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Abstract

Cardiovascular disease is the leading cause of death worldwide, and echocardi-
ography stands as a fundamental tool in assessing congenital or developed heart
failure. A cornerstone of echocardiography is the ability to obtain robust quantit-
ative and qualitative blood flow measurements with methods such as pulsed-wave
Doppler or color flow imaging and the development of these techniques has had
a major impact on the quality of cardiovascular diagnostics worldwide. Modern
vector flow imaging has opened the estimation of 3D intracardiac blood motion
providing a detailed map of the flow structures inside a beating heart.

However, vector flow imaging techniques suffer from limited signal-to-noise ratio,
and the overall accuracy is highly sensitive to noise corruption in the measure-
ments, decreasing the overall robustness of these methods.

In this project we investigate the possible benefits of using a model-based filter
to improve the quality of blood flow estimates through data assimilation by a full
numerical simulation of blood motion based on the Navier-Stokes equations. We
implement a Smoothed Particle Hydrodynamics simulator suitable for intracardiac
flow conditions to perform the forecast stage of the assimilation cycle.

The model was evaluated towards a computational fluid dynamics phantom and
showed comparable fields when attempting to forecast the phantom flow. Finally,
the model was compared to a static regularisation based on a penalised B-spline
grid and was found to be of comparable performance.

We conclude that the obtained particle simulator is plausibly fit to model blood mo-
tion in a data assimilation context and is ready to be employed as system dynamics
in an information fusion filter capable of operating under arbitrary dynamics such
as the extended or unscented Kalman filter. We hypothesise that this application
will improve the quality of such filters compared to simpler models seen so far.
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Sammendrag

Hjerte- og karsykdommer er den ledende dødsårsaken i verden, og ekkokardio-
grafi er et grunnleggende verktøy for å vurdere medfødt eller utviklet hjertesvikt.
En hjørnestein i ekkokardiografi er evnen til å oppnå robuste kvantitative og kval-
itative blodstrømsmålinger med metoder som pulset Doppler eller fargedoppler.
Utviklingen av disse teknikkene har hatt stor innvirkning på kvaliteten på hjer-
tediagnostikk over hele verden. Moderne vector flow imaging har åpnet for es-
timering av intrakardiale blodstrømninger i 3D, noe som gir et detaljert kart over
strømningsstrukturer inne i et bankende hjerte.

Vector flow imaging-teknikker lider imidlertid av begrenset signal-til-støy-forhold,
og nøyaktigheten til estimatene er sensitive for støy som forstyrrer målingene, noe
som reduserer den totale robustheten.

I dette prosjektet undersøkte vi de mulige fordelene ved å bruke et modellbasert
filter for å forbedre kvaliteten på blodstrømsestimater. Dette ble gjort gjennom
dataassimilasjon av en full numerisk simulering av blodets bevegelse basert på
Navier-Stokes ligninger. En glattet partikkel-hydrodynamikk-simulator egnet for
intrakardiale strømningsforhold ble implementert for å utføre prediksjonssteget i
assimileringssyklusen.

Modellen ble evaluert mot et numerisk fluiddynamisk fantom, og i forsøkene på å
forutsi strømningene i fantomet ble det funnet sammenlignbare felt. Til slutt ble
modellen sammenlignet med en statisk regularisering basert på et P-spline, og også
i dette tilfellet var resultatene for de to metodene sammenlignbare.

Vi konkluderer med at den oppnådde partikkelsimulatoren er skikket til å mod-
ellere blodstrømninger i en dataassimilasjonkontekst, og er klar for å anvendes
som systemdynamikk i et informasjon-fusjon-filter som er i stand til å operere
under vilkårlig dynamikk, slik som et utvidet eller unscented Kalman filter. Vi
hypotiserer at anvendelse av denne modellen vill forbedre kvaliteten på slike filtre
sammenlignet med tidligere, enklere modeller.
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1 | Introduction

1.1 Motivation
Cardiovascular Diseases (CVD) is the single highest cause of death worldwide
(MPN+11). It is believed that 90% of all cases of CVD can be prevented by life-
style choices and earlier diagnostics can help before acute stages of the diseases are
reached and chronic heart failure occurs. There has been signs that many of these
diseases indeed can be reversed by proper post-diagnostic measures(WSL+07).

It is particularly believed that the vortex structures inside the heart may contain im-
portant information for unlocking new insight into cardiovascular pathology(PLCAT14).
This urges the need for robust quantitative methods for flow field estimation in
CVD-diagnostics.

For a long time Doppler has been a robust de facto standard for blood flow, and
methods such as Pulsed-Wave (PW) Doppler and Color Flow Imaging (CFI) have
been significant factors in increasing the accuracy of cariovascular diagnostics.

Recent advancements in ultrasound have enabled the The measurement of 3D
blood motion using angle-independent speckle tracking or vector-Doppler approaches
with promise for providing more detailed measurements of blood velocity pat-
terns. Indeed, many links between flow abnormalities and CVD have already been
discovered with such methods(MNW+09). However, due to a reduced Signal-to-
Noise Ratio (SNR) related both to the ultrafast acquisition scheme employed as
well as inherent estimator properties, the measurements can be highly corrupted
by noise and require substantial spatial and temporal averaging. Further, required
clutter filtering for causes measurement dropouts during parts of the cardiac cycle.

1.2 State of the art and related work
Many methods for improving blood flow estimates have been developed in recent
years. We mention notably the B-spline regularisation grid due to Gomez(GdVJ+15)
adapted by Grønli(GSN+16). Tura(TSGL99) and lastly a model-based filter by
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2 Introduction

Høgenes(HWN+16).

The Kalman filter displayed promising results using a simplified advection model
based on the Navier-Stokes equation and forms the basis for the thesis project.

1.3 Statement of contribution
This project will investigate the potential benefits of model-based blood velocity
estimation using a data assimilation approach. An unscented Kalman filter com-
bines measurement sources and outputs a model-based estimate, but its perform-
ance is highly dependent on an accurate blood motion model. In this project the
motion model will be replaced with a full Computational Fluid Dynamics (CFD)
simulation using a fast computational approach based on SPH. This is a mesh-less
and highly parallelisable approach which allows for flexible definition of bound-
ary conditions. Given the data assimilation approach with a relatively high support
of measurements, we hypothesise that the accuracy of SPH will be sufficient in
this context. We further hypothesise that the incorporation of a SPH model will
increase the accuracy and speed of 3D model-based estimation and regularisation
of flow velocity fields.

1.4 Scope of the project
In this project, we aim to develop a fast 3D smoothed particle hydrodynamics sim-
ulator suitable for representing cardiac ventricular flows and boundary conditions.
The simulator will have high support for data driven system evolution through in-
formation obtained through continuously updated input from estimators such as
speckle tracking, (vector-)Doppler and B-mode.

The simulator should be tailored towards a Kalman filter application of the provided
model. Further, the model should be thoroughly evaluated the SPH approach used
as a model for predicting blood motion in the Kalman filter context

The project will have focus on obtaining a performant SPH code in order to invest-
igate a (near-)realtime bedside feasibility given the hardware installed in clinical
scanners today. This should be achieved by targeting high performance Graphic
Processing Units (GPUs), which is well known to greatly accelerate parallel codes
such as SPH.

For comparison to established method, the project will partly involve extending
a 2D B-spline based framework for blood flow regularisation developed earlier.
This framework has already been applied in a study in collaboration with the Sick-
Kids Hospital in Toronto and should serve reasonably well as a background of the
current state-of-the-art blood flow regularisation.
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1.5 Outline
The thesis is organised into the following chapters

Background The relevant background material providing the basis for the method
is presented in this chapter.

Methodology Implementation details surrounding the chosen model is presented
along with the simulations setups used to evaluate the model.

Simulations The chapter presents the results of the simulations performed with
the particle simulator along with a comparison towards a B-Spline smoother.

Discussion A discussion on the achieved results is presented along with an insight
into the current challenges in the implementation. Suggestions for further
work on this project follows and concludes this thesis.
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2 | Background

In this chapter, an overview of the relevant background information and theory is
provided. The topics will be covered in sufficient depth to motivate the methods
used in this project, but we refer to the relevant literature for a more thorough
treatise on the individual topics.

2.1 Ultrasound modality
Ultrasound is the concept of image formation through insonification of a volume
with acoustic energy. Ultrasonography has long been a valuable tool for clinicians
in a wide range of medical fields, most notably obstetrics, but also cardiology,
where the concept of using ultrasound is commonly known as echocardiography.
The operational costs of the modality is low compared to many other imaging
modalities, and the procedure is quick to perform.

The basis for ultrasonography is the reflection of acoustic waves at interfaces of
different bulk modulus. These impart a change of direction or reflection on acous-
tic waves propagating through the medium. To obtain an image, the region of in-
terest is excited with acoustic energy from a piezoelectric or capacitive transducer.
Reflected waves are detected by the transducer after reflection and the depth of
origin of the reflection is computed from the measured delay from transmit to re-
ceive. From this data, a map of the reflective landscape inside the volume can be
obtained. Interfaces are easily recognisable by experienced clinicians as distinct
anatomical features, allowing them to examine the patient in a non-invasive and
non-ionising manner.

2.1.1 Vector flow imaging (VFI)

The single most limiting factor of the standard Doppler postprocessing sequence
is that solely the radial component is estimated. Recent developments Vector Flow
Imaging (VFI) such as vector-Doppler, transverse oscillations and speckle tracking
methods have enabled angle-independent measurements for blood flow fields.
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6 Background

A recent review Jensen et al.(JNAG16a)(JNAG16b) provides an exhaustive present-
ation and discussion of the state of research on recently developed vector velocity
estimators and underlying acquisition schemes.

Sub-wavelength scatterers suspended in the plasma creates interference patterns in
the wave-data seen as a speckle pattern. Through the movement of the scatterers
in blood, the speckle pattern undergoes a continuous deformation detectable in
the ultrafast acquisition scheme. This transformation can be estimated by cross
correlation to obtain beam angle independent estimates for the blood velocity.

Intracardiac feasibility of a 3D speckle tracking estimator was demonstrated by
Wigen and Løvstakken(WL16). The estimator forms the basis for the flow estim-
ation in this project.

2.1.2 The Navier-Stokes equation

An integral component of the SPH particle transport is the equations of transport.
For fluids this is the Navier-Stokes equation(Whi10),

ρ(dV/dt) = ρg −∇p+ µ∇2V, (2.1)

or the more simpler inviscid Euler equation

ρ(dV/dt) = ρg −∇p, (2.2)

where ρ is the density, V is the velocity, g is the acceleration, p is the pressure and
µ is the viscosity.

Both equations applies for the motion of all fluids in general, and modified Navier-
Stokes equations have previously been used to regularise incompressible fluid mo-
tion fields, e.g the motion of blood(TSGL99).

2.2 Smoothed particle hydrodynamics (SPH)
SPH is a model for simulating fluid dynamics. It was first developed independently
by Gingold and Monaghan(GM77) and Lucy(Luc77) for the purpose of studying
astrophysical models.

It has later been successfully adapted to handle a variety of fluid flows through
modifications such as Weakly Compressible Smoothed Particle Hydrodynamics
(WCSPH), Incompressible Smoothed Particle Hydrodynamics (ISPH), and (XSPH)
and addressing free surface problems arising in the original formulation by various
means (BT07)(Mon94).
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2.2.1 Relation to other models

SPH is the most established and mature method in a range of Lagrangian hydro-
codes.

