close to a pivot, but
another is far away, such points cannot be close neighbors”.
Yet, these wisdoms are not universal. For example, they
are violated in one dimensional space with the “distance”
e−|x−y||x − y|. In this space, points 0 and 1 are distant.
However, we can select a large positive number that can be
arbitrarily close to both of them, which results in violation
of both property (1) and (2).

It seems that such a paradox does not manifest in the
surveyed non-metric spaces. In the case of continuous func-
tions, there is non-negative strictly monotonic transforma-

9The brute-force filtering of permutations is a simpler ap-
proach, which is also database friendly.

tion f(x) ≥ 0, f(0) = 0 such that f(d(x, y)) is a μ-defective
distance function. Thus, the distance satisfies the following
inequality:

|f(d(q, a))− f(d(q, b))| ≤ μf(d(a, b)), μ > 0 (1)

Indeed, a monotonic transformation of the cosine similarity
is the metric function (i.e, the angular distance) [42]. The
square root of the JS-divergence is metric function called
Jensen-Shannon distance [18]. The square root of all Breg-
man divergences (which include the KL-divergence) is μ-
defective as well [1]. The normalized Levenshtein distance
is a non-metric distance. However, for many realistic data
sets, the triangle inequality is rarely violated. In particular,
we verified that this is the case of our data set. The nor-
malized Levenshtein distance is approximately metric and,
thus, it is approximately μ-defective (with μ = 1).

If Inequality (1) holds, due to properties of f(x), d(a, b) = 0
and d(q, a) = 0 implies d(q, b) = 0. Similarly if d(q, b) = 0,
but d(q, a) �= 0, d(a, b) cannot be zero either. Moreover,
for a sufficiently large d(q, a) and sufficiently small d(q, b),
d(a, b) cannot be small. Thus, the two folklore wisdoms are
true if the strictly monotonic distance transformation is μ-
defective.

4. CONCLUSIONS
We benchmarked permutation methods for approximate

k-nearest neighbor search for generic spaces where both data
and indices are stored in main memory (aiming for high-
accuracy retrieval). We found these filter-and-refine meth-
ods to be reasonably efficient. The best performance is
achieved either by NAPP or by brute-force filtering of per-
mutations. For example, NAPP can outperform the multi-
probe LSH in L2. However, permutation methods can be
outstripped by either VP-trees or k-NN graphs, partly be-
cause the filtering stage can be costly.
We believe that permutation methods are most useful in

non-metric spaces of moderate dimensionality when: (1)
The distance function is expensive (or the data resides on
disk); (2) The indexing costs of k-NN graphs are unaccept-
ably high; (3) There is a need for a simple, but reasonably
efficient, implementation that operates on top of a relational
database.
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the Non-Metric Space Library13. The results of the pre-
liminary evaluation were published elsewhere [32]. In the
current publication, we use improved versions of the NAPP
and baseline methods. In particular, we improved the tun-
ning algorithm of the VP-tree and we added another imple-
mentation of the proximity-graph based retrieval [16]. Fur-
thermore, we experimented with a more diverse collection
of (mostly larger) data sets. In particular, because of this,
we found that proximity-based retrieval may not be an op-
timal solution in all cases, e.g., when the distance function
is expensive to compute.
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[12] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
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[30] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro.
Practical construction of k-nearest neighbor graphs in
metric spaces. In Experimental Algorithms, pages
85–97. Springer, 2006.

[31] V. Pestov. Indexability, concentration, and {VC}
theory. Journal of Discrete Algorithms, 13(0):2 – 18,
2012. Best Papers from the 3rd International
Conference on Similarity Search and Applications
(SISAP 2010).

[32] A. Ponomarenko, N. Avrelin, B. Naidan, and
L. Boytsov. Comparative analysis of data structures
for approximate nearest neighbor search. In DATA
ANALYTICS 2014, The Third International
Conference on Data Analytics, pages 125–130, 2014.
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Abstract

In this paper, we study the well-known algorithm of Bentley and Saxe in the context of similarity search
in metric spaces. We apply the algorithm to existing static metric index structures, obtaining dynamic ones.
We show that the overhead of the Bentley-Saxe method is quite low, and because it facilitates the dynamic
use of any state-of-the-art static index method, we can achieve results comparable to, or even surpassing,
existing dynamic methods. Another important contribution of our approach is that it is very simple—an
important practical consideration. Rather than dealing with the complexities of dynamic tree structures,
for example, the core index can be built statically, with full knowledge of its data set.

Keywords: similarity search, static and dynamic indexes, Bentley-Saxe algorithm, experiments.

1. Introduction

Many modern applications require efficient sim-
ilarity retrieval, including applications in multi-
media (to find similar images, audio in digital-
repositories), pattern recognition (to identify
finger-prints, face images in image databases), and
string searching (to find words in a dictionary while
permitting spelling errors). In such applications,
the search problem is often stated in terms of
distance-search in a metric space. That is, given
a metric d over a universe U, and a data set D ⊂ U,
find the objects in D that are closest to some query
q ∈ U (either all within a search radius r, or the k
nearest neighbors, kNN).
Rather than performing a linear scan of the full

data set, it is common to preprocess the data set
by building an index structure, exploiting the met-
ric axioms (the triangular inequality in particu-
lar). Most existing such index structures are static.1

That is, the index is built with access to the full
data set, and if an object is to be added or deleted,

Email addresses: bileg@idi.ntnu.no (Bilegsaikhan
Naidan), mlh@idi.ntnu.no (Magnus Lie Hetland)

1Based on an analysis of the proceedings of the Interna-
tional Workshop on Similarity Search and Applications.

a full rebuild of the entire index is normally re-
quired. Such rebuilding is, of course, time consum-
ing and computationally intensive. To accommo-
date insertions and deletions, some special-purpose
dynamic index structures, supporting additions and
deletions at low cost, have been proposed. Main-
taining the integrity and performance of a dynamic
structure over time, with only incremental infor-
mation, can be challenging; such structures can be
more complicated, as well as less able to utilize
global information about the data set.
In this paper,2 we study the Bentley-Saxe [1] al-

gorithm in the context of similarity search in metric
spaces. The Bentley-Saxe method is a tool that al-
lows us to transform a static data structure into a
dynamic one for any decomposable search problem
(as explained in Section 3). This means that we can
still use the state of the art in static indexing, even
if we need the functionality of a dynamic indexing
method, without losing the ability to globally ana-
lyze the data set, and without adding any apprecia-
ble complexity. In fact, the Bentley-Saxe method
can use the indexing methods as black-box mod-
ules, permitting a clean separation of the (static)

2An abbreviated version of this paper appeared in [11].
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indexing and the dynamism.
This paper is organized as follows. Section 2

describes some related work. The Bentley-Saxe
method is explained in Section 3. Section 4 pro-
vides our experimental results. Some concluding
remarks are given in Section 5.

2. Related Work

In this section we briefly overview some relevant
static and dynamic metric indexing structures. For
further details, refer to the tutorial by Hetland [10]
and the books by Zezula et al. [20] and Samet [16].
We consider two well-known static methods (the
VP-tree and the SSS-tree) as well as three dynamic
ones (EGNAT, the DSA-tree and the M-tree).

The vantage point (VP) tree [19] is a static bal-
anced binary tree. The construction algorithm for
the VP-tree first selects a representative object p
(a so-called vantage point) from the data set D and
computes the median m of the distances between
p and the other objects in the data set. Then it
divides the data set into two subsets D1 and D2,
such that D1 = {x ∈ D | x �= p, d(p, x) ≤ m}
and D2 = D \ (D1 ∪ {p}). The algorithm recur-
sively builds left and right subtrees for D1 and D2,
if they are not empty. A range query q with ra-
dius r is performed by recursively traversing the
tree from the root to leaves. For each visited node,
d(q, p) is computed and p is reported if d(q, p) ≤ r.
It is necessary to traverse the left subtree only if
d(q, p) − r ≤ m, and, similarly, the right subtree
only if d(q, p) + r > m.

There exists a dynamic version of the VP-tree [9].
We have not compared our method to this dynamic
VP-tree, however, as it is not at all straightforward
to implement correctly, and in some cases is still
unable to avoid periodic reconstruction of subtrees
or even of the entire tree.

Brisaboa et al. have proposed a static index
structure called the Sparse Spatial Selection (SSS)
tree [3], in which the first object in a data set is se-
lected as the first cluster center and then the rest of
the objects become new cluster centers if they are
far enough away from all current centers (i.e., the
minimum distance between the object and current
cluster centers is greater than αM , where α is an
user-defined parameter and M is the maximum dis-
tance between any two objects); otherwise, they are
assigned to the cluster associated with the nearest
center. The process is recursively applied to those

clusters that have not yet fallen below a given size
threshold.3

The Geometric Near-neighbor Access Tree
(GNAT) [2] is a multiway static tree and is built
as follows. First, a set of pivots are selected at ran-
dom and then the rest of the objects are assigned
to a region associated with the closest pivot. Ex-
amples of a GNAT are shown in Figure 2a, 2b. For
each region, the minimum and maximum distances
to the other regions’ objects are kept for efficiently
filtering out non-promising regions in the search,
meaning that a region is discarded if the query ball
does not intersects with this distance interval. The
subtrees are recursively built for all regions associ-
ated with the pivots.

The M-tree [7] is a hierarchical dynamic metric
ball tree that is built in a bottom-up manner like
B-trees. The insertion algorithm starts from the
root and moves toward the leaves by selecting nodes
that are closer to the new object or that require a
minimum enlargement of existing balls. The new
object is finally inserted into a leaf node. This may
cause the leaf to split (if the node capacity is ex-
ceeded), which may trigger splits in some of its an-
cestor nodes, possibly even the root. For a leaf node
split, the covering radius of the split node is set to
the distance from the center to the object furthest
away, that is, the actual covering radius. For an
internal node split, the covering radius is not com-
puted exactly, but over-estimated, as follows. For
every child node, the covering radius of that node
is added to the distance between the center of that
child and that of the split node. Then, the covering
radius of the split node is then set to the maxi-
mum of those sums. Figure 1 shows an example
of the M-tree. Ciaccia and Patella [6] developed a
bulk loading method for the M-tree and it can re-
duce the build cost significantly. However, Zezula
et al. claimed that the resulting tree provides only
slightly better search performance than an M-tree
with the incremental insertion method [20, p. 111].

The Evolutionary GNAT (EGNAT) [18] is a dy-
namic version of GNAT. The root is initially cre-
ated as a leaf node. The insertion algorithm tra-
verses the index structure by choosing the subtree
associated with the closest pivot until a leaf node

3It could be argued that the SSS-tree is almost a dynamic
structure, as one could build it incrementally by modifying
the clustering method somewhat. It would, however, be im-
possible to find the space diameter a priori in such a sce-
nario.
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Figure 1: An example of the M-tree with two levels in R
2

under L2. Top level with center O1 and bottom levels with
centers O1 and O7. RCO1

represents the covering radius of
top region centered at O1 while rcO1

represents its “true”
(i.e., minimal) covering radius.

is reached. If the leaf node has room for the new
object, it is added there. Otherwise, the leaf node
is transformed into an internal node by selecting
pivots and distributing its objects into new child
(leaf) nodes. The leaf nodes also keep information
about distances to their parent objects. During the
search, this information is used to establish lower
bounds to the actual distances between the query
and objects.
The spatial approximation (SA) tree [12] is based

on an approach that is, at least superficially, quite
different from the hierarchical space decomposition
of the other trees. First, an arbitrary object is se-
lected as the root of the tree and a set of its neigh-
bors is selected as follows. An object is inserted in
the neighbor list if it is closer to the root than to
all current neighbors. Otherwise, the object is as-
signed to a subset associated with its closest neigh-
bor. Then, for each subset the procedure is applied
recursively. Figure 2c shows an example of a SA-
tree. The search algorithm uses a best-first branch-
and-bound approach, similar to that used by most
metric tree structures.
Navarro et al. [14] have shown that the SA-tree

can be built dynamically, and they call the result-
ing structure the dynamic SA (DSA) tree. They
manage to preserve the semantics of the SA-tree by
introducing a time-stamp for every object. These
time-stamps are then used during search, to ensure
that only distance relationships that were known
at the time of insertion are used when filtering out
objects, to avoid false dismissals.

3. The Bentley-Saxe algorithm

We call a search problem decomposable if, for any
pair of data sets D1 and D \ D1, the answer to a
query over D can be computed efficiently from the

answers to queries for each of D1 and D \ D1. The
Bentley-Saxe algorithm (BS) exploits this sort of
decomposition to reduce the size of the structures
that need to be rebuilt, on average (i.e., amortized),
when inserting or deleting objects.
The main data structure of BS is a set of m =

�log2 n� + 1 buckets4 B0, B1, . . . , Bm−1 and each
bucket Bi is either empty or a static data struc-
ture that contains a collection of 2i objects. To
insert a new object into the index, the algorithm
follows the same principle that is used for incre-
menting a binary counter, where the ith bit denotes
the absence or presence of a static index structure in
the bucket Bi. The search is performed by access-
ing non-empty buckets and combining the results.
Pseudocode for the transformation is given in Al-
gorithm 1. Note that the search starts from Bm−1

and proceeds to B0. This is intentional, as it may
improve the efficiency of kNN search by shrinking
the covering radius of the current kNN candidate
set as much as possible early on.

Algorithm 1 Static to dynamic transformation

1: function Init():
2: B0 ← null;m = 0

3: function Insert(x):
4: D ← {x}
5: Find minimum k such that Bk = null
6: for i ← 0 to k − 1:
7: D ← D ∪ Unbuild(Bi)
8: Bi ← null

9: Bk ← Build(D)
10: if k = m:
11: Bm+1 ← null;m ← m + 1

12: function Query(q):
13: ans ← ∅
14: for i ← m − 1 downto 0:
15: if Bi �= null:
16: Search using q in Bi and update ans with results

17: return ans

Let us consider an example where we insert a
new object into the existing data structure. The
example is illustrated in Figure 3.

Let the buckets B0, B1, . . . , Bk+2 be non-empty.
Thus, the first empty bucket is Bk+3. We build
an index structure for bucket Bk+3 containing the
new object and all the objects stored in buckets
B0, B1, . . . , Bk+2. After building this structure,
buckets B0, B1, . . . , Bk+2 are nulled. Buckets Bk+4

and upward are unchanged.

4For a dynamic index, the required number of buckets is,
of course, unknown at the outset. The problem size n is the
number of objects added so far.
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Figure 2: Examples of (a) a GNAT space decomposition with hyperplanes between O8, O11, O13 and O16, (b) the corresponding
GNAT tree, and (c) a SA-tree with the root O6.

Figure 3: Illustrations of an index structure before the insertion of a new object (left) and after the insertion (right).

Now consider the asymptotic running time and
space requirements of this approach. Let T be
a static metric index structure with size ST (n)
that can be constructed in time CT (n) and per-
form a query in time QT (n). BS gives us a dy-
namic metric index structure T ′ based on T that
requires the storage ST ′(n) ∈ O(ST (n)) and bulk
construction time CT ′(n) ∈ O(CT (n)) (assuming
that both storage and construction requirements
for T are at least linear), and, because each ob-
ject is inserted in log n buckets, an amortized in-
sertion time of IT ′(n) ∈ O(log n · CT (n)/n). In
fact, if CT (n) ∈ Ω(n1+ε), for some ε > 0, we
have IT ′(n) ∈ O(CT (n)/n), that is, there is no
asymptotic overhead.5 We can, in general, guar-
antee a query time of O(log n · QT (n)). Moreover,
if QT (n) ∈ Ω(nα) for some α > 0, which is gener-
ally assumed [13], we can derive the even stronger
bound QT ′(n) ∈ O(QT (n)). In other words, under
reasonable assumptions for how static metric in-
dexes work, we can quite simply construct dynamic
versions with no asymptotic overhead.
The original version of BS method was not de-

signed to handle deletions efficiently. Consider,
for example, the scenario where we have a single

5This can also be made to hold in the worst case, and
not just amortized, using lazy rebuilding techniques that we
have not studied in this paper.

non-empty bucket Bk, containing 2k objects. To
delete an object now, we have to split Bk into
B0, B1, . . . , Bk−1. This entails building k index
structures, which might be prohibitively expensive.
To address this, Overmars et al. [15] weakened the
condition of the BS method so that every bucket Bk

can be either empty or a static data structure which
stores at least 2k−2 and at most 2k objects. With
this new condition, our deletion would affect only
Bk−2, Bk−1 and Bk. The approach of Overmars et
al. is shown in Algorithm 2.

In line 7, we mark o as deleted in Bk. The bucket
Bk might not be rebuilt until its total number of ob-
jects becomes 2k−2. That would, of course, affect
the search performance.6 In order to decrease this
effect, we introduce a parameter tuning option be-
tween lines 8 and 9. There are many possibilities
for the parameter tuning. For instance, the bucket
Bk can be rebuilt each time when 2k−3 objects have
been deleted from that bucket. This is the strategy
that is tested in our experiments.

