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Abstract
The concept of closed containment fish cages is promising when coping with sea lice and
escaped fish challenges in the aquaculture industry. Unlike the traditional open net cages,
the external flow caused by current and waves has to flow entirely around the fully closed
walls. Hence, the importance to consider the hydrodynamic loads, as well as the behavior of
the disturbed flow.

In the present study, a closed containment fish cage has been simplified as a (LR = L/D
= 4/3) prolate spheroid. The model is assumed fully submerged in a steady current, and
oriented with its major axis normal to the incoming flow. The flow has been simulated nu-
merically by a finite volume method in the software OpenFOAM for five different Reynolds
numbers, Re = 100, 200, 250, 300 and 500. The resulting pressure, velocity and vorticity
fields are presented using various visualization techniques, whereas quantities related to hy-
drodynamic force coefficients, separation and vortex shedding frequencies are computed. Due
to the low aspect ratio, the main goal of the present study was to relate the present results
to flow features appearing in the wake of a sphere.

For the two lowest Reynolds numbers Re = 100 and 200, the flow was found to be steady
and symmetric in the major plane. At the former Re, a similar planar symmetry aligned
with the minor plane of the prolate spheroid was observed. The flow separates and rejoins a
certain distance downstream. A maximum separation length equal to Ls = 1.26D and 1.75D
was obtained for Re = 100 and 200, respectively.

An unsteady wake flow was apparent for Reynolds numbers Re ≥ 250, with consequent
oscillating hydrodynamic forces. At Re = 250, a pair of counter-rotating vortices were found
to twist around each other as they propagate downstream. The most striking discovery,
relating the present results to the flow around a sphere, is the periodic shedding of hairpin-
shaped vortices of constant orientation, at Re = 300. The topology of the vortical structures,
as well as the associated shedding frequency, were found to coincide with the results of a
sphere. A planar symmetry is evident and aligned with the major axis of the LR = 4/3
prolate spheroid. As a Reynolds number of Re = 500 is reached, the symmetry features of
the wake are lost. Unlike the vortex structures of fixed orientation at Re = 300, the present
visualizations at Re = 500 revealed a chaotic wake of alternately shed vortices. The dominant
shedding frequency in terms of Strouhal number, St = 0.137 and 0.183, were found for Re
= 300 and 500, respectively.

The resemblance between the results of the LR = 4/3 prolate spheroid and the sphere
was found to be strong concerning hydrodynamic force coefficients and separation. At Re =
300 an averaged drag and lift coefficient of C ′

D = 0.664 and C ′
L = 0.052 were computed after

the flow had reached a steady state. For increasing Re, the point of separation was found to
move upstream. The separation angle from the front stagnation point in the middle minor
plane decreased from 121◦ at Re = 100 to 103◦ at Re = 500.

The outline of the wake 1D behind the prolate spheroid was found to maintain its pro-
jected area at all Re. However, at the two highest tested Reynolds numbers, the major axis
of the wake was found to rotate and align with the minor axis of the prolate spheroid, some-
where between 4D and 7D downstream. A comparable axis switching phenomenon has been
reported for similar asymmetric bodies as a LR = 6 prolate spheroid and LR = 3 elliptic disk.

Therefore, the present results indicate that flow features appearing in the wake of a
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sphere are maintained for the low aspect ratio (LR = 4/3) prolate spheroid, at the tested Re.
However, the presence of an asymmetric cross-section is seen to introduce similarities toward
results of higher aspect ratio bluff bodies.

For further work, it is recommended to increase the practical relevance of the numerical
simulations. This may be done by increasing the Reynolds number to simulate turbulent
flow or change the boundary conditions to introduce e.g. a free surface or a shallow water
condition.
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Sammendrag
Lukkede oppdrettsanlegg er et lovende konsept for å takle utfordringer innen akvakultur,
relatert til lakselus og rømming av fisk. I motsetning til tradisjonelle åpne notposer må innk-
ommende bølger og undervannsstrømninger strømme fullstendig rundt de lukkede veggene.
Derav viktigheten av å betrakte de hydrodynamiske kreftene og kjølvannets oppførsel.

I dette studiet har et kjent lukket opprdrettsanlegg blitt forenklet som en prolat sfæroide
med lengde/bredde-forhold LR = 4/3. Modellen er totalt nedsenket i en jevn vannstrøm, og
med den lengste aksen plassert perpendikulært i forhold til den innkommende strømningen.
Numeriske simuleringer har blitt gjennomført i programvaren OpenFOAM, ved fem forskjel-
lige Reynoldstall, henholdsvis Re = 100, 200, 250, 300 og 500. Resulterende trykk, hastighet
og vortisitet er visualisert ved hjelp av respektive metoder, mens hydrodynamiske koeff-
isienter, separasjonpunkt og virvelavløsningsfrekvens er gitt som tallsvar. Hovedm̊alet med
studiet har vært å relatere resultatene fra en prolat sfæroide med lavt aspektforhold med
resultatene til en sfære.

For de to laveste Reynoldstallene Re = 100 og 200 ble det funnet et stabilt og stasjonært
strømningsbilde med et symmetriplan parallelt med sfæroidens lengste akse. Ved det laveste
Reynoldstallet Re = 100 var strømningsbildet ogs̊a symmetrisk langs den korteste aksen.
Strømnigen rundt sfæroiden separeres fra overflaten og møtes igjen i kjølvannet. Den største
avstanden fra bakenden av legemet til der den separerte strømningen gjenforenes ble funnet
lik 1.26D og 1.75D for henholdsvis Re = 100 og 200.

Fra og med Reynoldstall 250 ble det observert en ustabil strømning i kjølvannet som
resulterte i en oscillerende løft- og dragkraft p̊a legemet. Ved Re = 250 dannes et par
kontraroterende virvler i kjølvannet som vrir seg om hverandre etterhvert som de beveger
seg nedstrøms. Den mest oppsynsvekkende oppdagelsen som relaterer studiets resultater
til strømningen rundt en sfære, er dannelsen av en periodisk virvelavløsning, best̊aende av
h̊arn̊alformede virvler med konstant retning ved Re = 300. B̊ade formen til virvelstrukturene
og virvelavløsningsfrekvensen sammenfaller med resultatene til en sfære. Ved dette Reynold-
stallet er et symmetriplan synlig i kjølvannet, og p̊a linje med den største aksen til sfæroiden.
Ved det høyeste Reynoldstallet Re = 500 ble et langt mer uryddig kjølvann observert med
ingen synlig symmetri og en virvelavløsning av varierende retning, i motsetning til de kon-
stante virvelstrukturene ved Re = 300. Virvelavløsningsfrekvensen ved Re = 300 og 500 ble
funnet til henholdsvis St = 0.137 og 0.183.

Resultatene av en LR = 4/3 prolat sfæroide og en sfære viste en klar likhet ved de
kalkulerte hydrodynamiske kreftene og separasjonspunktene ved de testede Reynoldstallene.
Ved Re = 300 ble en gjennomsnittlig drag- og løftkoeffisient funnet til C ′

D = 0.664 og C
′
L

= 0.052, utregnet etter at strømningen hadde blitt periodisk. For et økende Reynoldstall
ble separasjonspunktet om sfæroiden funnet å bevege seg oppstrøms. Vinkelen mellom det
fremre stagnasjonspunktet og separasjonspunktet avtok fra 121◦ ved Re = 100 til 103◦ ved
Re = 500.

Omrisset av kjølvannet lokalisert 1D nedstrøms var lik det projiserte tverrsnittet av
sfæroiden for alle Re. For de to høyeste Reynoldstallene ble imidlertid den lengste aksen
til omrisset av kjølvannet rotert slik at den ble parallel med den korteste aksen til sfæroiden,
et sted mellom 4D og 7D nedstrøms. Et tilsvarende akseskift er funnet for lignende asym-
metriske legemer som en LR = 6 prolat sfæroide og en LR = 3 elliptisk plate.
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Derfor er det konkludert at flere av egenskapene til strømningen rundt en kule er ivaretatt
for en (LR = 4/3) prolat sfæroide med lavt aspektforhold ved de testede Reynoldstallene.
Samtidig vil det asymmetriske tverrsnittet til sfæroiden føre til likheter sammenlignet med
legemer av høyere aspektforhold.

For videre arbeid er det anbefalt å øke den praktiske tilnærmingen til de numeriske simu-
leringene. Dette kan eksempelvis gjøres ved å simulere turbulent strømning, eller ved å endre
randbetingelsene slik at en fri-væskeoverflate eller grunt vann simuleres.
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Chapter 1

Introduction

1.1 Motivation and Background
Along with the increase in computational power, the numerical simulation of fluid flow has
become a necessary tool in engineering design. Typical applications in marine technology
have been in the design of bluff body structures. According to Zdravkovich (1997), a bluff
body can be defined as a body that, from the result of its shape, separates the flow and
develops similar flow structures in the regions of disturbed flow. The two most commonly
studied bluff bodies are the sphere and the circular cylinder, which are frequently encountered
in industry. For instance, cylinders as risers connecting the oil reservoir to the top side,
submarine pipelines with a free span, subsea installations and the hull of platforms in the
offshore oil industry. As well as the fish nets in marine aquaculture, consisting of twines and
knots, simulated as cylinders connected by spheres having the shape of a cross (cruciform
model). The most important flow feature appearing in the wake of bluff bodies is the vortex
shedding phenomenon (Sumer and Fredsøe, 1997), which induces oscillating forces. These
forces may excite vortex induced vibrations (VIV), which are crucial to include in the design
considerations.

1.1.1 Salmon Farming in Norway
According to The Norwegian Ministry of Trade and Fisheries (2014), the aquaculture indus-
try in Norway has turned into an industry of great importance, ever since its commercial
advent in the 1970s. The numerous fjords of cold and fresh seawater have ensured excellent
conditions for inshore aquaculture. From years of production growth, Norway has become
the leading producer of Atlantic salmon worldwide (The Norwegian Ministry of Trade and
Fisheries, 2014). However, the Norwegian fish farmers are currently facing a range of chal-
lenges. Environmental concerns such as sea lice and escaped fish are threatening a sustainable
growth of the industry. Therefore, the Government has decided temporarily not to grant new
aquaculture licenses for salmon farming. Instead, in 2015, development concessions were in-
troduced, providing new and promising concepts an opportunity to be put to use. According
to the Norwegian Minister of Fisheries, from his 2016 speech at Danske Bank Seafood Semi-
nar, the introduction of development concessions has to lead to a wave of innovation through
the industry (Sandberg, 2016).

1
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Figure 1.1: Numerical model simplification. (left image) Closed cage fish farm by Hauge Aqua
(2016); (right image) computational mesh in Mega.

One of the new and possible solutions to cope with the challenges in marine aquaculture
is to build fish cages with fully closed walls. One concept that has raised much attention
is ”The Egg” developed by Hauge Aqua. In 2016, Marine Harvest and Hauge Aqua signed
a joint venture contract for development and testing of the concept (Hauge Aqua, 2016).
Recently, it was announced that Marine Harvest has been granted four concessions, leading
to the commencement of the production of the concept (Hauge Aqua, 2016).

The shape of the fish cage is well described by its name, depicted in the left image of
figure 1.1. The overall height and width are supposed to be 44 m and 33 m, respectively,
with 90 percent of the structure submerged (Hauge Aqua, 2016). Due to the size and shape,
it is important to consider the hydrodynamic loads as well as the behavior of the disturbed
flow when the fish farm is exposed to current and waves. As shown in figure 1.1, the shape
of the fish cage is closely related to a sphere. However, with a major axis slightly longer than
the minor. Hence, the value of investigating whether or not the flow around the enclosed fish
farm behaves like that of a sphere, or if it resembles the flow features in the wake of higher
aspect ratio bluff bodies.

1.1.2 Flow Around a Circular Cylinder
The circular cylinder is one of the most studied body forms in hydrodynamics, and the flow
around it has been subject to a vast amount of numerical and experimental research. Based
on the value of the Reynolds number, the fluid motion around the cylinder can be divided
into several regimes. The Reynolds number represents the ratio between inertial and viscous
forces and is defined as:

Re = U0D

ν
= Finertial
Fviscous

(1.1)
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Figure 1.2: Regions of disturbed flow around a circular cylinder (Zdravkovich, 1997).

where U0 is the velocity of the undisturbed fluid flow, D is the cylinder diameter and ν is
the kinematic viscosity.

In the comprehensive guide through flow phenomena around bluff bodies of circular cross-
sections by Zdravkovich (1997), the author divides the disturbed flow into the four following
regions:

(i) one narrow region of retarded flow

(ii) two boundary layers attached to the surface of the cylinder

(iii) two side-wise regions of displaced and accelerated flow

(iv) one wide downstream region of separated flow called the wake

The regions of disturbed flow are illustrated in figure 1.2, where the velocity of the undis-
turbed flow is given by V0, and the local velocities by V . The first region (i) is a narrow
band of retarded flow upstream of the body, containing the stagnation point at the cylinder
surface. The no-slip condition gives rise to the second region (ii), which is boundary layers
around the cylinder, characterized by large velocity gradients. The boundary layers are at-
tached to the surface until an adverse pressure gradient occurs, and the flow separates from
the body. The third region (iii) contains the displaced and accelerated part of the disturbed
fluid flow. According to Zdravkovich (1997) this is the least explored region, and it is strongly
affected by the absence of walls in the vicinity of the cylinder, known as blockage effects.
The wake region (iv) is the most studied part of bluff body flows. The characteristic flow
features appearing in the wake are dependent on the Reynolds number, defining whether the
flow is laminar, turbulent or in a transition between the two states.

The following description of the flow features appearing in the wake of circular cylinders is
suggested by Sumer and Fredsøe (1997). The flow regimes varying with Reynolds number are
illustrated in figure 1.3. For Re < 5, there is no flow separation, and the flow is attached to
the surface over the entire circumference. Hence, no distinct wake region is formed. However,
as Re exceeds 5, the flow starts to separate, forming a pair of steady toroidal vortices, until
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Figure 1.3: Flow around a smooth, circular cylinder in steady current (Sumer and Fredsøe,
1997).

a Reynolds number of 40 is reached. As shown in figure 1.3(c), the wake turns unsteady and
forms a laminar vortex street for the Reynolds number range 40 < Re < 200. The street
of alternately shed vortices is commonly denoted as a Kármán vortex street. For this Re
range, the wake features are considered two-dimensional. However, as the Reynolds number
is further increased, the wake gradually turns chaotic, and spanwise variations occur. For
Re above approximately 200, the wake is considered to be three-dimensional, with vortices
shed in cells along the span of the cylinder (Sumer and Fredsøe, 1997). When Re > 300, the
wake is completely turbulent. However, the boundary layer at the cylinder surface remains
laminar for the entire subcritical flow regime, up to Re = 3 × 105, shown in figure 1.3(e).
For the supercritical and transcritical regions, in figures 1.3(f-i), the level of turbulence in
the boundary layer increases.

The alternating vortices for Re > 40 are shed with a certain frequency, dependent on the
Reynolds number. To present the shedding frequency as a function of Re, it is normalized by
the velocity of the undisturbed fluid flow U0, and the cylinder diameter D. The normalized
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Figure 1.4: Strouhal number over a range of Reynolds numbers for a circular cylinder (Sumer
and Fredsøe, 1997).

vortex-shedding frequency is given by the Strouhal number:

St = fvD

U0
(1.2)

where fv is the vortex-shedding frequency. Figure 1.4 shows how the Strouhal number varies
with Re, from the laminar vortex shedding, through subcritical, supercritical and up to the
transcritical flow regime. The shedding frequency, St, is approximately 0.1 when the vortex
shedding first appears. The Strouhal number will steadily increase when Re is increased and
attains a value of St ≈ 0.2 at the lower end of the subcritical flow regime, Re = 300. From
this value of Re, St will remain more or less constant throughout the subcritical range at the
value of 0.2 (Sumer and Fredsøe, 1997).

Mechanism of Vortex Shedding

For Reynolds numbers above 5, the boundary layer flow starts to separate from the cylinder
surface, due to an adverse pressure gradient as it approaches the rear part of the body.
Because of the strong velocity gradient in the boundary layer, vorticity is fed into the wake,
forming a shear layer in the downstream area, as seen in figure 1.5(a). Eventually, the shear
layer rolls up and forms a vortex which rotates in the same direction as the incoming vorticity
(Sumer and Fredsøe, 1997). Consequently, a vortex pair is formed, one on each side of the
cylinder, rotating in opposite directions.

For Re > 40 these vortices turn out to be unstable when exposed to small disturbances.
The wake becomes unsteady as a result of a so-called Hopf bifurcation. The disturbances
will make one vortex grow larger than the other, and eventually strong enough to draw the
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Figure 1.5: Mechanism of vortex shedding. (a) Shear layer; (b) prior to shedding of Vortex
A; (c) prior to shedding of Vortex B. Reproduced from Sumer and Fredsøe (1997).

opposite vortex across the wake. This scenario is outlined by Sumer and Fredsøe (1997)
and sketched in figure 1.5(b,c). The local pressure minimum caused by Vortex A pulls the
opposing Vortex B. Thus, the oppositely rotating Vortex B will cut off further supply of
vorticity from the boundary layer, and Vortex A will be shed. Figure 1.5(c) illustrates the
instant when Vortex A has propagated a distance downstream as a free vortex, and Vortex
B has grown strong enough to pull the new Vortex C. Consequently, Vortex B will be shed,
in a similar fashion as Vortex A. The described process will continue, with alternately shed
vortices, resulting in the characteristic Kármán vortex street.

1.1.3 Flow Around a Sphere
The flow around a sphere is relevant for a vast number of engineering applications, and
therefore a significant amount of research has been conducted. In this section, the numer-
ical findings by Johnson and Patel (1999); Tomboulides and Orszag (2000), as well as the
experimental flow visualization and hot-wire measurements by Sakamoto and Haniu (1990),
are used to present the flow features in the wake of a sphere. The different flow regimes
appearing for varying Reynolds number are presented in figure 1.6. The left column contains
schematic illustrations, whereas the right column presents experimental photos from the flow
visualization by Sakamoto and Haniu (1990).

From early experiments Taneda (1956) found that the flow around a sphere starts to
separate at Re ≈ 24, generating a steady axisymmetric vortex ring, with a cross-section
equal to the wake of a cylinder at 5 < Re < 40. According to Johnson and Patel (1999) and
Tomboulides and Orszag (2000), the steady and axial symmetric flow is maintained until a
Re ≈ 210 is reached. Although the axisymmetry is lost, the flow retains a planar symmetry.
For the approximate Reynolds number range between 210 and 270, the wake consists of two



CHAPTER 1. INTRODUCTION 7

Figure 1.6: Flow structures in the wake of a sphere. (left images) Schematic illustrations;
(right images) experimental photos (Sakamoto and Haniu, 1990).

counter-rotating streamwise vortices which extend far downstream of the sphere. The wake
steadiness for the mentioned Re range deviates from the experimental results of Sakamoto
and Haniu (1990). As depicted in figure 1.6(a), the authors observed an unsteady wavelike
wake with a very long period for 130 < Re < 300. However, all reviewed literature agrees
on an unsteady periodic flow as Re reaches 270 < Re < 300. From this Re onward the near-
wake vortex ring starts to oscillate, and the wake turns into hairpin-shaped vortices, forming
a ladder-like chain of overlapping loops. The characteristic hairpin vortices as well as the
planar symmetry, are illustrated by the upper view, in figure 1.6(b). A fascinating property
of the wake at this Re is the single-sided vortex shedding, which differs from the double-sided
shedding seen for the circular cylinder in figure 1.3(c). For increasing Reynolds number, the
planar symmetry and periodicity of the wake are lost at Re ≈ 420, depicted in figure 1.6(c).
The laminar vortices are shed until Re reaches about 800. When the Reynolds number is
further increased, the hairpin-shaped vortices start to change from laminar to turbulent with
an alternate orientation. This flow pattern continues to the upper critical Reynolds number
Re = 3.7×105 (Sakamoto and Haniu, 1990).