Being a Lagrangian method, convective acceleration is eliminated, this is often
a nontrivial source of error in the Eulerian methods. A few hybrid Lagrangian-
Eulerian methods exist to eliminate this problem. We mention in particular the
Particle-in-Cell method that was first published in 1963 by Harlow(HW65). The
principle behind the method involves a periodic mapping by interpolation between
particles and grids, where the advective transport is performed on the particles and
the physics of the system, including pressure projection, viscosity and boundaries
is solved on the grid. The excessive interpolation is a major source of numerical
dissipation in this model, and besides its value in plasma physics, the method is of
primarily historical interest.

A modification to the Particle in Cell (PIC) scheme called Fluid Implicit Particle
(FLIP) was proposed by (BKR87). In this model, particle properties are no longer
interpolated from the grid, but rather their rate of change. This way, the compoun-
ded smoothing over time is removed from the system and the numerical dissipation
becomes virtually zero.

In contrast to these, SPH was developed as a purely Lagrangian mesh-less method;
there is no particle-to-grid transfer taking place, and the differential equations of
the system is solved individually for each particle. This carries the same benefits
from the FLIP model, in that numerical dissipation is low. Higher dimensional
problems increases the degree of freedom for particles. However, this problem is
apparent in shared by SPH and FLIP.

A notable alternative to these is the Lattice Boltzmann model(HL97).

2.2.2 Basic principles

The idea behind SPH is to use a series of interpolating points along with a smooth
kernel to interpolate continuum properties and move the points according to the
fluid properties. In one sense, the particles represent fluid parcels, i.e units of con-
stant mass moving with the fluid and deforming appropriately. To determine the
advective transport of the fluid elements, differential equations for the dynamics
of the system are solved at the position of the fluid elements to evolve the system
according to the governing equations, e.g. Navier-Stokes, diffusion, heat transfer
or magneto-/electrodynamics.
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To obtain the equations of SPH, we use the kernel approximation

〈A(r)〉 =

∫
Ω
A(r′)W (|r′ − r|)dr′, (2.3)

where W is the interpolating kernel and A(r) is some field function. If the kernel
is symmetric and normalised, this approximation achieves second order accuracy.
Further,

lim
h→0

W (x, h) = δ(x), (2.4)

where δ is the Dirac delta function.

To evaluate the field function A at the location of the particles we rely upon the
principles of Monte-Carlo theory, i.e a kernel estimation of probability densities
through discrete sampling of the kernel;

Aa =
∑
b

AbW (rab), (2.5)

where Aa = A(ra) and Wab is shorthand for W (|ra − rb|). To reinforce the fluid
analogy and make the concept of a fluid element meaningful, a scalar density field
ρ is introduced to permeate the sampling domain

〈A(r)〉 =

∫
Ω

A(r′)

ρ(r′)
ρ(r′)W (|r′ − r|)dr′. (2.6)

Using dm = ρdr, the kernel sampling becomes

Aa =
∑
b

mb
Ab
ρb
Wab, (2.7)

Spatial derivatives of approximated continuum properties have exact analytical
closed form in the SPH framework. The inverse product rule

∂A

∂x
=

1

Φ

(
∂(ΦA)

∂x
−A∂Φ

∂x

)
(2.8)

with a test function Φ transforms in the kernel estimation to become(
∂A

∂x

)
a

=
1

Φa

∑
b

mb
Φb

ρb
(Aa −Ab)

∂Wab

∂x
. (2.9)

It was shown that the test function Φ = ρ increases the accuracy of the simulation
(Monaghan’s Second Golden Rule(Mon92)).
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Using this, the equations of motion for the particles can be derived by coupling
to the Navier-Stokes equations and solving the differential equations using kernel
estimation of continuum properties and derivatives.

There are two different interpretations of the kernel estimation,

Scatter Particles are imagined to scatter their properties onto surrounding particles
in a radius determined by their kernel support radius ha.

Gather Particles gather properties from neighbouring particles within the kernel
support radius of those particles hb.

The variant that is depends on which smoothing length is used in the kernel. How-
ever, in order to obtain symmetric force pairs, a combination of the interpretations
have to be used; h̄ = (ha + hb)/2. This is required to satisfy force symmetry in
the constitutive equations.

2h

W

Figure 2.1: Illustration of the kernel approximation. The particle under consideration
marked in blue gathers and scatters information onto the particles within the kernel support
of a radius 2h.

During the course of a SPH simulation the particles exhibit varying degrees of dis-
orderliness, changing the Probability density estimation analogous, and Gingold
and Monaghan hypothesised that the kernel estimation error should be obtained
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from the Monte-Carlo estimate Aerr
i ∝ 1/

√
N . Although subsequent papers dis-

covered a discrepancy in the the estimated error(GM78)(GM79) where the error
was significantly lower than expected. This was explained as the probability dens-
ity interpretation in Monte-Carlo theory allow variations not consistent with the
system dynamics, whereas in SPH, the reality is that although particles are allowed
to become disordered, they do so in an orderly fashion(Mon05).

2.2.3 Kernels

An important aspect of a SPH implementation is the choice of smoothing kernel.
The choice should be a Gaussian-class kernel in order to carry any potential phys-
ical interpretation (Monaghan’s First Golden Rule(Mon92)). One of the choices
among these is the normal-distribution kernel

W (r, h) =
(
h2τ
)− ν

2 exp

{
−1

2

( r
h

)2
}
, (2.10)

where ν is the dimensionality and h is the Scale of Interest (SOI). This kernel lacks
compact support, however, a truncation at δ standard deviations can be achieved
as

W trunc(r, h, δ) =

{
W (r,h)

Φ(+δ)−Φ(−δ) r ≤ δ
0 r > δ,

(2.11)

where Φ is the cumulative distribution function of the standard normal distribution.

The Gaussian kernel exhibits an off-center inflection point. This can lead to un-
desirable artifacts such as reduction in interparticle pressures. Under high pressure
conditions where particles are forced together, particle pairs may be compressed
closer than the inflection point of the kernel, gradually reducing the repellent pres-
sure force between the particles as they are pushed close together in an effect
called tensile instability. The clustering of particles due to this effect reduces
the effective resolution of the fluid int that clusters of particles behave as one.
Monaghan(Mon00) suggested a tensile correction factor to the pressure,

1 +RkΨ
n, (2.12)

where Ψ is the ratio W (r)/W (r0) with inflection at r0 and n is some numerical
coefficient, e.g 4. It has been suggested, however, that such effects should be
resolved by alternative kernels with differentiability properties such as the spiky
kernel

W spiky(r, h) =

{
15
πh6

(h− r)3 r ≤ h
0 r > h,

(2.13)
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with gradient

∇W spiky(r, h) =

{
− 45
πh6

(h− r)2r̂ r ≤ h
0 r > h,

(2.14)

with increasingly repulsive pressure as particles approach each other. Similarly,
the viscosity kernel

W visc(r, h) =

{
− r3

2h3
+ r2

h2
+ h

2r − 1 r ≤ h
0 r > h

(2.15)

with the positive definite Laplacian

∆W visc(r, h) =

{
45
πh6

h− r r ≤ h
0 r > h,

(2.16)

ensuring non-negative contributions to avoid exciting the system through viscosity.

However, it can be argued that these artifacts should be corrected by addition of
new physics to the system, the responsibility lies not on the kernel. Conflicting re-
search, general consensus generally favours mixing kernels appropriate to the type
of computation to avoid adding extra physics to compensate for what is essentially
an artifact of the smoothing kernel.

Other popular kernels include the B-spline kernels with analytical compact support
and high order differentiability and smoothness. Also, quintic Wendland kernels
and the M4 kernel have been used frequently in SPH codes, demonstrating that a
wide range of kernels can be chosen depending on the desired properties of the
smoothing.

2.2.4 Lagrangian mechanics in SPH

The equations of motion for SPH can be derived from the Navier stokes equation
(2.1) using Lagrangian variational frameworks.

In fact, a limitless number of SPH schemes can be devised, and the constitutive
equations change depending on the particular variational framework through which
it has been derived. The particle state occupy a 6N phase space, where N is the
total number of particles, and the generalised coordinates qi and generalised mo-
menta pi The literature concerning N -body problems is extensive, and the particle
kinematics in the context of the constitutive equations is well understood.

Some central concepts in the theory of such systems include action functional,
variational calculus Stat-mech?
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Conservation of mass

In SPH there are two distinct formulation for the estimation of the fluid density ρ.
The first approach, often called the summation density method, evaluates ρ through
a direct usage of (2.7), revealing

ρa =
∑
b

mb
ρb
ρb
Wab =

∑
b

mbWab. (2.17)

This approach is robust and guarantees normalisation of the kernel estimation of
other parameters. In this classical SPH sense, mass is always guaranteed to be
exactly conserved, which is an attractive property of the method.

The other method derives the variation of ρ through the mass continuity equation,
∂ρ

∂t
= −∇ · (ρu). (2.18)

Using the result from (2.9) with (2.18), we can write the rate of change in ρ as
∂ρ

∂t
=
∑

mbvab∇Wab. (2.19)

With this method the density field is created with some initial value, usually taken
to be the prototypical density as computed with (2.17) for a particle with a filled
neighbourhood.

(2.19) carries some advantages over (2.17), most notably its improved handling of
free surfaces or other fluid boundaries. (2.17) will experience a lack of interacting
neighbours near a boundary, creating a significant incompleteness in the kernel es-
timation. This causes the computed density to drop at the free surface and thereby
introducing spurious behaviour in these regions.

Another benefit is the reduced computational cost in using (2.19), since all differ-
entials can be computed in one pass, whereas (2.17) requires the estimation of ρ
before any other property can be computed at each timestep, effectively making it
a two-stage process.

(BK02) To improve the stability of the density calculation, an auxiliary particle fil-
ter known as the Shepard filter may be applied to the density calculation(PS99)(BL99).
The Shepard filter is a zeroth order correction to the density estimate,

ρ?i =

∑
jmbWab∑
j
mb
ρb
Wab

. (2.20)

Other approaches such as the first order Moving Least Squares (MLS) filter which
is capable of restoring a linear density error. (OYG14) investigates the use of a
density smoother based on the kernel estimator.
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Kinematic pressure

At each timestep, the relevant physics are computed and the system is evolved
according to a set of Ordinary Differential Equations (ODEs).

To calculate the kinematic pressure gradient experienced by the particles we refer
to the inviscid Euler equation (2.2). Following Monaghan’s second Golden Rule
(Mon92) to include the density in computations of field variables we arrive at

ρa∇Pa =
∑
b

mb(Pb − Pa)∇aWab. (2.21)

However, this form of the pressure contribution yields asymmetric force pairs in
the constitutive equations, violating the conservation laws. An alternative deriva-
tion of the pressure gradient exploits the identity

∇P
ρ

= ∇
(
P

ρ

)
+
P

ρ2
∇ρ. (2.22)

Turning the Gingold-Monaghan crank, we arrive at

dv

dt
= −

∑
b

mb

(
Pb
ρ2
b

+
Pa
ρ2
a

)
∇aWab (2.23)

This formulation is symmetric for particle pairs and conserve linear and angular
momentum exactly.

Since the pressure gradients are computed analytically from a discrete kernel sampling,
particle disorderliness may create unstable gradients if the neighbourhood is sparse.
Some gradient stabilising methods have been proposed similar to the Shepard ker-
nel correction, although these no longer conserve linear and angular momentum
exactly.

Solving the Euler simulation requires a coupling to an Equation of State (EOS).

