
Kybulf jr. The Walking Six-Legged Bug
Robot

Edvin Holmseth

Master of Science in Cybernetics and Robotics

Supervisor: Sverre Hendseth, ITK

Department of Engineering Cybernetics

Submission date: January 2017

Norwegian University of Science and Technology

Title: Kybulf jr. The Walking Six-legged Bug Robot
Student: Edvin Andreas Holmseth

Problem description:

Design and build a functional hexapod. The hexapod should be able to walk in
all directions and be controlled by a handheld controller. When turning, the body
should not rotate, but rather change the side that acts as the "front end". The robot
must be able to communicate with a computer for future possibilities of implementing
an autonomous control system that receives orders from a computer.

Master of Science in Engineering Cybernetics
Submission Date: January 2017
Supervisor: Sverre Hendseth

Abstract

This paper describes how to build a small, lightweight hexapod (a six-
legged bug-robot), using mostly off-the-shelf electronic hardware.

The paper will discuss the electronic components that are used and
their role in the robot. It explains how the robot was designed, 3D-printed,
and how to assemble the robot.

It will also take a closer look at how the software developed for the
robot is built up, and how the different hardware components communi-
cate with each other. Finally, we will explain how the robot controls the
legs, both in a mathematical view and from a software perspective.

Sammendrag

Denne oppgaven beskriver hvordan man kan bygge en hexapod (en seks-
bent insektrobot), ved å bruke hardware som for det meste kan kjøpes
på nett eller i butikker.

Oppgaven vil diskutere hvilke elektroniske komponenter som er brukt,
og hvilken rolle de har i roboten. Den vil også forklare hvordan robotens
design ble valgt, 3D-printet, og hvordan man setter sammen roboten.

Vi vil også se nærmere på hvordan softwaren som ble skrevet for
roboten er bygget opp, og hvordan de ulike hardwarekomponentene kom-
muniserer med hverandre. Til slutt vil vi se hvordan roboten kontrollerer
benene sine, både fra et matematisk synspunkt, og i et software-perspektiv.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the Thesis . 1

2 Background 3
2.1 Previous Work . 3
2.2 USART Communication . 4
2.3 Pulse Width Modulation (PWM) Motors 5
2.4 Learning Outcome . 6

3 Background: Electronic Hardware 7
3.1 Discovery STM32F4 - Microcontroller 7
3.2 Motors . 8
3.3 Telemetry Kit . 9
3.4 Radio Controller . 11
3.5 Arduino Nano - Microcontroller . 12
3.6 Power Sources . 13
3.7 Power Distributor . 14

4 The Robot’s Design 17
4.1 Body . 17
4.2 Legs . 17

5 3D-Modeling and 3D-Printing 19
5.1 Motors . 19
5.2 Body . 19
5.3 Legs . 21
5.4 Full Model . 21
5.5 3D-Printed parts . 22

5.5.1 Motor Sockets . 22
5.5.2 Body . 22
5.5.3 Legs . 23

v

6 Assembling the Robot 25
6.1 Checking the Motors . 25
6.2 Assembling the Legs . 25
6.3 Assembling the Body . 29
6.4 Wiring . 30
6.5 Final Assembly . 32

7 Leg Control Mathematics 35
7.1 Calculating the Legs Motor Angles 36

7.1.1 Calculation of Angle θ1 . 37
7.1.2 Calculation of Angles θ2 and θ3 38

8 Walking Algorithm 41
8.1 Walking Pattern . 41
8.2 Changing Speed . 42
8.3 Changing Direction . 43
8.4 Summary . 43

9 Software Development 45
9.1 Integrated Development Environment (IDE) 45
9.2 Hardware Abstraction Layer (HAL) 45
9.3 The Main Structure of the Software 46
9.4 Virtual Threading . 46
9.5 Communication Between Different Electronic Hardware Components 48
9.6 Shared Data . 49
9.7 PWM Programming . 51
9.8 Walking Algorithm . 52
9.9 Leg Control . 53

10 Further Work 55
10.1 Acrobatic Mode . 55
10.2 Positioning System and Autonomous Control 55
10.3 Anti-Collision System . 56
10.4 Automatic Wireless Charging . 56
10.5 Camera with live feed . 56

11 Discussion 57
11.1 Insufficient Torque In The Motors 57
11.2 Reliability Of The Software . 58
11.3 3D-Printed Parts . 58
11.4 USART Communication . 58
11.5 Future Modifications of the Software 59

12 Conclusion 61

References 63

A Communication Protocol 65
A.1 Communication Protocol . 65

B CAD Drawings 67

C Software 75
C.1 Main.cpp . 75
C.2 SystickHandler . 77
C.3 Usart communication handling . 78
C.4 Shared Data Module . 79

C.4.1 SharedDataModule.h . 79
C.4.2 SharedDataModule.cpp . 80

C.5 Communication Module . 82
C.5.1 CommunicationModule.h . 82
C.5.2 CommunicationModule.cpp 84

C.6 MotorControl Module . 90
C.6.1 MotorControlModule.h . 90
C.6.2 MotorControlModule.cpp . 93

C.7 Leg Control . 100
C.7.1 LegControl.h . 100
C.7.2 LegControl.cpp . 102

C.8 Arduino PWM reader . 108

Chapter1Introduction

1.1 Motivation

Both human controlled and autonomous robots have been around for many years.
Most of them are propelled by wheels but during the last few years the interest in
quadcopters, or "drones", has increased. A quadcopter can reach places wheel based
drones can not, but there are also places that quadcopters have difficulties reaching,
e.g. for rescue searches in collapsed buildings. In these places, a hexapod would do
better than both flying and wheel based drones.

