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Summary
In this thesis adaptive surge control in axial and centrifugal compressor with unknown
characteristic was studied. The compressor to be viewed as the control target, was a part
of the compression system which also included the plenum and a throttling device, both
located downstream to the compressor.

The literature offers already several research papers dealing with adaptive control of com-
pressors, where the knowledge of the compressor map is not needed in advance. Sum-
maries of some of the papers has been offered in this thesis. The author proposed a sim-
plified version of an adaptive controller where the controller gain is being calculated by
estimating the compressor characteristic. The estimation was carried out by using the most
basic identification techniques: method of steepest decent and the least-squares.

Both strategies estimated the unknown coefficients of the compressor characteristic by pro-
cessing input/output data of the latter on-line. The input signal for the estimation scheme
consisted of a flow measurement at the compressor duct while the pressure rise at the
compressor would constitute the output signal. Occasionally, the flow at the compressor
duct will be unavailable for measurement. As a solution, the compression system will was
coupled with an observer which predicted the behaviour of the compressor duct flow by
considering the model for entire compression system. The observer originated from [12]
where it has been proven that the flow is being predicted in a exponentially stable manner.
The core of each of the estimation methods was the adaptive law, which will continuously
updates the estimates of the unknown coefficients. The trajectories of the estimates was
all said to be bounded functions. Strictly speaking, they are considered as elements of L∞
and L2 spaces. This was verified with stability analysis where Lyapunov’s direct method
was applied. The stability analysis was previously published in [33] and has were included
in this report.

Two types of actuators for surge control were considered: closed-coupled valve (CCV)
and a piston. The resulting control law for both actuators was a basic proportional con-
troller which recovered the compression system from surge and bring it towards global
asymptotic stability. The controller operating CCV required feedback from compressor
mass flow measurement while the piston was being run by the controller that required
feedback from pressure measurements at the compressor discharge and at the plenum. By
assigning the actuator and the controllers, the compressor was brought to global asymp-
totic stability even if it was operating at the unstable area in the first place. In the past, the
gain for each controller was constructed by the coefficients used to describe the compres-
sor characteristic. In subject to not knowing the compressor characteristic, the coefficients
appearing in the controller would be replaced by their estimates which were generated by
the earlier mentioned adaptive laws. The implementation of the adaptive laws depended
on the knowledge of the coordinates of the system equilibrium. Yet another adaptive law
was implemented to estimate the coordinates. The estimation was needed for equilibrium
, since the computation of the latter is restricted to knowing the compressor characteristic.
Linearization of the compression system augmented with the adaptive controller and the
equilibrium estimation was used as a tool to demonstrate that under specific conditions the
overall systems becomes locally asymptotically stable.
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Chapter 1
Introduction and Motivation

1.1 Background
The compressor can be viewed as a mechanic device that has the potential of increasing
the pressure of the fluid passing through it. A way of achieving such pressure rise is by
basically decreasing the fluids volume. The bellow ideal gas law can be studied as an
explanation to this phenomena:

p =
mRT

V
(1.1)

where R is the gas constant. Moreover, p is the pressure of the fluid, while m, T and V
are its mass,temperature and volume. respectively. A point made by [10] is that due to the
definition of density being ρ = m

V , the compressor can alternatively be viewed as a device
that provides gain in fluid pressure by increasing the density of the fluid. Over the years,
the compressors has been used in a wide range of applications [34]. They are essential in
gas turbines for power generation (Brayton cycle) and jet engines in aircraft. One can also
found them in many household appliances such as refrigerators and air conditioners. In
addition the compressors are commonly applied in process industry, where they are used
to transport fluids through pipelines, for example in chemical plants and/or oil and natural
gas production installations.

There are various types of compressors, some of them being centrifugal compressors, axial
compressors and the positive displacement pumps. The axial and centrifugal compressors
(termed turbo compressors by [10]) works by somewhat equal principle of operation which
mainly consists of two steps: first increase the velocity of the fluid ,something that is being
done by running the fluid through a row of rotating blades, and secondly decelerate the gas
in divergence channels in order to obtain a pressure rise. The author will follow [10] and
explain the second step by Bernoulli equation:

p1 +
1

2
ρv2

1 = p2 +
1

2
v2

2 (1.2)

for the flow assumed to be frictionless incompressible along the pipeline. The subscript
”1” refers to the state of the fluid where its velocity is high. Meanwhile, the subscript
”2” denotes the state of the fluid where its velocity has been slowed down, i.e. v1 > v2.
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1.1 Background

Obviously, for the equality in Bernoulli equation to hold, p2 must be greater that p1. The
assumption of incompressibility which will be followed through entire report clearly con-
tradicts with the ideal gas law. However, [10] supports this assumption stating that it is
”made to illustrate conversion to pressure by means of simple expression”.

The axial compressor got its name from both receiving and discharged the flow in the axial
direction, that is, parallel with the axis of rotation [13]. A compression of a fluid can be
further increased by assigning an axial or centrifugal compressor of multiple stages. The
multiple stages compressors are simply single stages compressors mounted in series and
are driven by the same shaft Thus, they are being run by the same rotational speed. Figures
provided by [13] shows that an industrial single stage axial compressor is able to obtain
a pressure rise in order 1.05 : 1 − 1.2 : 1 with the efficiency ranging from 88% to 92%
. If several stages are added together, the axial compressors have the potential to obtain a
pressure rise up to 40 times the original pressure. [13] claims that axial compressor will be
frequently encountered in gas turbines, especially for those with power exceeding 5MW.
Although research in this thesis is applicable for both axial and centrifugal compressor
due to their similarities, this report will emphasize centrifugal compressor, because of its
popularity in the industry. For that reason, a whole subsection will be devoted to discuss
centrifugal compressors.

The positive displacement pumps differs significantly from turbo compressors in terms of
working principle and applications. Instead of accelerating the fluid to a higher velocity
like for turbo compressors, positive displacement pumps obtain a gain in pressure by cap-
turing a fixed amount of fluid in a chamber where the volume will be reduced by a piston
mechanism. Once the fluid is compressed to a higher pressure (recall the ideal gas law),
the fluid is forced (or displaced) into a discharge pipe or a throttle from which it leaves
the compressor. The principle of operation for the positive displacement pump has been
demonstrated by Figure 1.1

Figure 1.1: Positive displacement pump operation (Marine Notes,
http://marinenotes.blogspot.no)

Because of its property of allowing fluid to pass with a low velocity, positive displacement
pumps are consequently used in applications where one is requiring a combination of low
flow rate and high pressure, such as pumping media containing fragile solids (Process
Industry Forum, http://www.processindustryforum.com/).

2



1.2 Centrifugal Compressors

Finally, positive displacement pumps operate at high efficiency and are the natural choice
when dealing with high viscosity fluids.

1.2 Centrifugal Compressors
According to [14], the centrifugal compressors have three basic components which are the
impeller, the diffuser and the volute (scroll) The impeller can be recognized as a rotating
disk with curved blades (two-dimentional or three dimensional) and is driven by some
device (typically a motor or a turbine) which generates a torque τd so that the compressor
rotates with angular speed ω. While rotating, the impeller will increase the velocity of
the incoming fluid and lead it radially outward through the diffuser. From the point of
view of energy domain, one can say that the impeller converts its rotational energy to the
kinetic energy in the flow. [48] calls the impeller ”the most critical part of the centrifugal
compressor”, no matter which type of compressor it belongs to. It is further stated that the
impeller stand for 70% of the total pressure rise considering a single stage. If the impeller
is well-designed for the compressor, it can reach a efficiency of 96%. Another part of the
compressor, the diffuser, comprises of vane passages and is responsible of slowing down
the fluid and thus generating the pressure rise. The fluid with increased static pressure,
is being collected by the volute which guides the fluid to the compressor outlet. The
compound of the components making up the centrifugal compressor is being shown in
Figure 1.2

Figure 1.2: The components making up the centrifugal compressor (ME Mechanical,
http://me-mechanicalengineering.com)

3



1.3 Compressor Map

It is primary in the way of discharging the fluid out to the system, that the centrifugal
compressor differs itself from the compressors of axial type. In contrast to axial compres-
sors where the fluid is leaving in the axial direction, the fluid departs from the centrifugal
compressor in the direction 90 degrees to the axis of rotating shaft, as proven by Figure
1.2. Besides, for the axial compressor, the deceleration of the fluid will take place in
the stator blade passages, instead of the diffuser. The centrifugal compressors are lim-
ited to handling much lower flowrates then axial compressors, but in return are capable
of delivering much higher pressure ratios. Nevertheless, the units used in the process in-
dustry have, according to [15], typically a pressure ratio around 1.3:1 per stage, so only
slightly higher than for compressors of axial type. On other hand, the centrifugal compres-
sors applied in gas turbines range in pressure ratios from 3:1 up to 7:1 for a single stage,
clearly overcoming the axial compressors. Evaluation of Figure 7 in [14] shows that axial
compressors beats centrifugal compressor when the overall efficiency is considered. Ac-
cording to [14], the centrifugal compressors can typically be found in following services
of processes : combustion, distribution of natural gas, refrigeration and separation. The
advantages of centrifugal compressors are that they are compact, robust and less affected
by the performance degradation due to fowling [34]. In his master thesis, [42] states that
this type of compressors is favoured in the process industry because they are more flexible
and generate lower installation and maintenance costs.

1.3 Compressor Map
The relation between pressure at the compressor inlet, denoted by pi and the pressure at
the compressor outlet, denoted pd is given as follows:

pd = pc(wi, ω)pi (1.3)

where

pc(wi, ω) =

(
1 +

µr2
2ω

2 − r1
2 (ω − αwi)2 − kfω2

cpT01

) κ
κ−1

(1.4)

is the pressure rise also to be addressed as the pressure ratio. Throughout the thesis, pd
will be equal to pc. A very important thing to have in mind is that although pc(wi) is
not known as a function, a value of pc at an arbitrary wi is accessible. Notice that the
pressure of the compressor rise for the centrifugal compressor depends both on rotation
speed ω[ rads ] at the impeller and the flowwi[

m3

s ] passing through the compressor. The flow
wi is termed inlet mass flow (inlet flow when non-dimensionalized). For the definitions
of the constants appearing in eq. (1.4), the reader is referred to [26]. If the compressor
rise is to be visualized as a function of inlet mass flow and impeller speed, the compressor
characteristic (also known as compressor map) will be obtained. The map will often be
presented as the collection of constant speed lines, as shown in Figure 1.3

4



1.3 Compressor Map

Figure 1.3: Compressor map [10]

As the name implies, the constant speed line will relate the pressure ratio to mass flow at
a specific rotational speed. A single speed line can also be described by following cubic
equation which has been provided by [39]:

pc(wi) = pc0 +H

[
1 +

3

2

(wi
W
− 1
)
− 1

2

(wi
W
− 1
)3
]

(1.5)

where pc0 is the shut-off value of the axisymmetric characteristic, W is semi-width of the
cubic axisymmetric compressor characteristic and H is the semi-height of the cubic ax-
isymmetric compressor characteristic [51]. A detailed definition of the constant appearing
in eq. (1.5) can be found in [39]. The compressor characteristic defines the operational
domain of the compressor and should always be taken into account when selecting the size
of the compressor [34]. It is unique for every compressor and will typically be provided
by the manufacturer when purchasing the device. Alternatively, it can be retrieved by the
compressor performance test, a procedure described in [52] and which also will be sum-
marized later in this section. By analysing Figure 1.3, it can be observed that by either
reducing the flow rate passing through the compressor (this can be done by adjusting the
throttle opening in the system) or operating the device at higher rotational speed, a greater
compressor rise will be achieved. However, too low flow rate will generate the unwanted
phenomena of surge which will drive the compressor to instability. Usually, a surge line
is drawn at the compressor map with the purpose of separating the stable area in the com-
pressor map with the area where the surge will develop.

Now, moving to the topic of compressor map test. Simply, it will be performed by first
setting the compressor to constant speed, then defining several operating points by varying
the throttle opening and finally recording data of compressor rise and inlet mass flow for
each point. Figure 1.4 shows experimental results of the compressor test done by [52].

5



1.3 Compressor Map

Figure 1.4: Compressor map obtained by the performance test [52]

The impeller was adjusted to a speed of 23978 RPM, and eight operating points were
recorded and labelled sequentially by alphabet A to H. [52] reports that the first seven
operating points were generated by gradually decreasing the throttle opening from 40%
to 10%, resulted in a stable operation of the compressor, with point G approximately lo-
cated at the surge line (referred to as the surge point) being the peak of the compressor
characteristic. Point H, on the other hand, which was obtained by reducing the opening at
the throttle to 5%, is said to be placed at the unstable area, thus bringing surge upon the
compressor.

The cubic function in eq. (1.5) is being modelled by evaluating the instability conditions
because of surge, making it valid over the unstable operating area of the compressor char-
acteristic (”Approximation 2” in Figure 1.4). According to [52] the value of H is roughly
equal to the amplitude of compressor outlet pressure oscillations (see Figure 4 in [52]),
appearing due to the presence of surge. The inlet mass flow recorded for the surge point
is being equal to 2W while the value of pc0 is a result of subtracting 2H from the pressure
rise recorded for the surge point. Meanwhile, the compressor characteristic for the stable
area can be approximated by considering operating point A to G. This approach, which
have been labelled ”Approximation 1” in Figure 1.4, can easily by done with polynomial
curve fitting on the earlier mentioned point. The outcome will be a 3rd order polynomial
function of inlet mass flow, as depicted in Figure 1.4.

6



1.4 Compressor Instability

1.4 Compressor Instability

1.4.1 Rotating Stall
Commonly, rotating stall is characterized by disturbance in uniform flow pattern [18]. In
contrast to surge, rotating state will appear locally at the compressor. Strictly speaking, it
tends to occur between the blade passages in the impeller (or rotor for axial compressors)
where the flow may stall. The region of rotating stall may propagate exponentially along
the blades until a certain state has been reached [18]. A row of axial compressor blades
operating at a high angle of attack has been depicted in Figure 1.5.

Figure 1.5: Physical mechanism for inception of rotating stall [23]

[23] describes the propagation mechanism as follows. ”Suppose that there is non-uniformity
in the inlet flow such that a locally higher angle of attack is produced on blade B which is
enough to stall it. The flow now separates from the suction of the blade, producing a flow
blockage between B and C. This blockage causes a diversion of the inlet flow away from
B towards A and C, resulting in a increased angle of attack on C, causing it to stall. Thus
the the stall propagate along the blade row”.

Considering this scenario, the rotating stall can be classified into two types: part-span and
full-span rotating stall. In a part-span rotating stall, only a limited region of the blade pas-
sage (the tip in most cases) will stall. For the full-span rotating stall, the stalling will occur
at complete heigh of the annulus. Hence, the influence of the rotating stall may also be
measured by the size of area the flow blockage is taking up in the compressor annulus [23].
For the centrifugal compressor, the stalling may be present in the parts of the impeller, in
the diffuser or in the volute. The components may stall simultaneously or individually
[18]. However, a stall in one component may not grow sufficiently in strength to spread
to the other areas of the machine. As a consequence, several parts of the centrifugal com-
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1.4 Compressor Instability

pressor may stall without the entire unit stalling [15]. It turned out that the rotating stall
both in the impeller and the diffuser, may develop into surge for entire system. Neverthe-
less, the role of rotating stall in centrifugal compressors is still a matter of debate among
the compressor researchers. [18] claims that rotating stall often will have little impact on
pressure rise for centrifugal compressor and thus on surge. The significance of surge may
also be questioned for single-stage axial compressors. For multi-stage axial compressors,
rotating stall is more relevant for the applications where the shaft speed is relatively low.

1.4.2 Surge
The surge is a cyclical form of instability with the symptoms of large amplitude fluctua-
tions both in pressure rise and mass flow in annulus (or duct). If not handled properly, this
condition may further develop to deep surge where one may experience flow reversal [18].
The surge cycle, which generates the oscillations, have been illustrated in Figure 1.6.

Figure 1.6: Surge cycle illustrated in a compressor map [56]

Initially, the compressor operates at steady-state in the stable area of the compressor. Then,
a disturbance is applied on the system resulting in a flow deceleration. The compressor is
now forced to operate at unstable point (1). The flow continues to decrease until it reaches
its lower limit at point (2) where the flow now have a negative value and thus becomes re-
versal. Next, the flow accelerates first to point (3) (where it reaches a zero value) and then
to (4) at the stable area. With no changes in the system, the cycle follows the compressor
characteristic up to the point (1), meaning that the surge cycle repeats.

When the compressor is suffering from some local aerodynamic instability, say rotating
stall, it will be unable to deliver sufficient pressure so that the flow moving downstream
from the compressor will loose its continuous nature. This results in the incident of surge.
Seen from other perceptive, the surge is a consequence of the compressor ,which is limited
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to constant impeller speed, not keeping up with the excessive increase in system resistance
such as decrease in throttle opening. [15]. The resistance will then reduce the flow, mak-
ing it reversal and thus unsteady. The unsteady flow will interfere with other components
besides the compressor, making the system unstable as a whole. As stated earlier, the
rotating stall is often viewed as the inception of surge. Ironically, while the flow in pure
rotating stall is known for its nonuniform mass deficit [18], the flow will retrieve its uni-
formity during the surge condition.

A phenomena of surge can, according to [18] be divided into four different types:

1. Mild surge: exhibits small pressure oscillations. No evidence of flow reversal.

2. Classic surge: will often have larger oscillations at lover frequency then mild surge.
Still no flow reversal.

3. Modified surge: characterized by unsteady and non-axisymmetric flow. Combina-
tion of rotating stall and classic surge.

4. Deep surge: a most severe form for surge. Flow reversals are typical. The cycle
described above occurs for deep surge

Notice that this terminology is not unique, and may vary through the literature. At least for
axial compressors, several types of compressor surge may be experienced in a sequence
[18]. The first step is mild surge, followed by rotating stall. From rotating stall, the system
can possibly go over to classic surge or deep surge. Deep surge may itself convert into
modified surge, presuming that the system is affected with some kind of nonaxisymmetric
disturbances. Apart from mild surge, operation under surge condition is rather hazardous
and should be avoided at all cost. Along with reduced pressure rise and degradation in
efficiency, the surge may expose the impeller blades to vibrations and eventual damage.
Not only will high-amplitude vibrations tear the compressor, they can also damage the
system components surrounding it, in particular pipe connections [51]. Another conse-
quence of surge, as well as rotating stall, is the fact that it may lead to heating of the
impeller blades and temperature rise at the compressor outlet. Surprisingly, the instability
of surge tends to appear quite often in the process industry. Disfunctionalities that have a
possibility of inducing surge are: the compressor is not fulfilling the system requirements,
inappropriate design of the compressor and failing anti-surge control system. Another fac-
tor is unfavourable arrangement of piping and process components that in some way are
interconnected with the compressor.