2.2.5 Equation of state

Depending on the properties of the fluid of interest, an appropriate EOS has to be
selected. There is a multitude of choices for EOS, including the classic compress-
ible SPH for an isothermal gas using

p = c2ρ, (2.24)

where p is the pressure and c is the speed of sound, or polytropes using the
Murnaghan EOS suggested by Batchelor(Bat00)

p =
ρ0c

2

γ

((
ρ?

ρ0

)γ
− 1

)
+ p0, (2.25)
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known as the Tait equation, where ρ? = ρ, or optionally the Hughes-Graham
corrected

ρ? =

{
ρ if ρ > ρ0

ρ0 if ρ ≤ ρ0,

where ρ0 is the reference density, usually taken as the prototypical particle density.
The Tait equation is often chosen in cases where incompressible flow is desired.

The correction considers pressure fluctuations asymmetrically to discard negative
pressure from particle vacuums while penalising particle compression, making it
suitable for free surface flow and spray modeling.

2.2.6 Artificial viscosity

In section 2.2.4 we considered the inviscid Euler equation to compute the advect-
ive transport. To include the viscosity from the full Navier-Stokes treatment we
consider the following term

− µ∇2u, (2.26)

where µ is the kinematic viscosity quantifying the shear stresses between lamina.
Applying (2.9) twice to velocity,

∇2 = µ
∑
b

mb
vb − va
ρb

∇2Wij .

(2.27)

Gingold and Monaghan proposed the artificial viscosity tensor

Πij = −ν
(

vab · rab
r2
ab + εh̄2

ab

)
, (2.28)

where

ν =
αh̄abc̄ab
ρ̄ab

(2.29)

and ε ∼ 0.01 is some small parameter to avoid singularities.

This viscosity tensor has many attractive properties, such as Galilean invariance,
and cancellation in rigid rotation. Many extensions of this viscosity have been
devised to deal with some of its limitations(Bal95), but it remains as the most
widely used formulation for artificial pressure due to its simplicity.
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2.2.7 Time evolution

Multiple integration schemes are applicable in , ranging from The most commonly
applied scheme is leap-frog, or the equivalent velocity Verlet integration which
allows for variable time steps. This is a second order explicit (time-marching)
integration updated according to the scheme

vn+ 1
2 = vn +

Fn

m

∆t

2
(2.30)

xn+1 = xn + vn+ 1
2 ∆t (2.31)

vn+1 = vn+ 1
2 +

Fn+1

m

∆t

2
. (2.32)

This geometric(HLW+03) integrator reflects attractive symmetric properties of the
Hamiltonian, e.g. reversibility in absence of frictional forces and symplecticity,
leading to improved conservational features(LP96)(MQR99), maintaining stabil-
ity at larger time steps. It can be argued, however, that with dispersive effects
and pseudo-Rayleigh dissipation from XSPH and the Gingold-Monaghan tensor
respectively, the Hamiltonian of the system is not strictly conserved after all, so
the arguments promoting use of a symplectic integrator are void. Second order
Runge-Kutta or modified Euler methods may be better suited in light of this. An-
other popular choice is predictor-corrector integrators.

In the weakly compressible formalism, the fluid acceleration is the limiting factor
in determining the timestep due to Courant–Friedrichs–Lewy (CFL) criterion. In-
creasing the number of particles also reduces the allowable timestep by decreasing
the characteristic scale of the system, i.e. the kernel extent. The CFL criterion is a
necessary(but not sufficient) condition for stability in a system of that ensures in-
formation propagation through the fluid never jumps the discretisation in one time
step.

Goswami and Pajarola discuss heuristics for achieving global stability at larger
timesteps(GP11) yielding significant performance increase compared to using the
simple time step case.

2.2.8 XSPH

Altough the Gingold-Monaghan tensor (2.28) provides realistic viscosities, it in-
troduces significant numerical dissipation. Monaghan suggested to include another
term in the position update

dri
dt

= v̂i = vi + ε
∑
j

mjvjiWij , (2.33)
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i.e. to move the particle with its self-momentum corrected with the parameter ε to
the neighborhood-averaged velocity. This reduces the amount of artificial smooth-
ing needed to keep the particles orderly, generating less numercial dissipation. This
is more in the nature of the fluid element interpretation and reduces particle penet-
ration and chaotic gas behaviour without the need for excessive artificial viscosity.
To ease the interopability with the leap-frog scheme, Schechter and Bridson(SB12)
suggested to execute the XSPH-correction at the velocity level,

v?i = v̂i, (2.34)

so that the immediate particle update can be done using the XSPH-corrected velo-

city directly rt+1
i = v

t+ 1
2

i δt. The dissipative effects of this approach remains to be
fully documented.

2.2.9 Boundary conditions

The problem of robust and mathematically rigorous boundary handling remains an
open problem in SPH. One of the earliest variants suggested by Monaghan(Mon92)
involved placing immovable particles at the boundary exerting a repulsive force on
the according to some interparticle potential, e.g a Lennard-Jones potential. This
method is simple to implement, and is a popular choice for quick SPH codes.

Another method that has been used with success is the ghost particle method(SB12).
In this treatment, a virtual particle is mirrored over the boundary when a particle
approaches the edge. The virtual particle is identical to the real particle in all as-
pects with the notable exception that the velocity is inverted. This creates a repuls-
ive force when particles approach the boundary and can create a no slip effect if
desired. This method is mathematically sound and guarantees a normalised vector
function for plane boundaries. However, since the mirroring depends on incident
angles, the complexity quickly escalates for non-trivial boundaries. In cases where
particles are located near a corner, the problem of overcounting also arises, and
corrective measures have to be applied.

In a scenario with rapidly changing boundary boundaries this introduces significant
computational overhead in the dynamic repositioning of virtual ghost particles and
correcting for overcounting effects.

The boundary particle deficiency is a well-studied problem in SPH, see e.g.(BTT09)
for an elegant solution to this problem

2.2.10 Nearest neighbour particle search

A crucial component, often playing a significant role in the overall theoretical per-
formance a SPH implementation can achieve is the computation of nearest neigh-
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bour particle pairs.

In a naïve all pair implementation, all interactions from all other particles within
the influence must be considered and for kernels without compact support this
means that interactions between all particle pairs must be computed. This causes
the problem to scale asO(N2), where N is the total number of particles in the sys-
tem. For kernels with compact support, such as spline kernels and quintic Wend-
land kernels, the neighbouring particles have to be found in order to reduce the
total number of computations to include only the strictly nonzero interaction pairs.

The problem is closely related to the concept of broad-phase collision detection,
i.e. to perform candidate reduction to only include potentially interacting can-
didates. Many different strategies for Nearest Neighbour Particle Search (NNPS)
have been devised. We mention the original linked list approach suggested by
Monaghan(Mon92) and the related Verlet list method for which a sensitivity study
conducted by Viccone et al.(VBC08).

Other methods include boundary volume hierarchical trees, octrees (quadtree in
2D) and kd-trees. Some methods for tree construction on the GPU have shown
promise, notably Zhou(ZHWG08). However, tree based structures are not a nat-
ural fit for GPUs due to the lack of recursive features for tree traversals(HKK07).
Hegeman et al.(HCM06) proposed a fixed topology tree that allows the tree pro-
cessing to be performed on the GPU, but the most common method is to maintain
the tree on Central Processing Unit (CPU) and perform the interaction calculation
on the GPU.

Methods that have seen a lot of attention in the transition to GPU are spatial hash-
ing methods.

2.2.11 Weakly compressible SPH

One of the major drawbacks of SPH for modeling incompressible fluids is non-
negligible compressibility artifacts arising from the governing equation of state.

WCSPH was suggested as a method to model incompressible fluids by Monaghan
(Mon94) by using the Tait EOS along with a continuity equation approach for
computing the density.

The fluid is considered to be incompressible if the flow velocity is low compared
to the speed of sound in the fluid. It can be shown that density fluctuation is given
by ∆ρ = vL/(c2τ) ∝ M2, where M is the mach number. That is, in order to
achieve density fluctuations lower than 1%, the speed of sound in the fluid must be
at least ten times greater than the expected maximum flow velocity.
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This can be achieved by increasing the bulk modulus of the simulated fluid, how-
ever, the resulting differential equations in turn become very stiff. Although the
explicit WCSPH scheme facilitates extremely quick particle updates and compu-
tations, the small timestep required to propagate the particles accurately in this
formulation from the CFL-condition limits the theoretical performance in the near-
incompressible regimes.

There has been a lot of research on methods allowing larger time steps, so called
ISPH schemes. These do, however, introduce problems of their own. For example,
the nonelliptic governing equations of WCSPH do not translate to a truly incom-
pressible scheme. The solution of the implicit equations requires costly solver
steps at each particle update, for example by Jacobi relaxation(ICS+14). Pro-
jection approach to enforce incompressibility by performing a Helmholtz-Hodge
decomposition to project the solution onto an divergence free field as suggested by
Colin(CEL06). Incompressibility can also be incorporated by the Gibbs-Appell
equations.

A very successful method to enforce incompressibility was published by Solenthaler
and Pajarola(SP09). They presented a Predictive Corrective Smoothed Particle Hy-
drodynamics (PCISPH) scheme to predict a density fluctuation and do a backwards
propagation of pressure to counteract the target density fluctuation. This way the
simple and explicit equations from WCSPH can be used at larger timesteps.

An advantage of WCSPH is the ability to adapt to multiple flow situations through
the modification of the fluid parameters

Multiple comparisons between the ISPH and WCSPH models have been pub-
lished, see for example (LMX+08) or more recently (DGB+16). Hughes and Gra-
ham compared WCSPH and ISPH schemes and found that when tuned correctly,
WCSPH performs on par with ISPH, and in some situations even outperforms
ISPH (HG10).

2.2.12 Advantages and disadvantages

SPH is a model that exhibits superb conservational properties, such as conservation
of mass, and linear and angular momentum.

The distinguishing feature of SPH compared to mesh-based methods is the com-
putation of pressure forces and coupling with an equation of state and an integrator
instead of reliance on solving systems of linear equations.

This makes the model conceptually simple and additional physics can be added
by simply encoding them as interaction terms to be computed at every update.
Because of this, an elementary SPH simulator may readily be implemented at first,
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and further extended with more complex physics added at a later stage to obtain
research quality flows.

The simulation grid is encoded in the particles, so unlike mesh-methods there is
no requirement to explicitly adapt to changing boundaries or perform free surface
tracking, the simulation will self-resolve these situations. For this reason in partic-
ular it is often the case that Finite Element Analysis (FEA) is faster and more accur-
ate for fixed, closed domains, whereas SPH may provide significant performance
benefits in problems that require free surface tracking and/or frequent regridding
due to continuously changing boundary conditions. Due to the Lagrangian nature
of the method, the grid follows the particle, making the method self-adaptive in
resolution.

Another advantage of the SPH model is the high degree of inherent parallelism,
making it suitable for easy implementation on massively parallel architectures, in-
cluding GPUs. At every update, the internal and external forces can be computed
in parallel for each particle before they are collectively updated. By construction,
SPH avoids the problem of unphysical negative pressures arising in other numer-
ical CFD models.

Although SPH provides accurate results in 1D and 2D for relatively small numbers
of particles, the high degree of freedom in 3D requires a significant particle number
in order to maintain stable gradients and derived pressure forces. SPH also tends
to introduce dissipation in strong shocks and damp post shock oscillations smaller
than the smoothing length h.

It is also sensitive to the initial distribution of particles, and special care has to
be taken to make sure initial conditions do not affect the simulation results. In
cosmological computations, a small overdense cloud may trigger the accretion of
a structure spanning lightyears! Lucy recognised this problem and addressed it
with a quiet start solution in his original paper(Luc77).