There are many robotics projects done at NTNU, resulting in robots in different
shapes and sizes. The goal of this project is to create a robot that is small enough
to bring around to do demonstrations while promoting the engineering studies at
NTNU e.g. in Upper Secondary Schools. Another goal is not only to build the robot
but to learn how to control a walking robot using source code only, with no help
from other software, such as Matlab or similar mathematical programs.

1.2 Outline of the Thesis

In this paper we will see how the robot was developed. We will take a look at all the
hardware, including the electrical hardware, and the design and production of the
plastic body. A guide on how to assemble the robot will be presented. We will see
how the legs are controlled, both in a mathematical view and through the software.

1

Chapter2Background

2.1 Previous Work

The hexapod is not a new invention. It has been made by many people before, both
commercial and in private. There is also a master’s thesis from NTNU, written many
years ago, that made a hexapod. Unfortunately, that master’s thesis was difficult to
find for the use of reference since it was written before NTNU started using Daim,
and the Institute has archived their old library. The old robots name was Kybulf.
When Kybulf was made, the electronic components were a lot larger than they are
today. The power source e.g. was so big that it had to be carried by a person behind
the robot. The goal of this thesis is to make a smaller, lightweight version of Kybulf,
called Kybulf jr. Since the thesis on Kybulf was not found, nothing is reused, other
than the idea.

The work on the hexapod started in the spring of 2016 with the subject TTK4550.
The main part of this subject was to find out whether it was possible to build a
hexapod using only parts that are commercial, in addition to some 3D-printed parts.
The conclusion of this project was that it was possible, and the preparations for
building the robot started.

By the summer of 2016 the hexapod, Kybulf jr, consisted of one leg with two mo-
tors that to some degree was controlled a microcontroller. The same microcontroller
that is used in the final version of Kybulf jr. The pre-project also led to knowledge on
PWM (Pulse Width Modulation) Motors. In addition to running two PWM motors
on the Discovery STM32F4 microcontroller, one USART communication line was set
up so that the microcontroller could communicate with a computer. This was used
to change the PWM signals for the PWM motors in real time.

3

4 2. BACKGROUND

The rest of this chapter will give a short brief in how USART communication
and PWM motors work.

2.2 USART Communication

USART communication, or serial communication, is a communication protocol used
between electronic components. It is a fairly simple way of communicating. A
USART port consists of a transmission line (Tx) and a receiver line (Rx). These are
always cross-wired so that the Tx port on one component is always connected to the
Rx line in the other component, and vice versa. See figure 2.1.

Figure 2.1: Wiring a USART Communication Port

For the communication to work, a fixed baud rate must be set on both sides of
the communication line. The baud rate represents the speed of which the bits are
sent. Typical baud rates are 9600, 19200, 38400 and 115200 [bits/sec]. In this project
the bit rate 9600 bits/sec is used in all the electronic components.

The communication is always sent one bit at a time. If you try to send a message
string, it is divided into individual bytes, consisting of 8 bits. Attached to each side
are a start and a stop bit. On the receiving line, the device is waiting for the signal
to drop from HIGH to LOW, which would be the start bit. When it drops, the device
knows it will be followed by eight payload bits and a stop bit in the end, which is
always HIGH. See figure 2.2. When all the bytes are received the message string is
reassembled to a complete message.

2.3. PULSE WIDTH MODULATION (PWM) MOTORS 5

Figure 2.2: USART Message [17]

2.3 Pulse Width Modulation (PWM) Motors

Pulse width modulation motors have an integrated regulator that controls the motor.
They use a pulse signal to control the output angle. The pulse signal is sent to the
motors directly from the Discovery board in this project, while a separate power
source is used for the motors. See figure 2.3.

Figure 2.3: PWM Motor Wiring Scheme

The PWM pulse signal sent from the Discovery microcontroller is HIGH for a
certain amount of time called the "duty cycle". Then it drops to LOW for the rest
of the period. A normal period for PWM signals for motors of this size is 20ms.
The length of the duty cycle is usually from 1ms to 2ms, where 1ms sets the rotor
to 0◦, while 2ms sets the rotor to 180◦. Naturally, all duty cycles between the two
endpoints can be used, and they correspond to the angles in between 0◦ and 180◦.
See figure 2.4.

6 2. BACKGROUND

Figure 2.4: PWM Signals Explained [4]

2.4 Learning Outcome

This project has had many different aspects, many of which is fairly known to an
Engineering Cybernetics student, while others might be new. One of the things I
have learned during this project is using 3D-modeling software, which in this project
was SolidWorks. I had never used any 3D-modeling software before, but online
tutorials helped a great deal in getting started. Even though the parts in the robot
are quite simple, assembling everything into a full model of the robot took a while,
but was very neat to have a 3D-model of the robot, or parts of the robot, to create
illustrations for this thesis. The 3D-modeling was also, of course, crucial to create
the parts that needed to be 3D-printed, and to ensure that they would fit together
before printing them.

Even though I was familiar with software development, it was a challenge to
create such large amount of source code from scratch. I think that if I were to write
it all again now, it would look a bit different, which is an experience I will bring into
my career. Although I have programmed microcontrollers before, in several subjects
at NTNU, I have never written much of the communication between electronic
components, such as USART communication or PWM signal generation, since they
are often included in a hardware abstraction layer on many microcontroller starting
kits, such as Arduino.

Chapter3Background: Electronic Hardware

For this project, mostly commercial off-the-shelf hardware is used, so that it is easy
to build a replica of the robot if needed. Except for the body and the legs, which
is 3D-printed here at NTNU, everything else, like the microcontrollers, the power
supply, the PWM motors and the radio remote controller is off-the-shelf products.
A part that is not printed nor ordered is the power distributor, used to distribute
power from the battery to the motors. It was made in the Engineering Cybernetics
workshop at NTNU. It is a quite simple part, and it should not be difficult to create
another if needed.