To provide a clear picture of the vortex structures, Tomboulides and Orszag (2000) com-
puted isosurfaces of constant streamwise vorticity ωx, in the wake of a sphere. The vorticity
vector (~ω = ωx~i+ωy~j +ωz~k) is mathematically defined as the curl of the velocity vector. As
stated by Çengel and Cimbala (2008), a non-zero vorticity at one point in a flow field means
that the particular flow particle is rotating. In Cartesian coordinates, the orientation and
magnitude of the rotating motion are defined as:
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Figure 1.7: Isosurface plots of streamwise vorticity in the wake of a sphere at Re = 300 (a,b)
and Re = 500 (c,d). (a,c) side view; (b,d) upper view. Reproduced from Tomboulides and
Orszag (2000).

~ω = ωx~i+ ωy~j + ωz~k =
(
∂w

∂y
− ∂v

∂z

)
~i+

(
∂u

∂z
− ∂w

∂x

)
~j +

(
∂v

∂x
− ∂u

∂y

)
~k (1.3)

where u, v and w are the velocity components in x, y and z−direction, respectively.
Figures 1.7(a,b) present orthogonal views of the streamwise vorticity at Re = 300. Cor-

responding to the side view and upper view of figure 1.6(b). The dark and light gray denote
positive and negative streamwise vorticity of the same magnitude. Hence, the shedding of
single-sided vortices with a plane of symmetry at Re = 300, seems to be in agreement with
the experimental results by Sakamoto and Haniu (1990). The vortex structures at Re = 500
in figures 1.7(c,d), suggest that the planar symmetry of the wake is lost, in accordance with
the previously reported loss of symmetry at Re ≈ 420 (Sakamoto and Haniu, 1990).

Figure 1.8 shows the resulting Strouhal number in the wake of a sphere for 300 < Re <
1.5× 104. When Re = 300 is reached, a Strouhal number of approximately St = 0.15 - 0.165
is given by the shedding frequency of the hairpin-shaped vortices. This Strouhal number
agrees well with the numerically obtained St = 0.136 and St = 0.137 of Tomboulides and
Orszag (2000) and Johnson and Patel (1999), respectively. A single frequency dominates the
wake until the Reynolds number reaches 800, and then the Strouhal number has increased to
about 0.2. For a further increase in Re from 800 to 1.5×104, a second frequency is observed.
Resulting in two Strouhal numbers, i.e., a low-frequency mode and a high-frequency mode.
Sakamoto and Haniu (1990) suggests that the low mode St is caused by the wave motion
of the wake due to the alternately shed vortices. This wave motion is easily observed in
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Figure 1.8: Dominant frequencies in the wake of a sphere (Sakamoto and Haniu, 1990).

the experimental photo of figure 1.6(d). The higher frequency mode St is hard to detect
from the flow visualization. However, Sakamoto and Haniu (1990) states that, ”The higher
mode is caused by the periodic fluctuation in the vortex tube formed by the pulsation of the
vortex sheet separated from the surface of the sphere”. When the Reynolds number exceeds
1.5× 104 the high-frequency mode is no longer present in the wake, and only the low-mode
is observed. This was also found by Taneda (1978), who claimed that for Reynolds number
above approximately Re = 104, a single constant Strouhal number exists, of about St = 0.19
- 0.20.

1.1.4 Flow Around a Prolate Spheroid
A prolate spheroid is an ellipse of revolution, thus, with a major and a minor axis. Dependent
on its orientation, the prolate spheroid may be considered a slender or a bluff body. In this
study, the orientation of interest has been when the major axis is perpendicular to the
incoming flow. Hence, the spheroid is considered a bluff body. Following is a description
of the wake formed behind a prolate spheroid with length to diameter ratio, LR = L/D =
6, for Reynolds numbers up to 300. The numerical findings by El Khoury et al. (2012) are
briefly compared with the experimental results of Kiya and Abe (1999) of the flow around
an elliptical disk set normal to the undisturbed inflow.

For the particular aspect ratio, El Khoury et al. (2012) observed that the resulting flow
features differ from the wake of a sphere. However, the endpoints of the major axis are close
enough to affect the vortex shedding at the mid-span. For Re = 50 and Re = 75, the flow
is separated, forming a steady vortex ring in the wake, similar to the near-wake of a sphere.
Unlike the axisymmetry of the vortex ring behind a sphere for Re < 210, the symmetry is
in this case broken by the elliptical cross-section, stretching the wake. When the Reynolds
number exceeds 75, the wake turns unsteady, starting a periodic shedding of hairpin-shaped
vortices, resulting in a ladder-like wake pattern. To illustrate the vortex structures in the
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Figure 1.9: Instantaneous vortical structures in the wake of a LR = 6 prolate spheroid at Re
= 100. (a) perspective view; (b) top view; (c) side view (El Khoury et al., 2012).
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wake, El Khoury et al. (2012) employed the λ2-criterion, established by Jeong and Hussain
(1995). Their method uses the role of the swirling motion in a vortex in generating local
pressure minimum, as a starting point. To get information on local pressure extrema, Jeong
and Hussain (1995) assessed the Hessian of the pressure, given by equation 1.4.

− 1
ρ

 ∂2p

∂xi∂xj

 = DSij
Dt
− ν ∂2Sij

∂xk∂xk
+ SikSkj + ΩikΩkj (1.4)

Here, the strain rate tensor Sij and the vorticity tensor Ωij are expressed as follows:

Sij = 1
2

∂ui
∂xj

+ ∂uj
∂xi

, Ωij = 1
2

∂ui
∂xj
− ∂uj
∂xi

 (1.5)

For the above equations, a Cartesian tensor notation is applied, with the indices i, j, k
= 1, 2, 3. Hence, x1, x2, x3, equal the x, y and z−direction, respectively. The components of
the velocity vector are denoted u1, u2 and u3.

To identify a vortex core, Jeong and Hussain (1995) neglects the first two terms on
the right hand side of equation 1.4. The neglected terms represent unsteady straining and
viscous effects that could contribute to a pressure minimum without the existence of a vortex
core. Therefore, a local pressure minimum due to vortical motion is determined by examining
SijSij+ΩijΩij. Consequently, a vortex core is defined as a connected region with two negative
eigenvalues of SijSij + ΩijΩij (Jeong and Hussain, 1995).

The result of the λ2-method applied to the flow around a prolate spheroid at Re = 100 is
shown in figure 1.9. In figures 1.9(a,b,c), the vortical structures in the wake of the spheroid
are shown in perspective, upper and side view, respectively. The three different views clearly
indicate the shape and orientation of the alternately shed hairpin vortices. The numerical
results are comparable to the flow visualization experiments by Kiya and Abe (1999) in
figure 1.11. Kiya and Abe (1999) studied the wake of two elliptic disks set normal to the
inflow, whose major diameter is 2 or 3 minor diameters. Flow visualization was made in
a water tunnel, by injecting fluorescent dye under UV illumination, upstream of the disk
with the highest aspect ratio LR = 3 for Re = 200. Despite the aspect ratio and Reynolds
number differences, the results of the prolate spheroid at Re = 100, and the elliptical disk at
Re = 200 are seen to resemble one another. The characteristic hairpin-shaped vortices are
well illustrated in figure 1.9(a), and the two bottom images of figure 1.11(a). Additionally,
the visualization of the wake in the minor plane, shown in figure 1.9(c) and 1.11(b), reveal
a quickly increasing width of the vortices when propagating downstream, compared with
the growth of the wake in the major plane. This leads to the axis switching phenomenon,
suggested by El Khoury et al. (2012) in figure 1.10. By plotting slices of the streamwise
velocity u/U0, at three different downstream positions, El Khoury et al. (2012) found that
the switching seems to take place about 10D downstream of the LR = 6 prolate spheroid.
A similar axis switching was found by Kiya and Abe (1999) for the elliptic disk, occurring
approximately 4D downstream.

The wake of the LR = 6 prolate spheroid becomes unsteady at a Reynolds number which
lies between the case of a circular cylinder (Re = 40) and a sphere (Re ≈ 300), specified
in sections 1.1.2 and 1.1.3. Additionally, the vortex shedding shown in figure 1.9 is double-
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Figure 1.10: Slices in the cross-stream direction showing instantaneous streamwise velocity
u/U0. The colours vary from 0.7 (dark blue) to 1 (dark red). (a) Re = 100; (b) Re = 150;
(c) Re = 200; (d) Re = 300 (El Khoury et al., 2012).

sided, which deviates from the single-sided shedding behind a sphere, presented by Sakamoto
and Haniu (1990). For a further increase of Reynolds number up to Re = 300, the vorti-
cal structures gradually become more irregular. Along with the dominating hairpin-shaped
vortices, El Khoury et al. (2012) detected smaller randomly shaped vortex structures. The
corresponding wake frequencies from the shedding were found by assessing the time evolution
of the transverse velocity components in the wake. The resulting Strouhal number increases
from St = 0.109 to St = 0.151 as the Reynolds number is increased from Re = 100 to 300.
By comparing Strouhal numbers at Re = 300, the LR = 6 prolate spheroid has a significantly
lower St than a circular cylinder of St ≈ 0.2. Whereas compared with a sphere, the St by
El Khoury et al. (2012) is slightly greater than the numerically obtained Strouhal number
of St = 0.136 - 0.137, presented in section 1.1.3. El Khoury et al. (2012) concludes that
the wake behind the LR = 6 prolate spheroid, shares flow features with the wake of both a
cylinder and a sphere.
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Figure 1.11: Flow visualization results for a LR = 3 elliptical disk at Re = 200. (a) major
plane; (b) minor plane (Kiya and Abe, 1999).
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1.2 Scope of the Present Study
The aim of the present study is to simulate the flow around a prolate spheroid in cross-flow
by utilizing the Computational Fluid Dynamics (CFD) software, OpenFOAM. The prolate
spheroid of interest has an aspect ratio LR = 4/3. The motivation for this particular shape
and dimension is the enclosed fish farm concept, ”The Egg”, newly invented by Hauge Aqua.
Fully enclosed fish farms are one of the possible solutions to cope with the salmon louse
problem, to ensure a sustainable growth of the marine aquaculture in Norway. The simplified
numerical model, with the appendices of the real model removed, is depicted in the right
image of figure 1.1. The model is assumed fully submerged in an infinite fluid. Since it exists
no previous literature for this particular geometric shape, the present study is limited to low
Reynolds number flow, up to Re = 500.

Based on the background theory presented in section 1.1, it is shown that the flow features
appearing in the wake of a prolate spheroid with aspect ratio LR = 6, resemble the flow
phenomena seen for both cylinder and a sphere. Therefore, it is of interest to investigate the
flow as the aspect ratio is lowered, and the spheroid approaches the form of a sphere.

First, a grid dependency study is to be performed, for Re = 300. This particular Reynolds
number was chosen since it is included in the reviewed literature for both the cylinder, sphere
and prolate spheroid. The numerical properties of importance are considered to be the grid
cell size, cell geometry, domain size and the time step. For every part of the dependency
study, flow parameters as lift and drag coefficient, pressure and shedding frequency, are used
to assess convergence. Velocity profiles close to the spheroid surface, as well as pressure and
velocity changes close to the domain boundaries, are sampled to evaluate the cell and domain
size, respectively.

For the adequate grid, suitable post-processing techniques are used to answer the following
research question:

To what degree does the flow around a low aspect ratio (LR = 4/3) prolate spheroid resemble
the flow features appearing in the wake of a sphere?

To answer the question properly, the present results are compared to similarly shaped bluff
bodies, including a sphere, LR = 6 prolate spheroid and a cylinder. The flow will mainly be
assessed by the following features:

• Wake topology

• Wake fluctuations

• Resulting hydrodynamic loads

The results of the present study might reveal some of the challenges related to closed
containment fish cages. Contrary to the traditional open net cage, the closed walls will force
the water to flow around the cage. The resulting hydrodynamic forces and motions may cause
limitations and requirements that are not included in today’s technical standards. Also, the
study is supposed to generate a flow study of high quality for a prolate spheroid of low aspect
ratio.
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1.3 Structure of the Present Thesis
The present thesis is divided into six different chapters. Following is a brief description of
each part of the report.

Chapter 1 presents an overview of the flow features appearing in the wake of cylinders,
spheres and prolate spheroids. Both numerical and experimental findings from various
authors are presented to give a reliable presentation. Based on the background theory,
the goal of the present study is outlined.

Chapter 2 sums up the reviewed literature, categorized by the shape of the studied
bluff body.

Chapter 3 presents the governing differential equations for the particular flow situa-
tion. Additionally, aspects of the applied numerical method are described.

Chapter 4 outlines the performed numerical work, including important features of
pre- and post-processing.

Chapter 5 presents the results from the simulation of flow around the LR = 4/3
prolate spheroid. The results are discussed and compared with previous findings in the
literature.

Chapter 6 summarizes and concludes the findings. Ultimately, a proposal for further
work is given.



Chapter 2

Literature Review

The literature review contains a study of the flow around bluff bodies, with and without an
aspect ratio. It will mainly investigate the flow around circular cylinders, spheres and prolate
spheroids. The purpose of the literature study is to get an overview and understanding of
flow phenomena arising in the wake of bluff bodies in a steady flow. This knowledge is crucial
for being able to perform high-quality CFD simulations.

Relevant literature has been found using Google Scholar and Oria. The latter, being
a literature search engine provided by the library of NTNU. Professor Bjørnar Pettersen
has also been helpful with suggesting useful articles. Printed books and doctoral theses are
borrowed from the collection at the Marine Technology Library.

The present chapter provides a brief introduction to the reviewed literature, categorized
by the shape of the studied bluff body. Mainly introducing the scope, method and relevant
discoveries of each study. If possible, the accuracy and reliability of the findings are assessed.

2.1 Flow Around a Circular Cylinder
An introductory literature study is performed for a circular cylinder of both infinite and finite
length. The main sources of information regarding infinite cylinders are the two textbooks by
Sumer and Fredsøe (1997) and Zdravkovich (1997). A summary of their findings is presented
in section 1.1.2. Additionally, the article by Qu et al. (2013) is studied to obtain numerical
and more recent data. Finite cylinders of varying length are investigated in the numerical
work by Sheard et al. (2004).

2.1.1 Infinite Cylinder
Sumer and Fredsøe (1997) describe the flow pattern and resulting loads when cylindrical
structures are exposed to current and waves. The literature study is limited to the first
two chapters of the book, presenting the flow around an infinite cylinder in steady current
and the resulting hydrodynamic forces. The first chapter gives a brief introduction of the
flow regimes, from creeping flow (Re < 5) up to complete turbulent flow for transcritical
Reynolds numbers. Extra attention was given to the flow regime at 40 < Re < 200, leading
to a laminar vortex street in the wake of the cylinder. Both the mechanism and frequency of
the vortex shedding, are described. The second chapter addresses the resultant forces exerted

16
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Figure 2.1: The computational domain employed to model the flow past a cylinder (Qu et al.,
2013).

by the flow around the cylinder, presenting the details of the oscillatory lift and drag force
as a consequence of vortex shedding.

The extensive study of the flow around circular cylinders by Zdravkovich (1997) is included
to support the findings of Sumer and Fredsøe (1997). The literature study is limited to the
first three chapters of the book, including a conceptual overview, and a description of the
steady and unsteady, laminar flow regimes. Hence, covering similar topics, like those studied
in Sumer and Fredsøe (1997). Even though the references to both textbooks are considered to
be old, the presented data are of high quality and still being used to validate recent numerical
methods.

The numerical study by Qu et al. (2013) investigates the flow past a stationary cylinder at
Reynolds numbers in the range 50 ≤ Re ≤ 200. Employing a second order accurate fractional
step method by a finite volume code. The authors applied a square domain, with H defining
the domain size, as shown in figure 2.1. The inflow boundary was set to a constant streamwise
velocity u = 1, whereas a convective boundary condition was assigned at the outlet. The
sides of the domain were given free stream conditions, specified in figure 2.1. At Re =
100, a sensitivity study was performed, concerning grid refinement, domain size and time
step. By comparing global time-averaged results with previous findings, a grid consisting of
386 circumferential cells, was found sufficient. The required domain size and time step for
obtaining grid independent results, were H = 120D and ∆t = 0.01 s. Final results by Qu
et al. (2013), regarding force coefficients and separation angle, are compared with the present
results in section 5.2.
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Figure 2.2: Isosurface plots of the vortical structures in wakes of cylinders with free hemi-
spherical ends. At Re = 300 for: (a) LR = 1; (b) LR = 2; (c) LR = 3; (d) LR = 4; (e) LR =
5; and at Re = 100 for: (f) LR = 10 (Sheard et al., 2004).

2.1.2 Finite Cylinder
In the article by Sheard et al. (2004), the flow around a cylinder with free hemispherical
ends for length ratios up to LR = L/D = 10, is studied numerically. Hence, for the LR =
1 case, the flow around a sphere is obtained. For LR > 1, the flow direction is set normal
to the symmetry axis of the cylinder. A spherical domain, extending 30D from the sphere,
was used for all simulations. Applying a spectral element scheme, using a Fourier expansion
of the velocity and pressure fields. Details about the numerical method may be found in
Sheard et al. (2004). To confirm the accuracy of the results, mean drag coefficients up to
Re = 300, were compared with previous data. The authors state that their errors are within
0.5%, throughout the Reynolds number range.

One of the primary aims of the study was to determine how the hairpin-shaped vortices
in the flow past a sphere relate to the Kármán vortex street behind an infinite cylinder.
In figure 2.2, are isosurface plots of the vortical structures, visualized by the λ2-definition.
Figures 2.2(a-e) depict the wake flow at Re = 300 for 1 ≤ LR ≤ 5, whereas figure 2.2(f)



CHAPTER 2. LITERATURE REVIEW 19

shows the result for LR = 10 at Re = 100. It may be seen that for the smaller LR, the
wakes are not symmetric about the mid-span of the cylinder. For length ratios up to LR = 4,
Sheard et al. (2004) found a decreasing Strouhal number for the spanwise component of the
force, acting on the cylinder. Also, the magnitude of the spanwise force itself is decreased,
in contrast to an increasing force magnitude in the transverse direction. At the onset of
symmetry, for LR between 5 and 10, the development of Kármán-like shedding in the near-
wake region of the cylinder mid-span is observed in figure 2.2(f). The author highlights the
interesting observation that even at a length ratio LR = 10, the influence of the free ends on
the two-dimensional vortex street, is significant.

The article by Sheard et al. (2004) is considered to be relevant for the present work since
it compares the flow around a cylinder at different low aspect ratios, including LR = 1 and
2.

2.2 Flow Around a Sphere
The basis for the study of three-dimensional flow around a sphere, is a number of scientific
articles, presenting both numerical and experimental results. A brief summary of the flow
features submitted by the different authors is given in section 1.1.3.

The article by Johnson and Patel (1999) provides an in-depth analysis of the flow past
a sphere for Reynolds number up to 300. The Reynolds number range covers the first three
flow regimes of the flow past a sphere, including steady axisymmetric flow, steady non-
axisymmetric flow, and unsteady periodic flow. The goal of the work was to give a description
of the flow around a sphere, from symmetry breaking to unsteadiness. Flow visualization
experiments were performed to validate the numerical results.

The numerical simulations were computed on a spherical grid, extended 15D from the
sphere center. At least ten grid points were placed within the boundary layer, with a min-
imum grid spacing of 0.005, adjacent to the sphere. The boundary layer thickness, δ/D,
was assumed equal to 1.13/

√
Re, according to theory by Schlichting (1979). A four-stage

Runge-Kutta method was used to numerically solve the Navier-Stokes equation, while a pres-
sure Poisson equation was formulated to satisfy the continuity equation. For details on the
numerical method, reference is given to Johnson and Patel (1999).

Figure 2.3 shows the resulting wake structure from dye injection experiments at Re =
300, by using food coloring diluted in water as the dye. The pictures of figure 2.3(b,c) are
captured, approximately 30D downstream of the sphere, whereas figure 2.3(a) depicts the
near-wake region. The (x,y) and (x,z)-plane of the figure correspond to the side view and
upper view of figure 1.6(b) in section 1.1.3. The results clearly reveal the unsteady periodic
shedding of hairpin-shaped vortices. The regularity in orientation and vortex spacing is
evident.

Johnson and Patel (1999) report that their results are in good agreement with previous
experimental and numerical findings. Therefore, the article has been considered to provide
useful knowledge of the flow around a sphere. The fact that they performed both numerical
and experimental work strengthens the reliability of their findings.