From lack of effective screening of the gravitational force, self gravitating sys-
tems can be extremely demanding to compute in SPH (O(N2)). Regarding con-
vergence, if a numerical singularity occurs, SPH will continue running and give
incorrect results. On the contrary, most of the other will terminate early with some
tolerance error. Finally, accuracy is generally considered to be poorer for SPH than
rivalling methods. It is well known that SPH is not the best tool for high velocity
shock simulations or other situations with high Mach numbers, however SPH is a
fast and reliable simulator for rather placid flow.

Even if the model may appear deceptively simple, many deep questions surround-
ing convergence, consistency and stability in SPH are still not fully understood,



20 Background

which may be explanatory of the overall lack of adoption in comparison to math-
ematically sound FEA methods. For example, it was long hypothesised that the
free surface conditions were implicitly satisfied in the model, but a basis for this
was just recently established through a rigorous analysis in the treatise by Col-
agrossi et al.(CALT09) for which they received the Monaghan award.

SPHERIC Steering Committee identifies five Grand challenges in the SPH method.
As of 2017, these are

1. Convergence, consistency and stability

2. Boundary conditions

3. Adaptivity

4. Coupling to other models

5. Applicability to industry

In the end, although SPH and FEA are very dissimilar methods, comparable results
can be achieved by both methods as proved in a comprehensive study by Durisen
and Gingold(DG86).

2.3 B-spline regularisation
Part of the work has been directed towards further work Grønli et al. (GSN+16),
although the 2D CPU implementation has been covered in detail, it is useful to
give a brief overview over the basics of penalised B-spline regularisation here in
order to motivate the details of the 3D GPU extension of this work. A large part of
the effort was directed at implementing a fast iterative Least Squares (LS) matrix
solver on the GPU to solve the exponentially demanding 3D system.

The following section is adapted from Grønli(Gr6) and revised to reflect the ad-
vancements achieved in this project. The benefits of least square smoothers with
custom Tikhonov regulariation matrices are well studied(Eil03)(Gar10), in partic-
ular divergence penalties have shown great promise in blood flow regularisation
(GPS+13)(GdVJ+15)
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2.3.1 Formulation of splines

A spline S of degree n is a piecewise polynomial real function S : D 7→ R

S(t) =


p1(t) t ∈ [t0, t1)

p2(t) t ∈ [t1, t2)

...

pk(t) t ∈ [tk−1, tk)

(2.35)

where the set {t}i composes a partition of the domainD of definition, and ∀i : pi ∼
O(tn) in the Bachmann-Landau notation, that is, none of the polynomials has a
degree larger than n. Furthermore, the spline also is of differentiability class Cn−1

and therefore enjoys n − 1 differential continuity at each of the internal joining
nodes, also called the knots of the spline. Combined with the infinitely smooth
interstitial polynomials, this ensures exceptional smoothness of the curve at all
points. To achieve this, special care has to be taken when selecting the polynomials
{p}i, and algorithms have been devised for proper coefficient selection.

2.3.2 Basis splines

All splines of a chosen order and domain partition compose a function space
F , and from linear theory there exists linear subspaces B ⊆ F such that F =
span{B}, i.e. B forms an orthogonal basis for the function space. One example
of such a basis is the subspace composed of splines that have minimal support with
respect to the chosen order and spline domain partition. This particular subspace
is aptly named basis splines or B-splines, and all splines can be written as a linear
combination of this basis in accordance with the fundamental theorem stated by de
Boor(DB78) in his seminal treatise,

Sk =
∑
i

ciB
k
i . (2.36)

Given a domain partition and spline order, the B-spline basis can be recursively
calculated by the means of the Cox-de Boor algorithm,

βki (t) =

{
t−ti

ti+k−1−tiβ
k−1
i (t) +

ti+k−t
ti+k−ti+1

βk−1
i+1 (t) k > 1

Θ(t− ti)−Θ(t− ti+1) k = 1
(2.37)

where Θ is the Heaviside step-function. It is apparent from this recursive definition
that the base case sets a limit on the possible extent of the k-th order spline.
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2.3.3 Nonlinear least squares spline regression with B-spline basis

Because the high degree of smoothness and the finite support of the spline function,
this makes a B-spline an attractive basis for nonparametric polyvariate regression
problems. The idea behind spline regression is to partition the regression domain
with a suitable number of subintervals and find the B-spline coefficients ci in (2.36)
that minimise the squared error of the fitted spline S, i.e

c = arg min
x

||Sx− b||2, (2.38)

where S is the coefficient matrix and b is the values vector. For simplicity the
nodes may be placed on a uniformly spaced grid in the regression domain. Such
configurations of spline nodes are known as uniform, or cardinal, spline grids.
Because of the uniform partitioning of the basis domain the Cox-de Boor algorithm
simplifies greatly and compact closed form expressions for the functions can be
found easily. In the case of cubic splines, we obtain

β4
i (t) =


2
3 −

1
2 |t|

2(2− |t|) |t| < 1
1
6(2− |t|)3 1 < |t| < 2

0 otherwise.

(2.39)

In figure 2.2, an example regression on a set of scattered data points is shown. It
displays the regression basis at each node of the uniformly partitioned domain and
how each node must be weighted to fit the data points in the LS sense.
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Figure 2.2: Illustration of a spline fit of a scattered data point set, represented as blue
circles, using a cardinal cubic B-spline basis. Each node has its corresponding function
drawn in a separate color and correct LS weighting of the nodes is indicated. The recon-
structed spline is drawn as a solid blue line.
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2.4 The General-Purpose Computing on Graphics Processing
Units (GPGPU) programming paradigm

2.4.1 Emergence

Recent advancements in microprocessors technologies primarily aimed at high
performance game graphics have been increasingly utilised for heavy computa-
tions, e.g. simulations, forecasting and machine learning.

The early adoption of this involved redesigning the algorithms from a sequential
to a parallel and by writing custom compute fragment shaders which required in-
depth insight into an esoteric language built on graphics primitives jargon. Since
the launch of NVIDIA’s parallel computing platform CUDA in 2006 and later
OpenCL from the Khronos group, the entry barrier for computationally intens-
ive research has been lowered considerably, making its usage widespread in the
numeric community. Even though the algorithms still need to be translated into
parallel forms, there is less overhead in transforming idea to code. This has lead
to an explosive boost in limitations on previously compute bound problems.

Compared to a CPU, a GPU contains several thousand cores , threads are extremely
lightweight, virtually no context switching overhead
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3 | Methodology and implement-
ation

This chapter concerns the implementation details of the SPH model developed over
the course of this project. Further, the extension of the LS-smoother is covered in
detail. We also present the methods that were used in the validation process.

All of the methods were implemented using the CUDA parallel computing plat-
form and run using the PyCUDA Python library(KPL+12).

3.1 SPH
We implement the WCSPH scheme using the EOS due to Batchelor(Bat00). The
method employs the many of the techniques described in(Mon94) and (GGRDC10)
along with a novel boundary handling that has not been discussed in the literature.
The computational approach the method chosen here bears some resemblance to
the GPU approach studied by Goswami(GSSP10) with some deviations.

Normally we advocate the use of summation density (2.17), however, since long
term stability is not a concern for the intended application, we opted for the con-
tinuity equation formulation (2.19) for evolving the fluid density.

Many of the attractive properties with this formulation align well with the inten-
ded application. In particular, the formulation eliminates potential model noise
resulting from an agitated initial state that hasn’t undergone sufficient relaxation
procedures. It also facilitates dynamic reseeding of particles near inlets and outlets
and avoids boundary particle deficiency caused by a not fully developed boundary
model.

3.1.1 Computational model

The computational model is set up in such a way that the system tracks two vec-
tors q and p, the generalised coordinates and the generalised momentum densities
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respectively.

q is a 4-component vector containing the components (x, h), whereas p contains
(p, ρ), hence the label momentum density.

The generalised coordinates are scaled down to the unit domain Ω3, where Ω =
[0, 1]. Velocities are scaled accordingly, as is the speed of sound in the simulation.

The variables are stored on an equispaced 3D grid in cells able to store up to 2D

particles in each. In linear memory, this looks like a blocks of 2D particles stacked
end to end.

In this work, we employ strategies found in broad-phase collision detection al-
gorithms to locate a neighborhood Ni of a particle i, and only consider interac-
tions from this localised group. This is done by a cell sorting algorithm where
the particles are spatially sorted into the equispaced cells across the simulation do-
main, and the sorting is done by 3D rasterisation of the particle position onto this
grid. The individual cells have space allocated to hold up to cellSize number
of particles. A subdivision of the warp into full-warp, half-warp or quarter-warp
compute units that process 32, 16 or 8 particles respectively, so that the number of
particles per cell can be any power of 2.

The computational model in this implementation employs the warp shuffling and
voting intrinsics provided by the Kepler architecture and forwards on NVIDIA
GPUs to achieve a fast parallel reduction scheme for the particle interactions.

Interactions are computed by using equation (2.7) for the continuum property of
interest by launching thread blocks with execution configuration size n2

p where np
is the number of particles in each cell. The kernel smoothing length is not allowed
to surpass one cell spacing in every direction to ensure all particles have the same
amount of coverage kernel coverage. The kernel computes the current warpId
and the values qa and pa respectively hold the position state and the momentum
density state for the particle located in cell k at position warpId. In turn, the
memory locations of neighbours are found through the three dimensional index of
cells adjacent to the leader. The states of the particles in a neighbouring cell k are
assigned to variables qb and pb in the current working set.

The total interaction is computed using butterfly warp reduction over the lane pair-
ings of particles determined by the combinations of warpId and laneId. This is
repeated until all adjoining cells are searched and the particle pair interactions have
been computed before the leader lane finally pushes the result to global memory
to reduce frequency of global memory writes.

This approach was chosen because of its inherent parallel nature which should be
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able utilise the GPU architecture in an effective manner.

The average number of neighbours per particle can be computed by considering a
particle centred in a unit cube representing the cell. The smoothing length includes
particles located within a sphere of unit radius surrounding this particle. This leads
to the mean particle number Np =

Vsphere
Vcube

np = 4
3πnp

The fluid parameters struct is stored in a global device symbol, and a field update
from the host code triggers a memory transfer to the symbol, allowing the fluid
simulation parameters to be changed on-the-fly.

From the scripting code, we perform prepared calls on frequently launched kernels
to remove the cost of repeated argument marshalling.

3.1.2 Particle rebinning

Periodically, the particles has to undergo rebinning to observe the correct neigh-
bourhood. We readdress each particle by examining particles in cell B and com-
puting the target cell. A warp mask is generated to signal which particles are
scheduled for a readdressing. The warp lanes cooperate to detect which slots in
the target are free and a (primitive pseudo-) random offset determines the target
slot of each particle transfer. The marked lanes race to reserve a slot and the ran-
dom offsets help reduce collisions. The atomic intrinsics provided in the CUDA
instruction set helps detecting whether a cell reservation was successful or not.

The collective velocity update aided by XSPH reduces the target cell disparity.
With this method, the process is then able to transfer multiple particles in parallel
to a single target cell and the warp divergence factor is reduced.

A benefit with this sorting is that total overhead incurred by the rebinning is virtu-
ally zero when particles are nearly sorted.