1.5 Contributions
This thesis attempts to contribute on following areas:

(1) Performing a literature review on adaptive active control of compressors

(2) In the case of the compressor map being poorly known, the thesis will propose an
adaptive version of the control law (18) for closed-coupled valve in [24]. Compari-
son of the adaptive and non-adaptive controller will be given by simulations.
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(3) The knowledge of the compressor map is also necessary in order to find the gain for
controller piston actuation. To compensate for that, the thesis will look for appropri-
ate control law which in turn will be modified with adaptive extension. Comparison
of the adaptive and non-adaptive controller will be given by simulations

(4) Real time measurement of mass flow may be unobtainable for feedback. The thesis
will investigate if there is an observer type that can supply the adaptive controllers
with an estimate of mass flow. The accuracy of the suggested observer will be stud-
ied by simulations. The possibility of having the controller that assumes feedback
from pressure will also be looked into.

The adaptive controller developed in this thesis will estimate the coefficients of the com-
pressor map. The estimates will later be used for construction of the controller in (2) and
(3). Unless otherwise stated, the compressor is restricted to constant speed and the only
disturbance will occur in reducing the throttle opening. Finally, all flows are regarded to
have real and positive values.

1.6 Implementation
The simulations in this thesis were carried out in the software MATLAB 2016a along with
its toolbox Simulink. Implementation of the adaptive controller derived by the gradient
method was based on solution of Assignment 7 in the course TTK4215 at NTNU. Im-
plementation of the adaptive controller derived by the method of least-squares was based
on a simulation example dealing with the identification of the pendulum by method of
least-squares with forgetting factor. The example was offered in the course TTK4215.

1.7 Outline of the Thesis
• Chapter 2: The compression model pioneered by Greitzer will be studied. At first,

the brief history and advantages of the model will be given. The analysis will con-
tinue into describing the model in detail before demonstrating how the model can
be derived by applying basic principles of physics. The analysis will end at investi-
gating the the open-loop stability of the Greitzer model.

• Chapter 3: Two basic strategies on surge prevention will be reviewed. The actua-
tion by closed-coupled valve and piston will being included into the Greitzer model.
The control law for each choice of the actuator will also be presented. The thesis
has managed to come up with the control law for piston that assumed feedback from
pressure.

• Chapter 4: Design of the parameter estimator by considering two identification
approaches. Stability analysis will follow for both of them. Stability analysis will
be given for both of them. The theory in the chapter has been provided by [33].

• Chapter 5: A very brief review on the observers in the compressors will be given.
Later, a GES observer which is applied in this thesis, will be studied and then non-
dimentionalized. The chapter ends with mentioning the separation principle for the
observer.
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1.7 Outline of the Thesis

• Chapter 6: Examples of the adaptive surge controller will be presented.

• Chapter 7: The performance of the adaptive controllers and the accuracy of the
observer will be validated by numerical simulations.

• Chapter 8: Discussion of the results in Section 8.

• Chapter 9: Concluding remarks
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Chapter 2
The Model of Greitzer

2.1 Introduction
Over the years there have been published a large amount of literature that concerns the
topic of compressor system modelling. However, it is the groundbreaking model of Gre-
itzer that really stands out. The model, which was outlined for axial compressors, was
presented in [28]. It is an improvement to its predecessor in [19] when it comes to cap-
turing the phenomena of surge. The Greitzer model has maintained the non-linear nature
of compression system as opposed to model given in [19] which has been derived by
linearization. It allows model of Greitzer to display full-sized amplitude oscillations gen-
erated by the surge condition. This cannot be said about the model developed in [19]
because, as the model departures further and further from its equilibrium, it becomes less
and less accurate. Hence, it can only exhibit surge oscillations at relatively small ampli-
tudes . Few years after the Greitzer model was first published, [31] made it also applicable
for the centrifugal compressors. The invention of the Greitzer model allowed for devel-
oping a large amount of strategies with the aim of preventing both axial and centrifugal
compressors to operate at the surge condition. More on this topic later. It is also worth
mentioning that in his master thesis, [42] showed that the Greitzer model can be imple-
mented as an equality constraint in the algorithm for the MPC-controller which is assigned
to run the compressor in a optimal manner, that is, with maximum efficiency. The model
of Greitzer belongs to the classification of compressor models that can be used to simulate
both the surge and rotating stall ([10] reports that there exists some compressor models
that are only able to capture the phenomena of surge). Whether one is dealing with surge
or rotating stall in a Greitzer model can be determinated by considering a value of a special
parameter, termed Greitzer B-parameter, that will be revealed later in the chapter when the
model has been non-dimensionalized.

2.2 Description of the Greitzer Model
The compression system that is considered for the Greitzer model, contains mainly of three
components: a compressor, a plenum and a throttle. As shown by the Figure 2.1, the flow
wi with the pressure pi is being directed to the compressor through a upstream duct (called
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2.2 Description of the Greitzer Model

compressor duct in the figure) with the length and section area denoted as Lc and Ac,
respectively. The mass flow symbolized as wd (which is equal to wi at steady-state) with
the pressure pd (obtained by the pressure rise at the compressor) is now being discharged
into the plenum of the fixed volume Vp, containing the pressure pp and the temperature Tp.
It is assumed that the thermodynamic properties are all uniform over the plenum volume. If
the heat losses to the surroundings are small, compared with the total energy related to the
plenum, the losses can be neglected, meaning that all processes taking place in the plenum
can be regarded as isentropic. On the other side of the compression system, the throttle
has been placed with the purpose of adjusting the outlet mass flow wo from the plenum.
Changes in the outlet mass flow are obtained by basically varying the throttle opening.
Both, the upstream duct and the duct containing the throttling device, which is described
as outlet duct in the figure, is assumed to contain flows at relative small velocities. Thus,
one can model the flows as incompressible. Furthermore, the passing fluid at both ducts
is assumed to contain velocity lines pointing in the same direction, allowing to establish
the fact that the corresponding flows are one-dimensional. By neglecting the friction at the
ducts, one can consider pi and po equal to the pressures at station A (pA) and station B
(pB), respectively. From the surge control point of view, the plenum pressure pp and the
flow at the compressor inlet flow wi can be viewed as the system states. Meanwhile, the
throttle opening can be both considered as a control input or as a disturbance, depending
on the circumstances.

Figure 2.1: Model of a single compression system [51]

A reader that have some experience in the control engineering will know that the tran-
sient dynamics of the system states can be described by differential equations which are
typically related to some laws of physics. Due to the lack of ability of adjusting impeller
speed ω by varying the drive torque τ , the differential equation for impeller has been left
out from the system equations. The differential equations of Greitzer compression model
are:

ẇi =
Ac
Lc

(pc(wi)− pp) (2.1a)

ṗp =
a2

0

Vp
(wi − wo(pp)) (2.1b)

The pressure rise pc(wi) has replaced pd in eq. (2.1a). Apart from the earlier defined
parameters, a0 is the speed of sound while wo(pp) symbolize the outlet mass flow as the
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function of the plenum pressure and is given by:

wo(pp) = uT kT
√
pp − po (2.2)

where kT a constant specifying the throttle and uT is the throttle opening ranging from 0
% to 100 %. The throttle is assumed to contain no inertance. In other words, the relation
between the pressure drop at the plenum and the rate of change of the outlet flow is neither
effected by the length or the section area of the downstream duct. It will also be inde-
pendent of the fluid density [55]. Now, pi and p0 have been set equal to the atmospheric
pressure which is defined as a zero-reference for the gauge pressure. Hence, the equation
for outlet mass flow may be simplified to:

wo = uT kT
√
pp (2.3)

2.3 Derivation of the Dynamic Equations for the Greitzer
Model

This section will give the reader an insight on the equations (2.1a) and (2.1b) can be ob-
tained by applying the fluid dynamic laws of mass conservation and momentum balance,
an approach originally considered by Greitzer when developing his model. The reader
should be aware, that there exist other concepts from which the model for the compres-
sion system may be derived. For instance, [51] demonstrated that by evaluating the energy
transfers between components, one can arrive at the same set of differential equations as
for the Greitzer model. The presented procedure of deriving the equations has been based
on the research in [10] and [26]. The second part which consists of the derivation of dy-
namic equation for wi, was originally published in [34]. By accounting for fixed control
volume and uniform density at the plenum, the volume integral describing the rate of mass
flow is given by:

d

dt

∫
Vp(t)

ρpdV =
dρp
dt

∫
Vp(t)

dV = Vp
dρp
dt

(2.4)

which is equal to the mass balance:

Vpṗp = wi − w0(pp) (2.5)

As previously mentioned, all processes in the plenum are isentropic. This property, along
with evaluating the fluid as an ideal gas allows to establish the relation:

dpp = a2
0dρp (2.6)

along with
a0 =

√
κRT (2.7)

where R is now the mean radius of the compressor and κ =
cp
cv

is the ratio of specific heats

. Combination of equations (2.5), (2.6) and (2.7) yields:

dp

dt
= c2p

dρ

dt
dp

dt
= c2p

1

Vp
(wi − wo(pp))

ṗp =
c2p
Vp

(wi − wo(pp)) (2.8)

14



2.4 Non-dimensionalization of the Greitzer model

Thus, it has been verified that by taking into consideration the principle of mass balance,
one can indeed arrive at the differential equation for the plenum pressure in (2.1b). To
proceed with the derivation of the differential equation for the inlet mass flow, one can set
up the momentum equation:

d

dt
(mdC) = Acpd −Acpp (2.9)

where
md = LcAcρ (2.10)

is the mass of the flow passing through the compressor duct. By using the following
expression for inlet mass flow

wi = ρAcC (2.11)

the velocity C can be defined as
C =

wi
ρAc

(2.12)

and by combining the equations (2.9), (2.10) and (2.12), the differential equation for the
mass flow at the compressor inlet becomes:

d

dt

(
LcAcρwi
ρAc

)
= Acpd −Acpp

d

dt
(Lcwi) = Acpd −Acpp

ẇi =
Ac
Lc

(pd − pp) (2.13)

and the derivation differential equation for inlet mass flow in eq. (2.1a) has been com-
pleted. Remember that pd has been replaced by pc(wi) in the compressor models analyzed
in this thesis.

2.4 Non-dimensionalization of the Greitzer model
There are several reasons why the non-dimensionalization of the dynamic equations for
an arbitrary model is beneficial. Not only will one gain the reduction of the parameters
constants occurring in the dynamic equations (from 4 to 1 in the case of the Greitzer model)
but one can also more easily identify the dominant term in a equation. This property
can turn out to be valuable, when performing sensitivity analysis of the model,[37] and
[42]. As for the model of Greitzer, by non-dimensionalizing the dynamic equations one
is allowed to operate with the Greitzer’s B-parameter which is not only a useful tool for
detecting instabilities in the compression system but may also be used to predict the size
and shape of the surge cycles [41]. Non-dimensionalization will be performed by using
the factors: 1

2ρU
2 for plenum pressure pp, ρUAc for the compressor inlet mass flow wi

(where U is the mean velocity of the rotor) and 1/ωH for time t. The arising non-dimension
equivalents for the five system variables are:

φ =
wi

ρUAc
, ΦT (ψ) =

wo(pp)

ρUAc
, ψ =

pp
1
2ρU

2
, Ψc(φ) =

pc(wi)
1
2ρU

2
and τ = t ωH

(2.14)
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with ωH being the Helmholtz frequency:

ωH = a0

√
Ac
VpLc

(2.15)

The non-dimensionalization for the eq. (2.1a) yields:

ẇi =
Ac
Lc

(pc(wi)− pp)

ρUAcd

(
wi

ρUAc

)
dτ

ωH

=
1

2
ρU2Ac

Lc

pc(wi)1

2
ρU2

− po
1

2
ρU2


φ̇ =

U

2ωHLc
(Ψc(φ)− ψ) (2.16)

By introducing the Greitzer B-parameter:

B =
U

2ωHLc
(2.17)

eq. (2.16) can be rewritten to:

φ̇ = B (Ψc(φ)− ψ) (2.18)

Now, moving to non-dimentionalization of eq. (2.1b):

ṗp =
a2

0

Vp
(wi − wo(pp)

1

2
ρU2d

 pp
1

2
ρU2


dτ

ωH

= ρUAc
c2p
Vp

(
wi
ρuAc

− wo
ρuAc

)

ψ̇ =
2ωHLc
U

(φ− ΦT (ψ)) (2.19)

By considering the definition of the Greitzer B-parameter, one will get:

ψ̇ =
1

B
(φ− ΦT (ψ)) (2.20)

Putting together equations (2.18) and (2.20) results in the non-dimensional model of Gre-
itzer:

φ̇ = B (ψc(φ)− ψ)

ψ̇ =
1

B
(φ− ΦT (ψ)

(2.21)

with ΦT (ψ) is being defined as:

ΦT (ψ) = γT
√
ψ (2.22)
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where the throttle gain γT = kTuT was defined for simplicity. A study of the B-parameter
may help identify the mode of the compressor instability one will encounter during the
stall time [28]. If the parameter is above some critical value, denoted as Bcrit, the system
will oscillate due to presence of surge. For the cases where the parameter is bellow Bcrit,
one may expect the compressor to suffer from rotating stall. As a closing remark, it needs
to be mention that Bcrit is unique for every single compressor [23].

2.5 Equilibrium Point and Open-Loop Stability
Let the equilibrium point of the system states in eq. (2.21) be denoted as x0 = [ψ0 φ0]T

so that:

φ̇ = f(ψ0) = 0

ψ̇ = f(φ0) = 0

A subject of equilibrium point has been concerned in [24], where it has been defined in
visual manner as the intersection between the compressor characteristic Ψc(φo) and the
throttle characteristic. The latter is defined as

ΨT (φ) =
1

γ2
T

φ2 (2.23)

and can easily be obtained by rewriting the equation for ΦT (ψ). When decreasing the
opening at the throttle, something that will be achieved by reducing γT , the equilibrium
point moves along the compressor characteristic toward lower flow values. Such scenario
has been visualized in Figure 2.2.
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Figure 2.2: Compressor and throttle characteristic in the same coordinate system

If the equilibria is to the right of the peak of the compressor characteristic, the system
will remain stable. However, equilibria placed to the left of the peak value, will lead
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the system towards the surge condition Said differently, if the equilibrium is located at the
positive slope of the compressor characteristic, the system will become unstable. The latter
statement will be proven when open-loop stability of the compression system in (2.21) is
analysed locally. Linearizing the model in (2.21) with respect to the equilibrium x0, yields
following model on state-space form:[

˙̃
ψ
˙̃
φ

]
=

[
− 1
BgT

1
B

−B Bgc

] [
ψ̃

φ̃

]
(2.24)

where

A =

[
− 1
BgT

1
B

−B Bgc

]
(2.25)

is the system matrix and

gc =
∂Ψc

∂φ
along with gT =

∂ΦT
∂ψ

are slopes of the compressor characteristic and the throttle characteristic, respectively.
Be aware that in this context, the throttle characteristic is equal to the outlet flow at the
throttle. In addition, the variables ψ̃ = ψ − ψ0 and φ̃ = φ − φ0 represent departures
from the equilibrium and will play a important role later in the thesis. The stability of the
linearized system can be studied by evaluating the eigenvalues of the matrix A. In order to
obtain the eigenvalues , one has to solve the characteristic equation with respect to λ. The
equation becomes:

λ2 +

(
1

BgT
−Bgc

)
λ+

(
1− gc

gT

)
= 0 (2.26)

and the solution is found to be

λ =

−
(

1

BgT
−Bgc

)
±

√(
1

BgT
−Bgc

)2

− 4

(
1− gc

gT

)
2

(2.27)

As stated by [25], the expression for the eigenvalues reveals that the stability of the com-
pression system is bounded by a relation between the slope of compressor characteristic,
the throttle characteristic and Greitzer B-parameter. Moreover, [25] distinguish between
two types of instability for the compression system For the case where

(
1− gc

gT

)
< 0,

the slope of the compressor characteristic will be steeper then for throttle characteris-
tic (gc is greater than gT ) and the system becomes statically unstable. Furthermore,
−
(

1
BgT
−Bgc

)
< 0 implies that the slope of compressor characteristic will be posi-

tive at the equilibrium. Consequentially, the dynamic instability will be released upon the
system. As stated by [3], static instability is related to the departure from the original op-
erating point to a new operating point because of the interference of small disturbances.
Figure 2.2 might visualize this scenario, if the reduction in the throttle gain can be re-
graded as the system disturbance. Meanwhile, the dynamic instability acts as the criterion
that induces the fluctuations in the plenum pressure and inlet flow. A remark made by
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2.5 Equilibrium Point and Open-Loop Stability

[3] is that static instability is necessary but may not be sufficient alone to induce the dy-
namic instability. [42] reports that if the compression system is to be stabilized, gc must
be upper-bounded by:

gc <
1

B2gT
(2.28)

along with
gc < gT (2.29)

at the equilibrium point. The stabilization schemes discussed in the next chapter will all
try to satisfy those criteria.
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Chapter 3
Surge Control

3.1 Introduction
The drawbacks associated with surge made the control community to came up with var-
ious approaches, so that this instability would not enter the system. Such techniques can
commonly be divided into two groups: surge avoidance system (SAS) and active surge
control system (ASCS). The chapter begins with description of both of them, although the
emphasis will be on active surge control since this method is far more pertinent for this
thesis. Later, two variants of ASCS are to be mentioned and their relevance to adaptive
extension will be shown. The derivation based stability analysis for both variants are left
to their respective authors. This is no secret, hoverer, that each of them will use standard
P-controllers to maintain a global asymptotic stability for the overall system. A later mod-
ification of both controller will require the knowledge of the equilibrium point. It may
however be unobtainable in advance. As a solution, the author will propose an adaptive
scheme for the equilibrium, originating from [6].

