
Monte Carlo Simulations of Diffusion MRI
in Restricted Geometries

Ane Nordlie Johansen

Master of Science in Physics and Mathematics

Supervisor: Pål Erik Goa, IFY

Department of Physics

Submission date: March 2017

Norwegian University of Science and Technology

Summary
The main part of the thesis has been to implement an environment
in Matlab, suitable for simulating diffusion MRI. The implementation
consists of a simulation of self-diffusion, wall detection and interaction
for the diffusing particles, and of applying a gradient to generate the
MRI-signal. The part of the implementation that needed the most con-
sideration was the part including the possibility of using obstacles with
arbitrary shapes. The diffusion and wall interaction parts of the pro-
gram has been tested out quite thorough and seems to work satisfying.
The diffusion MRI signal is also tested, but should probably be inves-
tigated to some higher extent before trusting the results completely.

Sammendrag
Hoveddelen av oppgaven har vært å implementere et program i Mat-
lab, som egner seg til å simmulere diffusjons MRI. Implementeringen
best̊ar av simmulering av diffusjon ved hjelp av Monte Carlo metoder,
deteksjon av hindringer og kollisjons-interaksjon, og inkludering av gra-
dienter for å generere diffusjons-MRI-signalet. Den delen av imple-
menteringa som var mest arbeidskrevende var å inkludere muligheten
for deteksjon og kollisjon med hindere av variert fasong. Denne de-
len av programmet er mye testet, og ingen abnormalteter er oppdaget.
MRI-delen er ogs̊a testet, men ikke godt nok til å kunne brukes uten
ytterligere testing.

Contents

Contents

1 Introduction 1

2 Theory 3
2.1 Diffusion . 3
2.2 Magnetic Resonance Imaging 5
2.3 Reflection and Surface Detection 8

3 Method 11
3.1 Random Walk . 11
3.2 Detection and Interaction With Obstacles 12
3.3 Gradient and Signal . 15
3.4 Simulations . 16

4 Results 19
4.1 Random Walk . 19
4.2 Reflection Inside a Non-Spherical Obstacle 19
4.3 Pulsed Gradient on Free Diffusion 19
4.4 Spin Echo for Diffusion in Sphere 20
4.5 FID Signal for Diffusion in Sphere 27

5 Discussion and Conclusions 31
5.1 Performance and Execution Time 31
5.2 Random Walk and Obstacle Interaction 33
5.3 Signal and ADC . 33
5.4 Other . 34

CONTENTS

A Code 35

Bibliography 53

Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a widely used imaging technique
in clinical settings. MRI has the advantage of being suitable for dif-
ferentiating between soft tissues, and unlike many other imaging tech-
niques, it does not require exposure of high energy radiation [8]. Dif-
fusion MRI has existed since the 1980’s and uses self-diffusion of water
in the body/sample to probe the geometrical structure. This is pos-
sible because the geometrical structure influences the mobility of the
particles, and therefore the apparent diffusion coefficient, which influ-
ences the MRI-signal [9]. The benefit of this comes from the diffusing
particles’ sensitivity to the environment, making the apparent diffusion
coefficient sensitive to cell density and permeability [1].

For being able to access the benefits of diffusion MRI, the connection
between the diffusive behavior and the signal has to be known. This is a
complex connection, and much research has been done regarding this. A
method for doing this is simulating the diffusion and MRI-sequence for a
wide range of different environments and analyzing the resulting signal.
This may be done using Monte Carlo methods, which are methods
simulating statistical phenomenons using random numbers.

The purpose of this thesis is to establish an environment appropri-
ate for this kind of simulations. That is, using Monte Carlo methods
to implement a diffusion process, and add the possibility of including
obstacles to disrupt free diffusion. The obstacles interactions is imple-
mented with intentions of being able to use a large variety of different

1

2 CHAPTER 1. INTRODUCTION

shapes. The sequences needed for generating the MRI signal is also in-
cluded, together with calculations of the apparent diffusion coefficient.

Chapter 2

Theory

2.1 Diffusion

Free Diffusion

Diffusion is transport of particles, and will be present in a fluid even if
the fluid is in equilibrium. This is called Brownian motion and arises
from the fact that there is a high occurrence of collisions between the
particles in the fluid. This motion is described by the diffusion equation,
which may be derived using the continuity equation given by [4]

∂q

∂t
+∇ · j = k. (2.1)

Here, q is the concentration of the system in question, j is the flux in
or out of the system, and k is a source or sink term, and is zero in this
case. Including the diffusion coefficient D, a size closely related to a
fluids viscosity, and describing the degree of mobility for the particles
is done using Ficks law [3];

j = −D∇q. (2.2)

Substituting this into the continuity equation gives the diffusion equa-
tion

∂q

∂t
= D∇2q. (2.3)

3

4 CHAPTER 2. THEORY

This is a partial differential equation, and solving this for the case of
free diffusion results in the Green function given by [5]

G(r, r′, t) =
exp(−|r−r

′|2
4Dt)

(4πDt)d/2
. (2.4)

Here, r is the final position and r′ the initial position of a particle,
d is the dimension of the system and t is the time. From the Green
function, statistical moments describing the diffusion is found [5]. The
first moment is the expectation value of the particles position, and is
given by

〈r〉 = r′. (2.5)

The second moment gives the expectation value of the squared position

〈r2〉 = |r′|2 + 2dDt. (2.6)

From this one can see that the mean square displacement a particle has
moved during time t becomes

〈(r − r′)2〉 = 〈r2〉+ r′2 − 2r′〈r〉 = 2dDt. (2.7)

Non Free Diffusion

For non-free diffusion, that is, when the particles are either trapped in-
side something (restricted diffusion), surrounded by obstacles that they
may collide with (hindered diffusion), or a combination of these, the
diffusion coefficient will differ from the one discussed in the previous
section and have a time dependence (except in some limiting cases). By
investigating this new diffusion coefficient D(t) (for short time behav-
ior) one can in fact find characteristics for the environment the particle
is located in, such as shape and characteristic lengths [6] .

Analytical results for the time dependence of D(t) varies with re-
spect to the diffusion length relative to the characteristic lengths of the
surroundings, that is, it differs whether it is the long time behavior, the
short time behavior or somewhere in between, that is in question. This
may be explained by how each particle perceives the wall e.g. letting a
particle diffuse inside a sphere of radius R for a time much shorter than

2.2. MAGNETIC RESONANCE IMAGING 5

the time it would need to diffuse across the sphere, results in a case
where the particle does not see the wall on the other side. However, if
the particle diffuses for a much greater time, it will soon or later have
been reflected from all directions, this lead to a case where the particle
forgets its initial position. This long time limit leads to a time depen-
dent diffusion coefficient decreasing towards zero by 1

t . On the other
hand, if there are holes in the sphere wall for the particle to escape
through, making it connected with the outside, the diffusion coefficient
will not approach zero [6].

For both restricted diffusion and diffusion inside a connected obsta-
cle, the short time behavior of D(t) may be described by [6] [7]

D(t) = D0

(
1− k S

V
(D0t)

1/2
)

+O(D0t). (2.8)

Here k = 4
9
√
π

for pulsed gradient sequences and k = 32(2
√

2−1)
105
√
π

for

constant gradients (see next section). S
V is the surface to volume ratio,

and t is the diffusion time.

2.2 Magnetic Resonance Imaging

MRI uses the protons’ intrinsic property that it is a 1/2-spin particle.
Due to this a proton in an external magnetic field B0 has two avail-
able energy states ±µpB0, where µp is the magnitude of the protons
magnetic moment. When the spins have reached equilibrium in the
magnetic field, the lower energy state will be slightly more occupied,
leading to an resulting magnetization vector M . But, because the spins
are not in phase, M is static aligned with B0 and no signal is present.

The spin’s precession frequency is given by ω = −γB0 and is know
as the Larmor frequency, γ is the gyromagnetic ratio. To get the spins
to be in phase with each other, a radio frequency (RF) signal with this
exact frequency is applied. The fact that the spins are now precessing
in phase, means the magnetization vector are tilted away from B0 and
now rotates around this, and this rotating magnetization vector is the
MR signal. Keeping the RF-signal on for the time it takes M to reach
down to the plane perpendicular to B0 defines T1, which is an intrinsic
property of the material being scanned.

6 CHAPTER 2. THEORY

Contrasts in MRI are detected from differences in the time it takes
before the signal vanishes after the RF-signal are removed. In a T1-
weighted image it is the time for the magnetization vector to relax from
the plane perpendicular to B0 back to aligning with B0 (spin-lattice
relaxation) that is weighted, while for a T2-weighted image it is the
dephasing of the spins coherence in the plane (spin-spin relaxation)[8].

In a spin echo MR-sequence, another RF-signal is applied after let-
ting the spins dephase for a time say tse. This RF-signal is set to tilt
the magnetization vector 180◦, which results in an inversion of the de-
phasing caused by local magnetic field inhomogeneities [9]. In this way,
a signal echo appears at time tse after the 180◦ tilt. Without this sec-
ond RF-signal, no echo will occur, and the dephasing then results in a
signal called a free induction decay (FID).

Diffusion MRI

For a spin precessing with frequency ω, the phase at time t will be given
by φ = ωt + φ0, where φ0 is the phase at time t = 0, and in the MR-
sequence, this is the same for all spins at the moment the RF-signal is
turned off. Then, as mentioned in the previous section, the spins will
start to dephase. In diffusion MRI, a magnetic gradient with duration
δ is applied. This leads the spins at different locations to experience
slightly different magnetic field strengths, which leads to variation in
the frequencies and thus, dephasing. A time t = ∆ − δ after the first
gradient is ended, a new gradient is applied, this gradient has the same
duration and strength as the first one, but with opposite sign. So, if
a spin had been positioned at the exact same location from the first
gradient was applied, to the second gradient ended, the impact from
the second gradient will be inverting the impact from the first on, and
thereby the spins phase will be back at the initial state. But the spins
do not stay a the same position, they move around, and the more they
move, the more the gradients will lead to dephasing and signal loss.
The result is that the signal will decrease with increasing diffusion, and
therefore be dependent on the geometrical structure in the sample [6].
In a spin echo sequence the gradients are applied without sign change
because of the 180◦ tilt.

2.2. MAGNETIC RESONANCE IMAGING 7

For a spin assumed to be located at position x for a short time dt,
the phase change resulted from being exposed to a gradient Gx in the
x-direction is given by

φ(x) = −ω(x)dt = −γ(B0 +Gxx)dt. (2.9)

If the gradient duration is short, the spins movement δ may be ne-
glected, the phase change caused by the two gradients are then de-
scribed by

φ2 − φ1 = −γδ
[
B0 +Gxx1 −B0 −Gxx2

]
= −γδG(x2 − x1).

(2.10)

In this case, the total diffusion signal attenuation caused by a gradient
Gx is found by integrating over the spins’ movement and corresponding
phase change. This is done using the initial spin density ρ(xi), the
diffusion propagator P (xi, xf ,∆) (given by 2.4 for free diffusion) and
the attenuation corresponding to a spin’s movement from x1 to x2 given
by exp(−iγδGx(x2 − x1)). The expression for the attenuation E(q) =
S(q)/S0, where q = γδGx, S(q) is the signal and S0 is the signal in
absence of magnetic gradients, then becomes

E(q) =

∫∫
ρ(x1)P (x1, x2,∆)e−iq(x2−x1)dx1dx2. (2.11)

For free diffusion, this results in a Gaussian phase distribution

E(q) = e−q
2D∆. (2.12)

A generalization of this to include gradients with longer duration, in-
troduced by Stejskal-Tanner, is given by

E(b) = e−bD, (2.13)

where b is known as the b-value, and is given by b = (γδGx)2(∆− δ/3)
for a spin-echo sequence [9].