3.1 Discovery STM32F4 - Microcontroller

Figure 3.1: Discovery STM32F4 Microcontroller [2]

7

8 3. BACKGROUND: ELECTRONIC HARDWARE

The main microcontroller used in this project is the Discovery STM32F4 microcon-
troller. There are plenty of microcontrollers that would be suited for this project,
but this one was already available when the project started. The microcontroller
has many IO-ports, which is needed to control the 18 PWM motors The IO-ports
are also required for USART communication, which is used with the remote radio
controller receiver, and communication with a computer, which is necessary during
the phase of testing.

3.2 Motors

Figure 3.2: Tower Pro SG90 9g [3]

The motors used for the project is the Tower Pro SG90 9g micro servo motors. this
motor is a PWM motor (Pulse Width Modulation motor). It was decided to use
PWM motors, as they are reasonably cheap, and they have a built in regulator,
which makes them easier to control directly from the microcontroller, which again
simplifies the software and hardware.

For an introduction on how PWM motors operate, see chapter 2.3. Notice however
that the TowerPro SG90 9g servo motors use different duty cycle limits than the ones
used in the Background chapter. The correlation between the duty cycles and the
output angles are not completely linear, but nearly perfect linear from -60◦ to +60◦,
with duty cycles 700µs to 1800µs respectively, and with the center, 0◦ at 1250µs.

3.3. TELEMETRY KIT 9

3.3 Telemetry Kit

The robot can communicate with a computer via serial communication. It can send
and receive message strings, which was very useful during the software development,
both to see and to change different parameters while the software was running. There
is not developed software for the computer to communicate with the robot, but a
simple program, such as Termite [6] can read and send the text string messages in
real time.

There are many solutions on how to connect IO-pins on a microcontroller to a
USB port on a computer. A USB to serial adapter can be used, but this would
require a wired connection between the computer and the robot. Instead, a Telemetry
kit from 3DRRadio is used. See figure 3.3.

Figure 3.3: 3DR Radio Kit [7]

The 3DR Radio kit offers communication as if there was wired serial connection
between the robot and the computer. A configuration software can be downloaded
from ardupilot’s website [8], and it is also included in the zip folder attached to this
paper. Note that for the telemetry kit to work, the baud rate of the radio must be
set to the same baud rate that is used in the USART communication module in the

10 3. BACKGROUND: ELECTRONIC HARDWARE

software on the Discovery STM32F4. The transmission power (Tx Power) has also
been increased to minimize the data loss as the distance between the sender and
receiver is increased. All the settings can be seen in figure 3.4.

Figure 3.4: 3DR Radio Config

3.4. RADIO CONTROLLER 11

3.4 Radio Controller

Figure 3.5: Flysky FS-T4B, Radio Controller [5]

The robot is controlled with a handheld radio controller. The controller used in
this project is the 2.4G 4CH Radio Control Transmitter for Flysky FS-T4B [5]. It
comes with a receiver that translates the radio signals to PWM signals, which can
be measured by a microcontroller. Both the controller and the receiver are pictured
in figure 3.5.

The radio controller works pretty much the same way as a PWM motor, as
they often work with PWM motors without any microcontrollers in between in RC
cars and RC planes. The controller transmits a radio signal to the receiver, which
then reads the signal, and transforms it into a PWM-signal. The controller has two
joysticks, which each can be pushed in two axes. Each axis is read separately by the
receiver, which translates it into four PWM signals, which is read by a microcontroller.

The range of the duty cycles in the radio controller is similar to a standard PWM
signal. It has a period of 20ms, but the duty cycles seem to vary a little in the
different channels. The center position of each joystick axis corresponds to duty
cycles ranging from 1414µs to 1508µs, and the endpoints vary a lot. This is taken

12 3. BACKGROUND: ELECTRONIC HARDWARE

care of by the software. The raw values from the radio controller can be seen in
Table 3.1. Also, note that the channels marked with "RUD.", "THR." and "ELE." are
flipped on the radio controller, so that the up or the right position on each joystick
axis corresponds to the highest duty cycle on all the channels.

Figure 3.6: Radio Controller Joystick Channels

Channel Duty cycle mid[µs] Duty cycle min[µs] Duty cycle max[µs]
0 1480 1050(left) 1950(right)
1 1414 1120(down) 1770(up)
2 1480 1080(down) 1900(up)
3 1508 1070(left) 1960(right)

Table 3.1: Output values for radio controller PWM-signals

3.5 Arduino Nano - Microcontroller

Because 18 of the PWM ports was used to control the motors on the robot, there
were not sufficient PWM ports to read all the PWM inputs from the radio controller.
A separate microcontroller was needed to measure the PWM inputs. An Arduino
was chosen because it is lightweight and cheap. The Arduino measures the duty cycle
of all four PWM signals from the radio controller receiver and sends the values to
the Discovery STM32F4 via serial communication.

3.6. POWER SOURCES 13

Figure 3.7: Arduino Nano [9]

3.6 Power Sources

As the motors require 4.8V and the Discovery STM32F4 requires 5.0V, separate
power sources are needed. To power the Discovery board a simple Clas Ohlson power
bank [11], as seen in figure 3.8, is used. However, while the servo motors can run on
5V, this power bank is not sufficient to run 18 servo motors at once. Therefore a
separate battery for the motors is required. A Bronto Rx Pack [10], as seen in figure
3.9, is used to power the motors in this project.