6Note that a kNN search must still traverse the deleted
objects, but they will not shrink the radius. So, in some
cases, query performance an actually degrade as objects are
deleted.
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Algorithm 2 Overmars and Leeuwen

1: function Insert(x):
2: Replace line 9 of Insert function of Algorithm 1

with the following
if |D| > 2k−1: Bk ← Build(D)

else: Bk−1 ← Build(D) � |D| > 2k−2

3: function Remove(o):
4: Perform a range search with radius of 0 in Bk to find k

such that o ∈ Bk � k from m − 1 downto 0
5: if not found o:
6: return false

7: Delete o from Bk � |Bk| is decremented by 1

8: if |Bk| > 2k−2:
9: return true
10: elif |Bk| = 2k−2 and k ≥ 2:
11: if Bk−1 �= null:
12: D ← Unbuild(Bk) ∪ Unbuild(Bk−1)

13: if |Bk−1| > 2k−2:
14: Bk−1 ← null
15: Bk ← Build(D)
16: else:
17: Bk ← null
18: Bk−1 ← Build(D)

19: elif Bk−1 = null and Bk−2 �= null:
20: D ← Unbuild(Bk) ∪ Unbuild(Bk−2)

� |Bk| + |Bk−2| > 2k−2

21: Bk ← null;Bk−2 ← null
22: Bk−1 ← Build(D)
23: elif Bk−1 = null and Bk−2 = null:
24: D ← Unbuild(Bk);Bk ← null
25: Bk−2 ← Build(D)

26: return true

4. Experiments

In this section we present our experimental eval-
uation of two new dynamic trees based on BS, com-
paring them against three existing dynamic trees.
As the performance measure we used the number
of distance computations required to construct in-
dex structures and to answer similarity queries.
We have also investigated the overhead of the BS
method, by comparing the build and search times
of the static indexes to those of their transformed,
dynamic counterparts. We have provided perfor-
mance comparisons of range and kNN queries, as
well as deletion costs per object and search perfor-
mance after deletions.

4.1. The testbed

We performed experiments using both synthetic
data sets, generated by us, and real-world data sets
obtained from the SISAP metric space library [8].
For all vectors we use the Euclidean distance.

• Uniform 10: Synthetic. 100 000 uniformly gen-
erated 10-dimensional vectors.7

7We also have 8 192 000 uniformly generated 10-dim-
ensional vectors for the complexity analysis of the BS index.

• Clusters 10: Synthetic. 100 000 clustered 10-
dimensional vectors with 10 cluster centers.
The centers were randomly chosen from a uni-
form distribution and objects in the clusters
were generated from the multivariate normal
distribution around each of the cluster centers
with a variance of 0.1.

• Uniform 20: Synthetic. 100 000 uniformly gen-
erated 20-dimensional vectors.

• Clusters 20: Synthetic. 100 000 clustered 20-
dimensional vectors with 100 cluster centers.
We followed the same procedure as in Clusters
10 to generate the cluster centers.

• NASA: 40 150 feature vectors with 20 dimen-
sions extracted from NASA images.

• Dictionary: a dictionary of 69 069 English
words. Here we use the edit distance (or Lev-
enstein distance), that is, the minimum num-
ber of insertions, deletions, and substitutions
needed to transform one string into another.

• Histogram: a collection of 112 682 color his-
tograms (112-dimensional vectors) from an im-
age database.

Table 1 shows the intrinsic dimensionalities
(idims) [4] of the data sets. The distance his-
tograms of the data sets are shown in Figure 4.

4.2. Experiment settings

We have applied the BS method to VP- and
SSS-trees and call the resulting dynamic structures
the BS-VP-tree and BS-SSS-tree, respectively. We
have compared their performances to three dynamic
metric index structures, the DSA-tree, EGNAT and
M-tree. We set the maximum node fanout of the
BS-SSS-tree to 5, 10, 20, 40 and 80. The parame-
ter α was 0.45 for the 20-dimensional and 0.40 for
the remaining of the data sets. The value of M is
estimated before every (re)construction of a bucket
as follows. An arbitrary object in the bucket is se-
lected as the boundary object. Then, the distances
between the boundary and all objects in the bucket
are computed 10 times by maximizing the value of
M and renewing the boundary object from current
one. The cost of this estimation is also included
in the construction and deletion costs. We used
the SISAP implementation [8] of DSA-tree with
time-stamping and bounded arity. The original au-
thors [14, § 5.8] suggested that this version of the
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Uniform 10 Clusters 10 Uniform 20 Clusters 20 NASA Dictionary Histogram

13.36 9.24 27.64 20.44 5.18 8.49 2.74

Table 1: idims of the data sets.
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Figure 4: Distance distribution histograms.

DSA-tree would give the best results in terms of
construction cost and search efficiency. The maxi-
mum arities of DSA-tree were set to 2, 4, 8, 16 and
32, as in their experiments. For EGNAT, we set
the parameters by trial and error. We used inter-
nal node sizes of 4, 8, 12, 16 and 20 and maximum
leaf node arities of 5, 10, 20, 40 and 80. In total,
we performed 18 (5 + 4 + 3 × 3) runs (with sev-
eral queries).8 For the M-tree, we used node sizes
of 5, 10, 20, 40 and 80, the node split policy was
mM RAD and the method for distribution of ob-
jects was generalized hyperplane.
We randomly shuffled the order of all objects in

each data set 10 times, obtaining 10 versions of the
data set, and the results were averaged over 10 runs
using these versions. For each run, a query set con-
sists of 1000 queries which were selected randomly
from the respective data set and the remaining ob-
jects in the data set used for indexing. We selected
search radii for range queries so that we captured on
average 0.01%, 0.1% and 1% of the vectors. The
search radii were in the range from 1 to 4 for the
dictionary, capturing on average 0.003%, 0.042%,
0.361%, and 1.946% of the data set, respectively.
For kNN search, we compared the search efficiency
of the five structures by varying the result size
thresholds, using the values k = 1, 5, 10, 20, 40
and 80. We report only best results in terms of
search efficiency from the results obtained with dif-
ferent parameters use on every query set. The node
sizes of the corresponding index that achieved the
best search performance are listed in Table 2.
For deletions, the deletion cost includes both lo-

8Note that leaf node size should be greater than or equal
to internal node size.

Data set EGNAT DSA-tree M-tree

internal leaf

Uniform 10 4 5 4 40

Clusters 10 8 10 4 40

Uniform 20 20 20 32 20

Clusters 20 20 20 32 40

NASA 4 5 4 40

Dictionary 12 20 32 80

Histogram 8 10 4 40

Table 2: The node sizes of the indexes

cating the object to be deleted (with a range search
with radius 0) and the cost needed for deletion of
the object from the index. The latter cost will be
rebuilding buckets for BS-index. First, we con-
structed the BS-VP-tree, BS-SSS-tree and DSA-
tree on the data sets. Then, we deleted every
10% (randomly selected) of the corresponding data
sets from the BS indexes and DSA-tree and then
obtained the number of distance computations re-
quired to answer a query set in the BS indexes and
DSA-tree.

We can tune the trade-off between deletion cost
and search performance of DSA-tree by setting the
fraction (percentage) of ghost hyperplanes permit-
ted after deletions. We tested two versions of the
DSA-tree. In the first, no ghost hyperplanes are
permitted (all such hyperplanes produced during
deletion are discarded by reconstruction), making
deletion more expensive but search more efficient.
In the second, all ghost hyperplanes are retained,
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and deletion does not trigger any reconstruction.
This makes the deletion cheaper, but search costs
suffer. We call the two versions DSA-tree0 and
DSA-tree1, respectively.

We implemented our experimental framework in
C++, which was compiled in gcc 4.6.2 with the
option -O3. All experiments are performed on a PC
with a 3.3 GHz Intel Core i5-2500 processor and 8
GB RAM. We did not use any caching of distances
during index construction and query processing.

4.3. The overhead of the BS index

First, let us consider the construction cost over-
head of BS-based index structures. We constructed
the VP-tree, SSS-tree (with maximum node fanout
5), BS-VP-tree and BS-SSS-tree (with maximum
node fanout 5) 10 times on every 10% of several
data sets and obtained the ratio between the num-
ber of distance computations required to build the
BS index and static index with the same settings,
with the BS index built incrementally. The geomet-
ric mean of the ratio was 3.16±1.23, with minimum
and maximum values of 1.69 and 4.27. So in our
experiments, the BS index is at most 4.27 times as
costly to build as the corresponding static index.
Figure 5 shows the construction cost overhead of
the BS-based index structures.9

The figures show that the average ratio for the
VP-tree is much higher than for the SSS-tree, and
the values for VP-tree are distributed almost evenly.
The values for SSS-tree are positively skewed in
general, i.e., it has relatively few high values; it also
performed particularly well on the dictionary.
Now let us consider the ratio for index construc-

tion time and query set execution time with all k
and search radii. We followed the same principle
previously used for the construction cost ratio to
obtain these ratios with 2m − 1 objects for each
data set. The motivation for this was to force all the
buckets in the BS structure to be non-empty; that
is, we intentionally increased the overhead of BS-
based index structures, intending to elicit the worst-
case search performance. The ratios are shown in
Figure 6. For the construction time ratio, the max-
imum value for BS-VP-tree was 3.62 (with con-
struction time 1.23 s) on the dictionary (Figure 6a)
while the maximum value for the BS-SSS-tree was

9These are standard box plots, showing the minimum,
the 25% quantile, the median, the 75% quantile and the
maximum value.
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Figure 5: Construction cost ratio of BS index to static index
with the same settings.

3.80 (with construction time 11.09 s) on Uniform
20 (Figure 6d). In Figure 6b, 6c, 6e and 6f, we
see that there is almost no search time difference
between static and BS-based index structures on
the 20-dimensional synthetic vectors due to high
idims. Across all of our experiments, the maximum
value of query set execution time for the static in-
dex structures was 19.87 s while for the BS-based
index structures the maximum value was 20.97 s.

4.4. Comparison of construction costs

All index structures were built in an incremental
fashion, i.e., initially all of the index structures were
empty and then all objects in the data sets were
added into the index one by one. The construction
costs are shown in Table 3.
As the idim of the synthetic data sets increases

we see that the data sets become difficult to index.
This increase clearly affects the construction cost of
the SSS-tree. This effect may be due to the fact that
every object tends to become a cluster center of the
tree because all objects are approximately equidis-
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(b) Range search
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(c) kNN search
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(d) Construction time
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(e) Range search
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(f) kNN search

Figure 6: Construction time and query set execution time ratio of BS index to static index with same settings.

Data set BS-VP-tree BS-SSS-tree EGNAT DSA-tree M-tree

incremental bulk incremental bulk

Uniform 10 5 762 240 1 347 913 59 199 773 13 836 204 3 451 333 3 126 671 8 795 290

Clusters 10 5 762 240 1 347 913 38 317 600 9 429 190 5 327 960 3 298 234 8 777 797

Uniform 20 5 762 240 1 347 913 208 912 258 68 686 142 7 582 301 8 631 551 5 973 374

Clusters 20 5 762 240 1 347 913 96 468 450 26 626 524 8 876 612 8 857 394 8 782 329

NASA 1 952 946 486 453 13 619 821 3 983 649 1 646 678 1 219 949 3 269 566

Dictionary 4 676 487 1 079 805 90 720 799 31 105 813 4 820 213 5 531 384 8 734 896

Histogram 6 246 315 1 486 021 45 558 887 14 712 440 9 688 228 4 124 772 10 103 325

Table 3: Construction costs of index structures on various data sets.

8



tant from each other in high-dimensional spaces. It
should also be noted that the clustering cost of the
SSS-tree is high also in the static case, so this is not
an artifact of our approach.
When considering any overhead in construction,

it is important to note that our method is quite
amenable to bulk loading (as shown in Table 3):
If a given data set is available at the outset, or
if a large number of objects are added, there is
no need to build the structure incrementally, by
adding individual objects. Instead, which buckets
need to be filled can be easily calculated from the
total data size, and the objects can be partitioned
among these (e.g., randomly), and the static struc-
tures built. This means that there would be no
need for multiple rebuilds, and the overhead would
be much lower. For example, if the data size were a
power of 2, there would be no overhead whatsoever.
The resulting data structure would still retain all
its dynamic properties. (The overhead in general
will, of course, vary with how close the data size is
to a power of 2, either above or below.)
We compared the memory usage of the BS-

indexes with the DSA-tree which is given in Ta-
ble 4. The results show that the BS-indexes require
almost same amount of memory as the DSA-tree.

Data set BS-VP-tree BS-SSS-tree DSA-tree

Uniform 10 17.02 17.26 19.62

Clusters 10 17.02 17.39 19.20

Uniform 20 21.70 23.19 28.00

Clusters 20 21.58 22.41 27.64

NASA 8.28 8.73 14.72

Dictionary 10.44 10.03 10.39

Histogram 62.98 64.55 62.44

Table 4: Memory usage for contruction of the indexes (MB).

4.5. Empirical complexity analysis of the BS index

We have now looked at the overhead of the BS
algorithm beyond the corresponding static struc-
tures, and we have compared the construction costs
of the BS-based structures and custom-designed dy-
namic ones. We now wish to tentatively examine
the asymptotic complexity of the method, both for
construction and search. We have some expecta-
tions about how the method ought to behave, but
these are based on certain assumptions (primarily

the running times of the static, underlying struc-
tures), which may not hold in practice.

To map out the functional relationship between
input size and performance we use a doubling ex-
periment [17]. To get a sufficiently large data set,
we generated 8 192 000 uniform 10-dimensional vec-
tors. We then measured performance with problem
sizes at powers of 2, starting at 8000, with each ex-
periment performed 10 times on 10 randomly shuf-
fled versions of the data. In each experiment, we
built the VP-tree, SSS-tree, BS-VP-tree and BS-
SSS-tree10 and obtained the ratio between the time
required to build the BS indexes and the static in-
dexes.

As discussed in Section 3, if the static build time
were Ω(n1+ε), for some ε > 0, we would expect
the ratio between the build-times for the static
and BS-based dynamic structures to be a constant
(no asymptotic overhead). For the VP-tree, how-
ever, the construction cost is Θ(n log n) [see, e.g.,
5], which means we would expect a log-factor be-
tween the static and incremental dynamic construc-
tion cost. While an asymptotic analysis is harder to
do for the SSS-tree, because the arity varies from
node to node, it is not unreasonable to expect a
similar complexity. To explore this question, we
have studied the normalized construction cost for
the SSS-tree in isolation. In Figure 7, we have plot-
ted CT (n)/n for the SSS-tree, with a logarithmic
horizontal axis. A straight line would indicate a
growth proportional to n log n. The regression line
has been included, and, as can be seen, CT (n) seems
to grow more slowly than this (i.e., a sublinear trend
in the log-plot), which would mean that we could
expect the ratio of the static and BS-based build
costs to be logarithmic here as well.

To see whether the ratios indeed are logarithmic,
we have plotted them in a similar manner in Fig-
ure 8 (once again with a regression line), where a
straight line would indicate a perfect logarithmic
relationship between data size and the index build
slowdown due to the BS method. It seems like the
trend is, indeed, approximately linear.

We also performed kNN searches on the four
structures by using all of the result size thresh-
olds and obtained (i) the time required to answer
a query set in the BS-based and static indexes and
(ii) the ratio between the query set execution time
in the BS indexes and in the static indexes. The

10The BS indexes were built in an incremental fashion.
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Figure 7: Normalized construction cost (CT (n)/n) vs data
set sizes on the synthetic set with SSS-trees. The normalized
cost is seems sublinear.
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Figure 8: Construction time ratio of BS index to static index
with same settings on various data set sizes.

results are given in Figure 9. (Note that both axes
are logarithmic.) In this case, the expected ratios
would depend on whether the query time is, indeed,
Ω(nα), for some α > 0. If this were the case, we
would expect straight lines in subfigures (a) and
(c), and we would have a constant performance ra-
tio, which would show as a horizontal line in sub-
figures (b) and (d). As can be clearly seen, this is
not exactly the case, although it may not be too
far from the truth. It would seem that the empir-
ical query performance (for the static structures)
is somewhere between polylogarithmic and polyno-
mial, leading to a ratio that grows, albeit slowly,
with problem size.

4.6. Query performance, with and without deletions

Figure 10 shows the search results over the syn-
thetic data sets and the impact of dimensional-
ity. The performance of all of the index structures
degrades when the dimensionality increases, espe-
cially for EGNAT and BS-VP-tree. In Figure 11,
the search results over the real-world data sets are
shown. The BS-VP-tree outperforms EGNAT for
the real-world data sets and is comparable to DSA-
tree and M-tree for range queries with low selec-
tivity. For the dictionary, the BS-SSS-tree outper-
forms the DSA-tree with up to twice the search
efficiency. In fact, in all of the experiments, the
BS-SSS-tree outperforms all the other index struc-
tures in our experiments, a result almost certainly
due to the efficiency of the SSS-tree itself, which
comes at the price of a higher building cost. The
contribution of our method in this case is that such
a tradeoff between build cost and search efficiency
can be made in the first place, by providing a dy-
namic version of the SSS-tree.
Deletions were performed on several data sets.