A reliable detection is necessary for proper anti surge control and [18] addresses this issue
in some extent. Primarily, one should focus on monitoring the physical quantities that can
easily indicate the presence of surge. A reasonable choice for measurement would in such
case be the inlet mass flow and the plenum pressure. Another important factor of properly
detecting surge is selection of suitable instruments. To quickly counteract the effects of
surge, sensors and actuators are required to have small time constants and delays. The
importance of short reaction time to surge occurrence is emphasized by [18], since the
compressor may enter into deep surge in a short period of time if not taken care off. It is
preferable to choose instruments that are not intrusive, and if they are for some reason, they
should be placed downstream to the compressor instead of upstream. Finally, one should
limit the instrumentation to smallest possible extent in order to keep down the investments
and maintenance costs in addition to simplifying possible future repairs, [18].

20



3.2 Surge Avoidance System (SAS)

3.2 Surge Avoidance System (SAS)
Traditionally, one has managed to keep the compressor away from the instability of surge
by equipping the compression system with SAS. The surge avoidance system is based on
the idea of preventing the compressor to operate near or beyond the surge line (SL) at the
compressor map. For this purpose, a surge control line (SCL) has been introduced and has
been placed to the right of the SL. It cannot under any circumstances be crossed by the
compressor while in operation. The distance between the SL and SCL is denoted surge
margin (SM) and is defined as:

SM =
wSCL − wSL

wSCL
(3.1)

where wSL is the mass flow at SL while wSCL is the mass flow at SCL. [18] suggests 10%
as a descent value for the surge margin. The way the compressor escapes from operating
at the unstable area is being illustrated by Figure 3.1

Figure 3.1: Trajectory of the compressor system prevented from going into surge [51]

At the beginning, the compressor operates at steady-state (point E in the Figure 3.1) with
the throttle opening at 100% Then, the opening at the throttle is being reduced to 20%,
which will move the operating point of the compressor to F (in the surge area) if SAS
has not been implemented in the compression system. Instead the operating point will
move towards the surge area but while it crosses SCL, the fluid will be recycled from the
plenum back to the compressor inlet (the SAS-controller has detected that wi < wSCL)
and the compressor will be forced to operate at point G located at the SCL[34]. Hence, the
compressor has been prevented from entering the unstable condition of surge. It needs to
be noted, however, that the compensation for the disturbances and the uncertainty of the
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compressor map (and hence the surge line) will require an extension of the surge margin.
As a consequence of implementing the surge avoidance method, the feasible region of
the compressor will be limited. What follows is restriction of the compressor capability
since the point of peak pressure will often be located close the surge margin, which the
compressor is unable to cross. Another significant drawback of the surge avoidance is
the fact that one will often need to resort to recycling or bleed in order to achieve it, two
actuator strategies [18] deprecates to use since they will cause further efficiency losses.
Those claims are supported by [10], who states that ”same gas” will be compressed several
times consuming even more energy. In terms of blowing off flow through the bleed valve,
the already compressed flow is discharged downstream the compressor and into system
surroundings, making the compression of it meaningless in the first place.

3.3 Active Surge/Stall Control System (ASCS)
Another method to overcome the compressor surge is active surge/stall control which be-
came popular during the last two decades. [23] explains that its rising popularity must
partially be credited to the introduction of the Moore - Greitzer model [39]. The model
of Moore and Greitzer is a result of further developing the Greitzer model by including
the rotating stall amplitude as a system state and not just incorporate it as a pressure drop
like for some other models [23]. The method of active surge control differs fundamentally
from surge avoidance. Hence, some of the drawbacks that are typical for SAS, will not be
encountered in ASCS. Instead of not letting the compressor operate near the surge line one
is allowing the compressor to operate at the unstable area and then recovering the system
from surge by introducing an active element. Application of this strategy benefits in ex-
tension of the operating range of the compressor and thus improving its performance. This
strategy of stabilizing rather than avoiding surge and rotating stall, will provide robustness
to the system and the interfering disturbances that are capable of initiating the surge or the
rotating will be handled without degenerating the efficiency of the compressor.

The method of active surge control was pioneered by [20]. Over the years, there have
been proposed several actuators for ASCS with an overview given in [56]. The interesting
proposals for the actuator that have been listed are movable wall [30], loudspeaker [57],
suction-side valve [40] and air injection/bleed valve [58]. By taking into account how the
actuators works to stabilize the surge, active surge control can according to [53] be divided
into the concept of either increasing the pressure at the compressor upstream duct or de-
creasing the pressure at the plenum by flowing more fluid out of the plenum. This two
approaches have in the control literature been commonly referred to as upstream energy
injection and downstream energy dissipation, respectively. A controller based on down-
stream energy dissipation requires feedback from compressor mass flow while a controller
based on upstream energy injection requires feedback from pressure measurement at the
plenum [53].

This section will give examples of implementation of both types, where a closed-couple
valve (CCV for short) will be used as a actuator for downstream energy dissipation while
upstream energy will be carried out though piston actuation. Various strategies can be used
to derive the control laws for both approaches of ASCS. Examples are nonlinear controller
design using Lyapunov’s method, feedback linearization, bifurcation theory and backstep-
ping. The latter will be used to design the controller for CCV. As for the piston, several
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design methodologies will be evaluated.

3.3.1 Closed-Couple Valve
The idea of using a closed-couple valve as a actuator was studied in various research pa-
pers, with [24], [43], [45] and [46] being among them. The impact of CCV on surge
stabilization was verified by [24] which is the main contributor to this section. To quote
[46]: ” the term closed-couple implies that there is no significant mass storage (fluid ca-
pacitance) between the valve and the compressor”. The idea of placing the control valve
very close to the compressor is supported by [29] where it is argued that the stability effect
of the control valve falls when the distance between the compressor and the control valve
is enlarged. [43] persuades to position the control valve between the compressor and the
plenum. This is to avoid the decrease in control efficiency for system characterized by a
large B. A system with an increased B, is said to be more compliant which implies that
the unsteady flow through the throttle is less coupled with the unsteady flow through the
compressor.

[45] investigated the possibilities of coupling CCV with the feedback of either inlet flow
or plenum pressure. The conclusion was that for the cases where a simple P-controller is
chosen as the control structure, a feedback from inlet flow will ensure stabilization under
any circumstances as long as the controller gain K is chosen sufficiently large. The ability
of stabilizing the compressor surge by proportional feedback from plenum pressure will
be limited by the values of the parameter B and the slope of the compressor characteristic
gc. More precisely, the feedback by plenum pressure will only be useful when the slope of
the equivalent compressor characteristic ,given by mCe = ∂(Ψc−Ψv)

∂φ ), is upper-bounded
so that mCe <

1
B2gT

where Ψv is the pressure drop at CCV and is addressed as the CCV
characteristic. The slope of the throttle characteristic tends to be in a order of 10-100 while
the B-parameter exceeds unity in many application [45]. In such cases, the stabilization
abilities of the proportional feedback by plenum pressure will be limited to a great degree.
It needs to be remarked that those conclusions was based on the linearized version of the
compressor model, so they may not hold over large perturbations from equilibrium. With
the assumption of no flow stored between the CCV and the compressor, one can treat the
two devices as one component, termed ”equivalent compressor” by [46]. Furthermore,
[46] defines the characteristic of the equivalent compressor as:

Ψe(φ) = Ψc(φ)−Ψv(φ) (3.2)

where Ψv(φ) is expressed by:

Ψv(φ) =
1

γ2
cc

φ2 (3.3)

where γcc > 0 is proportional to the valve opening and will be considered later.
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Figure 3.2: Single compression system extended with CCV [24]

The compression system in a serial configuration with CCV is being illustrated by Figure
3.2. The dynamics of the expanded system are determinated by the equation set:

φ̇ = B(Ψe(φ)− ψ)

ψ̇ =
1

B
(φ− ΦT (ψ))

(3.4)

The extension of the system with CCV, shifts the equilibrium point to the intersection of
the equivalent compressor characteristic defined in eq. (3.2) and the throttle characteris-
tic. This allows to manipulate the slope of the equivalent characteristic at the equilibrium
point, by adjusting γcc. Therefore, the pressure drop at the control valve will be regarded
as the systems input, i.e. u = Ψv . Before assigning it with a specific control law, a trans-
formation of system coordinates suggested by [46] will be performed. The transformation
results in shifting the equilibrium to the origin and has been defined by [46] as:

φ̂ = φ− φ0 (3.5)

ψ̂ = ψ − ψ0 (3.6)

The variables defined in equations (3.5) and (3.6) will from now on be referred as deviation
variables since they measure the departure from the equilibrium. The system characteris-
tics mapped with the new coordinates are:

Ψ̂e(φ̂) = Ψe(φ̂+ φ0)−Ψe(φ0) = Ψe(φ)−Ψe(φ0) (3.7)

Ψ̂c(φ̂) = Ψc(φ̂+ φ0)−Ψc(φ0) = Ψc(φ)−Ψc(φ0) (3.8)

u = Ψ̂v(φ̂) = Ψv(φ̂+ φ0)−Ψv(φ0) = Ψv(φ)−Ψv(φ0) (3.9)

Applying the transformation to the model in (3.4) yields:

˙̂
φ = B(Ψ̂c(φ̂)− ψ̂ − u)

˙̂
ψ =

1

B
(φ̂− Φ̂T (ψ̂))

(3.10)

with

Φ̂T (ψ̂) = γT

√
ψ̂ + ψ0 − γT

√
ψ0 =

√
ψ − γT

√
ψ0 (3.11)

Ψ̂c(φ̂) = −k3φ̂
3 − k2φ̂

2 − k1φ̂ (3.12)
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where for the latter equation

k1 =
3Hφ0

2W 2

(
φ0

W
− 2

)
, k2 =

3H

2W 2

(
φ0

W
− 1

)
, k3 =

H

2W 3
(3.13)

Obviously, k3 > 0 while k1 ≤ 0 if the equilibrium is unstable and k1 > 0 otherwise. The
sign of k3 vary independently of the stability conditions. Motivation behind the change
of variables is to get the insight on how the states deviates from their desired equilibrium
point. Shifting the coordinates will also pay off in simplifying the expression for the
compressor map ,as showed by eq. (3.12), which turns out to be essential in later design of
the parameter estimator. [24] showed by applying the methodology of backstepping, that
if the controller gain c1 satisfies:

c1 >
k2

2

4k3
− k1 (3.14)

the control law
u = c1φ̂ (3.15)

will make the equilibrium of the closed-loop system in (3.10) globally uniformly asymp-
totic stable (GUAS). Due to pressure drop at the CCV being defined as the system input,
one can establish the relation:

u = Ψ̂v(φ̂) = Ψv(φ̂+ φ0)−Ψv(φ0) = Ψv(φ)−Ψv(φ0)

=
1

γ2
cc

φ2 − 1

γ2
cc

φ2
0 (3.16)

By inserting
u = c1φ̂ = c1(φ− φ0) (3.17)

following equation will be obtained:

c1(φ− φ0) =
1

γ2
cc

φ2 − 1

γ2
cc

φ2
0 (3.18)

and when solved with respect to γcc, it is revealed that:

γcc =

√
φ+ φ0

c1
(3.19)

Clearly, the control law will affect the equivalent compressor characteristic by adjusting
the gain γcc of the closed-couple valve. The adaptive laws presented and analyzed in
Chapter 4 will provide the control law in eq. (3.24) with estimates of k1,k2 and k3, so that
lower bound on c1 can be specified.

3.3.2 Piston Actuation
Piston-actuated active surge control system, PAASCS for short, originate from [50]. Over
the years,the literature has offered several improvements to PAASCS. Theoretical work
of [49] showed that active surge control involving a piston can be realized with a linear
quadratic regulator (LQR) which is related to the field of of optimal control. The linear
quadratic regulator will further be modified with integral action to bring the piston drift
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down to zero at steady-state. Although ASCS and SAS are commonly regarded as two
distinguish anti-surge strategies, [49] proved by simulations that ASCS and SAS can be
combined together where SAS will act as a back-up if ASCS should fail under some cir-
cumstances. The analysis given in this section will stick to a pure PAASCS and three
design approaches are to be evaluated in order to derive a controller later to be made adap-
tive. The compression system extended with piston actuation is being shown by the Figure
3.3:

Figure 3.3: Compression system equipped with piston [50]

Key parameters of the presented system that have not been defined in previous section
are: piston position Ls which is time-varying, mass of the piston denoted ms and force F
applied on the rod of the piston. The force F is being regarded as the system input. As the
surge occurs, the movable piston wall will adjust the flow wc directed out of the plenum,
reduce the plenum pressure (recall the terminology of downstream energy dissipation)
and bring the compressor to asymptotic stability. According to [50], the stiffness and
the damping associated with the piston can be neglected due to being dominated by the
pressure and actuating forces. Alternatively, they could be included in the model by being
compensated for by the input force F, as stated by [50]. The assumption made for the
compression system given by the Greitzer model will follow here. The bellow equations
describes the dynamics of system depicted in figure 3.3.

ẇi =
Ac
Lc

(pc(wi)− pp)

ṗp =
a2
o

Vp

(
wi − wo(pp)− ρAs

dLs
dt

)
ms

d2Ls
dt2

= ρAs − F

(3.20)

where wi, wo and pp have replaced w1, w2 and p in order to follow earlier established
notation. Finding the control law for the system represented by the equation set (3.20) can
be quite challenging due to the systems complexity. Two control laws were proposed by
[50] for this particular system. The first one has been designed by employing the backstep-
ping method, and although not fully revealed by the authors, it will probably contain many
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complicated terms, and consequently has been omitted from further discussion. The sec-
ond law to be proposed, has been conducted with the aim of making the Jacobian matrix
have eigenvalues in the right half-plane. A matrix with such properties, has been named
Hurwitz matrix by the control community. What follows is a local asymptotic stability
for the equilibrium point. Neither the second control law will be used, however, because
it does not exploit the linear nature of the compressor characteristic (obtained by shifting
the coordinates of the states) which makes it inconvenient to form the adaptive controller
evolved this thesis. To continue the search for a more suited control law, there will be a
need to look for a less complicated model. One way to achieve it is to treat the piston as
an actuator with very fast transient dynamics so that the only contribution the piston will
have to the system is through the outflow wu. The simplified version of (3.20) is given by:

ẇi =
Ac
Lc

(pc(wi)− pp)

ṗp =
a2
o

Vp
(wi − wo − wu)

(3.21)

with wu now being defined as the control input. By non-dimnsionalizing equation set
(3.21) in the same manner as for the original Greitzer model, one will get the following:

φ̇ = B(Ψc(φ)− ψ)

ψ̇ =
1

B
(φ− ΦT (ψ)− φu)

(3.22)

The coordinates for PAASCS will be transformed in the same way as they were for CCV.
The model described by the equation set (3.22) expressed with the new coordinates will
take the form:

˙̂
φ1 = B(Ψ̂c(φ̂)− ψ̂)

˙̂
ψ =

1

B
(φ̂− Φ̂T (ψ̂)− φ̂u)

(3.23)

where φ̂u = φu Now, consider the control law:

φ̂u = −c2B2(Ψ̂c − ψ̂) (3.24)

which has been designed by [53] for the system given in (3.23). [53] proved by applying
Lyapunov stability method and Young’s inequality that by choosing the controller gain c2
within the bounds:

km ≤
c2
2
≤ kn (3.25)

with km =
∂Ψ̂c

∂φ̂

∣∣∣∣∣
max

and kn =
∂ψ̂

∂Φ̂T

∣∣∣∣∣
min

, the global asymptotic stability of the operating

point

will be ensured. Next, recall the definition of the compressor characteristic:

Ψ̂c(φ̂) = −k3φ̂
3 − k2φ̂

2 − k1φ̂ (3.26)

Because of the cubic nature of the compressor characteristic, the maximum positive slope
(as implied by the lower bound of the controller gain c2) is located at at the inflection
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point in the stable area of the compressor characteristic. Like for any twice differentiable
function, the inflection point can be determinated by evaluating function’s second derive
at zero. For the compressor characteristic curve, the inflection point occurs at φ̂m equal to:

∂2Ψ̂c

∂φ̂2
= −6k3φ̂− 2k2 = 0 =⇒ −6k3φ̂ = 2k2 =⇒ φ̂m = − k2

3k3

and is given by:

km =
∂ψ̂c

φ̂

∣∣∣∣∣
φ̂=φ̂m

=
k2

2

4k3
− k1 (3.27)

Appendix in [50] proved that

kn =
2ψ̂

Φ̂T

∣∣∣∣∣
min

(3.28)

Since kn from eq. (3.28) is not expressed by the coefficients k1,k2 and k3 from the com-
pressor map, it will not be accounted for in this thesis. To avoid the violation of upper
bound kn, c2 has been placed fairly closed to the lower bound km defined in (3.27). The
adaptive laws presented and analyzed in Chapter 4 will provide the control law in eq.
(3.24) with estimates of k1,k2 and k3, so that km can be specified.

3.4 Determination of the Equilibrium Point
As a consequence of implementing the closed-loop compression system in (3.10) and
(3.23) , the coordinates of the equilibrium point x0 = [φ0, ψ0]T has to be known prior
to the simulation. For CCV, the coordinates may be determinated by first solving the fol-
lowing 3rd order equation originally given in [23]:

Ψc(φ0)−Ψv(φ0) =
1

γ2
cc

φ2
0

ψc0 +H

(
1 +

3

2

(
φ0

W
− 1

)
− 1

2

(
φ0

W
− 1

)3
)
− c1φ0

2
=

1

γ2
cc

φ2
0 (3.29)

which follows from

Ψv(φ0) = (u+ Ψv(φ0))|φ=φ0

=

(
c1(φ− φ0) +

c1
φ+ φ0

φ2
0

)∣∣∣∣
φ=φ0

=
c1φ0

2
(3.30)

Then, φ0 can be found by using the formula for the throttle characteristic:

ψ0 =
1

γ2
T

φ2
0 (3.31)

Regarding the actuation by piston, the equilibrium may be obtained by simply drawing
Ψc(φ) and ΨT (φ) in the same coordinate system and locating the intersection between
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them. Both approaches will depend on knowing the compressor characteristic. Since the
compressor characteristic is assumed unobtainable, neither of the them can be applied.
Alternatively, an approximation of the equilibrium coordinates may be used. In such case,
the asymptotic stability cannot be guaranteed for the controller, but convergence to a set
and avoidance of surge can be shown. The proof can be found in [23]. If neither this
alternative is attractive,[6] provided following linear adaptation law linear adaptation law
for the equilibrium point.