What size regarded as the diffusion time in a diffusion MRI-sequence
is somewhat ambiguously, ∆, ∆ + δ and ∆− δ/3 is used [11]. Though
it seems quite settled to use ∆− δ for the pulsed gradient cases.

8 CHAPTER 2. THEORY

High b-Values

For high b-values the signals behavior will greatly deviate from the
Gaussian form and singularities occurs. A complete analysis of this
is given in [10], here only the parameters and equations needed to
investigate if a signal fulfill this are cited.

Defining tD as the time needed to diffuse the distance R, that is
TD ≡ R2

D , and tC as the time the signal needs to dephase in the case
of no diffusion tc ≡ 1

γGR . Measuring the signal as a function of the

dimensionless parameter τ = t
tC

, the signal will depend on p given by

p =
tc
td

=
D

γGxR3
. (2.14)

In this way, decreasing p will lead to increased number of singularities.

2.3 Reflection and Surface Detection

Given a particle with initial position r and a constant velocity v, its
trajectory is described by r′ = r + vt. If a sphere of radius R is
present and centered in origin, the time it takes before the particle
hits the sphere wall is found by realizing that a collision happens at
the time when r′ lies on a distance R from the origin, i.e. R2 =
|r′|2. Substituting this into the equation for the particle trajectory and
solving for t gives the following equation for the collision time;

tc =
−r · v ±

√
(r · v)2 − v2(r2 −R2)

v2
. (2.15)

For intersection with a plane, the corresponding equation is given by
[14]:

tc =
(p− r) · n̂

v · n̂
(2.16)

Here p is a point in the plane, and n̂ is the unit normal. If the actual
obstacle is just a part of this plane, described by the corners of a lattice
face (squared or other), the following test can be used to check whether
the particle hits inside this face or not [13]

(pj − pi)× (rc − pi) · n̂ ≥ 0. (2.17)

2.3. REFLECTION AND SURFACE DETECTION 9

rc is here the point where the particle hits the plane, and pi is the
faces’ corners. Labeling the points counter clockwise from one side of
the face, gives clockwise labeling on the other side. This test is valid in
both cases, as long as the normal used is the one defined outwards to
the counter clockwise labeling side for both. This test has to be done
between all the corners, with cyclic permutation. When a particle
collides with a wall, resulting in an elastic collision, the new velocity
is given by mirroring the initial velocity vector around the outward
pointing surface normal in the collision point. From Fig. 2.1 it is easy
to see that the velocity after the collision is given by v′ = vxx̂ − vzẑ,
where vx and vz are the x- and z-components of the velocity before the
collision. This expression can be done independent of the coordinate
system recognizing vz as v ·n̂ and vx = |v||n̂| sin(θ) = |v×n̂|. Noticing
v × n̂ points in the negative y direction this is forced in the correct
direction by crossing it with −n̂. Following, the new velocity can be
expressed v′ = (v × n̂) × (−n̂) − (v · n̂)n̂. Using suffix notation [15]
and rearrange the double cross product may be simplified to

(v × n̂)× n̂ = εijk(v × n̂)jnk = εijkεjlmvlnmnk = εkijεjlmvlnmnk

= (δklδim − δkmδil)vlnmnk = vknink − vinknk
= (v · n̂)n̂− v.

(2.18)

Here ε is the alternating tensor and δij is the Kronecker delta. Now
substituting this into the expression for v′ gives

v′ = −((v · n̂)n̂− v)− (v · n̂)n̂ = v − 2(v · n̂)n̂. (2.19)

10 CHAPTER 2. THEORY

Figure 2.1: A particle with initial velocity v = vxx̂ + vzẑ is reflected
elastically by a plane overlapping the xy-plane.

Chapter 3

Method

The simulations are done using Matlab R2014a on a Linux cluster and
most of them are done in parallel using four workers. The input pa-
rameters are the diffusion coefficient D0, the gyromagnetic ratio γ, the
number of spins N , the gradient strengths G and the total simulation
time T or the gradient time specifications δ and ∆.

3.1 Random Walk

The Brownian motion is modeled using an uncorrelated and unbiased
random walk. That is, a random walk generated by letting the parti-
cle’s movement be determined by a sequence of uncorrelated steps with
equal probability for going in any direction. From the central limit
theorem one gets that the particle movement will lead to a Gaussian
with increasing time [2].

Using a Monte Carlo simulation, the random walk is implemented
directly in 3d, using a constant step size and a randomly chosen direc-
tion. This method leads to a Gaussian distribution due to the Central
Limit Theorem [12], and only requires two generated random numbers
per step, opposite to generating a random step length in three direc-
tions. The step size is given by dr =

√
6Ddt in accordance with Eq.2.7.

For the direction, the azimuthal angle φ is determined by a random
number between zero and 2π, while the polar angle θ is determined
by giving cos(θ) a random number on the interval (−1, 1). This comes

11

12 CHAPTER 3. METHOD

from the fact that the infinitesimal surface element for a sphere is given
by dS = d cos(θ)dφ, and is therefore the way of getting a random dis-
tribution over the sphere. It should be noted that the random number
generator used here is Matlab’s rand(). This function returns numbers
in an open interval, and for spherical coordinates it is only the az-
imuthal angle’s upper limit that should not be included in the interval.
Though, the results does not seem to be significantly affected.

3.2 Detection and Interaction With Obstacles

Wall Detection for Spherical Cell

To investigate the diffusive behavior of spins inside a spherical cell
with impermeable walls, a program is set up with a sphere of radius
R centered in origin. The wall detection is done by checking whether
the new position generated are more than a distance R from origin, if
so, the collision time tc is found by Eq.2.15. To avoid doing this check
for each step during the diffusion, the shortest distance between the
particles position and the sphere wall is found. Dividing this distance
on the step size gives the number of steps the particle can take before
a new collision check/distance calculation is necessary.

Detection of Grid Based Obstacles

This implementation is set up for handling particle interaction with
obstacles of various shapes. To achieve this, the obstacles have to be
defined by grids, and the grid points have to be sorted in a consistent
way, independent of shape. The choice of set up for these points are the
same design as Matlab’s function sphere(). That is, they are closed, and
defined by the equal sized matrices X, Y and Z, where each point in the
grid is defined by the vector X(i, j)x̂+Y (i, j)ŷ+Z(i, j)ẑ. All the grid
faces are squares, except at the top and bottom of the obstacle, where
they are triangles (see Fig. 3.1). For the grid indices (i,j), the first one
specifies the ”height” on the grid, the maximum and minimum of this
are at the end points of the obstacle i.e. the point where the triangles
in the top and bottom of the obstacle are connected. The second index
specifies the polar angle and here the minimum and maximum index

3.2. DETECTION AND INTERACTION WITH OBSTACLES 13

Figure 3.1: Overview over how the indices are sorted in matlab’s sphere
function, here called with input parameter 10.

overlaps, this is shown in Fig. 3.1. To check for wall interactions, a
function is implemented with the purpose of looking through all grid
points, identifying the indices belonging to the three or four grid points
that most likely belong to the nearest face, and sort these to be in
counter clockwise direction seen from outside the obstacle. The reason
this is not guaranteed to be the closest face is due to the possibility
of differences in the face sizes as shown in Fig. 3.2, and the sorting is
needed for the collision check as mentioned in the theory section (Eq.
2.17).

Having found this face, the collision check is done (this is describe
below). If the particle do not collide, another function is called, which
finds the indices defining all the neighboring faces to the original one.
If the face is a square there are eight neighbors, and if it is a trian-
gle the three neighboring squares and all the triangles on that side of
the obstacle are included. These neighboring points are also sorted in
counterclockwise direction, and the check for collision. Including this
neighbors are crucial for avoiding holes in the obstacle.

The function generating the collisions uses the three first grid points
to set up two vectors v1 and v2 from the first to the second point and
from the second to the third point respectively. Crossing this gives a
surface normal directed out from the obstacle. Then using that the
particle has velocity v = dr/dt, the collision time is computed using

14 CHAPTER 3. METHOD

Figure 3.2: An obstacle seen from above with all eight faces located in
the xy-plane. A particle (the black dot) lies above a triangular face on
the obstacle, so this is the closest face. The first grid point the function
will find is the blue diamond, and this belongs to the correct face, but
the next closest is the point marked with a blue star, and this does
not belong to that face. So is this case, the face found (fulfilled on the
figure with the two blue squares) would not be the one with nearest
location to the particle.

Eq.2.16.

Because n̂ appears both in the numerator and the denominator it
is not a problem that the normal is pointing out from the obstacle even
though the particle is inside. If tc is positive, and less than dt, the
particle will reach the plane defined by v1 and v2. If so, the program
checks if the particle actually hits the plane inside the face in question.
This is done using the test given by Eq.2.17, three tests for the triangles
and four for the squares. This test holds for particles reflecting both
on the inside and the outside of the obstacle because the normal is
pointing out from the obstacle in both cases, while the grid points is
seen to be in clockwise order for a particle inside and counterclockwise
from outside.

3.3. GRADIENT AND SIGNAL 15

Wall Interaction

The collision points are found letting the particle move with its original
velocity for the time tc and the reflection is done by mirroring this
velocity around the surface normal using 2.19. For the case inside the
sphere, the surface normal is given by a vector starting in the collision
point and pointing towards origin. For the grids one has to use the
outward pointing normal seen from the particles position, so before
computing the new velocity, the normal changes sign if n̂ · v > 0. The
new position is found by setting the length of the new velocity equal the
old, and let the spin move vtc + v′(dt− tc). Also, there is a while loop
allowing multiple collisions in one time step, in that case dt′ = dt− tc is
used instead of dt. This multiple collision check is important to avoid
significant errors [12].

Initializing Positions

To give the particles random initial positions inside the sphere, a ran-
dom number between zero and the sphere radius is generated together
with a random direction found in the same way as for the direction in
the random walk. A cylinder is used to test the case with grid based
obstacles, and for this, the initialization is done setting the z-position
by a random number between the minimum and maximum z-value,
while x and y is set between plus and minus the maximum radius (the
variation in radius comes from that the cylinder is set up by a grid so
it do have edges). Though, this may result in a position outside the
cylinder, so this is tested and new positions are generated until all the
particles are located inside the cylinder.

3.3 Gradient and Signal

Using the equations regarding diffusion MRI given in the theory sec-
tion, the phase shift of one particle located at position x during time
dt, and exposed to a gradient Gx is given by dφ = γdtGxx. In the im-
plementation, all x-positions are saved to an array during the random
walk, and when all positions for one particle are generated, all the phase
shifts are calculated. Simulating a FID signal corresponds to compute

16 CHAPTER 3. METHOD

the phase shift for all the x-positions using the same positive gradient.
A pulsed gradient spin echo sequence is achieved by using +Gx on the
first x-position, and −Gx on the last one. The constant gradient spin
echo comes from including the δ/dt first and last x-positions instead
of only the first and last one. The final phase for each particle is then
found by summing up all the phase shifts, and the total signal generated
from N particles is then calculated using

S =
N∑
i=1

eiφi . (3.1)

Several gradients, δ and ∆ are set in the same simulations. For the
time parameters this is done by only using fractions of the position
array for the shorter sequences. Further, the phases are saved in a
matrix keeping track of which parameters belonging to each signal.
The signal densities are found by taking the absolute values of these
results and normalized by dividing on the total number of particles.