The power bank is connected to the Discovery microcontroller via a USB to
mini-USB cable, while the Bronto Rx Pack is connected to the motors via the power
distributor made in the Workshop for Engineering Cybernetics at NTNU.

Figure 3.8: Clas Ohlson Power Bank [11]

14 3. BACKGROUND: ELECTRONIC HARDWARE

Figure 3.9: Bronto Rx Pack [10]

3.7 Power Distributor

Figure 3.10: Power Distributor

The power distributor is made at the Workshop for Engineering Cybernetics at
NTNU. It is a circuit with four rows where on the two first rows, all the nodes
on that row are connected to each other. One row for GND and one row for V+.
The last two rows are connected to each other to carry on the individual PWM
signals from the Discovery STM32F4. The PWM signal pins are included in the
power distributor because all the PWM motors come with a "PWM contact" as in
figure 3.11, with the three inputs: "GND", "V+", and "Signal", in that order. This
way, the motors can be plugged directly into the power distributor, along with each
PWM signal from the Discovery STM32F4 connected next to it. When the battery
is connected to the power distributor, and all the PWM signals from the Discovery

3.7. POWER DISTRIBUTOR 15

microcontroller is connected, the motors get both power and the control signal from
the power distributor.

Figure 3.11: PWM Servo Motor Contact

A simple circuit drawing of the power distributor can be seen in figure 3.12. All
the squares represent pins. The gray pins are connected to one another (GND). The
same goes with the red(V+). The numbered squares are connected to the squares
with the same number. 1 is connected to 1, and 2 is connected to 2, and so on.

Figure 3.12: Power Distributor Circuit Drawing

Chapter4The Robot’s Design

4.1 Body

One of the goals for the robot was that it should be able to walk in all directions
without rotating the body. Therefore the robot has no natural front or back end,
and thus, it has no head. The body is completely round with six legs with a 60◦

angle between each leg.

The body consists of layers. There is a main layer containing the motherboard
(the Discovery STM32F4), the leg mountings, the telemety kit, and the radio control
receiver. On top of this layer, there is another layer containing the batteries and the
power distributor. The reason for this is so that all the heavy components are equally
distributed around the center of the body so that the weight is equally distributed
on the legs. This also leaves room for further development. If desirable, one can add
a new layer with sensors etc, for automatic control of the robot. The concept sketch
of the body is seen in figure 4.1, where the Discovery board is located in the first
layer, and the battery is located in the second layer. The size of the body was chosen
by the size of the motherboard, and the size of the motors.

4.2 Legs

It was important for the legs to have three degrees of freedom so that the endpoint
of each leg can be moved anywhere in space. For this, three motors in each leg are
required. The design that was chosen was based on an ant’s leg. The inner motor
is moving sideways, and the middle motor is moving up and down. The first two
motors make the "hip" joint of the leg. The outer motor, placed on the "knee" is also
moving up and down. See figure 4.2. The length of the inner leg, that is, between
the 2nd and 3rd motor is 10cm long. The link outside the 3rd motor is 15 cm.

17

18 4. THE ROBOT’S DESIGN

Figure 4.1: Conceptual Sketch of the Body

Figure 4.2: Conceptual Sketch of the Leg

Chapter53D-Modeling and 3D-Printing

During the phase of development, a great way of visualizing the hexapod was to use
a 3D modeling software to design the robot. SolidWorks is a 3D-modeling software
used on NTNU, and it was used in this project both to visualize the robot and to
design the parts of the body that were later 3D-printed.

5.1 Motors

The Tower Pro motors have a simple shape, and a 3D model of them was found
online at GrabCad [15]. A simple motor casing was designed to fit around the motors
so that the motors would attach to the body. The motor casing can be seen in figure
5.1. The motor casings were designed a little different for each of the motors on
the leg. The casings for the two inner motors were attached together in one piece
and designed to fit into the first layer of the body, while the outer motor casing was
designed to fit onto the outer leg part, but they all have the same basic layout, as
seen in figure 5.1. The specifications of each motor housing can be seen in appendix
B.

5.2 Body

As mentioned before the body’s design is based on a layer module. The main layer
is the layer where the inner joints and the motherboard are placed. The layers are
based on a simple plate that can be modified to house different hardware. In figure
5.2 we see the two plates that make the first layer. The leftmost is the bottom plate
and is equipped with a card holder and some extra holes to fit the motor sockets.
The rightmost base has specially formed holes to fit the rotor part of the PWM
motors. In figure 5.3 we can see what the first layer looks like, including the Discovery
STM32F4, the motor casings, and the motors. Notice how the rotors on the motors
in figure 5.3 fit in the holes on the right side in figure 5.2.

19

20 5. 3D-MODELING AND 3D-PRINTING

Figure 5.1: Motor with Casing (Cutaway view)

Figure 5.2: Base Layer

Figure 5.3: First layer of body

5.3. LEGS 21

5.3 Legs

As mentioned, the legs each have three joints, which means three motors. We call
them motor 1, 2 and 3 for simplicity, where motor 1 is the motor closest to the
body, motor 2 is the middle motor, and motor 3 is the outer motor. Motor 1 is
connected to the body, and motor 2 is connected directly to motor one, with no link
in between, other than the motor casings themselves. Motor 2 is connected to a link
which makes the "middle leg" part, which then is attached to motor 3, which acts as
the "knee". Motor 3 is connected to a final link, which is the "outer leg", and leads
to the endpoint of the leg. See figure 5.4.

Figure 5.4: Robot Leg

5.4 Full Model

In figure 5.5 we can see the full 3D model of the robot. The parts that are not
included are the wiring and the batteries, which were not yet ordered when the parts
were set to printing.