˙̂
θ = P (x− θ̂) (3.32)

where

θ̂ =

[
φ̂0

ψ̂0

]
(3.33)

is the estimate of the unknown equilibrium point

θ∗ =

[
φ0

ψ0

]
(3.34)

Furthermore,

P =

[
p1 p2

p3 p4

]
(3.35)

is the adaptive gain matrix to be designed and x = [φ ψ]
T is earlier defined state vec-

tor. The performance of the adaptive law will be presented in section 7 The closed-loop
compression systems in (3.10) and (3.23) , can both be expressed in more general manner
as:

ẋ = f(x) + g(x)u (3.36)

with the control law
u = ϕ(x− x0) = ϕ(z) (3.37)

Augmenting the closed-loop system (3.36) with the recently defined adaptive law in 3.32
gives the new and extended system

ẋ = f(x) + g(x)ϕ(x− θ̂)
˙̂
θ = P (x− θ̂)

What follows is a statement made by [6].

” Let [xT0 , θT0 ]T denote an equilibrium of (3.38). The non singularity of P implies that all
equilibria must satisfy x0 = θ0, ”Let the [xT0 , θT0 ]T represent the equilibrium of (3.38).
If P is chosen to be a non-singular matrix, all equilibria will have to satisfy x0 = θ0 witch
in turn implies that ϕ(x0 − θ̂0) = 0.”

The statement will be revisited when the performance of the adaptive law is evaluated.
The desired equilibrium x0 along with any other possible equilibria will not depend on
the parameters of the controller as long as asymptotic stability is secured. The rest of this
section will be dedicated to discussing under which conditions the system in (3.38) will
become asymptotically stable. First, let’s begin with the singular perturbation analysis and
define xQSS = h(θ̂), so that:

f(xQSS) + g(xQSS)ϕ(xQSS − θ̂) = 0 (3.38)
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Furthermore, the boundary-layer system with constant θ̂ is defined to be:

ẋ = f(x) + g(x)ϕ(x− θ̂) (3.39)

and
˙̂
θ = εP (h(θ̂)− θ̂) (3.40)

is termed the reduced system. If slow adaptation is being chosen, the adaptive law for
equilibrium will be on the form:

˙̂
θ = εP (x− θ̂) (3.41)

where 0 < ε � 1. Next, consider the following theorem together with its corresponding
proof [6]:

Theorem 1. For a given equilibrium point x0 assume that:

(1) there exist a control law u = ϕ(φ− φ0) where ϕ(0) = 0 such that x0 is an asymp-
totically stable equilibrium point of (3.36)

(2) J0 , ∂f/∂x and Jc , J0 + g (∂ϕ/∂x) evaluated at x = xe are non-singular.

Under these conditions, there exist a matrix P ∈ R2x2 and a scalar ε∗ > 0 such that ,
∀ε ∈ [0, ε∗), x0 is an exponentially stable equilibrium of the extended system (3.38).

Proof. It follows from Assumption (1) that (3.39) has an exponetially stable equilibrium.
Moreover, the linearization of the reduced system (3.40) around θ̂e = x0 is expressed as:

˙̂
θ = εP

(
∂h

∂θ̂
− I
)
θ̂ (3.42)

Taking the derivative with respect to θ in (3.39) and noting that ϕ(.) vanishes at the equi-
librium gives:

J0
∂h

∂θ̂
+ g

∂ϕ

∂z

[
∂h

∂θ̂
− I
]

= 0

∂h

∂θ̂

[
J0 + g

∂ϕ

∂z

]
− g ∂ϕ

∂z
= 0

∂h

∂θ̂
Jc − g

∂ϕ

∂z
= 0

∂h

∂θ̂
= J−1

c g
∂ϕ

∂z

∂h

∂θ̂
− I = J−1

c g
∂ϕ

∂z
− I

= J−1
c

[
g
∂ϕ

∂z
− Jc

]
= −J−1

c J0 (3.43)

Lastly, the reduced system described by (3.40) can now be expressed as:

θ̂ = −ε
(
PJ−1

c J0

)
θ̂ (3.44)
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From Assumption (2),it follows that J−1
c J0 is non-singular. Therefore there exists a matrix

P such that PJ−1
c J0 is Hurwitz, which in turn implies the local exponential stability of

the equilibrium x0 of (3.44). Since the two subsystems are exponentially stable, the local
asymptotic stability of the equilibrium of the composed system (3.38) for sufficiently small
ε will be ensured (Chapter 7, Corollary 2.3 in [36]).
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Chapter 4
On-Line Parameter Estimation

4.1 Introduction and Definition
The identification of the system starts with investigating its structure. Once the structure
has been settled, the system identification will switch into obtaining ”the values of certain
constant commonly referred to plant or model parameters” [33]. Those parameters will
typically be obtained by measurements or calculations based on laws of physics. They
can also in many cases be specified in the set of data provided by the manufacturer. In
some applications, however, those options are not possible and the only way to determi-
nate the parameters is to examine how the systems input and output signals are related to
each other. Such experiments are in the control literature known as parameter estimations.
The parameter estimation can either be carried out off-line or on-line. The estimation of
the parameters done on-line generates the estimates of the unknown parameters while the
system is running. Hence, the name on-line parameter estimation. Such form of parameter
estimation will be preferable for the systems where parameters vary with time, for example
due to change in the operation condition. The adaptive law which generates the estimates,
will most often be represented by a differential equation. It can be constructed by solving a
optimization problem where one aims to minimize the deviation between the system mea-
surement, y(t), and the output signal from the parametrized model, ŷ(θ, t). Hopefully, the
adaptive law will be defined in such way so that ŷ(θ, t) converge to y(t) as the time goes
on. This is being achieved by continuously updating the vector θ(t) containing the esti-
mates. Obviously, a ŷ(θ, t) getting closer to y(t) implies that the estimate θ is approaching
the unknown parameter vector θ∗. The concept of on-line parameter estimation can easily
be implied to the issue of identifying the compressor characteristic. The latter is regarded
as the system, while inlet flow and pressure rise are considered as the input signal and as
output signal, respectively. In the section 4.3, it will be demonstrated that the compressor
characteristic can be expressed as linear parametric model which allows for application of
two fundamental estimation techniques that will be reviewed later in the chapter.
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4.2 Mathematical preliminaries

4.2 Mathematical preliminaries
The convergence properties of the two adaptive laws will be evaluated in terms of Lp
stability. For a reader unfamiliar with this concept, some definitions (which has been
taken from [33]) will be offered:

4.2.1 Lp Spaces
Let x denote some function of time, with possibilities of being a scalar function or a vector
function. It will belong to space Lp if

‖x‖p ,
(∫ ∞

0

|x(τ)|pdτ
)1/p

(4.1)

exists (that is, ‖x‖p is finite) for some p ∈ [1,∞). Moreover, if the L∞-norm

‖x‖∞ , sup
t≥0
|x(t)| (4.2)

exists for x, one is saying that x belong to L∞. Lastly, if x is a scalar function,|.| will
represent the absolute value. On the other hand, if x is supposed to be a vector function
defined in Rn , |.| is denoting any norm in Rn

4.2.2 Lp Stability
The linear time-invariant (LTI) system considered for definition of Lp-stability is being
described by the convolution of input signal u(t) and system response h(t):

y(t) = u ∗ h ,
∫ t

0

h(t− τ)u(τ)dτ =

∫ t

0

u(t− τ)h(τ)dτ (4.3)

One is saying that the system in (4.3) isLp-stable if u ∈ Lp ⇒ Lp along with ‖x‖ ≤ c ‖u‖
for some constant c > 0. More precisely, if u ∈ Lp and h ∈ L1 then

‖y‖p ≤ ‖h‖1 ‖u‖p (4.4)

for some p ∈ [1,∞). In the case of p = ∞, Lp - stability (or L∞ - stability) is being
referred to as bounded-input bounded-output (BIBO) stability.
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4.3 Linear Parametric Model
Recall the compressor characteristic:

Ψ̂c(φ̂) = −k3φ̂
3 − k2φ̂

2 − k1φ̂ (4.5)

where k1,k2 and k3 are the unknown constants to be generated by the adaptive law and
as previously shown, used to construct the the lower bound for the surge controller. By
defining

y = Ψ̂c (4.6)

as the output signal,
z =

[
φ̂3 φ̂2 φ̂

]T
(4.7)

as the regressor, and
θ∗ =

[
−k3 −k2 −k1

]T
(4.8)

as the vector containing the unknown constants, the equation (4.5) may be expressed as
the linear parametric model:

y(t) = θ∗T z(t) (4.9)

which got its name from letting the unknown vector θ∗ to appear linearly in the equation
The prediction ŷ of y at time t is given as follows:

ŷ(t) = θT (t)z(t) (4.10)

The definition of prediction in (4.10) allows for construction of the prediction (estimation)
error:

ε1(t) = y(t)− ŷ(t) = y(t)− θT (t)z(t) (4.11)

When defining the parameter estimation error, θ̃, as θ̃ , θ− θ∗, eq. (4.3) can be rewritten
on the form:

ε1(t) = y(t)− ŷ(t) = θ∗T z(t)− θT (t)z(t) = −θ̃T (t)z(t) (4.12)

It has become obvious that there exist a relation between ε1(t) and θ̃. An observant reader
will notice that none of the elements in z(t) are bounded functions. Neither the signal ŷ(t)
is guaranteed to be bounded. Consequentially, the upcoming optimization problem may
be ill-posed, meaning that small variations in the input data will result in large changes
to the solution [8]. This can be solved by normalizing both z(t) and ŷ(t) with a signal m
(given by m2 = 1 + n2

s) so that:

ȳ =
y

m
∈ L∞ and z̄ =

z

m
∈ L∞

A straightforward choice for ns is ns = z and thus m2 = 1 + zT z. The prediction of ȳ is
being generated as:

ˆ̄y = θT z̄ (4.13)

which arises the normalized prediction error to be:

ε̄1 = ȳ − ˆ̄y =
y − ŷ
m

=
y − θT z
m

(4.14)

It will be seen in the upcoming section, the recently defined normalized estimation error
and the regressor will play an important part in deriving the adaptive law for θ
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4.4 Method of Steepest Descent

4.4 Method of Steepest Descent
The method of steepest descent is according to [5], the simplest version of the gradi-
ent method for solving an optimization problem. The method of steepest descent can be
classified as line search algorithm, meaning that it is heading for the solution θ∗ of the
optimization problem

minimize J(θ)

subject to θ ∈ Rn
(4.15)

by selecting a direction dk and the length λk for the current state θk with the goal of
improving (in most cases reducing) the present value of the objective function J (θk).
When the direction dk and the length λk have been determinated, the search continues to a
new state θk+1. The procedure of choosing the length and the direction is being done in an
iterative manner for some initial approximation θ0 and new states are generated until some
conditions are satisfied causing the search to be terminate. What characterizes the method
of steepest descent is that the chosen direction always equals the opposite direction of the
gradient at the current state, that is dk = −∇J (θk). Equation (4.16) shows how the next
state in the steepest descent method is being computed:

θk+1 = θk + λdk

= θk − λ∇J (θk) (4.16)

As far as termination conditions are concerned [7] lists up following criteria:

(i) Before computing the next iteration state θk+1, one has to check if following holds:

||∇J (θk) || ≤ εG (4.17)

where εG is the tolerance of the gradient and is defined by the user. If (4.17) is
satisfied, the search is stopped resulting in θ∗ = θk.

(ii) Furthermore, if following reduction appears for two consecutive iterations:

|J(θk+1 − J(θk)| ≤ εA + εR|J(θk)| (4.18)

the search is terminated and one concludes that θ∗ = θk. The parameters εA,εR,
denotes absolute tolerance and relative tolerance respectively. Like for εG, εA and
εR are also being supplied by the user.

The algorithm for solving the optimization problem by applying the method of steepest
descent is constructed as in [7]:
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4.4 Method of Steepest Descent

The algorithm presented here differs from the one in [7], since it assigns the direction for
the next iteration point to be dk = −∇J (θk) rather than dk = −∇J (θk) /||∇J (θk) ||.
The stopping criteria in the in Algorithm 1 will not be taken into account when deriving
the adaptive law for the surge controller later on. There, one is simply assuming that the
search is stopped when dk = −∇J (θk) = 0, providing some local minimum. Besides,
the optimization problem used to design the adaptive law will be continuous and since Al-
gorithm 1 only is eligible for optimization problems on discrete form, its update equation
(Step 3) has to be reformulated. Hence, Algorithm 1 is not fitted for the kind optimiza-
tion problem needed in this thesis. It has been presented solely with purpose of giving
the reader an understanding on how the method of steepest descent may be implemented.
By defining infinitesimally step lengths, the continuous version of equation (4.16) will be
given by the following differential equation:

θ̇ = −∇J(θ(t)), θ (t0) = θ0 (4.19)

The author will follow [33] and scale the direction of steepest descent with the positive
definite n× n non-singular scaling matrix Γ = ΓT . By letting Γ = Γ1ΓT1 and saying that;

Γ1θ̄ = θ (4.20)

the optimization problem (4.15) (which is now assumed to be continuous) gets an equiva-
lent

minimize J(θ̄) , J (Γ1θ)

subject to θ̄ ∈ Rn
(4.21)

The differential equation generating the trajectory θ̄(t) for (4.21) becomes:

˙̄θ = −∇J
(
θ̄
)

= −∇J
(
Γ1θ̄
)

(4.22)

Because ∇J
(
θ̄
)

=
∂J(Γ1θ̄)

∂θ̄
= ΓT1∇J

(
Γ1θ̄
)

and Γ1θ̄ = θ, equation (4.22) can be rewrit-
ten as:

Γ−1
1 θ̇ = −ΓT1∇J (θ)

θ̇ = −Γ1ΓT1∇J (θ)

θ̇ = −Γ∇J (θ) (4.23)

The scaling matrix Γ will from known on be referred to as adaptive gain. Although, there
various types of objective functions to be chosen from, in order to keep the optimization
simple, following objective function has been proposed:

J(θ) =
ε̄21
2

=
(ȳ − θT z̄)2

2
=

(y − θT z)2

2m2
=
ε2m2

2
(4.24)

with ε being constructed to

ε =
y − ŷ
m2

(4.25)

The objective function J(θ) is being minimized with respect to θ for each time t by ap-
plying the method of steepest descent (from now and onward referred to as the gradient
method). The problem formulated by eq. (4.24) have the property of being convex. As a
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4.4 Method of Steepest Descent

result, any local solution of the problem, will also be a global solution. The gradient of the
objective function, J(θ) is found to be

∇J(θ) =

(
y − θT z

)
z

m2
= −εz (4.26)

Finally, the adaptive law for generating θ(t) may now be written as:

θ̇ = −Γεz (4.27)

Naturally, a following question arises: ”Will θ ever reach θ∗”? The answer that follows is:
”It depend on how the input signal z is being constructed. If the input signal z(t) is ”rich”
enough, the outcoming signal y(t) will contains sufficient information about the unknown
θ∗, and the correct estimation of the latter will be reached eventually”. However, one might
still ask: ”how do I know that an input signal I am using for my parameter estimation can
be identified as ”rich”? Well, one way to examine quality of the input signal is to check
whether it satisfy persistent excitation condition, meaning:∫ t+T0

0

z2(τ)dτ ≥ α0T0 (4.28)

∀t ≥ 0 and where T0,α0 are some positive constants. In adaptive control the convergence
of θ(t) towards θ∗ is not crucial and the property of persistent excitation will only be of
theoretical interest. Therefore, it will not be further explored in this thesis. Besides, the
input signal for the estimation for the purpose of adaptive control cannot be chosen freely,
making it very challenging, if not impossible, to identify it as a function. [3mm] What will
follow now is analysis of the stability properties of the adaptive law (4.27). Consider the
statements given by the following theorem [33]

Theorem 2. The adaptive law (4.27) guarantees that:

(1) ε,εns, θ, θ̇ ∈ L∞
(2) ε,εns, θ̇ ∈ L2

(3) If ns,z ∈ L∞ and z is PE, then θ(t) converges exponentially to θ∗

It needs to be remarked that properties (1) and (2) are independent of z being a bounded
signal.

Proof. Because the unknown vector θ is assumed to be constant during the adaptation
scheme, it can be shown that:

˙̃
θ = Γεz (4.29)

The proposed candidate for Lyapunov function is:

V
(
θ̃
)

=
θ̃TΓ−1θ̃

2
(4.30)

with the time derivative:

V̇ = θ̃Γ−1 ˙̃
θ

= θ̃Γ−1Γεz

= θ̃εz

= −ε1ε
= −ε2m2 ≤ 0 (4.31)
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4.5 Method of Least-Squares

From (4.31) it can be concluded that V,θ̃,θ ∈ L∞ and because of the relation

ε = − θ̃
T z

m2
(4.32)

(recall eq. (4.12)), it follows that also ε,εm ∈ L∞. Furthermore, the properties of V,V̇
gives εm ∈ L2 and thus ε, εns ∈ L2. By analysing (4.27), it can established that:

| ˙̃θ| = |θ̇| ≤ ||Γ|||εm| |z|
m

(4.33)

By considering (4.33) and keeping in mind that |z|m ∈ L∞ together with εm ∈ L2 ∩ L∞,
it can be concluded that θ̇ ∈ L2 ∩L∞ and the statements (1) and (2) of the Theorem 2 has
been proven.

For the verification of the statement (2), the reader is referred to Section 4.8 in [33].

Although, limt→∞ V (θ̃(t)) = V∞ (given by the properties V (θ̃) and V̇ ≤ 0 of the
Lyapunov-like function V (θ̃)), one cannot simply say that V̇ (t) goes to 0 as t→∞. This
implies that ε or εmmay not approach 0 as t→∞ and the search (provided by the gradient
method) will not necessarily end at the global minimum where ∇J(θ) = −εz = 0. How-
ever if, as stated by [33], one normalizes vector z in such way so that ż/m,ṁ/m ∈ L∞, it
can be established that d

dt (εm) ∈ L∞. By considering the latter along with εm ∈ L2 one
can show that ε(t)m(t) reaches 0 as t → 0. Because m2 = 1 + n2

s, ε(t) → 0 as t → ∞
witch corresponds to θ̇ → 0 as t → ∞. Subsequently, |∇J(θ(t)) → 0 as as t → ∞, and
the search results in a global minimum.

