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Summary

The finite element method is used to solve the quasiclassical Usadel equation, valid for
diffusive superconducting hybrid systems, in higher dimensions than one. A detailed
derivation of the method is given, and it is verified that the results generated are correct by
comparing with known solutions. In addition, the numerical routine is applied to several
case studies which explore novel phenomena that are intrinsically higher dimensional.
Specifically, an analysis of a two dimensional Josephson junction with external flux reveals
that vortices present in the system are influenced by the width of the junction and the
phase difference between the superconductors, altering both the number of vortices and
their positions. Spin-orbit coupling is investigated, where it is found that the symmetries
in the induced magnetization and the spincurrents can be predicted. In addition, it
is found that spincurrents flow in the system even without any charge current present.
Finally, a three dimension model is considered, where superconducting islands are placed
on a ferromagnetic substrate with different exchange field distributions. It is found that
charge current flowing between the superconductors selects the easiest route, rather than
the shortest, avoiding regions of highest magnetization.
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Sammendrag

Elementmetoden er brukt til å løse den kvasiklassiske Usadellikningen, gyldig for diffusive
superledende hybridstrukturer, i høyere dimensjon enn én. En detaljert utledning av meto-
den er gitt, og det er bekreftet at resultatene den produserer er korrekte ved å sammenligne
med kjente løsninger. I tillegg er den numeriske rutinen anvendt p̊a flere eksempelstudier
som utforsker nye fenomener som kun oppst̊ar i høyere dimensjoner. I en analyse av en
todimensjonal Josephson-sammenkobling med ytre fluks ble det oppdaget at vorteksene
som dukker opp i systemet p̊avirkes av bredden p̊a sammenkoblingen, samt faseforskjellen
mellom superlederne. Dette endrer b̊ade antallet vortekser og deres posisjoner. Spinn-
bane-kobling undersøkes, hvor det vises at symmetrier i den indusert magnetiseringen og
spinnstrømmen kan forutses. I tillegg, ble det funnet at det er spinnstrømmer i systemet
selv om det ikke er ladningsstrømmer. Til slutt betraktes en tredimensjonal modell, hvor
superledende øyer er plassert p̊a et ferromagnetisk substrat med forskjellig romlig fordeling
av utvekslingsfeltet. Det ble demonstrert at ladningsstrømmen velger den enkleste ruten
mellom superlederne i stedet for den kortest, ved at omr̊adene med høyest magnetisering
unng̊as.
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Chapter 1

Introduction

When a superconductor is placed in contact with a non-superconducting material, a fas-
cinating phenomenon can take place where superconducting properties are transferred
to the normal-state material. In this way, a dissipationless current can flow through a
non-superconducting material. This is called the superconducting proximity effect, and
was first discovered by Meissner and Ochsenfeld2. The theoretical study of this phe-
nomenon means solving the quantum transport problem - a Herculean task that requires
simplification. Progress is aided by the application of quasiclassical theory, which is
an approximation where only the slowly varying envelope functions of the particles are
considered, and fast oscillations ignored. This is reasonable because the experimentally
relevant systems for the study of the proximity effect are mesoscopic, i.e., with length
scales in an intermediate regime between the macroscopic and the microscopic. Diffusive
systems coupled to superconductors, are in the quasiclassical approximation governed by
the Usadel equation3. Its derivation is given in chapter 4.

A large contributor to the recent upswing in research into the proximity effect is the
realization that superconductor-ferromagnet hybrid systems can be used within the field
of spintroncs to create dissipationless spin transport4. One of the mechanisms by which
this can take place is if the ferromagnet has an inhomogeneous spatial distribution of
the magnetization5. This inhomogeneity may come from layers of several ferromagnets
with non-collinear magnetization6, or be intrinsic to one material. Examples of the latter
include domain walls, and the more exotic skyrmion, which is a magnetization pattern
with a spiral-like character7,8. Another mechanism by which spin transport can take place
is through spin-orbit interactions9,10.

The numerical methods in common use today are limited to one dimensional models or re-
quire additional approximations, such as linearization of the differential equations11. This
poses a challenge. While some phenomena of interest can be described by an effective 1D
model, they are generally higher dimensional. In addition, the complexity of the systems
considered are expected to increase as the frontier of research within superconducting
hybrid structures expands. This leads to more sophisticated theoretical hypotheses and
experimental setups. A need has therefore arisen for a numerical tool that can handle
problems which have so far been outside the researchers’ grasp. Motivated by this, it has
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been the ambition of this thesis to develop an efficient numerical routine capable of solving
the Usadel equation, not only in 2D and 3D, but also without any limitations to the ge-
ometries that can be modeled. This is a non-trivial task, and to the best of our knowledge,
only a single work has solved the full, unsimplified Usadel equation in 2D12. There is no
known attempt at a 3D solution. There is, in other words, a vast landscape of physical
effects which remain unexplored due to lack of an appropriate numerical method.

Numerical investigations are of great value to experimental research. They provide an
inexpensive way of testing variations of a given experiment, thereby helping to focus re-
search efforts. In addition, numerical analyses are often successful in explaining surprising
experimental results. In the following, a few recent notable examples are given which may
not be described by a 1D numerical model, thus further illustrating the need for a higher
dimensional analysis tool. A study by J. Kim et al has shown a geometrical dependence
of the strength of the proximity effect in an effectively 2D system with superconducting
islands on a metallic substrate13. It was found that the strength of the proximity effect
increases with the curvature of the studied junction. In another study, the effect of an
external magnetic field on superconducting correlations was investigated by Roditchev et
al on a similar structure14. It was found that the magnetic field creates vortices in the
normal metal, which are select points where the superconducting correlations disappear.
The presence of such vortices creates resistance, as their positions change when currents
are applied. It turns out that this can to a large extent be mitigated by creating a lattice
of perforations that surrounds the vortices, as was shown by Córdoba et al 15. Finally,
a phenomenon which is highly relevant for the field of spintronics is the spin Hall ef-
fect, which is the accumulation of spin on lateral surfaces when a charge current passes
through a material with spin-orbit coupling16. This can occur also for superconducting
hybrid structures, thus creating a superconducting spin Hall effect17. This was recently
verified experimentally by Wakamura et al 18.

The numerical method proposed herein is the finite element method. The method was
first invented in the 1950s for the solution of problems in structural engineering19, which
remains one of the fields in which it is most popular. The main idea behind the finite
element method is that the geometry is discretized rather than the differential operators.
This means that the numerical framework is established without referencing the partic-
ular geometrical shape. It is this feature that makes the method well suited to handle
complicated physical models. A detailed derivation of the method, as well as the specifics
regarding its application to the Usadel equation is presented in chapter 5.

The degree of discretization necessary in the finite element method, which determines
the amount of computing resources required, is governed by the spatial variations of the
solution. A slowly varying physical effect can be described by a cruder discretization.
This makes the finite element method particularly well suited to solving quasiclassical
equations, where the fast oscillations are neglected. The analytical and the numerical
approximations therefore complement each other, which results in a highly efficient so-
lution method. Another characteristic which makes the finite element method appealing
is its design philosophy. The method requires benchmark solutions to verify the results,
and at the same time it has the descriptive power to accurately recreate experiments.
This creates a synergy between theory and practice, which should be the basis for any
numerical method.
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Chapter 2

Background

In this chapter, fundamental concepts will be briefly reviewed.

2.1 An overview of superconductivity

Superconductivity is a fascinating effect which is entirely quantum mechanical in origin,
but still observable on scales visible with the naked eye. As was discovered by H. Kam-
merlingh Onnes in 191120, many normal metals drastically change their behavior when
cooled to temperatures close to absolute zero. Below a certain temperature threshold
Tc, superconductivity can take place, where the resistance in the material drops to zero
beyond any means of measure. Indeed, it is estimated that the decay time of currents
circulating in superconductors can be of the order 101010 years21. Another astonishing
phenomenon that is associated with superconductivity is the Meissner effect2, which is
the expulsion of magnetic field lines, thereby hindering the penetration of magnetic fields.
This is caused by spontaneously induced currents which appear when a metal is cooled to
below Tc. This has the effect that magnetic field lines cancel inside the superconducting
material, and add outside, leading to perfect diamagnetism22.

The physical origin of superconductivity stems from the surprising fact that electrons
in a lattice can behave attractively. The manner in which this attraction takes place is
illustrated in figure 2.1. The electrons can be thought of as moving freely around in the
lattice. However, as they do, they attract the oppositely charged ions. This distorts the
lattice, as the ions are dragged out of equilibrium, closer to the electrons. Since the ions
are several orders of magnitude heavier than the electrons, these distortions linger long
after the electrons have passed by, creating pockets where the density of positive charge is
greater. These regions can then attract another electron, hence generating an attractive
electron-electron interaction.
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Figure 2.1: Classical illustration of the formation of a Cooper pair. The elec-
trons are marked in red, with arrows indicating their direction of motion.

With an attractive interaction possible, a tendency towards pairing of electrons with
opposite spins into what is known as Cooper pairs23 takes place. However, it is incorrect
to say that two particular electrons remain locked in a bound state. Rather, Cooper pairs
continually break and reform. For conventional superconductivity, the electron pairs form
singlet states, |↑↓〉 − |↓↑〉.

While the Cooper pairs are not bosons, they gain bosonic mannerisms, which enable them
to avoid the Pauli exclusion principle and may therefore all occupy the same state. It
turns out that the ground state energy of the Cooper pairs lies below the Fermi surface.
As the temperature is cooled below Tc, a phase transition therefore takes place, where
Cooper pairs form a fermionic condensate. Much like Bose-Einstein condensates, this
allows for the Cooper pairs to attain phase coherence on macroscopic length scales. In
addition, there is an energy gap that must be overcome before a Cooper pair can be
split, and the electrons scattered. For energies below the gap, there are no available
single particle states for the electrons to scatter into, and so they cannot interact with the
environment. These mechanisms explain why dissipationless currents that encompass the
entire superconductor appear. This picture also explains why superconductivity is a low
temperature phenomenon, as thermal vibrations of the lattice would mask the influence
of the electrons, and is therefore detrimental to the formation of Cooper pairs.

2.1.1 Characterization of superconductors

Following the arguments of Pippard24, the superconducting coherence length ξ is to be
found, which is a measure of the length scales over which the superconducting wave
functions vary. For an effect taking place at the temperature Tc, only electrons with
energies ∼ kBTc are influenced, where kB is the Boltzmann constant. This means that
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the momentum range of the electrons involved can be estimated in terms of the Fermi
velocity vF as ∆p ∼ kBTc

vF
. By using the Heisenberg uncertainty principle, the spatial

uncertainty is found as ∆x ≤ h̄
2∆p . Therefore, the superconducting coherence length can

be expressed as

ξ = α
h̄vF
kBTc

(2.1)

where α is a numerical constant. The superconducting coherence length can be interpreted
as the distance between the electrons in a Cooper pair. Mathematically, it means that
a localized change in the wave function will spread out a distance ξ. It is necessary
to introduce another length scale, namely the penetration depth λ. When applying a
magnetic field H to a superconductor, perfect diamagnetism ensues from the Meissner
effect. However, this cancellation of the magnetic field does not happen immediately
upon entering the superconductor. Rather, the magnetic field is gradually decreased to
zero over a short distance, within which the magnetic field decays as e−r/λ. From ξ and
λ, the Ginzburg-Landau parameter is defined as

κ = λ

ξ
(2.2)

Equation 2.2 can be used to divide superconductors into two classes. For κ� 1, illustrated
in figure 2.2a, the superconducting wave function goes to zero over a distance ξ which is
large. This means that there is a greater volume within which Cooper pairs are destroyed,
which requires energy. Meanwhile, the larger the penetration depth λ is, the greater is
the volume where the magnetic field is not pushed out, thus saving energy. In this case,
λ is short, and therefore the net energy contribution to the system from the interface
is positive. This means that the energy in the system is minimized by having as few
interfaces as possible. Such superconductors are labeled as type I. Type II superconductors
correspond to the opposite situation, where κ� 1, as illustrated in figure 2.2b. Here the
net energy contribution is negative, so that the superconductor prefers as many interfaces
as possible. This materializes in the establishing of an array of vortices, which are localized
regions within which the material is in the normal state, and a single flux quantum
penetrates25. It was found by Ginzburg and Landau that κ =

√
2 marks the transition

between type I and type II superconductors26.
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Figure 2.2: Illustration of the behavior of the magnetic field H and the wave
function ψ by a normal metal - superconductor interface for different values of
the parameter κ. Adapted from22.

2.1.2 The proximity effect

Interesting phenomena occur when a superconductor is placed in contact with a metal
which is in the normal state. For such a configuration, Cooper pairs may diffuse into
the normal state metal so that it attains superconducting properties near the interface.
This is called the proximity effect. The leakage of Cooper pairs, in turn, reduces the
superconducting correlations near the surface in the superconductor, which is known as
the inverse proximity effect. The mechanism by which Cooper pairs enter the normal
metal is called Andreev reflection27,28. Electrons in the normal metal with energies lower
than the superconducting energy gap, may not enter the superconductor, as there are no
available states. When such an electron approaches the superconductor, two things can
happen. The first is that the electron is reflected at the interface. The other possibility is
Andreev reflection, where the electron is transmitted as a Cooper pair, with the reflection
of a hole.

In a ferromagnet, the exchange field has a detrimental effect on superconducting corre-
lations. Since the Cooper pair consists of two electrons with opposite spins, the Zeeman
effect gives the pair a net momentum q. This is illustrated in figure 2.3, where it is seen
that the presence of an exchange field has the effect of shifting the bands for electrons with
spin up and down with respect to each other. This destroys the phase coherence between
Cooper pairs, and therefore also superconductivity. However another exotic phenomenon
also takes place. The net momentum q appears as a phase factor in the two-particle wave
function. This means that the singlet wave function is changed to29

|↑↓〉−|↓↑〉 → |↑↓〉 eiq·r−|↓↑〉 e−iq·r = (|↑↓〉 − |↓↑〉) cos(q ·r)+i (|↑↓〉+ |↓↑〉) sin(q ·r) (2.3)
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Figure 2.3: Illustration of the splitting of electron bands with opposite spins in
the presence of an exchange field.

where r is the position in the perpendicular direction to the interface. This is called a
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state30,31. As can be seen from equation 2.3,
upon entering the superconductor, the singlet state Cooper pair begins to oscillate to
the spin-zero triplet state. This has exciting implications. Indeed, with the presence of
either an inhomogeneous exchange field or spin orbit coupling, the spin-zero triplet state
may be rotated to one of the other two triplet states - thus generating equal spin Cooper
pairs5. Due to the Pauli exclusion principle, this cannot be the normal superconductivity
encountered so far. The wave function of the Cooper pair must be odd in exchange of
particles, and the spins are now even. For diffusive systems, which is what is of concern
here, frequent scatterings results in the wave function being even also in position. The
only remaining possibility is that the wave function is odd in time. In other words, an
unusual form of superconductivity appears, which is called odd-frequency pairing32. This
has been recently verified experimentally33,34.

2.1.3 The Josephson junction

When two different superconductors are joined by a weak link, be it either a normal metal,
ferromagnet or isolator, a Josephson junction results35. For a normal metal sandwiched
between to superconductors, the geometry is shown in figure 2.4.

17



Figure 2.4: Geometry of the Josephson junction.

The Josephson junction has the interesting feature that Cooper pairs can tunnel from one
superconductor to the other. If the wave functions residing in the respective supercon-
ductors have different phases, supercurrents flow through the weak link - even without
the presence of a voltage difference. The supercurrent is given by22

J = Jc sin(γ) (2.4)

where Jc is the maximum supercurrent allowed to flow through the junction and γ is the
phase difference. With a magnetic field penetrating perpendicularly to the normal metal
present, the situation becomes more complicated. It turns out that the phase difference
becomes position dependent, which modifies the expression for the supercurrent to

J = Jc sin
(

2πΦ
WΦ0

y + γ

)
(2.5)

where Φ is the applied magnetic flux, W is the width in the transversal direction y and
Φ0 = h

2e is the flux quantum. It is seen that the supercurrent is zero in a periodic necklace
of points in the transversal direction. Around these points, a circulating pattern is found.
These points are called Josephson vortices, as they are similar to the Abrikosov vortices
found in type II superconductors. The Josephson vortices are, however, of a different
nature as they do not have a normal core22.

2.2 Second quantization

In quantum mechanics, every particle is described as belonging to a state which has
associated with it a wave function. A system of several particles is then described by
products of these one-particles states. If the particles are identical, they can be divided
into two categories; bosons and fermions. The complete, many-body wave function for
the two types of particles must be either symmetric or antisymmetric, respectively, and
this leads to awkward symmetrization operations, which makes the description of a large
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number of particles impractical. For this reason, many-particle systems are best described
in the language of second quantization. This formalism counts the number of particles in
each state, rather than keeping track of each individual particle by single-particle wave
functions. Interactions are then described by operators which either create or annihilate
particles in a given state. Only fermions, of which the electron is the most famous member,
will be of concern in the following. For fermions, only a single particle can occupy any
given state. This results in a set of anticommutation relations for the creation operators
c†ν and the annihilation operators cν :

{
c†ν , cν′

}
= δνν′ {cν , cν′} = 0

{
c†ν , c

†
ν′

}
= 0 (2.6)

where ν is a set of quantum numbers. In a basis of single-particle position and spin states,
|r, σ〉, the creation and annihilation operators are referred to as field operators

ψ†σ(r) =
∑
ν

〈ν|r〉 c†νσ ψσ(r) =
∑
ν

〈r|ν〉 cνσ (2.7)

By using equation 2.6, the field operators are seen to satisfy the anticommutation relations

{
ψ†σ(r), ψσ′(r′)

}
= δσσ′δ(r − r′) {ψσ(r), ψσ′(r′)} = 0

{
ψ†σ(r), ψ†σ′(r′)

}
= 0 (2.8)

A single-particle operator ô, can be expressed in the second quantization formalism in
terms of the field operators as

Ô =
∑
σ

∫
drψ†σ(r)ô(r)ψσ(r) (2.9)

Similarly, for an operator describing the interaction between two particles, such as the
Coulomb interaction, its second quantized equivalent becomes

Ô =
∑
σσ′

∫
drdr′ψ†σ(r)ψ†σ′(r′)ô(r, r′)ψσ′(r′)ψσ(r) (2.10)

In the Heisenberg picture, the operators are assumed to depend on time, while the states
do not. The time evolution of the field operators is given as

ψσ(r, t) = eiHtψσ(r, 0)e−iHt (2.11)

The equation of motion that the field operators follow is then given by the Heisenberg
equation
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ih̄
∂ψσ
∂t

= [ψσ, H] , ih̄
∂ψ†σ
∂t

=
[
ψ†σ, H

]
(2.12)

2.3 Green functions

The Green function is defined as

G(r, t, r′, t′) = −i〈T ψ̂(r, t)ψ̂†(r′, t′)〉 (2.13)

The angle brackets symbolize thermal and quantum average in a certain basis spanned by
the eigenstates |φn〉, and T is the time ordering operator. From this definition it is seen
that, if t > t′ so that T does not reorder the operators, the Green function is the overlap
between the wave function where a particle has been created at point r′ at time t′ and a
particle is destroyed at time r at time t, and the initial wave function. In other words,
the Green function gives the correlation between a state where a particle has propagated
from (r′, t′) to (r, t), and the initial state.

The Green function is defined in the Heisenberg picture, so the wave functions |φn〉 are
independent of time. Furthermore, they are unknown, as they are the eigenfunctions of
the total Hamiltonian H. Further insight is found by converting to the interaction picture,
where both the eigen states and the operators evolve in time. This is done by assuming
that the Hamiltonian can be split into two parts, only one of which depends on time;
H(t) = H0 + V (t). The operators then evolve according to the time independent term
H0. The time dependence of the eigenstates is found from the time dependent interaction
term V (t). In the interaction picture, a handy tool may be used to describe time evolution,
namely the S-matrix S(t, t′). It is defined by the relation

|φn(t)〉 = S(t, t′) |φn(t′)〉 (2.14)

Furthermore it is assumed that at t = −∞, the interaction term V (t) has reduced adia-
batically to zero, so that Hamiltonian is H = H0 for which the eigenstates |φn(−∞)〉 are
known. For systems where the interaction term goes to zero also in the limit t =∞, the
eigenstates must have returned to their initial, known, states, except for a phase factor
i.e.,

|φn(∞)〉 = S(∞,−∞) |φn(−∞)〉 = eiθ |φn(−∞)〉 (2.15)

This implies that 〈S(∞,−∞)〉0 = eiθ, where the lower index 0 indicates average with
respect to the eigenstates |φn(−∞)〉.

The field operators in the Heisenberg picture are converted to the interaction picture as
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ψH(r, t) = eiHtψ(r, 0)e−iHt = eiHte−iH0tψI(r, t)eiH0te−iHt = S(0, t)ψI(r, t)S(t, 0) (2.16)

where ψH are field operators in the Heisenberg picture, and ψI field operators in the
interaction picture. The Green function may now be computed by averaging over the
known ground state eigenfunctions of H0, rather than the unknown eigenfunctions of
H(t). Inserting equation 2.16 into equation 2.13 gives

G(r, t, r′, t′) = −i〈TS(−∞, 0)S(0, t)ψ(r, t)S(t, 0)S(0, t′)ψ†(r′, t′)S(t′, 0)S(0,−∞)〉0
(2.17)

This may be simplified by using equation 2.15 so that the final expression for the Green
function in equilibrium conditions becomes

G(r, t, r′, t′) = −i〈TS(∞,−∞)ψ(r, t), ψ†(r′, t′)〉0
〈TS(∞,−∞)〉0

(2.18)

It is noted that the S matrices can be moved freely in the numerator of equation 2.18 due
to the time ordering operator T . This has been used to collapse the S matrices into one.

2.4 Nonequilibrium Green functions

By looking at equation 2.17 it is seen that the equilibrium Green functions expresses the
following: the system starts at t = −∞, defined by the eigenstates of H0. It is then
translated in time to t′, when a particle is created, then to t, when a particle is destroyed
and finally to t = ∞, when the system has returned to its initial state. Thus is found
how much the processes at t′ and t have altered the initial state, giving the probability
amplitude. This approach leans heavily on the assumption that the system returns to its
initial state at t = ∞, an assumption which is not valid for nonequilibrium phenomena.
In such cases, the final states may be drastically altered from the initial states, and are
therefore unknown. Rather than computing the Green function along the real time axis,
it is instead possible to use a contour as seen in figure 2.5. In equation 2.18 this amounts
to replacing S(∞,−∞), which translates the system from −∞ to ∞, with an S matrix
that first translates the system from t = −∞ to a time τ , S(τ,−∞), and an S matrix that
translates back again: S(−∞, τ). The operators need now be ordered along the contour,
so that the time ordering operator T is replaced by the contour ordering operator Tc. The
resulting Green function becomes

G(r, t, r′, t′) = −i〈TcScψ(r, t)ψ†(r′, t′)〉0 (2.19)
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where Sc is an S matrix that translates the system from −∞ through t′, t, τ and back to
−∞.

tτ

Figure 2.5: Contour used to avoid t = ∞. It can be thought of as bending the
time axis onto itself at time τ .

The time τ is arbitrary, and this makes equation 2.19 ambiguous. Depending on where τ is
placed relative to t and t′, four different versions of the Green function may be extracted:

Gt(r, t, r′, t′) = −i〈Tψ(r, t)ψ†(r′, t′)〉 (2.20)
Gt̃(r, t, r′, t′) = −i〈T̃ψ(r, t)ψ†(r′, t′)〉 (2.21)
G>(r, t, r′, t′) = −i〈ψ(r, t)ψ†(r′, t′)〉 (2.22)
G<(r, t, r′, t′) = i〈ψ†(r′, t′)ψ(r, t)〉 (2.23)

where T̃ is the anti-time ordering operator. In figure 2.6a, both t′ and t occur before τ ,
and so the operators are applied on a part of the contour that is along the time axis.
This means that normal time ordering is required, yielding Gt. If t and t′ occur after τ ,
shown in figure 2.6b, the contour is still along the time axis, but oriented in the negative
direction so that anti-time ordering is necessary. This gives Gt̃. If τ is placed after t′,
but before t, G< results. Finally, G> is found by placing τ after t, but before t′. These
configurations are shown in figures 2.6c and 2.6d respectively.

tτ

t′ t

(a) Gt
tτ

t′ t

(b) Gt̃

tτ

t′

t

(c) G<

tτ

t

t′

(d) G>

Figure 2.6: The various Green functions that appear due to the deformation of
the integration path.
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With proper bookkeeping now in place, the artificial parameter τ may be dispatched with
by inserting S(∞, τ)S(τ,∞) = 1 into the Green function. This is equivalent to taking the
limit τ → ∞. The resulting contour then consists of two disjoint parts, as illustrated in
figure 2.7. This is called the Keldysh contour.

t

Figure 2.7: The Keldysh contour.

To summarize, the Green function is now defined solely from the initial state, and may be
applied to systems where the final states are unknown. The price of this is that it is now
necessary to keep track of four Green functions. This may be simplified by introducing
matrix notation.

G∗ =
(
Gt G<

G> Gt̃

)
(2.24)

The Green functions are not linearly independent, and equation 2.24 may be further
simplified by performing a linear transformation of the matrix36, resulting in

G =
(
GR GK

0 GA

)
(2.25)

where GR, GA and GK are called the retarded, advanced and Keldysh Green functions,
respectively. They are defined as

GR(r, t, r′, t′) = −iθ(t− t′)
〈{
ψ(r, t), ψ†(r′, t′)

}〉
(2.26)

GA(r, t, r′, t′) = iθ(t′ − t)
〈{
ψ(r, t), ψ†(r′, t′)

}〉
(2.27)

GK(r, t, r′, t′) = −i
〈[
ψ(r, t), ψ†(r′, t′)

]〉
(2.28)

2.5 Nambu Formalism

It turns out that for superconducting systems, the diagram perturbation series for the
Green function will fail. The reason for this is that such a series expansion is only valid
if the perturbed state is qualitatively similar to the unperturbed state37. This is not
the case for a superconductor, where a phase transition from the normal state has taken
place. Cooper pairs may not be arrived at with an expansion of the Green functions
introduced so far. To mend this, an extended definition of the Green functions may be
used, which includes the field operators for both electrons and holes. This is achieved by
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introducing vector notation, and is called the Nambu formalism38. Including also spin,
the field operator in Nambu⊗spin space becomes

ψ =


ψ↑

ψ↓

ψ†↑

ψ†↓

 (2.29)

The Green functions now become 4× 4 matrices, and are defined as

ĜR(r, t, r′, t′) = −iθ(t− t′)ρ̂3
〈{
ψ(r, t), ψ†(r′, t′)

}
N

〉
(2.30)

ĜA(r, t, r′, t′) = iθ(t′ − t)ρ̂3
〈{
ψ(r, t), ψ†(r′, t′)

}
N

〉
(2.31)

ĜK(r, t, r′, t′) = −i
〈[
ψ(r, t), ψ†(r′, t′)

]
N

〉
(2.32)

where the commutation and anticommutation brackets in the Nambu formalism take the
form

[A,B]N = AB − (BTAT )T , {A,B}N = AB + (BTAT )T (2.33)

Multiplying this out produces the following matrix structures

ĜR =
(

GR FR(
FR

)∗ (
GR

)∗) (2.34)

ĜA =
(

GA FA(
FA

)∗ (
GA

)∗) (2.35)

ĜK =
(

GK FK

−
(
FK

)∗
−
(
GK

)∗) (2.36)

where the submatrices GX and FX , X ∈ [R,A,K] have dimension 2 × 2 in spin space.
The matrices FX are called anomalous Green functions, and their spin space components
are given as

FR
σσ′ (r, t, r′, t′) = −iΘ (t− t′) 〈{ψσ(r, t), ψσ′(r′, t′)}〉 (2.37)
FA
σσ′ (r, t, r′, t′) = iΘ (t′ − t) 〈{ψσ(r, t), ψσ′(r′, t′)}〉 (2.38)
FK
σσ′ (r, t, r′, t′) = −i 〈[ψσ(r, t), ψσ′(r′, t′)]〉 (2.39)
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It is seen that the anomalous Green functions describe correlations between pairs of
electrons. The off-diagonal elements of these matrices, which have opposite spins, describe
conventional Cooper pairs. The complete Green function in Keldysh⊗Nambu⊗spin space
becomes an 8× 8 matrix, and is given as

Ǧ =
(
ĜR ĜK

0 ĜA

)
(2.40)

By insertion, it is seen that the advanced Green function may be expressed in terms of
the retarded Green function as

ĜA = −ρ̂3
[
ĜR

]†
ρ̂3 (2.41)

In addition, when the system considered is in thermal equilibrium, the Keldysh Green
function is given as39

ĜK =
(
ĜR − ĜA

)
tanh

(
ε

2kBT

)
(2.42)

where ε is the energy in the system, and T is the temperature. These identities imply
that only the retarded Green function needs to be computed to find the entire matrix Ǧ
in equilibrium.
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Chapter 3

Microscopic theory

In this chapter, the equations of motion that describe superconducting hybrid structures
will be derived.

3.1 Superconductivity

Conventional superconductivity is in the following derived from the electron-phonon in-
teraction, thereby motivating the use of the BCS interaction.

3.1.1 Electron-phonon interaction

In a superconductor, pairs of electrons may interact attractively and form so-called Cooper
pairs. To understand this counterintuitive fact, it is necessary to explore the interaction
between electrons and phonons. For this purpose, a lattice of ions is considered. A
particular ion, number j, has its equilibrium position at R(0)

j . It may oscillate about this
position, and the deviation from equilibrium is called uj(t). The instantaneous position
of ion j at time t then becomes Rj(t) = R

(0)
j + uj(t). The Hamiltonian describing the

dynamics of electrons and phonons is40

H =
∑
kλ

ωkλa
†
kλakλ +

∑
i

 p2
i

2m + e2

2
∑
j 6=i

1
rij

+Hel−ion (3.1)

where the first term describes the contribution of free phonons, where a†kλ and akλ are
respectively creation and annihilation operators for a phonon with wavevector k, po-
larization λ and frequency ωkλ. The second term is the Coulomb interaction between
electrons, and the final term is the interaction between electrons and the ions, which is
some unknown potential depending upon the distance between the electrons and the ions:
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Hel−ion =
∑
ij

V (ri −Rj) (3.2)

Under the assumption that the deviations from equilibrium, u, are small, equation 3.2
may be expanded about the equilibrium positions R(0)

j so that

Hel−ion =
∑
ij

[
V (ri −R(0)

j )− uj · ∇V (ri −R(0)
j )

]
+O(u2) (3.3)

The first term of equation 3.3 includes the effects of the periodic lattice on the electron
and are described by Bloch states. The second term includes a coupling to the motion of
the ions, and so this is the electron-phonon interaction.

The motion of the ions are oscillatory, and so it is reasonable to expand u(t) in a basis of
the eigen states of the non-interacting phonon system, which are normal coordinates. By
assuming that the system is a large box of volume V with periodic boundary conditions,
this can be written in wave vector space as40,41

uj(t) =
∑
kλ

(
h̄

2MNωkλ

)1/2

ξkλ(akλe−iωkλt + a†−kλe
iωkλt)eik·R0

j (3.4)

where M and N is the mass and number of ions respectively. For each wave vector k within
the first Brillouin zone and each polarization λ, the phonon creation and annihilation
operators are given as a†kλ and akλ respectively. The vector ξkλ denotes the polarization
direction of the given phonon mode. By requiring that the displacement operator is
Hermitian, it must satisfy the relation ξkλ = ξ∗−kλ.

Inserting the Fourier transform of∇V (r−R(0)
j ) = ∑

q iqV (q)eiq·r one gets for the electron-
phonon term for a particular r , Hep(r):

Hep(r) = 1
V

∑
j

∑
kqλ

(
h̄

2MNωkλ

)1/2

ξkλ · iq
(
akλe

−iωkλt + a†−kλe
iωkλt

)
V (q)eiq·rei(k−q)·R0

j

Performing the sum over all ions j gives a factor Nδk,q, however as k is restricted to the
first Brillouin zone, and q is not, it is necessary to introduce the decomposition q = k′+G
where G is the reciprocal lattice vector and k′ a vector in 1BZ. This leads to the relation
k − k′ = G.

Hep(r) = i

V

∑
kGλ

(
Nh̄

2Mωkλ

)1/2

ξkλ · (k +G)V (k +G)
(
akλe

−iωkλt + a†−kλe
iωkλt

)
ei(k+G)·r

(3.5)
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In the following, scattering where G = 0 is assumed to dominate over the so-called
Umklapp processes, where it is not. The second quantized version of the electron-phonon
interaction becomes

Hep =
∑
kpλσ

Mkc
†
k+p,σcp,σ

(
akλ + a†−kλ

)
(3.6)

with Mk = i
(

Nh̄
2Mωkλ

)1/2
(k · ξkλ)V (k). Equation 3.5 describes a process where an electron

in a state with momentum k is scattered to a state with momentum k + p by either
absorbing a phonon with momentum p or by emitting one with momentum −p. Two
electrons may then interact as one electron emits a phonon which is absorbed by the
other. Such a process may be described by the Feynamn diagram shown in figure 3.1.

k − p

k

p

k′

k′ + p

Figure 3.1: Feynman diagram for a phonon-mediated electron-electron inter-
action.

By using the Feynman rules and the free phonon propagator, D(k, ω) = 2ωkλ
ω−ωkλ

, one arrives
at the following phonon-mediated electron-electron interaction:

Hep(k, ω) = 2|Mkλ|2ωkλ
ω − ωkλ

c†k+p,σc
†
k′−p,σ′ck′,σ′ck,σ (3.7)

This term has exactly the same form as the second quantized two-particle operator, given
in equation (2.10). In other words, to account for small oscillations of the ions in the
crystal lattice, the pure Coulomb potential between the electrons need only be replaced
by an effective potential

Veff = 2|Mkλ|2ωkλ
ω − ωkλ

+ e2

4πε0

2π
k2 (3.8)

3.1.2 BCS Theory

An illustration of the effective electron-electron interaction is given in figure 3.2a. It is
observed that as the frequency of the phonon mediator ω approaches ωkλ, Veff diverges.
In particular, approaching this limit from below it is seen that the potential becomes
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increasingly negative. This means that while the Coulomb interaction dominates every-
where else, creating a repulsive interaction, there are certain frequencies for which the
electrons feel attraction. It is possible to formulate the equations of motion by using 3.8.
This is called strong coupling theory. Another option is to use the simplified model of
Bardeen, Cooper and Schrieffer42 (BCS). It consists of using the potential VBCS, shown in
figure 3.2b, consisting of a constant attractive potential for ω ≤ ωD and zero otherwise;

VBCS =

−V0, ω ≤ ωD

0, otherwise
(3.9)

where V0 > 0 is a constant. This is a good approximation for superconductors where the
coupling between electrons and phonons is weak.

ω

Veff

ωkλ−ωkλ

(a)

ω

VBCS

−ωD ωD

(b)

Figure 3.2: The potential used in the development of the microscopic theory of
superconductivity. (a) The potential generated by phonon-mediated electron-
electron interaction, (b) a simplified potential used in BCS theory.

Another simplification is used next. The potential is attractive for electron energies within
a thin shell around the Fermi surface. It is then necessary for both incoming and scattered
electrons to have energies within this shell. This can only happen if k′ = −k. Physically,
this means that since a pair of electrons is not attracted to each other directly, but rather
to the trail of distorted ions left behind by the other, it is reasonable that the attraction
is maximized when the electrons dart past each other in opposite directions. After having
passed each other, the electrons quickly separate, thus reducing the Coulomb interaction,
leaving only the phonon interactions.

If one assumes that the coupling is so weak that only phonons with energies ω � ωD
partake in the interaction, the electrons feel a constant potential. It is in this situation
reasonable to approximate the effective electron-electron interaction as a point contact in
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real space; Veff(r, r′) = −V0δ(r− r′) The Pauli exclusion principle constrains the spins of
the electron pair to be opposite; σ′ = −σ, so that the Hamiltonian becomes

H = −V0
∑
σ

∫
drψ†σ(r)ψ†−σ(r)ψ−σ(r)ψσ(r) (3.10)

A mean-field approach may be applied to equation 3.10 in the order parameter ∆(r) =
λ(r)〈ψ↑(r)ψ↓(r)〉, where λ(r) is a real quantity defined to be equal to the constant value
−V0 inside a superconductor, and zero elsewhere. This is done by assuming that the
deviations from the average pair correlation are small, e.g., δ = ψ↑ψ↓ − 〈ψ↑ψ↓〉 � 1, so
that one may write

ψ↑(r)ψ↓(r) = 〈ψ↑(r)ψ↓(r)〉+ δ (3.11)

Inserting equation (3.11) into equation (3.10), keeping only first order terms in δ and
ignoring constants, the Hamiltonian becomes

H =
∫
dr
[
∆(r)ψ†↑(r)ψ†↓(r) + ∆∗(r)ψ↓(r)ψ↑(r)

]
(3.12)

The order parameter ∆(r) generally requires self-consistency iterations to compute, as
it depends on the solution. Here, superconductors are only to be included as boundary
conditions, and so this topic is not pursued further.