22 5. 3D-MODELING AND 3D-PRINTING

Figure 5.5: Full Model

5.5 3D-Printed parts

The 3D-Printing was done at the workshop at the Institute of Engineering Cybernetics
at NTNU. The process took about 30 hours. The parts came out pretty much like
expected, and they fitted each other like they were supposed to.

5.5.1 Motor Sockets

During the pre-project last semester, some motor sockets was printed, and they fitted
the motors fine. This time, however, some of the motors was a bit difficult to get
into the sockets, due to minor varieties in each printed socket. All of them worked in
the end, but if someone is to print new motor sockets, a little larger space for the
motors is recommended.

5.5.2 Body

The card holder for the Discovery STM32F4 printed directly on the bottom piece
works very well, as the Discovery board fits perfectly in place. Only the friction is
enough to hold the card in place. The cylinder spacing pieces seen in figure 5.3 was
not printed but made out of a solid plastic rod. In retrospect these pieces could have
been made in the same part, that is, attached to the bottom body piece. By doing
that, they can be hollowed out, so they weigh less, and it would be less work in the
workshop. If someone is to print the bottom layer once more, it is recommended to

5.5. 3D-PRINTED PARTS 23

add the cylinder spacers to this piece. It would also be beneficial to see if there is a
way to hollow out parts of the card holder to minimize the use of plastic, and thus
reduce the weight, since the card holder is not a part that has to withstand much
force.

5.5.3 Legs

The leg pieces also work very well. The indents made for attaching the leg parts
to the rotor of a motor, or to the motor socket works great. The only modification
that needed to be done after printing them was to drill holes in the indents made for
the rotors, to fasten them to the motor. These holes could have been included in
the 3D-model, but one would have to drill bigger holes in the rotor parts anyway,
to make the holes big enough to fit a screw into it. The outer leg parts could have
been attached directly to the outer motor sockets, instead of making indents and
extruders. This could, however, lead to a longer printing process, as the pieces would
take up larger space in the printer, thus having to set several different prints, instead
of stacking the neatly into one print.

The legs seem to hold the weight of the robot, but they tend to bend a little,
especially around the middle motor. The solution used to hold the inner motors,
with connections on both sides of the rotational axis, seems to work better than on
the two other motors. If someone is to design new motor casings, a similar solution
to the one used to attach the inner motor casings is advised for the two others. This
does, however, increase the weight of the robot. The current design works fine, but
it was made without knowing the strength of the plastic in the rotors of the motors,
and it is not optimal.

Figure 5.6 shows some photos of some of the 3D-printed parts.

24 5. 3D-MODELING AND 3D-PRINTING

Figure 5.6: 3D-Printed Parts

Chapter6Assembling the Robot

6.1 Checking the Motors

Before assembling the robot, make sure that all the motors are working, and that
they are equally adjusted from the factory. This can be done by using the Discovery
STM32F4. However, this requires some modification of the software. In the file
MotorControlModule.cpp, comment out the lines: "this->UpdatePwmInput();" and
"this->RunLegController();", and uncomment "this->UpdatePwmFromInput();". All
the PWM duty cycles are now set to 1250, which is the middle position for the
TowerPro motors. The duty cycles can also be modified via USART communication
commands in Termite in real time. See appendix C.6.2 to see where in the source
code to apply the changes to test the motors. To change the PWM duty cycles, use
the commands described in appendix A. Use this to check that a duty cycle of 1250
µs corresponds to the middle position of the motor, and that they all move the same
amount with different duty cycles. When all the motors are checked, fit them into
their motor casings.

6.2 Assembling the Legs

The rotor part on the motors, circled in red in figure 6.1, are disconnected when the
motors are delivered. It is important to connect them correctly so that the angles
actually are the same as the software assumes, as there is no feedback from the
motors to the Discovery STM32F4. Before connecting them, we need to drill some
holes for the screws. Place each of the rotor parts into the slots where they are
supposed to be on the robot, like in figure 6.2. Then drill a hole through both the
rotor part and the part where the motor is intened (e.g. the leg or the body), so that
a bolt can fit in. Two holes are needed for each rotor part. The final result will look
like the picture in figure 6.3.

25

26 6. ASSEMBLING THE ROBOT

Figure 6.1: Rotor Part

Figure 6.2: Modifying the Rotor Parts

Figure 6.3: Attached Motor

6.2. ASSEMBLING THE LEGS 27

Figure 6.4: Positioning of rotor on inner motor

The rotor parts on the inner motors, that is, the ones closest to the body on
each leg, should point straight inwards when the PWM signal (duty cycle) is 1250µs.
See figure 6.4. Thus the legs can move the same amount in both ways. If a power
supply or a PWM signal is not available, one can find the middle position (1250 µs)
by twisting the rotor to the end in both ways to find the middle, but this is not as
accurate as using the Discovery STM32F4 to generate a duty cycle of 1250µs. What
pinouts to use for the duty cycle output can be seen in table 6.1. Choose a pinout
that corresponds to one of the inner motors, such as motor 1,1.

The rotor part on the middle motors of each leg should be connected so that the
rotor part is pointing straight out from the body when the motor receives a duty
cycle of 1250µs. See figure 6.5 for illustration.

The rotors on last motors, the outer motors of the leg, should be pointing at a
right angle to the left when the motor is seen from "above" when it receives a duty
cycle of 1250µs. See figure 6.6.

Now that all the rotors are attached correctly, screw them on to the leg pieces.
The outer leg piece is glued onto the outer motor casing. The result should look
something like the picture in figure 6.7.