4.5 Method of Least-Squares
As the name implies, the least-squares method estimates the unknown parameters by min-
imizing the square deviations between the observed data and their predicted values which
are generated by estimating the unknown parameters [54]. According to [2], it is the most
frequently used method when it comes to linear regression. which corresponds to finding
a line that fits the observed data in the best way. Both [2] and [54] gives examples on
how the method of least-squares can be assigned into the regression analysis. The pop-
ularity of this method is not limited to the field of linear regression, however. It is also
commonly applied in system identification, specially if the system equation can be ex-
pressed as an linear parametric model. Certainly, the identification of such system will
have many similarities with regression. The method of least-squares is also suitable to
identify systems where the unknown parameters do not appear linearly to the regression
vector. However, this particular type of problems will not be covered in this report, and
the reader is referred to [38] for the description. There are several different approaches for
the least squares method, some of them being ordinary least-squares (which is the simplest
one), the weighted least-squares, the partial least squares and the alternating least-squares.
The weighted least squares will later on be addressed as ”the least squares with forgetting
factor”. The descriptions of the the partial least squares and the alternating least-squares is
offered in [1] and [21], respectively. The method of least squares can be based on various
types of cost functions each treating the past data differently. For instance,

J(θ) =
1

2

∫ t

0

ε(τ)2dτ =
1

2

∫ t

0

(y(τ)− θ(t)z(τ))2

m2(τ)
dτ (4.34)
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4.5 Method of Least-Squares

is the cost function with respect to θ at time t, that penalizes all the past estimation errors
from τ = 0 up to time t. Meanwhile,the more complicated cost function

J(θ) =
1

2

∫ t

0

e−β(t−τ) (y(τ)− θT (t)z(τ))2

m2(τ)
dτ +

1

2
e−βt(θ − θ0)TQ0(θ − θ0) (4.35)

where Q0 = QT0 > 0,β ≥ 0 and θ0 = θ(0), emphasizes more recent errors and includes
penalty on initial parameter error θ− θ0. The cost function applied to design the estimator
will differs slightly from (4.35). It will treat all past data equally (i.e the forgetting factor
β is set to zero) but will still penalize the initial parameter error θ − θ0. It will be termed
JLS(θ) to avoid confusion with earlier mentioned cost functions and takes the form:

JLS(θ) =
1

2

∫ t

0

(y(τ)− θT (t)z(τ))2

m2(τ)
dτ +

1

2
(θ − θ0)TQ0(θ − θ0) (4.36)

which because of the property z/m, y/m ∈ L∞, J(θ)LS is convex function of θ over R3

at each time t. The minimum of the function can be found by computing its gradient and
setting it equal to zero,i.e:

∇J(θ)LS = 0 ∀t ≥ 0 (4.37)

The result is:

∇J(θ)LS = Q0 (θ(t)− θ0)−
∫ t

0

y(τ)− θT (t)z(τ)

m2(τ)
z(τ)dτ (4.38)

The non-recursive least squares algorithm, which yields from eq. (4.38), is as follows:

θ(t) = P (t)

(
Q0θ0 +

∫ t

0

y(τ)z(τ)

m2(τ)
dτ

)
(4.39)

where

P (t) =

(
Q0 +

∫ t

0

z(τ)zT (τ)

m2(τ)
dτ

)−1

(4.40)

In most cases, one would like to avoid calculating the inverse in (4.40) when computing
the matrix P . The alternative is the following differential equation:

Ṗ = −P zz
T

m2
P, P (0) = P0 = Q−1

0 (4.41)

which can be obtained by using the identity:

d

dt
PP−1 = ṖP−1 + P

d

dt
P−1 = 0 (4.42)

This way of computing the matrix P is valid because the trajectory P (t) will exist for all t
due toQ0 ≥ 0 together with zzT being positive semi-definite. That is, the inverse in (4.40)
will always be positive definite meaning that one does not need to worry about the issue
of division by zero. By differentiating (4.39) with respect to t, inserting expression (4.41)
in the calculations and keeping in mind that εm2 = y − θT z, one will get the following
adaptive law:

θ̇ = Pεz (4.43)
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4.5 Method of Least-Squares

The adaptive scheme involving equations (4.41) and (4.43) is according to [33], referred to
as ”pure” least squares algorithm in the identification literature. It has many similarities
with the well-known Kalman-filter. For that reason, the matrix P = PT ≥ 0 is commonly
known as covariance matrix. If one would prefer to incorporate discounting of past data
(that is, one would like to include the forgetting factor β), one will obtain the same adaptive
law as in (4.43). However, the differential equation for the matrix P will become:

Ṗ = βP − P zz
T

m2
P, P (0) = P0 = Q−1

0 (4.44)

The disadvantage of choosing the pure least-squares algorithm as the adaptive scheme
is that it may suffer from covariance wind-up. This particular problem occurs when the
matrix P−1 grows without bounds, since

d

dt
P−1 =

zzT

m2
(4.45)

will always be positive semi-definite. The boundless rise of P−1 will result, as stated by
[33], in an arbitrarily small P and thus slow down the adaptation in some directions. One
way to preventing covariance wind-up from occurring, is to equip the pure least-squares
algorithm with so-called covariance resetting. This new, modified version of pure leas-
squares algorithm is described as follows:

θ̇ = Pεz

Ṗ = −Pzz
TP

m2
, P

(
t+r
)

= P0 = ρ0I (4.46)

The matrix P is reset to its initial condition at time t+r , for which P is considered too small,
more specifically λmin(P (t)) ≤ ρ1 and ρ0 > ρ1 > 0. Here, λmin(P (t)) denotes the
minimum eigenvalue of P at time t and the ρ0, ρ1 are some freely defined constants. This
process of resetting the covariance matrix P will always keep it above a certain lower-
bound and hence maintain the efficiency of the adaptive scheme. As remarked by [33],
the pure least-square algorithm with covariance resetting cannot be derived by setting
∇J(θ) = 0, as for the traditional least-squares methods. It will, however, be charac-
terized as a least-square method between its resetting points. Although, one may risk to
experience the covariance wind-up when using pure least-squares approach, one will al-
ways be guaranteed to reach parameter convergences to constant values as shown by the
following theorem:

Theorem 3. The pure least-squares algorithm guarantees that:

(1) ε,εns, θ, θ̇, P ∈ L∞

(2) ε, εns, θ̇ ∈ L2

(3) limt→∞ θ(t) = θ̄, where θ̄ is a constant vector

(4) If ns,z ∈ L∞ and z is PE, then θ(t) converges exponentially to θ∗

Proof. By considering (4.45), it is concluded that Ṗ ≤ 0 implying P (t) ≤ P0 ∀t. There-
fore, the matrix P (t) = PT (t) has the limit defined as:

lim
t→∞

P (t) = P̄ (4.47)
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4.5 Method of Least-Squares

where P = PT is a constant matrix assumed to be positive semi-definite. Now, recall the
expressions:

Ṗ = −P zz
T

m2
P,

d

dt
P−1 =

zzT

m2

It may be established that:
d

dt
P−1 = −P−1PP−1 (4.48)

Furthermore, by using θ̇ =
˙̃
θ and ε = − θ̃

T z

m2
= −z

T θ̃

m2
, following equation can be con-

structed:

d

dt
(P−1θ̃) = −P−1ṖP−1θ̃ + P−1 ˙̃

θ

=
zzT

m2
θ̃ + P−1θ̇

=
zzT

m2
θ̃ + εz

= −εz + εz = 0 (4.49)

Because, d
dt (P

−1θ̃) = 0, the function P−1(t)θ̃(t) will remain unchanged in the time do-
main implying thatP−1(t)θ̃(t) = P−1

0 θ̃(0) which may be rewritten as θ̃(t) = P (t)P−1
0 θ̃(0).

By taking into consideration the limit defined in (4.47), it can be stated that limt→∞ θ̃(t) =
P̄P−1

0 θ̃(0) which result in limt→∞ θ̃(t) = θ∗ + P̄P−1
0 θ̃(0) , θ̄. Thus, the statement

(3) of Theorem 3 has been proven. Because the trajectory θ(t) satisfies limt→∞ θ̃(t) =
θ∗ + P̄P−1

0 θ̃(0) , θ̄, one can conclude that θ,θ̃ ∈ L∞. Furthermore, keeping in mind
that z/m ∈ L∞ along with εm = θ̃T z/m, one will get that ε, εns ∈ L∞ as stated by
(1) in Theorem 3. In order to verify the statement (2) of the same theorem, consider the
following Lyapunov-like function:

V (θ̃, t) =
θ̃TP−1(t)θ̃

2
(4.50)

Its derivative along the parameter θ and time domain t is:

V̇ = P−1θ̃
˙̃
θ +

θ̃T Ṗ−1(t)θ̃

2

= εθ̃T z +
θ̃zzT θ̃

2m2

= −ε2m2 +
ε2m2

2
= −ε

2m2

2
(4.51)

which gives V ∈ L∞ as well as εm ∈ L2 and one can conclude that ε,εns ∈ L2. The
properties P , Ym ,εm ∈ L2 together with εm ∈ L2, implies that θ̇ ∈ L∞ ∩ L2 Thus, the
proof of (2) in Theorem 3 has also been completed.

For the proof of the statement (4), consult Section 4.8 in [33].

41



Chapter 5
Observer for Inlet Flow

5.1 Introduction
As concluded earlier, the non-linear controller for CCV together with estimation of the
compressor characteristic will rely on feedback from inlet flow at the compressor duct, φ.
It is, however, a well known fact that there are several issues related to flow measurement.
A flow sensor is costly in general,the signals transmitted from the instrument are often cor-
rupted with noise and occasionally the flow may even be unobtainable for measurement.
The factors motivated the control community to develop a observer which will predict the
trajectory of flow by considering the dynamics of the system. It needs also to be pointed
out, that the observer is not restricted to any specific control law. In the term of compres-
sor systems, the literature offers quite little about mass flow observers when comparing
with the large amount of publication concerning the control laws applying measurement
of mass flow as a feedback. A popular type of observer is the one based on circle crite-
rion (see [35] for the definition) which has been briefly discussed in [11]. Apparently, an
observer type can be divided into two classes: a full order observer or the reduced order
observer. Their differences lie in whether they include the impeller dynamics in the ob-
server equation, with the reduced observer being the one where those dynamics are being
omitted. The feasibility of the system encountered in this thesis is limited to the compres-
sors with constant impeller speed. For that reason, the impeller dynamics will disappear
and the full order observer will become irrelevant for the system. Hence, the reduced order
observer will be selected as the observer type. According to [4], an observer must satisfy
following conditions if the circle criterion is to be fulfilled. First, the linear part of the ob-
server must be strict positive real (SPR), which will follow if the linear matrix inequality
(LMI) is being satisfied (the definition of LMI can be found both in [4] and [11]). Second,
the non-linearities of the observer equation must be given by non-decreasing functions of
linear combination of unmeasured states. Different versions of reduced order mass flow
observer (full order observer is included as well) has been gathered in [10]. The observer
types has been generated based upon whether one assuming that the pressures at the com-
pressor duct and at the plenum are being modelled or measured.
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5.2 GES flow observer

5.2 GES flow observer
The observer type discussed in this subsection, will be a GES flow observer which was re-
ported by [12] and section 4.3 in [10]. The proposed observer is applicable for the system
encountered in this thesis, in the sense that its design is independent of the compressor
characteristic. Fed with the measurements of plenum pressure and pressure at the com-
pressor outlet, the observer will estimate the inlet flow and seems to be independent of
whether the system input appears in the mass flow or pressure dynamics. An important
tool in observer design is the observer (estimation) error defined to be:

w̃i = wi − w̄i (5.1)

where wi is the inlet mass flow and w̄i is the estimate of the latter. The analysed observer
is suited for the compression systems where no uncertainty is related to the pressure mea-
surements, or at least is so insignificant that it may be disregarded. Keeping in mind the
Greitzer model described by the notation in Section 2 and the given assumption

Assumption 1. pp > po,∀t ≥ t0

the observer

ż =
Ac
Lc

(pc(wi)− pp − u)− km̄w̄i + km̄w0(pp) (5.2a)

w̄i = z + km̄
Vp
a2

0

pp (5.2b)

will make the the equilibrium w̃i = 0 globally exponentially stable. Hence, the name
GES observer. Here, km̄ > 0 denotes the observer which is to be determinated by the
designer. Note that Assumption 1 will result in wo(pp) ∈ R,∀t ≥ t0 which guarantees
that ż ∈ R,∀t ≥ t0. The stability property of the introduced observer can be shown by
first obtaining the observer dynamics:

˙̄wi =
Ac
Lc

(pc(wi)− pp − u)− km̄w̄i + km̄w0(pp) + km̄

(
a2
o

Vp
(wi − wo(pp))

)
=
Ac
Lc

(pc(wi)− pp − u)− km̄w̄i + km̄w0(pp) + km̄wi − km̄wo(pp)

=
Ac
Lc

(pc(wi)− pp − u) + km̄w̃i (5.3)

and the observer error dynamics are found to be:

˙̃wi = ẇi − ˙̄wi

=
Ac
Lc

(pc(wi)− pp − u)− Ac
Lc

(pc(wi)− pp − u)− km̄w̃i

= −km̄w̃i (5.4)

Next, consider the Lyapunov-function candidate for estimated mass flow error given by:

V (w̃i) =
1

2
w̃2
i (5.5)
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5.3 Non-dimentionalization of the observer equations

The time derivative of V with respect to estimation error becomes w̃i:

V̇ (w̃i) = w̃i ˙̃wi

= −km̄w̃2
i (5.6)

By analyzing eq. (5.5) and eq. (5.6), it can be concluded that the estimation reaches
global exponential stability at the equilibrium w̃i = 0. It needs also to be remarked that by
characterizing the equilibrium w̃i = 0 as GES, the trajectory of the estimation error will
be bounded by:

|w̃i(t)| < |w̃i(t0)|e−km̄(t−t0) (5.7)

, meaning that the rate of convergence is given by the magnitude of km̄.

5.3 Non-dimentionalization of the observer equations
In order to fit the observer for the systems discussed earlier, there will be a need to non-
dimentionalize the equations related to the observer. The non-dimentionalization has been
performed in an equal manner as in Chapter 2.4, i.e using the normalization factors ρUAc
for mass flow, 1

2ρU
2 for pressure and 1

ωH
for time. The non-dimentional equivalent to eq.

(5.2a) becomes:

ż =
Ac
Lc

(pc(wi)− pp − ū)− km̂w̄i + km̄wo(pp)

ż = ẇi − km̄w̄i + km̄w0(pp)

ρUAcd

(
z

ρUAc

)
dτ

ωH

=

ρUAcd

(
wi

ρUAc

)
dτ

ωH

+ ρUAc

(
−km̄

w̄i
ρUAc

+ km̄
wo(pp)

ρUAc

)

ωHρAcd

(
z

ρUAc

)
dτ

=

ωHρUAcd

(
wi

ρUAc

)
dτ

+ ρUAc

(
−km̄

w̄i
ρUAc

+ km̄
wo(pp)

ρUAc

)
d

(
z

ρUAc

)
dτ

=

d

(
wi

ρUAc

)
dτ

+
1

ωH

(
−km̄

w̄i
ρUAc

+ km̄
wo(pp)

ρUAc

)
α̇ = φ̇− km̄

ωH
φ̄+

km̄
ωH

ΦT

α̇ = B(Ψc − ψ − u)− km̄
ωH

φ̄+
km̄
ωH

γT
√
ψ (5.8)

with ū being the system input given by the variables containing dimensions. Due to the
lack of notation for the non-dimensionalized variable z, it has been termed α by the author.
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5.3 Non-dimentionalization of the observer equations

Non-dimensionalization of eq. 5.2b is shown as follows:

w̄i = z + km̄
Vp
a2

0

pp

ρUAc
w̄i

ρUAc
= ρUAc

z

ρUAc
+ km̄

Vp
a2
o

ρU2

2

 pp
ρU2

2


w̄i

ρUAc
=

z

ρUAc
+ km̄

VpU

2Aca2
o

 pp
ρU2

2


φ̄ = α+ km̄

VpU

2Aca2
o

ψ (5.9)

Finally, the estimated inlet flow dynamics expressed with dimensionless variables are
found to be:

˙̄wi =
Ac
Lc

(pc(wi)− pp − u) + km̄w̃i

ρUAcd

(
w̄i

ρUAc

)
dτ

ωH

=
1

2
ρU2Ac

Lc

 pc
1

2
ρU2

− pp
1

2
ρU2

− ū
1

2
ρU2

+ km̄ρUAc

(
w̃i

ρUAc

)

d

(
w̄i

ρUAc

)
dτ

=
U

2ωHLc

 pc
1

2
ρU2

− pp
1

2
ρU2

− ū
1

2
ρU2

+
km̄
ωH

(
w̃i

ρUAc

)

˙̄φ = B(ψc − ψ − u) +
km̄
ωH

φ̃ (5.10)

The version of equations (5.8) and (5.9) expressed by deviation variables will be used
for simulation in Chapter 7. Control law for the closed-couple valve will now employ
feedback from the estimated flow φ̄ rather than measured flow φ. This implies:

u|φ=φ̄ = −c2(φ̄− φ0)

= u− c2φ̃ (5.11)

where φ̃ is the observer error defined by dimensionless mass flows. By letting (̆.) represent
the deviations from the equilibrium when the estimated mass flow is being applied by the
controller, the closed loop system augmented with the observer is given by the equations:[

˙̆
φ
˙̆
ψ

]
=

[
B(Ψ̆c − ψ̆ − u)

1
B (φ̆− Φ̆T (ψ̆)

]
+

[(
km̂
ωH

+Bc2

)
φ̃

0

]
(5.12)

which were obtained by combining (2.20), (5.10) and (5.11). Based on the Assumption 1,
the region of attraction for overall system will be D = {(φ̆, ψ̆) ∈ R2|ψ̆ > po − p0)}.
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5.4 A Separation Principle

Until now, the chapter has been dedicated to discussing the observer only for the case of
CCV actuation. In the case of PAASCS, the observer will be expressed by the equations:

α̇ = B(Ψc − ψ)− km̄
ωH

φ̄+
km̄
ωH

γT
√
ψ

φ̄ = α+ km̄
VpU

2Aca2
o

ψ

(5.13)

So, it is almost identical to the one studied in the past, only not to include the system
input. Due to the observer not concerning which system equation control input belongs
to, the stability analysis for PAASCS will be equal to those given for CCV actuation. The
later discussed separation principle will not be relevant for PAASCS, because it does not
assume feedback from inlet mass flow. It will still need an observer, however, to provide
mass flow estimate for further estimation of the compressor characteristic. The version of
equation set (5.13) expressed by deviation variables will be used for simulation in Chapter
7.