3.1.3 Boundary forces handling

We suggest a classical potential field approach where boundaries are nonholo-
nomic rheonomous constraints represented as regions of elevated potential energy
w.r.t. the reference level, such that the local conservative force

FU = −∇U = −
(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
, (3.1)

where U is the potential field. In this formulation, the domain can be thought of
as a finite potential well, where the energy level determines the stiffness of the
wall. This level set approach greatly simplifies the calculation of domain bound-
aries in that boundary forces can be directly computed locally for each particle in
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an extremely effective manner by using highly specialised linearly interpolating
texture references available on GPUs. The gradient can be numerically estimated
by the use of Finite Differences (FD) enabled by the linear texel interpolation. To
avoid plateauing of particles penetrating the boundary gradient, a 3D morpholo-
gical distance transform operator may be applied to strengthen the localisation of
the particles.

One of the drawbacks of this method is the need for a fine-grained texture in order
to sufficiently resolve curved and sloped boundaries. This anisotropic effect can
induce angle dependent artifacts in fluid simulations sensitive to boundary noise,
such as Poiseuille flow. This criterion increases the amount of data flowing across
the PCI-e bus in simulations with rapidly changing boundary conditions leading
to increased bus congestion, particularly if frequent state fetching is neccessary in
the application.

This can be somewhat resolved by reducing the potential strength, allowing a small
penetration of the boundary and effectively smoothing out the jagged potential ob-
served by the particle. In this softer version of the boundary, particles undergo a
harmonic spring like motion near the boundary under the influence of a conser-
vative force derived from the potential. This means that, with sufficiently small
timesteps, no energy is lost in the reflection. On the contrary, the finite difference
step must be chosen as to not let an approaching particle skip the discretisation
distance and gaining energy by jumping the gradient without the potential doing
any work on the particle.

This method is, however, susceptible to boundary particle deficiency depending
on the choice of density formulation. In the summation density (2.17) formulation
this will lead to decreased particle densities near domain boundaries unless this is
corrected for in an extended formulation of this boundary handling.

To implement a no slip condition to simulate the fluid boundary layer, a retardation
of the velocity component in the normal plane to the potential gradient can be
applied. The reduction coefficient may also be a function of the local potential
allowing for realistic contact-dependent frictional forces.

p? = p− ξf(U)

(
p− p · ∇U
||∇U ||2

∇U
)
, (3.2)

where f is some function increasing along with the local potential, e.g. f(U) =

1− e
U−U0
T .
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p

∇U

Figure 3.1: Illustration of the component reduction described by (3.2). The velocity com-
ponent of p in the plane with normal vector along the potential gradient∇U is reduced by
some coefficient depending on the local potential U .

The boundary forces to keep the particles enclosed in the domain is computed
using the potential gradient method from (3.1). The scalar potential is initialised
using a level set obtained through segmentation methods or by direct creation.

For the host to device transfer, a pitched buffer is allocated on the GPU and the
resulting buffer is bound to the volume texture reference. The texture is set to use
linear filtering on normalised coordinates so that the scalar potential can be evalu-
ated at arbitrary particle positions by using the linear interpolation capabilities of
the graphics texture illustrated in figure 3.2. The normalised coordinate access of
the texture makes the gradient lookup compatible with the unit scale simulation
domain, as per section 3.1.1.

Using the spatial caching of the texture, gradients can quickly be evaluated numer-
ically by a FD scheme and using the linear interpolation between texels for groups
of particles at any point within the domain. The spatial caching capabilities of the
texture memory reduces global memory fetches by utilising the compactness of
the points being processed in parallel.

In this, the domain is represented by a potential cavity. In situations where the
domain changes over time, two textures are uploaded and the transient potential
is calculated from linear interpolation between the two textures. In the case of
constant boundary both textures are bound to the same underlying array

The boundary force is applied directly in the ODE update step similar to body
forces.
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P[i,j]

P[i+1,j]

P[i,j+1]

P[i+1,j+1]

x

y

tex2D(P,x,y)

Figure 3.2: Illustration of the texture interpolation on GPUs. The 2D texture in this image
is provided an array defining the grid values. Using normalised coordinates, the texture
lookup can interpolate the value of the texture at any point inside the unit domain.
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3.1.4 Seeding

The initial distribution of particles is computed by iterating over each cell and on a
thread basis compute a random position in the unit cube. The potential level set is
evaluated at the generated position through interpolation to find the local potential
U . Further, the Boltzmann-factor f(U ; U0) = e

U−U0
T is computed and compared

to a sample drawn from the standard uniform distribution. The particle is accepted
if the condition holds, rejected otherwise. This helps distribute particles according
to the rules of statistical mechanics.

The random samples are drawn from the cuRAND library on the device path so
that a parallel initialisation of particles can be performed in a GPU kernel, and
additionally, no CPU to GPU transfer is required in order to setup the system;
the whole lifecycle of the particles is confined to the GPU memory. These two
advantages significantly reduces the setup period of finely resolved simulations
involving millions of particles.

Note also that no expensive post-initialisation sorting is required, and particles are
more evenly distributed with less variance, suggesting a less random initial state.
Studies on the initial distribution of particles show that it is beneficial to have a
somewhat ordered disorder to capture random fluctuations in the numerics.

Similar methods using sampling by levelset(SB12) have been quite successful.

3.1.5 Leap frog integration

To evolve the system in time, we implement the Leap frog integration scheme.

The initial particle positions q
− 1

2
i and initial momenta p0

i is initialised through the
seeding procedure and by imposition of an external velocity field.
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The update proceeds as described in algorithm 1.

Data: q−
1
2 , p0

Result: Particle transport
while t < tend; ++n do

for parallel i do

ρ
n+ 1

2
i := ρ

n− 1
2

i +K({qn−
1
2 , pn}i)∆t;

q
n+ 1

2
i := q

n− 1
2

i +
pni
mi

∆t;
wall reflect;
rebin;
pn+1
i := pni + F ({qn+ 1

2 , pni , ρ
n+ 1

2 }i)∆t;
xsph update;
if ++k > filter period then

shepard filter;
k := 0;

end
end

end
Algorithm 1: Fluid update procedure

Strict consistency demands that the density drift in 2.19 is calculated from the
XSPH corrected position differential. However, in the modified XSPH sugges-
ted by Bridson employed here this is implicitly satisfied; all particle movement is
consistent with the intrinsic momentum of the particle.

3.1.6 State imposition and fetching

A major component of this model related to the Kalman coupling at a later stage
involves methods for imposing a regular velocity grid onto the particle fluid with
a given grid uncertainty and mapping the current fluid flow onto a regular grid of
some specified dimension. SPH is an excellent interpolating framework, indeed,
half of the logic behind SPH is interpolation. Leveraging this

For each cell, the grid points influencing the particles is computed, and the grid
points are weighted according to the kernel and uncertainty estimate to compute
the velocity estimate for particle i. An alternative and arguably simpler solution
could be trilinear interpolation very often used for the corresponding operation in
PIC/FLIP calculations.

3.1.7 Physics

The physics in the model uses the Tait EOS along with a small stabilising pres-
sure to smooth the gradients. The pressure gradients are computed from 2.23,
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and the kernel used is the truncated Gaussian (2.11). Further, the boundary model
discussed in this chapter along with the continuity form of the density 2.19 The
artificial viscosity from the Gingold-Monaghan tensor is used along with XSPH
corrections at velocity level. To maintain an orderly density distribution by cor-
recting for sporadic particle motion caused by kernel incompleteness or numerical
singularities we periodically apply Shepard density filtering. The filter is applied
at a regular interval every 50 steps.

The model uses simple pressure sources to generate motion according to the valve
dynamics. These are computed from the potential.

Vi =
∑
j

Qj
rij
, (3.3)

revealing

∇Vi = −
∑
j

Qj
r3
ij

~rij (3.4)

3.2 B-spline regularisation
The parts of the following section is adapted from Grønli(Gr6) and revised to re-
flect the theoretical advancements achieved in this project.

3.2.1 Formulation of the velocity reconstruction

Let v(x) be the reconstructed field. By (2.36) we have that

vγ(x) =
∑
d0

∑
d1

...
∑
dD−1

cγd0d1...dD−1
β(0)(x0)β(1)(x1)...β(D−1)(xD−1), (3.5)

In order to obtain the coefficient tensor cγd0d1...dD−1
by LS estimator methods, we

need to minimise the cost function

L(c) =
∑
γ

∑
i

||vγ(xi)− vγi ||
2, (3.6)

where xi is the position of the value vi. From (3.5) and (3.6) we can setup the
sampling matrix S by noting that if we let

S =


Ss 0 . . . 0
0 Ss . . . 0
...

...
. . .

...
0 0 . . . Ss


︸ ︷︷ ︸

D

, (3.7)
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with

Sij = β(0)(x0
i − n0

j )β
(1)(x1

i − n1
j ) ... β

(D−1)(xD−1
i − nD−1

j ), (3.8)

i.e the product of the B-spline functions in each direction called with the difference
between point xi and node nj , we can write L(c) = ||Sc− v||2, with

v = [v0 v1 ... vD−1]T . (3.9)

In principle, the individual velocity components can be solved independently as a
scalar field solution from the lack of cross-coupling between the velocity compon-
ents. However, addition of regularising terms coupling the solutions requires, as
will be shown, a simultaneous solving of the complete system, i.e. an extended
version of S.

3.2.2 The divergence regularisation term

In order to impose mass conservation under the incompressible flow assumption,
it is useful to include another term in the minimisation problem

L(c) = (1− λ)Lfit(c) + λLdiv(c), (3.10)

where λ is a tuning parameter to adjust the ratio between fitting the data and ob-
taining a divergence free solution. The energy term

Ldiv =
∑
i

||∇ · v(xi)||2 (3.11)

can be calculated analytically by using that from (3.5), we have

∂γv
γ(x) =

∑
d0

∑
d1

...
∑
dD−1

cγd0d1...dD−1
β(0)(x0)β(1)(x1)...β̇γ(xγi )...β(D−1)(xD−1),

(3.12)
yielding

∇·v(xi) =
∑
γ

∂γv
γ(xi) = ∂0v

0(xi)+∂1v
1(xi)+ ...+∂D−1v

D−1(xi). (3.13)

Note that, in general, it is not required that points xi in (3.11) correspond to the
points xi in (3.6), one may for example consider evaluating the divergence on a
coarser grid. By creating the derivative sampling matrices identical to (3.21),

Ṡγij = β(0)(x0
i−n0

j )β
(1)(x1

i−n1
j )...β̇

γ(xγi −n
γ
j )...β(D−1)(xD−1

i −nD−1
j ). (3.14)
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we note that the divergence energy term (3.11) including the cross terms in matrix
form can be written as Ṡ = [Ṡ0Ṡ1, ..., ṠD−1] is a row block vector of derivat-
ive matrices. Minimising (3.10) requires a simultaneous minimisation of the two
energy terms using the matrix formulation

c = arg min
x

(
(1− λ)||Sx− b||2 + λ||Ṡx||2

)
(3.15)

= arg min
x

∥∥∥∥((1− λ)S

λṠ

)
x−

(
(1− λ)b

0

)∥∥∥∥2

(3.16)

To solve this, the tall matrix

S =


Ss 0 . . . 0
0 Ss . . . 0
...

...
. . .

...
0 0 . . . Ss
Ṡ0 Ṡ1 . . . ṠD−1

 (3.17)

is constructed along with the r.h.s vector v = [v0 v1 ... vD−1 0]T , with the
blocks weighted according to the regularisation parameter. The resulting system is
solvable with specialised iterative linear LS solvers such as LSQR/LSMR.