28 6. ASSEMBLING THE ROBOT

Figure 6.5: Positioning of rotor on middle motor

Figure 6.6: Positioning of rotor on outer motor

6.3. ASSEMBLING THE BODY 29

Figure 6.7: Assembled Leg

6.3 Assembling the Body

The first step in assembling the body is to slide the Discovery STM32F4 into the
card holder. The friction holds the card in place, so there is no need to fasten it
further. Note that the card holder blocks the view for the names of the two outer
rows of the pinouts, as seen in 6.8. To see what name corresponds to what pinout,
use figure 6.9. These pinouts can also be found online.

Figure 6.8: Discovery STM32F4 in card holder

30 6. ASSEMBLING THE ROBOT

Figure 6.9: Pinout Overview Discovery STM32F4 [14]

Continue by connecting the spacing cylinders. These were not printed but made
from a plastic rod in the workshop. It is recommended to print these directly on the
lower base. Whether they are printed or attached, the robot should now look like
the illustration in figure 6.10. Note that only four spacing cylinders are used, as one
of them would block for the mini-USB cable that is connected to the power bank.
The last one is excluded due to weight symmetry.

The next step is to attach the legs to the body. Start with the upper body part,
the part without the card holder, and lay it upside down. Then screw on each of the
legs in the rotor-shaped holes. See figure 6.11.

6.4 Wiring

Before attaching the lower half, with the Discovery board, to the upper half, with
the legs, all the wiring needs to be connected, because it is very hard to reach the
pinouts on the discovery once the body is assembled. This is a bit tricky because

6.4. WIRING 31

Figure 6.10: Assembling the Spacing Cylinders

Figure 6.11: Assembling the Legs to the Body

32 6. ASSEMBLING THE ROBOT

the wires have to go through one of the holes in the upper part of the body. It is
easy to loose track of which wires that goes where. It is recommended to plug all the
PWM wires directly into the power distributor in the order found in table 6.1, and
then slide it through the hole. Remember to connect the ground row on the power
distributor to GND on the Discovery STM32F4.

The Arduino should also be connected according to the wiring scheme in table
6.1. The Arduino and the radio controller receiver can be placed in the same layer
as the Discovery STM32F4.

On the 3DR Radio Telemetry Kit, the pinouts are shown in figure 6.12. Note
that the Rx in on the telemetry kit is going in the Tx on the discovery and the other
way around.

Figure 6.12: Pinout 3DR Radio Telemetry Kit

6.5 Final Assembly

Once the wiring is complete, attach the upper body to the lower body by screwing
the spacing cylinders in place. Make sure all the inner motor casings, attached to the
body are inserted to the holes in the lower body part. Connect the PWM motors to
the power distributor. The motors have to be connected in the same order as the

6.5. FINAL ASSEMBLY 33

PWM inputs on the power distributor. On each leg, motor number 1 corresponds to
the inner motor, motor number 2 the middle motor and motor number 3 the outer
motor. It is not important which leg that is chosen as number 1, but leg number
increments counter clock wise. When The motors are connected, the robot is ready
to walk. Connect the power bank to the Discovery, and then the battery to the
power distributor. Use the left joystick to lower the legs, and the right joystick to
start walking.

34 6. ASSEMBLING THE ROBOT

USART
3DR transmitter (on Discovery)
Ground GND
V+ VDD
Tx PD5
Rx PD6
Arduino (on Discovery)
Ground GND
VIN VDD
Rx PA9
Tx PA10
Arduino (on Radio

Remote Receiver)
GND -
5V +
D2 S(ch4)
D3 S(ch3)
D4 S(ch2)
D5 S(ch1)
PWM Motors
Leg Motor Pinout (Discovery) Timer –> Channel
1 1,1 PB6 TIM4 –> CCR1
1 1,2 PB7 TIM4 –> CCR2
1 1,3 PB8 TIM4 –> CCR3
2 2,1 PB9 TIM4 –> CCR4
2 2,2 PA6 TIM3 –> CCR1
2 2,3 PA7 TIM3 –> CCR2
3 3,1 PB0 TIM3 –> CCR3
3 3,2 PB1 TIM3 –> CCR4
3 3,3 PA5 TIM2 –> CCR1
4 4,1 PB3 TIM2 –> CCR2
4 4,2 PB10 TIM2 –> CCR3
4 4,3 PB11 TIM2 –> CCR4
5 5,1 PA0 TIM5 –> CCR1
5 5,2 PA1 TIM5 –> CCR2
5 5,3 PA2 TIM5 –> CCR3
6 6,1 PA3 TIM5 –> CCR4
6 6,2 PE5 TIM9 –> CCR1
6 6,3 PE6 TIM9 –> CCR2

Table 6.1: Wiring Scheme

Chapter7Leg Control Mathematics

All the programming done in this project is written in C++. The program is then
uploaded to the Discovery STM32F4, which generates the PWM input for each
motor. Chapter 8 will take a closer look at how the walking algorithm works but
first it is important to know how each leg is controlled.

The method used to control the robot in this project is to have a reference point of
where one want the endpoint of the leg to be, and then calculate the angles required
for each joint/motor to make sure the endpoint is where it is supposed to be. In
an industrial robot, one could e.g. find the kinematic matrix for the joints, and
then the combined kinematic matrix for the whole arm, and reverse it to find the
angles in each joint. In this case, the legs only have three degrees of freedom, and
hereby only three motors. To reduce the computational power, it is easier to use
basic trigonometry to calculate the motor angles of each leg.

35

36 7. LEG CONTROL MATHEMATICS

7.1 Calculating the Legs Motor Angles

Figure 7.1: Angle Calculations

Figure 7.1 shows the different angles of the leg. To calculate the angles, the endpoint
is given in coordinated in a body-fixed frame. The point where the leg is attached
to the body is known, as well as the angle the leg is attached. First, the innermost
angle is calculated, which is θ1 in figure 7.1.