By Sakamoto and Haniu (1990), a study on the vortex shedding from spheres in uniform
flow was carried out by experimentally investigating the wake at Reynolds number in the
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Figure 2.3: Dye visualization of hairpin-shaped vortices in the wake of a sphere at Re = 300.
(a) (x,z)-plane of the near-wake; (b) (x,y)-plane; (c) (x,z)-plane. Reproduced from Johnson
and Patel (1999).

range 300 to 4× 104. Thus, starting at the highest tested Re by Johnson and Patel (1999),
and covering the transition into an entirely turbulent vortex street as the Reynolds number
exceeds 6×103. The vortex shedding frequency was obtained by hot-wire measurements in
a wind tunnel, whereas the flow was visualized by injecting uranine dye in a water channel.
The authors tested the accuracy of their hot-wire measurements by investigating the in-
duced velocities of vortex shedding from circular cylinders. The uncertainty in the measured
velocities was found to be less than ±2 percent.

The article by Sakamoto and Haniu (1990) provided a good understanding of the flow
structures appearing in the wake of a sphere and their associated frequencies. Additionally,
the experimental flow visualizations have been useful to validate the numerical findings of
the flow around a sphere.

In the article by Tomboulides and Orszag (2000), the flow around a sphere is simulated
numerically for Reynolds numbers from 25 to 1000. The main goal was to identify the
transitional regimes as the Reynolds number is increased, along with the physical mechanisms.
The flow was investigated by using a direct numerical simulation (DNS) based on a mixed
spectral element/Fourier spectral method. The simulations were carried out in a cylindrical
domain, which extended 4.5D in the upstream and radial directions, from the sphere center.
This particular extent was selected by considering the rate of decay of the disturbances away
from the sphere, by potential theory. A decay rate of 1/r3, with r being the radial distance,
was employed. Therefore, at 4.5D from the sphere center, the velocity differs only 0.1%
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from the undisturbed velocity. Downstream of the sphere center, the domain extends 25D
to ensure that it fits at least 3 to 4 vortical structures in the wake region.

Tomboulides and Orszag (2000) claim that their results are in good agreement with
numerical and experimental findings of other authors, e.g. compared with the simulations
by Johnson and Patel (1999) for Re ≤ 300. The compared flow parameters are wake length,
separation angle and drag coefficient.

Figure 2.4: Instantaneous contours of vorticity in the wake of a sphere at Re = 300. (a) ωx in
the (x,y)-plane; (b) ωy in the (x,z)-plane; (c) ωz in the (x,z)-plane (Ploumhans et al., 2002).

The numerical study by Ploumhans et al. (2002) investigates the flow around a sphere
at Re = 300, 500 and 1000, expecting each Reynolds number to correspond to different flow
behavior. Direct numerical simulations were performed by a fast parallelized vortex method
on a non-uniform grid. The method was validated by comparing the results at Re = 300
with previous findings from Tomboulides and Orszag (2000) and Johnson and Patel (1999).
Computed mean values of the lift and drag coefficient, as well as the Strouhal number, showed
a high level of concurrence with compared data. Contours of ωx, ωy and ωz in the near wake
at Re = 300, are plotted in figure 2.4. Figures 2.4(b,c) clearly reveal the symmetry of the flow
in the (x,z)-plane. Contrary to the asymmetric flow in the middle (x,y)-plane of figure 2.4(a).
The periodic flow regime was unveiled by plotting contours of the streamwise vorticity, ωx,
at five successive instants for every quarter shedding period. Thus, the first and last picture
were identical and equal to figure 2.4(a).
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Figure 2.5: Overview of the computational domain and coordinate system used by El Khoury
et al. (2012).

2.3 Flow Around Low Aspect Ratio Bluff Bodies
For the last part of the literature review, the flow around three-dimensional asymmetric
bluff bodies has been considered. Limited to bodies with relatively low aspect ratio, and its
principal axis oriented perpendicular to the inflow. The particular aspect ratios included are
LR = 6, investigated for a prolate spheroid, LR = 3 and 2, for an elliptic disk, and LR = 1.6,
1.3 and 1.04, for a cylinder with free hemispherical ends.

2.3.1 Aspect Ratio = 6
The numerical work by El Khoury et al. (2012), investigates the flow around a LR = 6
prolate spheroid at seven different Reynolds numbers, Re = 50, 75, 100, 150, 200, 250
and 300. The author provides a detailed analysis of the flow computed by the DNS solver
MGLET. According to El Khoury et al. (2012) MGLET uses a finite volume method, which
discretizes the Navier-Stokes equation on a staggered Cartesian mesh. An explicit third
order Runge-Kutta scheme was utilized for the time integration. The applied computational
domain shown in figure 2.5, extends Lx = 22D, Ly = 16D and Lz = 11D in the streamwise,
spanwise and transverse direction, respectively. Resulting in a minimum distance of 5D
between the surface of the spheroid and the domain borders. The minimum cell sizes of the
non-equidistant grid, are located closest to the spheroid surface, with ∆x = ∆z = 0.025D.
In the spanwise direction the smallest grid spacing is found at each pole, and equal to ∆y =
0.0095D. Each simulation was computed with a constant time step of ∆t = 0.002D/U0 until
t = 400D/U0 was reached.

The results from the numerical study are presented in section 1.1.4, and compared with
the experimental findings by Kiya and Abe (1999). The computational setup by El Khoury
et al. (2012) has served as the basis for the present work, because of the similarities in both
geometric shape and Reynolds number range.



CHAPTER 2. LITERATURE REVIEW 23

Figure 2.6: Experimental setup to investigate the flow around elliptical disks (Kiya and Abe,
1999).

2.3.2 Aspect Ratio = 2 and 3
Kiya and Abe (1999) present the experimental results of the flow around elliptical disks
with aspect ratio LR = 2 and 3. Both high Re wind tunnel experiments and low Re water
channel experiments were carried out. The objective was to investigate the wake behind
the disk oriented with its major axis normal to the incoming flow. Therefore, the shape
of the projected area of the elliptical disk and prolate spheroid studied in El Khoury et al.
(2012) is equal. The experimental setup is depicted in figure 2.6. According to the figure,
the (x,y)-plane is referred to as the major plane, whereas the (x,z)-plane is the minor.

The flow visualization experiments at low Reynolds number, Re = 200, were considered
to be useful for validation of the numerically computed flow structures by El Khoury et al.
(2012). The results of the visualization experiment are described in section 1.1.4, and depicted
in figure 1.11. Two periodic components of velocity fluctuations were found, one in the minor,
and one in the major plane. The fluctuations in the minor plane correspond to the alternate
shedding of hairpin-shaped vortices, similar to the wake of a LR = 6 prolate spheroid, at
Re = 100. A meandering motion in the major plane was found to be the reason for the
second wake frequency. The most striking discoveries relating the LR = 6 prolate spheroid
and the elliptical disks are the hairpin-shaped and double-sided vortices and the observed
axis switching phenomenon in the wake.

2.3.3 Aspect Ratio = 1.3 and 1.6
In the article by Schouveiler and Provansal (2001), the periodic wake behind finite-length
cylinders with free hemispherical ends is studied experimentally. A total of nine different
aspect ratios from L/D = 1 to 5, were tested. However, L/D = 1.3 and 1.6 are of highest
interest since they are closely related to the aspect ratio of the prolate spheroid considered in
the present work. The main focus of the study was to detect the transition from stationary



CHAPTER 2. LITERATURE REVIEW 24

Figure 2.7: Strouhal number as function of Re for varying aspect ratio. The vertical lines
define the critical Reynolds number Rec at each aspect ratio (Schouveiler and Provansal,
2001).

flow to the time-dependent periodic flow, in the Reynolds number range from 50 to 400.
For Reynolds numbers above the first critical value, the authors observed a single dominant
frequency by spectral analysis of the measured streamwise velocities. To measure the wake
velocities, a laser Doppler anemometer was used. A detailed description of the experimental
setup is given in Schouveiler and Provansal (2001). Resulting Strouhal numbers for the
single-frequency domain, are shown in figure 2.7. The figure suggests a decreasing trend of
the critical Reynolds number as the aspect ratio is increased. For LR = 1.3 and 1.6 the flow
is seen to turn unsteady at Re ≈ 210 - 220 and Re ≈ 170 - 180, respectively.

2.3.4 Aspect Ratio = 1.04
The work outlined by Sheard et al. (2008) studies the flow normal to a short cylinder with
hemispherical ends, employing a spectral-element/Fourier method. The numerical method
is closely related to the algorithm used by Tomboulides and Orszag (2000) and the previous
work by the same authors in Sheard et al. (2004). An accuracy better than 1% was found
for the case of a sphere at Re = 300 when comparing averaged drag and Strouhal number
with previous data. Different length ratios, LR ≤ 5, were employed. A very short cylinder,
LR = 1.04, was examined to investigate the relationship between azimuthal asymmetry of a
nearly spherical body and the resulting wake symmetries. The resulting vortical structures
visualised by the λ2-definition are shown in figure 2.8 at Re = 250 and 300. At Re = 250,
a steady non-axisymmetric wake consisting of a pair of counter-rotating vortices is found,
according to figures 2.8(a,b). The planar symmetry evident in figure 2.8(a), is closely related
to the flow around a sphere at corresponding Re. As the Reynolds number is increased to Re
= 300, the wake turns unsteady, and the familiar hairpin-shaped vortices appear. However,
for the asymmetric body, a preferred orientation of the wake aligned with the minor axis, is
eventually apparent. Whereas, for the axisymmetric spherical body, there is no preference
to the wake orientation. By studying the transverse force components, Sheard et al. (2008)
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Figure 2.8: Vortical structures in the wake of a LR = 1.04 cylinder. Re = 250 for the upper
figures, and 300 for the lower. (a) top view; (b) side view; (c) initial orientation to emerge
from the steady-state solution at Re = 250; (d) preferred orientation after 130 shedding
periods (Sheard et al., 2008).

found a loss of planar symmetry as the Reynolds number reaches Re = 350 - 360, by the
evolution of a non-zero and fluctuating side force.

The article by Sheard et al. (2008) is of relevance for the present study since it investigates
the flow changes as the sphere is slightly elongated along what becomes the major axis. Hence,
the value to compare the results as the aspect ratio is further increased in the present study.



Chapter 3

Governing Equations and Numerical
Aspects

This chapter presents the partial differential equations (PDEs) of fluid flow and explains
briefly how they are solved, numerically, in CFD. The software OpenFOAM utilizes a finite
volume discretization. According to Greenshields (2015a), the discretization of a problem,
means dividing it into discrete quantities, and for the finite volume method, the problem is
discretized as follows:

Spatial discretization. Defining a computational domain, and dividing it into several
small control volumes, called cells. Each cell in a three-dimensional domain is a volume.

Temporal discretization. For a flow that changes with time (transient problem),
the time domain has to be divided into a finite number of time steps.

Equation discretization. By linearizing the governing PDEs, a system of algebraic
equations is generated in terms of discrete quantities defined at each cell in the domain.

The discretized problem is subsequently solved, iteratively, by a numerical solver algo-
rithm. The algorithm iterates, until a user-specified residual is reached. It exists a vast
number of numerical solvers, and to explain all, is out of the scope of this thesis. How-
ever, the algorithm used in this work, along with the governing equations and finite volume
method, will be described in the following sections.

3.1 Governing Equations
The fluid flow considered throughout the present study is considered to be unsteady laminar
flow, of a viscous, incompressible, Newtonian fluid without free-surface effects. In this case
the governing equations of motion are the continuity equation and the Navier-Stokes equation,
given by equation 3.1 and 3.2, in accordance with Çengel and Cimbala (2008).

~∇ · ~V = 0 (3.1)
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∂~V

∂t
+ (~V · ~∇)~V = −1

ρ
~∇p+ ν∇2~V (3.2)

The continuity equation is derived from the conservation of mass, while the Navier-Stokes
equation represents transport of momentum through the computational domain. The conti-
nuity equation is a scalar equation, whereas the Navier-Stokes equation is presented on vector
form. Thus, for three-dimensional flow in Cartesian coordinates, there are four equations and
four unknowns u, v, w and p (Çengel and Cimbala, 2008). Where p is the modified pressure
as a result of eliminating the gravity term from the Navier-Stokes equation. This is possible
since the free-surface effect is neglected. The governing equations can be written in tonsorial
form, as:

∂ui
∂xi

= 0 (3.3)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xi∂xj

(3.4)

here, i = 1,2 and 3 representing the three Cartesian directions x, y and z, and ui stands for
the velocity in these directions. The density of the fluid is denoted ρ, and ν is its kinematic
viscosity. The Navier-Stokes equation may also be written:

∂ui
∂t

+ uj
∂ui
∂xj

= 1
ρ

∂σij
∂xj

(3.5)

where, σij = −pδij + 2µSij, is called the stress tensor. The δij is called the Kronecker delta
function, and has the property of being equal to unity when i = j, and zero otherwise. The
rate of strain tensor is given as Sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

3.2 Boundary Conditions
To solve the governing partial differential equations, boundary conditions are required at all
boundaries of the computational domain. The type of flow that is modeled is determined
by the imposed boundary conditions. Therefore, it is important that the user specify these
correctly and understands their role in the numerical algorithm (Versteeg and Malalasekera,
2007). If the value of the dependent variable is prescribed on the boundary, it is called a
Dirichlet boundary condition. Whereas, if the gradient of the variable normal to the boundary
is prescribed, it is referred to as a Neumann condition. The user may also apply a weighted
combination of the Dirichlet and Neumann condition, named Robin boundary condition. In
the present study, the boundary conditions are either velocity-specified or pressure-specified.

For transient problems, the initial values of the flow field variables have to be specified
for the entire mesh. The assigned initial values are the starting point for the iterative solver.
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Figure 3.1: (a) Spatial and temporal discretisation; (b) parameters in finite volume dis-
cretization (Greenshields, 2015a).

3.3 Finite Volume Method
Discretization of the space domain into a computational mesh consisting of cells is shown
in figure 3.1(a). According to Çengel and Cimbala (2008), one can think of each cell as a
control volume in which discretized versions of the continuity and Navier-Stokes equations
are solved. The cells may have various shapes. However, the mesh used in the present work
consists of hexahedral elements. The hexahedral’s are built up of eight nodes, one in each
corner, connected by lines. The lines form a total of six faces.

Two arbitrary, neighboring cells with some of the parameters defined in the FV method,
are shown in figure 3.1(b). P and N denote the center of each control volume, and the
distance between the neighboring centers is labeled d. The cell faces are named f, and the
surface normal vector is ~Sf . In OpenFOAM, the solution variables are defined at the center
of each cell. Hence, the values at the cell faces, or boundaries, have to be interpolated from
the values of the neighboring cell centers.

The solution procedure by finite volume discretization starts by integrating each term over
a cell control volume Ω, bounded by a surface S. The resulting integral form of the continuity
equation and the Navier-Stokes equation, is shown in equation 3.6 and 3.7, respectively.
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∮
S

~V · ~n dS = 0 (3.6)

∂

∂t

∫
Ω
~V dΩ + ~V

∮
S
Vn dS =

∮
S

(
~σ · ~n

)
dS (3.7)

here, the ~n and Vn denote the normal vector and the velocity component which is normal
to the surface S, respectively. Both the normal vector and the normal component of the
velocity, are pointing out of the control volume.

Next, the volume and surface integrals in equation 3.6 and 3.7, are linearised using appro-
priate numerical schemes. Thus, by evaluating the linearised integral equations at all control
volumes of the domain, a system of algebraic equations are constructed, that are commonly
expressed in matrix form as:

[A][x] = [b] (3.8)

Here, [A] is a symmetric matrix, [x] is the dependent variable and [b] is the source vector,
suggested by Greenshields (2015a). These equations may then be solved through iterative
methods. OpenFOAM offers several different solvers, suitable for specific applications. For
the simulations in the present study, the pisoFOAM solver has been used, which utilizes the
PISO algorithm.

3.4 The PISO Algorithm
”The PISO algorithm, which stands for Pressure Implicit with Splitting of Operators, (Issa,
1986) is a pressure-velocity calculation procedure developed originally for non-iterative com-
putation of unsteady compressible flow” (Versteeg and Malalasekera, 2007). However, the
PISO algorithm has successfully been applied as an iterative solver of the incompressible
Navier-Stokes equation. The algorithm involves one predictor step and two corrector steps.
Following is a brief overview of each step, based on the suggestions by Versteeg and Malalasek-
era (2007).

Predictor Step
In the predictor step, the algebraic equation system is solved, based on an initially guessed
pressure field p∗. Thus, the temporary velocity components u∗i are found. Here, i = 1,2 and
3 corresponding to the velocity in x, y and z-direction, respectively. However, the velocity
components will not satisfy the continuity equation, unless the guessed pressure field is
correct.

Corrector Steps
The first corrector step is introduced to obtain a corrected velocity field, u∗∗i , that satisfies
the continuity equation, by defining the correction fields p′ and u

′
i, as shown in equation 3.9

and 3.10.
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p∗∗ = p∗ + p
′ (3.9)

u∗∗i = u∗i + u
′

i (3.10)

Hence, the pressure correction field p′ is defined as the difference between the correct pres-
sure p∗∗ and the initial pressure p∗. The velocity correction u

′
i are defined correspondingly.

The resulting equations for the corrected velocity field, are substituted into the discretized
continuity equation, which yields the first pressure correction equation. This pressure cor-
rection equation has to be solved, in order obtain the correction field p

′ . Subsequently, the
corrected pressure is used to calculate the correct velocity components u∗∗i .

In the second corrector step, a twice-corrected velocity field u∗∗∗i , is computed by solving
the Navier-Stokes equation, once more. New pressure and velocity correction fields, p′′ and
u

′′
i , are defined such that:

p∗∗∗ = p∗∗ + p
′′ (3.11)

u∗∗∗i = u∗∗i + u
′′

i (3.12)

In a similar fashion as the first corrector step, the pressure correction field p′′ , is obtained
by substituting the twice-corrected velocity field into the continuity equation. By inserting
equation 3.9 into 3.11, the twice-corrected pressure field is obtained from:

p∗∗∗ = p∗ + p
′ + p

′′ (3.13)

Finally, the two times corrected pressure field p∗∗∗, is used to calculate the twice-corrected
velocity components u∗∗∗i . For the iterative PISO solver in OpenFOAM, the described se-
quence is repeated, until a user-specified residual is reached.

3.5 Properties of Numerical Solution Methods
When the governing equations are known accurately, Ferziger and Peric (2012) states that the
differences between computed results and realistic results i.e. errors, arise from each part of
the numerical solution procedure. Mainly, including approximations made in the discretiza-
tion process and errors attained when solving the discretized equations by an iterative solver.
The discretization errors may be reduced by dividing the computational domain into smaller
cells, or by using interpolation schemes of higher accuracy. However, this may increase the
computation time, drastically.

Although numerical results are always approximate, there are certain properties that the
numerical solution should have, for obtaining the required accuracy and efficiency. According
to Ferziger and Peric (2012), some of the most important properties include consistency,
stability and convergence.

3.5.1 Consistency
When the governing equations are discretized by applying numerical schemes, a truncation
error is introduced. The truncation error is estimated by replacing all the nodal values in
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the discrete approximation by a Taylor Series expansion about a single point. This leads
to a recovery of the original differential equation, in addition to a remainder which repre-
sents the truncation error. The truncation error must become zero when the mesh spacing
∆xi → 0 and/or the time step ∆t → 0 to provide a consistent method. Truncation error is
commonly proportional to a power of the grid spacing ∆xi and/or the time step ∆t. If the
most important term is proportional to (∆x)n or (∆t)n the method is called an nth-order
order approximation (Ferziger and Peric, 2012). In OpenFOAM, the user is free to choose
appropriate discretization schemes for every term of the governing equations.

In addition to applying consistent discretization schemes, the solution method has to be
stable to obtain the exact solution as the step sizes go to zero (∆t,∆xi → 0).