3.4 Simulations

All the simulations are done using the time step dt = 0.001 ms, and the
gyromagnetic ratio for protons is given by γ = 2.675 ·108 rad/(Ts). For
the MR simulations the gradient strengths are mainly chosen to ensure
signals with b-values in the range 10 s/mm2 < b < 800 s/mm2, for the
pulsed gradient this means using values way too high to be relevant
in an actual MR-scan. Considering the evaluation of the results, the
b-values belonging to each signal are found using b = (γδGx)2(∆−δ/3),
and the ADC comes from solving Eq. 2.13 with respect to D. Using
Eq. 2.8 and plotting the ADCs as funcion of the square root of the
diffusion time t, the surface to volume ratio, and hence also the sphere
radius are found from the resulting slope.

Testing Free Diffusion and Gradient

The free random walk is tested with the diffusion coefficient D = 1
µm2/ms which is taken from [16], where it is used for modeling ex-
tracellular water. The total diffusion time is T = 100 ms, and the

3.4. SIMULATIONS 17

simulation is done for 10 000, 50 000, 100 000 and 400 000 particles.
The results are then compared to the statistical properties given in the
theory section. To ensure correct behavior in all directions separately,
histograms for the particle densities in the x-, y-, and z-direction are
compared with Eq. 2.4 in one dimension. This is also done because
it is tricky to get a nice histogram for the density in three dimensions
around origin due to the 1

r3
-factor appearing from the volume scaling

in the density calculation. To check the statistical properties of r, the
distribution of the final positions are compared with the expected curve
given by ρ(r)× r, here ρ(r) is the density function given by Eq. 2.4.

The signal/gradient-part of the program is tested by applying a
pulsed gradient to the free diffusion. 100 000 particles are set to dif-
fuse, varying the simulation time from 30 ms to 200 ms, and the gradi-
ent from 26434 mT/m to 610480 mT/m, using the diffusion coefficient
D0 = 1.65 µm2/ms.

Spin Echo Simulations of Spins Inside Sphere

Based on the results from the random walk, 100 000 particles are used
in the simulations. The environment is inside a sphere with radius 75
µm with impermeable walls. The intrinsic diffusion coefficient is set
to D0 = 1.65 µm2/ms. This situation is chosen in terms of being able
to compare the simulation results to the results given in [18], where
diffusion MR-measurements using a rutabaga where performed. Four
different setups for the spin echo sequences are used, pulsed gradient,
constant gradient with no break between the positive and the nega-
tive part, constant gradient with a 5 ms break, constant gradient with
varying gradient and break duration and one with a constant positive
gradient over the whole simulation time.

The pulsed gradient is given the duration δ = 0.001ms correspond-
ing to adding the gradient over only one time step, this is done to let
the gradient approach a Dirac delta function and gives T ' ∆. In this
case applying the gradient and adding up the phase is considerably less
time consuming than for the constant gradient. Therefore the number
of different diffusion times NT and gradient strengths NG is both high
for the pulsed gradient. For the constant gradient two simulations are
done, one with small NT and high NG, and one opposite. This was

18 CHAPTER 3. METHOD

done to get a decent amount of points both for the signal as a function
of b, and for the ADC.

For the case of both varying gradient duration and varying break
between the positive and negative gradient, δ and ∆ are chosen in terms
of being able to compare the results with the experimental results given
in [18].

FID Simulation of Spins Inside a Sphere

A FID simulation is done to investigate the behavior of the signal for
high b-values. This is only done for 10 000 particles due to the long
diffusion time (17500 ms) needed to achieve results easily compared
to [10] without changing the environment considered in the previous
section, and because of the high number of measurement points needed
to get a decent result around the singularities.

Chapter 4

Results

4.1 Random Walk

Fig. 4.1 shows the particle density after 100 ms, for 10 000, 50 000, 100
000 and 400 000 particles. They are compared to the probability density
in one dimension given by Eq. 2.4. In Fig. 4.2 the distribution of the
final positions is shown, and compared to the expected statistical curve
given by ρ(r) × r. The actual values for the mean position, standard
deviation and kurtosis, which is the fourth statistical moment, is given
in Table 4.1.

4.2 Reflection Inside a Non-Spherical
Obstacle

To test the reflection for the non-spherical obstacles, 10 particles are
set to diffuse inside and outside a cylinder, this is shown in Fig. 4.3.
As seen, the cylinders shape appears even when the cylinder itself is
not plotted.

4.3 Pulsed Gradient on Free Diffusion

Spins experiencing free diffusion are exposed to a pulsed gradient spin
echo sequence. The simulation includes 59 different gradient strengths

19

20 CHAPTER 4. RESULTS

(a) N = 10000 (b) N = 50000

(c) N = 100000 (d) N = 400000

Figure 4.1: Analytical (plottet) and numerical (scattered) particle den-
sity for N particles experiencing free diffusion, with total diffusion time
T = 100ms.

and 35 different simulation times, with maximum simulation time T =
200 ms. The normalized signal as function of b, for three different
diffusion times, are shown in Fig. 4.4. Calculating the ADC values
using Eq. 2.8 for b ≤ 800 s/mm2, and meaning over these gave the
diffusion coefficient D0 = (1.656± 0.005) µm2/ms.

4.4 Spin Echo for Diffusion in Sphere

Pulsed Gradient

The calculation for the pulsed gradient includes 35 different simulation
times with Tmin = 30 ms and Tmax = 200 ms, and 60 different gradi-
ent strengths with Gmin = 26434 mT/m and Gmax = 606434 mT/m.
Normalized signal and the logarithm of the signal as function of b, for
T = 30 ms, T = 125 ms and T = 200 ms are shown in Fig. 4.5. In
Fig. 4.6 the apparent diffusion coefficient is plotted as a function of

4.4. SPIN ECHO FOR DIFFUSION IN SPHERE 21

(a) N = 10000 (b) N = 50000

(c) N = 100000 (d) N = 400000

Figure 4.2: Analytical (plotted) and numerical (scattered) position dis-
tribution for N particles experiencing free diffusion, total diffusion time
T = 100ms.

the diffusion time ∆− δ/3. The results included are all the signal am-
plitudes associated with a b-value less than 800 s/mm2, that is 1125
points. Calculating the sphere radii from this gives the radii given in
Table 4.2. r = 72.1 µm and r = 72.5 µm including and not including
D0 respectively. Doing a rerun with the same parameters only chang-
ing the sphere radius to 85.0 µm gave r = 95.6 µm and r = 96.0 µm
respectively.

Constant Gradient

For both the constant gradient and the constant gradient with a 5 ms
break, two different simulations are done. One including simulation
times 30 ms, 100 ms and 200 ms, varying the gradient strength from
1 mT/m to 71 mT/m with steps of 2 mT/m, and one with gradient
strengths 1 mT/m, 30 mT/m and 71 mT/m, varying the simulation
time from 30 ms to 200 ms with a step of 5 ms.

22 CHAPTER 4. RESULTS

Mean Standard deviation Kurtosis

Analytical 0 14.14 3.00

N = 10K x -0.23 14.15 2.98

y 0.01 14.21 2.94

z -0.13 14.06 3.00

N = 50K x 0.01 14.14 3.00

y -0.00 14.13 3.03

z 0.00 14.06 2.99

N = 100K x 0.06 14.19 3.00

y 0.04 14.16 3.03

z 0.00 14.09 3.02

N = 400K x 0.01 14.17 3.01

y 0.01 14.15 3.01

z 0.01 14.11 3.00

Table 4.1: Mean value, standard deviation and kurtosis measured for
simulation of free diffusion for N particles, using total diffusion time
100 ms.

Not including D0 Including D0

R = 65 µm 55.0 55.3

R = 75 µm 72.1 72.5

R = 75 µm 73.0 73.4

R = 85 µm 95.6 96.0

Table 4.2: Radii in µm for the pulsed gradient simulations, calculated
from the ADC regression lines. ADC for simulation 1, 75 µm, is shown
in Fig. 4.6

4.4. SPIN ECHO FOR DIFFUSION IN SPHERE 23

(a) (b)

(c) (d)

Figure 4.3: Trajectory of 10 particles diffusing inside and around a
cylinder. In (a) and (b) the particles are placed with initial positions
inside the cylinder, while in (c) and (d) they are positioned right out-
side. In (c) a transparent version of the cylinder i added to increase
visibility.

Figure 4.4: Normalized signal as function of b is scattered for three
different simulation times, for the pulsed gradient case on free diffusion.
The plotted line is the Gaussian given in 2.13, where D is the intrinsic
diffusion coefficient used in the simulation.

24 CHAPTER 4. RESULTS

Figure 4.5: Normalized signal and logarithm of signal as function of b
for the pulsed gradient. Three different diffusion times are included.

Figure 4.6: Measurement points and resulting regression line for the
apparent diffusion coefficient as function of diffusion time for the pulsed
gradient simulation. The intrinsic diffusion coefficient D0 is scattered
with a black star.

4.4. SPIN ECHO FOR DIFFUSION IN SPHERE 25

Figure 4.7: Normalized signal and logarithm of signal for constant gra-
dient without break. Three different simulation times and gradient
varying from 1 mT/m to 71 mT/m. Scattered points are included to
clarify difference in distance between measurement points.

The signal and the logarithm of the signal for the three different
diffusion times are plotted in Fig.4.7 and Fig.4.8 for the first and second
case respectively. Using the results from the simulation with three
different gradient strengths gives the apparent diffusion coefficient plot
in Fig.4.9. The calculated radii for both cases, using Eq. 2.8 and the
regression lines from the ADC-plots is given in table 4.3. For gradients
without break

Varying δ and ∆

In Fig. 4.10 ln(S/S0) is plotted for both the simulated and the experi-
mental ([18]) data with the following values: δ = 7.8 ms, 21.8 ms, 26.8
ms and ∆ = 16.6 ms, 27.6 ms, 32.6 ms. These values corresponds to

26 CHAPTER 4. RESULTS

Diffusion time Without break With 5 ms break

∆− δ/3 65.9 , 68.0 63.0 Not including D0

71.9 , 74.1 70.8 Including D0

∆ 80.7 , 83.3 79.4 Not including D0

88.0 , 90.8 87.5 Including D0

∆ + δ 114.1 , 117.7 115.8 Not including D0

124.5 , 128.4 125.3 Including D0

Table 4.3: Radii in µm for the constant gradient simulations, calculated
from the ADC regression lines, for the 75 µm sphere. ADC for simula-
tion 1, is shown in Fig. 4.9. The calculations includes 40 measurement
points for the case without break, 41 points for the case with a 5 ms
break. The two values given for the no break case are from the two
separate simulations.