3.2 Ferromagnetism

The defining characteristic of a metal is that the Fermi level lies within an electron band.
This means that charge carriers can be excited without having to overcome a band gap,
as would have been the case for semiconductors. The consequence of this is that within a
metal, for energies close to the Fermi surface, the electrons can be thought of as roaming
freely throughout the lattice. Far below the Fermi surface, the electrons are localized
to the ions that constitute the lattice. To understand what causes a material to be
ferromagnetic, it is reasonable to first consider the influence of the localized electrons. This
is done by considering to a toy model consisting of a lattice of simplified ions. Belonging
to each ion is a single orbital φ(r), containing a single electron. The model can then be
considered as half-filled due to the spin-degeneracy. The motivation for considering such a
system is that the electron spin can be thought of as a magnetic dipole. Magnetization is
then an average over the spins in the material. Reasonable candidates for a system which
has a net magnetization are therefore metals whose atoms contain unpaired electrons.
The half-filled lattice is then a simplification of a metal with a single unpaired valence
electron, and the attraction of the nucleus screened by other, paired (in terms of spin)
electrons. The field operators for this system can be written as
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ψσ(r) =
∑
i

φ(r −Ri)ciσ, ψ†σ(r) =
∑
i

φ∗(r −Ri)c†iσ (3.13)

where c†iσ and ciσ are fermion creation and annihilation operators respectively, satisfying
the anticommutation relations

{
c†iσ, cjσ′

}
= δijδσσ′ ,

{
c†iσ, c

†
jσ′

}
= {ciσ, cjσ′} = 0 (3.14)

It is assumed that the overlap of the orbitals of different ions is negligible, so that

∫
drφ∗(r −Ri)φ(r −Rj) = δij (3.15)

In addition, from the anticommutation relations of the field operators, the following com-
pleteness relation is found

∑
i

φ∗(r −Ri)φ(r′ −Ri) = δ(r − r′) (3.16)

With the toy model now properly established, the Coulomb interaction between the
elctrons is considered. Inserting into equation 2.10 gives

HC = 1
2
∑
ijkl

∑
σσ′

∫
drdr′V (r − r′)φ∗(r −Ri)φ∗(r′ −Rj)φ(r′ −Rk)φ(r −Rl)c†iσc

†
jσ′ckσ′clσ

(3.17)

It is reasonable that the largest contribution is found for interactions within a single orbital
or involving an interchange of orbitals between two electrons. Thus, only processes where
Ri = Rl and Rj = Rk or processes where Ri = Rk and Rj = Rl is considered. The
Coulomb interaction can then be written as

HC = 1
2
∑
ij

∑
σσ′

{∫
drdr′|φ(r −Ri)|2V (r − r′)|φ(r′ −Rj)|2c†iσciσc

†
jσ′cjσ′

+
∫
drdr′V (r − r′)φ∗(r −Ri)φ∗(r′ −Rj)φ(r′ −Ri)φ(r −Rj)c†iσc

†
jσ′ciσ′cjσ

} (3.18)

By inspecting equation 3.18 it is seen that the first term does not represent spin exchange,
but rather a so-called direct interaction. This term is not considered further, as its effects
are included elsewhere. The exchange interaction is given by the second term, and with
the use of equation 3.14 it becomes
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HC2 =− 1
2
∑
ij

∑
σσ′

∫
drdr′V (r − r′)φ∗(r −Ri)φ∗(r′ −Rj)φ(r′ −Ri)φ(r −Rj)c†iσciσ′c

†
jσ′cjσ

+
∑
i

∑
σ

∫
drdr′|φ(r −Ri)|2V (r − r′)|φ(r′ −Ri)|2c†iσciσ

(3.19)

The second term in equation 3.19 gives no exchange of spins and is disregarded. The first
term, however does. This is seen clearly by noting that the spin operators are given in
terms of the creation and annihilation operators as

Sαi = h̄

2
∑
σσ′

c†iστ
α
σσ′ciσ′ (3.20)

where α ∈ {x, y, z} and τα is a Pauli matrix. By computation, it is found that

∑
σσ′

c†iσciσ′c
†
jσ′cjσ = 1

2c
†
iσciσc

†
jσ′cjσ′ +

2
h̄2Si · Sj (3.21)

Only the second term of 3.21 is relevant for the spin interaction. Inserting it into 3.19
gives the exchange Hamiltonian

Hex = −
∑
ij

JijSi · Sj (3.22)

with the exchange integral Jij given as

Jij = 1
h̄2

∫
drdr′φ∗(r −Ri)φ∗(r′ −Rj)V (r − r′)φ(r′ −Ri)φ(r −Rj) (3.23)

To establish the sign of Jij, it is observed that that the Coulomb potential can be expressed
as

V (r − r′) = e2

4πε

∫ dk

(2π)3
4π
k2 e

ik·(r−r′) (3.24)

By switching integration order, it is seen that

Jij = e2

εh̄2

∫ dk

(2π)3
4π
k2

∣∣∣∣∫ drφ∗(r −Ri)φ(r −Rj)eik·r
∣∣∣∣2 ≥ 0 (3.25)
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For the half-filled lattice of ions, it is thus seen that the exchange integral Jij is always
positive. This means that the energy of the system is minimal when all spins are parallel.
In other words, this model is ferromagnetic. Hidden in the Coulomb interaction was a
spin interaction which comes about due to the Pauli exclusion principle and the limited
availability of states. Turning next to electrons close to the Fermi surface, these are
only loosely bound to the ions. This suggests the following Hamiltonian for exchange
interaction between the localized and non-localized electrons43

Hex = −
∫
dr
∑
i

J(r −Ri)S(Ri) · s(r) (3.26)

where the exchange integral is modeled as a continuous function and the spin density s(r)
is given as

s(r) = h̄

2
∑
σσ′

ψ†σ(r)τ σσ′ψσ(r) (3.27)

with ψ†σ(r) and ψσ(r) the field operators of the roaming electrons. The exchange Hamil-
tonian may then be written as

Hex = −
∑
σσ′

∫
drψ†σ(r)h(r) · τ σσ′ψσ′(r) (3.28)

It is interesting to note that equation 3.28 takes the form of a Zeeman effect, and this is
reasonable. When the spins of the localized electrons are oriented in the same direction,
they create a magnetic field which the non-localized electrons feel. A real metal is much
too complicated to be adequately described by the toy model used in the derivation of
the exchange interaction. For this reason, no attempt will be made to compute h(r) from
first principles. Instead, the interaction is assumed to be of the form of equation 3.28,
with h(r) given as an input parameter.

3.3 Spin-orbit Coupling

A heuristic explanation for the spin-orbit coupling of electrons is found in the realization
that from the point of view of the electrons, the crystal lattice is moving. Furthermore, if
the crystal generates a potential V , the electric field may be found as E = −∇V . Thus,
the electron experiences a moving electric field, which in turn creates a magnetic field.
The magnetic field couples to the spin of the electron via the Zeeman effect. A more
fundamental approach is to consider the Dirac equation44

cσ · pψh +mc2ψe + V ψe = (E +mc2)ψe (3.29a)
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cσ · pψe −mc2ψh + V ψh = (E +mc2)ψh (3.29b)

where ψe and ψh is the wave function for particles and holes respectively. On the right
hand side, the rest energy is given explicitly, due to the relativistic nature of the Dirac
equation. To apply this equation to condensed matter systems, the limit of v � c is to
be investigated. Towards this end, equation 3.29b may be solved for ψh and inserted into
equation 3.29a.

{
1

2mσ · p
[
1 + E − V

2mc2

]−1
σ · p+ V

}
ψe = Eψe (3.30)

It is seen that neglecting the c2-term gives the Schrödinger equation. Going beyond the
non-relativistic limit by Taylor expanding and including the next order term gives

{ 1
2mp

2 − σ · pE − V4m2c2 σ · p+ V
}
ψe = Eψe (3.31)

Since p does not commute with V , equation 3.31 becomes

{
1

2mp
2 − E − V

4m2c2 p
2 − h̄

4im2c2 (σ · ∇V )(σ · p) + V

}
ψe = Eψe (3.32)

Setting E − V ≈ 1
2mp

2 and using the identity (σ · a)(σ · b) = a · b+ (a× b) · σ gives

{
1

2mp
2 − 1

8m3c2p
4 − h̄

4im2c2∇V · p−
h̄

4im2c2σ · (∇V × p) + V

}
ψe = Eψe (3.33)

The fourth term of equation 3.33 is the spin-orbit coupling. This is readily seen for a
spherically symmetric potential, where it becomes ∝ dV

dr
L · S. In the following, the spin-

orbit interaction will be included, while the other relativistic correction terms will be
ignored. The Hamiltonian term to be included will thus be

HSOC = − h̄

4im2c2σ · (∇V × p) (3.34)

In a crystal, a major contribution to the potential in equation 3.34 will come from the
lattice of ions, which varies in a periodic fashion. By considering a tight binding model,
where the electrons are assumed localized to individual lattice points, it can be deduced
that for a centrosymmetric crystal, due to symmetry-imposed constraints, the spin-orbit
interaction can only take place as a scattering event between different electron bands45. In
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the following, this mechanism for spin-orbit coupling will be ignored, and the discussion
restricted to noncentrosymmetric crystals, where the symmetry constraints are relaxed,
and an effective single band model is sufficient. One such system is near the surface of
a crystal. Here the inversion symmetry of the potential is clearly broken. In fact, the
electrons feel the surface in the form of an electric field pointing in the direction of the
surface normal n, that is −∇V = En. Near the surface, the spin-orbit coupling therefore
becomes

HR = α(n× p) · σ (3.35)

This is the Rashba Hamiltonian46. If the material considered has a bulk inversion asym-
metry, stemming from the crystal structure, the spin-orbit interaction takes the form of
the Dresselhaus Hamiltonian47

HD = β′
[
px
(
p2
y − p2

z

)
σx + py

(
p2
z − p2

x

)
σy + pz

(
p2
x − p2

y

)
σz
]

(3.36)

If the crystal is a thin film, it is possible to approximate equation 3.36 by averaging over
the thickness direction. Assuming that the film lies in the xy-plane, and integrating over
the z-direction gives

HD = β (pyσy − pxσx) (3.37)

From equations 3.35 and 3.37 it is seen that spin-orbit coupling may be described ap-
proximatively, at least in some cases, by an interaction which is linear in p. Generalizing
these results, it is reasonable to write the spin-orbit interaction as

HSOC =
∑
ij

αjiσipj = w · p (3.38)

Equation 3.38 incorporates the Rashba and linearized Dresselhaus interactions. Writing
out the kinetic energy term of the Hamiltonian in the presence of a magnetic vector
potential gives

1
2m(p− eA)2 = 1

2m(p2 − 2eA · p+ e2A2) (3.39)

The second term of equation 3.39 is of the form of equation 3.38, and by neglecting the
term (w · p)2, the spin-orbit Hamiltonian may be included by the replacement

A→ eA−mw (3.40)

It is emphasized that due to w, A has structure in spin-space.
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3.4 Impurity scattering

The materials considered are assumed to be dirty in the sense that they contain a large
number of randomly distributed impurities, e.g., lattice defects. Their presence is modeled
by an impurity potential, given as

Vimp(r) =
∑
j

U(r − rj) (3.41)

where U(r − rj) is the potential from a particular impurity that is located at position
rj. It is assumed that all impurities are identical. It is a daunting task to include such
a potential in any physical theory, due to the impracticably large number of impurities.
However, within the Green function formalism, the problem is made much more tractable
by averaging over the impurities48,49. In this way, the impurities can be included as a
perturbation of the Green function40,50

Ǧ(r, r′) = Ǧ(0)(r − r′) +
∑
n

Ǧ(n)(r, r′) (3.42)

where Ǧ(n)(r, r′) is given as

Ǧ(n)(r, r′) =
n∏
k=1

∑
jk

∫
drk

 Ǧ(0)(r − r1)u(r1 − rj1)Ǧ(0)(r1 − r2)× . . .

. . .× Ǧ(0)(rn−1 − rn)u(rn − rjn)Ǧ(0)(rn − r′) (3.43)

where u(r) = U(r)
V

and V is the volume of the material. The inverse Fourier transforms
for Ǧ(0) and u are inserted, and the integrals over rk are performed. Each spatial integral
produces one δ-function, and after some tidying up this becomes

Ǧ(n)(r, r′) =
N∑

j1,...jn

∫ dpdp′

(2πh̄)6 e
i(p·r−p′·r′)/h̄

n−1∏
k=1

(∫ dpk
(2πh̄)3

)
×

× e−i(p−p1)·rj1/h̄e−i(p1−p2)·rj2/h̄ . . . e−i(pn−1−p′)·rjn/h̄×
× Ǧ(0)(p)u(p− p1)Ǧ(0)(p1) . . . Ǧ(0)(pn)u(pn − p′)Ǧ(0)(p′) (3.44)

Every term n in the perturbation expansion gives rise to n scattering events. However,
these scatterings need not happen on individual impurities. To fully evaluate the sum in
equation (3.44), it is necessary to take into account all combinations of multiple scatterings
as well. With the contributing terms sorted appropriately, the sum over impurities may
be approximated as
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N∑
j

→ nimp

∫
drj (3.45)

where nimp = N
V

. The integration over rj produces δ-functions which simplify the result.
For n = 1 one gets

Ǧ(1)(r, r′) = nimp

∫ dp

(2πh̄)3 e
ip·(r−r′)Ǧ(0)(p)u(0)Ǧ(0)(p) (3.46)

For n = 2, two terms appear

Ǧ(2)(r, r′) = n2
imp

∫ dp

(2πh̄)3 e
ip·(r−r′)Ǧ(0)(p)u(0)Ǧ(0)(p)u(0)Ǧ(0)(p)

+
∫ dp

(2πh̄)3 e
ip·(r−r′)Ǧ(0)(p)Σ(0)(p)Ǧ(0)(p) (3.47)

The first term in equation (3.46) is found by restricting j1 6= j2, and so this corresponds
to a single scattering event per impurity. By comparing with equation (3.46) a pattern
emerges. For every order n, there is one term which only depends on u(0). This term
describes a trivial interaction with the impurities, and may be included in the chemical
potential. In the second term, the zeroth order self-energy has been introduced, which is
defined as

Σ(0)(p) = nimp

∫ dp1
(2πh̄)3 |u(p− p1)|2Ǧ(0)(p1) (3.48)

where it has been used that u(p1−p) = u∗(p−p1). By writing out higher order terms in
the perturbation expansion and comparing the results, it is seen that the Green function
can be expressed in terms of such self-energy terms in the following way

Ǧ(r, r′) =
∫ dp

(2πh̄)3 e
ip·(r−r′)

[
Ǧ(0)(p) +

∑
i

Ǧ(0)(p)Σ(i)(p)Ǧ(0)(p)

+
∑
i,j

Ǧ(0)(p)Σ(i)(p)Ǧ(0)(p)Σ(j)(p)Ǧ(0)(p) + . . .


=
∫ dp

(2πh̄)3 e
ip·(r−r′)

[
Ǧ(0)(p) + Ǧ(0)(p)Σ(p)Ǧ(p)

]
(3.49)

This is the Dyson equation. The Green function Ǧ(p) is the Fourier transformed of
Ǧ(r, r′) and the total self-energy is defined as the sum of the contribution from all orders
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Σ(p) =
∑
i

Σ(i)(p) (3.50)

Including impurities therefore boils down to finding Σ(p). Equation (3.50) can be com-
puted in the Born approximation, where only terms where scattering occurs on each
impurity twice are included. The result is50

Σ(p) = nimp

∫ dp1
(2πh̄)3 |u(p− p1)|2Ǧ(p1) (3.51)

3.5 The equations of motion

The complete, second quantized Hamiltonian to be considered is given as

H =
∑
σ

∫
drψ†σ(r, t)

[ 1
2m(p− eA)2 − µ+ Vimp(r)

]
ψσ(r, t)

+
∫
dr
[
∆(r)ψ†↑(r, t)ψ

†
↓(r, t) + ∆∗(r)ψ↓(r, t)ψ↑(r, t)

]
−
∑
σσ′

∫
drψ†σ(r, t)h(r) · τ σσ′ψσ′(r, t)

(3.52)

where the spin-orbit coupling is included in the matrix A, which therefore gets structure
in spin space. It is noted that the exchange field and the superconducting order parameter
both appear in equation 3.52. Generally, materials do not exhibit these two phenomena
simultaneously, however exceptions do exist. One possibility is if the superconducting
material has a thickness that is much less than the penetration depth. An external mag-
netic field may then enter the superconductor and create spin splitting51. Ferromagnetic
order can also be accommodated in triplet superconductors52. Inserting equation 3.52
into equation 2.12 and using the anticommutation relations in equation 2.8, results in53

ih̄
∂

∂t
ψσ(r, t) =

[ 1
2m(p− eA)2 − µ+ Vimp(r)

]
ψσ(r, t)

+ δσ↑∆(r)ψ†↓(r, t)− δσ↓∆(r)ψ†↑(r, t)
−
∑
σ′
τ σσ′ · hψσ′(r, t)

(3.53)

Similarly, the equation of motion for the adjoint field operator is given as
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ih̄
∂

∂t
ψ†σ(r, t) = −

[ 1
2m(p+ eA∗)2 − µ+ Vimp(r)

]
ψ†σ(r, t)

− δσ↑∆∗(r)ψ↓(r, t) + δσ↓∆∗(r)ψ↑(r, t)
+
∑
σ′
τ ∗σσ′ · hψ

†
σ′(r, t)

(3.54)

where the property τσ′σ = τ ∗σσ′ has been used. In Nambu⊗spin space, the notation may
be abbreviated to

ih̄
∂

∂t
ρ̂3ψ(r,t) =

[ 1
2m(pÎ − Â)2 + Vimp(r)Î − µÎ + ∆̂(r)− τ̂ · h(r)

]
ψ(r, t) (3.55a)

= H̄(r)ψ(r, t)

ih̄
∂

∂t
ψ†(r,t)ρ̂3 = ψ†(r,t)

[ 1
2m(pÎ + Â)2 + Vimp(r)Î − µÎ − ∆̂(r)− τ̂ · h(r)

]
(3.55b)

= −ψ†(r, t)H̄†(r)

with Â = diag(A,−A∗) and τ̂ = diag(τ , τ ∗). The matrix of superconducting order
parameters is given as

∆̂(r) =


0 0 0 ∆(r)
0 0 −∆(r) 0
0 ∆∗(r) 0 0

−∆∗(r) 0 0 0

 (3.56)

The equation of motion for the retarded Green function is found by acting on equation
2.30 from the right with the operator ih̄ ∂

∂t
ρ̂3

ih̄
∂

∂t
ρ̂3Ĝ

R(r, t, r′, t′) = ih̄
∂

∂t
ρ̂3
{
−iθ(t− t′)ρ̂3

〈{
ψ(r, t), ψ†(r′, t′)

}
N

〉}
= h̄δ(t− t′)

〈{
ψ(r, t), ψ†(r′, t)

}
N

〉
− iθ(t− t′)ρ̂3

〈{
ih̄
∂

∂t
ρ̂3ψ(r, t), ψ†(r′, t′)

}
N

〉

Inserting equation 3.55a gives

ih̄
∂

∂t
ρ̂3Ĝ

R(r, t, r′, t′) = h̄δ(t− t′)δ(r − r′)− iθ(t− t′)ρ̂3
〈{
H̄ψ(r, t), ψ†(r′, t′)

}
N

〉
(3.57)

40



Now comes a subtle point. It is desirable to extract the Hamiltonian matrix H̄ from the
second term, so that ĜR can be inserted. To accomplish this, ρ̂2

3 = Î is inserted between
H̄ and ψ(r, t). A new Hamiltonian matrix may be defined as Ĥ = ρ̂3H̄ρ̂3 so that the
equation of motion becomes

(
ih̄
∂

∂t
ρ̂3 − Ĥ(r)

)
ĜR(r, t, r′, t′) = h̄δ(t− t′)δ(r − r′)Î (3.58)

The new matrix Ĥ is identical to H̄ except that the BCS-term changes sign, i.e., ∆̂→ −∆̂
in equation 3.55a. The same procedure applied to the advanced and Keldysh Green
functions results in

(
ih̄
∂

∂t
ρ̂3 − Ĥ(r)

)
ĜA(r, t, r′, t′) = h̄δ(t− t′)δ(r − r′)Î (3.59)

(
ih̄
∂

∂t
ρ̂3 − Ĥ(r)

)
ĜK(r, t, r′, t′) = 0 (3.60)

Finally, the equation of motion for the full Keldysh Green function is

(
ih̄
∂

∂t
ρ̌3 − Ȟ(r)

)
Ǧ(r, t, r′, t′) = h̄δ(t− t′)δ(r − r′)Ǐ (3.61)

An equivalent equation of motion is found by acting on equation 2.30 from the left with
the operator −ih̄ ∂

∂t′
ρ̂3. The matrix equation in Keldysh space then takes the form

Ǧ(r, t, r′, t′)
(
ih̄

∂

∂t′
ρ̌3 − Ȟ(r′)

)†
= h̄δ(t− t′)δ(r − r′)Ǐ (3.62)

It is noted that from this derivation, it is found that the adjoint of the redefined Hamilto-
nian matrix in Nambu⊗spin space becomes Ĥ† = H̄†. In other words, the order parameter
matrix ∆̂ has the same sign in equation 3.61 and in equation 3.62, even though it is anti-
Hermitian, as can be seen from equation 3.56. The unwieldy δ-functions may be removed
by subtracting equations 3.61 and 3.62, giving

(
ih̄
∂

∂t
ρ̌3 − Ȟ(r)

)
Ǧ(r, t, r′, t′)− Ǧ(r, t, r′, t′)

(
ih̄

∂

∂t′
ρ̌3 − Ȟ(r′)

)†
= 0 (3.63)

Solution for a bulk superconductor

For a superconductor that is infinite in every direction, the Hamiltonian reduces to
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Ĥ(r) = 1
2mp

2Î − µÎ − ∆̂(r) (3.64)

Following Ref.53 and inserting into equation 3.58 gives

(
ih̄
∂

∂t
ρ̂3 −

( 1
2mp

2 − µ
)
Î + ∆̂(r)

)
ĜR(r, t, r′, t′) = h̄δ(t− t′)δ(r − r′)Î (3.65)

The Green function must be translation invariant both in space and time, which means
that equation 3.65 only depends on the relative coordinates r − r′ and t − t′. Fourier
transforming gives

(
ερ̂3 −

( 1
2mp− µ

)
Î + ∆̂(r)

)
ĜR(p, ε) = h̄Î (3.66)

Inverting this matrix gives

ĜR(p, ε) = 1

ε2 −
(p2

2m − µ
)2
− |∆|2

[
ερ̂3 +

(
p2

2m − µ
)
Î + ∆̂

]
(3.67)
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Chapter 4

Quasiclassical Theory

The quasiclassical theory is a formalism where one considers only the envelopes of the
Green functions, and ignore rapid oscillations. In doing so, information is lost about
phenomena that occur on the same scale as the oscillations. However, many interesting
physical effects evolve on longer length scales where quasiclassical theory is valid. Below,
a detailed derivation of the quasiclassical equations of motion is provided.

4.1 The mixed representation

As a stepping stone towards applying the quasiclassical approximation, the rapidly varying
relative motion of the coordinates in the Green function may be separated from the
slowly varying center of mass motion by a coordinate transformation. It is assumed that
the Hamiltonian contains no explicit time dependence, so that the Green function is
translation invariant in time.

r = r1 − r2, R = 1
2(r1 + r2)

t = t1 − t2, T = 1
2(t1 + t2)

(4.1)

Writing out equation 3.63 gives with Ǧ = Ǧ(r1, t1, r2, t2)

ih̄( ∂
∂t1

ρ̌3Ǧ+ ∂

∂t2
Ǧρ̌3) + h̄2

2m(∇2
1 −∇2

2)Ǧ− i h̄
m

[Ǎ(r1) · ∇1Ǧ+∇2Ǧ · Ǎ(r2)]

− 1
2m [Ǎ2(r1)Ǧ− ǦǍ2(r2)]− [Vimp(r1)− Vimp(r2)]Ǧ

+ [∆̌(r1) + τ̌ · h(r1)]Ǧ− Ǧ[∆̌(r2) + τ̌ · h(r2)] = 0

(4.2)

The mixed representation, or Wigner transform, is found by Fourier transforming equa-
tion 4.2 in the relative coordinates r and t. This is, however, not entirely straight forward
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due to the products of spatially varying functions. Such product-terms are treated in ap-
pendix A.3. When Fourier transforming, the terms involving derivatives in the coordinates
(r, t1) become

∫
drdεe(−ip·r+iεt)/h̄ ∂

∂t1
ρ̌3Ǧ =

∫
drdεe(−ip·r+iεt)/h̄

(
∂

∂t
+ 1

2
∂

∂T

)
ρ̌3Ǧ

=
(
−i ε
h̄

+ 1
2
∂

∂T

)
ρ̌3Ǧ (4.3)

∫
drdεe(−ip·r+iεt)/h̄∇2

1Ǧ =
∫
drdεe(−ip·r+iεt)/h̄

(
∇r + 1

2∇R

)2
Ǧ

=
(
−p

2

h̄2 + i

h̄
p · ∇R + 1

4∇
2
R

)
Ǧ (4.4)

∫
drdεe(−ip·r+iεt)/h̄Ǎ(r1) · ∇1Ǧ =

∫
drdεe(−ip·r+iεt)/h̄Ǎ(r1) ·

(
∇r + 1

2∇R

)
Ǧ

= Ǎ(R)⊗
(
i

h̄
p+ 1

2∇R

)
Ǧ (4.5)

with Ǧ = Ǧ(R, T ;p, ε) the Fourier transformed of Ǧ = Ǧ(r1, t1, r2, t2) in the relative
coordinates r and t. Similar results are found also for the (r2, t2) coordinates. Inserting
into equation 4.2, the resulting equation becomes:

ih̄

m
p ·

(
∇RǦ −

i

h̄2

[
Ǎ⊗, Ǧ

])
+
[
ερ̌3 −

1
2mǍ

2 − VimpǏ − ∆̌− τ̌ · h⊗, Ǧ
]

− ih̄

2m
{
Ǎ⊗, ∇RǦ

}
= 0 (4.6)

4.2 The quasiclassical approximation

The Green function Ǧ oscillates in the parameter r on a scale of the Fermi wavelength
λF

54. Thus, the wavevector p is of the order λ−1
F . The physical quantities of interest,

however, evolve on much greater length scales L. This means that ∇RǦ must be of the
order L−1. From this, it may be concluded that{

Ǎ⊗, ∇RǦ
}
� p ·

[
Ǎ⊗, Ǧ

]
and so the anticommutator in equation 4.6 is neglected. Further dimensional analysis
uncovers that Ǎ2 � p · Ǎ, so that the Ǎ2-term in equation 4.6 is also neglected.
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Inserting these approximations into equation 4.6 and using equations (A.19) and (A.20)
results in

ih̄

m
p ·

(
∇RǦ −

i

h̄2

[
Ǎ, Ǧ

])
+
[
ερ̌3 − VimpǏ − ∆̌− τ̌ · h, Ǧ

]
− ih̄

2
{
∇R

(
VimpǏ + ∆̌ + τ̌ · h

)
,∇pǦ

}
= 0 (4.7)

It is possible to define quasiclassical Green functions, where the rapidly varying oscil-
lations have been integrated out. This is done by realizing that most of the particles
participating in physical phenomena have a momentum close to the Fermi-momentum
pF . The reason for this is that far below the Fermi surface, every state has been filled
(for low temperatures), and so the system is noninteracting. Far above the Fermi-surface,
there are no particles. For this reason, most of the physics must occur around the Fermi-
surface. This materializes as a pronounced peak in the Green function54. Integrating
over the momentum is then approximately equal to selecting the Fermi-momentum. It
is however necessary to keep the directional information of the Fermi momentum, so an
appropriate integration parameter is ξp = p2

2m − µ. The quasiclassical Green function is
defined as55,56

ǧ(R, T,pF , ε) = i

π

∫
dξpǦ(R, T,p, ε) (4.8)

A subtle point is that the integral in equation 4.8 generally diverges50. Several ways
of circumventing this have been suggested. One option is to simply use a high-energy
cut-off57. Another option is to split the integral into a low-energy and a high-energy
contour, and ignore the latter since it does not contribute to the physical quantities of
interest58. A third option, as introduced by Shelankov59, is to not perform the integral
at all, and instead derive the quasiclassical Green function by considering motion along
classical trajectories. All methods give the same results. It is in the following assumed
that appropriate measures have been taken in dealing with the divergence. Introducing
the quasiclassical Green function in equation 4.8 to equation 4.7 one gets

ih̄

m
pF · ∇̄ǧ +

[
ερ̌3 − VimpǏ − ∆̌− τ̌ · h, ǧ

]
= 0 (4.9)

where ∇̄ǧ = ∇ǧ − i
h̄2

[
Ǎ, ǧ

]
and ∇ = ∇R constitute notational simplifications used from

here on. It is observed that the anticommutator in equation 4.9 drops out, as ǧ is constant
in the momentum coordinate p. Equation 4.9 is known as the Eilenberger equation58.

Due to the presence of the commutators in equation 4.9, the Green function is only
determined up to a constant. To fully determine the Green function, a normalization
condition is used:
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ǧ2 = Ǐ (4.10)

From equations 2.34, 2.35 and 2.36, it is seen that the Green functions in Nambu-space
involve complex conjugate submatrices in spin space; (GR)∗, (FR)∗ etc. The complex
conjugate Fourier transform in (r, t) of these matrices is found by making the substitutions
p → −p and ε → −ε. In addition, upon using the quasiclassical approximation in
equation 4.8, a negative sign is introduced due to the imaginary unit. The matrix structure
then becomes

ĝR =
(
gR fR

−f̃R −g̃R

)
(4.11)

ĝA =
(
gA fA

−f̃A −g̃A

)
(4.12)

ĝK =
(
gK fK

f̃K g̃K

)
(4.13)

where the tilde notation symbolizes complex conjugation and the substitution ε→ −ε.

Quasiclassical approximation of a bulk superconductor

Continuing the analysis from section 3.5, the quasiclassical approximation to the solution
is given by inserting equation 3.67 into equation 4.8.

ĝR(ε) = i

π

∫
dξ

1
(ε+ iδ)2 − ξ2 − |∆|2

[
ερ̂3 + ξÎ + ∆̂

]
(4.14)

where ξ = 1
2mp

2 − µ. The poles have been shifted so that the inverse Fourier transform
in time converges. Furthermore, it is noted that the ξ-proportional matrix cancels due to
the symmetry. Performing the contour integral yields53

ĝR(ε) =
 sgn(ε)√

ε2 − |∆|2
θ(ε2 −∆2)− i√

|∆|2−ε2
θ(∆2 − ε2)

 (ερ̂3 + ∆̂
)

(4.15)

4.3 The dirty limit

The materials considered are assumed to be dirty. This means that there is a high density
of impurities, which are randomly located throughout the material. A particle traveling

46



through this material will scatter frequently off these impurities. This has an averaging
effect on the direction of the particle, and it is reasonable that the greatest contribution
to the Green function is spherically symmetric. Expanding ǧ in spherical harmonics,
retaining only the spherically symmetric and the first directionally dependent component
gives:

ǧ ≈ ǧs + p̂F · ǧp (4.16)

where p̂F is a unit vector denoting the direction of the Fermi momentum. The normal-
ization condition of equation 4.10 then becomes

ǧ2
s +

{
ǧs, p̂F · ǧp

}
+
(
p̂F · ǧp

)2
= Ǐ (4.17)

Neglecting second order terms in ǧp gives the conditions

ǧ2
s = Ǐ{

ǧs, p̂F · ǧp
}

= 0
(4.18)

Impurity scattering is included by replacing Vimp with equation (3.51). The quasiclas-
sical version of this equation is found by the coordinate transformation ξp = p2

2m . The
integration measure becomes

dp = p2 dp dΩp = (2m)3/2ξ1/2
p dξp dΩp = 2π2h̄3N(ξp) dξp dΩp ≈ 2π2h̄3N0 dξp dΩp (4.19)

where dΩp is the angular integration measure and N(ξp) is the density of states for a free
electron gas. It may, in accordance with the quasiclassical approximation, be set equal
to its value at the Fermi surface: N(ξp) ≈ N0. Furthermore, u(p− q) ≈ u(p− qF ). The
quasiclassical version of the impurity scattered electrons then becomes

Σ(pF ) = −iπnimpN0

∫ dΩp

4π |u(pF − qF )|2ǧ(R, T, qF , ε) (4.20)

Inserting equation 4.16 into equation 4.20, the angular dependent component cancels,
leaving only the spherically symmetric part:

Σ = − ih̄2τ ǧs (4.21)

with the scattering time τ given as

h̄

τ
= 2πnimpN0

∫ dΩp

4π |u(pF − qF )|2 (4.22)
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Performing an angular average over the direction of the momentum at the Fermi surface,
equation 4.9 becomes

ih̄
vF
3 ∇̄ǧp +

[
ερ̌3 − ∆̌− τ̌ · h, ǧs

]
= 0 (4.23)

The terms which are odd in p̂F are found by premultiplying with p̂F and then repeating
the angular average

ih̄vF ∇̄ǧs +
[
ερ̌3 + ih̄

2τ ǧs − ∆̌− τ̌ · h, ǧp
]
≈ ih̄vF ∇̄ǧs + ih̄

2τ
[
ǧs, ǧp

]
= 0 (4.24)

where it has assumed that impurity scattering dominates. The normalization condition
in equation 4.18 and equation 4.24 may then be used to eliminate ǧp from equation 4.23.
Multiplying equation 4.24 by ǧs gives immediately

ǧp = −τvF ǧs∇̄ǧs (4.25)

Inserting equation 4.25 into equation 4.23 yields the Usadel equation, which is the equation
of motion sought after.

D∇̄
(
ǧs∇̄ǧs

)
+ i

[
ερ̌3 − ∆̌− τ̌ · h, ǧs

]
= 0 (4.26)

where the diffusion constant D is defined as

D = 1
3 h̄v

2
F τ (4.27)

4.4 Boundary conditions

In the quasiclassical approximation, the treatment of boundary conditions at the interface
between materials is a challenge. Such a transition occurs on a much smaller length scale
than those for which the quasiclassical approximation is valid so it is necessary to use
a different approach. Close to the boundary, on a length scale less than the elastic
scattering length, the particle motion may be considered as ballistic. This is because
the particle, upon entering the material, has not yet encountered any impurities. In the
bulk of the sample, the quasiclassical approximation is valid, and so the motion must be
diffusive. Between these two regions, on either side of an interface, there must therefore
be an area where impurity scattering begins to take hold, converting ballistic motion into
diffusive. This is called the isotropization zone. The model used to establish the boundary
conditions is illustrated in figure 4.1.
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S BB I DID

Figure 4.1: Illustration of the model used in the formulation of boundary con-
ditions. The interface (scattering zone) is labeled as S, the ballistic zone as B,
the isotropization zone as I and the diffusive zone as D.

The Hamiltonian in the ballistic zone close to the boundary is given as[
ερ̂3 + h̄2

2m
∂2

∂x2 −H⊥(ρ)− Vb(x) + ∆̂(x) + τ̂ · h(x)− Vimp(x)Ǐ + µǏ

]
Ǧ(r, r′)

= δ(r − r′)Ǐ (4.28)

where it is assumed that the only dependence on the transversal coordinate ρ lies in H⊥,
which also includes a confinement potential. Parallel to the interface the quasiclassical
approximation is valid, whereas in the direction perpendicular to the surface, i.e., in the
x-direction, the exact Green function must be used. This means that the transversal
variations of the self energies included are much slower than the variations along the x
axis, which justifies neglecting the dependence on ρ. In the following, spin-orbit coupling
and external flux is neglected in the ballistic and isotropization zone, under the assumption
that these terms will give a negligible contribution. They are, however, included in the
diffusive zone. This is in correspondence with Ref.12. The boundary is assumed to lie in
the yz-plane and the boundary potential is given by Vb(x), which is zero outside of the
boundary region. In the ballistic zone, the following field operators may be defined60,61

φνσ(r) =
∑
n

χn(ρ)√
kn

(
ψν+
nσ (x)eiνknx + ψν−nσ (x)e−iνknx

)
=
∑
nd

χn(ρ)√
kn

ψνdnσ(x)eidνknx (4.29)

It is seen that the motion may be split into a longitudinal term and a transversal term.
The transversal motion is assumed to be quantized by the confinement potential, with
wave vectors χn(ρ) that satisfy

H⊥χn(ρ) = Enχn(ρ) (4.30)

where ρ is the transversal coordinate and n is the transversal channel. Furthermore, the
confinement potential is assumed to be zero everywhere except for at a small layer by the
sample edge, so that away from the edges
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En = EF −
h̄2k2

n

2m (4.31)

The operators ψνdnσ
†(x) and ψνdnσ(x) are field operators that respectively create and anni-

hilate a particle at location x, in channel n with spin σ, either in positive x-direction
(d = +1) or negative (d = −1). In addition, electrons and holes move in opposite di-
rections, thus introducing the factor ν = ±1. These operators are by definition slowly
varying, since they have been separated from the quickly oscillating exponential terms.
Since the particles are fermions, the field operators satisfy the regular anticommutation
relations

{(
ψνdnσ

)†
(x), ψνdmσ′(x′)

}
= δnmδσσ′δ(x− x′){

ψνdmσ′(x′), ψνdmσ′(x′)
}

= 0
(4.32)

Equation 4.29 may be used to construct the ballistic Green function

Ǧ(r, r′) =
∑
nmdd′

G̃dd′

nm(r, r′) =
∑
nmdd′

G̃dd′

nm(x, x′)χn(ρ)χm(ρ′)√
knkm

(4.33)

The function Ǧ(r, r′) is a matrix in spin⊗Nambu⊗Keldysh-space, and is given by the
contributions from each channel and direction. The function G̃(r, r′) is a matrix in
spin⊗Nambu⊗Keldysh⊗direction⊗channel-space. In other words, each element G̃dd′

nm(r, r′)
is a Keldysh matrix. The different matrix structures are listed below.