5.4 A Separation Principle
What is to be understood with the separation principle in the term of the observer de-
sign, is that the controller which will turn the system GES and the observer may be tuned
separately. For the linear systems this property will be ensured because of the superposi-
tion principle. For the non-linear systems, on the other hand, it will not hold in general, as
stated by [10]. Here, it will be showed that the separation principle will indeed hold for the
interconnected system of active surge control and the observer despite the non-linearities
in the compressor and the valves.
First,let

Σ1 : ẋ1 = f1(x1), f1 : D1 → Rn−1 (5.14)

represent the error dynamics of the closed-loop system in (3.10). Moreover, the observer
error dynamics which were given in eq. (5.4) (being non-dimensionalized of course) are
denoted by the following:

Σ2 : ẋ2 = f2(x2), f2 : R→ R (5.15)

As mentioned earlier, instead off the measured mass flow, the control law for CCV will
now depend on mass flow from the observer. Meaning, that the overall system arises to
be:

Σ : ẋ = f(x) + g(x), f : D → Rn (5.16)

with x = [xT3 x2]T , x3 = [φ̆ ψ̆]T , f(x) = [fT1 (x3) f2(x2)]T and g(x) = [fT1 (x) 0]T

where the function g(x) results from including the mass flow estimate in the control law.
Therefore, equation (5.16) is alternative representation of the system described by eq.
(5.12). Next, consider the assumptions given in [12]:

Assumption 2. The Lyapunov function V1(x1) satisfies

c11||x1||2 ≤ V1(x1) ≤ c21 ‖x1‖2 (5.17)

V̇1(x1) ≤ −c31 ‖x1‖2 (5.18)∥∥∥∥∂V1(x1)

∂x1

∥∥∥∥ ≤ c41 ‖x1‖ (5.19)

46



5.4 A Separation Principle

∀x1 ∈ D1 for some positive constants ci1 > 0

Assumption 3. ‖g1(x)‖ ≤ β ‖x2‖ ∀x ∈ D
for some constant α > 0

The listed will assumptions become basis for the following theorem [12].

Theorem 4. Given the systems Σ1, Sigma2 and Σ as described above. Under Assumption
(2) and Assumption (3), the system Σ defined in (5.16) will have a Lyapunov function V(x)
that will stay within the bounds

c1 ‖x‖2 ≤ V (x) ≤ c2 ‖x‖2 (5.20)

V̇ (x) ≤ −c3 ‖x‖2 (5.21)

∀x ∈ D. Meaning that system Σ can be classified as GES in the space D.

The proof the Theorem 4 can be found in [12].
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Chapter 6
Adaptive Compressor Control in
the Literature

The chapter aims to give the reader an overview on the previous work done on adaptive
anti-surge control. The research on adaptive control in sections 6.1, 6.2 and 6.3 has re-
spectively been published in [10], [9] and [44]. The differences between the approaches
not only lies in the principles, the adaptive controllers has been derived from, but also
in the selection of the actuator. Common for them all is that the backbone of the adaptive
controller is an adaptive law consisting of differential equations. Non of approaches in this
chapter require knowledge of the system equilibrium, as the methods in the previous chap-
ter, but in return they produce much more complex adaptive laws. Whether the adaptive
law estimates the unknown system parameters or just updates the control parameters will
vary. Although disturbances in the flow and pressure have not been given any attention in
the past, the controller designed in sec. 6.3, will demonstrate its robustness against them.

6.1 Adaptive Extension of Active Surge Control Using Drive
Torque

The idea of including an adaptive part to the surge control was explored by [10]. There,
the compressor considered for implementation of the adaptive control is standard Greitzer
surge model which was covered in Section 2. A new feature is to have the ability of adjust-
ing the impeller speed of the compressor, something that turn outs to be quite beneficial
in terms of surge control. The drive unit responsible for supplying the compressor with
centrifugal force will be regarded as the control actuator. This opens for two choices for
control input: the impeller speed ω and the drive torque τd and [10] have studied both of
them. Other examples of using the drive torque as an input for surge control are [17] and
[27] where the latter was first to introduce this approach. The actuation by drive torque
has be modified with adaptive control by [10], mainly due to uncertainty related to the
load torque τl. As a consequence, ω will now be considered as a system state along with
inlet mass flow wi and plenum pressure pp. This implies a necessity of incorporating the
impeller dynamics in the Greitzer model, something that was pioneered by [22]. Before
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6.1 Adaptive Extension of Active Surge Control Using Drive Torque

discussing the extended model, it needs to be pointed out that ω is limited to a positive
value. The arising model consists of three differential equations which are:

ṗp =
c2p
Vp

(wi − wt)

ẇi =
Ac
Lc

(pc(wi, ω)− pp)

ω̇ =
1

J
(τd − τl)

(6.1)

The differential equation for the impeller speed was, according to [10], constructed by
”evaluating the angular momentum balance for the spinning shaft. Apart from the earlier
defined parameters and states, J is the moment of inertia of rotating parts, τd symbolizes
the impeller speed, τl represent the load torque (also referred to as compressor torque)
and pc(wc, ω) is the well known compressor characteristic, which is now the function of
both the inlet flow and the impeller speed. The load torque which occurs because of the
presence of fluid flow in the impeller and friction of rotating mechanical parts, has been
approximated by the Euler equation to be:

τl(wc, ω) = τc(wc, ω) + τf (ω) (6.2)

and the friction τc along with the viscous friction τf (ω) are being provided by the equa-
tions:

τc = kc|wc|ω (6.3)
τc = kfω (6.4)

where kc = ωr2
i and kf is the friction constant. Other parameters to be defined are the

impeller radius ri and slip factor σ which ranges from zero to one.

Two control laws for the drive torque which is considered as the input of the system con-
sisting of equation set (6.1) , has been obtained in [10] by applying the method of back-
stepping, the same approach as for the closed-coupled valve. The proposed control laws
are given by:

τd = −c1(ω̄ + c2w̄i)− c2
JAc
Lc

(pc(wi, ω)− pp) + τl(wi, ω) (6.5)

τd = −c1(ω̄ + c2w̄i)− c2
JAc
Lc

(pc(wi, ω)− pp)− c2kc|wi|w̄i − c2kf w̄i + τed (6.6)

Both laws are partially expressed with variables w̄i = wi − wi,0 and ω̄ = ω − ω0 rep-
resenting deviations from respective equilibrium points. Furthermore, if the constants c1
and σ er determinated to be positive and sufficiently large and c2 is chosen to satisfy:

c2 ≥

∂(wi,0, ω0)

∂wi,0
+ δ

∂(wi,0, ω0)

∂wi,0

the equilibrium point is guaranteed to reach asymptotic stability in the domain

D = {(p̄p, w̄i, ω̄) ∈ R3 | p̄p ≥ pp,0 , −∞ < c2w̄i ≤ ω0 , ω0 ≤ ω̄ <∞} (6.7)
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6.2 High-Gain Type Adaptive Control For Surge Stabilization

with p̄p = pp − pp,0 being the deviation variable for plenum pressure. The proofs for
the control laws involves the method of backstepping and have been provided by [10].
However, both of them are rather comprehensive, are several pages long and therefore will
not be included in this report. An observant reader will notice that the first two terms
are equal for the two control laws. This terms are the result of assigning ω as an virtual
control at the third step in the backstepping procedure. The remaining terms are distinguish
for both control laws because they cancel the load pressure τl in the system equation
differently. The control law expressed in equation (6.5) cancels it completely (τl will
disappear from the diff. equation for impeller speed when the proposed control law has
been inserted) while the control law shown in (6.6) will cancel it partially. By leaving
some terms involving τl, one will gain a control law handling the system in more robust
way, since the time derivative for its corresponding Lyapunov function will contain an
additional stabilizing term, making it more negative.

Occasionally, the compression system will contain some uncertainties. For the case of
pc(wc, ω) and τl being unknown, [10] suggest additional two control laws where each
of the them are being omitted. Another possibility, is to replace the unknown constants
appearing in the control law, with their estimates. By assigning θ1,θ2 and θ3 as estimates
for JAc/Lc,kc and kf ,respectively, and letting:

τd = τs1 + τs2, τs1 = −c1(ω̄ + c2w̄c)

the update equations for the control law in (6.5) becomes:

τs2 = θ2|wc|+ θ3ω − c2θ1(pc(wc, ω)− pp)
θ̇1 = cθ1c2(ω̄ + c2w̄c)(pc(wc, ω)− pp)
θ̇2 = −cθ2(ω̄ + c2w̄c)|wc|ω
θ̇3 = −cθ3(ω̄ + c2w̄c)ω

(6.8)

In addition, the set of upadate equations corresponding to the adaptive law in (6.6) be-
comes:

τs2 = −c2θ2|wc|w̄c + c2θ3w̄c − c1θ1(pc(wc, ω)− pp) + τed

θ̇1 = cθ1c2(ω̄ + c2w̄c)(pc(wc, ω)− pp)
θ̇2 = −cθ2(ω̄ + c2w̄c)|wc|w̄c
θ̇3 = −cθ3(ω̄ + c2w̄c)w̄c

(6.9)

Both adaptive controllers ensures convergence of the system states to their stable equilib-
rium points under the condition that the initial estimates lies sufficiently close. For the
verification of this statements, please consult [10].

6.2 High-Gain Type Adaptive Control For Surge Stabi-
lization

Up to this point, the reader has become familiar with the idea of modifying the compres-
sor system with adaptive active surge control by on-line estimating the unknown system
parameters which participates in the expression for the system input. This time, however,
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6.2 High-Gain Type Adaptive Control For Surge Stabilization

another approach will be introduced. First, the control law defined later on, will not con-
tain system parameters and hence the whole idea of generating their estimates will be left
out. Second, the control law will be in the form of a high-gain adaptive contoller, termed
λ-tracker, which has been covered in depth in [32]. And third, instead of adding to the
system a new device assigned as a control actuator, the control duties will be left to the
already existing throttle. [9] considers the following system for adaptive surge control:

ẋ1(t) = −B[x2(t)−Ψ(x1(t))]

ẋ2(t) =
1

B
[x1(t)− u(t)Γ(x2(t))]

(6.10)

which is equal to the non-dimensionalized Greitzer surge model. Here, x1 is the flow rate
at the compressor duct, x2 is the pressure at the plenum and the functions Ψ(x1(t)) and
Γ(x2(t)) represents the compressor characteristic and the throttle characteristic, respec-
tively. The notation form [9] has been kept for future stability analysis. As for the system
output, equation:

y(t) = x2(t)−Ψ(x1(t)) (6.11)

is considered. The input signal u(t) represent the throttle section open and is, according
to [9], ”defined as the ratio of the flow area At and its maximum value At,max This results
in u(t) containing the bounds 0 ≤ u ≤ 1. For later analysis, it convenient to rewrite the
system as:

ẋ1(t) = −B[x2(t)−Ψ(x1(t))]

ẋ2(t) =
1

B
[x1(t)− u(t)Γ(x2(t))]− Γ(x2(t))

B
v(t)

(6.12)

where
v(t) = u(t)− u0 (6.13)

is the control law which will be specified right away and u0 is the value of u when the
system is stabilized at the equilibrium point. The control law for the system in (6.12) will
be given by the adaptive λ-tracker:

v(t) = k(t)y(t)

k̇(t) = µσε(|y(t)|)
k(0) = k0

(6.14)

which when implemented, will drive the output to zero within the tolerance

|y(t)| = |x2(t)−Ψ(x1(t)) ≤ ε (6.15)

For the set of equations in (6.14), k(t) is the adaptive gain, k0 ≥ 0 is an arbitrary initial
value and µ is a parameter that adjusts the speed of the adaptation. Additionally, σε(.) :
R+ → R+ denotes the distance function:

σε(|y|) =

{
0, if 0 ≤ |y| ≤ ε
|y| − ε, if |y| ≥ ε

(6.16)

For the system in (6.12), following assumptions are being made
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6.2 High-Gain Type Adaptive Control For Surge Stabilization

Assumption 4. The compressor characteristic Ψ(x1) is defined for x1 ≤ x+
1 , where

x+
1 ≥ 0 is an unknown value that gives Ψ(x+

1 ) = 0 and is locally Lipschitz on its domain
of definition. Furthermore, Ψ(x1) ≥ 0 for x1 ≤ x+

1 and

lim
t→−∞

Ψ(x1) = +∞

Assumption 5. Function Γ(x2) is locally Lipschitz, strictly increasing and such that:

x2Γ(x2) ≥ 0

It is worth mentioning, that the assumptions 4 and 5 are typical for any compressor and
valve characteristic.

Assumption 6. Reference value u0 can be chosen within interval [u−, u+] where 0 ≤
u− and u+ ≤ 1. In addition, there exists a (possibly empty) subset U bad ⊂ [u−, u+],
containing finitely many points, such that for all

u0 ∈ U0
.
= {u : u− ≤ u ≤, u /∈ U bad}

the system of equations:

x2 −Ψ(x1) = 0

x1 − u0Γ(x2) = 0

has a unique solution, P = (x∗1, x
∗
2), which defines an isolated equilibrium point for the

system.

As for the set U0 in the Assumption 6, it simply represents the values of u0 for which the
compressor may not recover from stall condition.

Assumption 7. There is the set

Xamm = {x : x1 ≤ x+
1 , x

−
2 ≥ 0}

which denote the admissibility region in the x1−x2 plane (see Figure 2 in [9]) and where
x−2 is an arbitrarily small positive value. Let X0 be a subset of Xamm, depending on
u0 so that the unique isolated equilibrium point P ∈ X0 and for each initial condition
x(0) ∈ X0 the corresponding uncontrolled solution u(t) = u0 remains admissible. In
other words, x(t) ∈ Xamm and it is bounded, namely, ||x(t)|| ≤ M for some positive M
depending on u0.

Next, the Lemma 1 (which has been validated in [9]) is formulated as follows:

Lemma 1. Consider the system expressed in (6.12), under Assumptions 4-7 with the con-
trol law v(t) = k(t)[x2(t) − Ψ(x1(t))] = k(t)y(t), where k(t) ≥ 0 is a non-decreasing
continuous function. Then, for each x(0) = x0 ∈ X0, solution x(t) is bounded and admis-
sible, i.e ||x(t)|| ≤M and x(t) ∈ Xamm

is fundamental for the upcoming Theorem 5 which will address the stability properties of
the closed loop system containing the earlier defined λ-tracker.

Theorem 5. Given the system in (6.12) under the Assumptions 4-7 together with the adap-
tive law in (6.14). Then, for t→∞:
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6.2 High-Gain Type Adaptive Control For Surge Stabilization

(i) k(t)→ k∞ < +∞

(ii) y(t)→ Iε = [−ε, ε]

Proof. By inserting the output equation y .
= x2 −Ψ(x1) in (6.12), one will get:

ẋ1 = −By

ẋ2 =
1

B
[x1 − u0Γ(y + Ψ(x1))] +B

dΨ(x1)

dx1
y − 1

B
Γ(y + Ψ(x1))ky

(6.17)

It has been stated in Lemma 1 that k(t) is non-decreasing function. Therefore it either
grows without bounds or it converges to k∞ < ∞ as t → ∞. Now, it will be shown
that the limit is indeed finite. By contradiction, lets assume that k(t) = k∞ = +∞ and
consider V = y2/2 as the Lyapunov-like function for the system. The time derivative of
V becomes:

V̇ = yẏ

= y

[
1

B
[x1 − u0Γ(y + Ψ(x1))] +B

dΨ(x1)

dx1
y

]
− 1

B
Γ(y + Ψ(x1))ky2

≤ α− 1

B
Γ(y + Ψ(x1))ky2

The existence of α > 0 is assured by Lemma 1, by the continuity of the state transforma-
tion and by the fact that dΨ/dx1, although possibly non-continuous, is bounded since Ψ
has the property of being locally Lipschitz (as stated in the Assumption 4). Next, by the
definition of the set Xamm, x2 is bounded by x−2 and thus Γ(y + Ψ(x1)) ≥ Γ(x−2 )

.
=

ν > 0. For k > α/(νε2) and for |y| ≥ ε ,one will get that V̇ ≤ −β < 0. Therefore
if k(t) → +∞, then there exists a t′ such that for t ≥ t′,k(t) ≥ αB/(vε)2, and then
V (t) ≤ V (′t) − β(t − t′) as long as |y(t)| > ε. Since V ≥ 0, there must exists a t̄ ≥ t′

such that |y(t)| ≤ ε which results in σε(|y(t)|) = 0 for t > t̄. Hence, for t > t̄, one
have that k̇(t) = 0 and it can be concluded that k(t) cannot have an infinite limit. The
integration of the adaptive law for k(t) results in:

lim
t→−∞

k(t) = k(0) + µ

∫ ∞
0

σε(|y(t)|)dτ = k∞ < +∞ (6.18)

Lemma 1 implies that the states x1(t) and x2(t) are bounded which corresponds to the
output y(t) being bounded. In this case, Barbalat Lemma [47] states:

Because lim
t→−∞

k(t) = k∞ < ∞ and the fact that k′(t) is absolutely continuous (due to

σε(|y(t)|) being absolutely continuous) then k̇(t) = µσε(|y(t)|) → 0 which implies that
y(t)→ Iε as t→ 0

The tolerance ε should be chosen carefully, in particular when the compression system is
affected with measurement noise. Certainly, one would desire y to be as closed to zero
as possible when steady-state is reached. One way to go about it is to select a very small
value for ε. However, too small ε may cause the controller gain to increase without limits.
On the other hand, a greater ε will reduce the precision in the controller. As a guidance,
[9] proposes to set ε equal to the maximum of the disturbance absolute value if the latter
is obtainable. Figure 6.1 reports both simulated and experimental data when the adjective
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λ-tracker has been added to the real plant with a throttle being a low inertia butterfly
valve which is assumed to have a parabolic characteristic. Following data are being used:
B = 0.378, u0 = 0.087 (which corresponds to a steady butterfly angle of θ = 20◦),
µ = 0.7288, ε = 0.1 and k(0) = 0

Figure 6.1: Results of the control: simulated(left) and experimental (right) [9]

At the beginning of the experiments the compressor is set into surge, creating oscillations
in plenum pressure and mass flow. The controller is put into action at t = 25 and quickly
stabilizes the system. A remark made by [9] is that the adaptation time is larger for the real
plant than it is for the numerical model. This is the consequence of having the disturbances
and unmodelled non-linearities affect the dynamics of the system. To compensate for
those interferences, one will to have increase the steady-state gain from k∞ = 0.845 for
the numerical model to k∞ = 2.2 for the real plant. Under some circumstances, the
controller may be unable to recover the compressor from surge due to too strict control
bounds, particularly too small value for for At,max. Analysis provided by [9] shows that
this failure is caused by the inherent plant limitations, instead of the proposed control
structure. Further discussion about this topic has , however, been left out from this thesis
in favour of brevity.