Diffusion time Without break With 5 ms break

∆− δ/3 82.6 , 74.1 78.4 Not including D0

89.9 , 81.2 87.9 Including D0

∆ 101.2 , 90.8 98.6 Not including D0

110.1 , 99.5 108.6 Including D0

∆ + δ 143.1 , 128.4 143.7 Not including D0

156.7 , 140.7 155.5 Including D0

Table 4.4: Radii in µm for the constant gradient simulations, calculated
from the ADC regression lines, for the 85 µm sphere. The calculations
includes 40 measurement points for the case without break, 41 points
for the case with a 5 ms break. The two values given for the no break
case are from the two separate simulations.

4.5. FID SIGNAL FOR DIFFUSION IN SPHERE 27

Figure 4.8: Signal and logarithm of signal for constant gradient with
5 ms break between the gradients. Three different simulation times
and gradient varying from 1 mT/m to 71 mT/m. Scattered points are
included to clarify difference in distance between measurement points.

the experimental echo times: 38 ms, 60 ms and 70 ms.

4.5 FID Signal for Diffusion in Sphere

The resulting logarithmic plot for the FID simulation is shown in Fig.
4.11 as a function of the dimensionless parameter τ , for three different
values of p.

28 CHAPTER 4. RESULTS

(a) Constant gradient without break.

(b) Constant gradient with 5 ms break.

Figure 4.9: Measurement points and resulting regression line for the
apparent diffusion coefficient as function of two different diffusion times,
D0 is included in the regression lines and D0 is scattered with a black
star.

4.5. FID SIGNAL FOR DIFFUSION IN SPHERE 29

Figure 4.10: Logarithmic plot of simulated and experimental signal.
The lines with the same color and scattering symbols corresponds to
the same δ and ∆, and the densest lines corresponds to the simulated
results.

Figure 4.11: FID signal plotted as function of the dimensionless pa-
rameter τ for hign b-values. Three different values for p (see Eq. 2.14)
are included; p1 = 0.05, p2 = 0.15 and p3 = 0.25.

Chapter 5

Discussion and Conclusions

5.1 Performance and Execution Time

For the particle diffusion in the sphere, it is the multiplication of the
gradient with the position vector and the summation of this that is
the most time-consuming part of the code. This means that for short
gradient durations like the pulsed gradient, the execution time is much
shorter than for a constant gradient with high duration. The case of
constant gradient with and without break, done in the same simulation
had an execution time of 10 hours, including three different gradients
and 35 different diffusion times, where the maximum diffusion time
was 200 ms. The pulsed gradient case had an execution time 3.7 hours,
and here 59 different gradients and 35 different diffusion times were
included.

For the cylinder case, the wall detection is a much more complex
process and unlike the sphere case, the collision check is done for each
step. It should be possible to include a requirement to avoid this, but
as the program is meant to work for a variation of obstacles this may
be a somewhat cumbersome affair. Also the walls here are defined by
the grid points, meaning normals from the planes to the particle have
to be found. Though, very similar code do already exits in the program
and may be reused for this. Concerning the execution time, this is way
higher than for the sphere, and the pulsed gradient simulation done for
10 000 particles with 5 different gradient strengths, 31 different diffusion

31

32 CHAPTER 5. DISCUSSION AND CONCLUSIONS

times and maximum diffusion time 50 ms needed 74 hours. Though,
investigating the utilization of the four workers during this execution,
it seems like this code for the moment have too much communication
with none parallelized parts, so improvements of this should be done.

As mentioned, the intentions were to make this work for a large
variation of shapes. It should be noted that exact criteria for the ob-
stacles are not set, but the most obvious one is that all grid faces should
have sides large compared to the particle step size. Sharp edges lead-
ing different sides of the obstacle to be spaced close together compared
to face size may also cause problems, this is due to the fact that the
particle only is tested for hitting one face with neighbors, and because
this face is chosen by the distance to its grid points and not to the
actual plane. From this, it might be a suggestion to rewrite the code
to generate all the normals from each face from the start, instead of
using the distances to the grid points. This would demand a bit more
calculations in the first part, but would probably simplify the process
of avoiding collision check for each step, and also allow for an even
bigger variation of obstacles. Anyhow, in introducing a new obstacle
to the program it would be sensible to run a test, plotting the particle
trajectory to ensure no holes are present, also one may want to always
save the final position for each particle to check this.

Using the Linux cluster for the simulation has been necessary due to
the possibility of screening the sessions, that said, only four worker are
used in the parallelizations and the cluster seems a bit slow, so it should
be possible to reduce the execution time quite a bit. In comparison
executing the same code both on the cluster and with an Intel CORE i5-
6200U, 2.4GHz CPU on a relatively new, but cheap, computer resulted
in an execution time being 815 sec on the cluster and 159 sec on the
PC, both without parallelization.

In conclusion, it should be possible to use this code for setting up a
more complex environment for a diffusion MRI simulation. The simples
case would be to put two obstacles inside or next to each other, and
in essence this would mean looping over each of the obstacles for the
collision check, though this has yet not been tested. For something
more complex than this, the need for including a check to avoid wall
detection in every diffusion step is crucial. Also, it may be a good idea

5.2. RANDOM WALK AND OBSTACLE INTERACTION 33

to include subvolumes as done in [17], here one avoids including all
obstacles in the wall detection by restrict the check to the subvolume
the spin in question is located in.

Finally, doing the implementations the main focus has been on
avoiding errors, little time has been used to improve the execution
time, so the possibility for improvements are absolutely present. Also,
managing to re-implement this code using fortran would probably be a
good way to decrease the execution time, but this would require quite
a big amount of work.

5.2 Random Walk and Obstacle Interaction

Considering the free random walk, the results given in Fig. 4.2 and
Fig. 4.1 indicates that the diffusion simulation in the implementation
works as it should. The plots are a decent tool to use when deciding
how many particles to include in a simulation, but remembering that
these plots are generated for a random walk with total diffusion time
100 ms are important. E.g for a 50 ms simulation, more than 50 000
particle should be included.

The wall detection and interaction also seem to be correct. The
implementation for the grid based obstacles are done only considering
the grid points, and not the shape, so choosing the cylinder as the test
obstacle was arbitrary. This shows that the interaction works for at
least angles of 90◦ and up. Saving the final position of each particle
was done for the long test run mentioned in the previous section, and
the maximum position og these was still inside the cylinder (centered
at the origin).

5.3 Signal and ADC

For the radii, it may at first glance look like at least some of the results
are quite decent. But it is important to be aware that Eq. 2.8 is only
valid for short time diffusion. In the derivation of this equation [6],
one uses that the fraction of particles that have seen the wall is given
the total surface area timed with the diffusion length. This means
the maximum diffusion length should be much smaller than the sphere

34 CHAPTER 5. DISCUSSION AND CONCLUSIONS

radii, and in the simulations done for this thesis, this fact seems to have
been somewhat neglected somewhere in between keeping the b-values
at a decent level and making sure the particles have no holes to escape
through. A rerun using shorter diffusion times was tried in the last
minute, but for these times some oscillations occur in the ADC-plots.
This probably means more particles should be included for simulations
considering short diffusion times.

Considering the ADC plots, all of them seem to have a tendency
change somewhere in the first half of the time range. This implies that
the ADC’s time dependence is dependent on the spin’s diffusion length
versus the size of the obstacle, as it should. Also, this implies that
computing D0 from the ADC results will give a more accurate result
than the regression does.

It should be noted that there may be a systematic error either in
the signal generation, or in the ADC calculations. This suspicion comes
from the fact that the calculated radii are as close to the actual radii as
they are, and that the expected ADC line for the correct time regime
has to have a smaller slope than this, resulting in a higher radius.

5.4 Other

Considering the results for high b-values, this seem to be quite correct
comparing with results given in [10]. Though, this run was mostly done
as an extra check for the signal generation, and further investigation of
the high b-value behavior is not done.

Appendix A

Code

Some excerpts and explanation of the code is included, some of the
code are unfortunately in lack of a decent amount of comments at the
moment.

The method for the random walk implementation is shown, this is for
one particle and K time steps.

1 %∗∗
2 d co s th e t a = 2∗ rand (1 , K) − 1 ;
3 d theta = acos (d co s th e t a) ;
4 d phi = 2∗ pi ∗ rand (1 , K) ;
5
6 x = cumsum([0 dr∗ s i n (d theta) .∗ cos (d phi)]) ;
7 y = cumsum([0 dr∗ s i n (d theta) .∗ s i n (d phi)]) ;
8 z = cumsum([0 dr∗ d co s th e t a]) ;
9 %∗∗

The function Get4ClosestDist() uses the particle’s position and the grid
matrices and finds the three or four pairs of indices belonging to the
face most likely to be nearest the particle, and return these in counter
clockwise direction seen from outside the obstacle.

1 %∗∗∗
2 %Returns the indexes be longing to square/ t r i an g l e in Obstacle [X,Y,Z]
3 %with gr id points nearest (x , y , z) .
4 %Gives out the points counterc lockwise from outs ide ob s t ac l e
5 %clockwise from ins ide ob s t ac l e
6 %∗∗∗
7 func t i on MinDist = Get4ClosestDist (x , y , z , X, Y, Z , ObsSize)
8
9 Shape = 0 ; %Shape = 0 => square

10 %Shape = 1 => t r i an g l e
11 %Shape = 2 or 3 => f i r s t : square or t r i an g l e
12 % then : t r i ang l e , top or bottom

35

36 APPENDIX A. CODE

13
14 %∗∗∗∗∗∗∗∗∗∗ I n i t i l i z i n g ∗∗∗∗∗∗∗∗∗∗
15 I n i t i a l I n d e x 1 = round (ObsSize /2) ;
16 I n i t i a l I n d e x 2 = In i t i a l I n d e x 1 + 1 ;
17
18 index1 1 = In i t i a l I n d e x 1 ;
19 index1 2 = In i t i a l I n d e x 1 ;
20 index2 1 = In i t i a l I n d e x 2 ;
21 index2 2 = In i t i a l I n d e x 2 ;
22
23 Dist1 = (X(In i t i a l I nd ex1 , I n i t i a l I n d e x 1) − x)ˆ2 + . . .
24 (Y(In i t i a l I nd ex1 , I n i t i a l I n d e x 1) − y)ˆ2 + . . .
25 (Z(I n i t i a l I nd ex1 , I n i t i a l I n d e x 1) − z)ˆ2 + 1 ;
26 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 %∗∗∗∗∗∗∗ Finds the c l o s e s t g r idpo in t ∗∗∗∗∗∗∗
28 f o r j = 1 : ObsSize
29 f o r k = 1 : ObsSize − 1
30 Dist = (X(j , k) − x)ˆ2 + . . .
31 (Y(j , k) − y)ˆ2 + . . .
32 (Z(j , k) − z)ˆ2 ;
33 i f Dist < Dist1
34 index1 1 = j ;
35 index1 2 = k ;
36 Dist1 = Dist ;
37 end
38 end
39 end
40 %∗∗
41 %∗∗∗∗∗∗ Find the c l o s e s t of the neighboring points ∗∗∗∗∗∗
42 I1 = index1 1 − 1 ;
43 I2 = index1 1 + 1 ;
44 I3 = index1 2 − 1 ;
45 I4 = index1 2 + 1 ;
46
47 i f index1 2 == 1
48 I3 = ObsSize − 1 ;
49 end
50
51 i f index1 1 == 1
52 Shape = 1 ;
53 index2 1 = 2 ;
54 I1 = index2 1 ;
55 end
56
57 i f index1 1 == ObsSize
58 Shape = 1 ;
59 index2 1 = ObsSize − 1 ;
60 I1 = index2 1 ;
61 end
62
63 i f index1 1 == 2
64 Shape = 2 ;
65 end
66 i f index1 1 == ObsSize − 1
67 Shape = 3 ;
68 end
69
70 i f Shape == 0
71 DistNeighbor1 = (X(I1 , index1 2) − x) . ˆ 2 + (Y(I1 , index1 2) − y) . ˆ 2 + . . .
72 (Z(I1 , index1 2) − z) . ˆ 2 ;
73 DistNeighbor2 = (X(I2 , index1 2) − x) . ˆ 2 + (Y(I2 , index1 2) − y) . ˆ 2 + . . .