After deletions, we performed range and 10 NN
queries. The search radii for range search were se-
lected so that we retrieve on average 0.1% of the
vectors and was set to 2 for the dictionary. We
measured the distance computations (explained in
Section 4.2) over several data sets. The results are
shown in Figure 12. Each point in the figures rep-
resents an average. The highest deletion cost was
5182 with the DSA-tree0 and it occured after delet-
ing 10% of the dictionary. The deletion cost of
the BS-VP-tree is quite low in all of our experi-
ments. The BS-SSS-tree achieved better search per-
formance than the two competing indexes. For the
dictionary, the deletion costs of the DSA-tree0 are
10–16 times as high those of the BS-VP-tree, while
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Figure 9: Mean of the query set execution time (a, c) and query set execution time ratio of BS index to static index with same
settings (b, d) on various data set sizes. The gray area indicates the full range of values, whereas the line represents the mean
of the values.

the DSA-tree0 is about 1.3 times as fast as the BS-
VP-tree. The deletion costs of the DSA-tree1 are
smaller than the DSA-tree0 and the BS-SSS-tree.
Its search performance, however, is no better. We
also see that the deletion costs of the DSA-tree1 is
increased after deletions due to the presence ghost
hyperplanes. In general, the deletion cost of the BS-
index will increase if we rebuild the buckets several
times. This yields some peaks in Figure 12. For
the BS-SSS-tree, we analyzed this effect after delet-
ing 50% of NASA. The deletion cost was quite low
(159) with respect to its previous and next points
and there was no rebuilding of buckets. This means
that some objects were marked as deleted in the in-
dex, and this should affect the search performance.
However, the BS-indexes outperformed the DSA-
tree for this deletion percentage.

Another abservation we made was that the DSA-
tree is very sensitive to the order of deletions. The
deletion cost is very high if we delete the objects in
the exact same order as they were inserted, whereas

the cost is quite low if we delete them in the oppo-
site order. For example, the deletion cost is 431 203
when deleting 10% of the NASA data set in inser-
tion order, while the cost is just 70 in the opposite
order. No such effect is observed for BS-indexes.

5. Conclusions

We have studied the Bentley-Saxe algorithm for
static-to-dynamic data structure transformations
and how it can be applied to similarity search,
yielding a simple method for transforming static
index structures into dynamic ones. We have also
empirically demonstrated that the method has a
reasonably low overhead, both in terms of build-
ing and search cost. In fact, this overhead is low
enough that when adapting a particularly efficient
static data structure such as the SSS-tree, we can
still achieve search times lower than comparable
custom-designed dynamic data structures. In ad-
dition to this increased performance, the dynamic
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Figure 10: Performance evaluations on the synthetic data sets.
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Figure 11: Performance evaluations on the real-world data sets.
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Figure 12: Deletion costs and performance evaluations after deletions on various data sets.
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structures resulting from using the Bentley-Saxe
method can be considerably less complex than other
dynamic indexes, given that it is simply an isolated
add-on to existing, usually simpler, static indexes.
There are still avenues of research that might be

pursued, related to this topic. For example, more
existing structures (static and dynamic) could be
compared, and other parameter settings could be
tried (for example, the number of deletions needed
to trigger a rebuild). It might be possible to cre-
ate hybrid structures, where dynamic methods are
combined with the Bentley-Saxe idea. This could
be useful, for example, for structures that are suit-
able for bulk construction, whose quality deterio-
rates with incremental modification. Such a com-
bined approach might reduce some of the overhead
inherent in our method, while still reaping some of
its benefits.

References

[1] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I. Static-to-dynamic transformation. Journal
of Algorithms, 1(4):301 – 358, 1980.

[2] S. Brin. Near neighbor search in large metric spaces. In
Proceedings of 21th International Conference on Very
Large Data Bases, VLDB, pages 574–584, 1995.

[3] N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and
R. Uribe. Clustering-based similarity search in met-
ric spaces with sparse spatial centers. In Proceedings
of SOFSEM’08, number 4910 in LNCS, pages 186–197,
2008.
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Abstract

Our focus is on approximate nearest neighbor retrieval in metric and non-metric
spaces. We employ a VP-tree and explore two simple yet effective learning-to-
prune approaches: density estimation through sampling and “stretching” of the
triangle inequality. Both methods are evaluated using data sets with metric (Eu-
clidean) and non-metric (KL-divergence and Itakura-Saito) distance functions.
Conditions on spaces where the VP-tree is applicable are discussed. The VP-tree
with a learned pruner is compared against the recently proposed state-of-the-art
approaches: the bbtree, the multi-probe locality sensitive hashing (LSH), and per-
mutation methods. Our method was competitive against state-of-the-art methods
and, in most cases, was more efficient for the same rank approximation quality.

1 Introduction

Similarity search algorithms are essential to multimedia retrieval, computational biology, and sta-
tistical machine learning. Resemblance between objects x and y is typically expressed in the form
of a distance function d(x, y), where smaller values indicate less dissimilarity. In our work we
use the Euclidean distance (L2), the KL-divergence (

∑
xi log xi/yi), and the Itakura-Saito distance

(
∑

xi/yi − log xi/yi − 1). KL-divergence is commonly used in text analysis, image classification,
and machine learning [6]. Both KL-divergence and the Itakura-Saito distance belong to a class of
distances called Bregman divergences.

Our interest is in the nearest neighbor (NN) search, i.e., we aim to retrieve the object o that is closest
to the query q. For the KL-divergence and other non-symmetric distances two types of NN-queries
are defined. The left NN-query returns the object o that minimizes the distance d(o, q), while the
right NN-query finds o that minimizes d(q, o).

The distance function can be computationally expensive. There was a considerable effort to re-
duce computational costs through approximating the distance function, projecting data in a low-
dimensional space, and/or applying a hierarchical space decomposition. In the case of the hierarchi-
cal space decomposition, a retrieval process is a recursion that employs an “oracle” procedure. At
each step of the recursion, retrieval can continue in one or more partitions. The oracle allows one
to prune partitions without directly comparing the query against data points in these partitions. To
this end, the oracle assesses the query and estimates which partitions may contain an answer and,
therefore, should be recursively analyzed. A pruning algorithm is essentially a binary classifier. In
metric spaces, one can use the classifier based on the triangle inequality. In non-metric spaces, a
classifier can be learned from data.

There are numerous data structures that speedup the NN-search by creating hierarchies of partitions
at index time, most notably the VP-tree [28, 31] and the KD-tree [4]. A comprehensive review of
these approaches can be found in books by Zezula et al. [32] and Samet [27]. As dimensionality
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increases, the filtering efficiency of space-partitioning methods decreases rapidly, which is known
as the “curse of dimensionality” [30]. This happens because in high-dimensional spaces histograms
of distances and 1-Lipschitz function values become concentrated [25]. The negative effect can be
partially offset by creating overlapping partitions (see, e.g., [21]) and, thus, trading index size for
retrieval time. The approximate NN-queries are less affected by the curse of the dimensionality, be-
cause it is possible to reduce retrieval time at the cost of missing some relevant answers [18, 9, 25].
Low-dimensional data sets embedded into a high-dimensional space do not exhibit high concen-
tration of distances, i.e., their intrinsic dimensionality is low. In metric spaces, it was proposed to
compute the intrinsic dimensionality as the half of the squared signal to noise ratio (for the distance
distribution) [10].

A well-known approximate NN-search method is the locality sensitive hashing (LSH) [18, 17]. It is
based on the idea of random projections [18, 20]. There is also an extension of the LSH for symmet-
ric non-metric distances [23]. The LSH employs several hash functions: It is likely that close objects
have same hash values and distant objects have different hash values. In the classic LSH index, the
probability of finding an element in one hash table is small and, consequently, many hash tables
are to be created during indexing. To reduce space requirements, Lv et al. proposed a multi-probe
version of the LSH, which can query multiple buckets of the same hash table [22]. Performance of
the LSH depends on the choice of parameters, which can be tuned to fit the distribution of data [11].

For approximate searching it was demonstrated that an early termination strategy could rely on infor-
mation about distances from typical queries to their respective nearest neighbors [33, 1]. Amato et
al. [1] showed that density estimates can be used to approximate a pruning function in metric spaces.
They relied on a hierarchical decomposition method (an M-tree) and proposed to visit partitions in
the order defined by density estimates. Chávez and Navarro [9] proposed to relax triangle-inequality
based lower bounds for distances to potential nearest neighbors. The approach, which they dubbed
as stretching of the triangle inequality, involves multiplying an exact bound by α > 1.

Few methods were designed to work in non-metric spaces. One common indexing approach involves
mapping the data to a low-dimensional Euclidean space. The goal is to find the mapping without
large distortions of the original similarity measure [19, 16]. Jacobs et al. [19] review various pro-
jection methods and argue that such a coercion is often against the nature of a similarity measure,
which can be, e.g., intrinsically non-symmetric. A mapping can be found using machine learning
methods. This can be done either separately for each data point [12, 24] or by computing one global
model [3]. There are also a number of approaches, where machine learning is used to estimate
optimal parameters of classic search methods [7]. Vermorel [29] applied VP-trees to searching in
undisclosed non-metric spaces without trying to learn a pruning function. Like Amato et al. [1], he
proposed to visit partitions in the order defined by density estimates and employed the same early
termination method as Zezula et al. [33].

Cayton [6] proposed a Bregman ball tree (bbtree), which is an exact search method for Bregman
divergences. The bbtree divides data into two clusters (each covered by a Bregman ball) and recur-
sively repeats this procedure for each cluster until the number of data points in a cluster falls below
a threshold (a bucket size). At search time, the method relies on properties of Bregman divergences
to compute the shortest distances to covering balls. This is an expensive iterative procedure that
may require several computations of direct and inverse gradients, as well as of several distances.
Additionally, Cayton [6] employed an early termination method: The algorithm can be told to stop
after processing a pre-specified number of buckets. The resulting method is an approximate search
procedure. Zhang et al. [34] proposed an exact search method based on estimating the maximum
distance to a bounding rectangle, but it works with left queries only. The most efficient variant of
this method relies on an optimization technique applicable only to certain decomposable Bregman
divergences (a decomposable distance is a sum of values computed separately for each coordinate).

Chávez et al. [8] as well as Amato and Savino [2] independently proposed permutation-based search
methods. These approximate methods do not involve learning, but, nevertheless, are applicable to
non-metric spaces. At index time, k pivots are selected. For every data point, we create a list, called
a permutation, where pivots are sorted in the order of increasing distances from the data point.
At query time, a rank correlation (e.g., Spearman’s) is computed between the permutation of the
query and permutations of data points. Candidate points, which have sufficiently small correlation
values, are then compared directly with the query (by computing the original distance function).
One can sequentially scan the list of permutations and compute the rank correlation between the
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permutation of the query and the permutation of every data point [8]. Data points are then sorted
by rank-correlation values. This approach can be improved by incremental sorting [14], storing
permutations as inverted files [2], or prefix trees [13].

In this work we experiment with two approaches to learning a pruning function of the VP-tree,
which to our knowledge was not attempted previously. We compare the resulting method, which
can be applied to both metric and non-metric spaces, with the following state-of-the-art methods:
the multi-probe LSH, permutation methods, and the bbtree.

2 Proposed Method

2.1 Classic VP-tree

In the VP-tree (also known as a ball tree) the space is partitioned with respect to a (usually randomly)
chosen pivot π [28, 31]. Assume that we have computed distances from all points to the pivot π and
R is a median of these distances. The sphere centered at π with the radius R divides the space
into two partitions, each of which contains approximately half of all points. Points inside the pivot-
centered sphere are placed into the left subtree, while points outside the pivot-centered sphere are
placed into the right subtree (points on the border may be placed arbitrarily). The search algorithm
proceeds recursively. When the number of data points is below a certain threshold (the bucket size),
these data points are stored as a single bucket. The obtained hierarchical partition is represented by
the binary tree, where buckets are leaves.

π

R

Figure 1: Three types of query balls in the
VP-tree. The black circle (centered at the
pivot π) is the sphere that divides the space.

The NN-search is a recursive traversal procedure that
starts from the root of the tree and iteratively updates
the distance r to the closest object found. When it
reaches a bucket (i.e., a leaf), bucket elements are
searched sequentially. Each internal node stores the
pivot π and the radius R. In a metric space with
the distance d(x, y), we use the triangle inequality
to prune the search space. We visit:

• only the left subtree if d(π, q) < R− r;

• only the right subtree if d(π, q) > R+ r;

• both subtrees if R− r ≤ d(π, q) ≤ R+ r.

In the third case, we first visit the partition that con-
tains q. These three cases are illustrated in Fig. 1. Let Dπ,R(x) = |R − x|. Then we need to visit
both partitions if and only if r ≥ Dπ,R(d(π, q)). If r < Dπ,R(d(π, q)), we visit only the partition
containing the query point. In this case, we prune the other partition. Pruning is a classification task
with three classes, where the prediction function is defined through Dπ,R(x). The only argument of
this function is a distance between the pivot and the query, i.e., d(π, q). The function value is equal
to the maximum radius of the query ball that fits inside the partition containing the query (see the
red and the blue sample balls in Fig. 1).

2.2 Approximating Dπ,R(x) with a Piece-wise Linear Function

In Section 2 of the supplemental materials, we describe a straightforward sampling algorithm to
learn the decision function Dπ,R(x) for every pivot π. This method turned out to be inferior to
most state-of-the-art approaches. It is, nevertheless, instructive to examine the decision functions
Dπ,R(x) learned by sampling for the Euclidean distance and KL-divergence (see Table 1 for details
on data sets).

Each point in Fig. 2a-2c is a value of the decision function obtained by sampling. Blue curves are
fit to these points. For the Euclidean data (Fig. 2a), Dπ,R(x) resembles a piece-wise linear function
approximately equal to |R− x|. For the KL-divergence data (Fig. 2b and 2c), Dπ,R(x) looks like a
U-shape and a hockey-stick curve, respectively. Yet, most data points concentrate around the median
(denoted by a dashed red line). In this area, a piece-wise linear approximation of Dπ,R(x) could
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(c) RCV-16, gen. KL-divergence

Figure 2: The empirically obtained decision function Dπ,R(x). Each point is a value of the function
learned by sampling (see Section 2 of the supplemental materials). Blue curves are fit to these points.
The red dashed line denotes a median distance R from data set points to the pivot π.

still be reasonable. Formally, we define the decision function as:

Dπ,R(x) =

⎧⎨
⎩

αleft|x−R|, if x ≤ R

αright|x−R|, if x ≥ R
(1)

Once we obtain the values of αleft and αright that permit near exact searching, we can induce more
aggressive pruning by increasing αleft and/or αright, thus, exploring trade-offs between retrieval
efficiency and effectiveness. This is similar to stretching of the triangle inequality proposed by
Chávez and Navarro [9].

Optimal αleft and αright are determined using a grid search. To this end, we index a small subset of
the data points and seek to obtain parameters that give the shortest retrieval time at a specified recall
threshold. The grid search is initialized by values a and b. Then, recall values and retrieval times for

all αleft = aρi/m 0.5 and αright = bρj/m 0.5 are obtained (1 ≤ i, j ≤ m). The values of m and

ρ are chosen so that: (1) the grid step is reasonably small (i.e., ρ1/m is close to one); (2) the search
space is manageable (i.e., m is not large).

If the obtained recall values are considerably larger than a specified threshold, the procedure repeats
the grid search using larger values of a and b. Similarly, if the recall is not sufficient, the values
of a and b are decreased and the grid search is repeated. One can see that the perfect recall can be
achieved with αleft = 0 and αright = 0. In this case, no pruning is done and the data set is searched
sequentially. Values of αleft = ∞ and αright = ∞ represent an (almost) zero recall, because one
of the partitions is always pruned.

2.3 Applicability Conditions

It is possible to apply the classic VP-tree algorithm only to data sets such that Dπ,R(d(π, q)) > 0
when d(π, q) �= R. In a relaxed version of this applicability condition, we require that
Dπ,R(d(π, q)) > 0 for almost all queries and a large subset of data points. More formally:

Property 1. For any pivot π, probability α, and distance x �= R, there exists a radius r > 0
such that, if two randomly selected points q (a potential query) and u (a potential nearest neighbor)
satisfy d(π, q) = x and d(u, q) ≤ r, then both p and q belong to the same partition (defined by π
and R) with a probability at least α.