6.3 Adaptive Fuzzy Control of Compressor Surge
A considerable part of the control literature is the one dealing with fuzzy control. It seems
that the latter has also founds its way also to the field of compressors, with [3] being an ex-
ample. This section is a summary of work presented in [44] where the pure-surge version
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of the Moore-Greitzer model is the control target. The model parameters, in particular the
compressor characteristic, will in many situations be poorly known, as stated numerous
times through this thesis. [44] regards the compressor characteristic as the uncertain pa-
rameter and propose to estimate it as an fuzzy system later to be estimated by the adaptive
law. That estimate will then be a part of the control law for the system. The paper takes
the CCV as actuator for which the adaptive fuzzy surge controller is being designed by the
backstepping method. Like for [10], the conduct of designing the controller will not be
covered in this section but can be be followed in [44]. It is worth mentioning that result-
ing closed loop system, will from physical point of view be identical to the one discussed
in section 3.3.1. The author is fully aware that some readers may be unfamiliar with the
concept of fuzziness, specially when it comes to control systems. Therefore, the author
will offer some very basic explanations of fuzzy set theory and fuzzy logic, two topics that
will be relevant when mathematically describing the fuzzy system. Those explanations
has been taken from [16] which offers a comprehensive overview of fuzzy control theory.
After the description of the fuzzy systems has been given, the equation composing the
adaptive controller will be presented. The controller will later be visualized in a block dia-
gram. At the end, some simulations will be shown where the performance of the adaptive
fuzzy controller will be verified.

Now, proceeding with explanation of the fuzzy logic. As the reader may recall, in tradi-
tional (Boolean) logic an arbitrary thing can be represented by either having a value of
1(true) or 0(false). In the means of fuzzy logic, the same thing can be represented by a
value ranging from 0 to 1, that is ”partially true or partially false”. Let’s use the age of a
human as an example. In traditional logic, a person can be viewed as either old or young,
representing 1 and 0, respectively. Not surprisingly, it will often be difficult to determinate
the age for which a person turns from being young to being old. Hence, the traditional
logic may not be relevant for all real-word situations. In the fuzzy logic, a persons age
can be evaluated in the range from absolutely young (newborns) which is defined as com-
pletely false to absolutely old (120 years) defined as completely true. For instance, a 40
years old male or female is considered to be 50% absolutely young and 50% absolutely
old. Said differently, this persons age is considered as 0.5 false and 0.5 true.

The concept of fuzziness can also be applied to set theory. The fuzzy set is a set for which
an element will have a partial membership. The grade of membership can be measured
with a membership function which often range from 0 to 1. In such analogy, 1 will denote
a ”full member” while 0 will denote ”non-member”. [16] explains that there is no univer-
sal rule for quantifying the membership function. Hence, it will more or less be selected
in a subjective manner or ”by using ones work experience, scientific knowledge and actual
need for the particular application in question”, as stated by [16]. The principle of fuzzy
sets will be further explained by again using an example from [16]. Let

Sf = {s ∈ R+| s is large} (6.19)

be a fuzzy set. Clearly, Sf will be a subset of (universe) set R+ which contains all positive
real numbers. To avoid the confusion whether 0 is a positive number or not, the universe
set has been defined as

R+ = {x ∈ R|x ≤ 0} (6.20)

In fact, all fuzzy sets will be subsets of an equal or larger universe set. If Sf was to be
viewed in the means of standard set theory (where an element is either being a member of
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a set or not), it would be poorly defined since ”large ” is a rather vague description of a
number. A following membership function will be used as tool to evaluate ”greatness” of
a value

µSf =

{
0 ifs ≤ 0

1− e−s ifs > 0
(6.21)

Moreover, the function has been visually displayed in Figure 6.2

Figure 6.2: A membership function for a positive and large real number [16]

When analyzing Figure 6.2, it becomes obvious that an element with an increasing value,
will converge towards full membership.

[44] defines a fuzzy system with the following:

Definition 1. A fuzzy system is the mapping from the input vector x = [x1, . . . , xn] ∈
X1 × . . . × Xn ⊆ Rn to the output vector y ∈ R. The ith rule of the logic fuzzy system
has the form:

Rule i: if x1 is Fi1,xn is Fin, then y = ωi where i = 1, . . . ,m is the number of fuzzy logic
rules, ωi is the statement of the ith fuzzy rule and Fij(j = 1, . . . , n) represents a fuzzy set
in universe of discourse Xi. The candidate for the membership function µFij(xj) will be
the Gauss function

µFij(xj) = exp

(
−
(
xj − aij
bij

)2
)

(6.22)

where aij and bij are parameters to be designed. Let

WT = [ω1, ω2, . . . , ωm]

P (x) = [p1(x), p2(x), . . . , pm(x)]T

pi(x) =

n∏
j=1

µFij(xj)

m∑
i=1

 n∏
j=1

µFij(xj)


so that the fuzzy system can be formulated by the equation:

y(x) = WTP (x) (6.23)

where W is called parameter vector and P(x) is called fuzzy function basis function vector
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In order to keep the fuzzy system y(x) simple, [44] proposes to assign µFij(xj) to a fixed
value, which will follow from setting aij and bij to constant values. Those two parameters
will, according to [44], define ωi as a tunable parameter.

Now, moving to the discussion of adaptive surge control. Equations describing the purge-
surge version of the Moore-Greitzer model are

ψ̇ =
1

4B2lc
(φ− ΦT (ψ))

φ̇ =
1

lc
(Ψc(φ)− ψ)

(6.24)

where the compressor characteristic is still the cubic function expressed by (1.5). Consult
[23] or [39] for the defition of the parameter lc When constructing the adaptive surge
controller, [44] decided to compensate for possible disturbances in inlet mass flow and
plenum pressure. The model in eq. (6.24) extended with interferences from disturbances
is given by:

ψ̇ =
1

4B2lc
(φ− ΦT (ψ) + dφ(τ))

φ̇ =
1

lc
(Ψc(φ)− ψ + dψ(τ))

(6.25)

The influence of CCV will now be included in the system equations. The closed-loop
version of (6.25) becomes:

ψ̇ =
1

4B2lc
(φ− ΦT (ψ) + dφ(τ))

φ̇ =
1

lc
(Ψc(φ)−Ψv(φ)− ψ + dψ(τ))

(6.26)

where Ψv(φ) is the earlier defined CCV characteristic still to be considered as the system
input u. [44] aimed the inlet mass flow and pressure disturbances as the control object and
came up with following control law for the system :

u = k2e2 + e1 + f̂a(ψ, φ)− ur2 (6.27)

where

ur2 = −B̂2 tanh

(
e2

η2

)
(6.28)

is the robustness designed for the pressure disturbance and

e1 = ψ − ψd (6.29a)
e2 = φ− α (6.29b)

are the deviation variables. In addition, k2 and η2 are the design parameters and B̂2 is the
estimate of the unknown upper bound of pressure disturbance, symbolized as B2, which is
being continuously updated by the adaptive law defined in eq. (6.35). Notice that both ψ
and φ are regarded as feedback signals for the controller u. The parameter ψd appearing
in eq. (6.29b) and which [44] defines as ”the set value of pressure rise in the compressor”,

57



6.3 Adaptive Fuzzy Control of Compressor Surge

is regarded as reference signal for the system. The virtual control law , α, which plays a
part in the backstepping procedure, has been constructed as:

α = −k1e1 + ΦT (ψ) + 4B2lcψ̇d + url (6.30)

and with the assumption that ψd is continuous and bounded. Equation (6.30) contain the
tunable parameter k1 and the robustness designed for flow disturbance which is symbol-
ized by url and has been defined as:

ur1 = −B̂1 tanh

(
e1

η1

)
(6.31)

where η1 is the design parameter and B̂1 is the estimate of the unknown upper bound of
flow disturbance, symbolized as B1, which will be continuously updated by the adaptive
law defined in eq. 6.34. The estimation of the compressor characteristic as a fuzzy system
will now be followed up by expressing the function f̂α(ψ, φ) = Ψc(φ)− ψ − lcα̇ as:

f̂α(ψ, φ) = ŴTP (6.32)

where the estimate Ŵ is being generated by the adaptive law:

˙̂
W = λe2P (6.33)

with λ being the adaptive gain. In comparison to the two adaptive law defined in Sec. 4.4,
one can view W as the vector consisting of the unknown parameters and vector P and e2

as the regressor and (mass flow) estimation error, respectively. The estimates B̂1 and B̂2

are being adjusted by the adaptive laws:

˙̂
B1 = e1 tanh

(
e1

η1

)
(6.34)

˙̂
B2 = e2 tanh

(
e2

η2

)
(6.35)

The closed-loop system in (6.25) coupled with the adaptive controller above will become
stable and the tracking error will be ultimately bounded. The structure of the adaptive
controller is being visualized by the block diagram in Figure 6.3.

Figure 6.3: The block diagram of the whole adaptive controller [44]
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6.3 Adaptive Fuzzy Control of Compressor Surge

The adaptive controller was validated by [44] through simulations in MATLAB. Three
different experiments were carried out by [44] in order to validate the performance of the
adaptive fuzzy controller. It is the third one that will be presented in this thesis, however.
This is because this experiment will test the controller to its full extent. System parameters
during the simulation are: B = 1.8, lc = 1, H = 0.18, W = 0.25 and ψCO = 0.3. The
throttle opening has been turned down from 0.65 to 0.6 at t = 100, so that the compressor
would enter deep surge if uncontrolled. [44] has chosen following control parameters:
k1 = 0.5, k2 = 1,η1 = 0.05, η2 = 0.05 and λ = 2. Dividing the flow and pressure
coefficients into 9 grades (ranging from 0 to 1) results in a membership function given as:

µFij = exp

(
−
(
xj − a
b

)2
)

= exp(−(x− 0.1)2), i = 1, . . . , 9 (6.36)

Following disturbances in intlet flow and plenum pressure has been added to the system:

dφ(τ) = 0.02 sin(0.1τ) + 0.02 cos(0.4τ)

dψ(τ) = 0.02 sin(0.1τ) + 0.02 cos(0.4τ)

Simulation result for the adaptive controller are illustrated by Figures (6.4) and 6.5.

Figure 6.4: Simulation results [44]
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6.3 Adaptive Fuzzy Control of Compressor Surge

Figure 6.5: Controller output [44]

Clearly, the adaptive controller stabilizes the compressor in the effective manner and works
exactly in the way as one would expect from the active surge controller: enlarges the region
of stable points of the compressor and in the same time improves its performance. Besides,
it handles the disturbances well and thus shows its robustness. One can see that when first
activated, the controller will experience a momentary jump caused by fuzzy system not
being adapted to adjustment at the beginning (the controller will adapt quickly to the new
environment). Afterwards and for a very short period of time, the controller will assign
CCV to a negative value. This will result in a negative pressure drop, something that,
obviously, cannot be realized. As a solution to this issue, [44] suggests to preset an initial
offset to CCV.
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Chapter 7
Simulation

7.1 Preliminaries
The results of modified adaptive controller will be presented in the following. The con-
troller was implemented for the cases of CCV and PAASCS. As for the latter, the equa-
tions used to build the model are: (3.23), (3.24) and (3.11). In the case of CCV, the model
consists of the equations (3.10), (3.15) and (3.11). The compressor map applied in the sim-
ulations has been defined in eq. (3.12) As the reader may recall, the listed equations are
all given with respect to dimensionless deviation variables. Since the actual equilibrium
is unknown, one will have to include the adaptive law (3.41) into the closed-loop system.
Note that when the inlet flow cannot be measured, its estimate will appear in the system
equations listed above. It seems reasonable to compare the performances of the standard
P-controllers (for which the compressor characteristic is known) with the performance of
their adaptive version, in order to evaluate the performances of the latter. Such approach
has also been followed up in this thesis. Furthermore, the performance of the equilibrium
estimation and the accuracy of both estimations of the compressor map and the observer
will also be verified through simulations.

The simulations will be given in several bulks. At first, the model will be simulated open-
loop both at stable operation and during surge. Equations used during the open-loop sim-
ulation are (2.21), (2.22) along with (1.5) which expresses the characteristic for the com-
pressor. In order to verify those conditions, the measurements of inlet flow and plenum
pressure will be displayed. What follows is a set of simulations for the system containing
a CCV where the modifications discussed in previous chapters will be included. The same
type of exercise will be performed afterwards for PAASCS. Both the controller based on
gradient method and least-squares method will be tested. The simulations include:

• the inlet flow and plenum pressure measurements for both the standard P-controller
and adaptive controller.

• trajectories for the estimates of constants k1, k2 and k3. The convergences for the
trajectories can then be compared with the actual values for the constants. These
will be calculated in advance.
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7.2 System specifications

• the estimates of the equilibrium coordinates provided by the adaptive law in section
3.4.

• the observer output in the form of flow estimate will be compared with the actual
flow measurement.

7.2 System specifications
First, an overview of parameter values, used throughout the simulations, will be given.
The parameters will have equal values for both actuators.

Symbol Value Units
U 68 m/s
Vp 0.1 m3

Lc 0.41 m
ψc0 0.352 -
H 0.18 -
a0 340 m/s
Ac 0.0038 m2

s

W 0.25 -

Table 7.1: Specifications for the compression system

7.3 Open-loop simulation

7.3.1 Stable operation
The throttle gain is set to γT = 0.8 and the inlet flow is available for measurement. The
system is predicted to be stable since the equilibrium point is placed at the negative slope
of the compressor characteristic. For the detailed location of the equilibrium point, the
reader is referred to Figure 2.2. The measurements of inlet flow and plenum pressure are
illustrated by the Figure 7.1 and Figure 7.2 respectively.
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7.3 Open-loop simulation
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Figure 7.1: Inlet flow for stable operation expressed with a dimensionless standard variable
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Figure 7.2: Plenum pressure for stable operation

7.3.2 Surge Condition
The gain of the throttle has been reduced from γT = 0.8 to γT = 0.5. The inlet flow is still
available for measurement. The Figure 2.2 predicts that the compressor goes into surge
due to equilibrium being located the compressor characteristic of positive slope. This is
verified by the measurements of inlet flow and plenum pressure depicted by Figure 7.3 and
Figure 7.4 respectively.
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7.4 Closed-loop simulation
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Figure 7.3: Inlet flow during surge expressed with a dimensionless standard variable []
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Figure 7.4: Plenum pressure during surge expressed with a dimensionless standard variable

7.4 Closed-loop simulation

7.4.1 Calculations of the compressor characteristic coefficients
In the beginning, one is assuming that the compressor characteristic is available and that
the throttle gain has been adjusted to γT = 0.5 (and will remain unchanged throughout
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7.4 Closed-loop simulation

the rest of the simulations). This gives and an equilibrium point being equal to

xo =

[
φ0

ψ0

]
=

[
0.4133
0.6833

]
(7.1)

as seen in Figure 2.2. The values of the equilibrium point opens up for following calcula-
tions of the coefficients belonging to the compressor characteristic:

k1 =
3Hφ0

2W 2

(
φ0

W
− 2

)
=

3 ∗ 0.18 ∗ 0.4133

2 ∗ 0.252

(
0.4133

0.25
− 2

)
= −0.6192

k2 =
3H

2W 2

(
φ0

W
− 1

)
=

3 ∗ 0.18

2 ∗ 0.252

(
0.4133

0.25
− 1

)
= 2.8219

k3 =
0.18

20.253
= 5.7600 (7.2)

The coordinates for the equilibrium point along with the computed values of the coeffi-
cients will be used as a benchmark for evaluation of the estimators. The coefficients will
also be assembled to form the proportional gain for P-controller later to be compared with
its adaptive version. The evaluation of the equilibrium estimates will only be done in
the case of PAASC. The reason for this is the fact that in regard to CCV, the equilibrium
coordinates obtained from eq. 7.1 will only be used as an approximation. Computation
of the true equilibrium point will involve solving the 3rd order polynomial equation in
(3.29). This is quite challenging and has consequently been left out from the work of this
thesis. Hence, the approximation will only be used for construction of the gain for the
P-controller.

