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Abstract 

This paper outlines a fast and accurate approach for calculation of the auto- and cross-spectral 
densities in the stochastic modelling of wave loads on floating bridges. For long-term response 
predictions used in extreme response assessment and fatigue design, the efficiency of this approach 
may prove valuable. An illustration of the approach is given for a pontoon type floating bridge, and 
the performance is compared with the traditional computation method. The gain in computational 
effort is seen to increase with increasing bridge length. 
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1 Introduction 

New technologies for crossing wide and deep fjords 
are currently focused upon in Norway, especially in 
connection with the Norwegian Public Roads 
Administration project “Coastal Highway Route 
E39”. In order to facilitate the design of cost-
efficient and reliable fjord crossing structures, the 
development of robust and fast methods for 
calculating environmental loads is important. The 
subject of the present paper is computation of the 
spectral characteristics for the wave loads acting 
on pontoon bridges. This is an important input for 
dynamic analysis of floating bridges both in time 
and frequency domain [1, 2]. Especially for long-
term response predictions, efficiency is vital [3]. 

This paper outlines new formulations for 
calculation of the auto- and cross-spectral densities 

in relation to the stochastic modelling of wave 
loads. Auto- and cross-spectral densities are 
generally expressed in terms of an integral that 
traditionally has been computed using numerical 
quadrature. For this straightforward approach, the 
computational effort increases with increasing 
distance between the pontoons due to rapid 
oscillation of the relevant analytical functions. The 
new approach avoids this effect of increasing 
computational efforts by a reformulation of the 
basic expressions. 

An application of the approach is demonstrated in 
relation to a pontoon bridge, and the performance 
is compared with the more traditional method. The 
gain in computational effort (as compared to the 
traditional method) is seen to increase when the 
number of pontoons increases and when the 
distance between the pontoons increases. 
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2 Stochastic modelling of waves and 
wave loads 

2.1 Stochastic modelling of waves 

A common approach when modelling wind-
generated waves for engineering purposes is to 
assume that the sea elevation is a homogeneous 
and stationary stochastic process [4]. The sea 
elevation at the point (𝑥, 𝑦) at time 𝑡, denoted 
𝜂(𝑥, 𝑦, 𝑡), is then written as 

𝜂(𝑥, 𝑦, 𝑡) = ∫ 𝑒𝑖𝜔𝑡−𝑖𝜿∙[𝑥,𝑦]𝑑𝐵(𝜿, 𝜔)
∞

−∞
,   (1) 

where 𝜿 = [𝜅 cos 𝜃 , 𝜅 sin 𝜃] is the wave number 
vector, 𝜔 is the angular frequency and 𝐵(𝜿, 𝜔) is 
the spectral process associated with the wave 
elevation. Assuming linear wave theory, the 
dispersion relation 𝜔2 = 𝜅𝑔 tanh(𝜅𝑑) provides a 
one-to-one mapping between the frequency and 
the wave number, and we may write the wave 
number 𝜅(𝜔) as a function of 𝜔. 

Under these assumptions the cross-spectral 
density between the wave elevation at two points 
(𝑥𝑚, 𝑦𝑚) and (𝑥𝑛, 𝑦𝑛) can be expressed as 

𝑆𝑚𝑛(𝜔) = 𝑆𝜂𝜂(𝜔) ∫ Ψ(𝜃, 𝜔)
𝜋

−𝜋

 

𝑒−𝑖𝜅(𝜔)(Δ𝑥 cos 𝜃+Δ𝑦 sin 𝜃)𝑑𝜃, 

(2) 

where Δ𝑥 = 𝑥𝑚 − 𝑥𝑛 and Δ𝑦 = 𝑦𝑚 − 𝑦𝑛. 𝑆𝜂𝜂(𝜔) 

is the one-dimensional spectral density and 
Ψ(𝜃, 𝜔) is the spreading function. Various 
theoretical models for 𝑆𝜂𝜂(𝜔) and Ψ(𝜃, 𝜔) are 

available in the literature [5, 6]. The cross-spectral 
densities are important in engineering applications 
because they fully describe the second order 
statistics of the stochastic process. 