Direction:

G̃nm =

G̃++
nm G̃+−

nm

G̃−+
nm G̃−−nm

 (4.34)

Keldysh:

G̃dd′

nm =

G̃Rdd′
nm G̃Kdd′

nm

0 G̃Add′
nm

 (4.35)

Nambu:

G̃Rdd′

nm =

 G̃Rdd′++
nm · eidknx−id′kmx′ G̃Rdd′+−

nm · eidknx+id′kmx′

G̃Rdd′−+
nm · e−idknx−id′kmx′ G̃Rdd′−−

nm · e−idknx+id′kmx′

 (4.36)

Spin:

G̃Rdd′νν′

nm =

G̃Rdd′νν′
nm↑↑ G̃Rdd′νν′

nm↑↓

G̃Rdd′νν′
nm↓↑ G̃Rdd′νν′

nm↓↓

 (4.37)
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From equation 4.33 it is seen that

H⊥Ǧ(r, r′) =
∑
nmdd′

EnG̃
dd′

nm(r, r′) (4.38)

Inserting equation 4.33 into equation 4.28 and evaluating it in the ballistic zone where
Vb(x) = 0 gives

∑
dd′

[
ρ3ε+ h̄2

2m
∂2

∂x2 − En − ∆̂(x) + τ̂ · h(x)− Vimp(x)Ǐ + µǏ

]
G̃dd′

nm(r, r′)

= δnmδ(r − r′)Ǐ (4.39)

The anticommutation relations in equation 4.32 have been used to be able to express equa-
tion 4.39 in terms of the individual channel channel contributions G̃dd′

nm. The Hamiltonian
is now independent of the transversal coordinate, which may be Wigner transformed into

∑
dd′

[
ρ3ε+ h̄2

2m
∂2

∂x2 − En − ∆̂(x) + τ̂ · h(x)− Vimp(x)Ǐ + µǏ

]
G̃dd′

nm(x, x′) = δnmδ(x− x′)Ǐ

(4.40)
The Green function in equation 4.40 then also depends on the transversal center of mass
coordinate ρc = (ρ + ρ′)/2 but this is omitted for notational brevity. For a particular
element of the retarded Green function in Nambu space, equation 4.40 takes the form

∑
dd′

[
ρ3ε+ h̄2

2m
∂2

∂x2 − En − ∆̂νν′(x) + τ̂ · h(x)− Vimp(x)I + µI

]
× G̃dd′νν′

nm (x, x′) · eidνknx−id′ν′kmx′ = δnmδνν′δ(x− x′)I (4.41)

where I is the identity matrix in spin-space. The matrices G̃dd′νν′
nm are slowly varying, and

so the second derivatives of x may be neglected, resulting in

[
ρ3ε+ ih̄dνvn

∂

∂x
− ∆̂νν′(x) + τ̂ · h(x)− Vimp(x)I

]
G̃dd′νν′

nm (x, x′) = 0, x 6= x′ (4.42)

where the transversal energy En and the chemical potential µ ≈ EF have been canceled by
the k2

n-term produced by differentiation of the exponential function. The channel velocity
is given by vn = knh̄/m. Repeating the procedure for the conjugate equation gives

G̃dd′νν′

nm (x, x′)
[
ρ3ε− ih̄d′ν ′vm

∂

∂x′
− ∆̂νν′(x′) + τ̂ · h(x′)− Vimp(x′)I

]
= 0, x′ 6= x

(4.43)
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Comparing equation 4.42 and 4.43 in the limit x → x′ reveals that G̃dd′νν′
nm cannot be

continuous in this point. Fortunately, the value of the discontinuity may be identified by
fixating x′ in equation 4.40 and integrating x over a small interval around it:∫ x′+η

x′−η
dx
∑
dd′

[
ρ3ε+ h̄2

2m
∂2

∂x2 − En − ∆̂(x) + τ̂ · h(x)− Vimp(x)Ǐ + µǏ

]
G̃dd′

nm(x, x′) = δnmǏ

(4.44)

In the limit η → 0 what remains is, due to the fundamental theorem of calculus

∑
dd′

( ∂

∂x
G̃dd′

nm(x, x′)
)
x=x′+η

−
(
∂

∂x
G̃dd′

nm(x, x′)
)
x=x′−η

 = δnm
2m
h̄2 Ǐ (4.45)

Furthermore, the total Green function must be continuous, giving the condition

∑
dd′

[
G̃dd′

nm(x+ η, x)− G̃dd′

nm(x− η, x)
]

= 0 (4.46)

Evaluating equation 4.45 for each element in Nambu-space, where the exponential terms
appear explicitly, gives

∑
dd′

( ∂

∂x
G̃dd′νν′

nm (x, x′)
)
x=x′+η

−
(
∂

∂x
G̃dd′νν′

nm (x, x′)
)
x=x′−η

 ei(dνkn−d′ν′km)x

+
∑
dd′

[
G̃dd′

nm(x+ η, x)− G̃dd′

nm(x− η, x)
]
idνkne

i(dνkn−d′ν′km)x

= δmnδνν′
2m
h̄2 I

The derivatives, ∂
∂x
G̃dd′νν′
nm , are neglected under the assumption that they are much smaller

than knG̃
dd′νν′
nm . For ν = ν ′ and n = m, one gets for equation 4.45 and 4.46

∑
dd′
d
[
G̃dd′

nm(x+ η, x)− G̃dd′

nm(x− η, x)
]
eiνknx(d−d′) = −i 2ν

h̄vn
I (4.47a)

∑
dd′

[
G̃dd′

nm(x+ η, x)− G̃dd′

nm(x− η, x)
]

= 0 (4.47b)

Adding equation 4.47a and 4.47b gives

G̃++νν
nn (x+ η, x)− G̃++νν

nn (x− η, x) +
(
G̃+−νν
nn (x+ η, x)− G̃+−νν

nn (x− η, x)
)
e2iνknx

= − iν

h̄vn
I (4.48)
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Equation 4.48 is supposed to yield a constant. However the Green functions are by design
too slowly varying to compensate for the exponential function. This implies that in order
for equation 4.48 to be valid, the +−-component must be continuous. The result then
becomes

G̃++νν
nn (x+ η, x)− G̃++νν

nn (x− η, x) = − iν

h̄vn
I (4.49)

By subtracting equation 4.47a and equation 4.47b on gets by similar arguments that the
−+-term must be continous and that the −−-term is given by

G̃−−ννnn (x+ η, x)− G̃−−ννnn (x− η, x) = iν

h̄vn
I (4.50)

Summarizing, the discontinuity at x = x′ for an element in Nambu-space becomes

G̃dd′νν′

nm (x+ η, x)− G̃dd′νν′

nm (x− η, x) = −δdd′δνν′δnm
idν

h̄vn
I (4.51)

Equation 4.51 enables the definition of a Green function C̃dd′νν′
nm which is continuous, since

the discontinuity can be explicitly accounted for.

G̃dd′νν′

nm (x, x′) = − i

2πh̄√vnvm
C̃dd′νν′

nm (x, x′)− δdd′δνν′δnm
idν

2πh̄vn
sgn(x− x′)I (4.52)

The factor in front of C̃dd′νν′
nm is added to simplify a later result, while also making sure that

channel n does not receive a different weight than channel m, which would be unphysical.
Moving away from the interface, and into the isotropization zone, the impurity scattering
term is given by equation 4.21, where the Green function is approximated to the value
at the beginning of the diffusive zone, where the quasiclassical approximation is valid.
This is reasonable because the quasiclassical Green function varies on scales much larger
than the size of the isotropization zone. Furthermore, impurity scattering dominates the
energy ε, the gap parameter ∆ and the exchange field h, which are all on the same scale,
so that these terms may be neglected. The resulting equations in the isotropization zone
becomes

[
∂

∂x
− dν

2τvn
ǧ

]
G̃dd′νν′

nm (x, x′) = 0, x 6= x′ (4.53a)

G̃dd′νν′

nm (x, x′)
[
∂

∂x′
+ d′ν ′

2τvm
ǧ

]
= 0, x′ 6= x (4.53b)

Differentiating equation 4.53a and 4.53b in terms of x and x′ respectively, inserting equa-
tion 4.53a and 4.53b, and subtracting gives the following partial differential equation
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(
∂2

∂x2 −
∂2

∂x′2

)
G̃dd′νν′

nm (x, x′) =
(

1
4τ 2v2

n

− 1
4τ 2v2

m

)
G̃dd′νν′

nm (x, x′) (4.54)

Equation 4.54 is readily solved by using separation of variables, with the requirement that
the Green function at the beginning of the isotropization zone, at xb, should be equal the
ballistic Green function. This results in

G̃dd′νν′

nm (x, x′) = 1
4

[(
I − dνgνν′

)
e
x−xb
2τvn +

(
I + dνgνν

′)
e−

x−xb
2τvn

]
×
(
− i

2πh̄√vnvm
C̃dd′νν′

nm (xb, xb)− δdd′δνν′δnm
idν

2πh̄vn
sgn(x− x′)I

)

×
[(
I + d′ν ′gνν

′)
e
x′−xb
2τvm +

(
I − d′ν ′gνν′

)
e−

x′−xb
2τvm

] (4.55)

Equation 4.55 will be used to express the quasiclassical Green functions g in terms of
the ballistic Green functions C̃dd′

nm. This is done by requiring that G̃dd′νν′ decreases when
moving towards the diffusive zone. On the left side of an interface, inspection of equation
4.55 uncovers the following conditions for the Green function to remain finite as x→ −∞
and x′ → −∞ respectively:

(
νΣ(d)

z + g1
) (
C̃1 − νΣ(d)

z

)
= 0 (4.56a)(

C̃1 + νΣ(d)
z

) (
νΣ(d)

z − g1
)

= 0 (4.56b)

where C̃1 is short-hand for C̃ddνν
nn,1 and g1 for gνν1 . On the right hand side, the equivalent

conditions become

(
νΣ(d)

z − g2
) (
C̃2 + νΣ(d)

z

)
= 0 (4.57a)(

C̃2 + νΣ(d)
z

) (
νΣ(d)

z − g2
)

= 0 (4.57b)

A lower index of 1 indicates Green functions to the left of the interface, and an index of
2 indicates Green functions to the right. Equations 4.56 and 4.57 have been expanded to
direction-space, with νΣ(d)

z the Pauli-matrix in z-direction, which has the parameter dδdd′
as elements. It is important to note that the quasiclassical Green functions g have no
structure in the direction space, in contrast to the ballistic Green function C̃. This means
that a matrix that only has structure in direction space will commute with g, but not with
C̃. It is observed that equations 4.56 and 4.57 are diagonal in direction⊗Nambu⊗channel-
space. This is due to the discontinuity condition in equation 4.51 which only gives a
contribution to the continuous Green function C̃ on the diagonal. The off-diagonal terms
produce the trivial result of C̃ = 0.
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The ballistic Green function on the right hand side may be expressed in terms of the
ballistic Green function on the left hand side by means of the transfer matrix M :

C̃2 = MC̃1M
† (4.58)

Multiplying equation 4.56a by g1 from the left and equation 4.57a by g1M
† from the left,

and by
(
M †

)−1
from the right, then subtracting the two equations gives

C1 =
(
I + g1M

†g2M
)−1 [

2g1 +
(
I − g1M

†g2M
)
νΣ(d)

z

]
(4.59)

where it has been used that M †Σ(d)
z M = Σ(d)

z owing to flux conservation62. There is
now one step remaining before the boundary conditions for the Usadel equation may be
defined. Having expressed the ballistic Green functions in terms of the quasiclassical
Green functions, it is now necessary to relate the ballistic Green functions to a quantity
which is conserved across the interface. This is achieved by considering the matrix current,
which is defined as63,60

ǏM(x, ε) = lim
r′→r

e2h̄

m

∫
dρ

(
∂

∂x
− ∂

∂x′

)
Ǧ(r, r′) (4.60)

With the integrand taking the form of a current density, the integral over the transverse
coordinate ρ yields the net matrix current through the surface. Inserting equation (4.33)
and equation (4.52), and using the orthonormality of the transverse wave vectors χn(ρ),
this becomes

Ǐνν
′

M (x, ε) = e2

2πh̄
∑
ndd′

(νd+ ν ′d′)C̃dd′νν′

nn (x, x) (4.61)

In the isotropization zones, ν = ν ′ and d = d′, thus giving

Ǐνν
′

M (x, ε) = Gq Trn,d
[
νΣ(d)

z C̃νν′(x, x)
]

(4.62)

where Gq = e2

πh̄
is the conductance quantum. Using that Σ(d)

z = MΣ(d)
z M † it is seen that
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Ǐνν
′

M,1 = Gq Trn,d
[
νΣ(d)

z C̃νν′

1

]
= Gq Trn,d

[
νMΣ(d)

z M †C̃νν′

1

]
= Gq Trn,d

[
νΣ(d)

z M †C̃νν′

1 M
]

= Gq Trn,d
[
νΣ(d)

z C̃νν′

2

]
= Ǐνν

′

M,2

(4.63)

This shows that the matrix current is indeed conserved across the interface. This is not
the case for spin-active boundary conditions, but suitable conditions may still be derived.
This was recently done by Eschrig et al using a scattering matrix approach64. By insertion
of equation (4.55) into equation (4.62) it is found that the matrix current is conserved
also in the isotropization zone60. Furthermore, the matrix current is in the quasiclassical
approximation given as63

ǏM,j = σjAj ǧ∇ǧ · n = Lj
Rj

ǧ∇ǧ · n (4.64)

where Aj is the cross section through which the current flows and σj is the conductance
on side j of the interface. The unit vector n is the normal vector of the interface. Here,
n is pointing along the x-axis. The bulk resistance of the material considered on side
j, is given as Rj = Lj

σjAj
, where Lj is the length of the material in the direction of n.

Equations (4.59), (4.62) and (4.64) sufficiently define the boundary conditions.

A special case where the boundary conditions take on a particularly easy form is when the
transfer matrix only has structure in direction space. This is the case when the boundary
is spin-independent as well as identical both for particles and holes. In this case, the
transfer matrix M commutes with the quasiclassical Green functions g1 and g2 so that
they only appear as products Q = M †M . Furthermore, the inverse of Q may be found by

I = Σ(d)
z Σ(d)

z = MΣ(d)
z M †MΣ(d)

z M † = QΣ(d)
z QΣ(d)

z ⇒ Q−1 = Σ(d)
z QΣ(d)

z (4.65)

where the last equality is found by multiplying with M † from the left and
(
M †

)−1
from the

right. This further implies that det(Q) = 1 and that the diagonal elements are identical.
Another useful identity is

(I +Qg1g2)(Q−1 + g2g1) = {g1, g2}+Q+Q−1 (4.66)

Because of equation 4.65, Q + Q−1 is diagonal in direction space, and so is the anticom-
mutator. Thus, the inverse of the right hand side of equation 4.66 is particularly easy.
Using this relation with equation 4.59 and inserting it into equation 4.62 gives
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I(x, ε) = Gq Trn,d
[

(2g1Q+ g2)νΣ(d)
z + [g2, g1] +Q−1 −Q

{g2, g1}+Q+Q−1

]
(4.67)

The term Q−1−Q has zero on the diagonals, and may be omitted. Furthermore, Σ(d)
z -term

cancels when taking the trace. It is customary to express the boundary condition in terms
of the scattering eigenvalues Tn. It is related to the elements of the matrix Q, qij via65

q11 + q22 = 4
Tn
− 2 (4.68)

Performing the trace, and using equation 4.64, the boundary conditions become

Lj
Rj

ǧ∇ǧ = 4Gq

∑
n

Tn [ǧ2, ǧ1]
4Ǐ + Tn

(
{ǧ2, ǧ1} − 2Ǐ

) (4.69)

Since the Nambu space dependent parameter ν canceled, equation 4.69 have been ex-
panded to Keldysh space. These are the Nazarov boundary conditions63. A simpler set
of boundary conditions may be found in the tunneling limit, Tn � 1

ǧ∇ǧ = 1
Ljζj

[ǧ2, ǧ1] (4.70)

where ζj = RI
Rj

and RI = (Gq
∑
n Tn)−1 is the interface resistance. In other words, the

parameter ζ describes physically the ratio between the interface and bulk resistance.
These are the Kupriyanov-Lukichev boundary conditions66.

4.5 Observables

4.5.1 Density of states

The density of states N(R, ε) is found directly from the spectral function A(ε)67, so that
for a particular spin component σ
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Nσ(R, ε) = lim
r→0
− 1
π

ImGR
σσ(R, r, ε)

= lim
r→0
− 1
π

Im
∫ dp

(2πh̄)3 e
ip·r/h̄GR

σσ(R,p, ε)

= − 1
π

Im
∫ dp

(2πh̄)3G
R
σσ(R,p, ε)

= N0 Re gRσσ(R, ε)

(4.71)

where equation 4.8 and 4.19 has been used. When information about separate spin com-
ponents is unnecessary, the average in spin space may be taken:

N(R, ε) = 1
2N0 Re Tr

[
gR(R, ε)

]
(4.72)
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Density of states in a bulk superconductor

Applying equation 4.72 to equation 4.15 gives

N(ε) = N0
|ε|√

ε2 − |∆|2
θ(ε2 − |∆|2) (4.73)

The density of states N(ε) is plotted in figure 4.2, where the energy gap mentioned
in section 2.1 is clearly seen. In addition, two pronounced peaks appear at the points
ε = ±∆, where N(ε) formally diverges. This can be thought of as a consequence of all
the particles with energies lower than ∆ being ”pushed out” to where ε > ∆.

1-1
ε/∆

N(ε)

Figure 4.2: Density of states for a bulk superconductor.

4.5.2 Currents

In the second quantization formalism, the charge density is given as

ρe(r) = e〈n(r)〉 = e
∑
σ

〈ψ†σ(r)ψσ(r)〉 (4.74)

The charge current density must satisfy the continuity equation

∂

∂t
ρe(r) +∇ · J e(r) = 0 (4.75)

The time derivative is found by using the Heisenberg equation, resulting in
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∂

∂t
ρe(r) = e

∑
σ

〈 ∂
∂t
ψ†σ(r)ψσ(r) + ψ†σ(r) ∂

∂t
ψσ(r)〉

= − ieh̄2m
∑
σ

〈(
∇+ i

h̄
A(r)

)2
ψ†σ(r)ψσ(r)− ψ†σ(r)

(
∇− i

h̄
A(r)

)2
ψσ(r)

〉

= −∇ · ieh̄2m
∑
σ

〈(
∇+ i

h̄
A(r)

)
ψ†σ(r)ψσ(r)− ψ†σ(r)

(
∇− i

h̄
A(r)

)
ψσ(r)

〉
(4.76)

The charge current may then be identified as

J e(r) = ieh̄

2m
∑
σ

〈(
∇+ i

h̄
A(r)

)
ψ†σ(r)ψσ(r)− ψ†σ(r)

(
∇− i

h̄
A(r)

)
ψσ(r)

〉
(4.77)

To reformulate this in the language of Green function, the coordinates (r, t) are split into
two different coordinate pairs (r1, t1) and (r2, t2), with equation 4.77 emerging in the
limit where they are equal. The introduction of the limit gives a freedom as to which
coordinates to assign to which functions, and for a particular choice, the expression for
the current becomes

J e(R) = lim
r1,r2→R

ieh̄

2m
∑
σ

〈(
∇2 + i

h̄
A(r2)

)
ψ†σ(r2)ψσ(r1)− ψ†σ(r2)

(
∇1 −

i

h̄
A(r1)

)
ψσ(r1)

〉

= lim
r1,r2→R

− ieh̄2m
∑
σ

{
∇1 −∇2 −

i

h̄
(A(r1) +A(r2))

}
〈ψ†σ(r2)ψσ(r1)〉

(4.78)

The expectation value is related to the Green functions in the following manner, due to
the anticommuation relations:

〈
ψ†σ(r2)ψσ(r1)

〉
= 1

2
〈[
ψ†σ(r2), ψσ(r1)

]〉
+ 1

2 〈δ(r1 − r2)〉 = − i2G
K
σσ(r1, r2)+ 1

2〈δ(r1−r2)〉
(4.79)

The charge current in the Keldysh formalism thus becomes

J e(R) = lim
r1,r2→R

− eh̄

4m Tr
{(
∇1 −∇2 −

i

h̄
(A(r1) +A(r2))

)
×
(
GK(r1, r2) + i

4I〈δ(r1 − r2)〉
)}

(4.80)
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It is observed that equation 4.80 diverges in the limit r1 → r2. This is to be expected
as the separation into (r1, t) and (r2, t) in equation 4.76 allowed the operators to be
extracted from the expectation value. Setting r1 = r2 does not represent the original
equation. The limit must then be thought of as allowing r1 to approach r2 arbitrarily
close without becoming identical. In this case, the δ-function gives no contribution and
the expression remains finite. This may be written as

J e(R) = lim
r1,r2→R

− eh̄

4m Tr
{(
∇1 −∇2 −

i

h̄
(A(r1) +A(r2))

)
GK(r1, r2)

}
(4.81)

The quasiclassical form of equation 4.81 is found by expressing GK(r1, r2) as the inverse
Fourier transformed in the relative coordinates (r, t).

J e(R) = lim
r→0
− eh̄

4m Tr
{(

2∇r −
i

h̄

(
A(R+ 1

2r) +A(R− 1
2r)

))
×
∫ dpdε

(2πh̄)4 e
(ip·r−iεt)/h̄GK(R, T,p, ε)

}

= − e

4πm

∫
dεTr

{∫ dp

(2πh̄)3

(
i

h̄
p− i

h̄
A(R)

)
GK(R, T,p, ε)

}

= − e

4mh̄N0

∫
dεTr

{∫ dΩ
4π (pF −A(R)) gK(R, T,p, ε)

}

= N0eD

4h̄

∫
dεTr

{
(g∇̄g)K

}
+ N0e

4mh̄

∫
dεTr

{
AgK

}
(4.82)

In going to the last line of equation (4.82), equations (4.16) and (4.25) have been used.
The derivation of equation (4.82) has taken place in spin space and is valid for particles.
Expanding to Nambu⊗spin-space, the current of holes is also required. The hole-current
flows in the opposite direction as the particle current, and so the expression for the total
charge current density of particles and holes becomes

J e = N0eD

4h̄

∫
dεTr

{
ρ̂3(ǧ∇̄ǧ)K

}
+ N0e

4mh̄

∫
dεTr

{
ρ̂3Âĝ

K
}

(4.83)

In equation (4.83), the term including Â, called the diamagnetic term, does not give a
contribution to the current for the systems considered. The reason for this is that this
term is canceled by the high-energy contribution to the quasiclassical ξ-integral50,67. No
such cancellation is found here because the high-energy part of the integration contour
is ignored. However, the removal of the Â-term can be made plausible by the following
argument. By performing the trace in Nambu space the integral, denoted IA, becomes
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IA =
∫ ∞
−∞

dεTr
{
AgK +A∗g̃K

}
=
∫ ∞
−∞

dεTr
{
AgK(ε)

}
+
∫ ∞
−∞

Tr
{
A∗gK

∗(−ε)
}

=
∫ ∞
−∞

dεTr
{
AgK(ε)−A∗gK∗(ε)

}
= 2i

∫ ∞
−∞

dε Im Tr
{
AgK

}

where equation (4.13) has been used, as well as the definition of tilde-conjugation. The
transformation ε → −ε was introduced in the second term. The conclusion is that the
diamagnetic term gives an imaginary contribution to the current, which is not physical.
The final expression for the charge current therefore is

Je(R) = N0eD

4h̄

∫
dεTr

{
ρ̂3(ǧ∇̄ǧ)K

}
(4.84)

The particles and holes referred to are of course electrons and absence of electrons. Since
the electrons have spin, it is possible to define a spin current. The charge current J e does
not yield any information about the transport of spin. The starting point from which to
find the spin current is the spin density

ρs = h̄

2
∑
σσ′
〈ψ†στ σσ′ψσ′〉 (4.85)

The spin density is a vector, and so the spin current is a tensor. In a normal metal with
no spin-orbit coupling, a continuity equation may be established for each component of
the spin density and the derivation of the spin current follows analogously to the charge
current, resulting in

Jxs = 1
8N0D

∫
dεTr

{
ρ̂3τ̂x(ǧ∇̄ǧ)K

}
(4.86)

Jys = 1
8N0D

∫
dεTr

{
ρ̂3τ̂y(ǧ∇̄ǧ)K

}
(4.87)

J zs = 1
8N0D

∫
dεTr

{
ρ̂3τ̂z(ǧ∇̄ǧ)K

}
(4.88)

where the physical interpretation of the z-component is particularly easy to interpret:
J zs ∝ J e↑ − J e↓. The difference between the contribution from the opposite spins is
found, rather than their sum. This means that J zs is zero if the current contains equal
amounts of spin-↑ and spin-↓, and non-zero otherwise. Obviously this then gives the spin
transport. For a ferromagnet it is more difficult, and the contribution from the exchange
field to ∂

∂t
ρs will be investigated. Indeed,
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∂ρs
∂t

= h̄

2
∑
σσ′
τ σσ′

〈
∂ψ†σ
∂t

ψσ′ + ψ†σ
∂ψσ′

∂t

〉
(4.89)

Using the Heisenberg equation, and inserting equation 3.28 gives

(
∂ρs
∂t

)
ex

= 1
2i

∑
σσ′σ′′

τσσ′
〈
−ψ†σ′′h · τ σ′′σψσ′ + ψ†σh · τ σ′σ′′ψσ′

〉
= 1

2i
∑
σσ′

〈
−ψ†σ [(h · τ )τ ]σσ′ ψσ′ + ψ†σ [τ (h · τ )]σσ′ ψσ′

〉 (4.90)

Using that (h · τ )τ = h− ih× τ and that τ (h · τ ) = h+ ih× τ one gets

(
∂ρs
∂t

)
ex

=
∑
σσ′
〈ψ†σ [h× τ ]σσ′ ψσ′〉 = h× ρs (4.91)

This means that the continuity equation for a given component α, gets an additional
term:

∂ραs
∂t

+∇ · Jαs +
(
∂ραs
∂t

)
ex

= 0 (4.92)

The extra term is the spin torque, which means that the spin current is in general not
conserved. However, due to the cross product in equation 4.91 it is seen that there is no
spin torque for the component α that is parallel to the exchange field h. Therefore, this
component of the spin current is conserved even in a ferromagnet. Spin-orbit coupling
also influences the spins, making the spin current ill-defined by an additional term in the
continuity equation

∂ραs
∂t

+∇ · Jαs +
(
∂ραs
∂t

)
ex

+
(
∂ραs
∂t

)
SOC

= 0 (4.93)

It is for this reason important to only discuss the spin currents in materials within which
it is well defined.

4.5.3 Pair correlation

The pair correlation describes the presence of superconducting correlations in metals. It
is defined as
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Ψ(R) = 〈ψ↓(R)ψ↑(R)〉 (4.94)

Equation 4.94 should not be confused with the superconducting order parameter ∆, which
includes a spatially varying function that forces it to be identical to zero outside of su-
perconductors. This is not the case for the pair correlation function, which due to the
proximity effect may attain non-zero values also in non-superconducting materials. Ex-
pressed with Green functions it becomes

Ψ(R) = lim
r→0

i

4
(
ĜK

2,3(R, Tr, t)− ĜK
1,4(R, T, r, t)

)
(4.95)

where i and j refers to row i and column j of ĜK . Following the same procedure as for
the density of states and the current gives the quasiclassical form of the pair correlation
function:

Ψ(R) = 1
8N0

∫
dε
[
ĝK2,3(R, ε)− ĝK1,4(R,ε)

]
(4.96)

4.5.4 Magnetization

The magnetization is defined as

M (R) = lim
r1,r2→R

−gµB2
∑
σσ′
τ σσ′〈ψ†σ′(r1)ψσ(r2)〉 (4.97)

Using equation 4.79 while allowing for different spins gives

M (R) = lim
r1,r2→R

−gµB4
∑
σσ′
τ σσ′

{
−iGK

σ′σ(r1, r2) + δσσ′〈δ(r1 − r2)〉
}

(4.98)

The δ-function vanishes, as the trace of the Pauli matrices τ is zero. To get the magne-
tization in Nambu⊗spin space, the identity GK

σσ′ = −[GK
σ′σ]∗, valid in the limit r1 → r2,

may be used along with the relation τσσ′ = τ ∗σ′σ to give

M(R) = lim
r→0

igµB
8 Tr

{
τGK(R, r)− τ ∗

[
GK(R, r)

]∗}
= lim

r→0

igµB
8 Tr

{
τ̂ ĜK(R, r)

}
(4.99)

The quasiclassical version is found by the usual procedure
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M(R) = gµBN0

8

∫
dεTr

{
τ̂ ĝK(R, ε)

}
(4.100)

4.6 Parametrization

To solve the Usadel equation numerically, it is necessary to use a parametrization that
takes into account the normalization condition in equation 4.10. One possibility is to use
the so-called θ-parametrization, where the Green functions are represented by hyperbolic
functions67. Another option is the Riccati parametrization68, where the retarded Green
function is written as

ĝR =
(
N(I + γγ̃) 2Nγ
−2Ñ γ̃ −Ñ(I + γ̃γ)

)
(4.101)

where N = (I−γγ̃)−1, and γ is a 2×2-matrix in spin space. The Riccati parametrization
has the advantage that γ ∈ [0, 1], which makes it well suited for numerical solution. By
inserting equation 4.101 into equation 4.26, the Usadel equation may be expressed as69

D
[
∇2γ + 2∇γ · Ñ γ̃∇γ

]
= −2iεγ −∆σy + γ∆∗σyγ − ih · (σγ − γσ∗)

+D
[
A ·Aγ − γA∗ ·A∗ + 2 (Aγ + γA∗) · Ñ (A∗ + γ̃Aγ)

]
+ 2iD

[
∇γ · Ñ (A∗ + γ̃Aγ) + (A+ γA∗γ̃) ·N∇γ

]
(4.102)

D
[
∇2γ̃ + 2∇γ̃ ·Nγ∇γ̃

]
= −2iεγ̃ −∆∗σ∗y + γ̃∆σ∗y γ̃ + ih · (σ∗γ̃ − γ̃σ)

+D [A∗ ·A∗γ̃ − γ̃A ·A+ 2 (A∗γ̃ + γ̃A) ·N (A+ γA∗γ̃)]
− 2iD

[
∇γ̃ ·N (A+ γA∗γ̃) + (A∗ + γ̃Aγ) · Ñ∇γ̃

]
(4.103)

Included in the energy ε is an inelastic scattering term δ, so that ε → (ε+ iδ)70. The
main purpose of this factor is to provide numerical damping, since there are energy values
where the solution diverges. One such instance is the solution for a bulk superconductor at
energies ε = ±∆. This can be seen from figure 4.2. In the following, a value of δ/∆ = 10−3

is used. The Kupriyanov-Lukichev boundary conditions, given in equation (4.70) take on
the form

n · ∇γi = ∓ 1
Liζi

(I − γiγ̃j)Nj(γi − γj) + 2in ·Aγi (4.104)
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where n is a normal vector to the interface. The negative sign should be used for a
boundary where region j is to the right of region i, and vice versa. Boundary conditions
for γ̃i are found by tilde conjugation.
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Chapter 5

Numerical Solution Method

In the following, the finite element method is derived for the purpose of solving the Usadel
equation in higher spatial dimensions. The Usadel equation consists of eight coupled
nonlinear partial differential equations, and is highly non-trivial to solve. Even so, several
solution methods exist. A brief summary is given in the following.

The finite difference method

The finite difference methods is the most common numerical solution method for partial
differential equations. It makes use of local Taylor expansions to discretize the differential
operators. Equation 5.1 is an example of such a discretization for a particular coordinate
x. The derivatives in point i are approximated to second order in h.

∂

∂x
f(x) ≈ f(xi+1)− f(xi−1)

2h ,
∂2

∂x2f(x) ≈ f(xi+1)− 2f(xi) + f(xi−1)
h2 (5.1)

In more than one dimensions, each coordinate needs to be simultaneously discretized in a
similar fashion. The discretization takes the form of a grid, with derivatives approximated
by making use of the surrounding points, as is illustrated in figure 5.1.
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j − 1

i i+ 1i− 1

Figure 5.1: Illustration of a two dimensional finite difference numerical scheme.

The discretization itself is performed by inserting equation 5.1 into the PDE to be solved.
Several solution methods then exist, with varying degrees of sophistication, which can be
divided into two families. Explicit methods formulate the problem in a way where the
solution at the next point in space depends only on points where the solution has already
been computed. Each step is then generally solved quickly, but the solution is prone
to instability. Implicit methods solve for the entire grid simultaneously, thus requiring
significantly more memory. For a given grid, these methods are slower than explicit
methods, however, as they never become unstable, this may be compensated by allowing
for a coarser grid.

A major disadvantage of the finite difference method, as can be gleaned from figure 5.1, is
that it requires a rectangular grid. This means that the geometries that can be considered,
are restricted to those which can be mapped to a rectangle. Because of this, more complex
geometries, such as the inclusion of holes, need to be approximated by a sufficiently fine
mesh of rectangles. This quickly becomes a bottleneck in terms of computation time
and memory usage. In addition, for every geometry the PDE is to be solved for, the
discretization needs to be performed anew. The reason for this is that, while in the bulk
of the model, the discretized version of the equations do not vary, the boundary conditions
need to be evaluated explicitly.

The finite element method

Rather than discretizing the operators, the finite element method discretizes the geometry.
This allows for a much more flexible numerical scheme, with virtually no restrictions on
geometry. The main idea behind the finite element method is to restrict the space in
which a solution is sought, to a discrete space which is spanned by a set of known test
functions. The finite element method will be elaborated on in the following sections.
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Other methods

The finite volume method is a method often used in the modeling fluid mechanics, heat
transfer and other problems in which a conservation law is followed. The reason why the
finite volume method is particularly well suited for these kinds of problems is that the flux
between the discretized cells is by definition conserved71. A family of very efficient solution
methods are the spectral methods, which consists of selecting an appropriate basis in which
the solution is expanded. This limits the method to problems where an appropriate basis
may be inferred, however, once that basis is found, exponential convergence to the exact
solution may be found72. These methods will not be pursued further herein.

5.1 Finite element theory

This section will endeavor to explain the theory behind the finite element method. To
clarify the discussion, the following begins with the much simpler case of a linear partial
differential equation (PDE). The main results will then be generalized and applied to the
Usadel equation.

5.1.1 Linear equations

The following partial differential equation is defined in a domain Ω with a boundary ∂Ω

∇2u+ f(r) = 0, u ∈ Ω
BC[u] = 0, u ∈ ∂Ω

(5.2)

This is the Poisson equation. Appropriate boundary conditions, BC[u] need to be estab-
lished for equation 5.2 to be well defined. This treatment will consider two such boundary
conditions; the homogeneous Dirichlet boundary conditions and the Neumann boundary
conditions. The former is given by

u = 0, u ∈ ∂Ω (5.3)

and latter is given as

ν · ∇u = g, u ∈ ∂Ω (5.4)

where ν is an outwards pointing surface normal. They are of the form of the Nazarov and
Kupriyanov-Lukichev boundary conditions, given in equations 4.69 and 4.70 respectively,
and are thus particularly relevant.
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It is assumed that the solution u to equation 5.2 resides in a Hilbert space V . By mul-
tiplying the equation with a testfunction v ∈ V , and integrating over the domain Ω, the
variational or weak formulation is found:

∫
Ω
dr∇u · ∇v =

∫
Ω
drfv +

∫
∂Ω
dS∇u · νv (5.5)

where the divergence theorem has been used. For the homogeneous Dirichlet problem, the
space V can be defined to have compact support, which means that all elements vanish
on the boundary. In other words, the boundary conditions are included in the definition
of V . For this reason, the homogeneous Dirichlet boundary conditions are referred to as
essential. The Neumann boundary conditions are satisfied by inserting equation 5.4 into
equation 5.5. In this case, compact support of the solution space may not be defined, and
the boundary conditions must be enforced via the equations. These boundary conditions
are referred to as natural. The restatement of the problem then becomes73

find u ∈ V such that a(u, v) = F (v) ∀v ∈ V (5.6)

where the bilinear form a(u, v) has been introduced as

a(u, v) =
∫

Ω
dr∇u · ∇v (5.7)

and the functional F (v) as

F (v) =


∫
Ω drfv, Dirichlet∫
Ω drfv +

∫
∂Ω dSgv, Neumann

(5.8)

This has not simplified the PDE at all, however it makes for a much better starting point
for approximations then the original PDE, particularly because the integral operator
is bounded, whereas the differential operator is not. The Galerkin approximation is
used next74, where the infinite dimensional space V , that contains the exact solution, is
truncated to a finite dimensional space V ∗. The Stone-Weierstrass theorem states that
any continuous function that is defined within a closed domain can be approximated to
arbitrarily high accuracy by polynomials75, so an excellent candidate for V ∗ is the space
of polynomials of degree less than or equal to r, Pr(r). Thus, the approximation space
gets the desirable quality that V ∗ → V as r →∞. An approximate solution to equation
5.2 is then

find u∗ ∈ V ∗ such that a(u∗, v) = F (v) ∀v ∈ V ∗ (5.9)

The crucial point is then that since V ∗ is finite, with dimension N , it is spanned by a
finite basis of functions φj, j = 1, 2, ...N , and so any element in V ∗ is a linear combination
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of these functions

u∗(r) =
N∑
j=1

= u∗jφj(r), v(r) =
N∑
j=1

= vjφj(r) (5.10)

Then, for a given component i of v, the discretized version of the PDE becomes

N∑
j=1

a(φj, φi)u∗j = F (φi) (5.11)

In matrix notation, with F i = F (φi) and Kij = a(φj, φi) this becomes

Ku∗ = F (5.12)

The matrix K is called the stiffness matrix and F the force vector for historical reasons,
as the finite element method was first used in structural mechanics. Once K and F have
been created, the equation system may be solver for u∗. To establish these quantities, the
appropriate basis functions φj(r) need to be selected.

5.1.2 Elements, nodes and interpolation

In order to obtain a basis in which to expand the approximate solution, u∗, the finite
element method divides the domain Ω into a discrete set of subdomains Ωe. These sub-
domains are called elements. On each element, there may be defined a set of Nn points,
called nodes, where the solution of the PDE is computed. Within the element there may
then be defined Nn functions that interpolate between the nodes. Several possibilities
exist when selecting interpolation functions, however the most common choice, which is
also what will be used herein, are the Lagrange polynomials. These are in one dimension
given as

φj(x) =
Nn∏
m=1
m6=j

x− xm
xj − xm

(5.13)

By construction, the Lagrange polynomials are linearly independent and satisfy φi(xi)φj(xj)
= δij. Furthermore they span the space PNn−1(x), i.e., the space of polynomials of degree
Nn − 1.
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φ1 φ2

(a) A linear element

φ1 φ2 φ3

(b) A quadratic element

Figure 5.2: Lagrange polynomials for one dimensional line elements. The dots
denote node locations.

Within an element domain Ωe, the Lagrange polynomials may thus be used to express u∗.
It is a requirement for the Galerkin method that the solution is continuous across element
boundaries. This is satisfied by enforcing that elements sharing boundaries also share the
nodes on the boundary. Since the Lagrange polynomials are completely determined by
its values at the nodes, continuity follows. This means that the elements must at least
have nodes at its vertices, i.e., at the ends of line elements and corners of quadrilaterals.
The choice of Lagrange polynomials has an additional advantage. By construction, the
polynomial belonging to a specific node, has only non-zero values in elements that share
the node. This makes the resulting matrix sparse, which is highly beneficial in terms
of solving the system. The same procedure works also in higher dimensions. For a
quadrilateral (that is, a rectangle), with nodes only in the corners, the two dimensional
Lagrange interpolation functions are given as products of the one dimensional Lagrange
polynomials along respective axes. More complex elements, such as quadrilaterals with
internal nodes, triangles and tetrahedra require a bit more thought. In two dimensions,
a general way to establish the interpolation functions is to use the Pascal triangle, which
visualizes in an intuitive way the monomials that need to be included in order to create
interpolation functions for a certain number of nodes.