37

74 (Z(I2 , index1 2) − z) . ˆ 2 ;
75 DistNeighbor3 = (X(index1 1 , I3) − x) . ˆ 2 + (Y(index1 1 , I3) − y) . ˆ 2 + . . .
76 (Z(index1 1 , I3) − z) . ˆ 2 ;
77 DistNeighbor4 = (X(index1 1 , I4) − x) . ˆ 2 + (Y(index1 1 , I4) − y) . ˆ 2 + . . .
78 (Z(index1 1 , I4) − z) . ˆ 2 ;
79 [M, I] = min ([DistNeighbor1 DistNeighbor2 DistNeighbor3 DistNeighbor4]) ;
80 i f I == 1
81 index2 1 = I1 ;
82 index2 2 = index1 2 ;
83 e l s e i f I == 2
84 index2 1 = I2 ;
85 index2 2 = index1 2 ;
86 e l s e i f I == 3
87 index2 1 = index1 1 ;
88 index2 2 = I3 ;
89 e l s e
90 index2 1 = index1 1 ;
91 index2 2 = I4 ;
92 end
93 e l s e i f Shape == 1
94 Dist = ze ro s (1 , ObsSize −1);
95 f o r k = 1 : ObsSize−1;
96 Dist (k) = (X(I1 , k) − x) . ˆ 2 + (Y(I1 , k) − y) . ˆ 2 + (Z(I1 , k) − z) . ˆ 2 ;
97 end
98 [M, I] = min (Dist) ;
99 index2 2 = I ;

100 e l s e i f Shape == 2
101 DistNeighbor1 = (X(I1 , index1 2) − x) . ˆ 2 + (Y(I1 , index1 2) − y) . ˆ 2 + . . .
102 (Z(I1 , index1 2) − z) . ˆ 2 ;
103 DistNeighbor2 = (X(I2 , index1 2) − x) . ˆ 2 + (Y(I2 , index1 2) − y) . ˆ 2 + . . .
104 (Z(I2 , index1 2) − z) . ˆ 2 ;
105 DistNeighbor3 = (X(index1 1 , I3) − x) . ˆ 2 + (Y(index1 1 , I3) − y) . ˆ 2 + . . .
106 (Z(index1 1 , I3) − z) . ˆ 2 ;
107 DistNeighbor4 = (X(index1 1 , I4) − x) . ˆ 2 + (Y(index1 1 , I4) − y) . ˆ 2 + . . .
108 (Z(index1 1 , I4) − z) . ˆ 2 ;
109 [M, I] = min ([DistNeighbor1 DistNeighbor2 DistNeighbor3 DistNeighbor4]) ;
110 i f I == 1
111 index2 1 = I1 ;
112 index2 2 = index1 2 ;
113 Shape = 1 ;
114 e l s e i f I == 2
115 index2 1 = I2 ;
116 index2 2 = index1 2 ;
117 Shape = 0 ;
118 e l s e i f I == 3
119 index2 1 = index1 1 ;
120 index2 2 = I3 ;
121 Shape = 2 ;
122 e l s e
123 index2 1 = index1 1 ;
124 index2 2 = I4 ;
125 Shape = 2 ;
126 end
127 e l s e i f Shape == 3
128 DistNeighbor1 = (X(I1 , index1 2) − x) . ˆ 2 + (Y(I1 , index1 2) − y) . ˆ 2 + . . .
129 (Z(I1 , index1 2) − z) . ˆ 2 ;
130 DistNeighbor2 = (X(I2 , index1 2) − x) . ˆ 2 + (Y(I2 , index1 2) − y) . ˆ 2 + . . .
131 (Z(I2 , index1 2) − z) . ˆ 2 ;
132 DistNeighbor3 = (X(index1 1 , I3) − x) . ˆ 2 + (Y(index1 1 , I3) − y) . ˆ 2 + . . .
133 (Z(index1 1 , I3) − z) . ˆ 2 ;
134 DistNeighbor4 = (X(index1 1 , I4) − x) . ˆ 2 + (Y(index1 1 , I4) − y) . ˆ 2 + . . .

38 APPENDIX A. CODE

135 (Z(index1 1 , I4) − z) . ˆ 2 ;
136 [M, I] = min ([DistNeighbor1 DistNeighbor2 DistNeighbor3 DistNeighbor4]) ;
137 i f I == 1
138 index2 1 = I1 ;
139 index2 2 = index1 2 ;
140 Shape = 0 ;
141 e l s e i f I == 2
142 index2 1 = I2 ;
143 index2 2 = index1 2 ;
144 Shape = 1 ;
145 e l s e i f I == 3
146 index2 1 = index1 1 ;
147 index2 2 = I3 ;
148 Shape = 2 ;
149 e l s e
150 index2 1 = index1 1 ;
151 index2 2 = I4 ;
152 Shape = 2 ;
153 end
154 end
155 %∗∗
156 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Finding the two (one) other points ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
157 i f Shape == 0 %square
158 i f index1 1 == index2 1
159 I1 = index1 1 − 1 ;
160 I2 = index1 1 + 1 ;
161 Dist1 = (X(I1 , index1 2)−x)ˆ2 . . .
162 + (Y(I1 , index1 2)−y)ˆ2 . . .
163 + (Z(I1 , index1 2)−z) ˆ 2 ;
164 Dist2 = (X(I2 , index1 2)−x)ˆ2 . . .
165 + (Y(I2 , index1 2)−y)ˆ2 . . .
166 + (Z(I2 , index1 2)−z) ˆ 2 ;
167 Dist3 = (X(I1 , index2 2)−x)ˆ2 . . .
168 + (Y(I1 , index2 2)−y)ˆ2 . . .
169 + (Z(I1 , index2 2)−z) ˆ 2 ;
170 Dist4 = (X(I2 , index2 2)−x)ˆ2 . . .
171 + (Y(I2 , index2 2)−y)ˆ2 . . .
172 + (Z(I2 , index2 2)−z) ˆ 2 ;
173 [M, I] = min ([Dist1 Dist2 Dist3 Dist4]) ;
174 i f I == 1 | | I == 3
175 index3 1 = I1 ;
176 index3 2 = index1 2 ;
177 index4 1 = I1 ;
178 index4 2 = index2 2 ;
179 e l s e %dvs I == 2 | | I == 4
180 index3 1 = I2 ;
181 index3 2 = index1 2 ;
182 index4 1 = I2 ;
183 index4 2 = index2 2 ;
184 end
185 e l s e i f index1 2 == index2 2
186 I1 = index1 2 − 1 ;
187 I2 = index1 2 + 1 ;
188 i f index1 2 == 1
189 I1 = ObsSize −1 ;
190 e l s e i f index1 2 == ObsSize
191 I2 = 2 ;
192 end
193 Dist1 = (X(index1 1 , I1)−x)ˆ2 . . .
194 + (Y(index1 1 , I1)−y)ˆ2 . . .
195 + (Z(index1 1 , I1)−z) ˆ 2 ;

39

196 Dist2 = (X(index1 1 , I2)−x)ˆ2 . . .
197 + (Y(index1 1 , I2)−y)ˆ2 . . .
198 + (Z(index1 1 , I2)−z) ˆ 2 ;
199 Dist3 = (X(index2 1 , I1)−x)ˆ2 . . .
200 + (Y(index2 1 , I1)−y)ˆ2 . . .
201 + (Z(index2 1 , I1)−z) ˆ 2 ;
202 Dist4 = (X(index2 1 , I2)−x)ˆ2 . . .
203 + (Y(index2 1 , I2)−y)ˆ2 . . .
204 + (Z(index2 1 , I2)−z) ˆ 2 ;
205 [M, I] = min ([Dist1 Dist2 Dist3 Dist4]) ;
206 i f I == 1 | | I == 3
207 index3 1 = index1 1 ;
208 index3 2 = I1 ;
209 index4 1 = index2 1 ;
210 index4 2 = I1 ; %te s t
211 e l s e %dvs I == 2 | | I == 4
212 index3 1 = index1 1 ;
213 index3 2 = I2 ; %te s t
214 index4 1 = index2 1 ;
215 index4 2 = I2 ;
216 end
217 end
218 MinDist = [index1 1 , index1 2 , index2 1 , index2 2 , . . .
219 index3 1 , index3 2 , index4 1 , index4 2] ;
220 end
221 i f Shape == 1 %tr i ang l e
222 i f index1 1 == 1
223 index3 1 = 2 ;
224 I1 = index2 2 −1;
225 I2 = index2 2+1;
226 i f index2 2 == 1
227 I1 = ObsSize − 1 ;
228 end
229 i f index2 2 == ObsSize
230 I2 = 2 ;
231 end
232 d i s t = [(X(2 , I1)−x) . ˆ 2 + (Y(2 , I1)−y) . ˆ 2 + (Z(2 , I1)−z) . ˆ 2 . . .
233 (X(2 , I2)−x) . ˆ 2 + (Y(2 , I2)−y) . ˆ 2 + (Z(2 , I2)−z) . ˆ 2] ;
234 [M, I] = min (d i s t) ;
235 i f I == 1
236 index3 2 = I1 ;
237 e l s e
238 index3 2 = I2 ;
239 end
240 e l s e i f index2 1 == 1
241 index3 1 = 2 ;
242 I1 = index1 2 −1;
243 I2 = index1 2+1;
244 i f index1 2 == 1
245 I1 = ObsSize − 1 ;
246 end
247 i f index1 2 == ObsSize
248 I2 = 2 ;
249 end
250 d i s t = [(X(2 , I1)−x) . ˆ 2 + (Y(2 , I1)−y) . ˆ 2 + (Z(2 , I1)−z) . ˆ 2 . . .
251 (X(2 , I2)−x) . ˆ 2 + (Y(2 , I2)−y) . ˆ 2 + (Z(2 , I2)−z) . ˆ 2] ;
252 [M, I] = min (d i s t) ;
253 i f I == 1
254 index3 2 = I1 ;
255 e l s e
256 index3 2 = I2 ;