The Property 1, which is true for all metric spaces due to the triangle inequality, holds in the case of
the KL-divergence and data points u sampled randomly and uniformly from the simplex {xi|xi ≥
0,
∑

xi = 1}. The proof, which is given in Section 1 of supplemental materials, can be trivially
extended to other non-negative distance functions d(x, y) ≥ 0 (e.g., to the Itakura-Saito distance)
that satisfy (additional compactness requirements may be required): (1) d(x, y) = 0 ⇔ x = y; (2)
the set of discontinuities of d(x, y) has measure zero in L2. This suggests that the VP-tree could be
applicable to a wide class of non-metric spaces.
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Table 1: Description of the data sets

Name d(x, y) Data set size Dimensionality Source

Colors L2 1.1 · 105 112 Metric Space Library1

RCV-i KL-div, L2 0.5 · 106 i ∈ {8, 16, 32, 128, 256} Cayton [6]

SIFT-signat. KL-div, L2 1 · 104 1111 Cayton [6]

Uniform L2 0.5 · 106 64 Sampled from U64[0, 1]

3 Experiments

We run experiments on a Linux server equipped with Intel Core i7 2600 (3.40 GHz, 8192 KB of
L3 CPU cache) and 16 GB of DDR3 RAM (transfer rate is 20GB/sec). The software (including
scripts that can be used to reproduce our results) is available online, as a part of the Non-Metric
Space Library2 [5]. The code was written in C++, compiled using GNU C++ 4.7 (optimization
flag -Ofast), and executed in a single thread. SIMD instructions were enabled using the flags -msse2
-msse4.1 -mssse3.

All distance and rank correlation functions are highly optimized and employ SIMD instructions.
Vector elements were single-precision numbers. For the KL-divergence, though, we also imple-
mented a slower version, which computes logarithms on-line, i.e., for each distance computation.
The faster version computes logarithms of vector elements off-line, i.e., during indexing, and stores
with the vectors. Additionally, we need to compute logarithms of query vector elements, but this is
done only once per query. The optimized implementation is about 30x times faster than the slower
one.

The data sets are described in Table 1. Each data set is randomly divided into two parts. The
smaller part (containing 1,000 elements) is used as queries, while the larger part is indexed. This
procedure is repeated 5 times (for each data sets) and results are aggregated using a classic fixed-
effect model [15]. Improvement in efficiency due to indexing is measured as a reduction in retrieval
time compared to a sequential, i.e., exhaustive, search. The effectiveness was measured using a
simple rank error metric proposed by Cayton [6]. It is equal to the number of NN-points closer to
the query than the nearest point returned by the search method. This metric is appropriate mostly for
1-NN queries. We present results only for left queries, but we also verified that in the case of right
queries the VP-tree provides similar effectiveness/efficiency trade-offs. We ran benchmarks for L2,
the KL-divergence,3 and the Itakura-Saito distance. Implemented methods included:

• The novel search algorithm based on the VP-tree and a piece-wise linear approximation for
Dπ,R(x) as described in Section 2.2. The parameters of the grid search algorithm were:
m = 7 and ρ = 8.

• The permutation method with incremental sorting [14]. The near-optimal performance was
obtained by using 16 pivots.

• The permutation prefix index, where permutation profiles are stored in a prefix tree of
limited depth [13]. We used 16 pivots and the maximal prefix length 4 (again selected for
best performance).

• The bbtree [6], which is designed for Bregman divergences, and, thus, it was not used with
L2.

• The multi-probe LSH, which is designed to work only for L2. The implementation employs
the LSHKit, 4 which is embedded in the Non-Metric Space Library. The best-performing
configuration that we could find used 10 probes and 50 hash tables. The remaining param-
eters were selected automatically using the cost model proposed by Dong et al. [11].

2https://github.com/searchivarius/NonMetricSpaceLib
3In the case of SIFT signatures, we use generalized KL-divergence (similarly to Cayton).
4Downloaded from http://lshkit.sourceforge.net/
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Figure 3: Performance of NN-search for L2
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Figure 4: Performance of NN-search for the KL-divergence and Itakura-Saito distance

For the bbtree and the VP-tree, vectors in the same bucket were stored in contiguous chunks of mem-
ory (allowing for about 1.5-2x reduction in retrieval times). It is typically more efficient to search
elements of a small bucket sequentially, rather than using an index. A near-optimal performance
was obtained with 50 elements in a bucket. The same optimization approach was also used for both
permutation methods.

Several parameters were manually selected to achieve various effectiveness/efficiency trade-offs.
They included: the minimal number/percentage of candidates in permutation methods, the desired
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Table 2: Improvement in efficiency and retrieval time (ms) for the bbtree without early termination

Data set RCV-16 RCV-32 RCV-128 RCV-256 SIFT sign.

impr. time impr. time impr. time impr. time impr. time

Slow KL-divergence 15.7 8 6.7 36 1.6 613 1.1 1700 0.9 164

Fast KL-divergence 4.6 2.5 1.9 9.6 0.5 108 0.4 274 0.4 18

recall in the multi-probe LSH and in the VP-tree, as well as the maximum number of processed
buckets in the bbtree.

The results for L2 are given in Fig. 3. Even though a representational dimensionality of the Uniform
data set is only 64, it has the highest intrinsic dimensionality among all sets in Table 1 (according to
the definition of Chávez et al. [10]). Thus, for the Uniform data set, no method achieved more than
a 10x speedup over sequential searching without substantial quality degradation. For instance, for
the VP-tree, a 160x speedup was only possible, when a retrieved object was a 40-th nearest neighbor
(on average) instead of the first one. The multi-probe LSH can be twice as fast as the VP-tree at the
expense of having a 4.7x larger index. All the remaining data sets have low or moderate intrinsic
dimensionality (smaller than eight). For example, the SIFT signatures have the representational
dimensionality of 1111, but the intrinsic dimensionality is only four. For data sets with low and
moderate intrinsic dimensionality, the VP-tree is faster than the other methods most of the time. For
the data sets Colors and RCV-16 there is a two orders of magnitude difference.

The results for the KL-divergence and Itakura-Saito distance are summarized in Fig. 4. The bb-
tree is never substantially faster than the VP-tree, while being up to an order of magnitude slower
for RCV-16 and RCV-256 in the case of Itakura-Saito distance. Similar to results in L2, in most
cases, the VP-tree is at least as fast as other methods. Yet, for the SIFT signatures data set and the
Itakura-Saito distance, permutation methods can be twice as fast.

Additional analysis has showed that the VP-tree is a good rank-approximation method, but it is not
necessarily the best approach in terms of recall. When the VP-tree misses the nearest neighbor, it
often returns the second nearest or the third nearest neighbor instead. However, when other exam-
ined methods miss the nearest neighbor, they frequently return elements that are far from the true
result. For example, the multi-probe LSH may return a true nearest neighbor 50% of the time, and
50% of the time it would return the 100-th nearest neighbor. This observation about the LSH is in
line with previous findings [26].

Finally, we measured improvement in efficiency (over exhaustive search) for the bbtree, where the
early termination algorithm was disabled. This was done using both the slow and the fast implemen-
tation of the KL-divergence. The results are given in Table 2. Improvements in efficiency for the case
of the slower KL-divergence (reported in the first row) are consistent with those reported by Cayton
[6]. The second row shows improvements in efficiency for the case of the faster KL-divergence and
these improvements are substantially smaller than those reported in the first row, despite the fact
that using the faster KL-divergence greatly reduces retrieval times. The reason is that the pruning
algorithm of the bbtree is quite expensive. It involves computations of logarithms/exponents for
coordinates of unknown vectors, and, thus, these computations cannot be deferred to index time.

4 Discussion and conclusions

We evaluated two simple yet effective learning-to-prune methods and showed that the resulting ap-
proach was competitive against state-of-the-art methods in both metric and non-metric spaces. In
most cases, this method provided better trade-offs between rank approximation quality and retrieval
speed. For datasets with low or moderate intrinsic dimensionality, the VP-tree could be one-two or-
ders of magnitude faster than other methods (for the same rank approximation quality). We discussed
applicability of our method (a VP-tree with the learned pruner) and proved a theorem supporting the
point of view that our method can be applicable to a class of non-metric distances, which includes
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the KL-divergence. We also showed that a simple trick of pre-computing logarithms at index time
substantially improved performance of existing methods (e.g., bbtree) for the studied distances.

It should be possible to improve over basic learning-to-prune methods (employed in this work)
using: (1) a better pivot-selection strategy [31]; (2) a more sophisticated sampling strategy; (3) a
more accurate (non-linear) approximation for the decision function Dπ,R(x) (see section 2.1).
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1 Introduction

This short note supplements the paper “Learning to Prune in Metric and Non-Metric Spaces” [3]. We
aim to provide a theoretical justification for applicability of our approach (the VP-tree with a learned
pruner) to a class of non-metric spaces, which includes the KL-divergence and the Itakura-Saito dis-
tance. In addition, we describe a simple algorithm to learn the decision function through sampling.

2 Applicability Conditions

Theorem 1. For any pivot π, probability α, and distance x �= R, there exists a radius r > 0
such that, if two randomly selected points q (a potential query) and u (a potential nearest neighbor)
satisfy d(π, q) = x and d(u, q) ≤ r, then both p and q belong to the same partition (defined by π
and R) with a probability at least α.

Theorem 1, which is true for all metric spaces, holds in the case of KL-divergence and data points u
sampled randomly and uniformly from the simplex {xi|xi ≥ 0,

∑
xi = 1}.

Note 1. This theorem is trivially extended to many other non-negative distance functions d(x, y)
that satisfy:

• d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y;

• d(x, y) is continuous except for a set of measure zero;

In particular, the theorem holds for the Itakura-Saito distance. Note, though, that these conditions
are not sufficient, because one may need to make additional compactness requirements. For the
example, the proof for the KL-divergence relies on the fact that the distance is defined on the compact
Euclidean subset.

Proof. It is easy to show that for any α there exists ε > 0 such that all coordinates of the randomly
selected vector are ≥ ε with a probability at least α. Further, we consider the compact set of vectors
(it is compact with respect to L2):

S(ε) = {y|1 ≥ yi ≥ ε,
∑

yi = 1}
The KL-divergence is defined as:

KL(x, y) =
∑

i

xi log
xi

yi
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For any y ∈ S(ε), yi ≥ ε. Thus, KL(x, y) is a continuous function of both arguments on S × S.
Points outside S are encountered with probability 1 − α, which can be made arbitrarily small by
selecting a sufficiently small ε.

For the sake of contradiction, we assume that, no matter how small is the query radius, there is a
query ball with the center in S at distance r from the pivot. In addition, there are points inside query
balls that belong to both partitions as well as to S. This can be seen as an adversarial game, where
we select progressively decreasing radii rn → 0. For each rn our adversary finds the query ball with
the center qn ∈ S and the radius ≤ rn such that (1) KL(π, qn) = x and (2) the query ball intersects
both space partitions and S. To demonstrate the latter, our adversary provides us with points u+

n and
u that lie inside the query ball and belong to different space partitions. Note that qn, u+

n , and u
should all belong to S.

Formally, there exists a sequence of radii rn → 0, the sequence of query ball centers qn, and
sequences of points u+

n , un such that:

KL(π, qn) = x,

KL(u+
n , qn) ≤ rn and KL(un , qn) ≤ rn,

but

KL(π, un ) < R and KL(π, u+
n ) > R. (1)

The sequence (qn, u
+
n , un ) is defined on a Cartesian product S × S × S, which is compact due to

Tychonoff’s theorem. Because the Cartesian product is compact, we can assume that (qn, un , u
+
n )

is a converging sequence and sequences qn, un , u+
n converge as well: 1:

(qn, un , u
+
n ) → (q, u , u+) (2)

From Eq. 1-2 and continuity of the function KL(x, y) on S × S, we obtain:

KL(q, u+) = KL(q, u ) = 0, (3)

KL(π, u+) ≥ R, KL(π, u ) ≤ R. (4)

From properties of the KL-divergence and Eq. 2, it follows that u+ = q = u . By applying
u+ = q = u to Eq. 4, we get that R ≤ KL(π, q) ≤ R and, thus, that:

KL(π, q) = R. (5)

Again, from continuity of KL(x, y), KL(π, qn) = x and qn → q, we obtain that KL(π, q) = x.
Because x �= R this conclusion contradicts to Eq. 5.

We obtained a contradiction, which demonstrates that (almost) all sufficiently small query balls at
distance r �= R from the pivot lie (for the most part) in either the left or the right partition. The
exceptions are query balls centered outside S, or query ball parts that don’t belong to S. Yet, as
noted previously, it is possible to select S such that a probability of drawing a point from S will be
arbitrarily close to 1. This observation finishes the proof of the theorem.

3 Estimating Decision Function Dπ,R(x) Through Sampling

It is possible to estimate Dπ,R(x) (defined in Section 2.2 of [3]) through sampling. Note that the
resulting search method would not be exact. A straightforward sampling method involves random
and independent selection of points qi and ui from the data set. Two cases are possible depending on
whether qi and ui belong to the same partition. Consider the case when qi and ui belong to different
partitions. This represents the gray ball from Fig. 1. Thus, we learn that there may exist multiple
pairs of points (different from qi) within the distance r = d(ui, qi) from qi situated in different
partitions. Thus, we can be absolutely sure that Dπ,R(d(π, qi)) ≤ d(ui, qi).

1 If a space X is compact any sequence contains a converging subsequence with the limit in X .
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π

R

Figure 1: Three types of query balls in the
VP-tree. The black circle (centered at the
pivot π) is the sphere that divides the space.

In the case when ui is in the same parti-
tions as qi, we cannot, however, infer that
Dπ,R(d(π, qi)) > d(ui, qi). Indeed, there could
exist a nearest-neighbor uj , not encountered by
the sampling procedure, belonging to a different
space partition than qi, but, nevertheless, satisfying:
d(uj , qj) ≤ d(ui, qi). If we use qi as a query and set
Dπ,R(d(π, qi)) to be larger than d(ui, qi), the parti-
tion containing uj will be pruned and, consequently,
uj will not be found.

By repeating the sampling procedure multiple times
and smoothing results (e.g., by fitting a curve or learning a regression model), we can obtain an
estimate for the upper bound of Dπ,R(x). There are several problems with this approach. First,
due to the concentration of measure, d(π, qi) is close to R for most sampled points. Thus, Dπ,R(x)
will be properly estimated only for values x ≈ R. Second, it does not allow us to trade search
effectiveness for efficiency.

The underlying principle of an improved sampling method is to divide the xy-plane, which repre-
sents the plot of the function Dπ,R(x), into cells. This improved sampling method works as follows:

• We compile the distribution of distances d(π, qi) (using all data points) and divide it into
50-500 quantiles. These “horizontal” quantiles represent the division of the xy-plane into
vertical bars. Then, several pseudo-queries qi are randomly picked from each horizontal
quantile.

• For each pseudo-query qi, K ≈ 100 pseudo near-neighbors are randomly selected from the
data set. We also implemented an approach where K true near-neighbors are obtained by
exhaustively searching the data set (an idea proposed by Athitsos et al. [2]). This method
is computationally expensive, but it did not result in substantial improvements.

• Now each vertical bar contains a number of pseudo near neighbors. We compute the bar-
specific distributions of distances from qi to these points and divide each of the distributions
into 100-1000 “vertical” quantiles. This step finalizes a division of the xy-plane into rect-
angular cells.

To estimate Dπ,R(x), we find the vertical bar containing the point (x, 0). Then, we start scanning
the cells belonging to this bar in the bottom-up fashion. The algorithm keeps two counters. The first
counter Nall is a total number of of pseudo near neighbors contained in the visited cells. The sec-
ond counter Ndiff is the number neighbors that belong to a different partition than their respective
pseudo queries (i.e., the number of situations when we have the gray pseudo query ball, see Fig. 1.).
We stop when Ndiff becomes larger than γNall for some threshold value γ. A y-coordinate corre-
sponding to the last visited cell is used as an estimate for Dπ,R(x): One can use the minimum, the
maximum, or any intermediate y-coordinate of points inside the last visited cell. The threshold γ
is selected empirically. In that, highest recall values (and slowest speeds) are obtained for γ = 0.
Unlike previous efforts, see e.g. [1], our sampling algorithm estimates Dπ,R(x) for every pivot
π (rather than one global distribution) and, thus, it may better adapt to specifics of data partitions
induced by pivots.
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Abstract—Some of the existing techniques for approximate
similarity retrieval in metric spaces are focused on shrinking
the query region by user-defined parameter. We modify this
approach slightly and present a new approximation technique
that shrinks data regions instead. The proposed technique can
be applied to any metric indexing structure based on the ball-
partitioning principle. Experiments show that our technique
performs better than the relative error approximation and
region proximity techniques, and that it achieves significant
speedup over exact search with a low degree of error. Beyond
introducing this new method, we also point out and remedy
a problem in the relative error approximation technique,
substantially improving its performance.

Keywords-approximation algorithms, experiments, similarity
search, metric space.

I. INTRODUCTION

Nowadays, efficient similarity retrieval is becoming more

important in various applications such as multimedia repos-

itories (images, audio, video) because of the rapid growth of

these data sets and the increasing demand for access to them.