2.2 Stochastic modelling of wave loads 

2.2.1 Wave excitation forces on a pontoon 

Consider a pontoon with a local coordinate system 
(�̃�, �̃�), which is located with its origin at the point 
(𝑥0, 𝑦0) and rotated counterclockwise with an 
angle 𝛼0 relative to the global coordinate system 

(𝑥, 𝑦) as shown in Figure 1. Thus (𝑥0, 𝑦0) and 𝛼0 
specifies the location and orientation of the 
pontoon. With this definition, the global and local 
coordinates are related by 

[
𝑥
𝑦] = [

𝑥0 + �̃� cos 𝛼0 − �̃� sin 𝛼0

𝑦0 + �̃� sin 𝛼0 + �̃� cos 𝛼0
].   (3) 

 

Figure 1. Local coordinate system of a pontoon. 

Within the framework of linear potential theory, 
the hydrodynamic forces acting on a body of 
arbitrary shape can be computed using a panel 
method as implemented in software such as 
WADAM [7]. The wave excitation forces are then 
reported in terms of the complex transfer function 
from the wave elevation to the wave load. This 
means that for a regular incident wave of 
amplitude 𝐴 given in local coordinates by 

𝜂(�̃�, �̃�, 𝑡) = 𝐴𝑒𝑖𝜔𝑡−𝑖𝜅(�̃� cos �̃�+�̃� sin �̃�), (4) 

the forces and moments due to this wave can  be 

expressed as 𝐴𝒇0(�̃�, 𝜔)𝑒𝑖𝜔𝑡, where 𝒇0(�̃�, 𝜔) is the 

complex transfer function. Here �̃� is the wave 
propagation direction given as the angle relative to 
the �̃�-axis, see Figure 1. 

The vector 𝒇0(�̃�, 𝜔) contains six components, the 
transfer functions for three forces and three 
moments. Figure 2 shows an example of a transfer 
function for the force in the sway-direction, i.e. the 
force along the �̃�-axis. 
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Figure 2. The transfer function for the sway force (�̃�-direction) on one pontoon, given by its real part (left) 
and imaginary part (right).

Because linear wave theory is assumed, the load 
due to the irregular wave (1) can be found by 
superposition. Specifically we have that the 
stochastic wave load is given by 

𝒒0(𝑡) = ∫ 𝒇0(𝜃 − 𝛼0, 𝜔)
∞

−∞

 

𝑒𝑖𝜔𝑡−𝑖𝜿∙[𝑥0,𝑦0]𝑑𝐵(𝜿, 𝜔).   

(5) 

2.2.2 Cross-spectral densities 

We now consider the wave excitation loads on the 
Bergsøysund floating bridge located on the north-
west coast of Norway. This is a pontoon type 
floating bridge with seven pontoons. The pontoons 
are located at points (𝑥1, 𝑦1), (𝑥2, 𝑦2), …, (𝑥7, 𝑦7), 
with orientation angles 𝛼1, 𝛼2, …, 𝛼7 relative to the 
global 𝑥-axis, as illustrated in Figure 3. We assume 
that the pontoons are far enough apart so that 
interaction effects can be neglected. 

Now the wave loads acting on each pontoon can be 
expressed as in (5), and the load vector for the 

whole bridge is defined by 𝒒 = [𝒒1
𝑇 , 𝒒2

𝑇 , … , 𝒒7
𝑇]𝑇. 

Because each pontoon is loaded in six degrees of 
freedom (dofs), the total number of dofs for the 
bridge will be 7 ∙ 6 = 42. Assigning to each dof an 
index 𝜇 ∈ {1,2, … ,42}, the individual components 
of the load vector 𝒒 can be denoted by  𝑞𝜇. Using 

the expression (5) for the loads, the cross-spectral 
density between the loads 𝑞𝜇 and 𝑞𝜈 is given by 

𝑆𝑞𝜇𝑞𝜈
(𝜔)

𝑆𝜂𝜂(𝜔)
= ∫ Ψ(𝜃, 𝜔)𝑓𝜇(𝜃 − 𝛼𝑚, 𝜔)

𝜋

−𝜋

 

𝑓𝜈(𝜃 − 𝛼𝑛, 𝜔)𝑒−𝑖𝜅(𝜔)(Δ𝑥 cos 𝜃+Δ𝑦 sin 𝜃)𝑑𝜃. 