3.2.3 Wall regularisation

Similar to the divergence regularisation a second regularising term is added to the
total objective function (3.10),

L(c) = Lfit(c) + λLdiv(c) + κLwall(c), (3.18)

where Lwall is an energy term enforcing no penetration and free slip conditions
close to a wall segment. The velocity component normal to the wall can be com-
puted as

Lwall =
∑
i

||n̂i · v(xi)− vi,⊥||2, (3.19)

where n̂i is the unit normal vector of a wall segment positioned at xi and vi,⊥ is
the corresponding wall velocity along the normal vector. Following the derivation
in(3.13),

n̂i ·v(xi) =
∑
γ

n̂γi v
γ(xi) = n̂0

iv
0(xi)+n̂1

iv
1(xi)+...+n̂D−1

i vD−1(xi). (3.20)
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We are now in a position to set up the matrix components of the wall regulariser
by following the argument from (3.21),

Sγij = n̂γβ(0)(x0
i − n0

j )β
(1)(x1

i − n1
j ) ... β

(D−1)(xD−1
i − nD−1

j ), (3.21)

c = arg min
x

∥∥∥∥∥∥
 S

λṠ
κS⊥

x−

 b
0
κv⊥

∥∥∥∥∥∥
2

(3.22)

Although strict consistency requires v⊥, the value zero can often be used with
acceptable results.

The temporal algebraic extension of (3.22) is trivial, however in practice, the
additional dimensions causes memory requirements to grow outside of the feas-
ible regime for currently available hardware. Gomez(Gom13) suggested a patch
based divide-and-conquer algorithm to overcome this problem at the cost of in-
creased computational complexity. This strategy may be well worthwhile if some
time-dependent physical constraint can be added, such as conservation of volume
throughout the cardiac cycle.

3.2.4 CUDA implementation

In order to set up the problem for efficient computation, a sparse matrix imple-
mentation was chosen. Naively, the approach would be for each point to calculate
spline functions of the distance to every node in each direction, so that the memory
requirements become |X| · |N |, where X is the set of regression points and N is
the set of grid nodes. In meaningful data, both these sets are typically exponen-
tial in the dimensionality D, |X| ∼ |N | ∼ (·)D. With increasing dimensionality,
the memory footprint of the computation rapidly outgrows the capability of any
modern computer in the dense matrix format.

To create the sparse sampling matrices S, we note that each point has exactly
n + 1 nonzero-valued splines within its support, and by taking advantage of this
convenient locality of the regression basis, only splines functions within the range
R =

[
−n+1

2 , n+1
2

]
in every dimension have to be calculated and stored. There-

fore, the memory requirement is reduced to scale as |X| · (n + 1)D in order and
dimensionality. The direct benefit of this is that node density no longer becomes
a limiting factor in terms of storage and we can tune the amount of smoothing
without penalty.
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3.2.5 LSQR solver

To solve the demanding 3D system, a fast LSQR solver for sparse GPU matrices
was developed. This was achieved by interfacing the cuBLAS and cuSPARSE
libraries in the CUDA Toolkit. LSQR is an iterative sparse linear LS solver that
uses the Lanzcos process to perform a bidiagonalisation. The derivation of the
algorithm is presented in (PS82). Algorithm 2 provides an overview of the al-
gorithm.

Data: A,b
Result: LSQR
β1u1 = b, α1v1 = ATu1, w1 = v1, x0 = 0
φ̄1 = β1, ρ̄1 = α1

for i = 1, 2, 3... do
// Bidiagonalisation
βi+1ui+1 = Avi − αiui
αi+1vi+1 = ATui+1 − βi+1vi
// Orthogonal transformation
ρi = (ρ̄2

i + β2
i+1)1/2

ci = ρ̄i/ρi
si = βi+1/ρi
θi+1 = siαi+1

ρ̄i+1 = −ciαi+1

φi = ciφ̄i
φ̄i+1 = siφ̄i
// Update x and w
xi = xi−1 + (φi/ρi)wi
wi+1 = vi+1 − (θi+1/ρi)wi

end
Algorithm 2: Fluid update procedure

The solver is modified to handle a weighting vector in the weighted LS minimisa-
tion

c = arg min
x

||diag(w)(Ax− b)||2, (3.23)

This weighting can in principle be applied directly to the sampling matrix A by a
costly row-wise matrix multiplication. This process bakes weighting into A which
could be undesirable in cases where the matrix A can be reused for a modified
set of values such as a grid interpolation. In our modified method, we apply the
weighting on vector level inside the bidiagonalisation procedure by noting that if
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W = diag(w) and Ã = WA,

Ãvi = WAvi = w � (Avi) (3.24)

ÃTui+1 = ATW Tui+1 = AT (w � ui+1), (3.25)

where � denotes the elementwise vector product. This means that the weighted
system using Ã is solved equivalently by replacing the appropriate operations in
algorithm 2 with (3.24) and (3.25). All sparse matrix routines are provided by
cuSPARSE and the dense vector routines are contained in the cuBLAS library.
These libaries provide extremely fast numerical methods on the GPU for dense
and sparse linear algebra.

From the computational setup A is stored as a Compressed Sparse Row (CSR)
matrix. Due to the particular way the matrix is laid out in memory in this com-
pression format, the operation ATui+1 is significantly slower than an equivalent
non-transposed multiplication. For this reason, the matrix is transposed and stored
as a separate copy prior to entering the convergence loop following (HWLC12).
The transposed matrix is used direction in the faster non-transposed matrix-vector
multiplication routine. This significantly improves performance in cases there
where strict stopping tolerances forces many loop iterations before convergence
is achieved, since the transpose computation is only performed once for the whole
loop. The doubling of storage requirement for storing both matrices can become
significant for larger system, forcing a fallback to the standard loop.

Due to the lack of temporal spline fitting in the framework, a temporal gaussian
blur is applied to the coefficient tensor, tuned to some specified parameter.

3.3 Blood speckle tracking (BST) framework interface
To obtain the blood velocity estimates, we interface a CUDA accelerated Blood
Speckle Tracking (BST) library developed at Department of Circulation and Med-
ical Imaging, NTNU. The hand-tailored Foreign function interface (FFI) utilizes
the ctypes Python library to natively call the exposed C functions through the Ap-
plication Binary Interface (ABI) with the tracking parameters provided in a C
struct. From the tracking library, we obtain blood flow estimates along with
computed speckle correlation to be used as point-wise weighting input.

3.4 Evaluation of method
The model is validated towards a CFD model of a neonatal heart developed by Joris
Van Cauwenberge and Abigail Swillens at Ghent University This model should has
high enough accuracy to be considered a Ground Truth (GT) of the flow inside the
specified domain(SLK+09).
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The CFD phantom will be used in two distinct ways. Firstly, the phantom will be
used to validate the general accuracy of the particle transport in the SPH model.
The particles are propagated over a range of prediction intervals determined by
chosen measurement rates. The ventricle is modeled as a truncated prolate spher-
oid with an elliptical mitral inlet and circular aortic outlet. Please refer to (VC14)
for a full description of the flow model.

Secondly, the flow fields from the phantom are used to simulate an ultrasound im-
age suitable for BST. This is performed using the Fast Ultrasound Imaging Sim-
ulation in K-space (FUSK) software to simulate moving scatterers in a velocity
field and imaging the interference field by a Point Spread Function (PSF) convolu-
tion. The PSF is the spatial impulse response of the ultrasound acquisition system.
Baseband demodulation yields the In-phase Quadrature (IQ) signal. The resulting
signal is passed through a clutter filter to simulate the procedure of tissue rejection
in the data. The frequency response of the filter is shown in figure 3.3.
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Figure 3.3: The response of the Finite Impulse Response (FIR) clutter filter used to sim-
ulate tissue rejection.
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Table 3.1: The parameters used in the speckle tracking procedure.

Speckle tracking parameters
Parameter Value
Maximum velocity [1, 1, 1] m/s
Kernel size 1mm x 1mm x 1mm
Kernel dims 7 x 7 x 7
Tracking grid density [1,1,1] mm−1

Kernel minimum samples [3,3,3]
Subsampler Parabolic

In order to obtain the wall definition for the B-spline smoother, the boundary points
were extracted through binary morphology and the points sent to the qhull library
for computation of the Delaunay triangulation of the point set.

All methods were run on a NVIDIA TITAN X graphics card.
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In this chapter we present the results of the majority of simulations that contributed
to the validation of this project. First the phantom flow field and the BST estimated
velocities from the FUSK phantom is presented. We then give a visual verifica-
tion by simulating a free surface setup demonstrating the boundary force model.
Subsequently, the inherent smoothing of the model is examined before a quantit-
ative analysis of the model quality with respect to the CFD model to determine
its predictive power. Further, the model is applied to velocities obtained via the
BST estimator using the FUSK simulated image to study the filtering effects of the
model.

A static B-spline smoother is presented to serve as a comparison to the dynamical
filter explored here and is used to provide comparable estimates in all cases but the
advection evaluation.

4.1 CFD phantom
In this section, an overview of the simulated CFD flow phantom is presented. The
phantom will be used as ground truth in following computations. Figure 4.1 shows
the CFD flow field as seen in the apical plane passing between both valves, and
figure 4.2 shows The flow fields are displayed at a regular interval and represented
by absolute velocity and in-plane components. Figure 4.3 displays the result of
the primitive segmentation as a mesh overlaid with the computed normal vectors
used in the B-spline regularisation framework. The mesh is created by a Delaunay
triangulation of the levelset that defines the domain in the SPH computation, ob-
tained through an exact zero-limited velocity thresholding. (GSN+16) showed
how the same measurements can be obtained in a segmentation pipeline to be used
for identical computations as the method used here will not work in vivo.
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Figure 4.1: The figure shows the velocity field inside the CFD phantom at constant inter-
vals of 25ms. The phantom is rotated 0◦ around the apical axis, and the middle volume
slice is extracted. The field is displayed with an absolute 3D velocity heatmap, and a dir-
ectional overlay of in-plane velocities is shown as arrows. The slice corresponds to the
plane passing through apex and between the valves.
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Figure 4.2: The figure shows the velocity field inside the CFD phantom at constant inter-
vals of 25ms. The phantom is rotated 90◦ around the apical axis, and the middle volume
slice is extracted. The field is displayed with an absolute 3D velocity heatmap, and a dir-
ectional overlay of in-plane velocities is shown as arrows. The slice corresponds to the
plane passing through apex and both valves.
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Figure 4.3: Result of the segmentation along with the computed normals. Segmentation
is obtained through a simple velocity thresholding of the CFD flow and the mesh is created
through Delaunay triangulation on the resulting domain point cloud.

4.2 BST estimates
Figure 4.4 and 4.5 shows the velocity estimates obtained from the blood speckle
at two orthogonal apical planes. The estimates outside the boundary are removed
manually to provide a clearer view of the relevant estimates.
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Figure 4.4: BST velocity estimates from the clutter filtered FUSK simulated waveform
data from the phantom. The flow field is displayed at regular intervals of 25ms, rotated
0◦ around the apical axis, and the very noisy out-of-domain velocities are masked by the
segmentation to avoid occluding the estimates.
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Figure 4.5: BST velocity estimates from the clutter filtered FUSK simulated waveform
data from the phantom. The flow field is displayed at regular intervals of 25ms, rotated
90◦ around the apical axis, and the very noisy out-of-domain velocities are masked by the
segmentation to avoid occluding the estimates.
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4.3 Inspective verification
The classical dam break is a commonly used validation setup for free surface SPH
Figure 4.6 shows a modified version of a dam break; a water column is pulled by
gravity onto a potential wedge to split the flow.

Figure 4.6: Illustration of the texel interpolation method for boundary force computing. A
block of fluid particles are pulled by gravity onto a coarsely resolved wedge. The spacing
between the wedge and the fluid particles originates in the finite difference discretisation.