In such search applications, the relevance of a data object

is often measured by some distance function that provides

quantitative information about its similarity to some given

sample query. For search techniques that treat the distance

as a black-box relevance measure, the main challenge is

to quickly retrieve a small set of the most relevant objects

(either all within a search radius, or the k nearest neighbors,

k-NN) relying on the properties of the distance—usually by

exploiting the metric axioms.
Numerous metric indexing structures have been proposed

to reduce the computational cost (such as the total num-

ber of distance computations at query time) of similarity

retrieval [1]. These methods primarily rely on various forms

of filtering based on the triangle inequality. Triangular

filtering is efficient in low-dimensional spaces. However, as

the dimensionality of a space increases, the performance

of these indexes degrades because of the so-called curse

of dimensionality: distances grow increasingly similar, and

eventually one may need to examine more or less all data

objects, the equivalent of a linear scan. One promising

approach to ameliorating this curse is approximate similarity

search, where some result quality is sacrificed in order to

gain performance. This is acceptable in many applications,

as distance-based retrieval is generally approximate to begin

with—the distance function is most likely an approximation

of the user’s perception of similarity, and the user probably

wants similar objects (e.g., pictures of horses), not neces-

sarily the most similar objects (i.e., the most similar horse).

Some important methods used in approximate similar-

ity search are discarding data regions at query time (by

shrinking the query ball by a user-defined factor [2–4] or

by analyzing the intersection of query and data regions [5]),

representing data objects as permutations of a set of piv-

ots [6], and estimating the distance by linear regression [7].

We focus on the first approach, trying to develop a method

for discard regions that overlap with the query, but that

are likely to contain few relevant objects, if any. Our main

contributions are:

• We propose a new approximation technique that shrinks

data regions instead of the query region, and show

empirically that it is superior to existing methods in

many cases.

• We amend a problem in the relative error approximation

technique of Zezula et al. [2]. In several experimental

studies, this technique was found to be the worst

one [1, 2, 5]. We point out a problem with how the

method has been used, and show how the amended

version has significantly improved performance wrt.

the original, making it comparable even to the region

proximity method [5].

The rest of the paper is organized as follows. In Section II,

we briefly review related work. In Section III, we propose

our approximation technique, and describe how to amend the

relative error approximation technique. Section IV provides

experimental results and some discussion of those results.

Finally, Section V contains some concluding remarks.

II. RELATED WORK

In this section, we briefly review two metric indexing

structures based on the ball-partitioning principle—the M-

and SSS-trees—explain some issues in the construction of

indexes and also review some approximate techniques that

can be applied to those structures.

The M-tree [8] is a hierarchical dynamic metric ball tree

that is designed for secondary memory. The M-tree is built

in a bottom-up manner like B-trees. The insertion algorithm

starts from the root and moves toward the leaves by selecting



nodes that are closer to the new object or that require a

minimum enlargement of existing balls. The new object is

finally inserted into a leaf node. This may cause the leaf to

split (if the node capacity is exceeded), which may trigger

splits in some of its ancestor nodes, possibly even the root.

For a leaf node split, the covering radius of the split node

is set to the distance from the center to the object furthest

away, that is, the actual covering radius. For an internal node

split, the covering radius is not computed exactly, but over-

estimated, as follows. For every child node, the covering

radius of that node is added to the distance between the

center of that child and that of the split node. Then, the

covering radius of the split node is then set to the maximum

of those sums.

Brisaboa et al. have proposed a static index structure so

called the Sparse Spatial Selection (SSS) tree [9], in which

the first object in a data set is selected as the first cluster

center and then the rest of the objects become new cluster

centers if they are far enough away from all current centers

(i.e., the minimum distance between the object and current

cluster centers is greater than αM , where α is a user-defined

parameter and M is the maximum distance between any

two objects); otherwise, they are assigned to the cluster

associated with the nearest center. The process is recursively

applied to those clusters that have not yet fallen below a

given size threshold and the diameter M of each such cluster

is estimated by using twice the covering radius of the node.

Because of the clustering principle used in the construction

phase, the internal nodes of SSS-trees will generally have

smaller regions than the internal nodes of M-trees. However,

there are still sparse regions at higher levels of SSS-trees.

Three approximate techniques for k-NN search were

introduced by Zezula et al. [2]. The first, the so-called

relative error approximation technique, controls approxima-

tion through a user-defined relative distance error ε ≥ 0.

For a given query q and error ε, an approximation of a

kth nearest neighbor Ok
A is called a (1 + ε) kth nearest

neighbor, compared to the true kth nearest neighbor Ok
N ,

if and only if d(q,Ok
A) ≤ (1 + ε) · d(q,Ok

N ). Thus, the

search algorithm uses the radius rq/(1 + ε) instead of the

covering radius of the current k-NN candidate set rq to

check overlap between query and data regions and candidate

object qualification as well. An example of this approach is

given in Figure 1a. The second, the so-called good fraction

approximation technique, uses a distance distribution to

provide an early termination criterion which leads to an

approximate kNN search. In the third, the so-called small

chance of improvement approximation technique, the search

algorithm is based on the fact that the dynamic radius of the

result set initially decreases rapidly and eventually will slow

down. Thus the search stops as soon as the decrease of the

radius becomes sufficient.

The PAC method [3] is an extension of (1 + ε) nearest

neighbor search by a user-specified confidence parameter

δ ∈ (0, 1). The search algorithm stops immediately if the

result satisfies the (1+ε) nearest neighbor with a confidence

of at least δ.

Probabilistic LAESA [4] is a probabilistic technique for

range search that provides user-customizable limits (θ) for

the probability of false dismissals. More specifically, the

radius rq is scaled down by a factor (1+ε) (ε > 0) during the

filtration of indexed objects. The upper bound for (1+ ε) is

rq
√

1− (1− θ)1/p/(
√
2σ), where p is the number of pivots

and σ2 is the variance of the distance distribution of the data

set. Figure 1b shows an example of this technique.

The region proximity technique [5] estimates the prob-

ability of the intersection of the query and data regions

containing objects relevant to the query. The data region

is discarded if the estimated probability is less than a user-

specified threshold.

III. OUR APPROACH

First, we explain the basic principles of the so-called best
first strategy [10] for k-NN search. In essence, we maintain

a set of at most k (initially zero) candidates throughout

the search. We also maintain a covering radius for this

candidate set. This covering radius is infinite as long as

we have fewer than k candidates. The algorithm processes

the most promising metric regions first by maintaining a

priority queue of pair of distances to regions and pointers to

those regions. The following actions are repeated until the

lower bound of the distance from the query to the region

about to be processed is greater than the current dynamic

query radius. The most promising region is popped from the

queue. The objects of the current region are checked with

the current dynamic query radius and, if necessary, the list

of candidate k-NN is updated. If we have k candidate, this

leads the reduction of the dynamic query radius. Those sub-

regions of the current region that intersect with the query

region reinserted into the queue along with the lower bound

distances to them from the query.

We now look at our approach. Metric indexes may have

highly sparse data regions at higher levels, with the ball

radii covering large amounts of empty space—especially for

high dimensionalities. During a search, in order to discard

those regions that might not contain relevant objects for

the query we could use any version of of the (1 + ε) NN

technique (for instance, the relative error approximation).

Our suggested approach is similar to the relative error

approximation technique and the key difference is to divide

the data ball radius by (1+ ε), rather than the query radius.

See Figure 2 for an example. In the figure, we have shown

what happens if we divide both the query radius and the

data radius by (1 + ε). In the first example (Figure 2a),

the query lies close to the data ball, on the outside. In this

case, our method lets us eliminate the region simply because

it increases the lower bound more. In the second example

(Figure 2b), the query is just inside the data ball. In this case,
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Figure 1: Examples of data and query ball regions in R
2 with L2. (a) Relative error approximation in the M-tree [8] with

two levels (i.e., top level with center O1 and bottom levels with centers O1 and O7). RCO1 represents the covering radius

of top region centered at O1 while rcO1 represents its “true” covering radius. (b) Probabilistic LAESA.

shrinking the query radius will never lead to an elimination,

whereas our method does.

q O

(a)
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(b)

Figure 2: Examples of data and query regions in R
2 with

L2 (a) query q is outside the data region with center O and

(b) q is inside the data region.

These examples demonstrate the twofold intuition behind

our method: First, ball trees are generally built using some

form of clustering. If the data set itself is clustered, and the

clustering algorithm is good, this will presumably lead to

the center region of a ball being more densely populated

than its periphery. Even if this is not the case, by setting

the radius to the maximum of all center–object distances,

the radius is sensitive to outliers, and the more extreme they

are, the fewer there are likely to be. Even if we do not

assume a Gaussian distribution, it is not unreasonable to

guess that our distance histogram will have the majority of

its values clustered roughly around the mean, with fewer

occurrences of very high and low distances (ignoring self-

distances, d(x, x)). Assume that we have a global distance

histogram somewhat like that in Figure 3, for example. We

also assume that the center–object distances are distributed

roughly according to the global distance histogram. Chávez

et al. call this behavior as a “reasonable approximation” [11,

p. 304]. In this case, it seems that it would be safe to shrink

large data balls more than smaller ones, as the number of

objects lost would be smaller. The same could be said about

the smallest balls, of course; however, we would probably

want to examine most of those, if they are close to the query,

as they more precisely represent the objects inside them.
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Figure 3: Distance histogram (solid) and cumulative distance

histogram (dashed).

Second, shrinking the data balls affords us some elimina-

tion possibilities that simply do not exist with the original

query-shrinking approach, that is, when the query falls inside

the data ball. We have performed some tentative experiments

to explore the relative importance of these two factors. At

parameter settings that yield similar levels of error, our

method generally uses fewer distance computations than the

relative error method (see Section IV). We estimate that the

proportion of the saved distance computations caused by

cases where the query is inside the data ball to vary from

about 1% to over 50% (data not shown).

Another contribution of this paper is that we point out

and remedy a problem in the relative error approximation

technique. Several experimental studies have showed that

the performance of the relative error method (as originally

described) is very poor [1, 2, 5]. According to Zezula et

al., “the chief reason for the markedly poor performance of



the Relative Error Approximation method (with respect to

the others) is that precise nearest neighbors algorithms find

good candidates for the result sets soon on, and then spend

the remainder of their time mostly in refining the current

results” [1, p. 157]. We claim, instead, that the main reason

for this performance issue is found in the pruning criterion

for a candidate given object O, given by Equation 16 on

page 280 of the original paper by Zezula et al. [2]:

rq
d(q,O)

< 1 + ε ,

or, equivalently,
rq

1 + ε
< d(q,O) ,

where rq is the covering radius of the current k-NN candi-

date set.

Now, the radius shrinking is intended to reduce the num-

ber of distance computations needed by excluding regions

of low relevance. There is no need to use it here, as the

distance d(q,O) has already been computed, and we simply

wish to know whether the object O is an improvement over

the candidates we have found so far. We can determine this

by simply comparing d(q,O) directly to rq . Indeed, if

rq
1 + ε

< d(q,O) < rq

we will lose an improvement to our candidate set, involving

an object whose distance we have already computed. This

can be particularly important early on, where we wish to

add good candidates (thereby reducing the dynamic search

radius) as quickly as possible. In our experiments, we use

this improved version of the relative error approximation

technique, checking each candidate object against the actual

covering radius of the candidate set.

IV. EXPERIMENTS

In this section, we evaluate the performance and result

quality of our technique against the amended version of

the relative error approximation and the region proximity

techniques on synthetic and real-world data sets. For all data

sets we use the Euclidean distance.

• Uniform 10: Synthetic. 100 000 uniformly generated

10-dimensional vectors.

• Clusters 10: Synthetic. 100 000 clustered 10-dimen-

sional vectors with 10 cluster centers. The centers

were randomly chosen from a uniform distribution

and objects in the clusters were generated from the

multivariate normal distribution around each of the

cluster centers with a variance of 0.1.

• Corel: 60 000 feature vectors with 64 dimensions ex-

tracted from the Corel image data set.

• NUS [12]: 269 648 color histograms extracted from

Flickr images. Each histogram is 64-dimensional.

Amato et al. claimed that there was no practical differ-

ence between the proximity and the PAC-NN technique [5,

p. 225]. Also PAC-NN is designed only for approximate NN

retrieval (k = 1). Therefore, PAC-NN is not considered for

our experiments.

We have applied our method, region proximity, and the

amended version of the relative error technique on M- and

SSS-trees. The maximum arities of the trees were set to 30

for the synthetic and 15 for the real-world data sets. We

selected 1000 queries from the respective data set at random

and the remaining objects in the data set used for indexing.

We compared the search performance and result quality of

three techniques by varying the result size threshold (k),

using the values 1, 5, 10, 20, 40 and 80. We report only

the results with 10 NN because the results with the other

result size thresholds were quite similar. For the relative error

approximation technique, the relative error α was varied in

the interval [0.001, 2.0] with step size 0.1 following the

experimental settings of Zezula et al. [2]. For the region

proximity technique, the proximity value was varied in the

interval [0.003, 0.06] with step size 0.003 following the

experimental settings of Amato et al. [5]. For our technique,

the data region stretching factor was varied between 0.1 and

2.0 with step size 0.1.

For each query, we counted the number of distance

computations needed for the approximate search (the most

commonly used criterion for measuring the performance

of metric indexing structures), normalized by the number

needed for an exact search, and measured a slightly modified

version of the error on the position [1, 5]. The original

version of the error on the position has some drawbacks.

First, it gives an error value that is normalized by the size

of data set. The normalized values are harder to interpret.

For example, we can not directly see the absolute position

difference between exact and approximate results. Second,

the error should not be normalized by the approximate

result’s size and should take missing objects in the result

set into account.

Let us have a look at a simple example: Let n be data set

size and the result size threshold k be 80 (k < n) and the

approximate result be only true 3 NNs. For some reason,

the approximate result did not retrieve other 77 NNs (for

instance, the search algorithm was terminated early). Then

if we apply the original formula on this example, the error on

the position is ((1−1)+(2−2)+(3−3))/(3n) = 0. The error

value 0 means that the approximate result has no error and

as we see that it should not be 0 in this case. The modified

version takes these situations into account, and the error is

increased by n as a fine for every missing object and then

the error is only normalized by k. This modified version of

the error on the position yields the average absolute position

difference between every point of the exact and approximate

results.

In general, approximation techniques will produce results

that vary both in performance and accuracy. In order to

make a fair comparison between different techniques we



have to compare their speed-up factors with the same error

or vice versa. In some cases, it would be difficult to achieve

this goal, as neither performance measure is a deterministic

function of the parameter settings. In order to compare the

results properly, we plot them as a lines with one point for

each parameter setting, with the coordinates for each point

given by the mean error and mean normalized distance count

for all queries. On the y-axis, the value 10 1 means that the

indexing structure performed 10 times as fast as an exact

search. On the x-axis, the value 101 means that the average

absolute position difference between exact and approximate

result is 10 (for instance, if the result size threshold is 1,

then the 11th NN is reported instead of the NN).
In Figure 4, the errors on the position vs normalized

distance counts for 10NN on M-trees are shown. Note that

both axis are logarithmic. For the results of NUS 10 NN in

Figure 4, our technique achieved a speed-up by a factor of

more than 4 over the exact search, with the position error

less than 10, while the region proximity technique achieved

almost same speed-up with relatively high position error 104

(i.e., reported 10 objects from around 10 000 NNs for the

query). For the other data sets, our technique achieved about

2.5 speed-up over exact search with the position error less

than 10.
Figure 5 shows the results for SSS-trees. The most inter-

esting results are once again obtained with the NUS data set.

For NUS 10 NN, the maximum value of the error was 48.39
(with normalized distance count 0.135) for our technique

while for the region proximity technique the error was

1751.39 (with normalized distance count 0.136). The results

show that our technique is faster than two other competing

techniques with a low degree of the error on the position.

The relative error approximation technique outperforms the

region proximity technique on the real-world data sets while

on the synthetic data sets it does not.
In addition to the experiments presented, we have also

performed some tentative experiments involving various

tradeoffs between query- and data-ball shrinking. So far, this

has not yielded substantial improvements.

V. CONCLUSIONS

We have proposed an approximate similarity search tech-

nique for metric spaces and we have amended a problem in

the relative error approximation technique. We have empir-

ically evaluated our technique, showing that it outperforms

the amended version of relative error approximation and the

region proximity techniques.
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Figure 4: Performance vs. result quality of approximation on the synthetic and real-world data sets with M-trees.
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Figure 5: Performance vs. result quality of approximation on the synthetic and real-world data sets with SSS-trees.
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Abstract. We present a new similarity search library and discuss a
variety of design and performance issues related to its development. We
adopt a position that engineering is equally important to design of the
algorithms and pursue a goal of producing realistic benchmarks. To this
end, we pay attention to various performance aspects and utilize modern
hardware, which provides a high degree of parallelization. Since we focus
on realistic measurements, performance of the methods should not be
measured using merely the number of distance computations performed,
because other costs, such as computation of a cheaper distance function,
which approximates the original one, are oftentimes substantial. The
paper includes preliminary experimental results, which support this point
of view. Rather than looking for the best method, we want to ensure
that the library implements competitive baselines, which can be useful
for future work.