Element order r Pascal triangle
Constant 0 1

Linear 1 x y
Quadratic 2 x2 xy y2

Cubic 3 x3 x2y xy2 y3

Quartic 4 x4 x3y x2y2 xy3 y4

Figure 5.3: Visualization of number of terms in a complete polynomial corre-
sponding to a given element order in two dimensions. The parameter r denotes
the degree of the polynomial space.

From figure 5.3, the basis for a, for instance, nine node element can be immediately read
off as the nine monomials of lowest order in the Pascal triangle, selected symmetrically
about its center line. The latter is necessary to avoid giving the elements a bias towards
a given direction.

Φ = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
2y + a8xy

2 + a9x
2y2 (5.14)

The coefficients ai are determined by enforcing orthonormality in the nodes. It is possible
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to use the same procedure in three dimensions, by establishing a Pascal pyramid, however
its visualizing power is greatly diminished by the complexity of such a construction.
Inserting the interpolation functions into equation 5.11, the stiffness matrix is found as

K
(e)
ij =

∫
Ω
dr∇φi(r) · ∇φj(r) (5.15)

and the right hand side is

F
(e)
i =

∫
Ω
drf(r)φi(r) (5.16)

In this expressions, all coefficients in the expansion of v in equation 5.10 has been set
equal to one; vj = 1 ∀j. This is permitted as v was arbitrary. The upper index (e)
indicates that equations 5.15 and 5.16 give the contribution from a single element. A
global stiffness matrix K and force vector F valid for the entire model needs to be found.
However, this follows trivially once all the element contributions have been determined.
In fact, every node can be given two labels; a local index, which identifies the interpolation
function that belongs to it, and a global index which determines the structure of K and
F . The global matrix system is then found by inserting the matrix elements of the local
matrix into positions in the global matrix identified by the global node indices. The
global stiffness matrix then becomes an M ×M matrix, where M is the total number of
nodes in the mesh. An example is shown in figure 5.4 using a mesh consisting of three
line elements with linear interpolation functions. It is observed that matrix element k22
in the global matrix gets contributions both from element A and B. Similarly, k33 gets
contributions both from element B and C. Matrix elements k13, k14 and k24, as well as
their counterparts with reversed indices are zero, since there is no communication between
these nodes. This illustrates the sparseness of the global matrix K for larger systems.

1 2 3 4

1 2

A B C

KB =
(
k11 k12
k21 k22

)
⇒ K =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44


Figure 5.4: Illustration of local to global matrix restructuring for a mesh con-
sisting of three linear elements.

5.1.3 Coordinate transformation and numerical integration

There are virtually no limits with regards to the types of geometries that can be de-
scribed by the finite element method. The only requirement is that it may be adequately
represented by a mesh. In general, polygons can be recreated exactly by a mesh. For
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other types of geometries, such as spheres and splines, the mesh is approximate. This is
a feature reminiscent of the finite difference method, however an important difference is
that the finite element method allows distortion of the elements to better fit the geometry,
with only minor influence on the discretized equations. For this reason, it is necessary to
understand how a distorted element can be described.

The shape of the element may be expressed in the same basis as the solution u∗.

x =
∑
i

xiφi(ξ), y =
∑
i

yiφi(η), z =
∑
i

ziφi(ζ) (5.17)

These elements are called isoparametric. Other choices exist, where the polynomial used
is either of lower or greater degree than those used in representing the solution, giving
subparametric and superparametric elements respectively. Such element types are less
commonly used, and will not be explored further. From equation 5.17 it is seen that
the distortion of the element is fully determined by the nodal positions, and so a higher
order element may describe more complex geometries. The coordinate transformation
transforms the real element to a reference element for which numerical integration is
much more convenient. This is illustrated in figure 5.5.

y

x

η

ξ

Figure 5.5: Illustration of a transformation to the reference element.

The gradient of the interpolation functions used in equation 5.15 then takes the form

∇rφi(r) = J−1∇ρφi(ρ) (5.18)

where J is the Jacobian matrix for the coordinate transformation, given as
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J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (5.19)

The transformed stiffness matrix becomes, with ρ = (ξ, η, ζ)

K
(e)
ij =

∫
Ω
dρ |J |

[
J−1∇ρφi(ρ)

]T
J−1∇ρφj(ρ) (5.20)

In equation 5.20, factor |J |= det(J) appears due to the coordinate transformation of the
integration measure. In addition, matrix notation has been used for the scalar product.
The force vector is given as

F
(e)
i =

∫
Ω
dρ|J |f(ρ)φi(ρ) (5.21)

The reason the coordinate transformation is so convenient is that the interpolation func-
tions can be defined for the reference element in the coordinates ρ. Given that the same
element type is used for the entire model, these never change and so may be given in a
lookup table for ease of programming. By using the Jacobian matrix, the interpolation
functions are transformed to the real geometry. This puts restrictions on the element
distortions, as the inverse of the Jacobian matrix has to exist. This means that the Jaco-
bian determinant cannot be zero. In addition, it cannot be negative, as this represents a
situation where the element overlaps itself, thus resulting in a coordinate transformation
which is ill-defined. In other words, the value of the Jacobian within the elements is a
measure of the quality of the mesh. To get a sense of how element distortions influence the
Jacobian, a 4 node linear quadrilateral is considered, where only the upper right node is
moved, with the other nodes placed in positions equal to corners of the reference element.
In this case, the Jacobian determinant is given as

J = 1
4(1− η) + 1

4(1− ξ) + 1
4x3(1 + η) + 1

4y3(1 + ξ) (5.22)

By investigating different locations (x3, y3) of the movable node, it is seen from figure 5.6
that this element remains acceptable as long as it is convex.

(a) J > 0 (b) J = 0 (c) J < 0

Figure 5.6: The Jacobian determinant for different element distortions, evalu-
ated in the upper right corner. Of the three, only (a) is acceptable.

75



The next step in generating the stiffness matrix and force vector is to compute the integral
in equation 5.20 and 5.21. This could in principle be done analytically, as both the
interpolation functions and Jacobian matrices are known once the mesh has been created,
however this is not done in practice. Instead, numerical integration is used. One option
is to use common integration methods such as the trapezoidal or Simpson rule, where the
domain to be integrated is divided into equipartitioned intervals where the integrand is
evaluated. A better approach is to use the Gauss quadrature, where the sampling points
are selected, and the integrand weighted, in a way so as to minimize integration error.

I =
∫
f(ξ, η, ζ) dξdηdζ ≈

∑
ijk

wiwjwkf(ξi, ηi, ζi) (5.23)

The integration points (ξi, ηj, ζk) are given by the roots of the Legendre polynomials Pn(ρ),
and the weights may be calculated by the formula76

wi = 2
(1− ρ2

i )
[
d
dρ
Pn(ρi)

] (5.24)

with ρi one of the coordinates ξ, η or ζ, evaluated in the integration point. The stiffness
matrix is then given by

K
(e)
ij =

∑
klm

wkwlwm|J |
[
J−1∇φi(ξk, ηl, ζm)

]T
J−1∇φj(ξk, ηl, ζm) (5.25)

and the force vector by

F
(e)
i =

∑
klm

wkwlwm|J |f(ξk, ηl, ζm)φi(ξk, ηl, ζm) (5.26)

where the sums are over the integration points. The Gauss quadrature is well suited for
polynomial integrands. In fact, for a polynomial of degree n in 1D, a Gauss quadrature
of at least 2n − 1 integration points produces the analytical result. It is customary to
choose the number of integration points so that the undeformed element of a given degree
is integrated exactly. This is called full integration. In general, the integration will still
be approximate, due to the appearance J−1 in equation 5.20, which is not necessarily
polynomial.
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(a) Q4 element (b) Q8 element

Figure 5.7: Number and position of integration points for a fully integrated (a)
linear 4-node element (Q4) (b) quadratic 8-node element (Q8).

Figure 5.7 illustrates an important source of confusion. While solution of the matrix
system in equation 5.12 finds u∗ in the nodes, the stiffness matrix and the force vector
are computed only in the integration points. This is beneficial from a programming
perspective. Every element in the mesh is created by a coordinate transformation of the
reference element, onto which the integration points are defined. Thus, it is sufficient to
evaluate the interpolation functions in these points, as it is only the Jacobian matrix that
changes between elements. This makes for highly efficient code.

5.1.4 Nonlinear finite element method and the Usadel equation

For a linear PDE, the solution u∗ is found by multiplying equation 5.12 by K−1 from the
left. For a nonlinear problem, the situation is quite another. The toy problem of equation
5.2 is made nonlinear by allowing the force function to depend on u and ∇u, i.e.,

∇2u+ f(r, u,∇u) = 0, u ∈ Ω
BC[u] = 0, u ∈ ∂Ω

(5.27)

In this case, after discretization, equation 5.12 may not be solved, since u∗ appears also
in F . Progress is aided by the realization that equation 5.12 may be generalized. What
really happens when the solution space V is replaced by V ∗, or u→ u∗, is that in general,
equation 5.2 is no longer satisfied. This implies that equation 5.12 may be written as

Ku∗ − F = R (5.28)

where R is a residual vector representing the difference between the exact and the ap-
proximate solution. Equation 5.28 is solved for R = 0. In a linear analysis, this is done
in a single step, and so it was unnecessary to include it explicitly in equation 5.12. For
the present case, an incremental solution method needs to be used. This is achieved by
means of Newton-Raphson iterations.
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u∗n+1 = u∗n −
[
∂Rn

∂u∗n

]−1

Rn = u∗n −
[
K − ∂F n

∂u∗n

]−1

Rn = u∗n −K−1
T Rn (5.29)

An initial solution u∗0 is guessed upon, and iterations towards equilibrium are performed
using equation 5.29. The matrix K−1

T is called the tangent stiffness matrix, a name
which is justified by the illustration in figure 5.8. It shows the equilibrium path of the
force vector F , which is the proper dependence of F on the solution u∗. Every Newton-
Raphson iteration will then consist of computing the tangent to this curve at the current
step, which is used as the stiffness matrix. Solving the system by using equation 5.29
and the formalism developed for the linear finite element method will give a solution
that is closer to equilibrium - assuming convergence - and the process is repeated anew.
Obviously, figure 5.8 is only a visual aid, as all variables involved are matrices.

A few remarks are in order. In general, the solution of the matrix equations will involve
iterations even for the linear finite element method. This is because the stiffness matrix
generally is too large to be read into the memory of a computer in its entirety. For this
reason, the Newton-Raphson procedure described in this section is often referred to as
nonlinear iterations. Thus, for every nonlinear iteration, there are linear iterations to find
the solution u∗n. Assuming both the linear and the nonlinear iterations converge to within
an acceptable error, one has still only found the approximate solution u∗. This makes the
finite element method quite dangerous to use. The solution is only as good as the mesh.
If the quality of the mesh is poor, the solution towards which the iterations converge, u∗,
might differ significantly from the exact solution of the PDE, u. It is difficult to determine
whether the computed solution is correct, as finite element software only reports the error
with respect to u∗. This may mislead the analyst into thinking the accuracy is high when
this may not be the case. A healthy dose of skepticism towards the computed results is
required. One should compare different levels of mesh refinement to determine whether
the approximate solution is converging. In addition, the analyst should check whether
the boundary conditions are satisfied and that the solution agrees with physical intuition.
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u∗

F (u∗)

Equilibrium path

KT,0

KT,1

u∗1 u∗2 u∗A

R1

R2

F A

Figure 5.8: Illustration of Newton-Raphson iterations for a given applied force
vector FA.

All the tools required to solve the Usadel equation numerically have now been developed.
By inspecting equations 4.102 and 4.103 it is seen that the Usadel equation in the Riccati
parametrization is exactly of the form given in equation 5.27. A complicating factor is,
however, that γ and γ̃ are each 2× 2 matrices, thus giving 8 coupled PDEs. To simplify
the notation, the elements of these matrices are placed in a single vector

Γ = (γ11, γ12, γ21, γ22, γ̃11, γ̃12, γ̃21, γ̃22)T (5.30)

where γij and γ̃ij are elements of the γ and γ̃ matrices respectively. It is then possible to
write the Usadel equation for element α of Γ as

∇2Γ(α) = Q(α)(γ, γ̃,∇γ,∇γ̃) (5.31)

In equation 5.31, the function Q(α) performs the matrix multiplications of equations 4.102
and 4.103, and extracts the appropriate element. Similarly, the boundary conditions given
in equation 4.70 may be expressed as

n · ∇Γ(α) = B(α)(γ, γ̃) (5.32)
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where n is, as defined in equation 4.70, a unit vector pointing along positive coordinate
axes. The nonlinear finite element formulation of the Usadel equation is then given as

Γn+1 = Γn − J−1
n Rn (5.33)

The matrix Rn is given as

R(α)
n =

∑
ijk

|J |wiwjwk
{
−
[
J−1∇Γ(α)

]T [
J−1∇φ

]
+Q(α)φ

}
+ (n · ν)

∑
ij

|J |wiwjB(α)φ

(5.34)

The matrix J is the Jacobian matrix in 8 dimensional variable space, and appears as a
multidimensional generalization of the Newton-Raphson method. The surface integral in
equation 5.34 is also to be performed by Gauss quadrature. This Jacobian is not to be
confused with the Jacobian matrix J for the coordinate transformation of isoparametric
elements. J is given as

J(αβ) = ∂R(β)

∂Γ(α) =
∑
ijk

|J |wiwjwk
{
−δαβ

[
J−1∇φ

]T [
J−1∇φ

]
+ ∂Q(β)

∂Γ(α) φ
Tφ

}

+ (n · ν)
∑
ij

|J |wiwj
∂B(β)

∂Γ(α) φ
Tφ

(5.35)

Technical details regarding implementation

The boundary conditions to be used are given in equation (4.104). If the geometry for
which the Usadel equation is solved only has interfaces towards materials where the Green
function is constant, they reduce to regular Neumann boundary conditions. This is the
case if the adjoining superconductors are much larger than the material considered, so
that they can be approximated by the bulk expression given in equation (4.15). Another
example is if interfaces towards infinite normal metals are considered. However, if ma-
terials on both sides of the interface are to be included in the analysis, the situation is
not so simple. An essential assumption within the Galerkin method is that the solution
is continuous. This is not the case for the quasiclassical Green function when crossing
an interface. Here it is seen that the boundary conditions on one side of the interface,
influencing one of the materials, depend on the solution on the other side, and vice versa.
One way around this problem is to first solve for one material by inserting an initial guess
for the interface boundary conditions, use that solution to compute boundary conditions
for the other material, and repeat until convergence is achieved. This will be referred to
as the iterative approach.

A different strategy will be employed here, dubbed the direct approach. In this method,
disjoint meshes are created, one for each material that is to be included. This means that
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there will be no elements that connect the different materials. The stiffness matrix then
takes the following form

Ktot =
(
K1 0
0 K2

)
(5.36)

with index 1 and 2 referring to the materials on either side of the interface. As there is no
coupling between the two matrices, a solution is found in the two meshes independently.
By making sure that the nodes on the interface line up, as illustrated in figure 5.9,
least square methods may then be used to create a mapping between integration points
belonging to elements on opposite sides. In this way, the solution on one side of the
interface can be extracted and used in the boundary condition for the solution on the
other side. This can be included as a part of the iterative procedure used in solving the
equation system, and therefore no additional self-consistency iterations are required. The
correct boundary conditions are found to within the error of the numerical solution with
a negligible increase in execution time compared to an analysis where the same number of
elements is used, but no interface. For one interface and 20× 20 elements in each mesh,
it was found that the direct approach was as fast as a single self-consistency iteration of
the iterative approach. In other words, the direct approach was far superior. However,
the dimension of the stiffness matrix increases as 2n where n is the number of interfaces.
Because of this, it is expected that for a system with a large number of interfaces, the
direct approach will eventually become less efficient than the iterative approach, as well
as require much more memory.

Figure 5.9: Illustration of mesh alignment at an interface between two materi-
als, thus allowing a discontinuous transition.

To compute some of the output the Green functions generate, for instance the currents, the
gradient of the solution is needed. At first sight, this seems straight forward. The solution
is found as the expansion coefficients of the known interpolation functions, and therefore
the gradient of the solution field can in principle be computed. There is, however, a subtle
point. The interpolation functions are not directly available, as they are defined for the
reference element. What is availabe, are the gradients of these functions, evaluated at the
integration points. Meanwhile, the solution is computed in the nodes. For this reason, an
extrapolation procedure is necessary to find the gradients at the nodes. This can be done
within the finite element formalism by defining the force function as the gradients at the
integration points, f = ∇Γq. Renaming the unknown gradients at the nodes as b = ∇Γn,
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the equation to be solved then becomes b = f . While this seems like a trivial equality, it
is indeed an extrapolation routine. The reason for this is that when passing the equation
through the finite element machinery, f is computed at the integration points, but the
solution, b, is found at the nodes. This amounts to performing the substitution ∇φi → φi
and ∇φj → φj in equation (5.25).

5.2 Comparison with the finite difference method

The finite element method can be thought of as a generalization of the more familiar
finite difference method. To see this, consider the toy problem of equation 5.2 defined on
a one dimensional bar discretized by linear elements. The approximate solution within
an element is then given by

u(x) = uiφ1(x) + ui+1φ2(x) = ui

(
1− x

Le

)
+ ui+1

x

Le
= ui + ui+1 − ui

Le
x (5.37)

It is observed that the interpolation of u(x) is nothing but a Taylor expansion to first
order in the element length Le. The stiffness matrix for the given element is found by
using equation 5.15 to be

K = 1
Le

(
1 −1
−1 1

)
(5.38)

With, for instance 5 elements, the global stiffness matrix becomes

K = 1
Le



1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


(5.39)

If the right hand side of equation 5.2 is sufficiently smooth for the approximation f(x) ≈
f(xi) = fi to be reasonable, the global force vector for element i becomes Fi = Lefi.
Therefore, the numerical scheme for node i becomes

ui+1 − 2ui + ui−1

L2
e

= fi (5.40)

which is precisely the second order accurate finite difference scheme for equation 5.2.
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Chapter 6

Applications

A numerical code has been developed based on the method described in chapter 5. It is
written in C++ and makes use of the finite element library libMesh77 and the equation
solving toolkit PETSc78,79,80. In the following sections, application of the program to
2D and 3D systems is presented. Kupriyanov-Lukichev boundary conditions, given in
equation (4.70) are used at interfaces between materials. At all other edges, vacuum is
assumed, which imposes the boundary condition that no current can exit the system here,
resulting in

n · ∇̄ǧ = 0 (6.1)

where it is recalled that ∇̄ǧ = ∇ − [A, ǧ] and n is the surface normal. Analyses that
include external flux and spin-orbit coupling encounter a subtle problem that warrant
commenting. Applying these effects to a restricted space means mathematically to include
step functions. To give a concrete example, a particular spin-orbit coupling is applied to
the half-space x > 0

H = ατxpxθ(x) (6.2)

This expression is not Hermitian, as px and the Heaviside step function θ(x) does not
commute. To mend this, the Hamiltonian may be symmetrized

H = 1
2ατx (pxθ(x) + θ(x)px) = ατxpxθ(x) + 1

2ατx [θ(x), px] (6.3)

The commutator in equation (6.3) has been computed in appendix A.2, resulting in

H = ατxpxθ(x) + 1
2ατxδ(x) (6.4)
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In other words, the Hamiltonian for the spin-orbit coupling is made Hermitian by intro-
ducing a δ-function term. This means that total Hamiltonian is unaltered in the bulk of
the material, but an additional term appears at the boundary. The transfer matrix M ,
used in the derivation of the boundary conditions in section section 4.4, is easily found
for the δ-function potential, however, this leads to spin-dependent boundary conditions,
as the transfer matrix now gets structure in spin space. It is assumed that this contribu-
tion is small with respect to the regular Kupriyanov-Lukichev contribution, and for this
reason, the spin-orbit addition is ignored. It has been verified numerically that the charge
current through interfaces is conserved to within numerical precision.

Restricting the magnetic vector potential A in a similar manner, needs to be done in a
way which ensures a physical magnetic field, B = ∇×A. This means that step functions
should be introduced so as to not give a contribution to the curl of the vector potential.
For a magnetic field in the z-direction, present only for x > 0, the vector potential in the
Landau gauge becomes

Ax = Bzyθ(x) (6.5)

The magnetic field may then be computed as B = Bzθ(x)ẑ, as it should. In addition,
the Hamiltonian is Hermitian due to the way the vector potential is included. However,
during the derivation of the quasiclassical equations, the Coulomb gauge, ∇ · A, was
assumed, ensuring that A commutes with p. This is not satisfied with the imposed
restrictions. By ignoring this, and treating A and p as if they commute, it is seen from
the previous analysis that this is equivalent to including δ-function terms, present only
at the boundary. These terms are readily included in the scattering matrix, and does not
alter the form of the boundary conditions.

6.1 Numerical verification: Limiting cases

Since the finite element method has not been used to solve the Usadel equation before, it
is necessary to verify that the method does in fact give correct results. This is important
regardless of the problem considered, but especially so when nonlinearities are involved.

6.1.1 The Josephson junction

To evaluate the numerical method, the two dimensional Josephson junction will be con-
sidered. The normal metal is assumed to be square, and the superconductors large enough
to be well described by the bulk superconductor. This means that the superconductors
appear only as boundary conditions and no self-consistency iterations are required. On
the sides of the normal metal not attached to superconductors, vacuum is assumed.

Systems both with and without an external magnetic field are analyzed. A valuable tool in
the verification of the numerical method is to determine whether the solution approaches
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a constant value as the mesh is refined. Therefore, the current density in the x-direction
is given in the middle of the junction for a selection of increasingly fine meshes. This is
shown in figure 6.1. The external flux applied for the purpose of investigating convergence
is Φ = 2Φ0, where Φ0 = h

2e is the flux quantum. A convergence plot for the charge current
is shown in figure 6.1, with a phase difference between the superconductors of φ = π

2 . It
is seen that convergence is achieved quickly. Without external flux, even with only two
elements on each side (4 total), the computed current differs from the 16 × 16 element
analysis by only 2%. With external flux, it is seen that the current changes significantly as
the number of elements is increased for 2×2 to 4×4. This signifies that the mesh was too
crude to resolve the current density. A denser mesh enables the representation of faster
varying solutions, and therefore more complex current densities. With more than 4 × 4
elements, the current is seen to converge, but requires a larger amount of elements than
the analysis without external flux. This illustrates how the solution dictates the mesh
density, requiring trial and error. An important point is that the convergence analysis
performed on the charge current, gives an upper limit for the amount of elements that are
necessary. This is because the gradient is required to compute the currents, which reduces
the order of the interpolation polynomials by one, and hence their accuracy. In this case,
quadratic elements were used, meaning currents can be described within the elements
by linear interpolation. Linear elements would give constant inter-element currents and
would require a higher mesh density. Observables such as the density of states do not
require the gradient, and converge much faster. In fact, without external flux, 2 × 2
elements is sufficient.

Figure 6.1: Convergence plot for the numerical solution of the Usadel equation
on a Josephson junction with and without an external magnetic field.

Another way to evaluate the numerical method, is to use a known benchmark. This
will be accomplished by comparison with the works of Bergeret and Cuevas81,12 who

85



consider a two dimensional Josephson junction with external flux. They solve the Usadel
equation numerically using a finite difference scheme, and compute the pair correlation
function, given in equation 4.96. They find that for a very wide junction, the external
flux produces a linear array of vortices in the transverse direction of the junction, where
the pair correlation is zero within numerical accuracy. Furthermore, they find that the
location of these vortices can be calculated analytically in the limit of weak proximity
effect. The location of vortex n in the transversal direction y is given by

yn = φ− nW Φ0

Φ (6.6)

where W is the width of the junction, and n = ±1,±2, ... denotes the vortex number.
It is observed that the number of vortices is equal to the number of flux quanta passing
through the junction. These results have been recreated for a system where W = 8ξ and
L = 2ξ for varying external flux. The results are shown in figure 6.2 and are seen to
match the findings of Bergeret and Cuevas well.

(a) Φ/Φ0 = 2 (b) Φ/Φ0 = 3 (c) Φ/Φ0 = 4

Figure 6.2: The pair correlation for a wide Josephson junction with external
flux. The width is W = 8ξ and the length is L = 2ξ. The pair corelation function
is normalized with respect to its value at the interface to the superconductors.

6.1.2 Superconductor-ferromagnet bilayer in 3D

To further test the capabilities of the numerical scheme, a 3D cylindrical superconductor-
ferromagnet bilayer is considered. Once again, the superconductor is assumed infinite,
so that the bulk expression is valid, which appears only as a boundary condition. In
other words, the system can be thought of as a ferromagnetic nanoisland placed atop
a superconductor, as shown in figure 6.3. The ferromagnet is otherwise surrounded by
vacuum. The solution is expected to be identical to a one dimensional system as there is
no explicit radial dependence.
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Figure 6.3: Geometry and mesh of a 3D SF bilayer.

Shown in figure 6.3 is the mesh used to discretize the system. This has been done in a
particular manner so as to minimize element distortion. Hexagonal 27-node elements are
used, which allow for second order interpolation polynomials. Meshing a circular geometry
with rectangular elements is a challenge due to high mesh distortions near the center of
the model. One possibility is to use an irregular mesh, however accuracy is improved by
preserving regularity. The approach used here is to create an inner square of a completely
regular mesh, with an outer layer creating the remainder of the cylinder, as can be seen
in figure 6.3. The highest mesh distortions are then found near the corners of the inner
square, however the Jacobian is far from being ill-defined, as would have been the case
if the mesh was designed with elements fanning out from the center. It is also observed
how the outer elements are curved according to the curvature of the model. This enables
a near-perfect description of the geometry. It is emphasized, however, that this is just an
approximation to a circle, as the element shapes are created by parabolas.

The radius of the nanoisland is set to be R = 2ξ, where ξ is the superconducting coherence
length. The thickness is Lz = 0.4R. The resistance ratio for the interface between
ferromagnet and superconductor is set to be ζ = 3. The density of states for this system
is calculated for an exchange field in the thickness direction, with values h = 0.3∆, 0.5∆
and 0.7∆. The value ∆ is the size of the energy gap for a bulk superconductor. The results
are shown in figure 6.4, and show an enhanced density of states at the Fermi level, i.e.,
at ε = 0. In addition, a spin-split minigap is found. This is in agreement with numerical
investigations of one dimensional systems82,83,84,85,86,87,88, thereby demonstrating the the
method is capable of solving 3D, non-rectangular problems.
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Figure 6.4: Density of states for a 3D cylindrical ferromagnet nanoisland with
radius R = 2ξ and thickness Lz = 0.4R The exchange field is in the thickness
direction.

6.1.3 An example where the finite element method gives incor-
rect results

In the previous sections, the finite element method has been shown to converge quickly
with mesh refinements and yield correct results when compared to known benchmarks.
Next is presented an analysis where the method does not give correct results. The model
to be explored is once again a Josephson junction, except the metal sandwiched between
superconductors contain a branch, shown in figure 6.5 and referred to as a T-geometry.
It consists of both a ferromagnetic and a normal region.
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Figure 6.5: Two variations of a T-shaped geometry, one of which displays a
poor modeling decision, producing erroneous results.

The exchange field in the ferromagnet is selected to be h = 0.5∆, oriented perpendicularly
to the plane of the T-geometry. The resistance ratio of the Kupriyanov-Lukichev boundary
conditions between each interface is ζ = 3. The superconductors at the ends of the two
prongs (S) are assumed to be in contact, and have a phase φ = π

2 relative to the leftmost
superconductor (S’). The results are shown in figure 6.6.

Figure 6.6: The current density in the two geometries, scaled by J0 = N0eD∆
4h̄ .

At first sight, they seem reasonable. The numerical scheme has converged to within the
specified error limit. The current density is symmetrical about the horizontal axis and
travels between superconductors with different phase. Furthermore, no current is leaking
into the vacuum - which would have been a sure sign that the boundary conditions are
not satisfied. In the incorrect model there are, however, two suspicious points by the
interface between the ferromagnet and the normal metal where the current density is
noticeably higher than the surrounding area. This could indicate that the current is
not conserved. To investigate whether the results are physical, the current entering and
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leaving the system is found by integrated along the interfaces to the superconductors. It
is found that the current flowing into the system does not equal the current flowing out,
and therefore something is wrong. Further insight is found by distorting the geometry
based on the value of the current density, as is shown in figure 6.7 for the component
flowing through the N’-F interface.

Figure 6.7: Deformed geometry based on the value of the current density flow-
ing through the N’-F interface. It is emphasized that only the green and red
areas should be continuous, as the other interfaces impose constraints on dif-
ferent current components.

The current density should be continuous through the interface, meaning that the fer-
romagnet (F), colored green in figure 6.7, should match the normal metal (N’), colored
red. Obviously this is just a handy debugging tool, as the scale of the given distortion
has not been given. It is, however, sufficient to identify the source of the problem in this
particular case. Indeed, by inspecting the deformations, it is seen that the problem areas
are found in the corners of ferromagnet, by the N’ interface, as continuity is maintained to
a greater degree along the center of the model. This leads to the realization that these two
corner nodes are overconstrained, as they have to satisfy conservation of currents across
the F-N’ interface as well as across the F-N interface. Moving the green-red interface
greatly reduces the problem, achieving current conservation.

6.2 Vortices in Josephson junctions

It was shown in section 6.1.1 that the numerical method developed is capable of reproduc-
ing results reported for a 2D Josephson junction with external flux. In this section, these
results will be explored further. It was claimed that the minima of the pair correlation
functions are vortices, i.e, localized regions in which superconductivity is suppressed and
flux quanta may penetrate. This can be verified by looking at the density of states, as
shown in figure 6.8. Plotted in the transverse direction along the center of the junction,
at x/L = 0, it shows typical signs of the proximity effect. There is a suppression of the
density of states for low energies as well as peaks at ε/∆ = ±1. These features are small
due to the pair breaking effect of the magnetic field. Nevertheless, they are noticable.
The most interesting feature is, however, that at the exact location of the minima of the
pair correlation function, the minigap is closed and the density of states is equal to one.
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In other words, at each of these points there is a core which is in the normal state - a
tell-tale sign of vortices.

Figure 6.8: Density of state for a wide 2D Josephson junction along the
transversal coordinate y.

Further evidence is found by considering the phase of the pair correlation function, which
is given as

θ = arctan
(

Im Ψ
Re Ψ

)
(6.7)

The winding number, or topological charge is found as the change in θ after having
traversed along a closed path. This change is found by integrating ∇θ along the selected
path

∮
C
∇θ = 2πN (6.8)

where N is the winding number of the path C. It is observed that θ is bounded, with
a range of

[
−π

2 ,
π
2

]
, but discontinuous where ever Re Ψ = 0. This enables a particularly

easy way to compute the integral in equation 6.8. Indeed, for any bounded function f(x)
containing discontinuities at discrete location xi, i = 1, 2, 3, ... the integral of its derivative
is found as
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∫ b

a

∂f

∂x
dx = lim

ε→0

∫ x1−ε

a

∂f

∂x
dx+

n−1∑
i+1

∫ xi+1−ε

xi+ε

∂f

∂x
dx+

∫ b

xn+ε

∂f

∂x
dx

= f(b)− f(a) + lim
ε→0

n∑
i=1

[f(xi − ε)− f(xi + ε)]
(6.9)

where the fundamental theorem of calculus is used in the last equality. The limit ε → 0
is well defined since the function f is bounded. For a closed path, f(a) = f(b) and the
integral becomes a sum of the value of the discontinuities encountered along the path.
The phase of the pair correlation function is shown in figure 6.9a. It is seen that for any
path encircling a minimum, two discontinuities of value π must be traversed, implying
that the topological charge is 1. In figure 6.9b, streamlines of the current density is shown.
It is seen that the current circles around the minima, which is also indicative of a normal
core. It is concluded that the minima of the pair correlation function are indeed vortices.
Furthermore, they bear a striking resemblance to the Josephson vortices. Their location
are identical, and the current circulates around the vortices, creating an oscillating pattern
with no net charge transport. On the other and, there are dissimilarities. The Josephson
vortices do not have normal cores, which these vortices do. In addition, flux quantization
is not found. The reason for this is that the numerical method does not take the effect of
the screening currents created by the superconducting correlations into account. Such an
effect would require a self-consistent computation of the magnetic field, as the screening
currents generate a diamagnetic contribution. In the approximation used herein, only
currents of low enough magnitude to not influence the external flux can be described, and
the applied field is assumed omnipresent.

(a) (b)

Figure 6.9: The phase of the pair correlation function Ψ and the current density,
used in determining the presence of vortex. In (a) is shown the phase of the
pair correlation function, and in (b) the direction of the current density.
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6.2.1 Geometry dependence

The numerical code developed is now used to go beyond previous works and discover new
effects. In Refs.81,12 it was found that for a wide junction, W � L, a regular array of
vortices was found, as shown in figure 6.2. Meanwhile, for a narrow junction no vortices
appear. There is therefore a geometrical dependence in that the narrowing of the junction
causes a transition to a vortex-less state. It is interesting to investigate how the vortices
leave the system as the width decreases, and it turns out that they do so in a non-trivial
way. Figure 6.10a-c shows the absolute value of the pair correlation function as W is
reduced. There is no phase difference between the superconductors, and therefore no net
current. The length of the system is L = 2ξ, where ξ is the superconducting coherence
length. The first observation to be made is the appearance of a lattice structure in the
vortices for wide junctions. This implies that the vortices repel, as they otherwise would
have a tendency to group together. This is a feature they share with the Abrikosov vortices
of type II superconductors25. As the width is decreased, it is seen that the two outermost
vortices translate out of the system. The innermost vortices on the other hand approach
each other. This behavior indicates that as the junction becomes narrower, less energy
is available, and a threshold is passed after which four vortices is no longer energetically
favorable, and so two are expelled.

The fact that two vortices exit the system simultaneously can be explained by the sym-
metry of the system. With no phase difference, the model is symmetric about both the x
and the y axis. This means that the absolute value of the pair correlation function, being
a gauge invariant observable, must also exhibit the same symmetries. For this reason,
vortices can only appear symmetrically about the origin. When the outermost vortices
translate out of the system, this must happen in a way which maintains this symmetry.

The two remaining vortices are seen to be forced closer to each other as W approaches
L. This means that the edges of the junction repel the vortices more than they do each
other, implying that for the given geometry, the presence of two vortices is energetically
favorable regardless of their separation. In fact, for W = 1.95ξ, the vortices overlap
within numerical precision, as shown in figure 6.10c. To demonstrate the ease with which
the finite element method handles non-trivial geometries, further decrease of the width
is restricted to a bottleneck region spanning the middle half of the normal metal region,
shown in figure 6.10d-f. As the bottleneck width Wb is reduced, something surprising
occurs. After having met at the center of the junction, the vortices are seen to separate
along the x axis. Further decrease eventually forces the vortices back together at the
center of the junction, for then to be expelled vertically in a similar manner as was seen
with the first two vortices. This behavior can also be explained by the symmetry. With
two vortices present, these must be constrained to be on either the x or the y axis. As
the width is reduced, they eventually meet in the center of the junction, that is, at the
origin. This is the only location the two vortices can overlap while still maintaining the
symmetry of the pair correlation function. However, once in the origin, the vortices are
free to separate along the x axis, which reduces the energy in the system. A continued
decrease of Wb reduces the available energy, which is compensated by a larger vortex
separation. However, the superconductors constitute boundary conditions where the pair
correlation function is fixed at a constant value, this means that moving a vortex closer
to the superconductors requires a higher curvature of the pair correlation function, which
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in turn requires more energy. Therefore, a turning point must take place, where the
vortices can no longer move further apart as Wb is reduced. The energy requirement
of two vortices becomes unsustainable, and the vortices seek out of the system. They
may not leave through the superconductors, and are therefore forced back together at the
origin, and expelled along the y axis.

(a) W = 6ξ (b) W = 3ξ (c) W = 1.95ξ

(d) W = 2ξ, Wb = 0.8W (e) W = 2ξ, Wb = 0.6W (f) W = 2ξ, Wb = 0.4W

Figure 6.10: The absolute value of the pair correlation function for different
values of the width W and the bottleneck width Wb.

The configuration where the vortices overlap is worth further investigation. The phase of
the pair correlation function is shown in figure 6.11a and a streamline plot of the current
density in figure 6.11b. The currents are seen to circulate around the location of the
vortices, as is to be expected. The phase plot shows that four lines of discontinuity meet
at the origin to within numerical precision, suggesting a topological charge of 2. It is
plausible that, due to a frustration effect from the geometry, two N = 1 vortices are
forcibly merged into a single, highly unstable N = 2 vortex. The slightest perturbation
of the geometry causes the vortex to split along either the x or the y-axis.
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(a) (b)

Figure 6.11: Additional information for the configuration where the vortices
overlap; W = 1.95ξ. In (a) is shown the phase of the pair correlation function
and in (b) the direction of the current density

The behavior of the vortices is qualitatively the same if the width W is uniformly de-
creased, rather than just the bottleneck Wb. It is reasonable to ask why that is the case.
If repulsion from the edges force the vortices together at the origin and then away from
each other along the x axis, then one should expect the vortices to remain stationary once
they are pushed outside the bottleneck and into the wider regions. It turns out that this
reasoning is correct. It was not observed for the bottleneck in figure 6.10 because it was
too large, Lb = L

2 and the turning point came before the vortices reached out to the wide
regions. In figure 6.12 is shown a geometry where the bottleneck length is significantly
smaller, Lb = 0.1L. In this case, the vortices are indeed pushed into the wide regions,
where they remain virtually immobile regardless of the bottleneck width. It is observed
that for Lb = L

2 the vortices had already disappeared as Wb = 0.4W , shown in figure
6.10f, whereas with Lb = 0.1L, the vortices are present even when Wb = 0.1W .