(6) 

The index 𝑚 is the pontoon number corresponding 
to the global dof 𝜇, and is given by 𝑚 = ⌈𝜇 6⁄ ⌉, 
where ⌈∙⌉ denotes the ceiling function. Similarly 
𝑛 = ⌈𝜈 6⁄ ⌉. 

 



19th IABSE Congress Stockholm 2016 
Challenges in Design and Construction of an Innovative and Sustainable Built Environment 

4 

 

Figure 3. Pontoon locations and orientations for the Bergsøysund floating bridge.

 

3 Series expansion solution 

The integral (6) for the cross-spectral densities has 
traditionally been calculated using numerical 
integration. In this paper, however, we pursue an 
exact solution in terms of a series expansion. 

3.1 Solving the integral 

If the factor Ψ(𝜃, 𝜔)𝑓𝜇(𝜃 − 𝛼𝑚, 𝜔)𝑓𝜈(𝜃 − 𝛼𝑛, 𝜔) is 

written as a Fourier series in 𝜃, the integral (6) can 
be solved in terms of Bessel functions using the 
approach found in Section 7.2.1 of [8]. If we have 
that 

Ψ(𝜃, 𝜔)𝑓𝜇(𝜃 − 𝛼𝑚, 𝜔)𝑓𝜈(𝜃 − 𝛼𝑛, 𝜔) = 

∑ 𝐶𝑘
𝜇𝜈(𝜔)∞

𝑘=−∞ 𝑒𝑖𝑘𝜃, 
(7) 

the integral (6) can be expressed as 

𝑆𝑞𝜇𝑞𝜈
(𝜔)

𝑆𝜂𝜂(𝜔)
= 

∫ ∑ 𝐶𝑘
𝜇𝜈(𝜔)

∞

𝑘=−∞

𝑒𝑖𝑘𝜃
𝜋

−𝜋

𝑒𝑖𝜅(𝜔)𝐿 cos(𝜃+𝛽)𝑑𝜃, 

(8) 

where 𝐿 = √Δ𝑥2 + Δ𝑦2, 𝛽 = 𝜋 − atan2(Δ𝑦, Δ𝑥), 
and atan2(Δ𝑦, Δ𝑥) is the generalization of 
arctan(Δ𝑦 Δ𝑥⁄ ) that covers the entire circular 
range. Using known identities for Bessel functions 
the integral (8) can finally be solved term-by-term, 
giving 

𝑆𝑞𝜇𝑞𝜈
(𝜔)

𝑆𝜂𝜂(𝜔)
 

= 2𝜋 ∑ 𝐶𝑘
𝜇𝜈(𝜔)𝑖𝑘𝑒−𝑖𝑘𝛽𝐽𝑘(𝜅(𝜔)𝐿)

∞

𝑘=−∞

, 

(9) 

where 𝐽𝑘(∙) denotes the Bessel function of the first 
kind with integer order 𝑘. 

3.2 Obtaining the Fourier coefficients 

𝑪𝒌
𝝁𝝂(𝝎) 

The transfer functions 𝑓𝜇(�̃�, 𝜔) are usually known 

only by their values at a finite number 𝑁�̃� of 

heading angles �̃�, which we assume are evenly 
distributed in the interval [0,2𝜋). For our purpose, 
it is convenient to define the transfer functions 
using trigonometric interpolation, which means 
that they can be written as 

𝑓𝜇(�̃�, 𝜔) = ∑ 𝑎𝑘
𝜇(𝜔)𝑒𝑖𝑘�̃�𝑁𝑓

𝑘=−𝑁𝑓
, (10) 

where the coefficients 𝑎𝑘
𝜇(𝜔) can be computed 

using the fast Fourier transform (FFT), and 𝑁𝑓 =

⌊𝑁�̃� 2⁄ ⌋. With transfer functions given by (10) we 

have that 

𝑓𝜇(𝜃 − 𝛼𝑚, 𝜔) 

= ∑ (𝑒−𝑖𝑘𝛼𝑚𝑎𝑘
𝜇(𝜔)) 𝑒𝑖𝑘𝜃𝑁𝑓

𝑘=−𝑁𝑓
 , 

𝑓𝜈(𝜃 − 𝛼𝑛, 𝜔) 

= ∑ (𝑒𝑖𝑘𝛼𝑛𝑎−𝑘
𝜈 (𝜔)) 𝑒𝑖𝑘𝜃𝑁𝑓

𝑘=−𝑁𝑓
. 