4.4 Inherent model smoothing
Figure 4.7 shows the smoothing effect of imposing a grid of velocities with uni-
form weighting onto the particle domain and immediately fetching the particle
states on an identical grid. The effective smoothing depends on the number of
particles in the system, and the error compared to the original velocities is shown
for a wide range of particle numbers. The error is evaluated for the full frame
sequence and no fluid parameters are relevant for this validation.

Figure 4.8 shows the error in the smoothing provided by the B-spline grid. The
grid setup performs no regularisation in this test, meaning the result is solely from
interpolation error as to be comparable to 4.7.

Figure 4.9 illustrates the effect of increasing the cell grid dimension of the fluid
simulation. The filtered estimates are imposed and extracted at t = 0 to not be per-
turbed by advection errors. The grid density used in this calculation corresponds
to the particle numbers used to generate 4.7

Similarly, figure 4.10 shows how increasing the grid node density in the domain
affects the quality of the smoothing at a single timestamp. The smoothed values
are taken at t = 0 for comparison with 4.9.
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Figure 4.7: Frame sequence error due to interpolation artifacts in the SPH model. The
interpolation is evaluated for a range of particle numbers. The top panel shows the absolute
velocity error inside the flow domain, whereas the bottom panel displays the GT-mean
normalised errors.
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Figure 4.8: Frame sequence error in the smoothing provided by the B-spline grid. The
smoothing is evaluated for a range of grid sizes. The top panel shows the absolute velocity
error inside the flow domain, whereas the bottom panel displays the GT-mean normalised
error.
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Figure 4.9: Effect of increasing the number of cells in the SPH domain. The frame in
view is taken at t = 0.
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Figure 4.10: Effect of increasing the number of nodes in the spline grid. The frame in
view is taken at t = 0
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4.5 Prediction validation
In figures 4.12 and 4.13, the model’s ability to simulate left ventricular flow is
evaluated. The GT is applied at every frame before a prediction over an interval
and the final flow field compared to the expected solution as given by the CFD
phantom. To imitate the conditions at the valves in the CFD model, pulsating
gauge pressure sources was added inside the fluid domain to simulate opening and
closing of the valves, as illustrated in figure 4.11. This helps the model anticipate
opening or closing of the valves during the prediction period where this could lead
to issues.

Figure 4.12 does not take into account the dynamic pressure at the valves, as de-
scribed in section, and the effect of introducing these can be seen in 4.13. The fluid
system parameters used in this simulation is described in table 4.1
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Figure 4.11: Dynamic pressure at the valves in the SPH model. Domain volume is drawn
in green.
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Figure 4.12: Frame error for advections over prediction intervals at different measurement
rates. The simulations are performed without valve modeling.
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Figure 4.13: Frame error for advections over prediction intervals at different measurement
rates. The simulations are performed with valve modeling.
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Table 4.1: The parameters used in the SPH fluid simulation

SPH fluid parameters B-Spline parameters
Parameter Value Parameter Value
Grid size [40,20,20] Grid [32,16,16]
Cell size 32 L2 damping 0.5
Rest density ρ0 1 Divergence damping λ 500
Speed of sound c0 5 Wall regularisation κ 200
Background pressure p0 5 Weighting power 2
Polytropic constant γ 3 Temporal blur 0
XSPH parameter ε 0.2
Artificial viscosity α 0.5
Frame subsampling 100

4.6 Regularising power
Figure 4.14 shows how the SPH model compares to the B-spline regularisation
for reducing noise from estimator data. The setup for each method is described in
table 4.1.
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Figure 4.14: Comparison of the quality of the smoothing effect caused by both B-spline
and SPH models. The setup for the fluid model and the spline grid is described in table
4.1.
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Figure 4.15 show how the error is distributed at t = 50 ms for the SPH method.
Note how most of the error is loacated near the outlet.
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Figure 4.15: Visualisation of the origin of regularisation errors

4.7 Processed sequences
Figures 4.16 and 4.17 displays snapshots of the sequence using SPH and the spline
smoother respectively. The same setups were used as described in table 4.1
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Figure 4.16: Sequence of SPH smoothed BST estimates using the parameters from table
4.1
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Figure 4.17: Sequence of B-spline smoothed BST estimates using the parameters from
table 4.1
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4.8 Performance
Figure 4.18 shows the performance of the advection kernel using different cell
sizes. Larger cell sizes increase the number of interactions computed per particle.

0 100 200 300 400 500
N particles/1000

101

102

103

IP
S 

[H
z]

Iterations per second 
WS: 8 (XSPH)
WS: 8
WS: 16 (XSPH)
WS: 16
WS: 32 (XSPH)
WS: 32

Figure 4.18: Performance analysis of the particle advection step for different warp subdi-
vision sizes. The achieved number of iterations per second is shown for a range of particle
numbers. Performance is evaluated both with and without XSPH-correction.
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5.1 Results
From figures 4.9 and 4.10 it is observed that, qualitatively, the SPH filter seems to
provide more fluid texture in the resulting field similar to CFI estimates, whereas
the B-spline smoother applies more of a uniform Gaussian blur to the field. This
should come as no surprise, considering the mechanism behind the spline interpol-
ation. However, the SPH textures may be explained by the same phenomenon Gin-
gold and Monaghan encountered, namely that controlled disorder in the particles
allow for a more random sampling that estimates the kernel in a way that is more
consistent with the dynamics of the system.

The theory appears to be backed up quantitatively as seen in figures 4.7 and 4.8,
where the B-spline saturates at a higher overall error than the SPH model. But this
is a fluke; saturation in the B-spline smoother causes the interpolation to improve
very little when increasing node density. The reason being that the grid spacing
has shrunk below the characteristic scale of the flow features, removing the spatial
low pass filtering effect of the smoother. The smoother should in principle fit the
system exactly at this point, but we suspect that the hidden source of error is loose
stopping tolerances in the LSQR solver required for stiffer systems.

This points to a difference between the two implemented methods that cannot be
captured by grid-spacings alone, but the two models appear to provide approxim-
ately the same accuracy, but the B-spline results has a "softer" expression, as seen
in the sequences 4.16 and 4.17.

This is related to the problem of overfitting vs. underfitting; grid size restricts the
minimum extent of any flow structure that can be represented by the coefficient
tensor, but fine grids tend to fit noise in the measurements. Ideally, we would want
the SPH model not to suffer under this trade off, i.e. to dampen noise the solution
should be to evolve the system further, not reduce the number of particles and lose
the ability to resolve fine scale details.
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An important consideration is that the B-spline framework could not handle the full
resolution of the CFD model, and a decimation of the flow grid had to be done.
This problem is "invisible" in SPH, since any grid can be applied and interpolated
onto the particles. The required memory at a given resolution is dramatically less
in SPH.

From the visual validation of the method and boundary condition 4.6, we observe
a natural flow pattern, suggesting that the specific choice of computation model
and boundary handling is a viable choice for performing smoothed particle hydro-
dynamics. The performance found in 4.18 should be comparable to other SPH
codes using alternative sorting procedures and neighbourhood searches, which in
most cases is the limiting factor on realisable particle throughput.

Experiments showed that in order to maintain stability in the weakly compress-
ible regime, the timestep had to be sub-milliseconds, which means that the particle
number for feasible realtime performance is quite limited in the current imple-
mentation, particularly in 3D. This can possibly be solved by some of the targets
for optimisation outlined below or by improving the stability of the code, allowing
for larger timesteps. If compressibility is allowed to some chosen degree reason-
able results may be obtained without severely degrading the prediction quality; the
trade off between performance and accuracy is clear.

The smoothing from interpolations slightly overshoots the expected integrand er-
ror, this points to an error in the computation of grid positions in the state imposi-
tion or fetching procedure, possibly related to the half-pixel offsets. This could be
fixed by using an asymmetric form of the kernel in the state interaction, i.e. fully
scattering or gathering mode instead of h1+h2

2 . This allows more control over the
effective smoothing in the interpolation procedure, and, importantly, there are no
constitutive equations to be violated by asymmetry at this stage of the filtering.

When attempting to mimic CFD based on velocities alone the model has reduced
prediction accuracy in eject and filling phases unless some form of kinematic pres-
sure from valvular dynamics is included, as seen in figure 4.12. This is certainly
as expected, seeing as the CFD phantom model explicitly drives the flow field
by pulsing pressure curves at the valves to close the boundary value problem, in
short; we cannot hope have comparative long term dynamics without including
these. This is of course undesirable since it assumes some a priori information
about the physiology. If not included, however, another assumption is implicitly
enforced, namely static conditions at the mitral and aortal valves during the predic-
tion period. This assumption turns more severe as the frame rate goes down, and it
is clear that in order to avoid relying on a model, a reasonably high measurement
framerate has to be achieved in the acquisition scheme. In situations where the
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framerate is low, the method has to rely on the model to a greater degree. We ar-
gue that it is beneficial to include pressures from normal data in this case; to obtain
a realistic estimate for the flow it is therefore required that the model is consistent
with the true dynamics of the system.

Recent work on this suggests feasibility for in vivo setups using a multibeat setup
where multiple cardiac cycles are recorded and stitched to obtain upwards to 100Hz,
well within the prediction range of the filter, as seen in figure 4.13

When primitive valves are included, it is observed that the SPH model can emu-
late the CFD phantom with reasonable accuracy even for medium-sized prediction
intervals, suggesting a good fit for a model based filtering technique such as the
Kalman filter. It is observed a dominant contribution of inertial forces which con-
test the incompressibility condition, this is symptomatic of the early stage nature of
the implementation, and that further tuning is required to correctly model hemody-
namics. Although a major constituent of blood is near-incompressible plasma, the
stiffness is somewhat loosened by the presence of hematocytes which increases
the compressibility in a non-newtonian manner. This rheology is, however, not
sufficiently manifested in intracardiac conditions at the scales current numerical
methods are able to resolve

High pressure clustering is found in the regions experiencing strong compressive
forces such as during the diastole. This causes an effective resolution that is less
than expected by the interpolating grid in these areas. The consequence is missing
support inside the domain and velocities cannot be extracted at these points, as
seen in figure 5.1. Alternative kernels or the tensile correction proposed by Mon-
aghan(2.12) should be investigated as means to correct this. From the addition
of pressure sources and sinks the overall prediction quality is improved, it shows
problems related to inadequate particle flux at domain interfaces. In particular the
lack of dynamic particle reseeding causes the same effect as the particle clustering.
The fast moving particles near the inlet 5.1 Use reservoir!
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Figure 5.1: Extreme clustering effect during filling due to low Bulk modulus. Note the
grossly degraded resolution in the compressed region. Also, lack of dynamic reseeding
near inlet creates particle vacuum.

Although a particle can be placed in a region in the reference potential level, it
might experience boundary force induced by artifacts in the finite difference gradi-
ents from nearby walls. This creates an excited initial state, impacting the overall
quality of the prediction. relaxation needed to avoid initialisation artifacts impact-
ing the state prediction

A potential problem that needs to be addressed is the mesh computation provided
by the qhull-library. It is observed that in cases where the domain boundary
is flat over an extended region a significant undersampling of wall points for the
B-spline regularisation scheme occurs. This causing the wall description to skip
the discretisation distance of the grid nodes and exert no wall pressure in the flat
region. The behaviour is as expected, as coplanar points are removed due to numer-
ical singularities in the triangulation, and are redundant in the mesh description. A
solution to this would be an automatic mesh refinement when the control points of
the mesh grow beyond a certain limit w.r.t to the B-spline grid spacing. A different
issue in the current implementation is due to incompleteness of the kernel

5.2 Further work
The first step onwards from here is to employ the simulator as a system dynam-
ics model in a Kalman filter context. The nonlinear effects of the model requires
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an Extended Kalman Filter (EKF) or an Unscented Kalman Filter (UKF). Prom-
ising results were found with sensor fusion of BST and Doppler estimates in an
UKF(HWN+16), exploring this direction could indeed be a reasonable option fol-
lowing this. Additionally, the model should be evaluated towards experimental
data in a standard SPH benchmarking case for free surface flow compiled by Issa
and Violeau(IR06).