40 APPENDIX A. CODE

257 end
258 e l s e i f index1 1 == ObsSize
259 index3 1 = ObsSize−1;
260 I1 = index2 2 −1;
261 I2 = index2 2+1;
262 i f index2 2 == 1
263 I1 = ObsSize − 1 ;
264 end
265 i f index2 2 == ObsSize
266 I2 = 2 ;
267 end
268 d i s t = [(X(index3 1 , I1)−x) . ˆ 2 + (Y(index3 1 , I1)−y) . ˆ 2 . . .
269 + (Z(index3 1 , I1)−z) . ˆ 2 . . .
270 (X(index3 1 , I2)−x) . ˆ 2 + (Y(index3 1 , I2)−y) . ˆ 2 + . . .
271 (Z(index3 1 , I2)−z) . ˆ 2] ;
272 [M, I] = min (d i s t) ;
273 i f I == 1
274 index3 2 = I1 ;
275 e l s e
276 index3 2 = I2 ;
277 end
278 e l s e i f index2 1 == ObsSize
279 index3 1 = ObsSize−1;
280 I1 = index1 2 −1;
281 I2 = index1 2+1;
282 i f index1 2 == 1
283 I1 = ObsSize − 1 ;
284 end
285 i f index1 2 == ObsSize
286 I2 = 2 ;
287 end
288 d i s t = [(X(index3 1 , I1)−x) . ˆ 2 + (Y(index3 1 , I1)−y) . ˆ 2 + . . .
289 (Z(index3 1 , I1)−z) . ˆ 2 . . .
290 (X(index3 1 , I2)−x) . ˆ 2 + (Y(index3 1 , I2)−y) . ˆ 2 + . . .
291 (Z(index3 1 , I2)−z) . ˆ 2] ;
292 [M, I] = min (d i s t) ;
293 i f I == 1
294 index3 2 = I1 ;
295 e l s e
296 index3 2 = I2 ;
297 end
298 end
299 MinDist = [index1 1 , index1 2 , index2 1 , index2 2 , . . .
300 index3 1 , index3 2] ;
301 end
302 i f Shape == 2 %square or t r i an g l e
303 i f index1 1 == 2
304 d i s t = [(X(1 ,1)−x) . ˆ 2 (Y(1 ,1)−y) . ˆ 2 (Z(1 ,1)− z) . ˆ 2 . . .
305 (X(3 , index1 2)−x) . ˆ 2 (Y(3 , index1 2)−y) . ˆ 2 (Z(3 , index1 2)−z) . ˆ 2 . . .
306 (X(3 , index2 2)−x) . ˆ 2 (Y(3 , index2 2)−y) . ˆ 2 (Z(3 , index2 2)−z) . ˆ 2] ;
307 [M, I] = min (d i s t) ;
308 i f I == 1
309 index3 1 = 1 ;
310 index3 2 = 1 ;
311 Shape = 1 ;
312 e l s e
313 index3 1 = 3 ;
314 index3 2 = index1 2 ;
315 index4 1 = 3 ;
316 index4 2 = index2 2 ;
317 Shape = 0 ;

41

318 end
319 e l s e %dvs index1 1 = ObsSize−1
320 a = ObsSize ;
321 b = ObsSize − 2 ;
322 d i s t = [(X(a ,1)−x) . ˆ 2 (Y(a ,1)−y) . ˆ 2 (Z(a ,1)− z) . ˆ 2 . . .
323 (X(b , index1 2)−x) . ˆ 2 (Y(b , index1 2)−y) . ˆ 2 (Z(b , index1 2)−z) . ˆ 2 . . .
324 (X(b , index2 2)−x) . ˆ 2 (Y(b , index2 2)−y) . ˆ 2 (Z(b , index2 2)−z) . ˆ 2] ;
325 [M, I] = min (d i s t) ;
326 i f I == 1
327 index3 1 = a ;
328 index3 2 = 1 ;
329 Shape = 1 ;
330 e l s e
331 index3 1 = b ;
332 index3 2 = index1 2 ;
333 index4 1 = b ;
334 index4 2 = index2 2 ;
335 Shape = 0 ;
336 end
337 end
338 i f Shape == 1
339 MinDist = [index1 1 , index1 2 , index2 1 , index2 2 , . . .
340 index3 1 , index3 2] ;
341 i f index1 1 == 1 | | index1 1 == 2
342 Shape = 3 ;
343 e l s e
344 Shape = 2 ;
345 end
346 e l s e
347 MinDist = [index1 1 , index1 2 , index2 1 , index2 2 , . . .
348 index3 1 , index3 2 , index4 1 , index4 2] ;
349 end
350 end
351 %∗∗
352 %∗∗∗∗∗ Sorts the points to be counterc lockwise ∗∗∗∗∗
353 i f Shape ˜= 0
354 i f index1 1 == 1 | | index1 1 == 2
355 Shape = 3 ;
356 e l s e i f index1 1 == ObsSize | | index1 1 == ObsSize − 1
357 Shape = 2 ;
358 end
359 end
360 i f Shape == 0 %square
361 I1 = index1 1 − 1 ;
362 I2 = index1 1 + 1 ;
363 I3 = index1 2 − 1 ;
364 I4 = index1 2 + 1 ;
365 i f I3 == 0
366 I3 = ObsSize−1;
367 end
368 i f I4 == ObsSize + 1
369 I4 = 2 ;
370 end
371 f o r k = 1 :3
372 i f MinDist (2∗k+1) == I1 && MinDist (2∗k+2) == I3
373 MinDist (3 : 8) = [index1 1 , I3 , I1 , I3 , I1 , index1 2] ;
374 e l s e i f MinDist (2∗k+1) == I1 && MinDist (2∗k+2) == I4
375 MinDist (3 : 8) = [I1 , index1 2 , I1 , I4 , index1 1 , I4] ;
376 e l s e i f MinDist (2∗k+1) == I2 && MinDist (2∗k+2) == I3
377 MinDist (3 : 8) = [I2 , index1 2 , I2 , I3 , index1 1 , I3] ;
378 e l s e i f MinDist (2∗k+1) == I2 && MinDist (2∗k+2) == I4

42 APPENDIX A. CODE

379 MinDist (3 : 8) = [index1 1 , I4 , I2 , I4 , I2 , index1 2] ;
380 end
381 end
382 e l s e i f Shape == 2 %tr iang l e , top
383 i f index1 1 == ObsSize
384 i f index2 2 == 2 && index3 2 == ObsSize
385 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
386 e l s e i f index2 2 == 1 && index3 2 == ObsSize−1
387 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
388 e l s e i f index2 2 < index3 2
389 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
390 e l s e i f index2 2 == ObsSize−1 && index3 2 == 1
391 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
392 e l s e i f index2 2 == ObsSize && index3 2 == 2
393 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
394 e l s e
395 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
396 end
397 e l s e i f index2 1 == ObsSize
398 i f index3 2 == ObsSize−1 && index1 2 == 1
399 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
400 e l s e i f index3 2 == ObsSize && index1 2 == 2
401 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
402 e l s e i f index1 2 < index3 2
403 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
404 e l s e i f index1 2 == ObsSize−1 && index3 2 == 1
405 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
406 e l s e i f index1 2 == ObsSize && index3 2 == 2
407 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
408 e l s e
409 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
410 end
411 e l s e %index3 1 == ObsSize
412 i f index2 2 == ObsSize−1 && index1 2 == 1
413 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
414 e l s e i f index2 2 == ObsSize && index1 2 == 2
415 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
416 e l s e i f index1 2 < index2 2
417 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
418 e l s e i f index1 2 == ObsSize−1 && index2 2 == 1
419 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
420 e l s e i f index1 2 == ObsSize && index2 2 == 2
421 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
422 e l s e
423 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
424 end
425 end
426 e l s e i f Shape == 3 %tr iang l e , bottom
427 i f index1 1 == 1
428 i f index3 2 == ObsSize−1 && index2 2 == 1
429 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
430 e l s e i f index3 2 == ObsSize && index2 2 == 2
431 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
432 e l s e i f index2 2 < index3 2
433 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
434 e l s e i f index2 2 == ObsSize−1 && index3 2 == 1
435 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
436 e l s e i f index2 2 == ObsSize && index3 2 == 2
437 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
438 e l s e
439 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;

43

440 end
441 e l s e i f index2 1 == 1
442 i f index1 2 == 1 && index3 2 == ObsSize−1
443 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
444 e l s e i f index1 2 == 2 && index3 2 == ObsSize
445 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
446 e l s e i f index3 2 < index1 2
447 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
448 e l s e i f index3 2 == 1 && index1 2 == ObsSize−1
449 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
450 e l s e i f index3 2 == 2 && index1 2 == ObsSize
451 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
452 e l s e
453 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
454 end
455 e l s e %index3 1 == 1
456 i f index2 2 == ObsSize − 1 && index1 2 == 1
457 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
458 e l s e i f index2 2 == ObsSize && index1 2 == 2
459 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
460 e l s e i f index1 2 < index2 2
461 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
462 e l s e i f index1 2 == ObsSize − 1 && index2 2 == 1
463 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
464 e l s e i f index1 2 == ObsSize && index2 2 == 2
465 MinDist (3 : 6) = [index3 1 , index3 2 , index2 1 , index2 2] ;
466 e l s e
467 MinDist (3 : 6) = [index2 1 , index2 2 , index3 1 , index3 2] ;
468 end
469 end
470 end
471 %∗∗
472 end

GetNeighbours() uses the indices belonging to the first face and the
size of the matrices defining the obstacle to find the neighboring faces
and return these, with the indices given in counter clockwise direction
seen from outside the obstacle.

1 func t i on Neighbours = GetNeighbours (index1 1 , index1 2 , . . .
2 index2 1 , index2 2 , . . .
3 index3 1 , index3 2 , . . .
4 ObsSize , vararg in)
5
6 N = s i z e (vararg in) ;
7 N = N(2) ;
8
9 i f N == 2

10 index4 1 = vararg in {1} ;
11 index4 2 = vararg in {2} ;
12 Shape = 4 ;
13 e l s e
14 Shape = 3 ;
15 end
16
17 i f Shape == 4
18 CN = zero s (8 , 8) ;
19 %sor t s the gr id points
20 i f index4 1 > index1 1
21 Index1 1 = index4 1 ;