(11) 
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It can be shown that the Fourier coefficients of a 
product are given by the convolution between the 
Fourier coefficients of the factors. Thus we have 

𝑓𝜇(𝜃 − 𝛼𝑚, 𝜔)𝑓𝜈(𝜃 − 𝛼𝑛, 𝜔) = 

∑ 𝐴𝑘
𝜇𝜈(𝜔)

2𝑁𝑓

𝑘=−2𝑁𝑓
𝑒𝑖𝑘𝜃, 

(12) 

where 𝐴𝑘
𝜇𝜈(𝜔) is computed by taking the 

convolution between the coefficients 

{𝑒−𝑖𝑘𝛼𝑚𝑎𝑘
𝜇(𝜔)}

𝑘=−𝑁𝑓

𝑁𝑓
 and {𝑒𝑖𝑘𝛼𝑛𝑎−𝑘

𝜈 (𝜔)}
𝑘=−𝑁𝑓

𝑁𝑓
. 

Finally, assuming the spreading function is known 
by its Fourier coefficients as 

Ψ(𝜃, 𝜔) = ∑ 𝑐𝑘(𝜔)𝑒𝑖𝑘𝜃

∞

𝑘=−∞

, (13) 

the Fourier coefficients 𝐶𝑘
𝜇𝜈(𝜔) in (7) are given by 

the convolution between {𝑐𝑘(𝜔)}𝑘=−∞
∞  and 

{𝐴𝑘
𝜇𝜈(𝜔)}

𝑘=−2𝑁𝑓

2𝑁𝑓 , i.e. 

𝐶𝑘
𝜇𝜈(𝜔) = ∑ 𝐴𝑟

𝜇𝜈(𝜔)𝑐𝑘−𝑟(𝜔)

2𝑁𝑓

𝑟=−2𝑁𝑓

. (14) 

3.3 Auto-spectral density and complex 
coherency 

For the cross-spectral densities between loads at 
the same pontoon we have that 𝑚 = 𝑛, which 
means that 𝐿 = 0. For the Bessel functions we have 
that 𝐽𝑘(0) = 0 for any integer 𝑘, with the 
exception 𝐽0(0) = 1. If we use this in the formula 
(9), we obtain 

𝑆𝑞𝜇𝑞𝜈
(𝜔) = 2𝜋𝑆𝜂𝜂(𝜔)𝐶0

𝜇𝜈(𝜔), (15) 

which holds whenever 𝜇 and 𝜈 are dofs on the 
same pontoon. This can be expressed as ⌈𝜇 6⁄ ⌉ =
⌈𝜈 6⁄ ⌉. In particular, when 𝜇 = 𝜈, (15) gives an 
expression for the auto-spectral density: 

𝑆𝑞𝜇𝑞𝜇
(𝜔) = 2𝜋𝑆𝜂𝜂(𝜔)𝐶0

𝜇𝜇(𝜔). (16) 

Using the formulas (15) and (16) will reduce the 
computation time, since only the coefficient 

𝐶0
𝜇𝜈(𝜔) needs to be calculated. 