(a) Wb = 0.2W (b) Wb = 0.1W

Figure 6.12: An SNS junction with a bottleneck that has a length along the x
axis of Lb = 0.1L.
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6.2.2 Phase dependence

The influence of varying the phase difference between the superconductors is considered
for the bottleneck configuration with Wb = 0.6W . It is known that for Josephson vortices,
the presence of a phase difference, and thereby induced supercurrent, causes a translation
of the vortices along the transversal direction. In other words, the system needs not be
symmetric about the x axis. The absolute value of the pair correlation function must
still be symmetric about the y axis, however, since the addition of an extra phase factor
should have no direct influence on it. However, the resulting supercurrent will influence
the vortex locations. For the bottleneck, as the phase difference φ is increased from zero,
it is seen that the vortices once again begin to converge towards the origin, where they
eventually coalesce. A further increase of φ causes one of the vortices to translate out
of the system, until only a single vortex remains at φ = π. It is seen that also for the
proximity induced vortices considered herein, there is a tendency for translation of the
vortices when φ is increased. The vortices must move symmetrically on the x axis, but can
move asymmetrically on the y axis as is seen in figure 6.13a-c. The conclusion is that the
phase difference between the superconductors can be used to alter, not only the location
of the vortices, but also the number of vortices present in the system. In figures 6.13d-f
are shown streamline plots of the current density, and in figures 6.13g-i the phase of the
pair correlation function, both verifying that minimas in question are in fact vortices.

From the streamline plots of the current density in figure 6.13d-f an interesting effect
appears which was not visible in the rectangular geometry. Near the vortices, it is seen
that the current circulates in a counter-clockwise fashion. However, as is particularly
clear in figures 6.13d and 6.13f, the current circulates in the opposite direction around the
geometry. In other words, near the vortices, where the superconductng correlations are
low, currents are induced by the magnetic field. Far away, screening currents dominate,
moving clockwise around the edges of the geometry. It is this mechanism that would
cause flux quantization in the vortices, as the external magnetic field would be canceled
by the induced field from these currents. By assumption, however, the screening currents
do not influence the external magnetic field, thereby causing the abrupt change in the
circulation pattern of the current as one moves away from a vortex.
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(a) φ = 0 (b) φ = π
2 (c) φ = π

(d) φ = 0 (e) φ = π
2 (f) φ = π

(g) φ = 0 (h) φ = π
2 (i) φ = π

Figure 6.13: The absolute value of the pair correlation function, current density
streamlines and the phase of the pair correlation function for a bottleneck with
Wb = 0.6W and varying phase differences between the superconductors.

Comments on the numerical solution

In this section, several surface plots of the pair correlation function have been shown,
which have demonstrated the presence of vortices in various model geometries and phase
differences. By inspecting these plots, it is seen that the value of the minimas are not
identical to zero. In fact, their values fluctuate. This is caused by the mesh used, and
where the nodes are located in regards to a given minimum. The solution within an
element is found by interpolation between the nodes, where the solution is computed.
This means that for a highly localized effect, which is entirely contained within a single
element, there are limits to how accurately the behavior can be resolved. If higher accuracy
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is required, a denser mesh should be used in the region in which the effect is located. In
the present analyses, more pronounced minimas can be achieved by generating a mesh so
that a node is placed in the center of each minimum. This has not been done, however,
as the vortices are clearly visible, and the results are complemented by other observables.

6.3 Supercurrents and magnetization in the presence
of in-plane spin-orbit coupling

Several works have considered the effect of spin-orbit coupling (SOC) on one dimensional
models of superconducting hybrid structures. This restricts the types of systems that
can be investigated to those where the spin-orbit interaction lies in a plane orthogonal
to the 1D model, i.e., out-of-plane SOC. Here are presented the results for a two dimen-
sional model with in-plane SOC. The geometry is shown in figure 6.14. It consists of
a normal metal sandwiched between two ferromagnets with spin-orbit coupling, which
is again sandwiched between two superconductors, thus creating a Josephson junction.
Kupriyanov-Lukichev boundary conditions are used at every material interface, with a
resistance ratio of ζ = 3. The distance between the superconductors is L = 4ξ, with the
ferromagnets each having a length of LF = ξ. The width of the junctions is W = 2ξ.

Figure 6.14: The geometry used for the numerical investigation of the effects
of in-plane spin-orbit coupling.

A linear combination between Rashba and Dresselhaus spin-orbit coupling is used, leading
to69

A = a (τx cosχ+ τy sinχ) x̂− a (τx sinχ+ τy cosχ) ŷ (6.10)

where x̂ and ŷ are unit vectors in the xy-plane. It is emphasized that the Josephson
junction also lies in this plane. For an angle χ = 0, the interaction reduces to a pure
Dresselhaus coupling, whereas χ = ±π

2 gives a Rashba coupling. The strength of the
interaction is held fixed at a = 2/ξ. The induced magnetization Mx, My and Mz are
calculated by using equation (4.100) and are shown for select values of the spin-orbit angle
χ in figure 6.15. It is noted that for the purpose of performing a symmetry analysis, a
reduced length of L = ξ is used, while otherwise maintaining the system proportions. The
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reason for this is that the results become more pronounced. The behavior is qualitatively
the same for L = 4ξ. It is interesting to note that the angle χ is observable in the
symmetry of the magnetization within the regions containing spin-orbit coupling. For
χ = 0, Mx is symmetric about the y-axis, My about the x-axis and Mz about both axes,
as shown in figures 6.15a to 6.15c, respectively. As χ increases, the symmetry axes are
rotated accordingly, as can be seen in figures 6.15d to 6.15f. Once χ = π

2 , the symmetries
of Mx and My have switched, and Mz is identical to the result for χ = 0. This is shown
in figures 6.15g to 6.15i and corresponds to a 90◦ rotation of the symmetry axes.

(a) Mx, χ = 0 (b) My, χ = 0 (c) Mz, χ = 0

(d) Mx, χ = π
4 (e) My, χ = π

4 (f) Mz, χ = π
4

(g) Mx, χ = π
2 (h) My, χ = π

2 (i) Mz, χ = π
2

Figure 6.15: The magnetization for different values of the spin-orbit angle χ.
The results are scaled by M0 = gµBN0∆

8 , and the lengths by ξ.

To understand this behavior, it is instructive to simplify the Usadel equation, given in
equation (4.102) to a form where its symmetries are more apparent. This is done by
considering the weak proximity effect, where it is assumed that the Green function is only
slightly perturbed from its value in the normal state. The retarded quasiclassical Green
function can then be approximated to
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ĝR =
(
g f

−f̃ −g̃

)
≈ ĝ0 + ĝ1 =

(
I 0
0 −I

)
+
(

0 f

−f̃ 0

)
(6.11)

where ĝ0 = ρ̂3 is the normal state solution and by definition, the elements of the 2 × 2
anomalous Green functions, f and f̃ are small, i.e., fij, f̃ij � 1. By comparing with
equation (4.101) it is seen that N = Ñ = I, γ = 1

2f and γ̃ = 1
2 f̃ . Furthermore, the

anomalous Green functions can be parametrized by89,90,69

f = (fsI + f t · τ ) iτy (6.12)

where fs and f t are scalars in spin space and τ is a vector of Pauli matrices. A similar
parametrization for f̃ is found by tilde conjugation. Equation (6.12) separates the contri-
bution coming from the singlet configuration of the Cooper pair, represented by fs, and
the part coming from the triplet configuration, given by f t. Inserting into equation (4.102)
and by using the trace identities of the Pauli matrices, derived in appendix A.1, the Usadel
equation in the weak proximity limit becomes

D∇2fs + 2iεfs + 2ih · f t = 0 (6.13a)

D

[
∇2fx − 4a2fx + 4a2fy sin 2χ+ 4ia

(
∂fz
∂x

sinχ− ∂fz
∂y

cosχ
)]

+ 2iεfx + 2ihxfs = 0

(6.13b)

D

[
∇2fy − 4a2fy + 4a2fx sin 2χ− 4ia

(
∂fz
∂x

cosχ− ∂fz
∂y

sinχ
)]

+ 2iεfy + 2ihyfs = 0

(6.13c)

D

[
∇2fz − 8a2fz + 4ia

(
∂fy
∂x

+ ∂fx
∂y

)
cosχ− 4ia

(
∂fx
∂x

+ ∂fy
∂y

)
sinχ

]
+ 2iεfz + 2ihzfs = 0

(6.13d)

By performing the same linearization on the magnetization M one finds that it is zero
to the leading order. The next order term is found by expanding ĝR to higher order in g
and g̃ and using equation (4.10). This leads to

(ĝ0 + ĝ2) (ĝ0 + ĝ2) = Î (6.14)

where ĝ2 is given as

ĝ2 =
(

dg f

−f̃ −dg̃

)
(6.15)

By multiplying out it is found that the matrices dg and dg̃ can be expressed in terms of
the anomalous Green functions as
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dg = 1
2ff̃ , dg̃ = 1

2 f̃f (6.16)

Inserting equation (6.16) into equation (4.100), and using the identities equation (2.41)
and equation (2.42), the magnetization is found to be

M = gµBN0

4

∫
dε Re Tr

[
τff̃

]
tanh βε2 (6.17)

Finally, by inserting equation (6.12) and computing the trace, this becomes

M = gµBN0

∫
dε Re

[
fsf̃ t

]
tanh βε2 (6.18)

The symmetry of the magnetization is therefore found from the symmetry of the product
fsf̃ t. The geometry discussed here is symmetric about the x-axis, and with no phase
difference between the superconductors, it is also symmetric about the y-axis. For χ = 0
it is seen from figure 6.15c that Mz is symmetric about both the x- and the y-axis. Based
on this, it seems reasonable to make the ansatz that fs also shares these symmetries,
which implies that fz does as well. This is consistent with equation (6.13a). From a
term by term inspection of equation (6.13d) it is deduced that ∂fx

∂y
and ∂fy

∂x
must have

the same symmetries as fz. This means that fx must be antisymmetric about the x-
axis and symmetric about the y-axis. Similarly, fy is symmetric about the x-axis and
antisymmetric about the y-axis. These observations are precisely reflected in the plots of
Mx and My shown in figures 6.15a and 6.15b. For χ = π

2 , Mz is identical to the results for
χ = 0. Using the same ansatz, the symmetries of Mx and My may once again be deduced
from equation (6.13d). For general χ, the situation is not so simple. From figure 6.15f it is
seen that Mz is not symmetric about the x- or y-axis separately, but instead has inversion
symmetry, i.e., it is invariant under the transformation r → −r. This must therefore also
be the case for the product fsf̃z. Furthermore, fs and f̃z must have the same symmetries
for equation (6.13a) to be satisfied. This is because a symmetry of the solution must be
reflected in the equation. The conclusion is that spin-orbit coupling indirectly influences
the singlet component, through the coupling with fz.

The coupling between fz and the other two triplet components, fx and fy is unique for
an in-plane SOC. This has interesting consequences. It turns out that even without a
phase difference between the superconductors, a spincurrent can flow through the normal
metal, where it is well defined and conserved. Shown in figure 6.16 are the spin currents
for different values of the spin-orbit angle χ, ranging from 0 to π

2 .
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Figure 6.16: Spincurrents for various spin-orbit angles χ. The parameter I0 is
given as I0 = N0D∆

8 .

It is seen that the current of spin polarized in the z-direction, Izs , remains identically zero
regardless of the value of χ. Moreover, Ixs and Iys vary sinusoidally, perfectly out of phase.
This behavior can be explained by the induced magnetization M . As figure 6.15 shows,
only Mz has a value different from zero in the normal metal. This has been induced by
the exchange field in the surrounding ferromagnets, which also points in the z-direction.
In the ferromagnets, the spin-orbit coupling generates a magnetization also in the x- and
y-direction. By averaging over the magnetization in the ferromagnet and in the normal
metal, it is found that for pure Dresselhaus SOC, χ = 0, the net magnetization in the
ferromagnet has components in the y- and z-direction, 〈My〉 6= 0 and 〈Mz〉 6= 0, whereas
〈Mx〉 = 0. In the normal metal, the averaged magnetization only has a component in
the z-direction. This means that, due to 〈My〉, there is a torque between the spins in
the ferromagnet and those in the normal metal, since the system will favor alignment of
spins. In addition, due to the spin-orbit coupling and the exchange field, the spincurrents
are not conserved in the ferromagnets, so that they may act as a source and drain.
This is important, as the boundary conditions do not allow spin currents to enter the
superconductor.

At the left F-N interface, approaching from the left, spincurrents are created that enters
the normal metal due to the spin torque caused by the y → z spin misalignment, in a way
which resembles the process of spincurrents passing between misaligned ferromagnets91,92.
At the right interface, when approaching from the normal metal side, a z → y spin
misalignment is found. Combined with the antisymmetric My (figure 6.15b), this means
that the spincurrents are directed from the normal metal to the ferromagnet at this
interface. The result is that a uniform spincurrent passes through the normal metal.
It is noted that while 〈Mx〉 cancels, there are local variations that also generate spin
current densities polarized in the y-direction, however no net spincurrent Iys is found
upon integration over the cross section,

For χ = π
2 , the net magnetization lies in the xz-plane, thus generating spincurrents

polarized in the y-direction. For arbitrary χ between 0 and π
2 , various proportions of Ixs
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and Iys can be generated, as dictated by the distribution of M . It is with this physical
picture apparent why Izs = 0, as it is a misalignment relative to the magnetization in the
normal metal that causes the spin currents.

The effect of the exchange field is investigated next. For a pure Dresselhaus SOC, the
exchange fields in the two ferromagnets is rotated in the yz-plane according to h =
h (ŷ sin θ + ẑ cos θ), where ŷ and ẑ are unit vectors. The results are shown in figure 6.17a
for θ ∈

[
0, π2

]
. It is observed that the value of Ixs is influenced by changing θ. The effect is

quite faint for the given dimensions, and to obtain an upper limit, results are also shown
for a configuration where the distance between the superconductors is reduced to L = ξ.
This is shown in figure 6.17b, where it is seen that the value of Ixs nearly doubles.

(a) L = 4ξ (b) L = ξ

Figure 6.17: Spincurrents for various orientations of the exchange field in
the two ferromagnets. The exchange fields are parallel, and given as h =
h (ŷ sin θ + ẑ cos θ).

The other polarizations of the spincurrent, Iys and Izs , are identical to zero independent of
θ. This means that as the exchange field rotates, the net induced magnetization rotates
accordingly so that only Ixs is generated. To bolster this argument, the expression for the
spincurrents in the normal metal are derived in the weak proximity limit to be

Is = N0Dt
∫
dydε Im

[
f t ×

∂

∂x
f̃ t

]
(6.19)

where t is the thickness of the material. For a spincurrent to be non-zero in the normal
metal, two symmetry conditions must be met for pure Rashba and pure Dresselhaus
SOC, where fs and f t are either symmetric or antisymmetric. Firstly, the integrand in
equation (6.19) must be symmetric about the x-axis, otherwise the y-integration cancels.
Secondly, the integrand must be symmetric about the y axis. The reason for this is that
due to current conservation, the spincurrent must be constant within the normal metal.
An antisymmetric spincurrent must be zero on the y-axis, and hence it must be zero in
the entire normal metal. A non-zero spincurrent, therefore requires an integrand that is
symmetric about both axes. Looking at the y-component of equation (6.19) shows that it
depends on the products fx ∂f̃z∂x and fz ∂f̃x∂x . This means that for the symmetry requirements
of Iy to be fulfilled, fx and fz must have opposite symmetries about the x-axis and equal
symmetries about the y-axis. By inspecting figures 6.15a and 6.15c it is seen that this is
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not the case. A similar analysis shows that Izs does not satisfy the requirements either. On
the other hand, Ixs does. The conclusion is that the symmetry of the spin-orbit coupling
forces Iys and Izs to be zero. For a pure Rashba SOC, it can similarly be deduced that
Ixs = Izs = 0.

It is also interesting to investigate the effect of a phase difference between the supercon-
ductors. This is shown for the Dresselhaus SOC in figure 6.18. It is found numerically
that the x-polarized spincurrent satisfies the relation Ixs = I1 + I2 cosφ, which is in agree-
ment with a recent study of a 1D system with perpendicular SOC93. On the other hand,
Iys and Izs remain equal to zero, which is a consequence of the 2D in-plane SOC.

Figure 6.18: Phase dependence of the x-polarized spin current. The other
polarizations are identically equal to zero.

6.4 Nanoislands in 3D

A fully 3D configuration is considered next, in which superconducting nanoislands are
placed on a ferromagnet. It is emphasized that, to the best of our knowledge, this is
the first time the 3D Usadel equation has been solved for a configuration that cannot be
reduced to an effective 1D problem. The ferromagnet has dimensions Lx × Ly × Lz =
10ξ×7ξ×ξ. The superconducting nanoislands have a dimension of 2.5ξ×2.5ξ, which is as-
sumed large enough to approximate them as bulk superconductors. Kupriyanov-Lukichev
boundary conditions are once again used at the interfaces between superconductors and
ferromagnet, with a resistance ratio of ζ = 1.5. While this seems like too low a value for
the Kupriyanov-Lukichev boundary conditions to be valid, a study has shown the results
to be accurate also for moderately to highly transparent interfaces94. Two nanoislands
are placed onto the ferromagnet in two different arrangements. In one configuration, both
superconductors are placed on the same side, as is seen in figure 6.19a. In the other, one
of the superconductors is moved to the opposite side, shown in figure 6.19b. The motiva-
tion for this study is to investigate the supercurrent flowing in the ferromagnet. For this
reason, the nanoislands are given a phase difference of φ = π

2 .
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(a) (b)

Figure 6.19: The two configurations considered in the 3D analysis of supercon-
ducting nanoisland-ferromagnet system.

To create these configurations experimentally, the ferromagnet can be grown on a sub-
strate. For the analysis with both nanoislands on the same side, superconducting leads
may then be placed on top of the ferromagnet, as illustrated in figure 6.20. As the im-
portant region is located between the superconductors, this setup should be a reasonable
representation of the theoretical model. For the configuration with superconductors on
opposite sides, one of the superconducting leads must be placed on the substrate, with
the ferromagnet grown on top of it.

F SS

Figure 6.20: Illustration of the experimental setup for the theoretical model.

Two different magnetizations will be considered, a uniform distribution of the exchange
field and a non-uniform, as shown in figure 6.21. Both fields are pointing in the thickness
direction. The uniform exchange field has a strength of h = 5∆. The non-uniform
exchange field is constant through the thickness of the model, but has a value of 15∆
within a horizontal radius of one coherence length ξ from the center of the ferromagnet.
Farther away from the center, the exchange field falls off quickly. Such a distribution can
be created experimentally by placing a strong ferromagnet in contact with a normal metal.
An approximately constant magnetization will then be induced through the thickness of
the metal, in the region beneath the ferromagnet. In the rest of the metal, the ability of
the ferromagnet to magnetize quickly abates the farther away one moves, thus creating
the distribution shown in figure 6.21.
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Figure 6.21: The distribution of the exchange field considered.

The charge current density is shown in figure 6.22 for two configurations

A The superconductors are placed on the same side of the ferromagnet. The exchange
field is uniform.

B The superconductors are placed on opposite sides of the ferromagnet. The exchange
field is non-uniform.

106



(a) (b)

(c) (d)

Figure 6.22: Charge current density in the ferromagnet for the two configura-
tions A and B. The phase difference between the superconductors are φ = π

2 .
All currents are scaled by J0 = N0eD∆

8h̄ , and all lengths by ξ.

In configuration A, the charge current density is shown in figures 6.22a, 6.22c, 6.23a
and 6.23c. It is seen that with a uniform exchange field, the current takes the shortest
route between the superconductors. However, since the boundary conditions constrain
the currents to enter and exit the superconductors vertically, the current is forced to
arc into the thickness of the ferromagnet. This is shown in figure 6.23c, in which the
current density is plotted on a slice through the model, along the y-axis. In configuration
B, a more interesting pattern in the current density emerges, as can be seen in figures
6.22b, 6.22d, 6.23b and 6.23d. Within a cylinder of radius ξ surrounding the center of the
ferromagnet, the exchange field is h(r) = 15∆. This has the effect that the supercurrent
is pushed out from the central region, and instead follows a semicircular path between the
superconductors. The exchange field has a pair breaking effect on the Cooper pairs, and
therefore functions as a hindrance for the supercurrent. Rather than taking the shortest
route, as was the case with uniform magnetization, the supercurrent now takes the easiest
route. In other words, the presence of an exchange field influences the supercurrent in an
analogous way as a resistance influences a normal current, and may have application in
exerting a greater degree of control over the supercurrent path.
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(a) (b)

(c) (d)

Figure 6.23: Charge current density in the ferromagnet for the two configura-
tions A and B. The phase difference between the superconductors are φ = π

2 .
All currents are scaled by J0 = N0eD∆

8 , and all lengths by ξ.

The density of states is given for configuration B in figure 6.24 for two different sections
on the top surface of the ferromagnet, and is intended to simulate the measurement of
dI
dV
∝ DOS by scanning tunneling microscopy. In figure 6.24a, it is seen that for the

distance which passes directly underneath the superconductor there is found peaks at
ε = ±∆, indicating superconducting correlations, as is to be expected. In addition, a
slight suppression is found at ε = ±h(r), i.e., a spin split minigap. Within the region
of highest exchange field, it is seen that superconductivity is completely suppressed, and
explains why the supercurrent is observed to circumvent this region. In the region above
the second superconductor, the signs of the proximity effect reemerges, albeit somewhat
damped, as the distance from the superconductor is now greater. Figure 6.24b shows
the density of states for a line in the y direction, opposite the lower superconductor. The
same modulation appears also here, with the greatest signs of superconducting correlations
found in the region directly above the superconductor. Away from the superconductor,
the density of states approaches that of a normal metal.
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(a)

(b)

Figure 6.24: The density of states for configuration B. The dotted lines sym-
bolize the spatial positions evaluated.
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Chapter 7

Conclusion

It has been demonstrated that the finite element method is well suited for solving the
quasiclassical Usadel equation. This was illustrated through comparison with known,
benchmark solutions. The numerical method was then used to explore new effects that
are intrinsically higher dimensional. For a 2D Josephson junction in the presence of a
magnetic field, it was found that both the position and number of the vortices generated
are influenced by the width of the junction and the phase difference between the super-
conductors. The vortex positions were seen to be determined by an equilibrium where
the distance between the vortices are maximized while maintaining the symmetry of the
system.

Another 2D Josephson junction was investigated, which contained ferromagnets with in-
plane spin-orbit coupling. For pure Rashba or pure Dresselhaus SOC, the induced magne-
tization took on a predictable symmetry pattern. In addition, spincurrents were generated
even without phase difference between the superconductors. It was observed that these
currents occur due to a spin torque effect between different regions of the junctions. Fi-
nally, a 3D model was considered, which consisted of superconducting nanoislands placed
on a ferromagnet. Charge currents between the islands were explored in the presence of
both a homogeneous and inhomogeneous exchange fields. In particular, for the inhomo-
geneous exchange field it was revealed that the supercurrents avoid the regions of highest
magnetization, creating a fully three dimensional current flow.

The numerical method developed opens exciting avenues in terms of future work. As the
numerical case studies presented here show, even quite simple models yield interesting
results. Therefore, much remains still to explore, such as different geometrical models and
spatial distribution of exchange fields. The numerical code is also quite easily extended to
nonequilibrium systems, which would allow passing charge currents through the system
by means of a voltage difference.

The finite element method used herein to solve the Usadel equation was inspired by the
solution techniques used in structural mechanics for the analysis of static problems. How-
ever, the method is also popular within the field of structural dynamics, which describes
the vibrations of structures, for instance in earthquake design95. It is believed that a
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similar approach may be used to extend the numerical code developed for the solution
of the nonlinear quasiclassical equations in 3D to handle time dependent problems as
well. Research into time dependent systems by means of quasiclassical theory is at an
early stage, although some advances have been made96,97. The successful development
of a numerical routine capable of solving higher dimensional systems with time stepping
would be a great leap forward.
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81. Cuevas, J. C. and Bergeret, F. S. Physical Review Letters 99(21), 217002 (2007).
PRL.

117



82. Buzdin, A. Physical Review B 62(17), 11377–11379 (2000). PRB.

83. Zareyan, M., Belzig, W., and Nazarov, Y. V. Physical Review B 65(18), 184505
(2002). PRB.

84. Kontos, T., Aprili, M., Lesueur, J., and Grison, X. Physical Review Letters 86(2),
304–307 (2001). PRL.

85. Yokoyama, T., Tanaka, Y., and Golubov, A. A. Physical Review B 75(13), 134510
(2007). PRB.

86. Linder, J., Yokoyama, T., and Sudbø, A. Physical Review B 77(17), 174514 (2008).
PRB.

87. SanGiorgio, P., Reymond, S., Beasley, M. R., Kwon, J. H., and Char, K. Physical
Review Letters 100(23), 237002 (2008). PRL.

88. Linder, J. and Robinson, J. W. A. Scientific Reports 5, 15483 (2015).

89. Balian, R. and Werthamer, N. R. Physical Review 131(4), 1553–1564 (1963). PR.

90. Mackenzie, A. P. and Maeno, Y. Reviews of Modern Physics 75(2), 657–712 (2003).
RMP.

91. Slonczewski, J. C. Journal of Magnetism and Magnetic Materials 126(1), 374–379
(1993).

92. Slonczewski, J. C. Journal of Magnetism and Magnetic Materials 159(1–2), L1–L7
(1996).

93. Jacobsen, S. H., Kulagina, I., and Linder, J. Scientific Reports 6, 23926 (2016).

94. Hammer, J. C., Cuevas, J. C., Bergeret, F. S., and Belzig, W. Physical Review B
76(6), 064514 (2007). PRB.

95. Amundsen, M. Dynamic Analysis of Offshore Concrete Structures subjected to Earth-
quake. Thesis, (2012).

96. Cuevas, J. C., Hammer, J., Kopu, J., Viljas, J. K., and Eschrig, M. Physical Review
B 73(18), 184505 (2006). PRB.

97. Houzet, M. Physical Review Letters 101(5), 057009 (2008). PRL.

118



Appendix A

Useful identities

In this appendix, identities which are used in the main text are derived.

A.1 Trace identities of the Pauli matrices

The Pauli matrices are defined as

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(A.1)

They satisfy the following (anti)commutation relation

[σk, σl] = 2iεklmσm (A.2)
{σk, σl} = 2δklI (A.3)

where I is the 2× 2 unit matrix and εklm is the Levi-Civita tensor. From equation (A.1)
it is seen immediately that

Tr {σk} = 0 (A.4)

for k ∈ {x, y, z}. From equations (A.2) and (A.3) it is found that

Tr {σkσl} = Tr {δklI + iεklmσm} = 2δkl (A.5)

The trace of three Pauli matrices becomes
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Tr {σkσlσm} = Tr {δklσm + iεklnσnσm} = 2iεklm (A.6)

Finally, the trace of four matrices may be computed as

Tr {σkσlσmσn} = Tr {δklσmσn + iεklpσpσmσn} = 2δklδmn − 2εklpεpmn
= 2δklδmn − 2δkmδln + 2δknδlm (A.7)

where the identity εijkεilm = δjlδkm − δjmδkl has been used.

A.2 Commutator between θ(x) and px

The Heaviside step function is defined as

θ(x) =

1, x > 0
0, x < 0

(A.8)

The commutator between θ(x) and the linear momentum operator in the x-direction, px,
is sought after. Towards that end, it is useful to introduce an integral representation for
the step function

θ(x) = lim
ε→0

1
2πi

∫ ∞
−∞

1
1− iεe

ixtdt (A.9)

Equivalence between equations (A.8) and (A.9) is readily verified by contour integration.
The commutator becomes

[θ(x), px] = lim
ε→0

1
2πi

∫ ∞
−∞

1
1− iε

[
eixt, px

]
dt (A.10)

The commutator in the integrand is given as

[
eixt, px

]
=
∞∑
n=0

(it)n
n! [xn, px] (A.11)

Therefore, [xn, px] is needed. It may be found by induction. It is well known that [x, px] =
ih̄. This means that
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[
x2, px

]
= x2px − pxx2 = x(xpx − pxx) + ih̄x = 2ih̄x (A.12)

From this, it is tempting to guess at the formula

[xn, px] = nih̄xn−1 (A.13)

It is assumed that this holds. Next it is demonstrated that this is consistent for xn+1:

[
xn+1, px

]
= xn+1px − pxxn+1 = x(xnpx − pxx) + ih̄xn = (n+ 1)ih̄xn (A.14)

To summarize, equation (A.13) holds for n = 1. Furthermore, if it holds for n, it also
holds for n + 1. Combining these statements concludes the proof of equation (A.13).
Inserting this into equation (A.11) gives

[
eixt, px

]
=
∞∑
n=0

(it)n
n! nih̄xn−1 = −h̄t

∞∑
n=1

(it)n−1

(n− 1)!x
n−1 = −h̄teixt (A.15)

Inserting this into equation (A.10) gives

[θ(x), px] = lim
ε→0
− h̄

2πi

∫ ∞
−∞

t

1− iεe
ixtdt = lim

ε→0

ih̄

2πi

∫ ∞
−∞

1
1− iε

∂

∂x
eixtdt

= ih̄
∂

∂x
θ(x) = ih̄δ(x) (A.16)

A.3 Fourier transform of products

The Fourier transform of a product of two functions f1
(
R+ 1

2r
)

and f2 (R, r) is a con-
volution, which is difficult to handle analytically. However, in the special case considered
here, a fortuitous combination of the dependent variables makes a formal solution possible.
With R considered as a constant, the Fourier transform of f2 becomes

f2(R,p) =
∫
dre−ip·r/h̄f2(R, r) (A.17)

Furthermore, a Taylor expansionn of f1 gives

f1

(
R+ 1

2r
)
≈
(

1 + 1
2r · ∇R

)
f1(R) (A.18)
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Therefore, the Fourier transform of the product, denoted as f1 ⊗ f2(p), becomes

f1 ⊗ f2(p) =
∫
dre−ip·r/h̄f1

(
R+ 1

2r
)
f2(R, r)

≈
∫
dre−ip·r/h̄

(
1 + 1

2r · ∇R1

)
f1(R)f2(R, r)

=
(

1 + ih̄

2 ∇p · ∇R1

)
f1(R)

∫
dre−ip·r/h̄f2(R, r)

=
(

1 + ih̄

2 ∇p · ∇R1

)
f1(R)f2(R,p) (A.19)

Equivalently, for f1
(
R− 1

2r
)

it is found that

f2 ⊗ f1(p) =
(

1− ih̄

2 ∇p · ∇R1

)
f1(R)f2(R,p) (A.20)
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Appendix B

Numerical code

B.1 nonlinearsolver.cpp
#include <iostream>
#include <algor ithm>
#include <sstream>
#include <math . h>
#include <armadi l lo>
#include <complex>

#include ” l ibmesh / l ibmesh . h”
#include ” l ibmesh /mesh . h”
#include ” l ibmesh / mesh generat ion . h”
#include ” l ibmesh / e x o d u s I I i o . h”
#include ” l ibmesh / equat ion systems . h”
#include ” l ibmesh / f e . h”
#include ” l ibmesh / quadrature gauss . h”
#include ” l ibmesh /dof map . h”
#include ” l ibmesh / spar s e mat r ix . h”
#include ” l ibmesh / numer ic vector . h”
#include ” l ibmesh / dense matr ix . h”
#include ” l ibmesh / dense vec to r . h”
#include ” l ibmesh / l i n e a r i m p l i c i t s y s t e m . h”
#include ” l ibmesh / n o n l i n e a r i m p l i c i t s y s t e m . h”
#include ” l ibmesh / n o n l i n e a r s o l v e r . h”
#include ” l ibmesh / p e r f l o g . h”
#include ” l ibmesh / boundary in fo . h”
#include ” l ibmesh / u t i l i t y . h”
#include ” l ibmesh / dense submatr ix . h”
#include ” l ibmesh / dense subvector . h”
#include ” l ibmesh /elem . h”
#include ” l ibmesh / v t k i o . h”
#include ” l ibmesh / gmsh io . h”
#include ” l ibmesh / e x o d u s I I i o . h”
#include ” l ibmesh / mat lab io . h”
#include ” l ibmesh / p a r a l l e l m e s h . h”
#include ”compute RJ . h”
#include ” n o n l i n e a r s o l v e r . h”
#include ”MVConverter . h”
#include ”BCS. h”
#include ” sp in cu r r en t . h”
#include ” customstructs . h”
#include ” magnet izat ion . h”
#include ” e x t e r n a l f l u x . h”
#include ”wrap . h”
#include <u t i l i t y >
#include ” Connection . h”
#include ” compute output . h”
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using namespace std ;
using namespace arma ;
using namespace l ibMesh ;

EquationSystems ∗ eq sy s ;
Connection∗ c o n n e c t i v i t y ;

void n o n l i n e a r s o l v e r ( int argc , char∗∗ argv , vector<double> Evec , vector<Input> parameters
,

Meshinput meshinfo , BCinputV BC, int i t e r a t i o n , s t r i n g p r e v s o l ) {

LibMeshInit i n i t ( argc , argv ) ;
Mesh mesh ( i n i t . comm( ) ) ;

double Lz = parameters [ 0 ] . d imensions [ 2 ] ;
double i n e l s c = meshinfo . i n e l s c ;

i f ( meshinfo . type == ” Defau l t ” ) {
i f ( Lz == 0) {

MeshTools : : Generation : : bu i l d s qu a r e (mesh , meshinfo . number [ 0 ] , meshinfo . number
[ 1 ] , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , QUAD9) ;

} else {

MeshTools : : Generation : : bu i ld cube (mesh , meshinfo . number [ 0 ] , meshinfo . number
[ 1 ] , meshinfo . number [ 2 ] , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , HEX20) ;

}

} else {

GmshIO( mesh ) . read ( meshinfo . type . append ( ” . msh” ) ) ;
mesh . p r e p a r e f o r u s e ( ) ;

}

Connection c o n n e c t i v i t y (mesh ,BC) ;
c o n n e c t i v i t y = &c o n n e c t i v i t y ;

ExodusII IO ( mesh ) . wr i t e ( ”mesh . e ” ) ;

EquationSystems eqsys ( mesh ) ;
eq sy s = &eqsys ;

Non l inear Impl i c i tSys tem& system = eqsys . add system<Nonl inear Impl ic i tSystem >(” Usadel ” )
;

L inear Impl i c i tSys tem& gradsys = eqsys . add system<Linear Impl i c i tSystem >(” Gradients ” ) ;
gradsys . a t t a ch a s s e mb l e f un c t i o n ( compute gradients ) ;

i f ( p r e v so l == ”” ) {

Expl i c i tSystem& PPsys = eqsys . add system<Expl ic i tSystem >(”PP” ) ;

system . add var i ab l e ( ”g00” , SECOND) ;
system . add var i ab l e ( ”g01” , SECOND) ;
system . add var i ab l e ( ”g10” , SECOND) ;
system . add var i ab l e ( ”g11” , SECOND) ;
system . add var i ab l e ( ” gt00 ” , SECOND) ;
system . add var i ab l e ( ” gt01 ” , SECOND) ;
system . add var i ab l e ( ” gt10 ” , SECOND) ;
system . add var i ab l e ( ” gt11 ” , SECOND) ;

PPsys . add var i ab l e ( ”DOS” , SECOND) ;
PPsys . add var i ab l e ( ”Jx” , SECOND) ;
PPsys . add var i ab l e ( ”Jy” , SECOND) ;
PPsys . add var i ab l e ( ” Jz ” , SECOND) ;
PPsys . add var i ab l e ( ”PC” , SECOND) ;
PPsys . add var i ab l e ( ”JSXx” , SECOND) ;
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PPsys . add var i ab l e ( ”JSXy” , SECOND) ;
PPsys . add var i ab l e ( ”JSXz” , SECOND) ;
PPsys . add var i ab l e ( ”JSYx” , SECOND) ;
PPsys . add var i ab l e ( ”JSYy” , SECOND) ;
PPsys . add var i ab l e ( ”JSYz” , SECOND) ;
PPsys . add var i ab l e ( ”JSZx” , SECOND) ;
PPsys . add var i ab l e ( ”JSZy” , SECOND) ;
PPsys . add var i ab l e ( ”JSZz” , SECOND) ;
PPsys . add var i ab l e ( ”Hx” , SECOND) ;
PPsys . add var i ab l e ( ”Hy” , SECOND) ;
PPsys . add var i ab l e ( ”Hz” , SECOND) ;
PPsys . add var i ab l e ( ”Mx” , SECOND) ;
PPsys . add var i ab l e ( ”My” , SECOND) ;
PPsys . add var i ab l e ( ”Mz” , SECOND) ;

gradsys . add var i ab l e ( ”dgx00” ,SECOND) ;
gradsys . add var i ab l e ( ”dgx01” ,SECOND) ;
gradsys . add var i ab l e ( ”dgx10” ,SECOND) ;
gradsys . add var i ab l e ( ”dgx11” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtx00 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtx01 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtx10 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtx11 ” ,SECOND) ;

gradsys . add var i ab l e ( ”dgy00” ,SECOND) ;
gradsys . add var i ab l e ( ”dgy01” ,SECOND) ;
gradsys . add var i ab l e ( ”dgy10” ,SECOND) ;
gradsys . add var i ab l e ( ”dgy11” ,SECOND) ;
gradsys . add var i ab l e ( ” dgty00 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgty01 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgty10 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgty11 ” ,SECOND) ;

gradsys . add var i ab l e ( ” dgz00 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgz01 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgz10 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgz11 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtz00 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtz01 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtz10 ” ,SECOND) ;
gradsys . add var i ab l e ( ” dgtz11 ” ,SECOND) ;

} else {

s t r i n g f o l d e r = ” Restart /” ;
cout << ”>>>>> Reading ” << pr ev so l << ” <<<<<” << endl ;
eqsys . read ( f o l d e r . append ( p r e v s o l ) ) ;
system . update ( ) ;
gradsys . update ( ) ;

}

system . n o n l i n e a r s o l v e r > matvec = compute RJ ;

eqsys . parameters . set<unsigned int>(” non l i nea r s o l v e r maximum i t e r a t i o n s ” ) = meshinfo .
maxiter ;

eqsys . parameters . set<Real>(” l i n e a r s o l v e r t o l e r a n c e ” ) = 1 .0 e 4 ;

eqsys . parameters . set<vector<Real>>(” BCstrength ” ) = BC. s t r ength ;
eqsys . parameters . set<vector<Real>>(”BCpenalty” ) = BC. pena l ty ;
eqsys . parameters . set<vector<s t r i ng >>(”BCtype” ) = BC. type ;
eqsys . parameters . set<vector<int>>(”BCID” ) = BC. ID ;
eqsys . parameters . set<vector<int>>(”BCneighborID” ) = BC. neighborID ;
eqsys . parameters . set<vector<double>>(”BCphase” ) = BC. phase ;

vector<Input> zpar = parameters ;

i f ( Lz == 0)
for ( unsigned int i = 0 ; i < zpar . s i z e ( ) ; i++)
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zpar [ i ] . d imensions [ 2 ] = 1 . 0 ; // Avoid d i v i s i o n by zero

vector<double> parvec = wrap ( zpar ) ;
eqsys . parameters . set<vector<double>>(” parvec ” ) = parvec ;

i f ( p r e v s o l == ”” ) {

eqsys . i n i t ( ) ;