7.1. CALCULATING THE LEGS MOTOR ANGLES 37

7.1.1 Calculation of Angle θ1

Figure 7.2: Calculation of θ1

Figure 7.2 shows the relevant angles and distances needed to calculate θ1. The
point (x,y) is the point where we want the end of the leg to be, and it is given in a
body-fixed coordinate system. ∆x and ∆y are then calculated, which is the distance
from the base of the leg to the end point in the x and y-direction respectively. The
C++ function atan2(double y, double x) is used to calculate the angle θB , which is
the angle from the base of the leg to the end point given in the fixed body reference
frame. By subtracting the angle from the center of the body to the leg, θLeg, from
θB , the angle θ1 is obtained.

38 7. LEG CONTROL MATHEMATICS

7.1.2 Calculation of Angles θ2 and θ3

Figure 7.3: Calculation of θ2 and θ3 [12]

Figure 7.3 is from "Robot Modeling and Control - First Edition"[12], and is a good
illustration for our angles θ2 and θ3, except that we want the "knee" to bend down,
instead of up. Note that the angle θ2 from figure 7.1 corresponds to θ1 in figure 7.3,
as well as θ3 corresponds to θ2. In the further derivation of the angles the names
from figure 7.3 will be used.

To calculate these angles, the law of cosines (equation 7.1) is used.

Figure 7.4: Law of Cosines [13]

cos(C) = a2 + b2 − c2

2ab (7.1)

7.1. CALCULATING THE LEGS MOTOR ANGLES 39

By applying the law of cosines to figure 7.3, we find equation 7.2.

cos(θ2) = α2
1 + α2

2 − x2 − y2

2α1α2
:= D (7.2)

Knowing that cos(a) = cos(−a) the negative angle is always chosen, as it gives
the angle of a knee bending down, which is desired. This gives θ2 = −cos−1(D).

To calculate the last angle, θ1, the law of cosines is used once more, but now on
the triangle created by the leg itself, as seen in figure 7.5. This gives equation 7.3.

Figure 7.5: Calculation of θ1

The angle of interest is θ1, and the easiest way to obtain it is by calculating θ11
and θ12. Notice that θ1 = θ11 + θ12, θ12 being negative. L1 and L2 are the lengths
of the leg links, and L3 is given by the position of the base of the leg and the given

40 7. LEG CONTROL MATHEMATICS

endpoint. The length ∆x̃ is the combined length in the x and y-directions, projected
into the leg plane.

cos(θ11) = L2
1 + L2

2 − L2
3

2L1L2
:= E (7.3)

θ11 = cos−1(E) (7.4)

θ12 = tan−1(∆y

∆x
) (7.5)

θ1 = θ11 + θ12 (7.6)

Now θ1, θ2 and θ3 can be fed into the motors, and the end point of the leg will
end up at the given coordinates.

Chapter8Walking Algorithm

Now that the legs can be controlled, an algorithm to move the legs is required. The
algorithm used in this project is quite simple. Each leg is given a stationary point in
the body-fixed reference frame, equally distributed around the body, as seen in figure
8.1. The walking movement of the robot is controlled by the radio hand controller.
Thus, the robot must be able to vary its speed and direction.

Figure 8.1: Stationary Points for the Legs

8.1 Walking Pattern

All the legs operate in their respective zones around their stationary points. The
walking algorithm consists of moving the legs in a pattern in a separate coordinate

41

42 8. WALKING ALGORITHM

frame, with the origin located at the stationary point.

Each leg follows a triangle pattern as seen in figure 8.2. In this figure, the robot
is walking to the right (in the y-direction). It starts by having the endpoint of the leg
placed at the origin, point 0. Then the leg follows the trace along to point 1 (-L,0),
where the length of L is determined by the software. When it reaches point 1, it will
continue towards point 2 at (0,K), where K is determined similarly to L, and so on.
When the leg reaches point 0, it starts over again. All the legs’ endpoints pattern
are parallel in the three-dimensional space, naturally, so that the robot is actually
walking, in the direction of the Y-axis in this case.

The robot moves by always lifting three legs, like an ant. By giving a number to
each leg, like in figure 8.1, the legs are divided into two groups. Leg 1,3 and 5 in one
group and leg 2,4 and 6 in the other. One of the groups of legs is always touching the
ground. To ensure that the legs that were in the air are touching the ground before
the next leg is lifted, each step period is divided into four intervals. The endpoint of
each interval is marked in figure 8.2. The two groups of legs follow the same pattern,
but the groups are shifted two points compared to each other. This means that when
one group is at point 1 and is about to lift itself off the ground, the other group is at
point 3, and will take over the ground contact.

Figure 8.2: Walking Pattern

8.2 Changing Speed

When the robot does not receive a command to walk from the radio controller. All
the legs are standing stationary on the ground in their respective stationary points.

8.3. CHANGING DIRECTION 43

As soon as the robot gets a signal to start walking, it starts to move the legs to the
points given in figure 8.2. While there are different ways of adjusting the speed of
the robot, such as slowing down the movement speed of each step, the method used
in this project was to decrease the distances in each step. This is because when the
two groups of legs are always on the opposite end of the triangle in figure 8.2, at
least one of the groups of legs will always make a jump to get to the right position.
When the speed is zero, the distance between the points in figure 8.2 is also zero. As
the speed increases, the distance between the points increases proportionally.