The complex coherency is defined as 

𝛾𝑞𝜇𝑞𝜈
(𝜔) =

𝑆𝑞𝜇𝑞𝜈
(𝜔)

√𝑆𝑞𝜇𝑞𝜇
(𝜔)√𝑆𝑞𝜈𝑞𝜈

(𝜔)
. (17) 

Inserting (9) and (16), we obtain the formula 

𝛾𝑞𝜇𝑞𝜈
(𝜔) 

= ∑
𝐶𝑘

𝜇𝜈(𝜔)𝑖𝑘𝑒−𝑖𝑘𝛽𝐽𝑘(𝜅(𝜔)𝐿)

√𝐶0
𝜇𝜇(𝜔)𝐶0

𝜈𝜈(𝜔)

∞

𝑘=−∞

. 
(18) 

The complex coherency is dimensionless, it 

satisfies |𝛾𝑞𝜇𝑞𝜈
(𝜔)| ≤ 1 and it will be independent 

of the one-dimensional spectral density 𝑆𝜂𝜂(𝜔). In 

computations, it is therefore reasonable to first 
calculate the complex coherencies by (18) and the 
auto-spectral densities by (16). The cross-spectral 
densities can then be obtained using (17) as 

𝑆𝑞𝜇𝑞𝜈
(𝜔) = √𝑆𝑞𝜇𝑞𝜇

(𝜔)𝛾𝑞𝜇𝑞𝜈
(𝜔)√𝑆𝑞𝜈𝑞𝜈

(𝜔). 

4 Model setup 

In order to calculate the auto- and cross-spectral 
densities, specific models for the spreading 
function Ψ(𝜃, 𝜔) and the one-dimensional spectral 
density 𝑆𝜂𝜂(𝜔) has to be chosen. Ideally, this 

should be done according to on-site measurements 
of the environmental conditions, but in this paper 
the choices are somewhat arbitrary since the 
purpose is to illustrate the computational method. 

4.1 Spreading function 

The most commonly used spreading function, and 
the one that is used here, is the cos-2s type 
spreading function. This is given by 

Ψ(𝜃, 𝜔) =
22𝑠Γ2(𝑠 + 1)

2𝜋Γ(2𝑠 + 1)
(cos2

𝜃 − �̅�

2
)

𝑠

, (19) 

where �̅� is the mean wave direction (relative to the 
global 𝑥-axis) and 𝑠 is the (possibly 𝜔-dependent) 
spreading parameter that determines the crest 
length of the waves. Figure 4 shows the spreading 
function for different values of 𝑠. Small values of 𝑠 
give significant wave contributions in almost all 
directions, resulting in short crested waves, 
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whereas large values of 𝑠 give contributions mainly 
in the mean wave direction, resulting in long 
crested waves. 

  

 

Figure 4. The cos-2s spreading function for 
different values of 𝑠. 

For the calculation of the Fourier coefficients 

𝐶𝑘
𝜇𝜈(𝜔), the spreading function should be given by 

its Fourier coefficients as in (13). It can be shown 
that for the cos-2s spreading function the Fourier 
coefficients are given by 

𝑐𝑘(𝜔) =
𝑒−𝑖𝑘�̅�Γ2(𝑠 + 1)

2𝜋Γ(𝑠 − 𝑘 + 1)Γ(𝑠 + 𝑘 + 1)
, (20) 

which holds for any positive real value 𝑠. 

 

  

 

Figure 5. The one-parameter Pierson-Moskowitz 
spectrum for different values of 𝐻𝑠. 

 

4.2 One-dimensional spectral density 

For the one-dimensional wave spectral density the 
one-parameter Pierson-Moskowitz spectrum [6] is 
used. The input parameter is the significant wave 
height 𝐻𝑠 = 4𝜎𝜂, where 𝜎𝜂 is the standard 

deviation of the wave elevation. Thus, the value 𝐻𝑠 
determines the severity of the sea state. Figure 5 
shows the wave spectrum for some values of 𝐻𝑠. 

5 Results 

All auto- and cross-spectral densities for the wave 
excitation load of the Bergsøysund floating bridge 
were calculated using the method described in 
Section 3. The series expansion (18) was used, 
including enough terms to make the complex 
coherencies 𝛾𝑞𝜇𝑞𝜈

(𝜔) exact within a tolerance of 

10−3. 

In applications, it is usually of interest to calculate 
the cross-spectral densities for a number of 
different sea states. It is therefore important to 

notice that the coefficients 𝐴𝑘
𝜇𝜈(𝜔) only depend on 

the structure, and not on the sea state. In addition, 
the complex coherency 𝛾𝑞𝜇𝑞𝜈

(𝜔) is independent of 

the one-dimensional spectral density. 