As noted in chapter 2, there has not been a focus on the rendering aspects of SPH
in this work. However, in order to have visual verification of the methods, prim-
itive scatter renderings have been provided by CPU-based visualisation libraries.
This visualisation method introduces a significant amount of overhead through a
device to host transfer for each displayed frame. In order to improve the realtime
visualisation capabilities, we may utilise OpenGL interop supported by CUDA, al-
lowing a direct write into a pixel buffer object(PBO) residing on the GPU which in
turn can be rendered in situ by OpenGL shaders without requiring a costly device
to host memory transfer.

The nature of the type of fluid warrants some deliberation. From the velocity estim-
ators and the inherent variance in these it is clear that the fluid state at the time of
imposition does not represent a smooth solution to the incompressible γ = 7 poly-
trope Navier-Stokes equation (2.1). The pressures involved in order to satisfy the
initial state appear unphysical and some damping from WCSP proves beneficial.
It is unknown to the author whether incompressible SPH schemes such as PCI-
SPH or Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) can
readily handle this situation. It is, however, shown that the weakly compressible
formulation deals with this by softening the differential equations and the degree of
compressibility can be tuned by the polytropic constant γ. This poses the possibil-
ity of an approach where γ is allowed to vary throughout the prediction period; i.e.
γ is ramped up to enforce incompressibility at a higher degree as noise dissipates
the flow turns placid under the physical constraints placed upon the particles. The
process may be viewed as a continuous transformation of a pseudo-gas cluttered
with estimator variance into an incompressible fluid through relaxation. The ef-
fect has to be evaluated in combination with Kalman filtering which was shown
by Høgenes to greatly suppress noise(HWN+16) in a simplified advection model.
Moving forward, maybe γ has to be adjusted according to some estimated noise
variance metric of the current state.

Another concern towards the nature of the fluid is the incompressibility condi-
tion. By construction, WCSPH is a penalty-based method only creating counter-
acting pressures after a density fluctuation has already occurred. This may result in
bouncy fluid behaviour, where Some argue that SPH can never fully model incom-
pressible fluids even though proposed schemes such as IISPH and PCISPH aims
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to amend this.

We hypothesise that assigning the correlation measure of the velocity estimates
would improve the quality of the filtering. Particularly in the XSPH update, indi-
vidual weighting of the neighbours would improve the neighbourhood correction.
It is desirable to implement variable particle mass, and following (2.19), the cor-
relation could be encoded in the mass.

The boundary model can be extended to include virtual particles at the domain
boundaries based on the local potential. This way, completeness of the kernel in
these regions is restored. This allows the use of the Summation Density formula-
tions which generally is more stable for long running simulations.

A general trend in which particle based visualisations(ASN+14)(SPK+12) are fa-
voured by clinicians proposes the use of the simulator to generate particle trace
visualisations virtually for free by marking certain particles as tracer particles

Cell overflow is a potential issue in the computational model studied here. The
effect can be visible in cases where the weakly compressible method cannot coun-
teract extreme stress, causing an accumulation of particles and eventually overflow.
This is a far more critical concern in the summation density method than the con-
tinuity equation, because the spilling of particles equates to a significant loss of
mass and failure to build up a neutralising pressure. In (2.19), density still builds
in the cell, eventually counteracting the flow of particles, however, effective resol-
ution is lost in the process due to particle elimination.

An effect that is apparent in the continuity equation by design is the lack of sig-
nalling from vacuums, meaning a block of particles with a shared velocity will
continue to move collectively forever. This is good for representing free surface
flows, but in closed domains, this creates unrealistic particle vacuums behind the
valves.

However, we believe that the (2.19) formulation will harmonise well with a dy-
namic reseeding process adapting the resolution to keep the number of interacting
particles constant. Using summation density, special care has to be taken by intel-
ligent splitting and merging in order to have consistent mass conservation. Each
particle tends to form an exclusion zone around itself to normalise its density which
may be damaged by continuously changed self-contribution(WBTW95). Equa-
tion(2.19) facilitates dynamic removal and insertion of particles by interpolating
continuum properties from surrounding particles according to the kernel approx-
imation(2.7).

The dynamic reseeding and elimination can be performed in the rebinning phase,



5.2. Further work 63

where exact information about particle spills are known.

An interesting approach would be to feed the particles directly into B-spline smoother.
The particles can be thought of as point measurements on an unstructured grid in
the unit domain, which is the expected input for the B-spline smoother. Maybe a
sophisticated temporal filtering would work well with a spatial filter.

The previous implementation of the B-spline framework was limited to 2D regu-
larisation and suffered under the ill-posed condition of divergence free flow. The
blood motion could indeed have out of plane components that were closed under
the divergence free assumption. In 3D the concept of out of plane motion is void,
and the fluid vector velocity is fully described, so the assumption can safely be
imposed on the system.

An interesting possibility for both frameworks is the addition of viscoelastic phys-
ics for tissue mechanics. In SPH, a myocardial model using a tensorial solid mech-
anics description can be explored to perform similar regularisation on strain rate
measurements in elastography. Further, if both models undergo sufficient valida-
tion, a fluid-structure interaction (SDSD+12) may be considered for a full model
of the heart capable of a simultaneous regularising of flow and strain rate meas-
urements. Splines are already widely used in strain rate regularisation, suggesting
an elegant coupling to the flow splines through some suitable penalty term. The
combined model driven by measurements from both flow estimator could possibly
perform better than the individual components separately.
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Figure 5.2: Instruction stall reasons in the force computation kernel as reported by the
NVIDIA CUDA profiler.

As seen in the profiling for the physics computation kernel in figure 5.2, a major
reason for kernel stalls is execution dependence. This may be resolved by in-
creasing the instruction level parallelism(ILP) in the code so that the SM can fire
multiple instructions back to back. We suspect that the primary source of this is the
computation of the smoothing function W , where many small floating point oper-
ations depend on the previous instruction. A solution to this would be to identify
common factors and operations to be pulled out of the loop body.

We also note that the other major factor is instruction fetching. The probable cause
for this is a rather large loop body not able to fit in the instruction cache. It is not
guaranteed that a loop compaction is possible in this computation model, but the
effects of loop unrolling should be investigated.

Another performance concern is the frequent use of ρ−1 operations, which is well
known to have limited floating point throughput. An alternative scheme should
store the inverse value, the volume V of the fluid element to reduce the number of
expensive division in the code, as suggested in (GSSP10).

Lower particle limit per cell increases the risk of cell overflow, so the cell capacity
should be chosen as to saturate the accuracy of the model. Studies show that
increasing the neighbourhood beyond 50 particles contributes little to accuracy of
the method since the kernel sampling is sufficiently saturated. As indicated by
the kernel profile in figure 5.2, the force kernel is bound by register usage, so
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increasing the cell limit also imposes register pressure on the SM which forces
spilling into the L1-cache, lowering overall performance.

Rustico et al.(RBG+12) discuss the migration of single-GPU SPH codes to multi-
GPU and proposes an implementation by a domain partition along the major axis
of the linear storage thereby enabling a fast contiguous memory transfer to each
GPU. This multi-GPU method would be applicable in this implementation by split-
ting along the cell grid, allowing an overlap of one cell in the partition direction
as illustrated in 2D in figure 5.3. This guarantees completeness in the reduction
scheme for all cells except the fringe. A finalising pass over the stitched region
collects the computed interactions from both GPUs.
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Figure 5.3: Proposed multi-GPU implementation of the computation model. The cell
layout is split along the major axis and an overlap region is distributed to both GPUs.

A problem that arises frequently in multi-GPU solutions concerns how to do cor-
rect load balancing in order to avoid pipeline stalls where one or more GPUs are
inactive due to dependency on other possibly slower or heavier loaded GPUs. It
is reason to believe that the implementation suggested in this work suffers less
from this type of events due to the way interactions are calculated; we always con-
sider a fixed number of neighbours determined by the warp subdivision, regardless
of whether the neighbour exists or not. The simplified computation model relies
more on parallelism and less on sequential code to utilise the SIMD benefits of
the GPU at the cost of redundant computations and increased memory usage. This
makes it less prone to heavy warp divergence, a major factor in pipeline stalling.
The load balancing can be done as simple as partitioning the cells according to the
floating point performance of each . Other hardware factors will undeniably and
unpredictably influence the exact performance of each , often by varying degree
between passes, such as PCI interrupts and bus congestion.

To generalise the target platform, a very similar implementation can also be done
using the low latency shared memory to perform the intrawarp communication.
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This would allow a direct OpenCL translation of the code, enabling it to run on
heterogeneous systems and avoid vendor lock-in. Profiling should follow this to
ensure comparable performance.

Some of these optimisations are low hanging fruit, but they were discarded in
favour of more explicit codes due to time constraints in order to avoid introducing
inaccuracies from premature optimisation.

As seen in figure 4.18, XSPH incurs a significant extra step in the particle trans-
port, halving the performance of the particle update. As a poor man’s XSPH, we
suggest a momentum correction following the lines of XSPH, but correcting with
the neighbour average computed as the centroid momentum of each adjacent cell
and weighted with the distance from the particle to the center of each aforesaid
cell using the smoothing kernel. This will dramatically reduce the number of com-
putations in the XSPH update, while still preserving the e. The XSPH method is
somewhat ad-hoc, and for this reason we believe it is not of the full neighbour
particle treatment if avoidable.

Another possible extension of this work is the coupling to a fast ultrasound sim-
ulator such as COLE, allowing realtime simulation of blood flow images. Fast
COLE simulators using CUDA are available for this purpose.

In the end, the overall method planned for this project bears a strong resemblance
to the FLIP method, and investigations should be done to see if the FLIP method
is an even better fit.

Although 3D is an emerging technology in ultrasound, the low framerate and tech-
nological challenges surrounding volume acquisition still limits its current clinical
use. 2D will still remain the de facto standard in ultrasound for , and 2D It is there-
fore beneficial to further look at how the filter can be downscaled to perform in
the 2D+t modality where we hypothesise that the reduced degrees of freedom will
allow a faster and more stable realtime filtering suitable for bedside evaluation on
current scanner hardware.
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A fast SPH fluid system with grid interpolation methods was developed and eval-
uated. In a direct comparison with an accurate CFD model, the fluid system man-
aged to forecast the flow phantom with reasonable accuracy.

Many of the model components were chosen as to readily model cardiac conditions
from available estimators for this application.

The SPH model showed capability of regularising noisy estimates in a way that re-
tains the overall flow details and magnitudes to a greater degree than conventional
methods. Further, the model demonstrated a predictive power that could be viable
in a Kalman filtering context, provided that the absolute domain flux over the pre-
diction period is limited. We hypothesise that this limitation can be overcome with
improved inflow/outflow handling in our model either by a reseeding approach.

Although accurate 3D realtime application of the model is not feasible at the cur-
rent stage, we believe that the current performance should handle realtime 2D
simulations with relative ease given current scanner hardware.

Given the similarity in performance found when compared to an advanced grid
based smoother, we hypothesise that the coupling of this model with a Kalman
filter will cause it to outperform many of the existing methods available for blood
flow regularisation in echocardiography.

67
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