3.5.2 Stability
A stable iterative method is one that does not diverge, which means that the numerical
solution method will not magnify the errors. To obtain stability for an explicit method when
diffusion is considered negligible, Ferziger and Peric (2012) outlines the following criterion:

U∆t
∆xi

< 1 (3.14)

The term on the left-hand side of equation 3.14 is called the Courant-Friedrichs-Lewy
(CFL) number. Where ∆t is the time step, ∆xi is the cell size, and U is the local velocity
at the evaluated cell. Therefore, the CFL number is calculated for every cell in the compu-
tational domain at every time step of the simulation. To maintain numerical stability, the
maximum Courant number appearing in the simulation should be kept significantly lower
than unity. In OpenFOAM, the maximum and mean CFL number are computed and dis-
played at every time step, and the user may assure numerical stability by adjusting the time
step ∆t.

3.5.3 Convergence
”A numerical method is said to be convergent if the solution of the discretized equations
tends to the exact solution of the differential equation as the grid spacing tends to zero”
(Ferziger and Peric, 2012). For non-linear problems, the convergence of a method is hard
to demonstrate. This is also the case in the present study, with the non-linear convective
term of the governing Navier-Stokes equation. For such problems, the convergence is usually
examined by repeating the simulations on a successively refined grid. Thus, if the method is
stable and the numerical schemes are consistent, the solution will normally converge to a grid
independent solution for adequately small cell sizes. In the present work, the convergence
is thoroughly investigated by varying the grid resolution, domain size and time step, in the
grid dependency study.



Chapter 4

Computational Setup

4.1 Solution Procedure in OpenFOAM
Open Source Field Operation and Manipulation (OpenFOAM) is a C++ library, mainly used
to produce executable codes, also known as applications. The applications consist of numer-
ical solvers and utilities for solving continuum mechanics problems, which includes problems
related to CFD. It is an open source software, owned by the OpenFOAM Foundation. The
version used in the present work was released December 2015 (version 3.0.1). As illustrated
in figure 4.1, the solution procedure in OpenFOAM consists of the three main components,
pre-processing, solving and post-processing. Based on the solution procedure outlined by
Çengel and Cimbala (2008), the components include the following steps:

1. A computational domain is chosen, and a grid is generated by dividing the domain into
many small cells or control volumes. The quality of the results is highly dependent on
the quality of the grid.

2. Appropriate boundary conditions are specified on each face of the computational do-
main. The type of boundary conditions is dependent on the kind of flow being simu-
lated.

Figure 4.1: Overview of OpenFOAM structure (Greenshields, 2015b).

32
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3. Starting values for the flow variables called initial conditions are specified over the
entire grid.

4. The type of fluid and its associated properties are specified.

5. Numerical discretization schemes and solvers are chosen. Numerical schemes are typ-
ically applied to derivatives or interpolation of values from one point to another. In
OpenFOAM, the user is completely free to choose the most appropriate schemes and
solvers.

6. Starting from the initial conditions, discretized versions of the governing equations are
solved at the center of each cell in the computational domain. The numerical solver
iterates until a user-specified error tolerance is reached.

7. The calculated pressure and velocity fields are evaluated and visualized by different
post-processing techniques.

4.2 File Structure of OpenFOAM Cases
OpenFOAM requires a certain file structure to start a simulation. The structure consists
of three main directories as shown in figure 4.2. The solver settings and the numerical
schemes are specified in the two files of the system directory, called fvSolution and fvSchemes,
respectively. In controlDict the run parameters are set, such as start/end time, time step
and write interval. The constant directory holds the entire description of the grid with the
associated boundary conditions in the subdirectory polyMesh. Also, the constant directory
specifies the physical properties of the fluid. The ’time’ directories, which contain the flow
field data at each time step, are named by the actual instant for each directory. The initial
and boundary conditions for the pressure and velocity fields are stored in a directory, named
0. As the simulation runs, new directories will be constructed with a time step given by the
write interval, specified in the controlDict.

Examples of the fvSchemes, fvSolution and controlDict files applied in the present numer-
ical simulations, are respectively included in appendix A.1, A.2 and A.3.

4.3 Pre-Processing
Before the simulations are started, the points 1 to 5 described in the solution procedure of
section 4.1 have to be performed. This sequence is called the pre-processing. The crucial
step to obtain realistic results is the grid generation, which is also the most time-consuming
part of the pre-processing.

4.3.1 Grid Generation
The grid generation is basically to define the cells in which the governing equations are solved.
This is either done in the CFD software or by a third-party grid generation program. In this
work, the meshing is done in Mega, which is developed in-house by Professor H̊avard Holm.
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Figure 4.2: Structure of a case directory in OpenFOAM (Greenshields, 2015b).

Grids are either structured or unstructured. A structured grid contains equally shaped cells,
whereas an unstructured grid consists of cells of various forms. Typical shapes for three-
dimensional cells are hexahedrons, prisms or tetrahedrons (Çengel and Cimbala, 2008). The
three types are shown in figure 4.3, along with the number of faces for each case. In the present
thesis, a structured multiblock grid consisting of hexahedral cells with six faces, is utilized.
Since the evaluated geometry of the present work is fairly straightforward, the structured
grid is favorable, instead of an unstructured. Additionally, when computing boundary layers,
the grid has to be highly resolved close to the no-slip wall. Therefore, a structured grid is
favorable, since it enables a much finer grid resolution than an unstructured, for the same
amount of cells (Çengel and Cimbala, 2008).

However, of much greater importance than the type of grid, is the quality of the grid. In
OpenFOAM, the checkMesh utility checks the validity of the mesh, by calculating various
parameters. Some of the factors that affect the quality of the grid are the cell skewness, change
in cell size, aspect ratio and mesh non-orthogonality. The following is a brief explanation of
the mentioned factors, and how they are calculated in the checkMesh utility.

Skewness

Stated by Çengel and Cimbala (2008), the skewness of a cell is defined as the departure from
symmetry and is the most important metric to consider when constructing a mesh. To avoid
convergence difficulties and inaccuracies in the numerical solution, the operator has to make
sure that the individual cells are not highly skewed. There are different ways of evaluating
skewness. The checkMesh utility evaluates the skewness by measuring the distance between
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Figure 4.3: Typical three-dimensional cells in CFD along with the number of faces n for each
type. (a) Hexahedral; (b) prism; (c) tetrahedral (Çengel and Cimbala, 2008).

the intersection of the line connecting two cell centers with their common face and the center
of that face. The skewness is illustrated as δ in figure 4.4(a) for two neighboring cells with
cell centres P and N, and common face f. If the skewness of the left cell in figure 4.4(a)
is decreased, the distance δ will decrease. Hence, the magnitude of the computed skewness
should be kept as low as possible. Both mean and maximum skewness for the entire mesh,
are calculated in the checkMesh utility.

Non-Orthogonality

The non-orthogonality is expressed as the angle between the line connecting two cell centers
and the normal vector of their common face. In figure 4.4(b), the non-orthogonality is given
by the angle θ, for two neighbouring cells with cell centres P and N, and common face f.

Figure 4.4: Skewness and non-orthogonality calculated for two neighbouring hexahedral cells.
(a) Skewness; (b) non-orthogonality.
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Figure 4.5: Bounding box of a hexahedral cell. The cell is drawn with black lines, whereas
the bounding box is extended by the light gray lines.

The vector ~Sc connects the cell centres, and ~Sf is the normal vector of f. Similarly, as the
skewness, the optimal magnitude of the non-orthogonality is zero, meaning that the cells are
orthogonal. The checkMesh utility calculates the maximum and average non-orthogonality
for the entire mesh. Based on the degree of orthogonality, the OpenFOAM user may introduce
a non-orthogonal correction factor, for both the numerical schemes and solvers. ”Generally,
the uncorrected and orthogonal schemes are only recommended for meshes with very low non-
orthogonality (e.g. maximum 5◦). At non-orthogonality above 80◦, convergence is generally
hard to achieve” (Greenshields, 2015b).

Aspect Ratio and Abrupt Change in Cell Size

Other factors that affect the quality of the mesh are the abrupt change in cell size and
high aspect ratio. These factors may cause problems, worsening the numerical accuracy and
convergence (Çengel and Cimbala, 2008). In OpenFOAM, the aspect ratio of a particular
cell is set to the largest of either the face aspect ratio (Λface), or the cell aspect ratio (Λcell).
The face aspect ratio is simply the ratio between longest and shortest edge of each face. The
checkMesh utility calculates the cell aspect ratio by the following equation:

Λcell = | ax | + | ay | + | az |6v2/3 (4.1)

here, ax, ay and az, are the area for each defining face of the bounding box of the cell, and
v is the volume. The bounding box of a moderately skewed hexahedral cell, is drawn by the
light grey lines of figure 4.5. The optimal aspect ratio is Λ = 1.

4.3.2 Computational Domain and Grid
Figure 4.6(a) depicts a perspective view of the three-dimensional domain, used to study the
flow around a prolate spheroid. The overall dimensions of the domain in x, y and z-direction,
are given by Lx, Ly and Lz, respectively. A clip filter in the (x,z)-plane at the middle of
the domain y-axis, is applied to give an overview of the grid, and the location of the prolate
spheroid. Half of the prolate spheroid surface is seen by the light gray area, inside the mesh.
It is placed with its center at the origin of the right-handed coordinate system, and the
major axis aligned with the z-axis. The length of the major axis is 4/3 times the minor axis,
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Figure 4.6: Computational domain. (a) A cut of the computational domain; (b) cross sections
of the minor and major plane, illustrating how a point on the prolate spheroid surface is
defined by θ and φ.

with the length of the minor given by the diameter, D. Because of the low aspect ratio, the
spanwise length Lz, and transverse length Ly of the domain are equal. The grid is designed
for the flow to propagate in the positive x-direction.

The cross-sectional slices in figure 4.6(b), show how a unique point on the surface of the
prolate spheroid is defined. The angles, θ and φ, are measured from the front stagnation
point in the (x,y) and (x,z)-plane, respectively. This way of describing a point on the surface
is inspired by El Khoury et al. (2012).

A two-dimensional slice of the mesh at the middle (x,y)-plane, is shown in figure 4.7(a),
illustrating the relative length of the domain in the x- and y-direction. The two dotted
black lines in the figure, intersect at the center of the spheroid. Hence, the domain extends
a distance a, both upstream and in the cross-flow y-direction from the spheroid’s center.
Similarly, the domain extends a distance a in the spanwise z-direction. Downstream of the
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Figure 4.7: Two-dimensional slices of the grid. (a) (x,y)-plane of the entire grid; (b) (x,y)-
plane of the transition block; (c) (x,z)-plane of the transition block.

spheroid center, the domain stretches a distance 3a, to fit several wake structures. Different
values of a will be tested in the grid dependency study to find a sufficient domain size.

The block structure of the mesh is indicated by the regions of changing cell size, in figure
4.7. The outer parts of the mesh, contain blocks of relatively coarse hexahedral cells. In the
x, y and z-directions, the grid is slightly graded with smaller cell sizes toward the prolate
spheroid. As the surface of the prolate spheroid is approached, the cell sizes are significantly
reduced, to resolve the rapid flow variations in the boundary layer. Closest to the surface, the
prolate spheroid is embedded in a body-fitted O-shaped mesh, named the inner block. The
inner block has a constant radial thickness of 0.2D, to easily control the size, and maintain a
high quality of the cells. In the transition block, the highly refined grid is gradually coarsened,
to achieve a smooth cell size transition from the inner block to the outer parts of the grid.
The transition block block has an overall size of 5D in both x and y-direction, and 5.19D in
the spanwise z-direction.
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Figure 4.8: Employed boundary conditions. (a) (x,y)-plane; (b) (x,z)-plane.

Two-dimensional slices of the transition block in the middle (x,y) and (x,z)-plane, are
shown in figure 4.7(a) and 4.7(b), respectively. The inner block is indicated by the darker
colored regions in the close vicinity of the spheroid surface. As the cells in the transition
block get gradually coarser, they also get more radially stretched towards the outer edges of
the block, especially at the corners. The reason is that the body-fitted O-mesh in the inner
block is slowly turned into a rectangular H-mesh. Hence, the cells located near the corners of
the transition block will obtain a worsened quality by an increased skewness. However, the
skewness was found to be sufficiently low, by the checkMesh utility in OpenFOAM.

4.3.3 Boundary Conditions and Initial Values
For the present work, the domain is supposed to represent an infinite fluid. Hence, the
boundaries should not influence the flow field around the spheroid. In practice, this means
that the boundary conditions should not impose any changes to the flow field variables.

The (x,y) and (x,z)-plane of the computational domain with its prescribed boundary con-
ditions, are shown in figure 4.8(a) and 4.8(b), respectively. The spheroid surface is supposed
to behave as a solid wall. Therefore, no fluid should be able to pass through the surface, in
addition to a no-slip condition. The wall is modeled by putting all velocity components to
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Table 4.1: Boundary conditions and the boundary types specified in the OpenFOAM case.

Patch Boundary condition Boundary type (OpenFOAM)
Pressure Velocity

Spheroid dp
dx

= dp
dy

= dp
dz

= 0 U = (u, v, w) = 0 wall
Inlet dp

dx
= dp

dy
= dp

dz
= 0 u = 1.0, v = w = 0 patch

Outlet p = 0 ∂U
∂x

= ∂U
∂y

= ∂U
∂z

= 0 patch
Front and back dp

dx
= dp

dy
= dp

dz
= 0 v = 0, ∂U

∂x
= ∂U

∂z
= 0 slip

Top and bottom dp
dx

= dp
dy

= dp
dz

= 0 w = 0, ∂U
∂x

= ∂U
∂y

= 0 slip

zero, as well as applying a zero gradient for the pressure. The inlet, shown at the left edge, is
given a constant velocity u = 1.0, and v = w = 0. This boundary condition is referred to as
a velocity inlet. For such inlet conditions Çengel and Cimbala (2008) states that the pressure
is not specified, as that would lead to a mathematical over-specification since both pressure
and velocity are coupled in the governing equations. Instead, the pressure is given a zero
gradient. Thus, the pressure will not change in any direction, at the inlet. At the outlet, the
pressure is set to zero, hence assumed to be equal to the pressure of the undisturbed flow.
Similar to the inlet, the velocity is not specified at a pressure outlet. However, the velocity
vector is prescribed a zero gradient. A free-slip condition is imposed along the sides of the
computational domain, named front, back, top and bottom in figure 4.8. This means that
the velocity component normal to the boundary face is set to zero, whereas a zero gradient
is given for the tangential components. When the slip-condition is applied to a scalar, it is
set to a zero gradient, which applies to the pressure.

As stated in section 4.2, the boundary conditions of an OpenFOAM case are specified
in the polyMesh subdirectory, and in the initial time step directory 0. The basic type of
boundaries are stated in polyMesh, whereas more specific boundary and initial conditions are
given in 0. The boundary types used in this work are wall, patch and slip. An overview of
the boundary types and conditions, is given in table 4.1.

Starting values of the internal fields for pressure and velocity are set to zero, for all
simulations. Hence, the fluid starts at rest and is gradually accelerated until the inflow
velocity is reached.

4.4 Numerical Schemes and Solvers

4.4.1 Numerical Schemes
The discretization schemes applied to each term in the governing equations are specified
in the system directory, by the file fvSchemes. Numerical schemes are mainly applied to
derivatives in time and space. However, since the equations are solved at the center of each
cell, interpolations schemes are specified to compute values at the cell faces. An overview of
the schemes applied in the present work is given in table 4.2. For an example of the complete
fvScheme used in the present work, reference is given to appendix A.1.

The time derivative is discretised by the implicit, first order Euler scheme. Even though
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this scheme is less accurate than the second order backward Euler and Crank-Nicholson
schemes, it is chosen for its stability and convergence properties. A standard finite volume
discretization of Gaussian integration is applied for the gradient term. As described in
Greenshields (2015b) the Gaussian integration is based on summing values on cell faces.
Therefore, an associated interpolation scheme has to be chosen. Linear interpolation is
an effective choice, and therefore also selected in the present work. The same scheme for
discretization and interpolation is also chosen for both the divergence and Laplacian terms.
For the latter term, Gauss scheme is the only choice of discretization (Greenshields, 2015b).
Also, for the Laplacian term, a surface normal gradient scheme has to be specified. The
surface normal gradient is the component normal to a cell face, of the gradient in each cell
that is connected to that face. In the present thesis, the second order corrected scheme was
chosen for this purpose. For the general field interpolations, a linear scheme was selected.

Table 4.2: Numerical schemes applied in the present work.
Term description Text expression Numerical Scheme

Time derivative ∂φ
∂t

Euler
Gradient ∇φ Gauss linear
Divergence ∇ · φ Gauss linear
Laplacian ∇2φ Gauss linear corrected
Surface normal gradient nf · (∇φ)f Corrected
Interpolation - Linear

4.4.2 Solver Settings
The numerical solvers, algorithms and tolerances are specified by the fvSolution file, in the
system directory. An example of the solver settings applied in this work is given in appendix
A.2.

In addition to the solver application, which describes the set of equations and algorithms
to solve the particular problem, linear solvers that are used for each discretized equation,
have to be specified for an OpenFOAM case (Greenshields, 2015b). In the present work,
equations for pressure and velocity are solved, hence solvers for p and U are prescribed in
fvSolution. A geometric-algebraic multi-grid (GAMG) solver is applied to the pressure. The
GAMG solver first computes a quick solution on a coarse grid and maps the solution onto
a gradually finer mesh, the final grid being the one specified by the user. The coarsest
mesh level is specified by nCellsInCoarsestLevel. A conceptual illustration of the method
is shown in figure 4.9. As the algorithm is refining the mesh, two Gauss-Seidel smoother
sweeps are executed, specified by smoother and nPostSweeps in the fvSolution file. The
solver for the velocity U, is a preconditioned bi-conjugate gradient (PBiCG) solver, with a
Diagonal incomplete-LU (DILU) preconditioner. The preconditioner is applied to acquire
better convergence compared with the original system.

For the numerical solvers, the equation residual is decreased with successive iterations.
According to Çengel and Cimbala (2008) a residual is a measure of how much the solution to
a given transport equation deviates from the exact. In OpenFOAM, the residual is computed
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Figure 4.9: Multigrid method for solving the equations of motion. Solutions are obtained on
a coarse grid first to speed up convergence (Çengel and Cimbala, 2008).

by substituting the temporary solution into the governing equation and taking the magnitude
of the difference between the left and right-hand sides (Greenshields, 2015b). After each
iteration, the current residual is re-evaluated. Thus, the solver stops either if the residual
falls below the tolerance specified by tolerance, or if the ratio of the current residual to the
initial falls below the relative tolerance provided by relTol. The solver tolerance for p and U
are set to 10−6 and 10−5, respectively.

4.5 Parallel Computing
The OpenFOAM simulations of the present study have been run in parallel, on the SGI
Altix ICE X system, named Vilje. The system is procured by NTNU together with the
Norwegian Meteorological Institute and UNINETT Sigma. Vilje consists of 1404 nodes with
two eight-core 2.6 GHz processors per node.

As stated by Greenshields (2015b), ”The process of parallel computation involves: decom-
position of the mesh and fields; running the application in parallel; and, post-processing the
decomposed case”. Before running the solver, the mesh has to be decomposed into a number
of sub-domains, equal to the number of cores used for the computations. For most of the
simulations, 64 cores have been utilized. Scotch decomposition was chosen, which requires
no geometric input. This method of decomposing the mesh tries to minimize the number of
processor boundaries. After running the simulations in parallel, the user may post-process
each part of the decomposed domain, or reconstruct the mesh to obtain the entire domain.
The latter option was chosen for the post-processing in the present study.
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4.6 Post-Processing
The final stage of the CFD solution procedure is the post-processing of the calculated pressure
and velocity fields. Visualization of the OpenFOAM results was performed by the utility
paraFoam. In addition to the visualization, drag and lift coefficients, as well as data probed
at specific locations in the wake, were analyzed in MATLAB.

4.6.1 Flow Visualization
ParaFoam is the main post-processing tool in OpenFOAM. It uses the open source visual-
ization software ParaView, which provides a wide variety of visualization possibilities. In
the present thesis, the flow field is visualized by investigating contour and vector plots of
two-dimensional slices, as well as three-dimensional isosurfaces. Both pressure, velocity and
vorticity are presented by respective techniques.