}

ofstream summary ;
summary . open ( ”Summary . txt ” , i o s : : app ) ;
const set<s t r i ng> outputname = { ”PP” } ;
const set<s t r i ng> ∗poutput ;

poutput = &outputname ;

double Eold = Evec [ 1 ] ;

for ( double E : Evec ) {

complex<double> Ec(E, i n e l s c ) ;
eqsys . parameters . set<Number>(”E” ) = Ec ;
eqsys . parameters . set<Real>(”dE” ) = abs ( Eold E) ;

eqsys . get system ( ” Usadel ” ) . s o l v e ( ) ;
eqsys . get system ( ” Gradients ” ) . s o l v e ( ) ;

cout << ” Usadel system so lved at non l i n ea r i t e r a t i o n ”
<< system . n n o n l i n e a r i t e r a t i o n s ( )
<< ” , f i n a l non l i n ea r r e s i d u a l norm : ”
<< system . f i n a l n o n l i n e a r r e s i d u a l ( )
<< endl ;

// Post Process ing
//
//

i f ( system . f i n a l n o n l i n e a r r e s i d u a l ( ) > 1 .0 e 4 ) {

cx vec y = zeros<cx vec >(8) ;
I n i t i a l G u e s s ( eqsys , y ) ;

}

i f ( system . f i n a l n o n l i n e a r r e s i d u a l ( ) < 1 .0 e 4 ) {

summary << i t e r a t i o n << ” ” << E << ” ” << system .
f i n a l n o n l i n e a r r e s i d u a l ( ) << endl ;

p o s t p r o c e s s o r ( eqsys ) ;

o s t r ing s t r eam f i l ename ;

f i l ename << ” Resu l t s / s o l u t i o n ”
<< i t e r a t i o n
<< ” . e ” ;

ExodusII IO ( mesh ) . wr i t e equa t i on sy s t ems ( f i l ename . s t r ( ) , eqsys , poutput ) ;

} else {

summary << i t e r a t i o n << ” ” << E << ” ” << system .
f i n a l n o n l i n e a r r e s i d u a l ( ) << ” ” << ”DIVERGED” << endl ;
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}

i t e r a t i o n = i t e r a t i o n + 1 ;
Eold = E;

}

summary . c l o s e ( ) ;
return ;

}

void p o s tp r o c e s s o r ( EquationSystems& es ) {

const MeshBase& mesh = es . get mesh ( ) ;
const unsigned int dim = mesh . mesh dimension ( ) ;

complex<double> Ec = es . parameters . get<Number>(”E” ) ;
double dE = es . parameters . get<Real>(”dE” ) ;
double T = 0 . 0 0 1 ;
double E = r e a l (Ec) ;

complex<double> i i ( 0 , 1 ) ;
Non l inear Impl i c i tSys tem& system = es . get system<Nonl inear Impl ic i tSystem >(” Usadel ” ) ;

vector<double> parvec = es . parameters . get<vector<double>>(” parvec ” ) ;
vector<Input> parameters = unwrapper ( parvec ) ;
const int Nvars = 8 ;
vector<unsigned int> vars ;
system . g e t a l l v a r i a b l e n u m b e r s ( vars ) ;

const DofMap& dof map = system . get dof map ( ) ;

FEType f e t y p e = dof map . v a r i a b l e t y p e ( vars [ 0 ] ) ;
AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
QGauss q ru l e (dim , f e t y p e . d e f a u l t q u a d r a t u r e o r d e r ( ) ) ;
f e > a t t a c h q u a d r a t u r e r u l e (& qru l e ) ;

const vector<Real>& JxW = f e > get JxW ( ) ;
const vector<vector<Real>>& phi = f e > g e t p h i ( ) ;

L inear Impl i c i tSys tem& gradsys = es . get system<Linear Impl i c i tSystem >(” Gradients ” ) ;

vector<unsigned int> dvars ;
gradsys . g e t a l l v a r i a b l e n u m b e r s ( dvars ) ;
s o r t ( dvars . begin ( ) , dvars . end ( ) ) ;

const DofMap& grad dof map = gradsys . get dof map ( ) ;

Expl i c i tSystem& PPsys = es . get system<Expl ic i tSystem >(”PP” ) ;
vector<unsigned int> PPvars ;
PPsys . g e t a l l v a r i a b l e n u m b e r s ( PPvars ) ;
s o r t ( PPvars . begin ( ) , PPvars . end ( ) ) ;

// const unsigned i n t DOSnum = PPsys . var iab le number (”DOS”) ;
//

const unsigned int Jxnum = PPsys . var iable number ( ”Jx” ) ;
const unsigned int Jynum = PPsys . var iable number ( ”Jy” ) ;
const unsigned int Jznum = PPsys . var iable number ( ” Jz ” ) ;
const unsigned int PCnum = PPsys . var iable number ( ”PC” ) ;
const unsigned int Mxnum = PPsys . var iable number ( ”Mx” ) ;
const unsigned int Mynum = PPsys . var iable number ( ”My” ) ;
const unsigned int Mznum = PPsys . var iable number ( ”Mz” ) ;
const unsigned int JSXxnum = PPsys . var iable number ( ”JSXx” ) ;
const unsigned int JSXynum = PPsys . var iable number ( ”JSXy” ) ;
const unsigned int JSXznum = PPsys . var iable number ( ”JSXz” ) ;
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const unsigned int JSYxnum = PPsys . var iable number ( ”JSYx” ) ;
const unsigned int JSYynum = PPsys . var iable number ( ”JSYy” ) ;
const unsigned int JSYznum = PPsys . var iable number ( ”JSYz” ) ;

const unsigned int JSZxnum = PPsys . var iable number ( ”JSZx” ) ;
const unsigned int JSZynum = PPsys . var iable number ( ”JSZy” ) ;
const unsigned int JSZznum = PPsys . var iable number ( ”JSZz” ) ;

const DofMap& PP dof map = PPsys . get dof map ( ) ;
int n PPvars = PPsys . n vars ( ) ;

vector<do f i d type> d o f i n d i c e s ;
vector< vector<do f i d type> > d o f i n d i c e s v a r ( Nvars ) ;
vector< vector<do f i d type> > d o f i n d i c e s d v a r (3∗Nvars ) ;
vector< vector<do f i d type> > do f ind i c e s PPvar ( n PPvars ) ;

vector<do f i d type> d o f i n d i c e s J x ;
vector<do f i d type> d o f i n d i c e s J y ;
vector<do f i d type> d o f i n d i c e s J z ;
vector<do f i d type> do f ind i c e s PC ;

vector<do f i d type> do f ind i ce s Mx ;
vector<do f i d type> do f ind i ce s My ;
vector<do f i d type> do f ind i c e s Mz ;

vector<do f i d type> do f ind i c e s JSXx ;
vector<do f i d type> do f ind i c e s JSXy ;
vector<do f i d type> do f i nd i c e s JSXz ;

vector<do f i d type> do f ind i c e s JSYx ;
vector<do f i d type> do f ind i c e s JSYy ;
vector<do f i d type> do f i nd i c e s JSYz ;

vector<do f i d type> d o f i nd i c e s J SZ x ;
vector<do f i d type> d o f i nd i c e s J SZ y ;
vector<do f i d type> d o f i n d i c e s J S Z z ;

MeshBase : : c o n s t e l e m e n t i t e r a t o r e l = mesh . a c t i v e l o c a l e l e m e n t s b e g i n ( ) ;
const MeshBase : : c o n s t e l e m e n t i t e r a t o r end e l = mesh . a c t i v e l o c a l e l e m e n t s e n d ( ) ;

cx vec y ( Nvars ) , dy x ( Nvars ) , dy y ( Nvars ) , dy z ( Nvars ) ;

for ( ; e l != end e l ; ++e l ) {

const Elem∗ elem = ∗ e l ;
int s i d = elem > subdomain id ( ) ;

vector<double> f l u x = parameters [ s i d ] . e x t f l u x ;
vector<double> h = parameters [ s i d ] . magnet izat ion ;

for ( int var = 0 ; var < Nvars ; var++)
dof map . d o f i n d i c e s ( elem , d o f i n d i c e s v a r [ var ] , vars [ var ] ) ;

for ( int var = 0 ; var < 3∗Nvars ; var++)
grad dof map . d o f i n d i c e s ( elem , d o f i n d i c e s d v a r [ var ] , dvars [ var ] ) ;

for ( int var = 0 ; var < n PPvars ; var++)
PP dof map . d o f i n d i c e s ( elem , do f ind i c e s PPvar [ var ] , PPvars [ var ] ) ;

PP dof map . d o f i n d i c e s ( elem , d o f i n d i c e s J x , Jxnum) ;
PP dof map . d o f i n d i c e s ( elem , d o f i n d i c e s J y , Jynum) ;
PP dof map . d o f i n d i c e s ( elem , d o f i n d i c e s J z , Jznum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind ices PC , PCnum) ;

PP dof map . d o f i n d i c e s ( elem , dof ind ices Mx , Mxnum) ;
PP dof map . d o f i n d i c e s ( elem , dof ind ices My , Mynum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind i ce s Mz , Mznum) ;

PP dof map . d o f i n d i c e s ( elem , do f ind ice s JSXx , JSXxnum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind ice s JSXy , JSXynum) ;
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PP dof map . d o f i n d i c e s ( elem , do f ind i ce s JSXz , JSXznum) ;

PP dof map . d o f i n d i c e s ( elem , do f ind ice s JSYx , JSYxnum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind ice s JSYy , JSYynum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind i ce s JSYz , JSYznum) ;

PP dof map . d o f i n d i c e s ( elem , do f ind i c e s JSZx , JSZxnum) ;
PP dof map . d o f i n d i c e s ( elem , do f ind i c e s JSZy , JSZynum) ;
PP dof map . d o f i n d i c e s ( elem , do f i nd i c e s JSZz , JSZznum) ;

f e > r e i n i t ( elem ) ;
vector<Number> DOS( phi . s i z e ( ) ) , Jx ( phi . s i z e ( ) ) , Jy ( phi . s i z e ( ) ) , Jz ( phi . s i z e ( ) ) ;
vector<Number> Jxold ( phi . s i z e ( ) ) , Jyold ( phi . s i z e ( ) ) , Jzo ld ( phi . s i z e ( ) ) ;

vector<Number> JSXx( phi . s i z e ( ) ) , JSXy( phi . s i z e ( ) ) , JSXz( phi . s i z e ( ) ) ;
vector<Number> JSYx( phi . s i z e ( ) ) , JSYy( phi . s i z e ( ) ) , JSYz( phi . s i z e ( ) ) ;
vector<Number> JSZx ( phi . s i z e ( ) ) , JSZy ( phi . s i z e ( ) ) , JSZz ( phi . s i z e ( ) ) ;

vector<Number> JSXxold ( phi . s i z e ( ) ) , JSXyold ( phi . s i z e ( ) ) , JSXzold ( phi . s i z e ( ) ) ;
vector<Number> JSYxold ( phi . s i z e ( ) ) , JSYyold ( phi . s i z e ( ) ) , JSYzold ( phi . s i z e ( ) ) ;
vector<Number> JSZxold ( phi . s i z e ( ) ) , JSZyold ( phi . s i z e ( ) ) , JSZzold ( phi . s i z e ( ) ) ;

vector<Number> PC( phi . s i z e ( ) ) , PCold ( phi . s i z e ( ) ) , Hx( phi . s i z e ( ) ) ,Hy( phi . s i z e ( ) ) ,
Hz( phi . s i z e ( ) ) ;

vector<Number> Mx( phi . s i z e ( ) ) , My( phi . s i z e ( ) ) , Mz( phi . s i z e ( ) ) ;
vector<Number> Mxold ( phi . s i z e ( ) ) , Myold ( phi . s i z e ( ) ) , Mzold ( phi . s i z e ( ) ) ;
vector<double> xpts ( phi . s i z e ( ) ) , ypts ( phi . s i z e ( ) ) ;
vector<vector<Number>> PPout ( n PPvars , vector<Number>(phi . s i z e ( ) ) ) ;

for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++){

xpts [ i ] = (∗ e l ) > point ( i ) (0 ) ;
ypts [ i ] = (∗ e l ) > point ( i ) (1 ) ;

Jxold [ i ] = PPsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s J x [ i ] ) ;
Jyold [ i ] = PPsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s J y [ i ] ) ;
Jzo ld [ i ] = PPsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s J z [ i ] ) ;
PCold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s PC [ i ] ) ;

Mxold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i ce s Mx [ i ] ) ;
Myold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i ce s My [ i ] ) ;
Mzold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s Mz [ i ] ) ;

JSXxold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s JSXx [ i ] ) ;
JSXyold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s JSXy [ i ] ) ;
JSXzold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f i nd i c e s JSXz [ i ] ) ;

JSYxold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s JSYx [ i ] ) ;
JSYyold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f ind i c e s JSYy [ i ] ) ;
JSYzold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f i nd i c e s JSYz [ i ] ) ;

JSZxold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f i nd i c e s J SZ x [ i ] ) ;
JSZyold [ i ] = PPsys . c u r r e n t s o l u t i o n ( do f i nd i c e s J SZ y [ i ] ) ;
JSZzold [ i ] = PPsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s J S Z z [ i ] ) ;

for ( int vars = 0 ; vars < Nvars ; vars++){

y ( vars ) = system . c u r r e n t s o l u t i o n ( d o f i n d i c e s v a r [ vars ] [ i ] ) ;
dy x ( vars ) = gradsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s d v a r [ vars ] [ i ] ) ;
dy y ( vars ) = gradsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s d v a r [ Nvars + vars ] [ i ] ) ;
dy z ( vars ) = gradsys . c u r r e n t s o l u t i o n ( d o f i n d i c e s d v a r [ 2∗Nvars + vars ] [ i

] ) ;

}

cx mat G = v to m ( y ) ;
cx mat Gt = v to mt ( y ) ;
cx mat dGx = v to m ( dy x ) ;
cx mat dGtx = v to mt ( dy x ) ;
cx mat dGy = v to m ( dy y ) ;
cx mat dGty = v to mt ( dy y ) ;
cx mat dGz = v to m ( dy z ) ;
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cx mat dGtz = v to mt ( dy z ) ;

mat I (2 , 2 ) ; I . eye ( ) ;

cx mat Ninv = I G∗Gt ;
cx mat N = inv ( Ninv ) ;
cx mat Ntinv = I Gt∗G;
cx mat Nt = inv ( Ntinv ) ;

cx mat f = 2 .∗N∗G;
cx mat f t = 2 .∗Nt∗Gt ;
cx mat d f x = 2 .∗N∗(dGx∗Gt + G∗dGtx) ∗N∗G + 2.∗N∗dGx ;
cx mat d f y = 2 .∗N∗(dGy∗Gt + G∗dGty) ∗N∗G + 2.∗N∗dGy ;
cx mat d f z = 2 .∗N∗(dGz∗Gt + G∗dGtz ) ∗N∗G + 2.∗N∗dGz ;
cx mat d f t x = 2 .∗Nt∗(dGtx∗G + Gt∗dGx) ∗Nt∗Gt + 2.∗Nt∗dGtx ;
cx mat d f t y = 2 .∗Nt∗(dGty∗G + Gt∗dGy) ∗Nt∗Gt + 2.∗Nt∗dGty ;
cx mat d f t z = 2 .∗Nt∗( dGtz∗G + Gt∗dGz) ∗Nt∗Gt + 2.∗Nt∗dGtz ;

cx mat g = N∗( I + G∗Gt) ;
cx mat gt = Nt∗( I + Gt∗G) ;
cx mat dg x = 2 .∗N∗(dGx∗Gt + G∗dGtx) ∗N;
cx mat dg y = 2 .∗N∗(dGy∗Gt + G∗dGty) ∗N;
cx mat dg z = 2 .∗N∗(dGz∗Gt + G∗dGtz ) ∗N;
cx mat dgt x = 2 .∗Nt∗(dGtx∗G + Gt∗dGx) ∗Nt ;
cx mat dgt y = 2 .∗Nt∗(dGty∗G + Gt∗dGy) ∗Nt ;
cx mat dgt z = 2 .∗Nt∗( dGtz∗G + Gt∗dGz) ∗Nt ;

// cx mat Jx mat = fRt ∗dfR x fR∗ dfRt x + 4.∗ i i ∗ sx ∗ fR∗ fRt ;
cx mat Jy mat = f t ∗ d f y f ∗ d f t y ;
cx mat Jz mat = f t ∗ d f z f ∗ d f t z ;
cx mat Ax, Ay, Az ;
SOC A = e x t e r n a l f l u x ( f lux , xpts [ i ] , ypts [ i ] ) ;
Ax = A. x ;
Ay = A. y ;
Az = A. z ;

Gmat g mat = compute g matr ices (y , dy x , dy y , dy z , E, T) ;
Gmat g neg = compute g negE ( g mat ) ;
//Compute Keldysh component f o r p o s i t i v e e n e r g i e s
cx mat gdg x = g mat . gtot ∗g mat . dgtot x i i ∗g mat . gtot ∗(A. x l a r g e ∗g mat . gtot

g mat . gtot ∗A. x l a r g e ) ;
cx mat gdg y = g mat . gtot ∗g mat . dgtot y i i ∗g mat . gtot ∗(A. y l a r g e ∗g mat . gtot

g mat . gtot ∗A. y l a r g e ) ;
cx mat gdg z = g mat . gtot ∗g mat . dg to t z i i ∗g mat . gtot ∗(A. z l a r g e ∗g mat . gtot

g mat . gtot ∗A. z l a r g e ) ;

cx mat gdg x k = gdg x ( span (0 , 3 ) , span (4 , 7 ) ) ;
cx mat gdg y k = gdg y ( span (0 , 3 ) , span (4 , 7 ) ) ;
cx mat gdg z k = gdg z ( span (0 , 3 ) , span (4 , 7 ) ) ;

//Compute Keldysh component f o r n e g a t i v e e n e r g i e s
cx mat gdg x n = g neg . gtot ∗ g neg . dgtot x i i ∗ g neg . gtot ∗(A. x l a r g e ∗ g neg .

gtot g neg . gtot ∗A. x l a r g e ) ;
cx mat gdg y n = g neg . gtot ∗ g neg . dgtot y i i ∗ g neg . gtot ∗(A. y l a r g e ∗ g neg .

gtot g neg . gtot ∗A. y l a r g e ) ;
cx mat gdg z n = g neg . gtot ∗ g neg . dg to t z i i ∗ g neg . gtot ∗(A. z l a r g e ∗ g neg .

gtot g neg . gtot ∗A. z l a r g e ) ;

cx mat gdg x k n = gdg x n ( span (0 , 3 ) , span (4 , 7 ) ) ;
cx mat gdg y k n = gdg y n ( span (0 , 3 ) , span (4 , 7 ) ) ;
cx mat gdg z k n = gdg z n ( span (0 , 3 ) , span (4 , 7 ) ) ;

// cx mat gdg k y = k e l d y s h g d g ( g mat . g to t , g mat . dg to t y , Ay) ;
// cx mat g d g k z = k e l d y s h g d g ( g mat . g to t , g mat . d g t o t z , Az) ;

mat rho3 = zeros<mat>(4 ,4) ;
mat rho1 = rho3 ;
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rho3 . submat (0 , 0 , 1 , 1 ) = I ;
rho3 . submat (2 , 2 , 3 , 3 ) = I ;

rho1 . submat (0 , 2 , 1 , 3 ) = I ;
rho1 . submat (2 , 0 , 3 , 1 ) = I ;

DOS[ i ] = r e a l ( t r a c e ( g ) ) /2 ;

//
Jx [ i ] = dE∗ t r a c e ( rho3 ∗( gdg x k + gdg x k n ) ) + Jxold [ i ] ;
Jy [ i ] = dE∗ t r a c e ( rho3 ∗( gdg y k + gdg y k n ) ) + Jyold [ i ] ;
Jz [ i ] = dE∗ t r a c e ( rho3 ∗( gdg z k + gdg z k n ) ) + Jzo ld [ i ] ;

mat sigma x , s igma z ;
cx mat sigma y ;

mat S x = zeros<mat>(4 ,4) ;
cx mat S y = zeros<cx mat>(4 ,4) ;
mat S z = zeros<mat>(4 ,4) ;

s igma x << 0 << 1 << endr
<< 1 << 0 << endr ;

s igma y << 0 << i i << endr
<< i i << 0 << endr ;

s igma z << 1 << 0 << endr
<< 0 << 1 << endr ;

S x . submat (0 , 0 , 1 , 1 ) = sigma x ;
S x . submat (2 , 2 , 3 , 3 ) = sigma x ;

S y . submat (0 , 0 , 1 , 1 ) = sigma y ;
S y . submat (2 , 2 , 3 , 3 ) = conj ( sigma y ) ;

S z . submat (0 , 0 , 1 , 1 ) = sigma z ;
S z . submat (2 , 2 , 3 , 3 ) = sigma z ;

Mx[ i ] = dE∗ t r a c e ( S x ∗( g mat . gK + g neg . gK) ) + Mxold [ i ] ;
My[ i ] = dE∗ t r a c e ( S y ∗( g mat . gK + g neg . gK) ) + Myold [ i ] ;
Mz[ i ] = dE∗ t r a c e ( S z ∗( g mat . gK + g neg . gK) ) + Mzold [ i ] ;

PC[ i ] = dE∗ tanh (1 . 76∗E/ (2 .∗T) ) ∗( f ( 0 , 1 ) conj ( f t ( 0 , 1 ) ) + conj ( f t ( 1 , 0 ) ) f
( 1 , 0 ) ) + PCold [ i ] ;

double sx = f l u x [ 0 ] ;

JSXx [ i ] = dE∗ t r a c e ( rho3∗S x ∗( gdg x k + gdg x k n ) ) + JSXxold [ i ] ;
JSXy [ i ] = dE∗ t r a c e ( rho3∗S x ∗( gdg y k + gdg y k n ) ) + JSXyold [ i ] ;
JSXz [ i ] = dE∗ t r a c e ( rho3∗S x ∗( gdg z k + gdg z k n ) ) + JSXzold [ i ] ;

JSYx [ i ] = dE∗ t r a c e ( rho3∗S y ∗( gdg x k + gdg x k n ) ) + JSYxold [ i ] ;
JSYy [ i ] = dE∗ t r a c e ( rho3∗S y ∗( gdg y k + gdg y k n ) ) + JSYyold [ i ] ;
JSYz [ i ] = dE∗ t r a c e ( rho3∗S y ∗( gdg z k + gdg z k n ) ) + JSYzold [ i ] ;

JSZx [ i ] = dE∗ t r a c e ( rho3∗S z ∗( gdg x k + gdg x k n ) ) + JSZxold [ i ] ;
JSZy [ i ] = dE∗ t r a c e ( rho3∗S z ∗( gdg y k + gdg y k n ) ) + JSZyold [ i ] ;
JSZz [ i ] = dE∗ t r a c e ( rho3∗S z ∗( gdg z k + gdg z k n ) ) + JSZzold [ i ] ;

vector<double> h f i e l d = magnet izat ion (h , xpts [ i ] , ypts [ i ] ) ;
Hx [ i ] = h f i e l d [ 0 ] ; Hy [ i ] = h f i e l d [ 1 ] ; Hz [ i ] = h f i e l d [ 2 ] ;

PPout [ 0 ] [ i ] = DOS[ i ] ;
PPout [ 1 ] [ i ] = Jx [ i ] ;
PPout [ 2 ] [ i ] = Jy [ i ] ;
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PPout [ 3 ] [ i ] = Jz [ i ] ;
PPout [ 4 ] [ i ] = PC[ i ] ;
PPout [ 5 ] [ i ] = JSXx [ i ] ;
PPout [ 6 ] [ i ] = JSXy [ i ] ;
PPout [ 7 ] [ i ] = JSXz [ i ] ;
PPout [ 8 ] [ i ] = JSYx [ i ] ;
PPout [ 9 ] [ i ] = JSYy [ i ] ;
PPout [ 1 0 ] [ i ] = JSYz [ i ] ;
PPout [ 1 1 ] [ i ] = JSZx [ i ] ;
PPout [ 1 2 ] [ i ] = JSZy [ i ] ;
PPout [ 1 3 ] [ i ] = JSZz [ i ] ;
PPout [ 1 4 ] [ i ] = Hx [ i ] ;
PPout [ 1 5 ] [ i ] = Hy [ i ] ;
PPout [ 1 6 ] [ i ] = Hz [ i ] ;
PPout [ 1 7 ] [ i ] = Mx[ i ] ;
PPout [ 1 8 ] [ i ] = My[ i ] ;
PPout [ 1 9 ] [ i ] = Mz[ i ] ;

for ( unsigned int var = 0 ; var < n PPvars ; var++)
PPsys . s o l u t i o n > s e t ( do f ind i c e s PPvar [ var ] [ i ] , PPout [ var ] [ i ] ) ;

}

}

PPsys . s o l u t i o n > c l o s e ( ) ;
PPsys . update ( ) ;

return ;

}

void I n i t i a l G u e s s ( EquationSystems& es , cx vec value ) {

const MeshBase& mesh = es . get mesh ( ) ;
const unsigned int dim = mesh . mesh dimension ( ) ;

Non l inear Impl i c i tSys tem& system = es . get system<Nonl inear Impl ic i tSystem >(” Usadel ” ) ;

const int Nvars = 8 ;
unsigned int vars [ Nvars ] ;
vars [ 0 ] = system . var iable number ( ”g00” ) ;
vars [ 1 ] = system . var iable number ( ”g01” ) ;
vars [ 2 ] = system . var iable number ( ”g10” ) ;
vars [ 3 ] = system . var iable number ( ”g11” ) ;
vars [ 4 ] = system . var iable number ( ” gt00 ” ) ;
vars [ 5 ] = system . var iable number ( ” gt01 ” ) ;
vars [ 6 ] = system . var iable number ( ” gt10 ” ) ;
vars [ 7 ] = system . var iable number ( ” gt11 ” ) ;

const DofMap& dof map = system . get dof map ( ) ;

FEType f e t y p e = dof map . v a r i a b l e t y p e ( vars [ 0 ] ) ;
AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
QGauss q ru l e (dim , f e t y p e . d e f a u l t q u a d r a t u r e o r d e r ( ) ) ;
f e > a t t a c h q u a d r a t u r e r u l e (& qru l e ) ;

const vector<Real>& JxW = f e > get JxW ( ) ;
const vector<vector<Real>>& phi = f e > g e t p h i ( ) ;

vector<do f i d type> d o f i n d i c e s ;
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vector< vector<do f i d type> > d o f i n d i c e s v a r ( Nvars ) ;
d o f i d t y p e do f index = vars [ 0 ] ;

MeshBase : : c o n s t e l e m e n t i t e r a t o r e l = mesh . a c t i v e l o c a l e l e m e n t s b e g i n ( ) ;
const MeshBase : : c o n s t e l e m e n t i t e r a t o r end e l = mesh . a c t i v e l o c a l e l e m e n t s e n d ( ) ;

for ( ; e l != end e l ; ++e l ) {

const Elem∗ elem = ∗ e l ;

for ( int var = 0 ; var < Nvars ; var++)
dof map . d o f i n d i c e s ( elem , d o f i n d i c e s v a r [ var ] , vars [ var ] ) ;

f e > r e i n i t ( elem ) ;

for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++){

for ( int var = 0 ; var < Nvars ; var++)
system . s o l u t i o n > s e t ( d o f i n d i c e s v a r [ var ] [ i ] , va lue ( var ) + 1 . e 8 ) ;

}

}

system . s o l u t i o n > c l o s e ( ) ;
system . update ( ) ;

return ;

}

void compute gradients ( EquationSystems& es , const s t r i n g& /∗ system name∗/ ) {

const MeshBase& mesh = es . get mesh ( ) ;
const unsigned int dim = mesh . mesh dimension ( ) ;

Non l inear Impl i c i tSys tem& system = es . get system<Nonl inear Impl ic i tSystem >(” Usadel ” ) ;

const int Nvars = 8 ;
vector<unsigned int> vars ;
system . g e t a l l v a r i a b l e n u m b e r s ( vars ) ;
s o r t ( vars . begin ( ) , vars . end ( ) ) ;

const DofMap& dof map = system . get dof map ( ) ;

FEType f e t y p e = dof map . v a r i a b l e t y p e ( vars [ 0 ] ) ;
AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
QGauss q ru l e (dim , f e t y p e . d e f a u l t q u a d r a t u r e o r d e r ( ) ) ;
f e > a t t a c h q u a d r a t u r e r u l e (& qru l e ) ;

const vector<Real>& JxW = f e > get JxW ( ) ;
const vector<vector<Real>>& phi = f e > g e t p h i ( ) ;
const vector<vector<RealGradient>>& dphi = f e > get dph i ( ) ;

L inear Impl i c i tSys tem& gradsys = es . get system<Linear Impl i c i tSystem >(” Gradients ” ) ;

vector<unsigned int> dvars ;
gradsys . g e t a l l v a r i a b l e n u m b e r s ( dvars ) ;
s o r t ( dvars . begin ( ) , dvars . end ( ) ) ;

const DofMap& grad dof map = gradsys . get dof map ( ) ;

DenseMatrix<Number> Ke ;
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vector<vector< DenseSubMatrix<Number>∗ > > K;

K. r e s i z e (3∗Nvars ) ;

for ( int i = 0 ; i < 3∗Nvars ; ++i )
for ( int j = 0 ; j < 3∗Nvars ; ++j )

K[ i ] . push back ( new DenseSubMatrix<Number>(Ke) ) ;

DenseVector<Number> Re ;
vector<DenseSubVector<Number>∗> R;

for ( int i = 0 ; i < 3∗Nvars ; ++i )
R. push back (new DenseSubVector<Number>(Re) ) ;

vector<do f i d type> d o f i n d i c e s ;
vector<vector<do f i d type>> d o f i n d i c e s v a r ( Nvars ) ;
vector<vector<do f i d type>> d o f i n d i c e s d v a r (3∗Nvars ) ;

MeshBase : : c o n s t e l e m e n t i t e r a t o r e l = mesh . a c t i v e l o c a l e l e m e n t s b e g i n ( ) ;
const MeshBase : : c o n s t e l e m e n t i t e r a t o r end e l = mesh . a c t i v e l o c a l e l e m e n t s e n d ( ) ;

for ( ; e l != end e l ; ++e l ) {

const Elem∗ elem = ∗ e l ;

grad dof map . d o f i n d i c e s ( elem , d o f i n d i c e s ) ;

for ( int var = 0 ; var < Nvars ; var++)
dof map . d o f i n d i c e s ( elem , d o f i n d i c e s v a r [ var ] , vars [ var ] ) ;

for ( int var = 0 ; var < 3∗Nvars ; var++)
grad dof map . d o f i n d i c e s ( elem , d o f i n d i c e s d v a r [ var ] , dvars [ var ] ) ;

const unsigned int n do f s dvar = d o f i n d i c e s d v a r [ 0 ] . s i z e ( ) ;
f e > r e i n i t ( elem ) ;

// S t i f f n e s s matrix
Ke . r e s i z e ( d o f i n d i c e s . s i z e ( ) , d o f i n d i c e s . s i z e ( ) ) ;
Re . r e s i z e ( d o f i n d i c e s . s i z e ( ) ) ;

for ( int i = 0 ; i < 3∗Nvars ; ++i )
R[ i ] > r e p o s i t i o n ( dvars [ i ]∗ n dof s dvar , n do f s dvar ) ;

for ( int i = 0 ; i < 3∗Nvars ; ++i )
for ( int j = 0 ; j < 3∗Nvars ; ++j )

K[ i ] [ j ] > r e p o s i t i o n ( dvars [ i ]∗ n dof s dvar , dvars [ j ]∗ n dof s dvar ,
n do f s dvar , n do f s dvar ) ;

for ( unsigned int qp = 0 ; qp < qru l e . n po in t s ( ) ; qp++){
vector<Number> dgx ( Nvars ) , dgy ( Nvars ) , dgz ( Nvars ) ;
for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++)

for ( unsigned int var = 0 ; var < Nvars ; var++){

dgx [ var ] += dphi [ i ] [ qp ] ( 0 ) ∗ system . c u r r e n t s o l u t i o n ( d o f i n d i c e s v a r [
var ] [ i ] ) ;

dgy [ var ] += dphi [ i ] [ qp ] ( 1 ) ∗ system . c u r r e n t s o l u t i o n ( d o f i n d i c e s v a r [
var ] [ i ] ) ;

dgz [ var ] += dphi [ i ] [ qp ] ( 2 ) ∗ system . c u r r e n t s o l u t i o n ( d o f i n d i c e s v a r [
var ] [ i ] ) ;

}

for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++)
for ( unsigned int j = 0 ; j < phi . s i z e ( ) ; j++)

for ( int comp = 0 ; comp < 3∗Nvars ; comp++)
K[ comp ] [ comp ] > e l ( i , j ) += JxW[ qp ]∗ phi [ i ] [ qp ]∗ phi [ j ] [ qp ] ;

// Residua l v e c to r
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for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++){
int counter = 0 ;
for ( int comp = 0 ; comp < 3∗Nvars ; comp++){

i f (comp < Nvars ) {

R[ comp ] > e l ( i ) += JxW[ qp ]∗ dgx [ counter ]∗ phi [ i ] [ qp ] ;

} else i f ( ( comp >= Nvars ) && (comp < 2∗Nvars ) ) {

i f (comp == Nvars )
counter = 0 ;

R[ comp ] > e l ( i ) += JxW[ qp ]∗ dgy [ counter ]∗ phi [ i ] [ qp ] ;

} else {

i f (comp == 2∗Nvars )
counter = 0 ;

R[ comp ] > e l ( i ) += JxW[ qp ]∗ dgz [ counter ]∗ phi [ i ] [ qp ] ;
}
counter++;

}
}

}

grad dof map . con s t r a in e l ement mat r i x and vec to r (Ke , Re , d o f i n d i c e s ) ;
gradsys . matrix > add matrix (Ke , d o f i n d i c e s ) ;
gradsys . rhs > add vector (Re , d o f i n d i c e s ) ;

}

return ;

}
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B.2 compute˙RJ.cpp
#include <iostream>
#include <algor ithm>
#include <sstream>
#include <math . h>
#include <armadi l lo>
#include <complex>
#include <u t i l i t y >

#include ” l ibmesh / l ibmesh . h”
#include ” l ibmesh /mesh . h”
#include ” l ibmesh / mesh generat ion . h”
#include ” l ibmesh / e x o d u s I I i o . h”
#include ” l ibmesh / equat ion systems . h”
#include ” l ibmesh / f e . h”
#include ” l ibmesh / quadrature gauss . h”
#include ” l ibmesh /dof map . h”
#include ” l ibmesh / spar s e mat r ix . h”
#include ” l ibmesh / numer ic vector . h”
#include ” l ibmesh / dense matr ix . h”
#include ” l ibmesh / dense vec to r . h”
#include ” l ibmesh / l i n e a r i m p l i c i t s y s t e m . h”
#include ” l ibmesh / n o n l i n e a r i m p l i c i t s y s t e m . h”
#include ” l ibmesh / n o n l i n e a r s o l v e r . h”
#include ” l ibmesh / p e r f l o g . h”
#include ” l ibmesh / boundary in fo . h”
#include ” l ibmesh / u t i l i t y . h”
#include ” l ibmesh / dense submatr ix . h”
#include ” l ibmesh / dense subvector . h”
#include ” l ibmesh /elem . h”
#include ” l ibmesh / v t k i o . h”
#include ” l ibmesh / gn up l o t i o . h”
#include ” l ibmesh / e x o d u s I I i o . h”
#include ” l ibmesh / mat lab io . h”
#include ” l ibmesh / f e i n t e r f a c e . h”
#include ”compute RJ . h”
#include ” jacob ian2 . h”
#include ” r e s i d u a l . h”
#include ”BCS. h”
#include ”MVConverter . h”
#include ” magnet izat ion . h”
#include ”BChandler . h”
#include ” e x t e r n a l f l u x . h”
#include ”wrap . h”
#include ” Connection . h”

using namespace std ;
using namespace arma ;
using namespace l ibMesh ;

extern EquationSystems ∗ eq sy s ;
extern Connection∗ c o n n e c t i v i t y ;

void compute RJ ( const NumericVector<Number>& soln ,
NumericVector<Number>∗ r e s i d u a l ,
SparseMatrix<Number>∗ jacobian ,
Non l inear Impl i c i tSys tem& /∗ sys ∗/ ) {

//Get g l o b a l equat ion system
EquationSystems &es = ∗ eq sy s ;

//Get c o n n e c t i v i t y between domains
Connection &c o n n e c t i v i t y = ∗ c o n n e c t i v i t y ;

//Get mesh and i t s dimension
const MeshBase& mesh = es . get mesh ( ) ;
const unsigned int dim = mesh . mesh dimension ( ) ;

//Get system
Nonl inear Impl i c i tSys tem& usade l sys tem = es . get system<Nonl inear Impl ic i tSystem >(”

Usadel ” ) ;
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//Get parameters
vector<double> parvec = es . parameters . get<vector<double>>(” parvec ” ) ;
vector<Input> parameters = unwrapper ( parvec ) ;
complex<double> E = es . parameters . get<Number>(”E” ) ;

// Define cons tant s f o r convenience
const complex<double> i i ( 0 , 1 ) ;
const int Nvars = usade l sys tem . n vars ( ) ;

//Get boundary c o n d i t i o n s
vector<double> BCstrength = es . parameters . get<vector<Real>>(” BCstrength ” ) ;
vector<double> BCpenalty = es . parameters . get<vector<Real>>(”BCpenalty” ) ;
vector<s t r i ng> BCtype = es . parameters . get<vector<s t r i ng >>(”BCtype” ) ;
vector<int> BCID = es . parameters . get<vector<int>>(”BCID” ) ;
vector<double> BCphase = es . parameters . get<vector<double>>(”BCphase” ) ;

//Wrap BC i n t o a more convenient s t r u c t u r e
int NBC = BCstrength . s i z e ( ) ;
vector<BCinputS> BC(NBC) ;

for ( int j = 0 ; j < NBC; j++){

BC[ j ] . type = BCtype [ j ] ;
BC[ j ] . s t r ength = BCstrength [ j ] ;
BC[ j ] . pena l ty = BCpenalty [ j ] ;
BC[ j ] . ID = BCID[ j ] ;
BC[ j ] . phase = BCphase [ j ] ;