Keywords: benchmarks, (non)-metric spaces, Bregman divergences

1 Introduction

A lot of domains, including content-based retrieval of multimedia, computa-
tional biology, and statistical machine learning, rely on similarity search meth-
ods. Given a finite database of objects {oi}, a search query q and a dissimilarity
measure (which is typically represented by a distance function d(oi, q)), the goal
is to find a subset of database objects sufficiently similar to the query q.

Two major retrieval tasks are typically considered: a nearest neighbor and a
range search. The nearest neighbor search aims to find the least dissimilar object,
i.e., the object at the smallest distance from the query. Its direct generalization
is the k-nearest neighbor (or the k-NN) search, which looks for the k most closest
objects. Given a radius r, the range query retrieves all objects within a query
ball (centered at the query object q) with the radius r, or, formally, all the
objects {oi} such that d(oi, q) ≤ r.
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The queries can be answered either exactly, i.e., by returning a complete re-
sult, or, approximately, e.g., by finding only some nearest neighbors. The exact
versions of near neighbor and range search received a lot of attention. Yet, in
many applications exact searching is not essential, because the notion of simi-
larity, e.g., between two images, is not specified rigorously. Applying an exact
retrieval method does not necessarily mean that we will find the image that is
most similar to a query from a human perspective. Likewise, a k-NN classifier
may perform well even if the search method does not produce a precise and/or
a complete result [4,31].

Search methods for non-metric spaces are especially interesting. This domain
does not provide sufficiently generic exact search methods. We may know very
little about analytical properties of the distance or the analytical representation
may not be available at all (e.g., if the distance is computed by a black-box device
[35]). Hence, employing an approximate approach is virtually unavoidable.

Approximate search methods are typically more efficient than exact ones.
Yet, it is harder to evaluate them, because we need to measure retrieval speed
at different levels of recall (or any other effectiveness metric). To the best of our
knowledge, there is no publicly available software suit that (1) includes state-of-
the-art approximate search methods for both non-metric and metric spaces and
(2) provides capabilities to measure search quality. Thus, we developed our own
test framework and presented it in this paper.

1.1 Related Work

There is large body of literature devoted to exact search methods in metric
spaces, which are thoroughly surveyed in the books by Faloutsos [12], Samet
[32], and Zezula et al. [40] (see also a survey by Chávez et al. [5]). Exact meth-
ods have a limited value in high-dimensional spaces, which exhibit phenomena
of the empty space [33] and measure concentration [5]. Experiments show that,
as the dimensionality increases, every nearest neighbor search method degrades
to sequential searching [39]. This is commonly known as the “curse of dimen-
sionality”. In that, methods, which are allowed to return inexact answers, are
less affected by the curse [30]. For a discussion of these phenomena, we address
the reader to the papers of Indyk [20] and Pestov [30].

To answer the approximate nearest neighbor queries, Indyk and Motwani [21]
as well as Kushilevitz et al. [25] proposed to use random projections. The locality
sensitivity hashing (LSH) is one of the most well-known implementations of
this idea [21,20]. The LSH indexing uses several hash functions, such that a
probability of a collision (hashing to the same value) is sufficiently high for close
objects, but is small for distant ones.

The LSH works best in Lp spaces where p ∈ (0, 2]. There exists an extension of
the LSH for an arbitrary metric space [28] as well as for symmetric non-metric
distances [27]. Performance of the LSH depends on the choice of parameters,
which can be tuned to fit the distribution of a data set [7].

Most exact search methods can be transformed into approximate ones by
applying an early termination strategy. In particular, Zezula et al. [41] demon-
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strated that this approach works well for M-trees. One of the most efficient strate-
gies relies on density estimates for a distribution of distances [41,1]. The density-
based approach to space pruning was also discussed by Chávez and Navarro [6]
(in the context of pivoting methods), who called it “stretching” of the triangle
inequality.

Let us consider a metric space, where we selected a single reference point π,
known as pivot. The pivot is used to prune space during searching. Imagine that
we computed a distance from the pivot π to every other data point. Then, points
are sorted in the order of increasing distances from π. The median distance is
m and points are divided into two buckets. If the distance from a point to π
is smaller than m, the point is put into the first bucket. Points with distances
larger than (or equal to) m are placed into the second bucket.

Let q be a query point and r be a radius of the range query. If r < m−d(π, q),
an answer can be only in the first bucket. If r ≤ d(π, q)−m, an answer can be
only in the second bucket. Otherwise, the answer can be in both buckets and
no pruning is possible (without risking to miss an answer). In the “stretched”
triangle inequality, we choose constants α1, α2 ≥ 1.3 If r < α1(m− d(π, q)), we
check only the left bucket. If r < α2(d(π, q)−m), we check only the right bucket.
This is an example of an oracle procedure that defines a pruning algorithm
of a pivoting method. Note that (1) it is possible to learn the oracle in both
metric and non-metric spaces, (2) we can learn a pivot-specific oracle, instead
of the global one, (3) most existing methods designed for metric spaces can
be converted into non-metric search methods by simply replacing the triangle-
inequality based pruning method with a search oracle. We plan to present these
learning approaches in detail elsewhere.

In a recent survey [36], Skopal and Bustos discussed several types of non-
metric access methods, which we divide into the following categories: (1) projec-
tive and lower/upper bounding approaches, (2) methods that prune the space
using properties other than the triangle inequality (e.g., the Ptolemaic inequality
[26]), and (3) domain-specific methods. Inverted files are a classic domain-specific
algorithm applicable to high-dimensional, but sparse, vector spaces, where the
distance function is the cosine similarity (or a similar distance).

Jacobs et al. [22] review various projection methods and argue that a projec-
tion is not always feasible, for instance, when the similarity cannot be expressed
by a numeric distance function, or the distance function is not symmetric. In the
case of symmetric, non-negative, and reflexive distance, one can use the TriGen
algorithm [35], which applies a monotonic transformation to the distance func-
tion. Consider, e.g., the squared Euclidean distance, which is a (non-metric)
Bregman divergence. By taking the square root, we obtain the metric function.
Similarly, the TriGen algorithm allows one to convert a distance into a function
that satisfies the triangle inequality only approximately. In addition, it provides
control over the degree of approximation.

Chávez et al. [18] proposed a projective method, which is applicable to both
metric and non-metric spaces. The method, called the permutation index, selects

3 Chávez and Navarro [6] employed only one stretching constant.
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k pivots {πi} and for every data point o it creates a permutation of pivots: a
list where pivots are sorted in the order of increasing distances d(πi, o). Inde-
pendently, this method was invented by Amato and Savino [2], who additionally
proposed to index permutations using an inverted file.

To answer the query, the correlation is computed between the permutation
of the vector and the permutation of every data point. Then, all data points
are sorted in the order of ascending correlation values and a given fraction of
objects are compared directly with the query (by computing the distance in the
original space). Performance of the permutation index can be improved by using
incremental sorting [17] or by indexing permutations using an inverted file [2], a
permutation prefix tree [11], or a metric space index [14].

Bregman divergences is a class of non-metric distance functions. This diver-
gences include the squared Euclidean distance, the KL-divergence:

d(x, y) =
∑

xi log(xi/yi) (1)

and the Itakura-Saito distance:

d(x, y) =
∑

xi/yi − log(xi/yi)− 1. (2)

For the Bregman divergences, there exist two exact search methods. The Breg-
man ball tree (bbtree) [4], which recursively divides the space using two covering
Bregman balls at each recursion step, and a mapping method due to Zhang et
al. [42]. Both approaches use properties of Bregman divergences to lower/upper
bound distance values.

2 Methodology

2.1 Evaluation Approach

Performance of approximate methods is typically represented by a curve that
plots efficiency against effectiveness. Two most common efficiency metrics are
retrieval time and a number of distance computations. Additionally, we use the
improvement in efficiency (with respect to the single-thread sequential search
algorithm) and the improvement in the number of distance computations.

Recall is a commonly used effectiveness metric. It is equal to the fraction
of all correct answers retrieved. The relative error [41] is defined for a pair of
points o and õ, such that o is an exact and õ is an approximate answer. It
is simply a ratio of the distances d(õ, q) and d(o, q). The relative error can be
misleading, especially in high dimensional spaces. Due to high concentration
of measure, an increase in relative error can be very small, but the method can
return the 1,000th nearest-neighbor instead of the most closest one. This concern
was also expressed by Cayton [4]. Similarly, recall does not account for position
information and has the same issue [1].

Let pos(oi) represent a positional distance from oi to the query, i.e., the
number of objects closer to the query than oi plus one. In the case of ties, we
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assume that the object with a smaller index is closer to the query. Note that
pos(oi) ≥ i. A relative position error is equal to pos(oi)/i and is more informative
than a relative distance error and/or recall. We average relative position errors
using the geometric mean [23].

Zezula et al. [41] proposed to use the average value of the inverse relative
position error (called the precision of approximation) as a performance metric
(m is the number of found objects):

1

m

m∑
i=1

i

pos(oi)
(3)

Amato et al. [1] suggested the metric that measures the absolute position
error. It is equal to:

1

m

m∑
i=1

pos(oi)− i

#of indexed points
(4)

Unfortunately, this metric produces results that are not comparable across col-
lections and result sets of different sizes. Consider an example of the result set,
where pos(oi) = 2i. The absolute position error is equal to:

1

m

m∑
i=1

2i− i

#of indexed points
=

0.5(m+ 1)

#of indexed points

We have no good explanation why the position error should grow with m, while
the relative position error and the degree of approximation remain constant (in
this case). Even worse, due to the large factor in the denominator of Eq. 4, the
computed error is generally very small. It is easy to make a wrong conclusion
that the algorithm works almost ideally, whereas, in truth, it provides a poor
approximation.

If we have a separate test set, testing is straightforward. Otherwise, we need
to randomly divide the original data set into indexable data and testing data.
This method is based on the assumption that distributions of test queries and in-
dexed data objects are similar. The random division should be repeated several
times (an approach known as bootstrapping), and performance metrics com-
puted for each split should be aggregated.

One may be tempted to select queries among indexed data objects, or, alter-
natively, to create test vectors by randomly perturbing the indexed data. Both
approaches are not ideal and can lead to overly optimistic or pessimistic results,
especially, in the case of the nearest neighbor searching. We experimented with
the Colors data set[13], indexed using the Vantage Point tree (VP-tree) [37]. If
we selected queries from the vectors that were already indexed, it took on av-
erage only 20 distance computations to find the query’s nearest neighbor. Since
the query and the found vector were identical, the pruning algorithm was unre-
alistically efficient. For the randomly selected held-out test data, it took about
6,000 distance computations to answer the nearest neighbor query! If we used a
query obtained by random additive (and uniform) perturbations of vector ele-
ments, the results depended on the amount of noise. In our experiment, we got
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800 distance computations in one case and 105 distance computations (i.e., the
algorithm degraded to the linear scan) in another.

We speculate that queries obtained by random perturbations can be useful
if the model of random perturbations fits data well. This assumption is ap-
parently reasonable for the Euclidean data, but additive transformations may
significantly change the histogram of distances in the case of the KL-divergence.
In one example, the application of the additive noise led to a 2x decrease in the
median distance value between two randomly selected vectors. The multiplica-
tive log-normal noise seemed to produce more realistic results, yet, additional
experimentation is needed to understand applicability of this approach.

2.2 Choice of Programming Language

C,C++, and Java are the three most popular general-purpose programming
languages[24]. 4 The authors are familiar with all three and considered them as
implementation languages. According to “The Computer Language Benchmarks
Game”, C and C++ have comparable performance.5 Major C/C++ compilers
(GNU C++ and Microsoft Visual C) support Single Instruction Multiple Data
(SIMD) commands, which allows one to compute distances more efficiently.

Yet, only C++ supports run-time and compile-time polymorphism. The new
C++ specifications standardize multi-threading and simplify the use of STL
containers (threads are not standardized in the pure C). 6 There is evidence,
including anecdotal experience of authors, that C++ allows programmers to be
more productive than does C [3]

Even though performance of Java sometimes matches performance of C++
[38,34], Java is generally 2-3 times slower than C or C++ [19,16]. Unlike C/C++,
there is no built-in support for the SIMD instructions [29]. Java objects are
heavy and programmers have to use parallel arrays as well as manual memory
management (e.g., reusing small objects) to work around this problem [10]. Thus,
writing “algorithmic-intensive” applications in Java may sometimes be harder
than in C++.

Because C++ is largely a superset of C, reusing the code already implemented
in the Metric Spaces Library would be straightforward. Yet, it is harder to port
C-code to Java. There are tools for seamless integration of C++ and R. In
particular, one can call R scripts directly from a C++ program [9]. All in all,
using the latest C++ compiler that implements the new standard is the most
appealing choice for us.

4 See, also http://www.langpop.com/ and http://spectrum.ieee.org/at-work/

tech-careers/the-top-10-programming-languages
5 According to at least this page: http://benchmarksgame.alioth.debian.org/u64/
benchmark.php

6 See http://www.open-std.org/jtc1/sc22/wg21/
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2.3 Design

Our software was designed in the spirit of the Metric Spaces Library [13], but
there are multiple important differences. We have classes that represent an
Object, a Space, and an Index. The Space abstraction is necessary to encap-
sulate the computation of the distance. We can have multiple Space sub-classes
implementing different distance functions. In addition, the Space class provides
functionality to read objects from a file.

A distance can be integer-valued, real-valued, or represented by an arbitrarily
complex object (if, e.g., we compare objects using multiple criteria). Similarly
to the Metric Spaces Library, the same implementation can work with different
distance types (e.g., the VP-tree can be used with both the integer-valued edit
distance and with the real-valued L1 metric). This is effectively supported by the
compile-time polymorphism of C++ (templates). All implementations (including
indices for real-valued and integer-valued distances) co-exist in the same binary
and there is no need to update makefiles when a new method or a distance is
implemented.

The Object has an identifier and can store arbitrary data (of any type). When
necessary objects are transformed: One may need to reduce the dimensionality
or precompute the logarithms to accelerate evaluation of the KL-divergence (see
Section 2.4). Unlike the Metric Spaces Library, a distance function accepts point-
ers to the objects rather than object ids.

A Query object proxies distance evaluations during search time, which allows
us to get the average number of computations carried out by a search method
as well as to compute confidence intervals (even in the multi-threading testing
mode). It is still possible to access the distance function through a Space object,
but this should be done only at indexing time. If (due to programmer’s error)
an instance of the Index tried to access distance through the Space object, the
program would terminate. 7

There are two types of query classes and both classes have the Radius func-
tion. For the range queries, this function returns the constant value specified by
the user. For the k-NN queries, the value returned by Radius changes during the
search, because it represents the distance from the query to the k-th closest ob-
ject found so far. Because of this abstraction, it is often sufficient to implement
a single (template) function that handles both the range and the k-NN search.

The distance function can be non-symmetric, thus two types of queries (left
and right are possible). Currently, the framework directly supports only the left
queries (q is the second argument of the distance function). For some methods,
e.g., permutation-based approaches, right queries can be implemented by simply
swapping arguments of the distance function. Yet, a different distance function
as well as a transformation of original data may be necessary for Bregman di-
vergences [4]. We plan to address this issue in the future.

7 We actually have two versions of the Space distance function. The public, restricted,
version “knows” the current phase (indexing or searching). It terminates the program
if called during the search phase. The unrestricted, but private, function is accessible
by a Query object at search time, because the latter is a friend of Space.
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As explained in Section 1.1, one can use the concept of the search oracle to
convert metric access methods into non-metric ones. We implement two oracle
classes (one is based on sampling and another on “stretching” of the triangle
inequality). Currently, only the VP-tree can use the generic search oracle, but
we plan to embed the search oracle into other metric indices. In addition, most
tree-based methods in our library implement a simple early termination strategy,
where the search stops after visiting a given number of buckets.

There is a special function that governs the test process. It creates a Space

object, which loads a data set into memory, divides the data into testing and
training sets or loads a separate test set (see Section 2.1). Then, the Factory

creates instances of specific methods. Parsing of method-specific command line
parameters, though, is delegated to the Index. Search methods explicitly return
pointers/ids of found objects. Thus, we can verify methods’ correctness, as well
compute recall and other effectiveness metrics discussed in Section 2.1.

Because there are no exact search methods for generic non-metric spaces,
evaluation involves comparing a query object against every object in the database.
This expensive procedure can be optimized: When we test several different meth-
ods in a single session, we compute exact answers only once for each query object.
This is reasonably fast on our current data sets, but in the future we may mem-
orize answers, so that they can be re-used when we run multiple tests (using the
same data set).

The testing module saves evaluation results to a CSV-file and produces a
human readable report. Note that the plots in Section 3 are produced by a
Python script that read and processed such CSV-files.

We decided to focus on memory-resident indices. On one hand, modern
servers have plenty of memory and a typical high-performance search appli-
cation would keep most of its index in memory. On the other hand, we do not
have to implement serialization/de-serialization or, the code that searches data
stored on disk. This simplification allows us to be more productive coders. Our
implementations create essentially static indices from scratch. In the future, we
plan to consider incremental indexing approaches as well.