Vorticity

When simulations in OpenFOAM are finished, the vorticity (ωx, ωy, ωz) is calculated by the
vorticity utility. In this case, the vorticity vector are calculated according to equation 1.3,
given in section 1.1.3. The vorticity tells how the velocity vector changes as if we move in
a direction perpendicular to it. Hence, its magnitude will be largest close to the vortex core
and decrease as the distance to the core increases.

Another way of visualizing the vortex structures of the wake is by employing the λ2-
definition. In OpenFOAM, this is done by the utility lambda2, executed in a similar fashion
as vorticity. The λ2-definition is briefly described in section 1.1.4 of the present thesis.

Streamlines

A curve that is tangent everywhere to the instantaneous local velocity vector is a stream-
line (Çengel and Cimbala, 2008). Therefore, the streamlines are suitable to indicate the
instantaneous local directions of a flow field. According to Çengel and Cimbala (2008), the
mathematical expression for a streamline is as follows:

dr

V
= dx

u
= dy

v
= dz

w
(4.2)

where V is the magnitude of the velocity vector ~V = u~i+ v~j +w~k, and dr is the magnitude
of an infinitesimal arc length d~r = dx~i + dy~j + dz~k. By integrating equation 4.2 with the
calculated velocity fields, equations for the streamlines are obtained.

4.6.2 Analysis of the Wake Fluctuations
The frequencies appearing in the wake are non-dimensionalised by the Strouhal number,
defined by equation 1.2 in section 1.1.2. The shedding frequency, fv, oscillates with the
same frequency as the lift force acting on the body. However, lift is a result of integrating
the pressure over the surface of the prolate spheroid. Thus, the computed lift might suffer
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Table 4.3: Data sampled at eight different probe locations.

Probe Location
x y z

Probe 1 1D 0.2D 0
Probe 2 1D -0.2D 0
Probe 3 1D 0.2D 0.33D
Probe 4 1D -0.2D 0.33D
Probe 5 1D 0.2D -0.33D
Probe 6 1D 0.2D -0.33D
Probe 7 5.75D 0.3D 0
Probe 8 5.75D -0.3D 0

inaccurate numerical integration. A more reliable method to assess the wake fluctuations
is by evaluating the oscillating pressure or velocity in the near-wake region. The vortex
shedding frequency may be determined by a spectral analysis of a measured time series. In
the present work, the spectral analysis was performed by the Fast Fourier Transform (FFT)
algorithm in MATLAB. For a detailed example of the MATLAB script performing the FFT
analysis, reference is given to appendix B.1.

Pressure and velocity data are sampled at eight probe locations in the wake, at every
time step of the simulation. The different probe locations are specified in table 4.3. Hence,
all probes are located in the wake of the prolate spheroid, either 1D or 5.75D downstream.

4.6.3 Force Coefficients
For the present simulations, the drag and lift coefficients are computed at every time step.
The force coefficients are defined as:

CD = FD
1
2ρU

2
∞A

(4.3)

CL = FL
1
2ρU

2
∞A

(4.4)

Where FD and FL are the drag and lift force acting on the body. The density of the fluid is
given by ρ, and U∞ is the undisturbed inflow velocity. A is the projected area, which in this
case has the shape of an ellipse. Both mean and maximum values of the force coefficients
are calculated by inserting associated values for either FD or FL. The lift coefficient for the
spheroid in an infinite fluid and uniform inflow, will might get an average value very close to
zero, as seen for a circular cylinder. In that case, small changes in the lift will cause relatively
large changes in the mean value. In that case, it does not make much sense to compute the
mean lift. Therefore, the root-mean-square (RMS) value of the lift coefficient is calculated,
according to equation 4.5.

CRMS
L =

√
1
N

∑N
i=1 F

2
L,i

1
2ρU

2
∞A

(4.5)
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Where N is the total number of samples for the particular time series. The drag force will
have a mean value F ′

D > 0. The associated mean drag coefficient is calculated as follows:

C
′

D =
1
N

∑N
i=1 FD,i

1
2ρU

2
∞A

(4.6)



Chapter 5

Results

The results obtained from the numerical simulations are presented in this chapter. First,
the outcome of a thorough grid dependency study for Reynolds number Re = 300, is given.
This particular Re is chosen due to the fact that it is investigated for most of the reviewed
literature included in chapter 2. Also, the flow at Re = 300, is expected to attain a periodic
flow similar to a sphere, making it meaningful to compare the results as e.g. mean drag
and shedding frequency. Subsequently, grid independent solutions for Re = 100, 200, 250,
300 and 500, are presented by means of various post-processing techniques. The results are
continuously compared to existing literature, to validate the findings, and relate the LR =
4/3 prolate spheroid to similarly shaped bluff bodies.

5.1 Grid Dependency Study
As stated by Çengel and Cimbala (2008), it is of great importance for CFD users to test if
their solution is grid independent. A high-quality grid is crucial to obtain reliable results.
In the present work, the grid dependency was studied by varying the grid resolution in the
proximity of the prolate spheroid, domain size and time step. A convergence criterion of
5% change between following grids is utilized in the convergence study by Ong et al. (2010).
However, due to the fact that Ong et al. (2010) simulated turbulent flow at Reynolds numbers
in the range Re = 104−106, a more strict criterion of 1-3% is suggested for the present study
simulating low Re flow. Hence, any of the assessed parameters, should not vary more than
1-3% between two successive grids when varying grid resolution, domain size or time step.
To assess convergence, the following parameters were computed from a time series, after the
simulation had reached steady state:

• Mean drag coefficient (C ′
D). Computed as shown in equation 4.6.

• Maximum drag coefficient (Cmax
D ).

• Root-mean-square value of the lift coefficient (CRMS
L ). Calculated according to equation

4.5.

• Strouhal number of the dominant frequency appearing in the wake. St is determined
by a Fast Fourier Transform of the transverse velocity sampled at probe 7 defined in

46
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Figure 5.1: Element distribution. Number of cells is defined along the lines K, L, M, N, O,
P, Q, R. (a) (x,y)-plane; (b) (x,z)-plane.

table 4.3.

• Mean pressure (p′), computed from the sampled pressure at all probes, defined in table
4.3.

5.1.1 Boundary Layer Resolution
The first part of the grid dependency study was performed by varying the number of cells
close to the spheroid surface, to sufficiently resolve the velocity profile inside the boundary
layer. It is the no-slip condition on the surface that gives rise to the rapid velocity change,
normal to the wall. If the grid is too coarse, the velocity changes might not be captured
properly, and therefore yield incorrect results. The boundary layer thickness, δ, is assumed
to be in the order of 1/

√
Re, according to theory by Schlichting (1979). Hence, the grid

refinement should mainly be assessed within the 0.2D thick inner block, described in section
4.3.2.

Figure 5.1(a) and 5.1(b), outline the block structure in the mid (x,y) and (x,z)-plane
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Table 5.1: Boundary layer refinements.

Mesh Number of elements along line # Minimum cell size Number
of cellsP Q R O K L M N ∆r/D ∆s1/D ∆s2/D

Very coarse 180 10 240 50 30 30 30 100 0.0158 0.0174 0.0154 3 206 250
Coarse 180 20 240 50 30 30 30 100 0.0060 0.0174 0.0154 3 557 250
Medium 360 20 380 50 30 30 30 100 0.0060 0.0087 0.0097 8 124 000
Fine 360 30 400 60 30 30 30 100 0.0030 0.0087 0.0092 8 907 000
Very fine 400 40 420 60 30 30 30 100 0.0016 0.0079 0.0088 11 236 000

of the grid, respectively. The number of cells in the radial direction of the inner block, is
specified by the number Q. Whereas the amount of cells along the spheroid surface in the
(x,y) and (x,z)-plane, is given by P and R, respectively. For the transition block, only the
radial number of cells has to be defined, given by O. The cell distribution of the outer blocks,
is defined by K, L, M and N, as illustrated in figure 5.1.

The domain size and time step utilized when assessing the boundary layer resolution, are
exclusively based on the numerical simulations in El Khoury et al. (2012). The computational
setup presented by El Khoury et al. (2012) are briefly described in section 2.3.1. The authors
used a domain with a minimum distance of 5D between the surface of the body and its
borders. Therefore, the present domain size, a, was set equal to 6D, resulting in a streamwise
length Lx = 24D, transverse width and spanwise height, Ly = Lz = 12D. The time step was
kept constant and equal to ∆t = 0.002D/U∞. A Reynolds number of 300, was obtained by a
spheroid diameter of D = 2 m, inflow velocity of u = 1.0 m/s, and kinematic viscosity of ν =
0.0067 m2/s. For every grid configuration, the simulations were run for a total of 200D/U∞,
equal to 100 000 time steps, which was found to be sufficient for every grid to reach a steady
state flow.

For the inner block, five different configurations were chosen, with a varying number of
cells in the radial and tangential direction. An overview of the mesh refinements, named
very coarse, coarse, medium, fine and very fine, is given in table 5.1. The radial distance
to the first node from the spheroid surface is denoted ∆r. Whereas, the cell length along
the spheroid surface in the (x,y) and (x,z)-plane, is given by ∆s1 and ∆s2, respectively.
The minimum radial thickness varies from 0.0158D for very coarse, to 0.0016D for very fine.
Therefore, the minimum radial thickness for the coarsest grid is about ten times larger than
the finest grid.

The results, in terms of force coefficients, pressure and Strouhal number, are shown in
figure 5.2 and table 5.2. In the figure, the markers on each line, represent the computed
result from each grid of different cell refinement. As seen in figure 5.2(a), the maximum and
mean drag coefficient, vary analogous, with the maximum values slightly above the mean.
Unexpectedly, the smallest changes in C

′
D and Cmax

D , were found for the coarsest grids, as
demonstrated in the two leftmost columns of table 5.2. However, large relative changes are
seen for both the mean pressure and Strouhal number, for the same grids. Therefore, the
relative change between the fine and very fine grid, of ∆C ′

D = -1.06% and ∆Cmax
D = -1.46%,

is considered to show best convergence. The RMS value of the lift coefficient was found to
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Figure 5.2: Results for varying grid refinement. (a) Mean drag coefficient, maximum drag
coefficient and RMS of lift coefficient; (b) mean pressure at probes and Strouhal number.

Table 5.2: Percentage change in results between successive grid refinements.

Successive grids Percentage change
∆C ′

D ∆Cmax
D ∆CRMS

L ∆p′ ∆St
Very coarse → coarse -0.30 -0.42 31.91 7.87 -10.03
Coarse → medium -0.53 -0.82 -59.83 -4.69 11.14
Medium → fine 1.67 2.58 241.94 4.12 -10.03
Fine → very fine -1.06 -1.46 -51.10 2.62 0.00

be close to zero, in the range CRMS
L = 0.0186 - 0.0636, for all the tested grids. As shown in

table 5.2, large relative changes are obtained for CRMS
L between successive grids, although

the changes in magnitude are small. Hence, the percentage change of CRMS
L , was considered

a useless convergence indicator at this point of the convergence study.
Results in terms of mean pressure and Strouhal number are presented in figure 5.2(b),

and in the two rightmost columns of table 5.2. The smallest percentage change for p′ , is
between the fine and very fine grid, and equal to 2.62%. Additionally, no change in St was
found between the two particular grids.

To further investigate the grid refinement in the boundary layer, velocity profiles close
to the spheroid surface are plotted in figure 5.3 and 5.4. For both figures, instantaneous
velocity for the very coarse, medium and very fine grids, are depicted. In figure 5.3, the
velocity in the x-direction is sampled at each cell center, along a line normal to the surface.
The leftmost images show the results, sampled up to a normal distance of 0.7D, whereas the
right images are zoomed in at the inner 0.2D, to reveal how well the grid resolves the rapid
velocity change in the vicinity of the wall. The velocity profiles are sampled at the spanwise
middle section, corresponding to φ = 0, at three different circumferential positions, making
an angle of θ = 80◦, 100◦ and 120◦, from the stagnation point. Figure 5.3(b), indicates that
the very coarse grid fails to smoothly resolve the velocity gradient, especially for θ = 120◦,
when reversed flow occurs. However, the medium and very fine grids, with 20 and 40 cells
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Figure 5.3: Velocity profiles in the boundary layer. The left images show velocity profiles
up to a normal distance of 0.7D from the surface, whereas the right images show the inner
0.2D. The dots on the dotted lines, represent cell centres. (a,b) very coarse; (c,d) medium;
(e,f) very fine.
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Figure 5.4: Magnitude of the flow velocity plotted along with the mesh. (a) (x,y)-plane, very
coarse grid; (b) (x,z)-plane, very coarse grid. (c) (x,y)-plane, medium grid; (d) (x,y)-plane,
very fine grid.

normal to the surface within the inner block, seem to resolve the boundary layer sufficiently.
The details of the flow separation are inspected by plotting the non-smoothed velocity

field on top of the grid, shown in figure 5.4. For the very coarse grid in figure 5.4(a,b), the
velocity magnitude increases from zero (dark blue) to U∞ (red), over approximately 5 cells,
at the separation region. An average velocity jump of 0.2 m/s between neighbouring cells, is
considered too coarse. For the medium and very fine grids, the same velocity increase takes
place over 12 and 25 cells, respectively, shown in figure 5.4(c,d). Thus, an average velocity
jump of about 0.08 m/s and 0.04 m/s, is obtained for the medium and very fine grids.

Based on the results of the different boundary layer refinements, regarding C ′
D, C

max
D , p

′

and St, every grid fails to converge for a strict convergence criterion of 1%. However, if a less
rigorous criterion of 3% is applied, the fine and very fine grids are assumed to be converged
for the parameters mentioned above. By studying the velocity changes in the boundary layer,
a sufficient grid refinement was indicated for the medium and very fine grids. Hence, it is
suggested to apply the fine grid resolution in the continuous parts of the grid dependency
study.

In figure 5.5, pressure contours in the near-wake region are plotted for the fine grid
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Figure 5.5: Pressure contours in the near-wake region, plotted along with the grid. (a) zoomed
view of the (x,z)-plane; (b) (x,y)-plane; (c) (x,z)-plane with the pressure defect marked by
the red rectangle.
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resolution. The coloring represents the computed pressure magnitude, with the color bar
covering the entire measured pressure range. For a sufficiently refined grid, the pressure is
supposed to vary smoothly. A sudden pressure jump is not realistic and may indicate areas
of bad grid quality. A minor pressure defect was observed for the contours in the (x,z)-plane,
indicated by the red rectangle in figure 5.5(c). By the zoomed view of figure 5.5(a), it is clear
that the pressure jump occurs between the most skewed cells of the transition block. However,
none of the remaining contour lines in the same plane, reveals a pressure defect. Additionally,
the pressure seems to vary smoothly in the (x,y)-plane, as shown in figure 5.5(b). Therefore,
the observed pressure jump is not expected to influence the solution severely.

5.1.2 Domain Size
The extent of the computational domain is known to have a significant effect on the results
of the simulations. E.g., if the domain is set too small, reversed flow from the outlet or
blocking effects from the side walls, may pollute the results. However, by increasing the
domain size, the computation time may increase considerably. Hence, the CFD operator has
to compromise between domain size and quality of the results.

Table 5.3: The different domain sizes.

Mesh Domain size
(a)

Number of cells
along line # Number

of cells
K L M N

Smallest 6D 30 30 30 100 8 907 000
Small 8D 40 40 40 120 12 206 000
Big 10D 50 50 50 140 15 303 000
Biggest 12D 60 60 60 160 19 104 000

To determine a sufficient domain size, simulations were run for four different grids, includ-
ing the original grid used to assess the boundary layer refinement. The domain sizes, a = 6D,
8D, 10D and 12D, were applied for the smallest, small, big and biggest grid, respectively.
The details of each domain, are given in table 5.3. The minimum distance from the spheroid
surface to the domain boundary varies from 5.3D for smallest, and increases by steps of 2D,
up to 11.3D for the biggest domain. Simultaneously, the downstream extent of the domain
is increased from 18D, up to 36D for the largest domain. The expected flow disturbances at
the boundaries may be approximated, according to the decay rate of disturbances around a
sphere, applied in Tomboulides and Orszag (2000), of 1/r3. Thus, the velocity at the domain
boundary is expected to differ from 0.66% to 0.069%, from the free-stream velocity, for the
smallest to the largest grid. To maintain a proper cell transition between the transition block,
and the outer blocks, the number of elements along K, L, M and N, was increased for the
enlarged domain sizes. The cell configuration of the inner and transition block, was kept
constant and equal to the fine grid, specified in the previous section.

The results from varying the domain size, regarding drag and lift coefficient, pressure
and Strouhal number, are shown in figure 5.6 and table 5.4. In figure 5.6 the results are
plotted over the parameter a, defining the domain size. It is seen that none of the resulting
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Figure 5.6: Results for varying domain size. Domain size defined by a. (a) Mean drag
coefficient, maximum drag coefficient and RMS of lift coefficient; (b) mean probed pressure
and Strouhal number.

Table 5.4: Percentage change in results for successive domain sizes.

Successive grids Percentage change
∆C ′

D ∆Cmax
D ∆CRMS

L ∆p′ ∆St
Smallest → small -0.69 -0.69 -12.42 -7.01 0.00
Small → Big -0.29 -0.04 -1.08 0.35 0.00
Big → biggest 0.12 -0.36 1.45 -0.79 0.00

parameters, seems to change considerably between any of the different domain sizes. However,
in table 5.4, relatively large changes are seen for CRMS

L , due to its low magnitude. Between
the smallest and small grids, an absolute change of 0.0079, causes a relative change ∆CRMS

L

= -12.42%. Therefore, the lift coefficient was neglected when choosing an appropriate domain
size. For the remaining parameters, the biggest relative change is seen for the mean pressure,
sampled at the downstream probe locations. Between the two smallest domains, an absolute
change of 0.0075, and a relative difference ∆p′ = -7.01 % is seen. However, between the three
bigger grids, a maximum change ∆p′ = -0.79%, is found. The Strouhal number obtained
from the transverse velocity at probe 7 is constant for all domain sizes and equal to St =
0.1373.

To further assess the different domain sizes, the pressure and normal velocity component
close to the domain boundaries, are investigated. As specified in section 4.3.3, the transverse
and spanwise sides of the domain are given slip conditions. Hence, the normal component
of the velocity relative to the boundary patch is set to zero. Similarly, at the downstream
boundary, the magnitude of the pressure is set to p = 0. Since the particular parameters are
set to specific values at the boundaries, discontinuities might occur if the domain is set too
small.

To investigate the flow disturbances at the domain boundaries, pressure and velocity
are sampled along lines consisting of 50 uniformly distributed points. Velocity profiles are
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Figure 5.7: Velocity and pressure profiles at the domain boundaries. The right images show
a zoomed view of the corresponding left image. (a,b) normal velocity close to top boundary;
(c,d) normal velocity close to front boundary; (e,f) pressure close to outlet boundary.
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probed at lines extending 2D from the border along the y and z-axis, at x = 0. Which is
directly beside and above the prolate spheroid, where the distance from its surface to the
domain boundaries is smallest. The pressure was sampled along a line, prolonged 4D from
the downstream boundary along the x-axis, at y = z = 0.

Results for the four different domain sizes, a = 6D, 8D, 10D and 12D are plotted in
figure 5.7. The left images of the figure show the appropriate velocity component and pressure
plotted over the entire sample, whereas the right images are zoomed in on the values closest to
the boundary. The parameters xend, yend and zend, are the outer coordinates of each domain,
in respective directions. All the plotted values are in the order of 10−3. In figures 5.7(a-d),
the normal velocity component to the associated boundary, appears to decrease smoothly
towards the boundary value, at the lower left corner of each image. Even so, the smallest
grid stands out, with a v and w-velocity of about 0.35% and 0.30% of the free-stream velocity
U∞, measured at a distance of 2D from the front and top boundary, respectively. However,
no discontinuities for the flow fields are seen for any of the tested domain sizes. Likewise,
the pressure in figures 5.7(e-f) shows bigger changes close to the downstream boundary, for
the smallest grid, compared to the other. Within 4D from the outlet, an absolute change
of ∆p ≈ 6 × 10−3 is seen for the smallest grid, whereas ∆p ≈ 0.85 × 10−3 for the biggest.
However, no sudden changes are observed in p close to the outlet.