7.4.2 Simulations of the single compression system with CCV as the
actuator

The controller will be activated at t = 30 in order to prevent the system from oscillating.
The controller gain is chosen to have the structure

c1 = k2
2 − k1 (7.3)

which certainly satisfies the bound:

c1 >
k2

2

4k3
− k1 (7.4)

since k3 will always have a positive value. The proportional gain is calculated to:

c1p = k2
2 − k1 = 2.82192 − (−0.6192) = 8.5823 (7.5)

As for the adaptive controller, the controller gain is as follows:

c2b = k̂2
2(t)− k̂1(t) (7.6)

where k̂2
2(t) and k̂1(t) are respectively the on-line estimates of k1 and k2 at time t. Those

estimates are being provided either by the method of steepest descent represented by
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7.4 Closed-loop simulation

eq.(4.27) or least-squares method represented by equations (4.43) and (4.41). Both es-
timation methods are being activated at t = 0. The equations used for constructing the
flow observer included to the closed loop are

α̇ = B(Ψ̆c − ψ̆ − u)− km̄
ωH

φ̆+
km̄
ωH

γT

√
ψ̆

φ̆ = α+ km̄
VpU

2Aca2
o

ψ̆

(7.7)

Recall that (̆.) denotes the deviation from the equilibrium when applying the inlet flow
estimate. In addition, the observer gain has been set to km̄ = 100

Method of Steepest Descent (Gradient Method)

By defining the adaptive gain for the compressor map estimation and equilibrium estima-
tion, respectively as

Γ1 =

1500 0 0
0 275 0
0 0 100

 and P =

[
0.05 0.05
0.05 0.05

]

the system response in the following way:
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φ

Adaptive Controller
Standard P-controller

Figure 7.5: Stabilization of the inlet flow with both the standard P-controller and the adaptive con-
troller
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7.4 Closed-loop simulation
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Figure 7.6: Comparing inlet flow measurement with its estimate
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Figure 7.7: Stabilization of the plenum pressure with both the standard P-controller and the adaptive
controller
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7.4 Closed-loop simulation
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Figure 7.8: Trajectory of the estimate for k1
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Figure 7.9: Trajectory of the estimate for k2
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Figure 7.10: Trajectory of the estimate for k3
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Figure 7.11: Trajectory of the estimate for φ0
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7.4 Closed-loop simulation
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Figure 7.12: Trajectory of the estimate for ψ0

Least-squares

By choosing

P0 =

10000 0 0
0 10000 0
0 0 10000

 and P =

[
0.05 0

0 0.04

]

as the initial value for matrix P (for compressor map estimation) and the adaptive gain for
equilibrium estimation, the system will response in the following way:
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7.4 Closed-loop simulation
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Figure 7.13: Stabilization of the inlet flow with both the standard P-controller and the adaptive
controller
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Figure 7.14: Comparing inlet flow measurement with its estimate
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Figure 7.15: Stabilization of the plenum pressure with both the standard P-controller and the adap-
tive controller
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Figure 7.16: Trajectory of the estimate for k1
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Figure 7.17: Trajectory of the estimate for k2
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Figure 7.18: Trajectory of the estimate for k3
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Figure 7.19: Trajectory of the estimate for φ0
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Figure 7.20: Trajectory of the estimate for ψ0

7.4.3 Simulations of PAASCS
The controller will be activated at t = 30 in order to prevent the system from oscillating.
The controller will be on the form

φu = −B2c2(Ψc − ψ) (7.8)
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7.4 Closed-loop simulation

where the constant c2 has been chosen to

c2 = k2
2 − k1 (7.9)

which certainly satisfies the bound:

c1 >
k2

2

4k3
− k1 (7.10)

since k3 will always have a positive value. The proportional gain is calculated to:

Kp = B2(k2
2 − k1) = 0.6418(2.82192 − (−0.6192)) = 5.5085 (7.11)

As for the adaptive controller, the controller gain is as follows:

Kpa = B2(k̂2
2(t)− k̂1(t)) (7.12)

where k̂2
2(t) and k̂1(t) are respectively the on-line estimates of k1 and k2 at time t. Those

estimates are being provided either by the method of steepest descent represented by
eq.(4.27) or least-squares method represented by equations (4.43) and (4.41). Both es-
timation methods are being activated at t = 0. The equations used for constructing the
flow observer included to the closed loop are

α̇ = B(Ψ̆c − ψ̆)− km̄
ωH

φ̆+
km̄
ωH

γT

√
ψ̆

φ̆ = α+ km̄
VpU

2Aca2
o

ψ̆

(7.13)

In addition, the observer gain has been set to km̄ = 100

Method of Steepest Descent (Gradient Method)

By defining the adaptive gain for the compressor map estimation and equilibrium estima-
tion, respectively as

Γ1 =

1500 0 0
0 275 0
0 0 100

 and P =

[
0.05 0

0 0.05

]

the system response in the following way:
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Figure 7.21: Stabilization of the inlet flow with both the standard P-controller and the adaptive
controller
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Figure 7.22: Comparing inlet flow measurement with its estimate
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7.4 Closed-loop simulation
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Figure 7.23: Stabilization of the plenum pressure with both the standard P-controller and the adap-
tive controller
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Figure 7.24: Trajectory of the estimate for k1
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Figure 7.25: Trajectory of the estimate for k2
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Figure 7.26: Trajectory of the estimate for k3
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7.4 Closed-loop simulation
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Figure 7.27: Trajectory of the estimate for φ0
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Figure 7.28: Trajectory of the estimate for ψ0

Least-squares

By choosing

P0 =

10000 0 0
0 10000 0
0 0 10000

 and P =

[
0.05 0

0 0.04

]
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7.4 Closed-loop simulation

as the initial value for matrix P and the adaptive gain for equilibrium estimation, the system
will response in the following way:
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Figure 7.29: Stabilization of the inlet flow with both the standard P-controller and the adaptive
controller
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Figure 7.30: Comparing inlet flow measurement with its estimate
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Figure 7.31: Stabilization of the plenum pressure with both the standard P-controller and the adap-
tive controller
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Figure 7.32: Trajectory of the estimate for k1
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Figure 7.33: Trajectory of the estimate for k2
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Figure 7.34: Trajectory of the estimate for k3
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Figure 7.35: Trajectory of the estimate for φ0
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Figure 7.36: Trajectory of the estimate for ψ0

Evaluation of the results will be done in Section 8 and 9.
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Chapter 8
Discussion

The simulations presented in Chapter 7 arises several issues that requires some attention.

Probably, the most important issue that needs to be discussed is the estimation of the equi-
librium point. A study of Figures 7.27, 7.28, 7.35 and 7.36 reveals some gap between
the actual coordinates for the equilibrium point and their estimates supplied by the adap-
tive law which [6] proposed. This discovery contradicts with the statement made by [6]
where one is predicting that θ̂0 will be equal to x0. The reason for this divergence is
possibly that the model which supplies the adaptive law with system states uses the out-
come of the adaptive law itself to compute those states. In fact, a experiment was run
by the author where the equilibrium of the system is known beforehand meaning that the
model will generates the states independently of the adaptive law. Under such conditions,
the adaptive law produces estimates which manage to exponentially converge to the ac-
tual equilibrium. The effect of this inaccuracy in equilibrium estimates will spread to the
adaptive controller. Therefore, the performances of the adaptive controller and standard
P-controller (for which equilibrium point is known) will differ from each other, even when
k1, k2 and k3 were estimated almost perfectly. Of course, one solution of avoiding such
error in equilibrium estimates, would be to dismiss the deviation variables in favour of
the standard variables in order to express the compression system. In return, the devia-
tion variables are the key tool in order to obtain a simplified parameter estimation of the
compressor characteristic and cannot simply be omitted. Thus, the uncertainty regarding
the estimation of the equilibrium point is an inevitable drawback of methods introduced in
this thesis.

Comparison of the adaptive and standard P-controller leads to a conclusion that large de-
parture of estimates from the actual equilibrium, does not have much of an sizeable in-
fluence on the system dynamics. Still, amplitude of surge oscillations tends out be larger
for inaccurate equilibrium estimation than for the case where the equilibrium is known ex-
actly. Frequency of the oscillations is the same for both cases. Moreover, the performance
of the adaptive controller seems to be somewhat poorer than it is for the P-controller. It
still manages, however, to bring the system states exponentially to the origin. Obviously,
the are two factors which will influence the performance of the adaptive law: the tuning
matrix P and its initial estimate. In order to get a satisfying result, [6] proposes a slow
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adaptation (see eq. (3.41)), an advice that has been followed up in this thesis. A reason-
able value for the initial estimate can be selected by considering the operating range of the
system.

Now, the focus is set on the adaptive controller itself. Although some effort has been put
in terms of tuning the adaptive gain, there still exist some parameter estimation error θ̃ at
steady-state for both estimation methods. This implies that the fluctuation of mass flow,
does not fulfil persistent excitation condition. As the reader may recall from section 4.1,
the convergence of θ toward θ∗ is not a priority. Instead, the objective is to come up with
such estimates so that the the controller drives the system to a stable equilibrium. Based on
the presented simulations in Chapter 7, it can be concluded that the implemented adaptive
controller satisfies this goal.

The discussion continues to comparing the two estimation methods. Simulations shows
that the estimates reaches their convergence somewhat faster for the gradient method com-
pared with least-squares. This result seems to be incidental, but it needs to be noted that
more care had to be put in tuning the adaptive gain for the gradient method than it did for
the least-squares. As for the latter, the accuracy of the estimates can be improved by by
more aggressively penalizing the estimation error ε; the elements for the initial matrix P0

are set to a very high value. The same approach was tried for the gradient method, only to
provide poorer estimates for the constants k1, k2 and k3. The performance of the adaptive
controller also worsened. Even if the penalizing of the estimation error with very large
matrix P works very well in this particular case of the least-squares, it is not to be expected
in general.

Actually, for all simulations, the gain for the adaptive controller remain constant during
the stabilization of the system. The reason is that the parameter estimation is being per-
formed prior to the activation of the controller. The delay in activating the controller has
been incorporated not only to illustrate its effect but also to provide a highly varying flow
measurement signal for the parameter estimation. Ironically, flow signal oscillating due
to surge, appears to be very well suited for parameter estimation. The suggested adap-
tive control embedded for the compression systems can be classified as indirect adaptive
control. The hallmark for the indirect adaptive control is that the plant parameters are
estimated on-line and later used to compute the controller parameters. [33] mentions that
in academic environments, the indirect adaptive control is being referred to as explicit
adaptive control since the design is based on explicit model of the plant. The alternative to
indirect adaptive control is obviously direct adaptive control. This strategy is characterized
by parameterizing the plant model in terms of the control parameters which er estimated
directly ”without intermediate calculations involving plant parameter estimates” as stated
[33]. Such approach has been termed implicit adaptive control because the design depends
on estimating the implicit plant model.
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Chapter 9
Conclussion

This thesis has provided new results in the field on adaptive control of surge in axial and
centrifugal compressors. Traditional surge controllers often rely on system parameters.
Many of them can be regarded as uncertain in special cases. The literature has already
been aware of this uncertainties and have suggested several adaptive controllers that es-
timates the unknown parameters and/or updates the control settings so that the system
requirements are met. In this thesis, two types of surge actuators are being studied: closed-
coupled valve (CCV) and a piston. Both actuators were previously operated by standard
P-controllers for which the gains can be constructed by the coefficients from the com-
pressor map. For a large part of compressor systems, the compressor map will be poorly
known.

The alternative adaptive controller developed in this work, provided the estimates for the
compressor map by using two very simple identification approaches. Both methodolo-
gies generated very accurate estimates and the resulting adaptive controllers managed to
stabilize the compression system in a satisfactory way. To apply the suggested estima-
tion strategies, however, some specific adjustments had to be done upon the compressor
model. Primarily, the adjustments consisted of expressing the compressor model in terms
of deviation variables. Such action required knowledge of the coordinates of the system
equilibrium. If not known, it could either be approximated to some reasonable value or
can explicitly be found by using an adaptive scheme. To the best authors knowledge, such
adaptation scheme has ,until now, newer been used in the context of compressors. The
results through simulations showed that this methodology had rather poor accuracy or at
least requires a comprehensive amount of tuning. Still, the result were considered suf-
ficient for the applications in this thesis. Further research on estimating the compressor
operating point is, however, appreciated and welcomed by the author. The lack of the ac-
curacy for the equilibrium estimation would also influence the performance of the adaptive
controller. For that reason, the adaptive controller differed slightly from the P-controller
when it came to stabilizing the compressor. [3mm] The compression system together with
the adaptive controller was also accompanied by the observer which provided the esti-
mates of the mass flow for the adaptive controller. The observer was included in both
choices of actuation. Results showed that the observer provided an very accurate estimate
for mass flow in the case of CCV-actuation. As for the case of assigning the piston as the
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actuator, the estimate lost its accuracy in the part where the mass flow was recovered from
the oscillations. However, the overall performance of the observer was still found to be
acceptable.

87



Bibliography

[1] H. Abdi. Partial least-squares (PLS) regression. Encyclopedia of Social Science
Research Methods, 2003. SAG.

[2] H. Abdi. The method of least-squares. Encyclopedia of Measurement and Statistics,
1:530–532, 2007.

[3] S. Al-Malawi and J. Zhang. Compressor surge control using a variable throttle area
and fuzzy logic control. Transaction of the Institute of Measurement and Control,
34(4), 2010.

[4] M. Arcak and P. Kokotovic. Nonlinear observers: a circle criterion. Automatica,
37:1913 – 1923, 2001.

[5] M. Bartholomew-Biggs. Nonlinear optimization with engineering applications, vol-
ume 19. Springer, 2008.

[6] A.S Bazanella, P.V. Kokotovic, and A.E. Silva. On the control of dynamic systems
with unknown operating point. International Journal of Control, 73(7):600 – 605,
2000.

[7] A.D Belegundu and T.R. Chandrupatla. Optimization concepts and applications in
engineering. Prentice Hall, 2011.

[8] F.B Belgacem and S.M Kaber. Quadratic optimization in ill-posed problems. Inverse
Problems, 24(5), 2008.

[9] F. Blanchini and P. Giannattasio. Adaptive control of compressor surge instability.
Automatica, 38:1373–1380, 2002.

[10] B. Bøhagen. Active surge Control of centrifugal compressor systems. PhD thesis,
Norwegian University of Science and Technology,Department of Engineering Cy-
bernetics, 2007.

[11] B. Bøhagen and J.T. Gravdahl. Circle criterion observer for a compression system.
Proceedings of the 2007 American Control Conference, pages 3553 – 3559, 2007.

88



BIBLIOGRAPHY

[12] B. Bøhagen, O. Stene, and J.T Gravdahl. A ges flow observer for compression sys-
tems: Design and experiment. Proceedings of the 2004 American Control Confer-
ence, pages 1528–1533, 2004.

[13] M. Boyce. Axial-flow compressors. boycepower.com, pages 163 – 195.

[14] M. Boyce. Principles of operation and performance estimation of centrifugal com-
pressors. Proceedings of the Twenty-Second Turbomachinery Symposium, pages
161–177, 1993.

[15] M. Boyce. Centrifugal compressors: a basic guide. PennWell, 2003.

[16] G. Chen and T.T Pham. Fuzzy sets. fuzzy logic and fuzzy control systems. CRC Press,
2001.

[17] A. Cortinovis, D. Pareschi, M. Mercangoez, and T. Besselmann. Model predictive
anti-surge control of centrifugal compressors with variable speed drives. Proceedings
of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Produc-
tion, pages 251–256, 2012.

[18] B. de Jager. Rotating stall and surge avoidance: a survey. Proceedings of the 34th
IEE Conference on Decition and Control, 2:1857–1862, 1995.

[19] H.W. Emmons, C.E. Pearson, and H.P. Grant. Compressor surge and stall propaga-
tion. Transactions of the ASME, 77:455–469, 1955.

[20] A.H Epstein, J.E.F Williams, and E.M Greitzer. Active suppresion of aerodynamic
instabilities in turbomachines. Joournal of Propulsion and Power, 5:204–211, 1989.

[21] J. Felsenstein. An alternating least-squares approach to inferring phylogenies from
pairwise distances. Systematic Biology, 46, 1997.

[22] D.A Fink, N.A. Cumpsty, and E.M Greitzer. Surge dynamics in a free-spool cen-
reifugal compressor system. Journal of Turbomachinery, 1993.

[23] J.T. Gravdahl. Modeling and control of surge and rotating stall in compressors. PhD
thesis, Norwegian University of Science and Technology,Department of Engineering
Cybernetics, 1998.

[24] J.T Gravdahl and O. Egeland. Compressor surge control using a closed-coupled valve
and backstepping. Proceedings of the American Control Conference, 1997.

[25] J.T Gravdahl and O. Egeland. Compressor surge and rotating stall: modelling and
control. Springer, 1999.

[26] J.T Gravdahl and O. Egeland. Modelling and simulation for automatic control. Ma-
rine Cybernetics, Trondheim,Norway, 2002.

[27] J.T Gravdahl, O. Egeland, and S.O Vatland. Drive torque actuation is active surge
control of centrifugal compressors. Automatica, 38(11):1881–1983, 2002.

[28] E.M. Greitzer. Surge and rotating stall in axial flow compressors, part 1: Theoretical
compression system model. Journal of Engineering for Power, pages 190–198, 1976.

89



BIBLIOGRAPHY

[29] E.M. Greitzer. Coupled compressor diffuser flow instability. Journal off aircraft,
1977.

[30] D. Gysling, D. Dugundji, E. Greitzer, and A. Epstein. Dynamic control of centrifugal
compressor surge using tailored structures. Journal of Turbomachinery, 113(4):710–
722, 1991.

[31] K.E Hansen, P. Jørgensen, and P.S Larsen. Experimental and theoretical study of
surge in a small centrifugal compressor. Journal of Fluids Engineering, 103:391–
395, 1991.

[32] A. Ilchmann. Non-identifier-based high gaina adaptive control. Springer, 1993.
Lecture Notes in Control and Information Science.

[33] P.A Ioannou and J. Sun. Robust adaptive control. Prentice Hall, 1996.

[34] A. Jerzak. An introduction to centrifugal compressor modelling and load sharing.
Norwegian University of Science and Technology,Department of Engineering Cy-
bernetics, 2016.

[35] H. Khalil. Nonlinear systems. Prentice Hall, 3rd edition, 2002.

[36] P.V. Kokotovic, H.K. Khalil, and O’Reilly. Singular Pertubation Methods in Control:
Analysis and Design. Academic Press, 1986.

[37] K. Louie, H. Clark, and P.C.D Newton. Analysis of differential equation models in
biology: A case study for clover meristem populations. New Zealand Journal of
Agricultural Research, 41:567–576, 1998.

[38] K. Madsen, H.B. Nielsen, and O Tingleff. Methods for non-Linear least-squares
problems. Informatics and Mathematical Modelling, Technical University of Den-
mark, 2nd edition, 2004.

[39] F.K Moore and E.M Greitzer. A theory of post-stall transients in axial compressor
systems: Part i - development of equations. Journal of Engineering for Gas Turbines
and Power, 108:68–76, 1986.

[40] K. Nakagawa, M. Fujiwara, T. Nishioka, S. Tanaka, and Y. Kashiwabara. Experi-
mental and numerical analysis of active supression of centrifugal compressor surge
by suction-side valve control. JSME International Journal, Series B, 37(4):878–885,
1994.

[41] M.J Nieuwenhuizen. Parameter analysis and identification of the greitzer model
by analogy with the van der pol equation. Master’s thesis, Technische Universiteit
Eindhoven,Department Mechanical Engineering, 2008.
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