}
//Get v a r i a b l e numbers
vector<unsigned int> vars ;
usade l sys tem . g e t a l l v a r i a b l e n u m b e r s ( vars ) ;
s o r t ( vars . begin ( ) , vars . end ( ) ) ;

// Assign element type and i n t e g r a t i o n r u l e
FEType f e t y p e = usade l sys tem . v a r i a b l e t y p e ( vars [ 0 ] ) ;

AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
QGauss q ru l e (dim , f e t y p e . d e f a u l t q u a d r a t u r e o r d e r ( ) ) ;
f e > a t t a c h q u a d r a t u r e r u l e (& qru l e ) ;

AutoPtr<FEBase> f e f a c e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
QGauss q face ( dim 1 , f e t y p e . d e f a u l t q u a d r a t u r e o r d e r ( ) ) ;
f e f a c e > a t t a c h q u a d r a t u r e r u l e (& qface ) ;

AutoPtr<FEBase> f e n e i g h b o r f a c e (FEBase : : bu i ld (dim , f e t y p e ) ) ;
f e n e i g h b o r f a c e > a t t a c h q u a d r a t u r e r u l e (& qface ) ;

// Define we igh t s ∗ jacobian , shape f u n c t i o n s and p o i n t s
const vector<Real>& JxW = f e > get JxW ( ) ;
const vector<vector<Real>>& phi = f e > g e t p h i ( ) ;
const vector<vector<RealGradient>>& dphi = f e > get dph i ( ) ;
const vector<Point>& q po int = f e > get xyz ( ) ;
const vector<Point>& f a c e p o i n t = f e f a c e > get xyz ( ) ;

// Define r e s i d u a l v ec t o r
DenseVector<Number> Re ;
vector< DenseSubVector<Number>∗ > R;

//Reshape R to a l l ow f o r s e v e r a l v a r i a b l e s
for ( int i = 0 ; i < Nvars ; ++i )

R. push back ( new DenseSubVector<Number>(Re) ) ;

// Define jacob ian matrix
DenseMatrix<Number> Ke ;
vector<vector< DenseSubMatrix<Number>∗ >> K;

//Reshape K to a l l ow f o r s e v e r a l v a r i a b l e s
K. r e s i z e ( Nvars ) ;
for ( int i = 0 ; i < Nvars ; ++i )

for ( int j = 0 ; j < Nvars ; ++j )
K[ i ] . push back ( new DenseSubMatrix<Number>(Ke) ) ;
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//Get DOF map and d e f i n e DOF i n d i c e s
const DofMap& dof map = usade l sys tem . get dof map ( ) ;
vector<do f i d type> d o f i n d i c e s ;
vec to r <vector<do f i d type> > d o f i n d i c e s v a r ( Nvars ) ;
vec to r <vector<do f i d type> > n e i g h b o r d o f i n d i c e s v a r ( Nvars ) ;

// I n i t i a l i z e r e s i d u a l v e c t or to zero
i f ( r e s i d u a l )

r e s i d u a l > zero ( ) ;

//Get l i s t o f boundaries t h a t are connected
vector<int> cID = c o n n e c t i v i t y . g e t connec t i on IDs ( ) ;

// Broadcast s o l u t i o n so t h a t ne ighbor element
// s o l u t i o n s are a v a i l a b l e in p a r a l l e l
vector<Number> l o c a l i z e d s o l u t i o n ;
s o ln . l o c a l i z e ( l o c a l i z e d s o l u t i o n ) ;

//Get element i t e r a t o r s
MeshBase : : c o n s t e l e m e n t i t e r a t o r e l = mesh . a c t i v e l o c a l e l e m e n t s b e g i n ( ) ;
const MeshBase : : c o n s t e l e m e n t i t e r a t o r end e l = mesh . a c t i v e l o c a l e l e m e n t s e n d ( ) ;

for ( ; e l != end e l ; ++e l ) {

//Get handle f o r current element
const Elem∗ elem = ∗ e l ;
int s i d = elem > subdomain id ( ) ;

double Lx = parameters [ s i d ] . d imensions [ 0 ] ;
double Ly = parameters [ s i d ] . d imensions [ 1 ] ;
double Lz = parameters [ s i d ] . d imensions [ 2 ] ;
vector<double> f l u x = parameters [ s i d ] . e x t f l u x ;
vector<double> h = parameters [ s i d ] . magnet izat ion ;

double Eth = 1 ./ Lx/Lx ;
// Assign i n d i c e s to DOFs of current element
dof map . d o f i n d i c e s ( elem , d o f i n d i c e s ) ;

// Assign DOF i n d i c e s b e l ong ing to each i n d i v i d u a l v a r i a b l e
for ( int var = 0 ; var < Nvars ; var++)

dof map . d o f i n d i c e s ( elem , d o f i n d i c e s v a r [ var ] , vars [ var ] ) ;

// Define number o f DOFs f o r convenience
const unsigned int n do f s = d o f i n d i c e s . s i z e ( ) ;
const unsigned int n d o f s v a r = d o f i n d i c e s v a r [ 0 ] . s i z e ( ) ;

//Compute element s p e c i f i c data f o r current element
f e > r e i n i t ( elem ) ;

// Resize jacob ian and r e s i d u a l
Re . r e s i z e ( n do f s ) ;
Ke . r e s i z e ( n dofs , n do f s ) ;

//Move v a r i a b l e v e c t o r s / matr ices to appropr ia te p o s i t i o n s
// in the g l o b a l matrix system
for ( int i = 0 ; i < Nvars ; ++i )

R[ i ] > r e p o s i t i o n ( vars [ i ]∗ n do f s var , n d o f s v a r ) ;

for ( int i = 0 ; i < Nvars ; ++i )
for ( int j = 0 ; j < Nvars ; ++j )

K[ i ] [ j ] > r e p o s i t i o n ( vars [ i ]∗ n do f s var , vars [ j ]∗ n do f s var , n do f s var ,
n d o f s v a r ) ;

//Loop over i n t e g r a t i o n p o i n t s
for ( unsigned int qp = 0 ; qp < qru l e . n po in t s ( ) ; qp++){

// Define v e c t o r s to ho ld s o l u t i o n and i t s d e r i v a t i v e
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vector<Number> s o l u t i o n ( Nvars ) ;
vector<Gradient> d s o l u t i o n ( Nvars ) ;

//Get coord ina te s o f g iven i n t e g r a t i o n po in t
const Real x = q po int [ qp ] ( 0 ) ;
const Real y = q po int [ qp ] ( 1 ) ;

//Get s o l u t i o n and d e r i v a t i v e in i n t e g r a t i o n po in t
for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++)

for ( unsigned int v = 0 ; v < Nvars ; v++){

s o l u t i o n [ v ] += phi [ i ] [ qp ]∗ s o ln ( d o f i n d i c e s v a r [ v ] [ i ] ) ;
d s o l u t i o n [ v ] . add sca l ed ( dphi [ i ] [ qp ] , s o ln ( d o f i n d i c e s v a r [ v ] [ i ] ) ) ;

}

// Define arma v e c t o r s to ho ld s o l u t i o n
cx vec gvec ( Nvars ) , dgvec x ( Nvars ) , dgvec y ( Nvars ) , dgvec z ( Nvars ) ;

// Transfer s o l u t i o n and d e r i v a t i v e s
for ( int v = 0 ; v < Nvars ; v++){

gvec ( v ) = s o l u t i o n [ v ] ;
dgvec x ( v ) = d s o l u t i o n [ v ] ( 0 ) ;
dgvec y ( v ) = d s o l u t i o n [ v ] ( 1 ) ;
dgvec z ( v ) = d s o l u t i o n [ v ] ( 2 ) ;

}

//Compute r e s i d u a l and jacob ian
cx vec Res = zeros<cx vec>(Nvars ) ;
cx mat Jac = zeros<cx mat>(Nvars , Nvars ) ;

i f ( r e s i d u a l )
Res = RC( gvec , dgvec x , dgvec y , dgvec z , E, Lx , Ly , Lz , f lux , h , x , y ) ;

i f ( j acob ian ) {
Jac = JC( gvec , dgvec x , dgvec y , dgvec z , E, Lx , Ly , Lz , f lux , h , x , y ) ;

}
Real v , p ;
RealGradient dv , dp ;
for ( unsigned int i = 0 ; i < phi . s i z e ( ) ; i++){

// Define shape f u n c t i o n s i
v = phi [ i ] [ qp ] ;
dv = dphi [ i ] [ qp ] ;

// Generate r e s i d u a l v e c t o r
i f ( r e s i d u a l )

for ( unsigned int vars = 0 ; vars < Nvars ; vars++){

R[ vars ] > e l ( i ) += JxW[ qp ] ∗ ( dgvec x [ vars ]∗ dv (0 )
(Lx/Ly) ∗(Lx/Ly) ∗dgvec y [ vars ]∗ dv (1 )
(Lx/Lz ) ∗(Lx/Lz ) ∗dgvec z [ vars ]∗ dv (2 )

+ ( Res [ vars ] + 2 .∗ i i ∗(E/Eth ) ∗gvec [ vars ] ) ∗v ) ;
}

i f ( j acob ian )
for ( unsigned int j = 0 ; j < phi . s i z e ( ) ; j++){

// Define shape f u n c t i o n s j
p = phi [ j ] [ qp ] ;
dp = dphi [ j ] [ qp ] ;

//Compute l i n e a r c o n t r i b u t i o n to jacob ian
Number Kel = dp (0) ∗dv (0 ) (Lx/Ly) ∗(Lx/Ly) ∗dp (1) ∗dv (1 ) (Lx/Lz )

∗(Lx/Lz ) ∗dp (2) ∗dv (2 )
+ 2 .∗ i i ∗(E/Eth ) ∗v∗p ;

// I n s e r t l i n e a r c o n t r i b u t i o n i n t o jacob ian matrix
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for ( int comp = 0 ; comp < Nvars ; comp++)
K[ comp ] [ comp ] > e l ( i , j ) += JxW[ qp ]∗Kel ;

// I n s e r t non l inear c o n t r i b u t i o n i n t o jacob ian matrix
for ( int wrt = 0 ; wrt < Nvars ; wrt++)

for ( int comp = 0 ; comp < Nvars ; comp++)
K[ comp ] [ wrt ] > e l ( i , j ) += JxW[ qp ]∗ Jac (comp , wrt ) ∗v∗p ;

}
}

//End of sum over qp
}

//Compute boundary c o n d i t i o n s
for ( unsigned int s = 0 ; s < elem > n s i d e s ( ) ; s++)

i f ( elem > neighbor ( s ) == NULL) {

//Get data from boundary s i d e
AutoPtr<Elem> s i d e ( elem > b u i l d s i d e ( s ) ) ;

//Get shape func t ions , weight and normals on s u r f a c e
const vector<Real>& JxW face = f e f a c e > get JxW ( ) ;
const vector<vector<Real>>& p h i f a c e = f e f a c e > g e t p h i ( ) ;
const vector<vector<RealGradient>>& d p h i f a c e = f e f a c e > get dph i ( ) ;
const vector<Point>& normals = f e f a c e > get normals ( ) ;
const vector<vector<Real>>& p h i n e i g h b o r f a c e = f e n e i g h b o r f a c e >

g e t p h i ( ) ;

//Update element data
f e f a c e > r e i n i t ( elem , s ) ;

//Get boundary IDs
int bc id = mesh . boundary in fo > boundary id ( elem , s ) ;

i f ( f i n d ( cID . begin ( ) , cID . end ( ) , bc id ) != cID . end ( ) ) {

//Get neighbor element on other s i d e o f boundary
d o f i d t y p e ne ighbor e lem ID = c o n n e c t i v i t y . ge t ne ighbor e l ement ID (

elem > id ( ) ) ;
const Elem∗ ne ighbor e lem = mesh . elem ( ne ighbor e lem ID ) ;

//Get neighbor element data on l o c a t i o n s matching i n t e g r a t i o n po in t
o f current element

vector<Point> q f a c e n e i g h b o r p o i n t s ;
FEInter face : : inverse map ( elem > dim ( ) , f e > g e t f e t y p e ( ) ,

ne ighbor e lem , f a c e p o i n t , q f a c e n e i g h b o r p o i n t s ) ;
f e n e i g h b o r f a c e > r e i n i t ( neighbor e lem , &q f a c e n e i g h b o r p o i n t s ) ;

for ( int var = 0 ; var < Nvars ; var++)
dof map . d o f i n d i c e s ( ne ighbor e lem , n e i g h b o r d o f i n d i c e s v a r [ var ] ,

vars [ var ] ) ;

}

for ( unsigned int qp = 0 ; qp < q face . n po in t s ( ) ; qp++){

//Get s u r f a c e p o s i t i o n s
const Real x = f a c e p o i n t [ qp ] ( 0 ) ;
const Real y = f a c e p o i n t [ qp ] ( 1 ) ;

//Get s o l u t i o n at s u r f a c and at neighbor s u r f a c e i f connectede
cx vec s o l u t i o n ( Nvars ) , n e i g h b o r s o l u t i o n ( Nvars ) ;

for ( unsigned int i = 0 ; i < p h i f a c e . s i z e ( ) ; i++)
for ( int vars = 0 ; vars < Nvars ; vars++){

s o l u t i o n ( vars ) += p h i f a c e [ i ] [ qp ]∗ s o ln ( d o f i n d i c e s v a r [ vars ] [
i ] ) ;

i f ( f i n d ( cID . begin ( ) , cID . end ( ) , bc id ) != cID . end ( ) )
n e i g h b o r s o l u t i o n ( vars ) += p h i n e i g h b o r f a c e [ i ] [ qp ]∗

l o c a l i z e d s o l u t i o n [ n e i g h b o r d o f i n d i c e s v a r [ vars ] [ i
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] ] ;

}
//Get gamma matr ices
cx mat g = v to m ( s o l u t i o n ) ;
cx mat gt = v to mt ( s o l u t i o n ) ;
cx mat gout , gtout ;

i f ( f i n d ( cID . begin ( ) , cID . end ( ) , bc id ) != cID . end ( ) ) {

gout = v to m ( n e i g h b o r s o l u t i o n ) ;
gtout = v to mt ( n e i g h b o r s o l u t i o n ) ;

}

//Loop over shape f u n c t i o n s and BCIDs , i n s e r t i n t o r e s i d u a l
i f ( r e s i d u a l )

for ( unsigned int i = 0 ; i < p h i f a c e . s i z e ( ) ; i++)
for ( int i b c = 0 ; ibc < NBC; ibc++)

i f ( bc id == BC[ ibc ] . ID) {

//Get BC va lue
cx vec value = BChandler (BC[ ibc ] , g , gt , E, f lux , x ,

y , normals [ qp ] , gout , gtout ) ;

for ( int comp = 0 ; comp < Nvars ; comp++)
R[ comp ] > e l ( i ) += JxW face [ qp ]∗BC[ ibc ] . pena l ty ∗

value (comp) ∗ p h i f a c e [ i ] [ qp ] ;
}

//Loop over shape f u n c t i o n s and BCIDs , i n s e r t i n t o jacob ian
i f ( j acob ian )

for ( unsigned int i = 0 ; i < p h i f a c e . s i z e ( ) ; i++)
for ( unsigned int j = 0 ; j < p h i f a c e . s i z e ( ) ; j++)

for ( int i b c = 0 ; ibc < NBC; ibc++)
i f ( bc id == BC[ ibc ] . ID)

for ( int wrt = 0 ; wrt < Nvars ; wrt++){

cx vec KBC = JBC( wrt , BC[ ibc ] , g , gt , E, f lux
, x , y , normals [ qp ] , gout , gtout ) ;

for ( int comp = 0 ; comp < Nvars ; comp++)
K[ comp ] [ wrt ] > e l ( i , j ) += JxW face [ qp ]∗

BC[ ibc ] . pena l ty ∗KBC(comp) ∗ p h i f a c e [ i
] [ qp ]∗ p h i f a c e [ j ] [ qp ] ;

}

}//End sum over qp

}//End sum over element s i d e s

//Add jacob ian and r e s i d u a l i n t o g l o b a l matrix system
i f ( r e s i d u a l ) {

dof map . c o n s t r a i n e l e m e n t v e c t o r (Re , d o f i n d i c e s ) ;
r e s i d u a l > add vector (Re , d o f i n d i c e s ) ;

}

i f ( j acob ian ) {

dof map . cons t ra in e l ement mat r i x (Ke , d o f i n d i c e s ) ;
j a cob ian > add matrix (Ke , d o f i n d i c e s , d o f i n d i c e s ) ;

}

}

return ;
}
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B.3 jacobian2.cpp
#include ” jacob ian2 . h”
#include ” magnet izat ion . h”
#include ” e x t e r n a l f l u x . h”
#include ”MVConverter . h”

cx mat JC( cx vec gvec , cx vec dgvec x , cx vec dgvec y , cx vec dgvec z , complex<double> E,
double Lx , double Ly , double Lz , vector<double> f lux , vector<double> h , double x ,

double y ) {

//Compute Thouless energy
double Eth = 1 ./ Lx/Lx ;

// Prepare jac ob ian s
cx mat J , Jt ;
cx mat J main , Jt main ;
cx mat J A = zeros<cx mat>(2 ,2) ;
cx mat Jt A = zeros<cx mat>(2 ,2) ;
cx mat J H = zeros<cx mat>(2 ,2) ;
cx mat Jt H = zeros<cx mat>(2 ,2) ;
cx mat Jac (8 , 8 ) ;

// Prepare matr ices i n v o l v e d with d i f f e r e n t i a t i o n
cx mat M(2 ,2 ) , Mt(2 , 2 ) , M t (2 , 2 ) , Mt t (2 , 2 ) ;
mat Lm(2 ,2 ) ;

// Create gamma matr ices and t h e i r d e r i v a t i v e s
cx mat g = v to m ( gvec ) ;
cx mat gt = v to mt ( gvec ) ;
cx mat dg x = v to m ( dgvec x ) ;
cx mat dg y = v to m ( dgvec y ) ;
cx mat dg z = v to m ( dgvec z ) ;
cx mat dgt x = v to mt ( dgvec x ) ;
cx mat dgt y = v to mt ( dgvec y ) ;
cx mat dgt z = v to mt ( dgvec z ) ;

// Create s matr ices
mat sx , sz ; cx mat sy ;
complex<double> i i ( 0 , 1 ) ;

sx << 0 << 1 << endr
<< 1 << 0 << endr ;

sy << 0 << i i << endr
<< i i << 0 << endr ;

sz << 1 << 0 << endr
<< 0 << 1 << endr ;

// Create N and Nt and i t s determinant
mat I (2 , 2 ) ; I . eye ( ) ;

cx mat Ninv = I g∗ gt ;
cx mat N = inv ( Ninv ) ;

cx mat Ntinv = I gt ∗g ;
cx mat Nt = inv ( Ntinv ) ;

complex<double> D = det ( Ninv ) ;

//Compute e x t e r n a l f l u x
cx mat Ax, Ay, Az , A2 ;
SOC A = e x t e r n a l f l u x ( f lux , x , y ) ;
Ax = A. x ;
Ay = A. y ;
Az = A. z ;
A2 = Ax∗Ax + Ay∗Ay + Az∗Az ;
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//Compute magnet i za t ion
vector<double> H = magnet izat ion (h , x , y ) ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// D i f f e r e n t i a t i o n wrt gamma
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

for ( int wrt = 0 ; wrt < 8 ; wrt++){

MatrixCompute(&M, &Mt, &M t , &Mt t , &Lm, g , gt , wrt ) ;
complex<double> dD = dDCompute( g , gt , wrt ) ;

i f ( wrt < 4) {

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
// D i f f e r e n t i a t i o n wrt gamma //
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

//Main c o n t r i b u t i o n
J main = 2 .∗ dg x ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗ gt ∗dg x

+ 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dg y ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗ gt ∗dg y
+ 2 .∗ ( Lx/Lz ) ∗(Lx/Lz ) ∗dg z ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗ gt ∗dg z ;

Jt main = 2 .∗ dgt x ∗ ( ( 1 . /D) ∗(M dD∗N) ∗g + N∗Lm) ∗dgt x
+ 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dgt y ∗ ( ( 1 . /D) ∗(M dD∗N) ∗g + N∗Lm) ∗dgt y ;
+ 2 .∗ ( Lx/Lz ) ∗(Lx/Lz ) ∗ dgt z ∗ ( ( 1 . /D) ∗(M dD∗N) ∗g + N∗Lm) ∗ dgt z ;

// Contr ibut ion from e x t e r n a l f l u x and SOC
J A = 2 . ∗ i i ∗(Lm∗ conj (Ax) ∗ gt ∗N∗dg x + (Ax + g∗ conj (Ax) ∗ gt ) ∗ ( 1 . /D) ∗(M dD∗N)

∗dg x + dg x ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Ax) + gt ∗Ax∗g ) + dg x∗Nt∗ gt ∗Ax∗Lm)
2 . ∗ i i ∗(Lm∗ conj (Ay) ∗ gt ∗N∗dg y + (Ay + g∗ conj (Ay) ∗ gt ) ∗ ( 1 . /D) ∗(M dD∗N)
∗dg y + dg y ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Ay) + gt ∗Ay∗g ) + dg y∗Nt∗ gt
∗Ay∗Lm)

2 . ∗ i i ∗(Lm∗ conj (Az) ∗ gt ∗N∗dg z + (Az + g∗ conj (Az) ∗ gt ) ∗ ( 1 . /D) ∗(M dD∗N)
∗dg z + dg z ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Az) + gt ∗Az∗g ) + dg z ∗Nt∗ gt
∗Az∗Lm)

2 . ∗ ( (Ax∗Lm + Lm∗ conj (Ax) ) ∗Nt∗( conj (Ax) + gt ∗Ax∗g ) + (Ax∗g + g∗ conj (
Ax) ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Ax) + gt ∗Ax∗g ) + (Ax∗g+g∗ conj (Ax) ) ∗
Nt∗ gt ∗Ax∗Lm)

2 . ∗ ( (Ay∗Lm + Lm∗ conj (Ay) ) ∗Nt∗( conj (Ay) + gt ∗Ay∗g ) + (Ay∗g + g∗ conj (
Ay) ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Ay) + gt ∗Ay∗g ) + (Ay∗g+g∗ conj (Ay) ) ∗
Nt∗ gt ∗Ay∗Lm)

2 . ∗ ( (Az∗Lm + Lm∗ conj (Az) ) ∗Nt∗( conj (Az) + gt ∗Az∗g ) + (Az∗g + g∗ conj (
Az) ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗( conj (Az) + gt ∗Az∗g ) + (Az∗g+g∗ conj (Az) ) ∗
Nt∗ gt ∗Az∗Lm)

A2∗Lm + Lm∗ conj (A2) ;

Jt A = 2 .∗ i i ∗( gt ∗Ax∗Lm∗Nt∗dgt x + ( conj (Ax) + gt ∗Ax∗g ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗
dgt x + dgt x ∗ ( 1 . /D) ∗(M dD∗N) ∗(Ax + g∗ conj (Ax) ∗ gt ) + dgt x ∗N∗Lm∗ conj (Ax
) ∗ gt )

+2.∗ i i ∗( gt ∗Ay∗Lm∗Nt∗dgt y + ( conj (Ay) + gt ∗Ay∗g ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗
dgt y + dgt y ∗ ( 1 . /D) ∗(M dD∗N) ∗(Ay + g∗ conj (Ay) ∗ gt ) + dgt y ∗N∗Lm∗
conj (Ay) ∗ gt )

+2.∗ i i ∗( gt ∗Az∗Lm∗Nt∗ dgt z + ( conj (Az) + gt ∗Az∗g ) ∗ ( 1 . /D) ∗(Mt dD∗Nt) ∗
dgt z + dgt z ∗ ( 1 . /D) ∗(M dD∗N) ∗(Az + g∗ conj (Az) ∗ gt ) + dgt z ∗N∗Lm∗
conj (Az) ∗ gt )

2 . ∗ ( conj (Ax) ∗ gt + gt ∗Ax) ∗ ( ( 1 . /D) ∗(M dD∗N) ∗(Ax + g∗ conj (Ax) ∗ gt ) + N∗
Lm∗ conj (Ax) ∗ gt )

2 . ∗ ( conj (Ay) ∗ gt + gt ∗Ay) ∗ ( ( 1 . /D) ∗(M dD∗N) ∗(Ay + g∗ conj (Ay) ∗ gt ) + N∗
Lm∗ conj (Ay) ∗ gt )

2 . ∗ ( conj (Az) ∗ gt + gt ∗Az) ∗ ( ( 1 . /D) ∗(M dD∗N) ∗(Az + g∗ conj (Az) ∗ gt ) + N∗
Lm∗ conj (Az) ∗ gt ) ;

// Contr ibut ion from magnet i za t ion
J H = i i ∗(H[ 0 ] ∗ ( sx∗Lm Lm∗ sx ) + H[ 1 ] ∗ ( sy∗Lm Lm∗ conj ( sy ) ) + H[ 2 ] ∗ ( sz ∗Lm

Lm∗ sz ) ) /Eth ;

} else {

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
// D i f f e r e n t i a t i o n wrt gamma ti lde //
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// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//

//Main c o n t r i b u t i o n
J main = 2 .∗ dg x ∗( ( 1 . /D) ∗ ( Mt t dD∗Nt) ∗ gt + Nt∗Lm ) ∗dg x

+ 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dg y ∗( ( 1 . /D) ∗ ( Mt t dD∗Nt) ∗ gt + Nt∗Lm ) ∗dg y
+ 2 .∗ ( Lx/Lz ) ∗(Lx/Lz ) ∗dg z ∗( ( 1 . /D) ∗ ( Mt t dD∗Nt) ∗ gt + Nt∗Lm ) ∗dg z

;

Jt main = 2 .∗ dgt x ∗ ( 1 . /D) ∗(M t dD∗N) ∗g∗dgt x
+ 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dgt y ∗ ( 1 . /D) ∗(M t dD∗N) ∗g∗dgt y
+ 2 .∗ ( Lx/Lz ) ∗(Lx/Lz ) ∗ dgt z ∗ ( 1 . /D) ∗(M t dD∗N) ∗g∗ dgt z ;

// Contr ibut ion from e x t e r n a l f l u x and SOC
J A = 2 . ∗ i i ∗( g∗ conj (Ax) ∗Lm∗N∗dg x + (Ax + g∗ conj (Ax) ∗ gt ) ∗ ( 1 . /D) ∗(M t dD∗N

) ∗dg x + dg x ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Ax) + gt ∗Ax∗g ) + dg x∗Nt∗Lm∗Ax∗
g )

2 . ∗ i i ∗( g∗ conj (Ay) ∗Lm∗N∗dg y + (Ay + g∗ conj (Ay) ∗ gt ) ∗ ( 1 . /D) ∗(M t dD∗N
) ∗dg y + dg y ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Ay) + gt ∗Ay∗g ) + dg y∗Nt
∗Lm∗Ay∗g )

2 . ∗ i i ∗( g∗ conj (Az) ∗Lm∗N∗dg z + (Az + g∗ conj (Az) ∗ gt ) ∗ ( 1 . /D) ∗(M t dD∗N
) ∗dg z + dg z ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Az) + gt ∗Az∗g ) + dg z ∗Nt
∗Lm∗Az∗g )

2 . ∗ ( Ax∗g+g∗ conj (Ax) ) ∗( ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Ax) + gt ∗Ax∗g ) +Nt
∗Lm∗Ax∗g )

2 . ∗ ( Ay∗g+g∗ conj (Ay) ) ∗( ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Ay) + gt ∗Ay∗g ) +Nt
∗Lm∗Ay∗g )

2 . ∗ ( Az∗g+g∗ conj (Az) ) ∗( ( 1 . /D) ∗( Mt t dD∗Nt) ∗( conj (Az) + gt ∗Az∗g ) +Nt
∗Lm∗Az∗g ) ;

Jt A = 2 .∗ i i ∗(Lm∗Ax∗g∗Nt∗dgt x + ( conj (Ax) + gt ∗Ax∗g ) ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗
dgt x + dgt x ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Ax + g∗ conj (Ax) ∗ gt ) + dgt x ∗N∗g∗ conj (
Ax) ∗Lm)

+2.∗ i i ∗(Lm∗Ay∗g∗Nt∗dgt y + ( conj (Ay) + gt ∗Ay∗g ) ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗
dgt y + dgt y ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Ay + g∗ conj (Ay) ∗ gt ) + dgt y ∗N∗g∗
conj (Ay) ∗Lm)

+2.∗ i i ∗(Lm∗Az∗g∗Nt∗ dgt z + ( conj (Az) + gt ∗Az∗g ) ∗ ( 1 . /D) ∗( Mt t dD∗Nt) ∗
dgt z + dgt z ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Az + g∗ conj (Az) ∗ gt ) + dgt z ∗N∗g∗
conj (Az) ∗Lm)

2 . ∗ ( ( conj (Ax) ∗Lm + Lm∗Ax) ∗N∗(Ax + g∗ conj (Ax) ∗ gt ) + ( conj (Ax) ∗ gt + gt ∗
Ax) ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Ax + g∗ conj (Ax) ∗ gt ) + ( conj (Ax) ∗ gt + gt ∗Ax
) ∗N∗g∗ conj (Ax) ∗Lm)

2 . ∗ ( ( conj (Ay) ∗Lm + Lm∗Ay) ∗N∗(Ay + g∗ conj (Ay) ∗ gt ) + ( conj (Ay) ∗ gt + gt ∗
Ay) ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Ay + g∗ conj (Ay) ∗ gt ) + ( conj (Ay) ∗ gt + gt ∗Ay
) ∗N∗g∗ conj (Ay) ∗Lm)

2 . ∗ ( ( conj (Az) ∗Lm + Lm∗Az) ∗N∗(Az + g∗ conj (Az) ∗ gt ) + ( conj (Az) ∗ gt + gt ∗
Az) ∗ ( 1 . /D) ∗(M t dD∗N) ∗(Az + g∗ conj (Az) ∗ gt ) + ( conj (Az) ∗ gt + gt ∗Az
) ∗N∗g∗ conj (Az) ∗Lm)

conj (A2) ∗Lm + Lm∗A2 ;

// Contr ibut ion from magnet i za t ion
Jt H = i i ∗(H[ 0 ] ∗ ( sx∗Lm Lm∗ sx ) + H[ 1 ] ∗ ( conj ( sy ) ∗Lm Lm∗ sy ) + H[ 2 ] ∗ ( sz ∗Lm

Lm∗ sz ) ) /Eth ;

}

// Addit ion o f c o n t r i b u t i o n to jacob ian
J = J main + J A + J H ;
Jt = Jt main + Jt A + Jt H ;

//Reshape i n t o column wrt
cx vec Jwrt = m to v ( J ) ;
cx vec Jtwrt = m to v ( Jt ) ;

Jac ( span (0 , 3 ) , wrt ) = Jwrt ;
Jac ( span (4 , 7 ) , wrt ) = Jtwrt ;

}

return Jac ;

}
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void MatrixCompute ( cx mat∗ M, cx mat∗ Mt, cx mat∗ M t , cx mat∗ Mt t , mat∗ Lm, cx mat g ,
cx mat gt , int index ) {

i f ( ( index == 0) | | ( index == 4) ) {

Lm > at (0 , 0 ) = 1 ; Lm > at (0 , 1 ) = 0 ;
Lm > at (1 , 0 ) = 0 ; Lm > at (1 , 1 ) = 0 ;

} else i f ( ( index == 1) | | ( index == 5) ) {

Lm > at (0 , 0 ) = 0 ; Lm > at (0 , 1 ) = 1 ;
Lm > at (1 , 0 ) = 0 ; Lm > at (1 , 1 ) = 0 ;

} else i f ( ( index == 2) | | ( index == 6) ) {

Lm > at (0 , 0 ) = 0 ; Lm > at (0 , 1 ) = 0 ;
Lm > at (1 , 0 ) = 1 ; Lm > at (1 , 1 ) = 0 ;

} else i f ( ( index == 3) | | ( index == 7) ) {

Lm > at (0 , 0 ) = 0 ; Lm > at (0 , 1 ) = 0 ;
Lm > at (1 , 0 ) = 0 ; Lm > at (1 , 1 ) = 1 ;

}

i f ( index == 0) {

Mt > at (0 , 0 ) = 0 ; Mt > at (0 , 1 ) = 0 ;
Mt > at (1 , 0 ) = gt (1 , 0 ) ; Mt > at (1 , 1 ) = gt (0 , 0 ) ;

M > at (0 , 0 ) = 0 ; M > at (0 , 1 ) = gt (0 , 1 ) ;
M > at (1 , 0 ) = 0 ; M > at (1 , 1 ) = gt (0 , 0 ) ;

} else i f ( index == 1) {

Mt > at (0 , 0 ) = gt (1 , 0 ) ; Mt > at (0 , 1 ) = gt (0 , 0 ) ;
Mt > at (1 , 0 ) = 0 ; Mt > at (1 , 1 ) = 0 ;

M > at (0 , 0 ) = 0 ; M > at (0 , 1 ) = gt (1 , 1 ) ;
M > at (1 , 0 ) = 0 ; M > at (1 , 1 ) = gt (1 , 0 ) ;

} else i f ( index == 2) {

Mt > at (0 , 0 ) = 0 ; Mt > at (0 , 1 ) = 0 ;
Mt > at (1 , 0 ) = gt (1 , 1 ) ; Mt > at (1 , 1 ) = gt (0 , 1 ) ;

M > at (0 , 0 ) = gt (0 , 1 ) ; M > at (0 , 1 ) = 0 ;
M > at (1 , 0 ) = gt (0 , 0 ) ; M > at (1 , 1 ) = 0 ;
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} else i f ( index == 3) {

Mt > at (0 , 0 ) = gt (1 , 1 ) ; Mt > at (0 , 1 ) = gt (0 , 1 ) ;
Mt > at (1 , 0 ) = 0 ; Mt > at (1 , 1 ) = 0 ;

M > at (0 , 0 ) = gt (1 , 1 ) ; M > at (0 , 1 ) = 0 ;
M > at (1 , 0 ) = gt (1 , 0 ) ; M > at (1 , 1 ) = 0 ;

} else i f ( index == 4) {

Mt t > at (0 , 0 ) = 0 ; Mt t > at (0 , 1 ) = g (0 , 1 ) ;
Mt t > at (1 , 0 ) = 0 ; Mt t > at (1 , 1 ) = g (0 , 0 ) ;

M t > at (0 , 0 ) = 0 ; M t > at (0 , 1 ) = 0 ;
M t > at (1 , 0 ) = g (1 , 0 ) ; M t > at (1 , 1 ) = g (0 , 0 ) ;

} else i f ( index == 5) {

Mt t > at (0 , 0 ) = 0 ; Mt t > at (0 , 1 ) = g (1 , 1 ) ;
Mt t > at (1 , 0 ) = 0 ; Mt t > at (1 , 1 ) = g (1 , 0 ) ;

M t > at (0 , 0 ) = g (1 , 0 ) ; M t > at (0 , 1 ) = g (0 , 0 ) ;
M t > at (1 , 0 ) = 0 ; M t > at (1 , 1 ) = 0 ;

} else i f ( index == 6) {

Mt t > at (0 , 0 ) = g (0 , 1 ) ; Mt t > at (0 , 1 ) = 0 ;
Mt t > at (1 , 0 ) = g (0 , 0 ) ; Mt t > at (1 , 1 ) = 0 ;

M t > at (0 , 0 ) = 0 ; M t > at (0 , 1 ) = 0 ;
M t > at (1 , 0 ) = g (1 , 1 ) ; M t > at (1 , 1 ) = g (0 , 1 ) ;

} else i f ( index == 7) {

Mt t > at (0 , 0 ) = g (1 , 1 ) ; Mt t > at (0 , 1 ) = 0 ;
Mt t > at (1 , 0 ) = g (1 , 0 ) ; Mt t > at (1 , 1 ) = 0 ;

M t > at (0 , 0 ) = g (1 , 1 ) ; M t > at (0 , 1 ) = g (0 , 1 ) ;
M t > at (1 , 0 ) = 0 ; M t > at (1 , 1 ) = 0 ;

}

}

complex<double> dDCompute( cx mat g , cx mat gt , int index ) {

complex<double> dD;

i f ( index == 0) {

dD = g (1 , 1 ) ∗ gt (0 , 0 ) ∗ gt (1 , 1 ) gt (0 , 0 ) g (1 , 1 ) ∗ gt (0 , 1 ) ∗ gt (1 , 0 ) ;

} else i f ( index == 1) {

dD = g (1 , 0 ) ∗ gt (0 , 1 ) ∗ gt (1 , 0 ) gt (1 , 0 ) g (1 , 0 ) ∗ gt (0 , 0 ) ∗ gt (1 , 1 ) ;

} else i f ( index == 2) {

dD = g (0 , 1 ) ∗ gt (0 , 1 ) ∗ gt (1 , 0 ) g (0 , 1 ) ∗ gt (0 , 0 ) ∗ gt (1 , 1 ) gt (0 , 1 ) ;

} else i f ( index == 3) {
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dD = g (0 , 0 ) ∗ gt (0 , 0 ) ∗ gt (1 , 1 ) gt (1 , 1 ) g (0 , 0 ) ∗ gt (0 , 1 ) ∗ gt (1 , 0 ) ;

} else i f ( index == 4) {

dD = g (0 , 0 ) ∗g (1 , 1 ) ∗ gt (1 , 1 ) g (0 , 0 ) g (0 , 1 ) ∗g (1 , 0 ) ∗ gt (1 , 1 ) ;

} else i f ( index == 5) {

dD = g (1 , 0 ) g (0 , 0 ) ∗g (1 , 1 ) ∗ gt (1 , 0 ) + g (0 , 1 ) ∗g (1 , 0 ) ∗ gt (0 , 1 ) ;

} else i f ( index == 6) {

dD = g (0 , 1 ) g (0 , 0 ) ∗g (1 , 1 ) ∗ gt (0 , 1 ) + g (0 , 1 ) ∗g (1 , 0 ) ∗ gt (0 , 1 ) ;

} else i f ( index == 7) {

dD = g (0 , 0 ) ∗g (1 , 1 ) ∗ gt (0 , 0 ) g (1 , 1 ) g (0 , 1 ) ∗g (1 , 0 ) ∗ gt (0 , 0 ) ;