Based on the results of the different domain sizes, with regard to C
′
D, C

max
D , p

′ and St,
the small, big and biggest grids are considered converged according to the strict convergence
criterion of 1%. The velocity and pressure profiles in figure 5.7, do not indicate discontinuous
flow for any of the tested domain sizes. Therefore, the small grid may seem to be large enough
to obtain proper results. However, when visualizing the wake flow in terms of velocity and
vorticity fields, the author found that the biggest grid is favorable, compared with the smaller
domains. The vortices appearing in the wake are retained further downstream, in addition
to better symmetry features for the vortical structures visualized by the λ2-criterion, at Re
= 300. Since the scope of the present study, mainly involves investigating the flow features
appearing in the wake, a = 12D is assumed to be the sufficient domain size.

5.1.3 Time Step
To solve the time-dependent Navier-Stokes equation, both spatial and temporal discretiza-
tions are performed. Thus, in addition to the spatial properties of the grid, the results are
dependent on the time step ∆t. In the present study, the time step is chosen based on the
stability criterion presented in section 3.5 by equation 3.14. Hence, the CFL number should
be kept lower than unity for the entire mesh, at every time step of the simulation.

The physical meaning of the criterion is that the fluid particles should not propagate more
than a grid cell length, per time step. Therefore, the product of the local velocity and time
step has to be lower than the associated cell length. Since the smallest grid cells are located
in the inner block, closest to the spheroid surface, this is expected to be the region of highest
CFL number. However, since the local velocities are not known before the simulations, values
of ∆t have to be tested, to see if the stability criterion is fulfilled or not.

In OpenFOAM, the CFL number is calculated for the entire mesh at every time step
of the simulation. If the stability criterion is violated and the numerical error grows, the
simulation will be terminated, automatically. Based on the author’s experience, a CFL
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Figure 5.8: Maximum CFL number for the fine grid refinement and biggest domain size. (a)
Entire simulation, 100 000 time steps; (b) the first 50 time steps.

number significantly lower than unity, and equal to about 0.5, is considered a good choice.
Further reduction of ∆t and CFL number, will only introduce minor changes to the results.

Figure 5.8 shows the maximum CFL number for the fine grid and biggest domain size, a
= 12D. The results for this particular grid configuration are considered converged, based on
the two previous sections. The applied time step, ∆t = 0.002D/U∞, when assessing the grid
refinement and domain size, was chosen based on the numerical study by El Khoury et al.
(2012). For the entire simulation in figure 5.8(a), consisting of 100 000 time steps, the CFL
number is found to stabilize at approximately 0.5. However, an increased CFL number is
observed within the ten first time steps in figure 5.8(b). A maximum CFL number of 0.71
is encountered at the third time step before it gradually decreases towards 0.5. Hence, the
time step, ∆t = 0.002D/U∞, is considered adequate for the numerical method to be stable
and provide accurate results.

To confirm whether the results are converged or not, an additional time step, ∆t =
0.001D/U∞ was applied. For this ∆t, the maximum CFL number stabilized at approxi-
mately 0.25, throughout the total simulated time, t = 200D/U∞. For the resulting flow
parameters regarding C ′

D, C
max
D , p

′ and St, a relative percentage change below 1% was found,
by comparing with the results of ∆t = 0.002D/U∞. The RMS value of the lift coefficient
showed highest relative change, ∆CRMS

D = 2.86%, which satisfies the less rigorous convergence
criterion of 3%. Therefore, the time step ∆t = 0.002D/U∞, is confirmed adequate.

5.2 Final Results and Discussion
This section presents grid independent solutions for Reynolds numbers 100, 200, 250, 300
and 500. Similar to the grid dependency study, the simulations were run for a total time
t = 200D/U∞, gathering statistics for the last quarter of the simulated time. An overview of
the applied grid configuration is given in table 5.5. The final grid configuration is defined by
the fine boundary layer resolution and the biggest domain presented in section 5.1. Resulting
in a streamwise domain length of Lx = 48D, and transverse and spanwise length of Ly = Lz
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= 24D. The number of circumferential cells in the spheroid’s minor and major plane are 360
and 400, respectively. Details on the grid are given in section 5.1.

Table 5.5: Final grid configuration.
Domain size Number of cells along line # Number

of cellsa Lx Ly Lz P Q R O K L M N
12D 48D 24D 24D 360 30 400 60 60 60 60 160 19 104 000

The results from running the checkMesh utility in OpenFOAM are shown in appendix C.
Therefore, a maximum skewness and non-orthogonality of respectively 0.77 and 55.41◦ are
found. The cells of lowest quality are mainly located at the corners of the transition block. To
reduce the influence of the non-orthogonal cells, a corrector step, defined by nNonOrthogonal-
Correctors in the fvSolution file is applied. A maximum aspect ratio of Λ = 8.83, are found
for the cells in the outer regions of the grid. Altogether, the quality of the mesh is found
sufficient. The cell quality in the regions close to the surface and near-wake is considered to
be of greatest importance, due to significant flow disturbances.

5.2.1 Drag and Lift Coefficients
An overview of the resulting force coefficients is given by table 5.6. In addition to the present
findings, results from comparable studies are included. Computed mean value and amplitude
for both drag and lift are shown for every Reynolds number tested. The amplitude of the
drag and lift coefficients are denoted ∆CD and ∆CL.

By comparing the mean drag coefficient at Re = 300 with previous studies, we see that
the present results are closely related to the results of a sphere. The averaged drag of C ′

D =
0.664 lies between the comparable values for a sphere of C

′sph
D = 0.656 and 0.683, by Johnson

and Patel (1999) and Ploumhans et al. (2002), respectively. The authors report an amplitude
of the drag coefficient equal to ∆CD = 3.5×10−3 and 2.5×10−3, at the same Re. These values
are the same order of magnitude as the present result, of ∆CD = 9.1×10−3 at Re = 300.
The reported results for an infinite cylinder by Sumer and Fredsøe (1997), indicate a mean
drag coefficient which is almost twice of the present, at Re = 300. For Re = 100 and 200,
Meneghini et al. (2001), report a mean drag coefficient, which is 33.9% and 74.0%, above the
present C ′

D at corresponding Re.
Similar to the drag coefficient, the resulting lift coefficient of the present work compares

well to the previous findings for a sphere. The magnitude of the averaged lift of 0.052, is
somewhat smaller than the magnitude of the reported C ′

L = -0.069 and -0.061 respectively by
Johnson and Patel (1999) and Ploumhans et al. (2002). The sign difference may be caused
by the orientation of the shed vortices or differently oriented coordinate systems. For the
lift coefficient amplitude at Re = 300, the present ∆CL = 4.6×10−2 is about three times the
reported values for a sphere, of ∆CL = 1.6×10−2 and 1.4×10−2, by Johnson and Patel (1999)
and Ploumhans et al. (2002). However, compared with ∆CL = 0.70 for a cylinder at Re =
200 reported by Meneghini et al. (2001), all present lift amplitudes are more than one order
of magnitude lower.
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Table 5.6: Force coefficient results from present work and previous studies. Presented by
mean value and amplitude of the lift and drag coefficient. cyl cylinder data; sph sphere data.

Author Re Drag coefficient Lift coefficient
C

′
D ∆CD C

′
L ∆CL

Present work

100 1.023 0 0 2.2×10−9

200 0.747 1.8×10−6 -0.055 1.0×10−3

250 0.693 3.0×10−3 0.031 1.5×10−2

300 0.664 9.1×10−3 0.052 4.6×10−2

500 0.564 2.2×10−2 -0.007 4.5×10−2

(Meneghini et al., 2001)cyl 100 1.37 - - -
200 1.30 - 0 0.70

(Sumer and Fredsøe, 1997)cyl 300 - 3×105 1.20 - - -
(Johnson and Patel, 1999)sph 300 0.656 3.5×10−3 -0.069 1.6×10−2

(Ploumhans et al., 2002)sph 300 0.683 2.5×10−3 -0.061 1.4×10−2

500 ≈0.60 - - -

According to experiments by Schouveiler and Provansal (2001), the critical Reynolds
number for a cylinder with free hemispherical ends and aspect ratio LR = 1.3, lies between
Rec = 200 and 250. The critical Reynolds number defines the onset of unsteady periodic
flow. Even though the present study investigates a prolate spheroid, the predicted Rec by
Schouveiler and Provansal (2001) is assumed to be closely related to the present value, due
to aspect ratio similarities.

To indicate the onset of unsteadiness, time series of the drag and lift coefficients as well as
the corresponding force coefficient amplitudes, are plotted in figure 5.9. For the time series
in figure 5.9(a) and 5.9(c), both the drag and lift coefficient start to oscillate between Re
= 200 and 250. The oscillating behavior of the force coefficients is assessed after the flow
reaches a steady state. Even though no oscillations are present for Re = 200, a lift amplitude
of ∆CL = 1×10−3 is computed for this Reynolds number. The lift coefficient amplitude is
caused by the steady descending CL, observed in figure 5.9(c). The reason for the constant
rate of decay for the computed CL is not known to the author. Because of the small decay
rate the issue was not addressed further.

Therefore, by the onset of oscillating force coefficients, the critical Reynolds number
for the LR = 4/3 prolate spheroid seems to lie between 200 and 250. This critical Reynolds
number range coincides with the experimentally determinedRec by Schouveiler and Provansal
(2001) for a LR = 1.3 finite cylinder. The onset of unsteadiness, will be further investigated
by flow visualization in sections 5.2.3 and 5.2.4.

5.2.2 Separation
The separation pattern along the span of the prolate spheroid may be visualized by plotting
streamlines close to its surface. In the present thesis, this was done by the OpenFOAM
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Figure 5.9: Resulting drag and lift coefficient. (a) Time series of CD for Re = 200, 250 and
300; (b) drag amplitude, ∆CD = (Cmax

D −Cmin
D )/2, for Re = 100 - 500; (c) Time series of CL

for Re = 200, 250 and 300; (b) lift amplitude ∆CL = (Cmax
L − Cmin

L )/2, for Re = 100 - 500.

utility WallBoundedStreamlines. The streamlines are configured as shown in appendix A.4.
Hence, sampled at a radial distance of 0.005 m from the surface.

Instantaneous wall bounded streamlines for Re = 100, are shown in figure 5.10. The
coloring represents the magnitude of the velocity in x-direction, near the surface. For the
top and upstream view, in figure 5.10(a) and 5.10(b), it is seen that u increases from the
front stagnation point, until it reaches a maximum, somewhere along the upstream half of
the spheroid. As the flow reaches the downstream half of the spheroid, the flow is retarded,
and the u-velocity eventually turns negative, indicating a back-flow region. The point where
u = 0, is the separation point. Thus, by plotting several separation points along the span of
the prolate spheroid, the separation pattern is revealed.

In figure 5.11, the separation pattern at Re = 100 is shown by plotting values of u in the
range −10−4 to 10−4, along with the streamlines. The negative signed velocity, u ≤ −10−4,
is represented by blue colored streamlines, whereas u ≥ 10−4 is red. Hence, the magnitudes
of u between the two limits containing u = 0, are found in the transition region between the
red and blue colored streamlines. Therefore, the separation line is clearly illustrated, as seen
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Figure 5.10: Instantaneous wall bounded streamlines at Re = 100. (a) top view; (b) upstream
view; (c) downstream view. The coloring represents the velocity in x-direction, close to the
spheroid surface.
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Figure 5.11: Separation line along the span of the spheroid at Re = 100, visualized by
streamwise velocity u, close to the spheroid surface. The blue and red coloring represent
u ≤ −10−4 and u ≥ 10−4, respectively. (a) perspective view; (b) side view.

in figure 5.11. By the side view in figure 5.11(b), it is evident that the separation takes place
along an even line, parallel to the spheroid’s major axis.

Appendix D.1 shows the resulting separation line at all tested Reynolds numbers, in a
similar manner as figure 5.11(b). Therefore, the separation was found to move upstream as
the Reynolds number is increased, as well as maintaining a quite even shape, parallel to the
major axis, even at the highest tested Reynolds number, Re = 500.

Table 5.7: Resulting separation angles at Re = 100 - 500.

Author Re Separation angle, θs [◦]
(from front stagnation point)

Present work

100 121
200 110
250 109
300 108
500 103

Computed separation angles θs of the LR = 4/3 prolate spheroid, are presented in table
5.7, and compared with previous studies in figure 5.12. The separation angle is measured from
the front stagnation point, in the minor plane at z = 0 (φ= 0◦). A maximum separation angle,
θs = 121◦ was found at Re = 100. As the Reynolds number is increased, the separation angle
decreases steadily towards θs = 103◦ at Re = 500. A similar trend is seen for the separation
around a sphere, found by Mittal (2005). The reported θsphs plotted by the upward-pointing
triangles in figure 5.12, follows an equal rate of decay as the Reynolds number is increased, as
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Figure 5.12: Resulting separation angle, compared with reported data for a cylinder and a
sphere.

the present values. However, the flow around a sphere is found to separate at a higher angle
from the front stagnation point, for all the compared Reynolds numbers. At Re = 100 and
500, θsphs = 127.7◦ and 106.6◦ respectively, which is 6.7◦ and 3.6◦ above the corresponding θs
of the present study.

Additionally, figure 5.12 presents the separation angle for a cylinder, suggested by Zdravkovich
(1997) and Qu et al. (2013), plotted as circles and diamonds, respectively. Reported θcyls is in
the Reynolds number range Re = 100 to 339. The separation angle for a cylinder θcyls seems
to deviate less from the present results, than the results of a sphere. At Re = 100 and 200,
θcyls = 118◦ and 112.9◦ respectively, which deviate 3◦ and 2.9◦ from the corresponding present
values. The present θs at Re = 300, differs 3◦ from the reported θcyls = 105◦ at Re = 339.

5.2.3 Steady Flow
The flow was found to be steady for the two lowest Reynolds numbers tested, Re = 100
and 200. The steady flow is indicated by no force coefficient oscillations and no observed
changes during a time series of the velocity in the wake. Instantaneous velocity vectors at
three succeeding instants are shown in appendix D.2 and D.3 to demonstrate the steadiness.
In this section, the topology of the wake flow is presented by contours of streamwise velocity
and computed streamlines.

The resulting contour lines of streamwise velocity, u, in the middle (x,z)-plane, are de-
picted in figure 5.13. The inner contour represents u = 0 m/s, whereas u = 0.5 m/s for
the outer curve. The area encircled by the inner contour is therefore defined as the back-
flow region of u < 0. The contour lines in figure 5.13(a) and 5.13(b), represent the exact
same values, to compare the wake differences for the two Reynolds numbers. In the previous
section, the separation angle at the middle (x,y)-plane at Re = 100 and 200, was found to
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Figure 5.13: Contours of streamwise velocity, u, in the (x,z)-plane. The inner contour corre-
spond to zero streamwise velocity, u = 0 m/s, and the outer to u = 0.5 m/s. (a) Re = 100;
(b) Re = 200.

be θs = 121◦ and 110◦, respectively. A similar decreasing trend is observed in figure 5.13,
by investigating the intersection point between the inner contour (u = 0 m/s), and the sur-
face of the prolate spheroid. The separation point moves upstream, toward the poles of the
spheroid, φ = ±90◦, as the Reynolds number is increased. Hence, the angle φs from the front
stagnation point decreases. The separation angle in the middle major plane was found to be
φs = 114◦ and 106◦ at Re = 100 and 200, respectively.

The contours of streamwise velocity at Re = 200, depicted in figure 5.13(b), are stretched
downstream, compared with the corresponding contours at Re = 100. Resulting in a longer
and narrower wake region. As illustrated by the streamlines in figure 5.14, the flow is seen
to separate from the spheroid surface and then rejoin at a certain distance downstream,
forming a recirculation region behind the body. According to El Khoury et al. (2012), the
separation length Ls is defined as the streamwise distance behind the rear end of the body to
the point where the streamwise velocity changes sign from negative to positive. Hence, the
zero-velocity contour in figure 5.13, outlines the local separation length along the span of the
prolate spheroid. Similar to the results by El Khoury et al. (2012), the local separation length
is smallest close to the poles and increases towards the mid-span. The maximum separation
length was found to be Ls = 1.26D and 1.75D for Re = 100 and 200, respectively. For the
same Reynolds numbers, El Khoury et al. (2012) found a separation length Ls = 4.23D and
3.42D for a LR = 6 prolate spheroid. The reduced Ls as Re is increased from 100 to 200, is
caused by the onset of unsteadiness at Reynolds number between 75 and 100. For a sphere,
Johnson and Patel (1999) report a separation length Ls = 0.90D and 1.45D at Re = 100
and 200, respectively. Therefore, by increasing the aspect ratio from LR = 1 for a sphere,
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Figure 5.14: Computed streamlines at Re = 100. Streamlines in the major and minor plane
are colored gray and black, respectively. The flow propagates in the positive x-direction.

to LR = 4/3 for the present prolate spheroid, the separation length increases 0.36D at Re =
100, and 0.30D at Re = 200. The stretched separation length is caused by the asymmetrical
projected area.

To illustrate the topology of the near wake flow, streamlines at Re = 100 are plotted
in figure 5.14. The flow propagates in the positive x-direction, defined by the depicted
coordinate axes. The gray and black colored streamlines are drawn in the middle major and
minor plane, respectively. As illustrated by the figure, the flow is symmetric in each of the
two planes, with a pair of counter-rotating vortices in each. Compared with the vortices in
the minor (x,y)-plane, the vortices in the (x,z)-plane is slightly stretched. This is caused by
the elliptic cross-section of the spheroid, normal to the inflow. Thus, the axisymmetry evident
for a sphere at corresponding Reynolds numbers is broken. However, the wake topology of
the present study is closely related to the steady and planar symmetric wake for a LR = 6
prolate spheroid at Re = 50 and 75, in El Khoury et al. (2012).

The presence of vortices and their direction of rotation is apparent by the plotted velocity
vectors in appendix D.2 at Re = 100 and D.3 at Re = 200. A pair of counter-rotating vortices
in the middle (x,y) and (x,z)-plane are observed at both Reynolds numbers. At Re = 100,
the flow is symmetric in each plane, as suggested by the streamlines of figure 5.14. However,
as the Reynolds number reaches 200, the symmetry of the minor (x,y)-plane is broken. Even
though the lack of symmetry, the flow is found to be steady as no changes occur for the three
subsequent instants, plotted in appendix D.3.
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5.2.4 Unsteady Flow
For the three highest Reynolds numbers tested, the flow was found to be unsteady. The
unsteadiness is evident by oscillating lift and drag coefficient, in addition to observed changes
regarding time series of flow parameters appearing in the wake of the spheroid. Time series
of velocity and vorticity are presented in appendix D at Re = 250, 300 and 500. This section
presents flow visualization results in terms of pressure contours, velocity vectors and vortex
structures in the wake region.

Pressure Distribution in the Near-Wake

The pressure distribution in the near-wake of the middle (x,y) and (x,z)-plane is illustrated in
figure 5.15 and 5.16, respectively. Each figure shows the resulting pressure for three different
Reynolds numbers, at an arbitrary time after the flow has reached a steady state. The regions
of lowest pressure are colored dark blue, whereas the maximum pressure areas are dark red.
Contour lines of constant pressure are drawn by steps of 0.05, in addition to contours at p =
±0.01, ±0.02, ±0.03 and ±0.04.

A distinct pressure maximum is observed close to the surface at the upstream half of the
spheroid, for all Re. The pressure maxima are caused by the decelerated flow and reveal the
location of the front stagnation point, aligned with the center of the prolate spheroid, y = z
= 0.

Further downstream, along with the surface of the spheroid, a minimum pressure point
is observed at each side in the minor plane, and close to each pole in the major plane. The
pressure minima in figure 5.15, seem to coincide with the regions of accelerated flow around
a circular cylinder, as described in section 1.1.2, suggested by Zdravkovich (1997).

Since the pressure difference between neighboring contour lines in figure 5.15 and 5.16 are
equal, it is possible to compare the pressure gradient by the distance between the contours.
Thus, for the upstream part of the flow -1.5 < x/D < 0, the pressure is seen to change equally
for Re = 250, 300 and 500. However, in the wake, for x/D > 0, both the pressure magnitude
and gradient are significantly changed for the three different Reynolds numbers. The figures
show that the regions of rapidly changing pressure, grow for increasing Re. Additionally, the
rate of change increases, seen by a reduced spacing between the contour lines. Therefore, the
resulting pressure distribution indicates an increased degree of chaotic flow for the highest
tested Reynolds number Re = 500.