44 APPENDIX A. CODE

22 Index1 2 = index4 2 ;
23 Index2 1 = index1 1 ;
24 Index2 2 = index1 2 ;
25 Index3 1 = index2 1 ;
26 Index3 2 = index2 2 ;
27 Index4 1 = index3 1 ;
28 Index4 2 = index3 2 ;
29 e l s e i f index3 1 > index4 1
30 Index1 1 = index3 1 ;
31 Index1 2 = index3 2 ;
32 Index2 1 = index4 1 ;
33 Index2 2 = index4 2 ;
34 Index3 1 = index1 1 ;
35 Index3 2 = index1 2 ;
36 Index4 1 = index2 1 ;
37 Index4 2 = index2 2 ;
38 e l s e i f index2 1 > index3 1
39 Index1 1 = index2 1 ;
40 Index1 2 = index2 2 ;
41 Index2 1 = index3 1 ;
42 Index2 2 = index3 2 ;
43 Index3 1 = index4 1 ;
44 Index3 2 = index4 2 ;
45 Index4 1 = index1 1 ;
46 Index4 2 = index1 2 ;
47 e l s e
48 Index1 1 = index1 1 ;
49 Index1 2 = index1 2 ;
50 Index2 1 = index2 1 ;
51 Index2 2 = index2 2 ;
52 Index3 1 = index3 1 ;
53 Index3 2 = index3 2 ;
54 Index4 1 = index4 1 ;
55 Index4 2 = index4 2 ;
56 end
57
58 I1 = Index1 2 − 1 ;
59 i f I1 == 0
60 I1 = ObsSize−1;
61 end
62 CN(1 , :) = [Index1 1 Index1 2 Index1 1 I1 Index2 1 I1 Index2 1 Index2 2] ;
63 I2 = Index2 1 − 1 ;
64 I3 = Index3 2 + 1 ;
65 i f I3 == ObsSize + 1
66 I3 = 2 ;
67 end
68 i f I2 == 1
69 CN(2 , :) = [Index2 1 Index2 2 Index2 1 I1 1 1 0 0] ;
70 CN(3 , :) = [Index2 1 Index2 2 1 1 Index3 1 Index3 2 0 0] ;
71 CN(4 , :) = [Index3 1 Index3 2 1 1 Index3 1 I3 0 0] ;
72 e l s e
73 CN(2 , :) = [Index2 1 Index2 2 Index2 1 I1 I2 I1 I2 Index2 2] ;
74 CN(3 , :) = [Index2 1 Index2 2 I2 Index2 2 I2 Index3 2 Index3 1 Index3 2] ;
75 CN(4 , :) = [Index3 1 Index3 2 I2 Index3 2 I2 I3 Index3 1 I3] ;
76 end
77 CN(5 , :) = [Index4 1 Index4 2 Index3 1 Index3 2 Index3 1 I3 Index4 1 I3] ;
78 I4 = Index4 1 + 1 ;
79 i f I4 == ObsSize
80 CN(6 , :) = [Index4 1 Index4 2 Index4 1 I3 ObsSize 1 0 0] ;
81 CN(7 , :) = [Index4 1 Index4 2 ObsSize 1 Index1 1 Index1 2 0 0] ;
82 CN(8 , :) = [Index1 1 Index1 2 ObsSize 1 Index1 1 I1 0 0] ;

45

83 e l s e
84 CN(6 , :) = [Index4 1 Index4 2 Index4 1 I3 I4 I3 I4 Index4 2] ;
85 CN(7 , :) = [Index4 1 Index4 2 I4 Index4 2 I4 Index1 2 Index1 1 Index1 2] ;
86 CN(8 , :) = [Index1 1 Index1 2 I4 Index1 2 I4 I1 Index1 1 I1] ;
87 end
88 e l s e %tr i ang l e
89 R = 0 ;
90 i f index1 1 == 1
91 R = 1 ;
92 Index1 1 = index1 1 ;
93 Index1 2 = index1 2 ;
94 Index2 1 = index2 1 ;
95 Index2 2 = index2 2 ;
96 Index3 1 = index3 1 ;
97 Index3 2 = index3 2 ;
98 e l s e i f index2 1 == 1
99 R = 1 ;

100 Index1 1 = index2 1 ;
101 Index1 2 = index2 2 ;
102 Index2 1 = index3 1 ;
103 Index2 2 = index3 2 ;
104 Index3 1 = index1 1 ;
105 Index3 2 = index1 2 ;
106 e l s e i f index3 1 == 1
107 R = 1 ;
108 Index1 1 = index3 1 ;
109 Index1 2 = index3 2 ;
110 Index2 1 = index1 1 ;
111 Index2 2 = index1 2 ;
112 Index3 1 = index2 1 ;
113 Index3 2 = index2 2 ;
114 e l s e i f index2 1 == ObsSize
115 Index1 1 = index2 1 ;
116 Index1 2 = index2 2 ;
117 Index2 1 = index3 1 ;
118 Index2 2 = index3 2 ;
119 Index3 1 = index1 1 ;
120 Index3 2 = index1 2 ;
121 e l s e i f index3 1 == ObsSize
122 Index1 1 = index3 1 ;
123 Index1 2 = index3 2 ;
124 Index2 1 = index1 1 ;
125 Index2 2 = index1 2 ;
126 Index3 1 = index2 1 ;
127 Index3 2 = index2 2 ;
128 e l s e
129 Index1 1 = index1 1 ;
130 Index1 2 = index1 2 ;
131 Index2 1 = index2 1 ;
132 Index2 2 = index2 2 ;
133 Index3 1 = index3 1 ;
134 Index3 2 = index3 2 ;
135 end
136 i f R == 1 %bottom
137 f o r k = 1 : ObsSize−1
138 CN(k , :) = [1 1 2 k+1 2 k 0 0] ;
139 end
140 I1 = Index2 2 + 1 ;
141 I2 = Index3 2 − 1 ;
142 i f I1 == ObsSize + 1
143 I1 = 2 ;

46 APPENDIX A. CODE

144 end
145 i f I2 == 0 ;
146 I2 = ObsSize − 1 ;
147 end
148 CN(ObsSize , :) = [2 Index2 2 2 I1 3 I1 3 Index2 2] ;
149 CN(ObsSize +1 , :) = [2 Index2 2 3 Index2 2 3 Index3 2 2 Index3 2] ;
150 CN(ObsSize +2 , :) = [2 Index3 2 3 Index3 2 3 I2 2 I2] ;
151 e l s e
152 f o r k = 1 : ObsSize−1
153 CN(k , :) = [ObsSize 1 ObsSize−1 k ObsSize−1 k+1 0 0] ;
154 end
155 I1 = Index2 2 − 1 ;
156 I2 = Index3 2 + 1 ;
157 i f I1 == 0
158 I1 = ObsSize − 1 ;
159 end
160 i f I2 == ObsSize + 1 ;
161 I2 = 2 ;
162 end
163 P1 = ObsSize−1;
164 P2 = ObsSize−2;
165 CN(ObsSize , :) = [P1 Index2 2 P1 I1 P2 I1 P2 Index2 2] ;
166 CN(ObsSize +1 , :) = [P1 Index2 2 P2 Index2 2 P2 Index3 2 P1 Index3 2] ;
167 CN(ObsSize +2 , :) = [P1 Index3 2 P2 Index3 2 P2 I2 P1 I2] ;
168 end
169 end
170
171 Neighbours = CN;
172
173 end

InteractObstacle() uses the particles position and velocity to check if
the particle do collide and if it does, the wall interaction is generated.
This function is used for the grid based obstacles.

1 func t i on NewPos = Int e ra c tObs tac l e (x , y , z , v , dt , GP1, GP2, GP3, vararg in)
2
3 i f l ength (vararg in) == 1
4 GP4 = vararg in {1} ;
5 Shape = 4 ;
6 e l s e
7 Shape = 3 ;
8 end
9

10 vec1 = GP2 − GP1;
11 vec2 = GP3 − GP2;
12
13 normal = c r o s s (vec1 , vec2) ;
14 normal = normal/norm(normal) ;
15
16 t = dot ((GP1 − [x y z]) , normal)/ dot (v , normal) ;
17
18 i f t <= dt && t > 0 %may c o l l i d e
19 po s i n t = [x y z] + t∗v ; %in t e r s e c t i on pos i t i on
20 i f Shape == 4
21 i f dot (c r o s s (GP2−GP1, pos in t−GP1) , normal) >= 0 && . . . %do c o l l i d e
22 dot (c r o s s (GP3−GP2, pos in t−GP2) , normal) >= 0 && . . . %
23 dot (c r o s s (GP4−GP3, pos in t−GP3) , normal) >= 0 && . . . %
24 dot (c r o s s (GP1−GP4, pos in t−GP4) , normal) >= 0 %
25 i f dot (v , normal) > 0

47

26 normal = − normal ;
27 end
28 v new = v − 2∗dot (v , normal)∗ normal ;
29 v new = v new∗norm(v)/norm(v new) ;
30 NewPos = [po s i n t + (dt−t)∗ v new . . .
31 po s i n t . . .
32 v new dt−t] ;
33 e l s e
34 NewPos = 0 ;
35 end
36 e l s e %tr i ang l e
37 i f dot (c r o s s (GP2−GP1, pos in t−GP1) , normal) >= 0 && . . . %do c o l l i d e
38 dot (c r o s s (GP3−GP2, pos in t−GP2) , normal) >= 0 && . . . %
39 dot (c r o s s (GP1−GP3, pos in t−GP3) , normal) >= 0 %
40 v new = v − 2∗dot (v , normal)∗ normal ;
41 v new = v new∗norm(v)/norm(v new) ;
42 NewPos = [po s i n t + (dt−t)∗ v new . . .
43 po s i n t . . .
44 v new dt−t] ;
45 e l s e
46 NewPos = 0 ;
47 end
48 end
49 e l s e %does not c o l l i d e
50 NewPos = 0 ;
51 end
52
53 end

For the sphere case all code is included in one script without any self
made external functions. The following script is for a pulsed gradient,
this is put in a separate script for convenience, but the scrips for the
other gradients is in essence the same.

1 %∗∗∗∗∗∗∗∗∗∗ Parameters ∗∗∗∗∗∗∗∗∗∗
2 N = 100000; %Total number of p a r t i c l e s .
3 R = 75 ; %Radius sphere [\mu m]
4 D = 1 . 6 5 ; %Dif fus ion c o e f f i c i e n t [(\mu m)ˆ2 /ms]
5 gamma = 2.675∗10ˆ8 ; %Gyromagnetic ra t i o rad /(T∗ s)
6 G x = 26434 :10000 :610480 ; %Gradient s t reng th [mT/m]
7 d i f f t im e s = 30 : 5 : 2 0 0 ; %Dif fus ion times [ms]
8 dt = 0 . 0 0 1 ; %Time step [ms]
9 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10
11 dr = sq r t (6∗D∗dt) ; %Steps i ze [\mu m]
12
13 N G = length (G x) ; %Number of d i f f e r e n t grad ients .
14 N time = length (d i f f t im e s) ; %Number of d i f f e r e n t d i f f u s i on times .
15 N time N G = N time∗N G; %Total number of r e s u l t i n g phases/ f i l e .
16
17 l im i t = round (d i f f t im e s /dt) ; %Finding the s tep numbers
18 f o r i = 1 : N time %assoc ia ted with the d i f f e r e n t
19 i f l im i t (i)/2 ˜= round (l im i t (i)/2) %di f f u s i on times .
20 l im i t (i) = l im i t (i) + 1 ; %And forces i t to be even .
21 end
22 end
23
24 K = max(l im i t) ; %Total number of s t eps .
25
26 phase 1 = ze ro s (N, N time N G) ; %I n i t i l i z i n g arrays