5.1 Calculated auto- and cross-spectral 
densities 

We now consider a sea state defined by a spreading 
𝑠 = 10, a mean wave direction �̅� = 𝜋 2⁄  (i.e. 
transverse to the bridge arch in the horizontal 
plane) and a significant wave height 𝐻𝑠 = 0,9 m.  

The auto-spectral density 𝑆𝑞20𝑞20
(𝜔) for the load in 

the sway direction (�̃�-direction) of pontoon 4 is 
shown in Figure 6 (left). From the auto-spectral 
density, the auto-covariance function 𝐶𝑞20𝑞20

(𝜏) =

E[𝑞20(𝑡 + 𝜏)𝑞20(𝑡)] is obtained by taking the 
Fourier transform. In particular, the variance of the 
load in this direction is obtained as the value 
𝐶𝑞20𝑞20

(0). 

Figure 7 (left) shows the cross-spectral density 
𝑆𝑞8𝑞20

(𝜔) between the loads in the sway directions 

of pontoon 2 and pontoon 4. In the same way as in 
Figure 6, the cross-covariance function 𝐶𝑞8𝑞20

(𝜏) =

E[𝑞8(𝑡 + 𝜏)𝑞20(𝑡)] is obtained by the Fourier 
transform. Now the value 𝐶𝑞8𝑞20

(0) gives the 

covariance of the respective loads. 
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Figure 6. The auto-spectral density 𝑆𝑞20𝑞20
(𝜔) (left) for the load in the sway direction (�̃�-direction) of 

pontoon 4, along with the corresponding auto-covariance function 𝐶𝑞20𝑞20
(𝜏) (right).

 

Figure 7. The cross-spectral density 𝑆𝑞8𝑞20
(𝜔) (left) between the loads in the sway directions of pontoon 2 

and pontoon 4, along with the corresponding cross-covariance function 𝐶𝑞8𝑞20
(𝜏) (right). 

 

Figure 8. The cross-spectral density 𝑆𝑞8𝑞20
(𝜔) as calculated by using the trapezoidal rule with 100 

integration points (left), along with the corresponding cross-covariance function (right).
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5.2 Comparison of performance 

Traditionally, the auto- and cross-spectral densities 
have been calculated by using the trapezoidal rule 
for numerical integration to solve the integral (6). 
This requires, however, great care with respect to 
the number of integration points that are used. The 
reason is that for large values of 𝜅(𝜔) and large 
distances Δ𝑥 or Δ𝑦, the complex exponential factor 

𝑒−𝑖𝜅(𝜔)(Δ𝑥 cos 𝜃+Δ𝑦 sin 𝜃) will oscillate very fast with 
respect to the integration variable 𝜃. This type of 
error is illustrated in Figure 8, where the cross-
spectral density 𝑆𝑞8𝑞20

(𝜔) is calculated using the 

trapezoidal rule with 100 integration points. When 
comparing with Figure 7, we see that large errors 
have been introduced for high frequencies, which 
in turn produce large errors for the cross-
covariance. When using the series expansion 
method from Section 3, this problem is avoided. 

The computation time for the calculations that 
must be repeated for different wave directions was 
recorded. When using the series expansion at 60 
frequencies, the time was 0,7 seconds. In 
comparison, when using numerical integration, the 
time was 1,9 seconds. The methods were also 
compared for a chained floating bridge [9] with 
pontoon arrangement as shown in Figure 9. This 
bridge has a length of almost 5 kilometres and has 
18 pontoons. In this case, the respective 
computation times were 5 seconds and 226 
seconds, revealing that the series expansion 
method is superior when the length of the bridge is 
large. 

 

Figure 9. Pontoon locations and orientations for 
the chained floating bridge. 

 

6 Conclusions 

A fast and accurate approach for calculation of the 
auto- and cross-spectral densities has been 
presented. The approach has been illustrated for a 
pontoon type floating bridge, and the performance 
relative to the traditional method was investigated. 
The new approach appears to outperform the 
traditional approach, both in accuracy and 
computational effort. Furthermore, the gain in 
computational effort is seen to increase with 
increasing bridge length. 
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