For Re = 300 in figure 5.16(b), the pressure contours show a clear symmetry about z = 0,
in the middle (x,z)-plane. Consisting of a pressure minima pair located at x/D ≈ 1. The
symmetry features in the major plane are comparable to the observations in the wake of
a LR = 6 prolate spheroid at Re = 100. A similar pressure minima pair was observed by
El Khoury et al. (2012), in the very-near wake, caused by a pair of counter-rotating vortices.
It is therefore assumed that the present pressure minima of figure 5.16(b) correspond to a
similar pair of vortices. The symmetry features of the wake will be further investigated in
subsequent sections.
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Figure 5.15: Instantaneous pressure contours in the middle (x,y)-plane. Levels are by steps
of 0.05, in addition to contours at p = ±0.01, ±0.02, ±0.03 and ±0.04. (a) Re = 250; (b)
Re = 300; (c) Re = 500.
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Figure 5.16: Instantaneous pressure contours in the middle (x,z)-plane. Levels are by steps
of 0.05, in addition to contours at p = ±0.01, ±0.02, ±0.03 and ±0.04. (a) Re = 250; (b)
Re = 300; (c) Re = 500.
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Velocity Field in the Near-Wake

Figure 5.17 shows the resulting instantaneous velocity vectors in the middle (x,y) and (x,z)-
plane for three different Reynolds numbers. The vectors are scaled and colored according to
the velocity magnitude. Dark blue corresponds to zero fluid motion, and dark red to 1.16
m/s, which is somewhat higher than the inlet velocity, U∞ = 1 m/s.

Regions of accelerated flow are located close to the sides θ = ±90◦ and poles φ = ±90◦
of the spheroid in the (x,y) and (x,z)-plane, respectively. From x/D ≈ 0 onward, a band of
accelerated and displaced flow seems to embed the decelerated wake region. The dark red
velocity vectors continue downstream, to x/D ≈ 2, for all Re.

By studying the direction of the velocity vectors, it is seen that regions of circulating
flow, or vortices, appear in the near-wake. These areas are indicated by arrows forming
closed rings. For both the major and minor plane in figure 5.17 the upper vortex rotates
clockwise, whereas the lower rotates counterclockwise at all Re. Thus, the vortex rotates in
the same direction as the vorticity of the associated boundary layer.

All images of figure 5.17 are captured at the same instant as the pressure distribution in
the previous section. Thus, the relationship between the pressure and velocity field may be
found by comparing the corresponding figures. Thereof, the location of each vortex center
seems to coincide with a pressure minimum. These pressure minima are easiest to observe
for Re = 300 and 500, in figures 5.15(b,c) and 5.16(b,c), shown by blue regions encircled by
contour lines forming closed circles. For instance, in figure 5.15(b), two regions of minimum
pressure are located approximately at x/D = 1 and 1.5, indicating that one of the two vortices
is shed and has started to propagate downstream. The corresponding velocity field in figure
5.17(c) clearly shows a pair of vortices in the near-wake, with its center points coinciding
with each pressure minimum of figure 5.15(b).

To demonstrate temporal changes in the near-wake flow, time series of the velocity at
Re = 250, 300 and 500 are shown in appendix D.4, D.6 and D.8, respectively. For each
Reynolds number, the velocity vectors are presented in the middle (x,y) and (x,z)-plane
at five subsequent instants. A constant time step ∆t = 1.82D/U∞ is applied. The time
difference between each picture equals one quarter of the shedding period at Re = 300.
Thus, the periodic flow at Re = 300 is demonstrated, since the first and last picture of the
time series in appendix D.6 are identical. Between the first and last instant, a vortex in the
upper part of the minor plane is shed and a new vortex is formed in the near-wake as seen
in appendix D.6.

In figure 5.18, the shape of the wake is visualized by plotting the streamwise velocity,
u, in cross-sectional slices. The slices are located at three downstream locations, x/D = 1,
4 and 7. The coloring defines the magnitude of u. Dark blue areas indicate u ≤ 0.8 m/s,
and dark red u ≥ 1.0 m/s. Thus, the region of significantly disturbed flow is shaped by the
transition from blue to red. This way of visualizing the wake is inspired by El Khoury et al.
(2012), who revealed the axis switching phenomenon for a LR = 6 prolate spheroid, in a
similar fashion. The present results, depicted in figure 5.18 show that the shape of the wake
at x/D = 1 resembles the projected area of the prolate spheroid for all Re. However, at x/D
= 4 and 7, the outline of the wake is clearly changed. For the lowest Reynolds number Re =
250 in figure 5.18(b), the wake seems to loose its antisymmetric shape and attains a circular
cross-section at the two rightmost slices. Unlike Re = 250, the shape of the wake at Re =
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Figure 5.17: Instantaneous velocity vectors in the middle (x,y)-plane (left images) and middle
(x,z)-plane (right images). The vectors are colored according to the velocity magnitude,
defined by the associated color bar. (a,b) Re = 250; (c,d) Re = 300; (e,f) Re = 500.
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Figure 5.18: Plots of instantaneous streamwise velocity u. The velocity fields are shown by
cross-sectional slices at three downstream locations x/D = 1, 4 and 7. (a) Re = 300; (b) Re
= 250; (c) Re = 500.

300 and 500 maintain its antisymmetry. However, at x/D = 7 the major axis of the wake
is rotated 90◦ relative to the major axis of the spheroid. Therefore, an axis switching seems
to occur somewhere between x/D = 4 and x/D = 7. A Similar axis switching was found in
the wake of elliptical disks with aspect ratio LR = 3 at Re = 200, by Kiya and Abe (1999).
The authors suggest that the axis switching is caused by the vortex shedding. The observed
hairpin-shaped vortices had a greater growth rate in the minor plane compared with the
major. The reason for the present axis switching is investigated in the following section by
visualizing the vortex structures in the wake.

Vorticity and Vortical Structures of the Wake

In this section, the vorticity and vortical structures of the wake are first presented at the
second highest Reynolds number, Re = 300. Contours of the vorticity components ωx, ωy
and ωz are presented for both the major and minor plane, whereas the vortex structures of
the wake are illustrated by isosurfaces of constant λ2. After determining the relationship
between the vorticity contours and vortical structures, the λ2-definition is implemented for
the remaining Reynolds numbers, Re = 250 and 500.

Figure 5.19 depicts instantaneous vorticity contours at Re = 300 in the middle (x,y) and
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(x,z)-plane. The coloring of the figure is given by the magnitude of the respective vorticity
components. Red and green denote positive and negative values, respectively. Hence, repre-
senting fluid rotating in opposite directions. Regions of local maximum or minimum vorticity
are indicated by the contour lines forming closed rings.

Figures 5.19(a,b) show contours of streamwise and transverse vorticity in the middle
major plane. The figures seem to confirm the symmetry features of the flow as previously
suggested by the pressure distribution. The vorticity extrema are seen to emerge in pairs
with a symmetry line approximately at the mid-span, z/D = 0. However, each pair consists
of two counter-rotating vortices, indicated by the coloring.

Contours of transverse vorticity ωz plotted in figure 5.19(c) clearly show that the planar
symmetry is broken in the minor plane. Additionally, the width of the vortices in the minor
plane increases quickly for x/D > 4. At approximately 5.5D downstream of the prolate
spheroid, a point of maximum ωz is located at y/D ≈ -1.5. Further downstream, another
extremum is observed with its centre point at x/D ≈ 11, y/D ≈ -2. At the opposite side
of the wake, y/D > 0, the contour lines reach an outer point of y/D ≈ 1, at approximately
10D downstream. The suggested cause of the axis switching phenomenon by Kiya and Abe
(1999) of rapidly growing vortices in the minor plane, therefore seems to agree with the
present results.

Time series of the vorticity components plotted in a similar fashion as shown in figure
5.19 are presented in appendix D.7. A series of five successive instants are depicted with a
fixed time step equal to a quarter of the shedding period at Re = 300. The periodicity of
the flow is evident by the contours of ωz in the middle (x,y)-plane.

Figure 5.20 shows the resulting vortical structures in the wake at Re = 300 computed by
the λ2-definition. The wake is inspected by three different views. To be able to compare the
wake structures with the vorticity contours, the results are visualized at the corresponding
moment. The shedding of one-sided vortices is clearly illustrated by the perspective view in
figure 5.20(a). At a distance downstream of the recirculating region in the near-wake, the
vortex structure eventually rolls up and forms interconnected loops. These vortex structures
have the characteristic shape of a hairpin. Equally shaped vortices are seen to emerge in the
wake of similar bluff bodies as presented in section 1.1. One-sided and hairpin-shaped vortices
was also observed by Sakamoto and Haniu (1990) and Tomboulides and Orszag (2000) in
the wake of a sphere at Re = 300. For a prolate spheroid with LR = 6, El Khoury et al.
(2012) found that vortices are shed from Re = 100 onwards. However, in this case, the vortex
loops were found to have an alternate orientation. Similar double-sided and hairpin-shaped
vortices were seen in the wake of an elliptical disk with LR = 3 at Re = 200 by Kiya and
Abe (1999).

The top view in figure 5.20(c) confirms the planar symmetry in the middle (x,z)-plane, as
suggested in previous sections. A corresponding plane of symmetry aligned with the major
axis was reported by El Khoury et al. (2012). Even for an axisymmetric sphere, a plane of
symmetry for the unsteady wake at 300 < Re < 420 was observed in the experiments by
Sakamoto and Haniu (1990).

To demonstrate the relationship between the vorticity contours and computed vortical
structures, the two are combined in figure 5.21. Contours of streamwise vorticity at the
middle (x,z)-plane and transverse vorticity in the middle (x,y)-plane, are shown in figure
5.21(a) and 5.21(b), respectively. In the first figure, the vorticity extrema for ωx are seen
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Figure 5.19: Instantaneous vorticity contours at Re = 300. (a) ωx in the middle (x,z)-plane;
(b) ωy in the middle (x,z)-plane; (c) ωz in the middle (x,y)-plane.
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Figure 5.20: Vortical structures in the wake at Re = 300, visualized by the λ2-definition.
Isosurfaces are drawn for λ2 = 0.02. (a) perspective view; (b) side view, (x,y)-plane; (c) top
view (x,z)-plane.
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Figure 5.21: Vorticity contours plotted together with the vortical structures at Re = 300.
Positive vorticity contours are colored red, whereas green denotes negative vorticity. (a) ωx
in the middle (x,z)-plane; (b) ωz in the middle (x,y)-plane.

to coincide with the legs of the hairpin structures. The coloring illustrates that the swirling
motion in each leg rotates in opposite directions. Similarly, in figure 5.21(b) the regions of
maximum transverse vorticity overlap the top part of the two vortex loops at x/D ≈ 5.5 and
x/D ≈ 11.

Figure 5.22 illustrates the vortical structures at the two remaining Reynolds numbers, Re
= 250 and 500. Isosurfaces are computed for constant λ2. For the lowest Reynolds number,
the characteristic hairpin-shaped vortices as seen for Re = 300 are absent. Instead, a pair
of counter-rotating vortices twists around each other as they propagate downstream. For
comparison, Sheard et al. (2008) simulated the flow normal to a cylinder with hemispherical
ends with an aspect ratio LR = 1.04. Unlike the present study, the author found the wake
to be steady at Re = 250, consisting of two counter-rotating vortices extending downstream
as illustrated in figure 2.8 in section 2.3. The increased aspect ratio from LR = 1.04 to LR
= 4/3, therefore seems to introduce a clearly higher degree of unsteadiness.

In figure 5.22(b), at the highest tested Reynolds number Re = 500, it is seen that the
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Figure 5.22: Instantaneous vortical structures in the wake visualized by the λ2-definition.
(a) Re = 250; (b) Re = 500.

vortex structures of the wake maintains the familiar hairpin-shape as observed at Re = 300.
However, the loops are oppositely oriented, unlike the vortices of constant orientation at Re
= 300. This wake structure is closely related to the results by El Khoury et al. (2012) for a
LR = 6 prolate spheroid at Re = 100. For a visual comparison, the vortical structures by
El Khoury et al. (2012) are shown in figure 1.9 in section 1.1.4.

In a similar fashion as that of Re = 300, time series of the vorticity components are
plotted for Re = 250 and 500 in appendix D.5 and D.9, respectively. The time difference ∆t
= 1.82D/U∞ between each picture is equal to the time step applied for Re = 300. A periodic
flow behavior is suggested by a repeated pattern of vorticity at Re = 250. However, at Re
= 500 the contours of vorticity in the wake seem to develop randomly and no periodicity is
noticeable.
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Wake Fluctuations

A frequency analysis is performed for Re = 250, 300 and 500 by Fourier transforming a mea-
sured time series of the transverse velocity v. The velocity was sampled at two probes located
5.75D downstream of the prolate spheroid centre, at y = ±0.3D and z = 0. Corresponding
to probe 7 and probe 8, defined in section 4.6. The resulting time series of v are shown
in the leftmost images of figure 5.23. The vertical axis defines the y-coordinate normalized
by the diameter D. The data from probe 7 and probe 8 is shifted ±0.3D, respectively, to
avoid overlapping. The curves are therefore plotted to demonstrate velocity fluctuations and
possible periodicity, not magnitude. The right images of figure 5.23 show the resulting power
spectra from the Fourier transformation of v at probe 7 with the Strouhal number defined
on the horizontal axis. The dominant frequencies are marked by the corresponding St.

Figure 5.23(a) and 5.23(c) indicate a periodic wake flow for Re = 250 and 300 by a
steady and oscillating transverse velocity. Therefore, the resulting power spectra for the two
Re consists of few significant peaks. At Re = 250, a single peak for St = 0.107 is shown
in figure 5.23(b). At Re = 300, the power spectra contains a dominant peak at St = 0.137
which is somewhat higher than the Strouhal number at Re = 250. However, in this case, the
presence of a second frequency St2 = 0.259 is observed. As the Reynolds number reaches 500,
the periodicity of the transverse velocity is clearly broken, shown in figure 5.23(e). Thereof,
the resulting power spectra consists of several peaks. Although the flow at this Re is more
chaotic, a dominant peak is observed for St = 0.183, in addition to a lower and a higher
frequency of St1 = 0.092 and St2 = 0.259, respectively.

Compared with previously reported frequencies appearing in the wake of similar shaped
bodies, the present results agree well with the results of a sphere. At Re = 300 Johnson and
Patel (1999) found a dominant frequency at the exact same Strouhal number, St = 0.137.
Whereas Ploumhans et al. (2002) and Tomboulides and Orszag (2000) observed slightly lower
shedding frequencies of St = 0.135 and 0.136, respectively. By a frequency analysis of the
axial velocity component, Tomboulides and Orszag (2000) discovered a pronounced peak
at St = 0.167 at Re = 500. In addition, the authors discovered the existence of a lower
frequency at St = 0.045, which is in the same order of magnitude as the present St1 at the
same Re. However, Tomboulides and Orszag (2000) did not evaluate this frequency further.
The frequencies appearing in the wake of a LR = 6 prolate spheroid are investigated by
El Khoury et al. (2012) for 100 ≤ Re ≤ 300. For Re = 200 and 300, the author found
nearly identical Strouhal numbers, equal to St = 0.149 and 0.151, respectively. For the
highest tested Reynolds number Re = 300, additional lower and higher frequencies were
obtained, similar to the present results at Re = 500. El Khoury et al. (2012) suggest that
the appearance of several frequencies in the wake indicates a transitional flow regime, from
laminar to turbulent.
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Figure 5.23: Frequency analysis of the transverse velocity v for the unsteady wake. The
leftmost images show time series of velocity at two probe locations, and resulting Strouhal
number to the right. (a,b) Re = 250; (c,d) Re = 300; (e,f) Re = 500.
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Conclusions and Recommendations
for Further Work

6.1 Conclusions
Numerical simulations of the flow around a LR = 4/3 prolate spheroid in an infinite fluid
are performed for five different Reynolds numbers, Re = 100, 200, 250, 300 and 500. The
viscous and incompressible flow was computed by the CFD software OpenFOAM. From an
extensive grid dependency study at Re = 300, a grid consisting of 19 104 000 cells was found
sufficient. The domain extends 48D in the streamwise direction and 24D in the transverse
and spanwise directions. The numerical method was found to be stable for a constant time
step ∆t = 0.002D/U∞, corresponding to a maximum CFL-number well below unity over the
entire mesh.

Throughout the results section, the flow around the LR = 4/3 prolate spheroid are con-
tinuously compared with previously reported findings of similarly shaped bluff bodies. The
main intention was to relate the present results to the flow features appearing in the wake
of a sphere. The most striking discovery relating the two is the periodically shed one-sided
and hairpin-shaped vortices at Re = 300. The wake flow rolls up and forms interconnected
loops of swirling motion. A plane of symmetry is observed and aligned with the major axis
of the prolate spheroid. Even though an axisymmetric sphere has no preferred orientation of
the wake structures, the hairpin vortices are found to be shed with a constant orientation,
resulting in a similar planar symmetry. For both the LR = 4/3 prolate spheroid and the
reviewed results of a sphere, the symmetry features of the wake are lost at Re = 500. For the
highest tested Re the resulting vortex structures indicate a that the hairpin-shaped vortices
are shed with alternate orientation, similar to a LR = 6 prolate spheroid at Re ≥ 100 by
El Khoury et al. (2012). Correspondingly, at Re = 500, Tomboulides and Orszag (2000)
observed that the vortices are shed with a different and chaotic orientation without planar
symmetries.

By Fourier transforming a time series of transverse velocity in the wake at Re = 300
and 500, dominant frequencies were found for St = 0.137 and 0.183, respectively. For Re
= 300, the exact same Strouhal number was observed for a sphere by Tomboulides and
Orszag (2000). However, for a LR = 6 prolate spheroid and infinite cylinder, higher shedding
frequencies are previously reported by El Khoury et al. (2012) and Sumer and Fredsøe (1997)
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of St = 0.151 and 0.2, respectively. The findings suggest that vortices are shed with a higher
frequency as the aspect ratio LR is increased at Re = 300.

For the lowest Reynolds number tested Re = 100, the flow was found to be steady and
symmetric in the major and minor plane. A similar flow was found at Re = 200, but the
planar symmetry in the minor plane was lost. For the same two Reynolds numbers, the flow
around a sphere is steady. However, due to its circular cross-section the wake is axisymmetric.
The wake behind a sphere remains steady until a critical Reynolds number in the range 270
< Re < 300 is reached. The present study suggests an onset of unsteadiness in the range
200 < Re < 250. The critical Reynolds number is consistent with the experimentally found
Rec for a LR = 1.3 cylinder with hemispherical ends by Schouveiler and Provansal (2001).

An interesting discovery, relating the LR = 4/3 prolate spheroid to similar bluff bodies
with asymmetric cross-sections, is the axis switching phenomenon. At a distance between
4D and 7D downstream, the major axis of the wake is rotated and aligns with the minor
axis of the prolate spheroid. The described axis switching was observed for Re = 300 and
500 of the present study. A similar wake behavior was observed behind a LR = 6 prolate
spheroid with an axis switching at approximately 10D downstream at Re ≥ 100 (El Khoury
et al., 2012). However, for the unsteady flow at Re = 250, the asymmetry of the LR = 4/3
prolate spheroid wake is lost, and a circular cross-section is observed at a distance 4D and
7D downstream.

The resulting force coefficients of the present study confirm the close relationship to
the flow around a sphere. The mean drag coefficient at Re = 300, C ′

D = 0.664, deviates
only 1.22% and -2.78% from the numerically obtained C

′
D by Johnson and Patel (1999) and

Ploumhans et al. (2002), respectively.
Therefore, several flow features appearing in the wake of a sphere are maintained for the

low aspect ratio (LR = 4/3) prolate spheroid at the tested Re. However, the presence of
an asymmetric cross-section introduces similarities to the results of higher aspect ratio bluff
bodies, as the LR = 6 prolate spheroid.