}

return dD;

}
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B.4 residual.cpp
#include <armadi l lo>
#include ” r e s i d u a l . h”
#include ”MVConverter . h”
#include ” e x t e r n a l f l u x . h”
#include ” magnet izat ion . h”

using namespace arma ;
using namespace std ;

cx vec RC( cx vec gvec , cx vec dgvec x , cx vec dgvec y , cx vec dgvec z , complex<double> E,
double Lx , double Ly , double Lz , vector<double> f lux , vector<double> h , double x ,

double y ) {

//Compute Thouless energy
double Eth = 1 ./ Lx/Lx ;

// Create gamma matr ices and t h e i r d e r i v a t i v e s
cx mat g = v to m ( gvec ) ;
cx mat gt = v to mt ( gvec ) ;
cx mat dg x = v to m ( dgvec x ) ;
cx mat dg y = v to m ( dgvec y ) ;
cx mat dg z = v to m ( dgvec z ) ;
cx mat dgt x = v to mt ( dgvec x ) ;
cx mat dgt y = v to mt ( dgvec y ) ;
cx mat dgt z = v to mt ( dgvec z ) ;

// Create sigma matr ices
mat sx , sz ; cx mat sy ;
complex<double> i i ( 0 , 1 ) ;

sx << 0 << 1 << endr
<< 1 << 0 << endr ;

sy << 0 << i i << endr
<< i i << 0 << endr ;

sz << 1 << 0 << endr
<< 0 << 1 << endr ;

// Create N and Nt
mat I (2 , 2 ) ; I . eye ( ) ;

cx mat Ninv = I g∗ gt ;
cx mat N = inv ( Ninv ) ;

cx mat Ntinv = I gt ∗g ;
cx mat Nt = inv ( Ntinv ) ;

//Compute e x t e r n a l f l u x
cx mat Ax, Ay, Az , A2 ;
SOC A = e x t e r n a l f l u x ( f lux , x , y ) ;
Ax = A. x ;
Ay = A. y ;
Az = A. z ;
A2 = Ax∗Ax + Ay∗Ay + Az∗Az ;

//Compute magnet i za t ion
vector<double> H = magnet izat ion (h , x , y ) ;

//Compute main c o n t r i b u t i o n from the Usadel equat ion
cx mat K main = 2 .∗ dg x∗Nt∗ gt ∗dg x + 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dg y∗Nt∗ gt ∗dg y + 2 .∗ ( Lx/Lz )

∗(Lx/Lz ) ∗dg z ∗Nt∗ gt ∗dg z ;
cx mat Kt main = 2 .∗ dgt x ∗N∗g∗dgt x + 2 .∗ ( Lx/Ly) ∗(Lx/Ly) ∗dgt y ∗N∗g∗dgt y + 2 .∗ ( Lx/Lz )

∗(Lx/Lz ) ∗ dgt z ∗N∗g∗ dgt z ;

//Compute c o n t r i b u t i o n from e x t e r n a l f l u x and SOC
cx mat K A = 2 . ∗ i i ∗ ( (Ax + g∗ conj (Ax) ∗ gt ) ∗N∗dg x + dg x∗Nt∗( conj (Ax) + gt ∗Ax∗g ) )

2 . ∗ i i ∗ ( (Ay + g∗ conj (Ay) ∗ gt ) ∗N∗dg y + dg y∗Nt∗( conj (Ay) + gt ∗Ay∗g ) )
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2 . ∗ i i ∗ ( (Az + g∗ conj (Az) ∗ gt ) ∗N∗dg z + dg z ∗Nt∗( conj (Az) + gt ∗Az∗g ) )
2 . ∗ ( Ax∗g + g∗ conj (Ax) ) ∗Nt∗( conj (Ax) + gt ∗Ax∗g )
2 . ∗ ( Ay∗g + g∗ conj (Ay) ) ∗Nt∗( conj (Ay) + gt ∗Ay∗g )
2 . ∗ ( Az∗g + g∗ conj (Az) ) ∗Nt∗( conj (Az) + gt ∗Az∗g )
( A2∗g g∗ conj (A2) ) ;

cx mat Kt A = +2.∗ i i ∗ ( ( conj (Ax) + gt ∗Ax∗g ) ∗Nt∗dgt x + dgt x ∗N∗(Ax + g∗ conj (Ax) ∗ gt ) )
+2.∗ i i ∗ ( ( conj (Ay) + gt ∗Ay∗g ) ∗Nt∗dgt y + dgt y ∗N∗(Ay + g∗ conj (Ay) ∗ gt ) )
+2.∗ i i ∗ ( ( conj (Az) + gt ∗Az∗g ) ∗Nt∗ dgt z + dgt z ∗N∗(Az + g∗ conj (Az) ∗ gt ) )
2 . ∗ ( conj (Ax) ∗ gt+gt ∗Ax) ∗N∗(Ax + g∗ conj (Ax) ∗ gt )
2 . ∗ ( conj (Ay) ∗ gt+gt ∗Ay) ∗N∗(Ay + g∗ conj (Ay) ∗ gt )
2 . ∗ ( conj (Az) ∗ gt+gt ∗Az) ∗N∗(Az + g∗ conj (Az) ∗ gt )
( conj (A2) ∗ gt gt ∗A2) ;

//Compute c o n t r i b u t i o n from magnet i za t ion
cx mat K H = i i ∗(H[ 0 ] ∗ ( sx∗g g∗ sx ) + H[ 1 ] ∗ ( sy∗g g∗ conj ( sy ) ) + H[ 2 ] ∗ ( sz ∗g g

∗ sz ) ) /Eth ;
cx mat Kt H = i i ∗(H[ 0 ] ∗ ( sx∗ gt gt ∗ sx ) + H[ 1 ] ∗ ( conj ( sy ) ∗ gt gt ∗ sy ) + H[ 2 ] ∗ ( sz ∗ gt

gt ∗ sz ) ) /Eth ;

//Add c o n t r i b u t i o n s
cx mat Kmat = K main + K A + K H ;
cx mat Ktmat = Kt main + Kt A + Kt H ;

//Reshape to v e c t o r
cx vec Kvec = m to v (Kmat) ;
cx vec Ktvec = mt to v (Ktmat) ;

cx vec K = j o i n v e r t ( Kvec , Ktvec ) ;

return K;

}
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B.5 BChandler.cpp
#include <armadi l lo>
#include ”MVConverter . h”
#include ” customstructs . h”
#include ”BCS. h”
#include ” jacob ian . h”
#include ”BChandler . h”
#include ” l ibmesh / l ibmesh . h”
#include ” l ibmesh / po int . h”
#include ” e x t e r n a l f l u x . h”

using namespace std ;
using namespace arma ;

cx vec BChandler ( BCinputS BC, cx mat g , cx mat gt , complex<double> E, vector<double> f lux
, double xpts , double ypts , l ibMesh : : Point n , cx mat gout , cx mat gtout ) {

//BCtype
//
//The f i r s t e lement conta ins informat ion about which BCs to use . P o s s i b i l i t i e s :
//KL BCS = Kupriyanov Lukichev with i n f i n i t e BCS
//Trans BCS = Transparent with i n f i n i t e BCS
//Vacuum
//The second element s t a t e s whether the outward normal o f the boundary i s p o s i t v e or

n e g a t i v e
//
//
//R
//
// Contains the s t r e n g t h o f the Kupriyanov Lukichev BC, i t i s o therwi se ignored .

int Nvars = 8 ;
complex<double> i i ( 0 , 1 ) ;
cx vec value ( Nvars ) , y (4 ) , yt (4 ) ;
cx mat vmat , vtmat , Nout , Ntout ;

double R = BC. s t r ength ;
double Phi = BC. phase ;

mat I (2 , 2 ) ; I . eye ( ) ;

double sx = f l u x [ 0 ] ;
i f ( gout . i s empty ( ) ) {

BCout(BC, gout , gtout , Nout , Ntout , E, Phi ) ;

} else {

cx mat Noutinv , Ntoutinv ;
Noutinv = I gout∗ gtout ;
Ntoutinv = I gtout ∗gout ;
Nout = inv ( Noutinv ) ;
Ntout = inv ( Ntoutinv ) ;

}

cx mat Ax, Ay, Az , An;
SOC A = e x t e r n a l f l u x ( f lux , xpts , ypts ) ;

Ax = A. x ;
Ay = A. y ;
Az = A. z ;

An = n (0) ∗Ax + n (1) ∗Ay + n (2) ∗Az ;

i f ( (BC. type == ”KL BCS Right” ) | | (BC. type == ”KL Con” ) ) {

// vmat = (1 ./R) ∗( I g∗ g t o u t )∗Nout∗( g gout ) 2 .∗ i i ∗ sx ∗ yp t s ∗g ;
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// vtmat = (1 ./R) ∗( I g t ∗ gout )∗Ntout ∗( g t g t o u t ) + 2.∗ i i ∗ sx ∗ yp t s ∗ g t ;
vmat = ( 1 . /R) ∗( I g∗ gtout ) ∗Nout∗( gout g ) + i i ∗(An∗g + g∗ conj (An) ) ;
vtmat = ( 1 . /R) ∗( I gt ∗gout ) ∗Ntout ∗( gtout gt ) i i ∗( conj (An) ∗ gt + gt ∗An) ;

} else i f (BC. type == ”KL BCS Left” ) {

vmat = ( 1 . /R) ∗( I g∗ gtout ) ∗Nout∗( g gout ) + 2 .∗ i i ∗ sx∗ypts ∗g ;
vtmat = ( 1 . /R) ∗( I gt ∗gout ) ∗Ntout ∗( gt gtout ) 2 .∗ i i ∗ sx∗ypts ∗ gt ;

} else i f (BC. type == ”KL N” ) {

// vmat = (1 ./R) ∗( I g∗ g t o u t )∗Nout∗( gout g ) ;
// vtmat = (1 ./R) ∗( I g t ∗ gout )∗Ntout ∗( g t o u t g t ) ;

vmat = ( 1 . /R) ∗g + i i ∗(An∗g + g∗ conj (An) ) ;
vtmat = ( 1 . /R) ∗ gt i i ∗( conj (An) ∗ gt + gt ∗An) ;

} else i f (BC. type == ”Trans BCS” ) {

//Note t h i s i s a D i r i c h l e t BC.

vmat = g gout ;
vtmat = gt gtout ;

} else i f (BC. type == ”Vacuum Right” ) {

vmat = i i ∗(An∗g + g∗ conj (An) ) ;
vtmat = i i ∗( conj (An) ∗ gt + gt ∗An) ;

} else i f (BC. type == ”Vacuum Left ” ) {

vmat = 2 .∗ i i ∗ sx∗ypts ∗g ;
vtmat = 2 . ∗ i i ∗ sx∗ypts ∗ gt ;

}

y = m to v (vmat ) ;
yt = mt to v ( vtmat ) ;

va lue = j o i n v e r t (y , yt ) ;

return value ;

}

cx vec JBC( int index , BCinputS BC, cx mat g , cx mat gt , complex<double> E, vector<double>
f lux , double xpts , double ypts , l ibMesh : : Point n , cx mat gout , cx mat gtout ) {

cx mat M(2 ,2 ) , Mt(2 , 2 ) , M t (2 , 2 ) , Mt t (2 , 2 ) , vmat (2 , 2 ) , vtmat (2 , 2 ) ;
cx mat Nout , Ntout ;
mat Lm(2 ,2 ) ;
mat I (2 , 2 ) ; I . eye ( ) ;
cx mat J ;
cx vec y , yt , BCvalue ;
complex<double> i i ( 0 , 1 ) ;
double R = BC. s t r ength ;
double Phi = BC. phase ;
double sx = f l u x [ 0 ] ;
vmat . z e r o s ( ) ;
vtmat . z e r o s ( ) ;

cx mat Ax, Ay, Az , An;
SOC A = e x t e r n a l f l u x ( f lux , xpts , ypts ) ;

Ax = A. x ;
Ay = A. y ;
Az = A. z ;
An = n (0) ∗Ax + n (1) ∗Ay + n (2) ∗Az ;
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MatrixCompute(&M, &Mt, &M t , &Mt t , &Lm, g , gt , index ) ;

i f ( gout . i s empty ( ) ) {

BCout(BC, gout , gtout , Nout , Ntout , E, Phi ) ;

} else {

cx mat Noutinv , Ntoutinv ;
Noutinv = I gout∗ gtout ;
Ntoutinv = I gtout ∗gout ;
Nout = inv ( Noutinv ) ;
Ntout = inv ( Ntoutinv ) ;

}

i f ( (BC. type == ”KL BCS Right” ) | | (BC. type == ”KL Con” ) ) {

i f ( index < 4) {

// vmat = (1 ./R) ∗ ( Lm∗ g t o u t ∗Nout∗( g gout ) + ( I g∗ g t o u t )∗Nout∗Lm) 2.∗ i i ∗
sx ∗ yp t s ∗Lm;

vmat = ( 1 . /R) ∗ ( Lm∗ gtout ∗Nout∗( gout g ) ( I g∗ gtout ) ∗Nout∗Lm) +i i ∗(An∗Lm
+ Lm∗ conj (An) ) ;

} else {

// vtmat = (1 ./R) ∗ ( Lm∗ gout ∗Ntout ∗( g t g t o u t ) + ( I g t ∗ gout )∗Ntout∗Lm) + 2.∗
i i ∗ sx ∗ yp t s ∗Lm;

vtmat = ( 1 . /R) ∗ ( Lm∗gout∗Ntout ∗( gtout gt ) ( I gt ∗gout ) ∗Ntout∗Lm) i i ∗(
conj (An) ∗Lm + Lm∗An) ;

}

} else i f (BC. type == ”KL BCS Left” ) {

i f ( index < 4) {

// vmat = ( 1 . /R) ∗ ( Lm∗ g t o u t ∗Nout∗( gout g ) ( I g∗ g t o u t )∗Nout∗Lm) 2.∗ i i
∗ sx ∗ yp t s ∗Lm;

vmat = ( 1 . /R) ∗ ( Lm∗ gtout ∗Nout∗( g gout ) + ( I g∗ gtout ) ∗Nout∗Lm) + 2 .∗ i i ∗
sx∗ypts ∗Lm;

} else {

// vtmat = ( 1 . /R) ∗ ( Lm∗ gout ∗Ntout ∗( g t o u t g t ) ( I g t ∗ gout )∗Ntout∗Lm) +
2.∗ i i ∗ sx ∗ yp t s ∗Lm;

vtmat = ( 1 . /R) ∗ ( Lm∗gout∗Ntout ∗( gt gtout ) + ( I gt ∗gout ) ∗Ntout∗Lm) 2 .∗
i i ∗ sx∗ypts ∗Lm;

}

} else i f (BC. type == ”Trans BCS” ) {

i f ( index < 4) {

vmat = Lm∗ i i / i i ;

} else {

vtmat = Lm∗ i i / i i ;

}

} else i f (BC. type == ”Vacuum Right” ) {

i f ( index < 4) {

vmat = i i ∗(An∗Lm + Lm∗ conj (An) ) ;

} else {

vtmat = i i ∗( conj (An) ∗Lm + Lm∗An) ;
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}

} else i f (BC. type == ”Vacuum Left ” ) {

i f ( index < 4) {

vmat = 2 .∗ i i ∗ sx∗ypts ∗Lm;

} else {

vtmat = 2 . ∗ i i ∗ sx∗ypts ∗Lm;

}

} else i f (BC. type == ”KL N” ) {

i f ( index < 4) {

vmat = ( 1 . /R) ∗Lm + i i ∗(An∗Lm + Lm∗ conj (An) ) ;

} else {

vtmat = ( 1 . /R) ∗Lm i i ∗( conj (An) ∗Lm + Lm∗An) ;

}
}

y = m to v (vmat ) ;
yt = mt to v ( vtmat ) ;

BCvalue = j o i n v e r t (y , yt ) ;

return BCvalue ;

}

void BCout( BCinputS BC, cx mat &gout , cx mat &gtout , cx mat &Nout , cx mat &Ntout , complex
<double> E, double Phi ) {

mat I (2 , 2 ) ; I . eye ( ) ;
cx mat Noutinv ;
cx mat Ntoutinv ;

i f ( (BC. type == ”KL BCS Right” ) | | (BC. type == ”KL BCS Left” ) | | (BC. type == ”
Trans BCS” ) ) {

cx vec yBCS = BCS(E, Phi ) ;
gout = v to m (yBCS) ;
gtout = v to mt (yBCS) ;
Noutinv = I gout∗ gtout ;
Ntoutinv = I gtout ∗gout ;
Nout = inv ( Noutinv ) ;
Ntout = inv ( Ntoutinv ) ;

}

}
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B.6 externalflux.cpp
#include <armadi l lo>
#include ” customstructs . h”

using namespace std ;
using namespace arma ;

SOC e x t e r n a l f l u x ( vector<double> e x t f l u x , double x , double y ) {

SOC A;
double z = 0 ;
complex<double> i i ( 0 , 1 ) ;
vector<double> sx (3 ) , sy (3 ) , sz (3 ) ;
double a , ch i ;
for ( int j = 0 ; j < 3 ; j++){

sx [ j ] = e x t f l u x [ j ] ;
sy [ j ] = e x t f l u x [ j +3] ;
sz [ j ] = e x t f l u x [ j +6] ;

}

a = e x t f l u x [ 9 ] ;
ch i = e x t f l u x [ 1 0 ] ;

cx mat soc x , soc y ;

soc x << 0 << a∗exp ( i i ∗ ch i ) << endr
<< a∗exp ( i i ∗ ch i ) << 0 << endr ;

soc y << 0 << a∗ i i ∗exp ( i i ∗ ch i ) << endr
<< i i ∗a∗exp ( i i ∗ ch i ) << 0 << endr ;

A. x << sx [ 0 ] ∗ x + sx [ 1 ] ∗ y + sx [ 2 ] ∗ z << 0 << endr
<< 0 << sx [ 0 ] ∗ x + sx [ 1 ] ∗ y + sx [ 2 ] ∗ z << endr ;

A. y << sy [ 0 ] ∗ x + sy [ 1 ] ∗ y + sy [ 2 ] ∗ z << 0 << endr
<< 0 << sy [ 0 ] ∗ x + sy [ 1 ] ∗ y + sy [ 2 ] ∗ z << endr ;

A. z << sz [ 0 ] ∗ x + sz [ 1 ] ∗ y + sz [ 2 ] ∗ z << 0 << endr
<< 0 << sz [ 0 ] ∗ x + sz [ 1 ] ∗ y + sz [ 2 ] ∗ z << endr ;

/∗ A. y << sy∗x << 0 << endr
<< 0 << sy∗x << endr ;

A. z << s z << 0 << endr
<< 0 << s z << endr ;

∗/
A. x += soc x ;
A. y += soc y ;

A. x l a r g e = zeros<cx mat>(8 ,8) ;
A. y l a r g e = zeros<cx mat>(8 ,8) ;
A. z l a r g e = zeros<cx mat>(8 ,8) ;

A. x l a r g e . submat (0 , 0 , 1 , 1 ) = A. x ;
A. x l a r g e . submat (2 , 2 , 3 , 3 ) = conj (A. x ) ;
A. x l a r g e . submat (4 , 4 , 5 , 5 ) = A. x ;
A. x l a r g e . submat (6 , 6 , 7 , 7 ) = conj (A. x ) ;

A. y l a r g e . submat (0 , 0 , 1 , 1 ) = A. y ;
A. y l a r g e . submat (2 , 2 , 3 , 3 ) = conj (A. y ) ;
A. y l a r g e . submat (4 , 4 , 5 , 5 ) = A. y ;
A. y l a r g e . submat (6 , 6 , 7 , 7 ) = conj (A. y ) ;

A. z l a r g e . submat (0 , 0 , 1 , 1 ) = A. z ;
A. z l a r g e . submat (2 , 2 , 3 , 3 ) = conj (A. z ) ;
A. z l a r g e . submat (4 , 4 , 5 , 5 ) = A. z ;
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A. z l a r g e . submat (6 , 6 , 7 , 7 ) = conj (A. z ) ;

return A;

}

155



B.7 magnetization.cpp
#include <vector>
#include <cmath>
#include <complex>
#include <iostream>
using namespace std ;

vector<double> magnet izat ion ( vector<double> h , double x , double y ) {

vector<double> H(3) ;
complex<double> u ;
complex<double> i i ( 0 , 1 ) ;
double lambda , xc , yc , hval ;

i f (h . back ( ) == 1 . 0 ) {

for ( int i = 0 ; i < 3 ; i++)
H[ i ] = h [ i ] ;

} else i f (h . back ( ) == 2 . 0 ) {

hval = h [ 0 ] ;
lambda = h [ 1 ] ;
xc = h [ 2 ] ;
yc = h [ 3 ] ;

u = i i ∗ lambda /( x xc i i ∗( y yc ) ) ;

H[ 0 ] = hval / ( 1 . + abs (u) ∗abs (u) ) ∗2 .∗ r e a l (u) ;
H[ 1 ] = hval / ( 1 . + abs (u) ∗abs (u) ) ∗2 .∗ imag (u) ;
H[ 2 ] = hval / ( 1 . + abs (u) ∗abs (u) ) ∗ ( 1 . abs (u) ∗abs (u) ) ;

} else i f (h . back ( ) == 3 . 0 ) {

H[ 0 ] = 0 ;
H[ 1 ] = 0 ;
H[ 2 ] = h [ 0 ] ∗ tanh (h [ 1 ] ∗ y ) ;

} else i f (h . back ( ) == 4 . 0 ) {

H[ 0 ] = h [ 0 ] ∗ cos (h [ 1 ] ∗ x ) ;
H[ 1 ] = h [ 0 ] ∗ s i n (h [ 1 ] ∗ y ) ;
H[ 2 ] = 0 ;

} else i f (h . back ( ) == 5 . 0 ) {

double r = s q r t ( x∗x + y∗y ) ;
double alpha ;

i f ( r <= h [ 3 ] ) {

alpha = 1 . 0 ;

} else {

alpha = pow ( 1 . 0 / ( 1 . 0 + ( r h [ 3 ] ) ) ,h [ 4 ] ) ;

}

H[ 0 ] = h [ 0 ] ∗ alpha ;
H[ 1 ] = h [ 1 ] ∗ alpha ;
H[ 2 ] = h [ 2 ] ∗ alpha ;

}
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return H;
}
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B.8 Connection.cpp
#include ” l ibmesh / l ibmesh . h”
#include ” l ibmesh /mesh . h”
#include ” l ibmesh /dof map . h”
#include <u t i l i t y >
#include ” Connection . h”
#include ” customstructs . h”

using namespace std ;
using namespace l ibMesh ;

Connection : : Connection ( const MeshBase& mesh in , BCinputV BC) :
mesh ( mesh in ) {

f i l t e r B C (BC) ;
c reate connect ion map ( ) ;

}

//map<d o f i d t y p e , d o f i d t y p e> Connection : : create connect ion map () {
void Connection : : c reate connect ion map ( ) {

//map<d o f i d t y p e , d o f i d t y p e> connection map ;

for ( unsigned int c = 0 ; c < conIDs . s i z e ( ) ; c++){
map<pair<do f i d type , unsigned char>, Point> i n c e n t r o i d s , o u t c e n t r o i d s ;

MeshBase : : c o n s t e l e m e n t i t e r a t o r e l = mesh . a c t i v e e l e m e n t s b e g i n ( ) ;
const MeshBase : : c o n s t e l e m e n t i t e r a t o r end e l = mesh . a c t i v e e l ement s end ( ) ;

int currentID = conIDs [ c ] . f i r s t ;
int connectID = conIDs [ c ] . second ;

for ( ; e l != end e l ; ++e l ) {

const Elem∗ elem = ∗ e l ;

for ( unsigned int s i d e =0; s i d e < elem > n s i d e s ( ) ; s i d e++)
i f ( elem > neighbor ( s i d e ) == NULL) {

i f ( mesh . ge t boundary in fo ( ) . has boundary id ( elem , s ide , connectID ) ) {

UniquePtr<Elem> s i d e e l em = elem > b u i l d s i d e ( s i d e ) ;
o u t c e n t r o i d s [ make pair ( elem > id ( ) , s i d e ) ] = s id e e l em >

c en t r o id ( ) ;

} else i f ( mesh . ge t boundary in fo ( ) . has boundary id ( elem , s ide ,
currentID ) ) {

UniquePtr<Elem> s i d e e l em = elem > b u i l d s i d e ( s i d e ) ;
i n c e n t r o i d s [ make pair ( elem > id ( ) , s i d e ) ] = s id e e l em >

c en t r o id ( ) ;

}
}

}

map<pair<do f i d type , unsigned char>, Point > : : i t e r a t o r i t = i n c e n t r o i d s . begin ( ) ;
map<pair<do f i d type , unsigned char>, Point > : : i t e r a t o r i t e n d = i n c e n t r o i d s . end

( ) ;

for ( ; i t != i t e n d ; ++i t ) {
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Point i n c e n t r o i d = i t > second ;

map<pair<do f i d type , unsigned char>, Point > : : i t e r a t o r i n n e r i t =
o u t c e n t r o i d s . begin ( ) ;

map<pair<do f i d type , unsigned char>, Point > : : i t e r a t o r i n n e r i t e n d =
o u t c e n t r o i d s . end ( ) ;

Real min d i s tance = numer i c l im i t s<Real > : :max( ) ;

for ( ; i n n e r i t != i n n e r i t e n d ; ++i n n e r i t ) {

Point o u t c e n t r o i d = i n n e r i t > second ;

Real d i s t ance = ( o u t c e n t r o i d i n c e n t r o i d ) . s i z e ( ) ;

i f ( d i s t ance < min di s tance ) {

min di s tance = d i s t ance ;
connection map [ i t > f i r s t . f i r s t ] = i n n e r i t > f i r s t . f i r s t ;

}

}

}
}

}

d o f i d t y p e Connection : : ge t ne ighbor e l ement ID ( d o f i d t y p e elem ) {

return connection map [ elem ] ;
}

vector<int> Connection : : g e t connec t i on IDs ( ) {

return connect ion ID ;

}

void Connection : : f i l t e r B C (BCinputV BC) {

int NBC = BC. type . s i z e ( ) ;

for ( unsigned int i = 0 ; i < NBC; i++){

i f (BC. type [ i ] == ”KL Con” ) {

int ID1 = BC. ID [ i ] ;
int ID2 = BC. neighborID [ i ] ;

conIDs . push back ( make pair ( ID1 , ID2 ) ) ;

connect ion ID . push back ( ID1 ) ;

}
}

}
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B.9 compute˙output.cpp
#include <armadi l lo>
#include ” customstructs . h”
#include ”MVConverter . h”
#include ” compute output . h”

using namespace std ;
using namespace arma ;
Gmat compute g matr ices ( cx vec so l , cx vec dso l x , cx vec dso l y , cx vec dso l z , double E

, double T) {

//Compute gamma matr ices
cx mat gamma = v to m ( s o l ) ;
cx mat gamma t = v to mt ( s o l ) ;

//Compute d e r i v a t i v e s o f gamma matrices
cx mat dgamma x = v to m ( d s o l x ) ;
cx mat dgamma y = v to m ( d s o l y ) ;
cx mat dgamma z = v to m ( d s o l z ) ;
cx mat dgamma t x = v to mt ( d s o l x ) ;
cx mat dgamma t y = v to mt ( d s o l y ) ;
cx mat dgamma t z = v to mt ( d s o l z ) ;

//Compute N and Nt
mat I (2 , 2 ) ; I . eye ( ) ;

cx mat Ninv = I gamma∗gamma t ;
cx mat N = inv ( Ninv ) ;
cx mat Ntinv = I gamma t∗gamma;
cx mat Nt = inv ( Ntinv ) ;

//Compute g , gt , f , f t and t h e i r d e r i v a t i v e s
cx mat f = 2 .∗N∗gamma;
cx mat f t = 2 .∗Nt∗gamma t ;
cx mat d f x = 2 .∗N∗(dgamma x∗gamma t + gamma∗dgamma t x ) ∗N∗gamma + 2.∗N∗dgamma x ;
cx mat d f y = 2 .∗N∗(dgamma y∗gamma t + gamma∗dgamma t y ) ∗N∗gamma + 2.∗N∗dgamma y ;
cx mat d f z = 2 .∗N∗(dgamma z∗gamma t + gamma∗dgamma t z ) ∗N∗gamma + 2.∗N∗dgamma z ;
cx mat d f t x = 2 .∗Nt∗( dgamma t x∗gamma + gamma t∗dgamma x) ∗Nt∗gamma t + 2 .∗Nt∗

dgamma t x ;
cx mat d f t y = 2 .∗Nt∗( dgamma t y∗gamma + gamma t∗dgamma y) ∗Nt∗gamma t + 2 .∗Nt∗

dgamma t y ;
cx mat d f t z = 2 .∗Nt∗( dgamma t z∗gamma + gamma t∗dgamma z) ∗Nt∗gamma t + 2 .∗Nt∗

dgamma t z ;

cx mat g = N∗( I + gamma∗gamma t ) ;
cx mat gt = Nt∗( I + gamma t∗gamma) ;
cx mat dg x = 2 .∗N∗(dgamma x∗gamma t + gamma∗dgamma t x ) ∗N;
cx mat dg y = 2 .∗N∗(dgamma y∗gamma t + gamma∗dgamma t y ) ∗N;
cx mat dg z = 2 .∗N∗(dgamma z∗gamma t + gamma∗dgamma t z ) ∗N;
cx mat dgt x = 2 .∗Nt∗( dgamma t x∗gamma + gamma t∗dgamma x) ∗Nt ;
cx mat dgt y = 2 .∗Nt∗( dgamma t y∗gamma + gamma t∗dgamma y) ∗Nt ;
cx mat dgt z = 2 .∗Nt∗( dgamma t z∗gamma + gamma t∗dgamma z) ∗Nt ;

cx mat gR = zeros<cx mat>(4 ,4) ;
cx mat gA = zeros<cx mat>(4 ,4) ;
cx mat gK = zeros<cx mat>(4 ,4) ;

cx mat gtot = zeros<cx mat>(8 ,8) ;
cx mat dgtot x = zeros<cx mat>(8 ,8) ;
cx mat dgtot y = zeros<cx mat>(8 ,8) ;
cx mat dgto t z = zeros<cx mat>(8 ,8) ;

cx mat dgR x = zeros<cx mat>(4 ,4) ;
cx mat dgR y = zeros<cx mat>(4 ,4) ;
cx mat dgR z = zeros<cx mat>(4 ,4) ;

cx mat dgA x = zeros<cx mat>(4 ,4) ;
cx mat dgA y = zeros<cx mat>(4 ,4) ;
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cx mat dgA z = zeros<cx mat>(4 ,4) ;

cx mat dgK x = zeros<cx mat>(4 ,4) ;
cx mat dgK y = zeros<cx mat>(4 ,4) ;
cx mat dgK z = zeros<cx mat>(4 ,4) ;

mat rho3 = zeros<mat>(4 ,4) ;

rho3 . submat (0 , 0 , 1 , 1 ) = I ;
rho3 . submat (2 , 2 , 3 , 3 ) = I ;

gR . submat (0 , 0 , 1 , 1 ) = g ;
gR . submat (0 , 2 , 1 , 3 ) = f ;
gR . submat (2 , 0 , 3 , 1 ) = f t ;
gR . submat (2 , 2 , 3 , 3 ) = gt ;

dgR x . submat (0 , 0 , 1 , 1 ) = dg x ;
dgR x . submat (0 , 2 , 1 , 3 ) = df x ;
dgR x . submat (2 , 0 , 3 , 1 ) = d f t x ;
dgR x . submat (2 , 2 , 3 , 3 ) = dgt x ;

dgR y . submat (0 , 0 , 1 , 1 ) = dg y ;
dgR y . submat (0 , 2 , 1 , 3 ) = df y ;
dgR y . submat (2 , 0 , 3 , 1 ) = d f t y ;
dgR y . submat (2 , 2 , 3 , 3 ) = dgt y ;

dgR z . submat (0 , 0 , 1 , 1 ) = dg z ;
dgR z . submat (0 , 2 , 1 , 3 ) = d f z ;
dgR z . submat (2 , 0 , 3 , 1 ) = d f t z ;
dgR z . submat (2 , 2 , 3 , 3 ) = dgt z ;

gA = rho3∗ t rans (gR) ∗ rho3 ;

dgA x = rho3∗ t rans ( dgR x ) ∗ rho3 ;
dgA y = rho3∗ t rans ( dgR y ) ∗ rho3 ;
dgA z = rho3∗ t rans ( dgR z ) ∗ rho3 ;

gK = (gR gA) ∗ tanh (1 . 76∗E/ (2 .∗T) ) ;

dgK x = ( dgR x dgA x ) ∗ tanh (1 . 76∗E/ (2 .∗T) ) ;
dgK y = ( dgR y dgA y ) ∗ tanh (1 . 76∗E/ (2 .∗T) ) ;
dgK z = ( dgR z dgA z ) ∗ tanh (1 . 76∗E/ (2 .∗T) ) ;

g tot . submat (0 , 0 , 3 , 3 ) = gR ;
gtot . submat (0 , 4 , 3 , 7 ) = gK;
gtot . submat (4 , 4 , 7 , 7 ) = gA ;

dgtot x . submat (0 , 0 , 3 , 3 ) = dgR x ;
dgtot x . submat (0 , 4 , 3 , 7 ) = dgK x ;
dgtot x . submat (4 , 4 , 7 , 7 ) = dgA x ;

dgtot y . submat (0 , 0 , 3 , 3 ) = dgR y ;
dgtot y . submat (0 , 4 , 3 , 7 ) = dgK y ;
dgtot y . submat (4 , 4 , 7 , 7 ) = dgA y ;

dgto t z . submat (0 , 0 , 3 , 3 ) = dgR z ;
dg to t z . submat (0 , 4 , 3 , 7 ) = dgK z ;
dg to t z . submat (4 , 4 , 7 , 7 ) = dgA z ;

Gmat G;

G. g = g ;
G. f = f ;
G. gt = gt ;
G. f t = f t ;

G. gR = gR ;
G. dgR x = dgR x ;
G. dgR y = dgR y ;
G. dgR z = dgR z ;
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G. gA = gA ;
G. dgA x = dgA x ;
G. dgA y = dgA y ;
G. dgA z = dgA z ;

G.gK = gK;
G. dgK x = dgK x ;
G. dgK y = dgK y ;
G. dgK z = dgK z ;

G. gtot = gtot ;
G. dgtot x = dgtot x ;
G. dgtot y = dgtot y ;
G. dgto t z = dgto t z ;

return G;

}

cx mat ke ldysh gdg ( cx mat g , cx mat dg , cx mat A) {

cx mat Atot , gdg (8 , 8 ) , gdg k (4 , 4 ) ;
Atot = zeros<cx mat>(8 ,8) ;

Atot . submat (0 , 0 , 1 , 1 ) = A;
Atot . submat (2 , 2 , 3 , 3 ) = A;
Atot . submat (4 , 4 , 5 , 5 ) = conj (A) ;
Atot . submat (6 , 6 , 7 , 7 ) = conj (A) ;

complex<double> i i ( 0 , 1 ) ;

gdg = g∗dg i i ∗g ∗(A∗g g∗A) ;

gdg k = gdg ( span (0 , 3 ) , span (4 , 7 ) ) ;

return gdg k ;

}

Gmat compute g negE (Gmat G) {

Gmat Gn;
mat I (2 , 2 ) ; I . eye ( ) ;
mat rho1 = zeros<mat>(4 ,4) ;

cx mat gtot = zeros<cx mat>(8 ,8) ;
cx mat dgtot x = zeros<cx mat>(8 ,8) ;
cx mat dgtot y = zeros<cx mat>(8 ,8) ;
cx mat dgto t z = zeros<cx mat>(8 ,8) ;

rho1 . submat (0 , 2 , 1 , 3 ) = I ;
rho1 . submat (2 , 0 , 3 , 1 ) = I ;

Gn. g = conj (G. gt ) ;
Gn. f = conj (G. f t ) ;
Gn. gt = conj (G. g ) ;
Gn. f t = conj (G. f ) ;

Gn. gR = rho1∗ conj (G. gR) ∗ rho1 ;
Gn. gA = rho1∗ conj (G. gA) ∗ rho1 ;
Gn.gK = rho1∗ conj (G.gK) ∗ rho1 ;

Gn. dgR x = rho1∗ conj (G. dgR x ) ∗ rho1 ;
Gn. dgR y = rho1∗ conj (G. dgR y ) ∗ rho1 ;
Gn. dgR z = rho1∗ conj (G. dgR z ) ∗ rho1 ;

Gn. dgA x = rho1∗ conj (G. dgA x ) ∗ rho1 ;
Gn. dgA y = rho1∗ conj (G. dgA y ) ∗ rho1 ;
Gn. dgA z = rho1∗ conj (G. dgA z ) ∗ rho1 ;

Gn. dgK x = rho1∗ conj (G. dgK x ) ∗ rho1 ;
Gn. dgK y = rho1∗ conj (G. dgK y ) ∗ rho1 ;
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Gn. dgK z = rho1∗ conj (G. dgK z ) ∗ rho1 ;

Gn. gtot = gtot ;
Gn. dgtot x = dgtot x ;
Gn. dgtot y = dgtot y ;
Gn. dg to t z = dgto t z ;

Gn. gtot . submat (0 , 0 , 3 , 3 ) = Gn. gR ;
Gn. gtot . submat (0 , 4 , 3 , 7 ) = Gn.gK;
Gn. gtot . submat (4 , 4 , 7 , 7 ) = Gn. gA ;

Gn. dgtot x . submat (0 , 0 , 3 , 3 ) = Gn. dgR x ;
Gn. dgtot x . submat (0 , 4 , 3 , 7 ) = Gn. dgK x ;
Gn. dgtot x . submat (4 , 4 , 7 , 7 ) = Gn. dgA x ;

Gn. dgtot y . submat (0 , 0 , 3 , 3 ) = Gn. dgR y ;
Gn. dgtot y . submat (0 , 4 , 3 , 7 ) = Gn. dgK y ;
Gn. dgtot y . submat (4 , 4 , 7 , 7 ) = Gn. dgA y ;

Gn. dgto t z . submat (0 , 0 , 3 , 3 ) = Gn. dgR z ;
Gn. dg to t z . submat (0 , 4 , 3 , 7 ) = Gn. dgK z ;
Gn. dg to t z . submat (4 , 4 , 7 , 7 ) = Gn. dgA z ;

return Gn;

}
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