One purpose of serialization is to estimate space requirements. Yet, it is
possible to obtain an approximate size of the index by measuring the amount of
memory used by the program before and after the index is created (one should
also include memory to store data objects). There is an opinion that better
estimates can be achieved, if we compute the size of allocated memory ourselves,
by writing the special code that traverses the index and measures the size of
atomic index elements (such as vectors). Yet, we believe that this approach is
error prone.

2.4 Efficiency Issues

Even though some distance functions are expensive, it can be quite cheap to com-
pare two vectors using an Lp norm. Furthermore, it can be done even faster using
special SIMD instructions [15]. Currently, most x86 CPUs support operations
with 128-bit registers containing, e.g., 4 single-precision or 2 double-precision
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Table 1: The number of computations per second for optimized and unoptimized
distance functions.

128 elements 1024 elements

Distance L1 L2 Itakura-Saito KL-div. L1 L2 Itakura-Saito KL-div.

C++ (no logs) 9.6 · 106 9.1 · 106 1.9 · 105 5.3 · 105 1.2 · 106 1.2 · 106 2.4 · 104 6.7 · 104
SIMD (precomp. logs) 2.7 · 107 3.3 · 107 8.3 · 106 2.8 · 107 3.4 · 106 4.5 · 106 1.04 · 106 2.4 · 106

Note: vector elements are randomly, uniformly, and independently drawn from (0, 1]

numbers. Some CPUs already support operations with 256-bit registers, which
can process 8-element vectors of single-precision numbers.8 This fact is rather
well known, but it appears to be underappreciated. In addition, evaluation of
some distance functions can be accelerated at the expense of higher storage re-
quirements (or by dimensionality reduction). In the case of the KL-divergence
and the Itakura-Saito distance we can precompute and memorize logarithms of
vector elements.

According to Table 1, a single CPU core can carry out more than 30 mil-
lion computations of the Euclidean distance between two 128-element vectors
and more than 4 million distance computations between two 1024-element vec-
tors. In that, the efficient SIMD version spends about one CPU cycle per vec-
tor element. 9 The optimized versions of the L1, L2 and distances, which use
SIMD, are 3 times faster than pure C++ versions. The optimized versions of the
KL-divergence and of the Itakura-Saito distance are about 30-50 times as fast as
the original ones. In comparison, for a data set of dimensionality 128, the bbtree,
which is designed to search using the KL-divergence, is only 5 times faster than
sequential scan [4]. It should now be clear that (1) distance computations are not
necessarily expensive and (2) optimizing computation of the distance function
can be more important than designing data structures.

It has been claimed that a random memory access may take hundreds of CPU
cycles [8]. Yet, our experiments showed the cost of a random access on our server
to be only 60 cycles. Thus, reducing memory fragmentation may not necessarily
lead to substantial improvements in performance. In particular, storing vectors
of a VP-tree bucket in adjacent memory regions did not allow us to get more
than a 2x speedup. Perhaps, more importantly, the SIMD-based algorithms of
distance computations are so fast that communications with RAM can become
a major bottleneck in a multi-threading environment. Indeed, to sustain the
processing speed of one vector element per CPU cycle (see Table 1) we need
to read from memory at the speed of ≈ 12 GB/sec (one element is a 4-byte
single-precision number). Our server’s memory bandwidth of 20 GB/sec can be
exhausted with just two threads.

8 See, e.g., http://software.intel.com/en-us/avx
9 Reading unaligned data does not apparently hurt performance, even for SIMD op-
erations.
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(d) Colors, L2
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Fig. 1: Improvement in efficiency and in the number of distance computations
for 1-NN search in L2.

3 Experiments

Experiments were carried out on a Linux server equipped with Intel Core i7 2600
(3.40 GHz, 8192 KB of L3 CPU cache) and 16 GB of DDR3 RAM (transfer
rate 20GB/sec). The code was compiled using GNU C++ 4.7 (optimization
flag -Ofast) and tested in a single-thread (using 1,000 queries). The library can
be downloaded from GitHub.10

The following collections were used:

1. Colors: 112-dimensional data set from the Metric Spaces Library [13];
2. Unif64: 64-dimensional vectors with elements generated randomly, indepen-

dently, and uniformly;
3. RCV-16 and RCV-128: 16- and 128-dimensional topic histograms [4];
4. SIFT: the normalized 1111-dimensional SIFT signatures [4].

We extracted the first 105 vectors from collections (1)-(3) and used the whole
collection (4), which contained only 104 vectors.

We carried out two series of experiments (both involving 1-NN search). In the
first series (see Fig. 1), we used collections Colors, Unif-64, and RCV-128. The
distance was Euclidean. We measured both the improvement in efficiency and
in the number of distance computations. The values of efficiency metrics were

10 https://github.com/searchivarius/NonMetricSpaceLib
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plotted against the relative position error. In the second experimental series (see
Fig. 2), we measured how the improvement in efficiency corresponded to the
relative position error. Two Bregman divergences were used: the KL-divergence
(see Eq. 1) and the Itakura-Saito distance (see Eq. 2). Implemented methods
included domain specific and permutation-based approaches as well the VP-tree.

– The VP-tree employed the search oracle that “stretched” the triangle in-
equality (see Section 1.1). Optimal stretching coefficients were found using
a simple grid search. We indexed a small database sample (≈ 1,000 vectors),
executed the 1-NN search for various values of stretching coefficients and
measured performance. Then, we selected coefficients resulting in the fastest
search at given recall values.

– Permutation-based approaches were: an improved permutation index with
incremental sorting [17], a permutation prefix tree [11], and the method
where permutations were indexed using a metric space index, as proposed
by Figueroa and Fredriksson [14]. Unlike Figueroa and Fredriksson, we used
an approximate method (the VP-tree that stretched the triangle inequality
using α1 = α2 = 2). In all cases, we used 16 pivots and the prefix length
was 4. The maximum fraction of the objects exhaustively compared against
the query depended on the data set and varied from 0.01 to 0.05. The mini-
mum fraction of the database objects to be scanned was 0.0002. The number
of candidate objects in the permutation prefix index varied from 1 to 24,000.

– The bbtree [4] is the exact indexing method for Bregman divergences. It was
extended by the early termination strategy, where the search stopped after
visiting a certain number of buckets (the number varied from one to 1,000).

– The multi-probe LSH is designed only for L2. We used the LSHKit imple-
mentation with the following parameters: H = 1017881, T = 10, L = 50.11

All methods, including the multi-probe LSH, relied on optimized distance func-
tions. The correlation function (Spearman’s rho) was also optimized and imple-
mented using SIMD instructions. The vectors in the buckets of the VP-tree and
bbtree were stored in contiguous chunks of memory (the bucket size was 50).

From Fig. 1 we learn that both the classic permutation method (without the
index over permutations) and the multi-probe LSH carried out fewer distance
computations than most other methods. Yet, they were generally outperformed
by the VP-tree and the methods that index permutations (using either the prefix
tree or the VP-tree). The reason is that exhaustive comparison of data-object
permutations against the permutation of the query vector is costly. In that, the
permutation index worked better for high-dimensional data (see Fig. 2f and 2c).
Again, we see that the number of distance computations is not necessarily a good
predictor of method’s performance. Yet, it may give insights into scalability of
methods with respect to the size of the data set and data dimensionality.

As can be seen from Fig. 2, we implemented strong baselines that worked well
in non-metric spaces with non-symmetric distance functions. Note that the bb-
tree, which was tailored to spaces with Bregman divergences, was outperformed

11 Remaining parameters were automatically computed by the LSHKit [7].
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Fig. 2: Improvement in efficiency of 1-NN search for the KL-divergences and
Itakura-Saito distance.

by the VP-tree (which is a generic method) in most cases. These are encourag-
ing results, but more work needs to be done. We plan to employ new complex
domains and implement additional search methods.
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An empirical evaluation of a metric index for
approximate string matching

Bilegsaikhan Naidan and Magnus Lie Hetland

Abstract

In this paper, we evaluate a metric index for the approximate string
matching problem based on suffix trees, proposed by Gonzalo Navarro
and Edgar Chávez [9]. Suffix trees are used during the index construction
to generate intermediate data (pivot table) that to be indexed and the
query processing. One of the main problems with suffix trees is their
space requirements. To address this, we proposed as an alternative a
linear-time algorithm that simulates suffix trees in the suffix arrays.
The proposed algorithm is more space-efficient and is more suited for
disk-based implementation. Even so, experimental results on two real-
world data sets show that the metric index is beaten by straightforward,
slightly enhanced linear scan.

1 Introduction
Approximate string matching is crucial for many modern applications, such as in
computational biology. The main goal of this problem is to find all the occurences
of a given query string in a large string permitting a given amount of error in the
matching.

Nowadays, the metric space model is becoming a favored approach for solving
many approximate or distance-based search problems. Given a metric d over a
universe U, and a data set D ⊂ U, the task is to quickly retrieve the objects
in D that are within a given search radius (or the k nearest neighbors) of some
query q ∈ U according to the metric d. For strings, a metric d can be the edit
distance (or Levenstein distance), which gives the minimum number of insertions,
deletions, and replacements required to transform one string into another. The
edit distance between strings x and y can be computed in O(|x| · |y|) time and
O(min(|x|, |y|)) space. Several approaches [8] have been proposed to improve the
efficiency of approximate string matching. However, most of these approaches are
only focused on short string matching. In DNA sequences, it is necessary to align
long queries in a large sequence. For more details on various approaches to DNA
sequence alignment, see the recent survey by Li and Homer [7] and the comparative
analysis by Ruffalo et al. [10].

Gonzalo Navarro et al. [9] proposed a metric indexing structure for approximate
string matching based on suffix trees. According to Kurtz [6], improved implemen-

This paper was presented at the NIK-2012 conference; see http://www.nik.no/.



tations of linear-time suffix tree construction algorithm require 20 times more space
than the input string in the worst case. For instance, the human genome is about
3GiB of symbols and its suffix tree requires about 60GiB space. Thus it may not
fit in the main memory of many systems. Also, disk-based implementation of suffix
trees is not straightforward. A more space-efficient data structure is the suffix array.
To summarize, the main contributions of this paper are outlined as follows:

• We propose a more efficient algorithm that simulates the index construction
process, using suffix arrays.

• We have conducted experiments evaluating the metric index structure,
providing empirical results. (The original authors provided only theoretical
results.)

The remainder of this paper is organized as follows. In Section 2, some notation
and preliminary definitions are given. Section 3 presents the original version of
the metric index while Section 4 describes our algorithm. Experimental results are
provided in Section 5 and finally Section 6 concludes the paper.

2 Preliminaries
In this section we introduce some notation and definitions that are used in the rest
of the paper.

Let Σ be a finite ordered alphabet and let S be a string over Σ. We assume that
S ends with a special end symbol $ that is not included in Σ and lexicographically
ordered before any symbol in Σ. The length of S is denoted by n = |S|. A substring
S[i . . . j] of S starts at position i and ends at position j (0 ≤ i ≤ j < n). For
simplicity, we let S[i] denote S[i . . . n− 1] (0 ≤ i < n).

The suffix tree T for S is a tree that compactly represents all the suffixes of S
and has exactly n leaves. The leaves contain unique integers in the range [0, n− 1]
that indicate the starting positions of the suffixes. Each edge of the tree is labeled
with a substring of S, so that the concatenated edge labels on a path from root to
leaf form the suffix represented by the given leaf node. An example of a suffix tree
for string “mississippi$” is shown in Figure 1a. For more detailed explanation see
book by Gusfield [3].
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Figure 1: Illustrations of a suffix tree for string “mississippi$” (a) a suffix array for
the same string and its lcp array (b).

The suffix array sa is an integer array which contains the starting positions of
lexicographically ordered suffixes of S. The longest common prefix array lcp is an



array of integers in which lcp[0] is initialized to 0 and lcp[i] indicates the length of
the common prefix of S[sa[i]] and S[sa[i − 1]], for 1 ≤ i < n. Figure 1b shows an
example of a suffix and a lcp array for string “mississippi$”. The average value of
lcp will be O(log n) [1].

We use the notation x[y] from the original work by Navarro et al. [9], which
represents the group of substrings {xy1, xy1y2, ..., xy} on an explicit node of suffix
tree, where the current node’s parent corresponds to the string x and the label of
current node corresponds to the string y. For instance, the explicit internal node i(2)
in Figure 1a represents the strings “i[ssi]” = {“is”, “iss”, “issi”} and the external
node e(8) represents the strings “p[pi]” = {“pp”, “ppi”}. Let I be the set of all
the strings of explicit internal nodes of T . For the string “mississippi$”, I is {“[i]”,
“i[ssi]”, “[p]”, “[s]”, “s[i]”, “s[si]”}. Let E be a set of all the strings of external
nodes of T . Let E∗ be E \ I. For the string “mississippi$”, the substring “[i]”
of i(1) is already in I, and thus “i” of e(10) is not included in E∗. Therefore, E∗

is {“$”, “i[ppi]”, “issi[ppi]”, “issi[ssippi]”, “[mississippi]”, “p[i]”, “p[pi]”, “si[ppi]”,
“si[ssippi]”, “ssi[ppi]”, “ssi[ssippi]”}.

3 The metric index
As can be seen in Section 1, some distance functions (e.g., the edit distance) are
computationally expensive and to answer similarity queries by performing a linear
scan on large data sets is impractical. Thus we usually build an index structure over
the data set to reduce the overall query processing costs by exploiting the triangle
inequality.

Most metric indexing methods are based on a filter-refine principle. One
important example is so-called pivot-based methods, where a set of reference
objects (the pivots) are selected from the dataset, and the distances to these form
coordinates in a pivot space. In other words, the objects of the original space are
embedded into the pivot space by computing the distances between pivots and
those objects. Some of these distances are stored to reduce the number of distance
computations during query processing. As the number of pivot increases, query
processing in the pivot space becomes expensive. We note that query processing
in the transformed space should be cheaper than the original one, otherwise, this
entire effort is useless. In the filtration step, objects that can not qualify as relevant
to a query are filtered out by establishing lower bounds of the real distances; this is
done by using the pre-computed distances together with the query-pivot distances
and the triangle inequality. If the lower bound is greater than the query radius the
object can safely be filtered out. In the refinement step, the real distances between
the query and the candidate objects obtained from the previous step are computed,
and the objects that qualify as relevant reported.

A näıve approach of metric indexing for S is to build an object-pivot distance
table over all the O(n2) substrings of S, which is unacceptable for large strings.
Thus, Navarro et al. [9] proposed an indexing algorithm that uses suffix trees during
index construction and query processing. With suffix trees, we collapse all the O(n2)
substrings of S into the O(n) strings of explicit suffix tree nodes (i.e., {I ∪ E∗}) as
well as speeding up the computation of the edit distance between pivots and {I∪E∗}
by traversing the tree in a depth-first manner. The general schema of the metric
index is given in Figure 2.

We introduce the term last split point of x[y] to refer to the starting position of



GTGTCCTTAGTCCTGGCTGGGA
TGCAGATGAGATGCAAAAGGT
GGAGCAGCCATGTTGTCATCA
GTCCAGTTTTCTATAACTTTCG
GCCAGATATAACCCTAAATTG
ACAAAGGGGGCAAGTGCTTAA
CTCAAGACCAGCCTGGCCAAC
GTGGTGAAACCCCATCTCTACT
AAAAATACAAAAATTAGCCAA
GTCCAGTTTTCTATAACTTTCG
GCCAGATATAACCCTAAATTG
ACAAAGGGGGCAAGTGCTTAA
CTCAAGACCAGCCTGGCCAAC
GTGGTGAAACCCCATCTCTACT
AAAAATACAAAAATTAGCCAG
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[18, 23]   [20, 23]   [18, 20]
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… … ...

Data Pivot Pivot table
Multi-dimensional 

index structure
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Figure 2: General schema of the metric index.

y in x[y] (i.e., |x|). We now briefly describe the metric index.
First, a suffix tree T is built over S and a set of D pivots {P1, . . . , PD} selected

from S. The pivot table is filled by columns as follows. For each pivot Pi,
the algorithm traverses the suffix tree T in a depth first manner by filling the
edit distance matrix row-wise and computing the minimum (mind) and maximum
(maxd) distances between Pi and all the strings of {I ∪E∗}. We note that mind and
maxd distances for a string of {I∪E∗} are computed from the last split point of that
string not from its beginning. For instance, the last split point of string “ssi[ssippi]”
is 3 therefore we start considering mind and maxd from the position 3. Let N be
an internal node of T and x be a substring of S which is obtained by visiting the
nodes from the root to N by combining the labels of that path. Let us assume that
the traversal algorithm has reached N . Then the overall costs for the computations
of the edit distance between Pi and any child node of N can be reduced. Since they
share same prefix (i.e., x) and the distance matrix values already filled up to N .
Thus those distance values can be used for the distance computation for any child
node of N .