6.2 Recommendations for Further Work
Because of no previously reported studies of the flow around a LR = 4/3 prolate spheroid, the
present work has been limited to low Reynolds number flow up to Re = 500 in an infinite fluid.
Therefore, compared with the flow around a full-scale fish farm, significant simplifications
are introduced. To increase the practical relevance, the following alterations are suggested:

Increase Reynolds number to simulate turbulent flow. The dimensions of the full-
scale model will induce turbulent flow behavior even at low current velocities. To
simulate a realistic wake flow, an appropriate turbulence model must, therefore, be
chosen.

Introduce a near wall boundary condition below the model to simulate a shallow
water condition. The presence of a rigid wall in the proximity of a cylinder has been
thoroughly studied, and found to affect both the flow and forces on it. Therefore, it is
of interest to investigate how the flow changes as the water depth decrease. This would
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also indicate possible depth limitations or preferences for the closed containment fish
cage.

Simulate a tandem configuration consisting of two identical prolate spheroids.
Regarding an entire fish farm, the flow is expected to be influenced by neighboring fish
cages. Therefore, the resulting hydrodynamic forces for a prolate spheroid placed in
the wake of an identical body are of interest.

Introduce a free surface to simulate the real level of submergence. According to
the developer Hauge Aqua (2016), 90 percent of the ”The-Egg” is supposed to be
submerged when operated. For a partly submerged body, the hydrodynamic forces will
also be caused by waves. Depending on the presence of waves for the full-scale fish
farm, the simulation of a free surface might be of relevance.

Validate the numerical findings by flow visualization experiments at corresponding
Reynolds numbers. For this purpose, a physical model of the present prolate spheroid
has been made with a diameter D = 40 mm.
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Appendix A

OpenFOAM Scripts

A.1 fvSchemes

1 /∗−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2 . 3 . 0 |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system ” ;
14 ob j e c t fvSchemes ;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 ddtSchemes
19 {
20 d e f a u l t Euler ;
21 }
22

23 gradSchemes
24 {
25 d e f a u l t Gauss l i n e a r ;
26 grad (p) Gauss l i n e a r ;
27 grad (U) Gauss l i n e a r ;
28 }
29

VII
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30 divSchemes
31 {
32 d e f a u l t none ;
33 div ( phi ,U) Gauss l i n e a r ;
34 div ( ( nuEff∗dev2 (T( grad (U) ) ) ) ) Gauss l i n e a r ;
35 }
36

37 l ap lac ianSchemes
38 {
39 d e f a u l t Gauss l i n e a r c o r r e c t e d ;
40 }
41

42 i n t e rpo la t i onSchemes
43 {
44 d e f a u l t l i n e a r ;
45 }
46

47 snGradSchemes
48 {
49 d e f a u l t c o r r e c t e d ;
50 }
51

52 f luxRequ i red
53 {
54 d e f a u l t no ;
55 p ;
56 }
57

58

59 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.2 fvSolution

1 /∗−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2 . 3 . 0 |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
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13 l o c a t i o n ” system ” ;
14 ob j e c t fvSchemes ;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 s o l v e r s
19 {
20 p
21 {
22 s o l v e r GAMG;
23 t o l e r a n c e 1e−06;
24 r e l T o l 0 . 0 5 ;
25 smoother GaussSe ide l ;
26 nPreSweeps 0 ;
27 nPostSweeps 2 ;
28 cacheAgglomeration on ;
29 agglomerator faceAreaPai r ;
30 nCe l l s InCoar s e s tLeve l 10 ;
31 mergeLevels 1 ;
32 }
33

34 pFinal
35 {
36 $p ;
37 t o l e r a n c e 1e−06;
38 r e l T o l 0 ;
39 }
40

41 U
42 {
43 s o l v e r PBiCG;
44 p r e c o n d i t i o n e r DILU ;
45 t o l e r a n c e 1e−05;
46 r e l T o l 0 ;
47 }
48 }
49

50 PISO
51 {
52 nCorrector s 2 ;
53 nNonOrthogonalCorrectors 1 ;
54 pRefCel l 0 ;
55 pRefValue 0 ;
56 }
57
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58 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.3 controlDict

1 /∗−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2 . 3 . 0 |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 l o c a t i o n ” system ” ;
14 ob j e c t fvSchemes ;
15 }
16 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
17

18 a p p l i c a t i o n pisoFoam ;
19

20 startFrom latestTime ;
21

22 // startTime 0 ;
23

24 stopAt endTime ;
25

26 endTime 4 1 8 . 6 ;
27

28 deltaT 0 . 0 0 4 ;
29

30 wr i teContro l t imeStep ;
31

32 w r i t e I n t e r v a l 455 ;
33

34 purgeWrite 0 ;
35

36 writeFormat a s c i i ;
37

38 w r i t e P r e c i s i o n 6 ;
39

40 writeCompress ion o f f ;
41
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42 timeFormat gene ra l ;
43

44 t imePrec i s i on 6 ;
45

46 runTimeModif iable f a l s e ;
47

48 f u n c t i o n s
49 {
50 f o r c e s
51 {
52 type f o r c e s ;
53 func t i onObjec tL ibs (” l i b f o r c e s . so ”) ;
54 o r i g i n (0 0 0) ;
55 CofR (0 0 0) ;
56 outputControl t imeStep ;
57 output In t e rva l 1 ;
58 patches ( sphero id ) ;
59 pName p ;
60 UName U;
61 rhoName rho In f ;
62 rho In f 1000 ;
63 magUInf 1 . 0 0 ;
64 l og t rue ;
65 l i f t D i r (0 1 0) ;
66 dragDir (1 0 0) ;
67 cofR (0 0 0) ;
68 pi tchAxis (0 0 1) ;
69 lRe f 2 ;
70 Aref 4 . 1 9 ;
71 }
72 f o r c e C o e f f s
73 {
74 type f o r c e C o e f f s ;
75 func t i onObjec tL ibs (” l i b f o r c e s . so ”) ;
76 o r i g i n (0 0 0) ;
77 CofR (0 0 0) ;
78 outputControl t imeStep ;
79 output In t e rva l 1 ;
80 patches ( sphero id ) ;
81 pName p ;
82 UName U;
83 rhoName rho In f ;
84 rho In f 1000 ;
85 magUInf 1 . 0 0 ;
86 l og t rue ;



APPENDIX A. OPENFOAM SCRIPTS XII

87 l i f t D i r (0 1 0) ;
88 dragDir (1 0 0) ;
89 cofR (0 0 0) ;
90 pi tchAxis (0 0 1) ;
91 lRe f 2 ;
92 Aref 4 . 1 9 ;
93 }
94 probes
95 {
96 func t i onObjec tL ibs ( ” l i b samp l ing . so ” ) ;
97 type probes ;
98 name probes ;
99 f i e l d s (

100 p
101 U
102 ) ;
103 probeLocat ions
104 (
105 ( 2 . 0 0 .4 0) // x = 1D, y = 0 .2D, z = 0
106 ( 2 . 0 −0.4 0) // x = 1D, y = −0.2D, z = 0
107 ( 2 . 0 0 .4 0 . 67 ) // x = 1D, y = 0 .2D, z = 0.33D
108 ( 2 . 0 −0.4 0 . 67 ) // x = 1D, y = −0.2D, z = 0.33D
109 ( 2 . 0 0 .4 −0.67) // x = 1D, y = 0 .2D, z = −0.33D
110 ( 2 . 0 −0.4 −0.67) // x = 1D, y = −0.2D, z = −0.33D
111 ( 11 . 5 0 .6 0) // x = 5.75D, y = 0 .3D, z = 0
112 ( 11 . 5 −0.6 0) // x = 5.75D, y = −0.3D, z = 0
113 ) ;
114 }
115 #inc lude ” wallBoundedStreamLines ”
116 }
117

118 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.4 WallBoundedStreamLines

1 /∗−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2 . 3 . 0 |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8

9 // I n t e r p o l a t e U to c r e a t e near−wal l UNear
10 near
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11 {
12 func t i onObjec tL ibs (” l i b f i e l d F u n c t i o n O b j e c t s . so ”) ;
13 type nearWal lF ie lds ;
14

15 outputControl outputTime ;
16

17 f i e l d s
18 (
19 (U UNear )
20 (p pNear )
21 ) ;
22

23 patches ( sphero id ) ; // Patches to sample
24

25 d i s t ance 0 . 0 0 5 ; // Radial d i s t anc e to sample
26 }
27

28 wallBoundedStreamLines
29 {
30

31 func t i onObjec tL ibs (” l i b f i e l d F u n c t i o n O b j e c t s . so ”) ;
32 type wallBoundedStreamLine ;
33

34 outputControl outputTime ;
35

36 setFormat vtk ;
37

38 UName UNear ; // Ve loc i ty f i e l d to use f o r t r a ck ing .
39

40 // I n t e r p o l a t i o n method .
41

42 trackForward true ;
43

44 i n te rpo la t ionScheme c e l l P o i n t ;
45

46 f i e l d s (p U UNear ) ;
47

48 l i f eT ime 100 ; // Steps p a r t i c l e s can t r a v e l b e f o r e
being removed

49

50 cloudName wal lBoundedPart ic leTracks ;
51

52 seedSampleSet patchSeed ; // Seeding method
53

54 uni formCoef f s
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55 {
56 type uniform ;
57 a x i s x ;
58

59 s t a r t (0 .0035 0 .0999 0 .0001) ;
60 end (0 .0035 0 .0999 0 .0099) ;
61 nPoints 20 ;
62 }
63 c l oudCoe f f s
64 {
65 type c loud ;
66 a x i s x ;
67 po in t s ((0 .351516548679288 −0.0116085375585099 1 . 24 ) )

;
68 }
69 patchSeedCoef f s
70 {
71 type patchSeed ;
72 patches ( sphero id ) ;
73 a x i s x ;
74 maxPoints 20000 ;
75 }
76 }
77

78 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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MATLAB Script

B.1 Frequency Analysis by a Fast Fourier Transforma-
tion

1 %%%%%%%%% POST−PROCESSING DATA FROM OPENFOAM %%%%%%%%%%
2 c l e a r a l l ;
3 c l o s e a l l ;
4

5 %%%%%%%%%%%%%% IMPORT PROBE DATA %%%%%%%%%%%%%%%%%%
6

7 %−−−−−−−−−− t = 0 − 400 s −−−−−−−−−−%
8 path = ’ / Users / St iannev /Documents/MATLAB/Master t h e s i s / g r id s tudy /

Re300/ domain s i ze / bigger 12D / pos tProce s s ing / probes /0 ’ ;
9 paths1 = path ;

10 %−−−−−−−−− Import v e l o c i t y −−−−−−−−−−%
11 f i d = fopen ( [ paths1 , ’ /U ’ ] , ’ r t ’ ) ;
12 A = text scan ( f id , ’%f (% f %f %f ) (% f %f %f ) (% f %f %f ) (% f %f %f )

(% f %f %f ) (% f %f %f ) (% f %f %f ) (% f %f %f ) ’ , ’ HeaderLines ’ , 10) ;
13 Length U = length (A{1 , 1} ( : , 1 ) ) ;
14 cut = 75000 : Length U ; % Cut f o r t = 300 − 400 s
15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
16

17 %%%%%%%%%%%%%% FREQUENCY ANALYSIS %%%%%%%%%%%%%%%%%
18

19 %−−−− FFT of the t r a n s v e r s e v e l o c i t y s i g n a l −−−−%
20 probenr = 7 ; % Looking at probe # n .
21 t r a n s v e l o c i t y = probe ve l ( cut , ( probenr+1)∗3) ’ ; % Transverse

v e l o c i t y component f o r probe # n .
22 n = length ( t r a n s v e l o c i t y ) ; % Length o f v e l o c i t y vec to r .
23 dt = 0 . 0 0 4 ; % Time step between each measured v e l o c i t y .
24 f s = 1/ dt ; % Sampling f requency .
25 t = ( 0 : ( n−1) ) / f s ; % Creates time vec to r .

XV
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26 o = pow2( nextpow2 (n) ) ; % Zero−pads the s i g n a l to g ive i t the
c l o s e s t power−of−two number o f sample po in t s .

27 y = f f t ( t r a n s v e l o c i t y , o ) ; % Four i e r t rans forms the s i g n a l .
28 f = ( 0 : ( o−1) ) ∗( f s /o ) ; % Computes the f requency vec to r a s s o c i a t e d

with the s i g n a l
29 power = y .∗ conj ( y ) /o ; % Computes the power spec t ra ( energy at

var i ous f r e q u e n c i e s ) by means o f the complex conjugate
30 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
31

32 %−−−− Plot the r e s u l t i n g power spec t ra −−−−%
33 f i g u r e
34 p lo t ( f ∗2 , power ) ; % Mult ip ly ing f requency by diameter o f sphero id (

D = 2) to get Strouha l number along x−a x i s . ( i n f l ow = 1m/ s )
35 s e t ( gca , ’ FontSize ’ , 14) ;
36 xlim ( [ 0 1 ] ) ;
37 ylim ( [ 0 4 3 ] ) ;
38 x l a b e l ( ’ St ’ ) ;
39 y l a b e l ( ’ Power ’ ) ;
40 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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Mesh Properties

C.1 checkMesh Results for the Final Grid

1 /∗−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2 . 3 . 0 |
5 | \\ / A nd | Web: www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
8 Build : v3.0+−e941ee6c15e9
9 Exec : checkMesh

10 Date : Nov 25 2016
11 Time : 13 : 48 : 39
12 Host : ” r3 i5n15 ”
13 PID : 7454
14 Case : /work/ s t i annev / g r id s tudy /Re300/ domain s i ze / bigger 12D
15 nProcs : 1
16 s igFpe : Enabling f l o a t i n g po int except ion trapping (FOAM SIGFPE) .
17 f i l e M o d i f i c a t i o n C h e c k i n g : Monitoring run−time modi f i ed f i l e s

us ing timeStampMaster
18 al lowSystemOperat ions : Al lowing user−supp l i ed system c a l l

ope ra t i on s
19

20 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
21 Create time
22

23 Create polyMesh f o r time = 0
24

25 Time = 0
26

27 Mesh s t a t s

XVII
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28 po in t s : 19317242
29 f a c e s : 57524600
30 i n t e r n a l f a c e s : 57099400
31 c e l l s : 19104000
32 f a c e s per c e l l : 6
33 boundary patches : 5
34 point zones : 0
35 f a c e zones : 0
36 c e l l zones : 0
37

38 Overa l l number o f c e l l s o f each type :
39 hexahedra : 19104000
40 prisms : 0
41 wedges : 0
42 pyramids : 0
43 t e t wedges : 0
44 t e t rahedra : 0
45 polyhedra : 0
46

47 Checking topology . . .
48 Boundary d e f i n i t i o n OK.
49 Ce l l to f a c e addre s s ing OK.
50 Point usage OK.
51 Upper t r i a n g u l a r o rde r ing OK.
52 Face v e r t i c e s OK.
53 Number o f r e g i o n s : 1 (OK) .
54

55 Checking patch topology f o r mul t ip ly connected s u r f a c e s . . .
56 Patch Faces Points Sur face topology
57 sphero id 55800 55802 ok ( c l o s e d s i n g l y

connected )
58 o u t l e t 48300 48741 ok ( non−c l o s e d s i n g l y

connected )
59 i n l e t 48300 48741 ok ( non−c l o s e d s i n g l y

connected )
60 topAndBottom 130200 131242 ok ( non−c l o s e d s i n g l y

connected )
61 frontAndBack 142600 143682 ok ( non−c l o s e d s i n g l y

connected )
62

63 Checking geometry . . .
64 Overa l l domain bounding box (−24 −24 −24) (72 24 24)
65 Mesh has 3 geometr ic ( non−empty/wedge ) d i r e c t i o n s (1 1 1)
66 Mesh has 3 s o l u t i o n ( non−empty ) d i r e c t i o n s (1 1 1)
67 Boundary openness (−1.21004e−14 −2.02728e−14 −3.41435e−15) OK.
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68 Max c e l l openness = 3.62322 e−16 OK.
69 Max aspect r a t i o = 8.82723 OK.
70 Minimum f a c e area = 7.35462 e−05. Maximum f a c e area = 0 . 49949 .

Face area magnitudes OK.
71 Min volume = 7.99913 e−07. Max volume = 0 .296547 . Total volume

= 221178. Ce l l volumes OK.
72 Mesh non−o r thogona l i t y Max : 55 .4075 average : 10 .1962
73 Non−o r thogona l i t y check OK.
74 Face pyramids OK.
75 Max skewness = 0.768401 OK.
76 Coupled po int l o c a t i o n match ( average 0) OK.
77

78 Mesh OK.
79

80 End
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D.1 Separation Lines

Figure D.1: Separation line along the span of the spheroid, visualized by streamwise velocity
(u) close to the spheroid surface. The blue and red coloring represent u ≤ −10−4 and
u ≥ 10−4, respectively. (a) Re = 100; (b) Re = 200; (c) Re = 250; (d) Re = 300; (e) Re =
500.
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D.2 Time series of Velocity at Re = 100

Figure D.2: Time series of the near velocity field in the middle minor plane (left images)
and middle major plane (right images). (a,b) t = t0; (c,d) t = t0 + 2.5D/U∞; (e,f) t = t0 +
5D/U∞.
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D.3 Time series of Velocity at Re = 200

Figure D.3: Time series of the near velocity field in the middle minor plane (left images) and
middle major plane (right images). (a,b) t = t0; (c,d) t = t0 + 1.82D/U∞; (e,f) t = t0 +
3.64D/U∞.
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D.4 Time Series of Velocity at Re = 250

Figure D.4: (Part 1 of 2) Time series of the near velocity field in the middle minor plane (left
images) and middle major plane (right images). (a,b) t = t0; (c,d) t = t0 + 1.82D/U∞; (e,f)
t = t0 + 3.64D/U∞.
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Figure D.5: (Part 2 of 2) Time series of the near velocity field in the middle minor plane
(left images) and middle major plane (right images). (a,b) t = t0 + 5.46D/U∞; (c,d) t = t0
+ 7.28D/U∞.
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D.5 Time Series of Vorticity at Re = 250

Figure D.6: Time series of streamwise vorticity ωx contours, in the middle (x,z)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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Figure D.7: Time series of transverse vorticity ωy contours, in the middle (x,z)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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Figure D.8: Time series of transverse vorticity ωz contours, in the middle (x,y)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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D.6 Time Series of Velocity at Re = 300

Figure D.9: (Part 1 of 2) Time series of the near velocity field in the middle minor plane (left
images) and middle major plane (right images). (a,b) t = t0; (c,d) t = t0 + 1.82D/U∞; (e,f)
t = t0 + 3.64D/U∞.
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Figure D.10: (Part 2 of 2) Time series of the near velocity field in the middle minor plane
(left images) and middle major plane (right images). (a,b) t = t0 + 5.46D/U∞; (c,d) t = t0
+ 7.28D/U∞.
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D.7 Time Series of Vorticity at Re = 300

Figure D.11: Time series of streamwise vorticity ωx contours, in the middle (x,z)-plane. (a)
t = t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0
+ 7.28D/U∞.
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Figure D.12: Time series of transverse vorticity ωy contours, in the middle (x,z)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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Figure D.13: Time series of transverse vorticity ωz contours, in the middle (x,y)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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D.8 Time Series of Velocity at Re = 500

Figure D.14: (Part 1 of 2) Time series of the near velocity field in the middle minor plane
(left images) and middle major plane (right images). (a,b) t = t0; (c,d) t = t0 + 1.82D/U∞;
(e,f) t = t0 + 3.64D/U∞.
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Figure D.15: (Part 2 of 2) Time series of the near velocity field in the middle minor plane
(left images) and middle major plane (right images). (a,b) t = t0 + 5.46D/U∞; (c,d) t = t0
+ 7.28D/U∞.
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D.9 Time Series of Vorticity at Re = 500

Figure D.16: Time series of streamwise vorticity ωx contours, in the middle (x,z)-plane. (a)
t = t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0
+ 7.28D/U∞.
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Figure D.17: Time series of transverse vorticity ωy contours, in the middle (x,z)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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Figure D.18: Time series of transverse vorticity ωz contours, in the middle (x,y)-plane. (a) t
= t0; (b) t = t0 + 1.82D/U∞; (c) t = t0 + 3.64D/U∞; (d) t = t0 + 5.46D/U∞; (e) t = t0 +
7.28D/U∞.
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