48 APPENDIX A. CODE

27
28 %∗∗∗∗∗ Finding i n i t i a l po s i t i ons for a l l p a r t i c l e s ∗∗∗∗∗
29 co s th e t a = 2∗ rand (1 ,N)−1;
30 theta = acos (c o s th e t a) ;
31 phi = 2∗ pi ∗ rand (1 ,N) ;
32 r0 = rand (1 ,N)∗R;
33 x0 = r0 .∗ s i n (theta) .∗ cos (phi) ;
34 y0 = r0 .∗ s i n (theta) .∗ s i n (phi) ;
35 z0 = r0 .∗ co s th e t a ;
36 %∗∗∗
37
38 s t r i n g 1 = [’Number o f s t ep s : ’ , num2str (K)] ;
39 d i sp (s t r i n g 1)
40
41 Crash nr = 0 ; %Keeps track of number of c o l l i t i o n s .
42
43 %(I)∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Loop over a l l the p a r t i c l e s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
44 pa r f o r n = 1 :N
45 %%
46 i f n/1000 == round (n/1000)
47 s t r i n g 1 = [’ Par t i c l eNr : ’ , num2str (n) , ’ o f ’ , num2str (N)] ;
48 d i sp (s t r i n g 1)
49 end
50 %%
51
52 x pos = ze ro s (1 ,K) ; %I n i t i l i z i n g arrays to
53 y pos = x pos ; %save a l l po s i t i ons .
54 z pos = x pos ; %
55
56 x pos (1) = x0 (n) ; %Adds the i n i t i a l pos i t i on .
57 y pos (1) = y0 (n) ; %
58 z pos (1) = z0 (n) ; %
59
60 %(II)∗∗∗∗∗∗∗∗∗∗∗ Finds pos i t i on 2−K ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
61 k = 2 ;
62 whi le k <= K
63
64 %∗∗∗∗∗ Find number of s t eps be fore ∗∗∗∗∗
65 %∗∗∗∗∗ c o l l i t i o n check i s needed . ∗∗∗∗∗
66 d i s t = R − norm ([x pos (k−1) . . . %Distance to sphere wa l l .
67 y pos (k−1) . . . %
68 z pos (k−1)]) ; %
69 dK = f l o o r (d i s t /norm(dr)) ; %Number of s t eps to wa l l .
70 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
71
72 i f dK > 0 %Enters to f ind dK new pos i t i ons .
73
74 i f dK > K−k+1 %Hinders the program to run
75 dK = K−k+1; %past t o t a l d i f f u s i on time .
76 i f dK == 0 %
77 k = K + 1 ; %
78 end %
79 end %
80
81 d co s th e t a = 2∗ rand (1 , dK) − 1 ; %Computes random
82 d theta = acos (d co s th e t a) ; %direc t i ons .
83 d phi = 2∗ pi ∗ rand (1 , dK) ; %
84
85 dx vec = dr∗ s i n (d theta) .∗ cos (d phi) ; %Finds the
86 dy vec = dr∗ s i n (d theta) .∗ s i n (d phi) ; %steps .
87 dz vec = dr∗ d co s th e t a ; %

49

88
89 x pos (k : k+dK−1) = cumsum(dx vec) + x pos (k−1); %Finds and
90 y pos (k : k+dK−1) = cumsum(dy vec) + y pos (k−1); %saves the new
91 z pos (k : k+dK−1) = cumsum(dz vec) + z pos (k−1); %pos i t i ons .
92
93 k = k + dK;
94
95 e l s e %Enters when next s tep may g ive c o l l i t i o n .
96
97 pos = [x pos (k−1) y pos (k−1) z pos (k−1)] ; %Current pos i t i on .
98
99 d co s th e t a = 2∗ rand − 1 ; %Finds d i r ec t i on .

100 d theta = acos (d co s th e t a) ; %
101 d phi = 2∗ pi ∗ rand ; %
102
103 dx = dr∗ s i n (d theta) .∗ cos (d phi) ; %Computes
104 dy = dr∗ s i n (d theta) .∗ s i n (d phi) ; %the s tep .
105 dz = dr∗ d co s th e t a ; %
106
107 v = [dx dy dz] / dt ; %Finds v e l o c i t y .
108
109 ddt = dt ; %Variable to ge t correc t t o t a l
110 %s t ep s i z e during c o l l i t i o n .
111
112 %(I I I)∗∗∗∗∗ Loop in case of mu l t ip l e c o l l i t i o n ∗∗∗∗∗∗∗∗∗∗
113 %∗∗∗∗∗∗∗∗∗∗ in same time step . ∗∗∗∗∗∗∗∗∗∗
114 c o l l i d e = 1 ;
115 whi le c o l l i d e == 1
116
117 %∗∗∗∗∗ Computes time un t i l c o l l i t i o n from current ∗∗∗∗∗
118 %∗∗∗∗∗ pos i t i on given the v e l o c i t y v . ∗∗∗∗∗
119 A = dot (pos , v) ;
120 B = dot (v , v) ;
121 C = sqr t (Aˆ2 − B∗(dot (pos , pos) − Rˆ2)) ;
122 t c = (−A + C)/B;
123 i f t c < 0
124 t c = (−A − C)/B;
125 end
126 %∗∗
127
128 i f t c >= ddt | | t c < 0 %The step do not
129 c o l l i d e = 0 ; %lead to c o l l i t i o n .
130 end %
131
132 i f i s r e a l (t c) == 0 %Hope i t never
133 d i sp (’ something i s wrong : ’) %enters t h i s one .
134 k = K + 1 ; %
135 end %
136
137 i f c o l l i d e == 1 %Co l l i t i on
138 Crash nr = Crash nr + 1 ;
139
140 normal = pos + v∗ t c ; %Surface normal in
141 normal = normal/norm(normal) ; %co l l i t i o n point .
142
143 v new = v − 2∗dot (v , normal)∗ normal ; %Computes new
144 v new = v new∗norm(v)/norm(v new) ; %ve l o c i t y .
145
146 pos = pos + v∗ t c + v new ∗(ddt−t c) ; %New pos i t i on .
147
148 v = v new ; %Updates v .

50 APPENDIX A. CODE

149 ddt = ddt−t c ; %Updates ddt in
150 %case of mu l t ip l e
151 %co l l i t o n in one
152 %time step .
153
154 e l s e %Not c o l l i t i o n
155
156 x pos (k) = x pos (k−1) + v (1)∗ ddt ; %Finds new
157 y pos (k) = y pos (k−1) + v (2)∗ ddt ; %pos i t i ons .
158 z pos (k) = z pos (k−1) + v (3)∗ ddt ; %
159
160 end
161 end
162 %(I I I)∗∗∗
163 k = k + 1 ;
164 end
165 end
166 %(II)∗∗
167
168 %(IV)∗ Adding the gradient , and computes f i n a l phase ∗∗∗∗∗
169 %∗∗∗∗∗ for three d i f f e r e n t sequenses , and a l l the ∗∗∗∗∗
170 %∗∗∗∗∗ d i f f e r e n t time s teps and gradient s t r eng ths . ∗∗∗∗∗
171 n time = 1 ;
172 n G = 1 ;
173 f o r Nr = 1 : N time N G
174 Y = G x(n G)∗ dt∗gamma;
175
176 %∗∗∗ I : +G f i r s t step , −G l a s t s tep ∗∗∗
177 d phase = [Y∗x pos (1) −Y∗x pos (l im i t (n time))] ;
178 phase (n , Nr) = sum(d phase)∗10ˆ−12;
179
180 n time = n time + 1 ;
181
182 i f Nr == N time∗n G
183 n time = 1 ;
184 n G = n G + 1 ;
185 end
186 end
187 %(IV)∗∗∗
188
189 end
190 %(I)∗∗
191
192 s t r i n g 1 = [’Number o f c o l l i t i o n s : ’ , num2str (Crash nr)] ;
193 d i sp (s t r i n g 1)
194
195 s i g n a l = sum(exp (1 i ∗phase)) ; %Computes r e su l t i n g phase
196
197 Times = l im i t ∗dt ;
198
199 s i gna l ma t r i x = ze ro s (N G+1,N time+1); %Creates the output matrixes ,
200 s i gna l ma t r i x (2 : end , 1) = G x ; %f i r s t column and f i r s t row
201 s i gna l ma t r i x (1 , 2 : end) = Times ; %sp e c i f i e s gradient s t reng th
202
203 %∗∗∗∗∗ Saves a l l phases into the matrix ∗∗∗∗∗
204 A = 1 ;
205 B = N time ;
206 f o r i = 2 :N G+1
207 s i gna l ma t r i x (i , 2 : end) = s i g n a l (A:B) ;
208 A = A + N time ;
209 B = B + N time ;

51

210 end
211 %∗∗
212
213 s i g n a l = s i gna l ma t r i x ;
214
215 %∗∗∗∗∗ time in ms, G in mT/m∗∗∗∗∗
216 save SignalPulsedGrad s i g n a l
217 %∗∗

Bibliography

[1] Fieremans E, Novikov DS, Jensen JH, Helpern JA. Monte Carlo
study of a two-compartment exchange model of diffusion. NMR
Biomed. 2010;23(7):711-724.

[2] Codling EA, Plank MJ, Benhamou S. Random walk models i biol-
ogy. J. R. Soc. Interface. 2008;5:813-834

[3] Bundell SJ, Bundell KM. Concepts in Thermal Physics. Second
edition. New York: Oxford University Press; 2010

[4] Sparr G, Sparr A. Kontinuerliga system. Lund: Studentlitteratur
AB; 1999, 2000

[5] Ursell TS. The Diffusion Equation A Multi-dimensional Tutorial.
Pasadena: California Institute of Technology; October 2007. Avail-
able from http://www.rpgroup.caltech.edu/~natsirt/aph162/

diffusion_old.pdf

[6] Sen PN. Time-Dependent Diffusion Coefficient as a Probe of Geom-
etry. Concepts in Magnetic Resonance Part A. 2004;23A(1):1-21.

[7] K.G. Helmer, M.D. Hurlimann, T.M. Deswiet, P.N. Sen, C.H. So-
tak. Determination of Ratio of Surface Area to Pore Volume Re-
stricted Diffusion in a Constant Field Gradient. JMR. 1995;115:257-
259.

[8] Lilley J. Nuclear Physics, Principles and Applications. Chichester:
John Wiley & Sons Ltd; 2001

53

54 BIBLIOGRAPHY

[9] Basser PJ, Özarslan E. Introduction to Diffusion MR. I:Johansen-
Berg H, Behrens TEJ, red. Diffusion MRI From Quantitative Mea-
surements to In vivo Neuroanatomy. Elsecier Inc; 2009. 3-10.

[10] Sukstanskii AL, Yablonskiy DA. Effects of Restricted Diffusion on
MR Signal Formation. JMR. 2002;157:92-105.

[11] Lori NF, Conturo TE, Bihan DL. Definition of displacement
probability and diffusion time in q-space magnetic resonance
measjurements that use finite-duration diffusion-encoding gradi-
ents. 2003;165:185-195

[12] Hall MG, Alexander DC. Convergence and Parameter Choice for
Monete-Carlo Simulations of Diffsuion MRI. IEEE Trans Med Imag-
ing. 2009;28(9):1354-64.

[13] Marschner S. Simple ray-triangle intersection. Cornell Univer-
sity; October 2003. Available from http://www.cs.cornell.edu/

courses/cs465/2003fa/homeworks/raytri.pdf

[14] Shirley P. Fundamentals of Computer Graphics. Massachusetts: A
K Peters; 2002

[15] Matthews PC. Vector Calculus. Great Britain: Springer-Verlag
London Limited; 1998

[16] White NS, DALE AM. Distinct Effects of Nuclear Volume Frac-
tion and Cell Diameter on High b-value Diffusion MRI Contrast in
Tumors. Magn Reson Med. 2014;72(5):1435-43.

[17] Yeh CH, Schmitt B, Bihan DL, Li-Schlittgen JR, Lin CP, Poupon
C. Diffusion Microscopist Simulator: A General Monte Carlo Sim-
ulation System for Diffusion Magnetic Resonance Imaging. PLoS
One. 2013;8(10):e76626.

[18] Inferring cellular geometry in the short diffusion time limit in a
clinical MRI scanner.
Specialization project, Jacob Prescott, supervisor P̊al Erik Goa. 1

1Not published