For each string of I, we compute mind and maxd while for each string x[y] of
E , we compute only mind and set maxd as max (|x[y]|, |Pi|) because y can be very
long. Let us assume that we have processed the string xy1 . . . yj of xy by using a
matrix ed0...|xy1...yj |,0...|Pi| and let vj be min1≤j′≤jed|x|+j′,Pi

. The distance computation
for mind is early terminated at row j′′ (j < j′′ < n) if the following condition holds:

|x|+ j′′ − |Pi| > vj (1)

This is because d(xy1 . . . yj′′ , Pi) ≥ |x|+j′′−|Pi| > vj. Let us consider an example
of computing mind and maxd between the pivot “sip” and strings “[i]”, “i[ssi]” and
“issi[ssippi]”. The example is illustrated in Figure 3. For “issi[ssippi]”, we stop the
process after the sixth row due to the early termination condition (1). Thus mind
and maxd between the pivot and strings “[i]”, “i[ssi]”, “issi[ssippi]” are [2, 2], [2, 3]
and [3, 10], respectively.

After the traversal of each pivot in P , we have a D-dimensional hyperrectangle
with coordinates [[mindx[y],P1 ,maxdx[y],P1 ], . . . , [mindx[y],PD

,maxdx[y],PD
]] for each

string x[y] in {I ∪ E∗}. Once we obtain the pivot table we can use any
multidimensional index structure such as R-trees [4] to index it.

A query q with a radius r is resolved as follows. First, we compute
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Figure 3: Examples of computations of the edit distance between pivot “sip” and
strings “[i]” (a), “i[ssi]” (b) and “issi[ssippi]” (c). The values for mind and maxd
are taken from the numbers in gray area. In the last figure, the last four numbers
in bold listed after the termination point are not neccessary to be computed due to
the condition 1.

distances between P and q to obtain a D-dimensional vector with coordinate
[d(q, P1), . . . , d(q, PD)]. With this vector, we define a query hyperrectangle with
coordinates [[l1, h1], . . . , [lD, hD]], where li = d(q, Pi) − r and hi = d(q, Pi) + r
(1 ≤ i ≤ D). The filtration of a string x[y] can be done by using any pivot Pi

(1 ≤ i ≤ D) if at least one of li > maxdx[y],pi or hi < mindx[y],pi holds, because
d(q, xy′) > r then holds for any xy′ ∈ x[y]. Informally, a candidate set consists of all
the objects of {I ∪ E∗} whose hyperrectangles intersect the query hyperrectangle.
In the refinement step, the candidate objects obtained from the previous step are
checked against q with the suffix tree. For each candidate object x[y], we may
compute the edit distance between q and every prefix of x several times. In order
to avoid this redundant work, we first mark every node in the path that represents
every candidate object. After that, we traverse the suffix tree again, computing the
edit distance between q and strings of those marked nodes of the suffix tree in the
same way that we used in the pivot table construction. If x[y] is part of the result
set for q (i.e., d(q, x[y]) ≤ r), we report all the starting points in the leaves of the
subtree rooted by the node that represents x[y].

4 Our algorithm
In the construction phase of the metric index, the replacement of the suffix tree
with a suffix array leads to a new problem: finding all the substrings of explicit
internal nodes of the suffix tree in the suffix array. Because suffix arrays do not
have any hierarchical information that suffix trees have, these substrings are not
readily available. However, by using some auxiliary information, we can deal with
this problem without increasing the asymptotic running time. Our algorithm is
based on the following two simple observations. First, all the paths through a node
will be adjacent in the suffix array. Thus all split points (i.e., all nodes of I) can be
detected by examining all the adjacent pairs of the suffix array by analyzing their lcp
values. For instance, the string “i[ssi]” of i(2) is detected with the strings “issi[ppi]”
of e(3) and “issi[ssippi]” of e(4). The corresponding lcp value of e(4) in the lcp
array is 4, therefore we selected the prefix “issi” of e(3). Second, even with suffix
trees we still need O(max (lcp) ·max (|Pi|)) additional space in the worst case for a
matrix that is used during computations of the edit distance between {I ∪ E∗} and
P , because the distance values computed earlier are required in backtracking and



visiting other nodes of the suffix tree. Thus the mind and maxd of explicit internal
node can be obtained from the matrix when the traversal algorithm is visiting a
node or backtracking.

Algorithm 1 outlines the simplest version of our algorithm that generates all the
equivalent strings of {I ∪ E∗} of T for S. There are at most n− 1 explicit internal
nodes in T . Thus, the algorithm generates at most O(2n) non-empty substrings of
S. In the pseudocode, we use the standard stack operations such as push() (which
adds a new element to the top of the stack), pop() (which removes an element from
the top of the stack) and top() (which returns an element at the top of the stack).
First, a stack seen is initialized in line 1. For any iteration i of the for-loop, any
element e of seen represents that we have seen the internal node represented by the
prefix of length e of S[sa[i]]. In line 6, the condition seen.top() > next means that
the algorithm needs backtracking. Thus, we need to pop out those positions greater
than next from seen, because we check a different prefix with same length in the
next time. However, the top element of seen that equals to next is not popped out,
because that information is used in line 7 to check whether a node has been reported
before. Also, the condition next �= 0 ensures that we are not back to the root. The
strings for I are reported in line 9. In line 10, each element of the suffix array is
reported as an external node of E∗, unless it has already been reported as explicit
internal. Those nodes would be adjacent, so we only need to check the lengths of
their strings.

Algorithm 1: Generate all the strings of {I ∪ E∗}

1: initialize a stack seen
2: for i = 1 to n do
3: cur ← lcp[i];next ← 0
4: if i+ 1 ≤ n then
5: next ← lcp[i+ 1]
6: while seen �= ∅ and seen.top() > next do seen.pop()
7: if next �= 0 and (seen = ∅ or seen.top() < next) then
8: seen.push(next)
9: report S[sa[i],next ]

10: if next �= n− sa[i] then
11: report S[sa[i]]

Algorithm 1 has a running time complexity of O(n). (The running time of the
algorithm is equal to the number of times seen.pop() in line 6 is executed, and in
line 8, seen.push() is executed at most n− 1 times.)

We need two auxiliary arrays for filling up the pivot table columns with mind
and maxd. The last split point of any string of E∗ is defined by the maximum values
of the current and next lcp while the last split point (sp) of any string of I is defined
as follows. We can not direclty assign the lcp values to sp while detecting the nodes,
because we may not obtain explicit internal nodes in depth-first traversal order of
suffix tree nodes (for example, in our example i(4) is reported after i(5)). Thus we
maintain a stack that stores pairs of sp indexes and lcp values. The values of sp are
assigned when we backtrack and select as the maximum value of the top element’s
lcp and the next lcp. The suffix array index si for an explicit internal node is an
array of integers in which an element si [i] indicates a smallest index of the suffix
array where the string of the current explicit internal node is identical to the prefix



of S[sa[i]] (0 ≤ i ≤ n). This array is used during query processing. Now we modify
algorithm 1 to generate the arrays of sp (Algorithm 2) and si (Algorithm 3) and to
construct the pivot table (Algorithm 4). In Algorithm 4, the variable row points
the last row in the matrix ed that has processed. We report mind and maxd and
the suffix array indexes for each string in {I ∪ E∗}.1

Sample runs of Algorithm 1, 2, 3 for string “mississippi$” are illustrated in
Figure 4. Algorithm 1 produces the strings of {I ∪ E∗} exactly in the same order
that is shown the figure.

i sa[i] lcp[i] E∗

0 11 0

1 10 0

2 7 1 i[ppi]

3 4 1 issi[ppi]

4 1 4 issi[ssippi]

5 0 0 [mississippi]

6 9 0 p[i]

7 8 1 p[pi]

8 6 0 si[ppi]

9 3 2 si[ssippi]

10 5 1 ssi[ppi]

11 2 3 ssi[ssippi]

(a)

internal node I sp[i] si[i]

i(1) [i] 0 1

i(2) i[ssi] 1 3

i(3) [p] 0 6

i(5) s[i] 1 8

i(4) [s] 0 8

i(6) s[si] 1 10

(b)

Figure 4: Example runs of the algorithms for string “mississippi$”. The strings of
E∗ (a) and the strings of I and the split points and the suffix array indexes for the
strings of I (b).

The main principle of query processing for our approach is almost the same as
in the original version. The only difference is that we mark the indexes of the suffix
array instead of suffix tree nodes. Let us assume that we have processed a row k
of the matrix for a candidate object. If the candidate is the result of a query at
this time, the candidate is reported and we directly report those objects after the
candidate object in the suffix array in contiguous order such that their lcp values
are greater than or equal to k.

5 Experiments
In this section we provide experimental results. We are particularly interested in
answering the following questions:

• How expensive is our simulation algorithm in terms of running time and
memory requirement?

• What is the effect of varying the number of pivots?

• How does the performance of the metric index with mind and maxd compare
to the one with only mind?

• How does the metric index work in practice?

• What are the main problem with the metric index, if any?

1In the pseudocode, the expression (cond ? expr1 : expr2) evaluates to expr1 if cond is true,
and to expr2, otherwise. Also, we let a i denote an element at position |a| − 1− i of the array a
(0 ≤ i < |a|).



Experiment Settings
First, we implemented our algorithm with full of indexing and query processing. For
the original suffix tree based version, we implemented only the pivot table generation
part (i.e., not query processing). We used two real-world datasets, namely DNA and
protein datasets, which were obtained from the Pizza & Chilli corpus [2] and used a
10MiB prefix of the datasets. The total number of objects (we recall that the size of
{I ∪E∗} is less than 2n) to be indexed was 17 508 956 for DNA while for the protein
data set the number was 17 341 406. The length of pivot and query was 35. Our
query set consisted of 1000 queries, which were selected randomly from the datasets.
For each query, we intentionally introduced 0–3 errors at random. We performed
range searches with query radii varying from 0 to 3. The results were averaged over
10 runs. We did not use any compression algorithm during the construction of the
index. For indexing the hyperrectangles, we used the R-tree implementation from
the spatial index library [5]2. All the programs were compiled by gcc 4.6.2 with the
-O3 option and were run on a PC with a 3.3GHz Intel Core i5-2500 processor and
8GiB RAM. After testing several pivot selection algorithms, where none was clearly
better than the others, we decided to use pivots that were randomly selected from
the datasets.

Filtering effect of maxd and of number of pivot
Let MetricD be the metric index with only mind and MetricDD, the metric index
with mind and maxd. The numbers of pivots used were 10 (p=10) and 20 (p=20).
Figure 5 shows that the filtering effect of varying the number of pivot and MetricD
versus MetricDD on various datasets.
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Figure 5: The percentage of candidates left after pivot filtration.

The experiments show that MetricDD filters out slightly more of the unpromising
objects than MetricD. However, the difference is not really significant. It is also
worth mentioning that MetricDD requires twice as much memory as MetricD.

Comparison of our simulation algorithm with the original one
We compared our simulation algorithm against the original one in terms of total
memory and time required to generate pivot table. By total memory we mean
the memory required to build a suffix tree for the original version while for our
algorithm, we mean the sum of sa, sp, si and stacks and arrays that were used
during the simulation. The comparison is shown in Table 1. The auxiliary arrays
sp and si were generated in 0.19 s for both of the datasets.

2This implementation is commonly used in many papers of the database community



Our simulation algorithm The original algorithm

Total p=10 p=20 Total p=10 p=20

Dataset Mem. (MiB) Time (s) Time (s) Mem. (MiB) Time (s) Time (s)

DNA 169 376 755 551 394 787

Protein 169 935 1844 545 937 1872

Table 1: Comparison of total memory and pivot table construction time.

Table 1 shows that our algorithm performs better than the original version in all
of the experiments. We note that auxiliary arrays sp and si are not needed anymore
after the pivot table construction.

Query response time
To decide on a multidimensional index structure to use in our experiments, we
compared the performance of linear scan and R-tree on a pivot table with mind and
maxd which was generated for 10 pivots. The R-tree was built over the pivot table.
We set the query radius to 0 and measured the total time to answer a query set and
required disk space. The results are shown in Table 2.

Linear scan R-tree

Dataset Time (s) Disk space (MiB) Time (s) Disk space (MiB)

DNA 970 1967 4799 5291

Protein 1368 2058 5681 5250

Table 2: Comparison of linear scan and R-tree on pivot table.

Table 2 shows that the linear scan outperforms the R-tree on the pivot table. In
light of this, the linear scan is used as the multidimensional index part of the metric
index.

As a baseline competitor for the metric index, we used an enhanced linear scan.
We performed a linear scan using the suffix and longest common prefix arrays to
speed up the computations of the edit distance between query and suffixes. Figure 6
shows the comparison of query execution time for both indexes.

The experiments show that the metric index was beaten the enhanced linear scan
by several order of magnitude. The reason for this bad performance of the metric
index is due to the filtration step (we discussed about the space transformation in
the second paragraph of Section 3). We divided query set execution time for each
of filtration and refine steps. Then we converted them in the scale of 100% and the
results are presented in Figure 7.

The figures show that the filtration step took most of the query execution time.
Because of this filtration effect, we did not compare our method to the original one in
terms of search time. The distance distribution histograms for mind of both pivot
tables are shown in Figure 8. We see that the distances are highly concentrated
between 13 to 23 for DNA and 22 to 27 for protein data set.
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Figure 6: Comparison of query set execution time between the metric index and the
enhanced linear scan.
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Figure 7: The percentage of filtration and refine steps in the query set execution
time.

The histograms show that all the hyperrectangles more or less coincide. The
minds of the query object are also in this highly concentrated region. Because of this
issue, the query hyperrectangle intersects with almost every indexed hyperrectangle.
Thus the multidimensional search algorithm fails.

6 Conclusions
The primary goal of this paper was to empirically evaluate the metric index for
approximate string matching based on suffix trees, introduced by Navarro et al. [9],
as their original paper contained only theoretical results. In order to give the
method a fair chance, we have proposed improvements that would reduce its memory
consumption. We achieved this by simulating the index construction process using
suffix arrays. Even with this improvement, though, our experiments on two real-
data sets show that the metric index is impractical for real-world use, as it was
clearly beaten by an enhanced version of a linear scan.
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the distance values between 0 to 40 on X-axis.
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Appendix

Algorithm 2: Generate all the last split points for the strings of I

1: initialize a stack seen
2: initialize a stack s that can store a pair of (lcp, pos)
3: for i = 1 to n− 1 do
4: cur ← lcp[i];next ← lcp[i+ 1]
5: while s �= ∅ and s.top().lcp > next do
6: c = s.pop().pos
7: sp[c] ← s = ∅ ? next : max(next , s.top().lcp)
8: while seen �= ∅ and seen.top() > next do seen.pop()
9: if next �= 0 and (seen = ∅ or seen.top() < next) then

10: seen.push(next)
11: s.push(next , i)
12: while s �= ∅ do
13: c = s.pop().pos
14: sp[c] ← (s = ∅) ? 0 : s.top().lcp

Algorithm 3: Generate all the suffix array indexes for the strings of I

1: initialize a stack seen
2: initialize an array a that can store a pair of (lcp, idx )
3: for i = 1 to n− 1 do
4: cur ← lcp[i];next ← lcp[i+ 1]
5: if |a| = 0 then
6: a.PushBack((next , i))
7: else if a−1.lcp = 0 then
8: a−1 ← (next , i)
9: else if a−1.lcp < next then

10: a.PushBack((next , i))
11: else
12: a−1.lcp ← next
13: while |a| ≥ 2 and a−2.lcp > a−1.lcp do
14: a−2.lcp ← a−1.lcp
15: a.PopBack()
16: while seen �= ∅ and seen.top() > next do seen.pop()
17: if next �= 0 and (seen = ∅ or seen.top() < next) then
18: seen.push(next)
19: si [i] ← a−1.idx



Algorithm 4: Generate a pivot table column for a pivot p

1: initialize a stack seen
2: initialize a two dimensional array ed
3: row ← 0
4: for i = 1 to n do
5: cur ← lcp[i];next ← 0
6: if i+ 1 ≤ n then
7: next ← lcp[i+ 1]
8: while seen �= ∅ and seen.top() > next do seen.pop()
9: if next �= 0 and (seen = ∅ or seen.top() < next) then

10: seen.push(next)
11: if row + 1 ≤ next then
12: compute d(S[row + 1 . . . next ], p)
13: row ← next
14: (mind ,maxd) ← (min,max ){ed [sp[i] + 1 . . . next ][|p|]}
15: report mind ,maxd , si [i]
16: if next �= n− sa[i] then
17: compute d(S[row + 1 . . . n− sa[i]], p) and let us assume that we are processing a

row k (row +1 ≤ k ≤ n− sa[i]) and then mind ← min{ed [row +1 . . . k][|p|]} and
early terminate the distance computation if the condition 1 holds

18: row ← (early terminated) ? k : n− sa[i]
19: row ← min(row ,next)
20: report mind , max (n− sa[i], |p|), i
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