8.3 Changing Direction

As mentioned earlier in this report, when the robot is turning, it does not rotate
the body. Instead, it simply starts to walk in the desired direction, as if that was
the new front end on the body. This is done by rotating the coordinates in the
walking pattern in figure 8.2 in the three-dimensional space. See figure 8.3. First,
the endpoint of each leg is calculated before it gets rotated around the z-axis in
a coordinate system with the origin at the stationary point of that leg, using the
standard rotation matrix for rotating around the z-axis. See equation 8.1

Figure 8.3: Rotation of Coordinates [16]


Xγ,z

Yγ,z

Zγ,z

 =


cos(γ) −sin(γ) 0

−sin(γ) cos(γ) 0
0 0 1



X

Y

Z

 (8.1)

8.4 Summary

When implemented the leg movement of the robot is functional. The right joystick of
the radio hand controller is used to steer the robot. As a startup safety, another fea-

44 8. WALKING ALGORITHM

ture was added to the software controlling the legs. When turning on the power on the
robot, the legs are starting above the ground, so that the robot is laying on its "stom-
ach". This means that the stationary points for the legs are placed a little higher than
the bottom of the body on start up. The left joystick is then used to lower the legs. By
pushing the left joystick down, the stationary points are lowered below the body, mak-
ing the robot stand up, and ready to walk. In the zip folder attached to this paper, you
will find a video showing how the robot is starting up, as well as how it responds to the
different joystick inputs. The video can also be found on Youtube, using the following
link: https://www.youtube.com/watch?v=KO0w32_NCcQ&feature=youtu.be

Chapter9Software Development

The Discovery STM32F4 is a microcontroller that uses the C++ programming
language. Thus all of the software development in this project is written in C++.
The microcontroller has some limitations, though. The Discovery STM32F4 has no
possibility for threading, which we will take a closer look at in section 9.4.

9.1 Integrated Development Environment (IDE)

On the ST Microelectronics’ (the developers of the Discovery STM32F4 microcon-
troller) website, some possible IDE’s was listed. Among them was IAR, Atollic
TrueStudio, Altium, Keil, and Cocoox. Some research showed Atollic, IAR, and
Cocoox as the best options. IAR has a very limited free edition, where one could
choose between a 30-day free trial, or a size limit of 30kb source code, which is very
limiting if you intend to use a HAL (Hardware Abstraction Layer). Cocoox and
Atollic TrueStudio seemed very similar, so the choice fell on Atollic TrueStudio, which
has very few limitations. It was easy to download and install the Atollic TrueStudio
IDE, and it was straight forward to create a new project with the right settings to
create a binary file customized to the Discovery board.

9.2 Hardware Abstraction Layer (HAL)

The Atollic TrueStudio IDE also comes with a HAL (Hardware Abstraction Layer)
for the Discovery STM32F4. This means that it is fairly easy to set up the IO pins
to do as you like. All the drivers are generated and included when the project is
created. The Discovery STM32F4 datasheet [1] tells you which timers and which IO
ports to activate to start e.g. a USART communication port or PWM programming.

45

46 9. SOFTWARE DEVELOPMENT

9.3 The Main Structure of the Software

The main purpose of the program is to control the PWM motors, but it also does
other things. First of all, it starts to blink the onboard LED lights in a circular
motion to signal that the board is connected to the power source and that the
program is running. If the blinking pattern stops, it would mean that the program
has bugged.

The program also sends a message through the serial communication line to
the computer, via the radio telemetry antenna, with the status of the robot every
500ms. This was mostly used during the testing and debugging phases to print out
different variables, and to check that the PWM module was working. The program
can also receive messages through the same serial communication line, which was also
used a lot during the development, to change the angles of the motors in real time,
or to set the endpoints for legs, to see that the mathematics in the software was correct.

Serial communication is also used to receive the PWM signals from the radio
remote controller. The PWM signals are sent to an Arduino Nano microcontroller,
which translates the PWM signals to a text string containing the duty cycles from all
the channels of the controller, and forwarded to the Discovery STM32F4 via USART
communication. These messages are then being interpreted and used to control the
legs.

The leg control module is the most important, and most frequently run task of
the program. It uses the math described in chapter 7, Leg Control, and in chapter 8,
Walking Algorithm to calculate the desired motor angles of all the motors on the robot.

The only piece of code that is not written for the Discovery STM32F4 is a small
piece of code written for the Arduino Nano, which interprets the PWM signals from
the radio remote controller. It measures the length of the duty cycle of all four
channels and sends it as a text string via serial communication to the Discovery
STM32F4. The software for the Arduino is only 27 lines of code, and it can be found
in appendix C.8.

9.4 Virtual Threading

One of the features that are usually available in the C++ language, but that was not
possible to use on the Discovery STM32F4, was threading. When this was discovered,
some research was done on implementing an RTOS (Real Time Operating System)

9.4. VIRTUAL THREADING 47

on the Discovery, but the conclusion was that it was easier to implement a simpler
form of threading by using a timer interrupt to create a countdown for each "thread".
The HAL has a timer interrupt that is set to interrupt every 1ms. Each time the
interrupt is called, the function SysTick_Handler() from the HAL’s stm32fxx_it.c
file is called. The function can be found in appendix C.2.

The main.cpp file is the other component of the virtual threading. The main file
consists of a while loop that checks if any of the counter variables for the different
"threads" have reached zero. If so, the respective function will be called, and the
countdown will be reset. A piece of the main.cpp file can be seen below.

i n t main (void)
{

// SysTick Conf igurat ion : Subtracts 1 from a l l the t imers each ms .
SysTick_Config (SystemCoreClock /1000) ;
In i tTimers () ;

SharedDataModule SharedData ;
Leds l e d s ;
CommunicationModule comm(SharedData) ;
MotorControlModule motorControl (SharedData) ;

whi l e {1}
{

i f (LedDelay == 0)
{

l ed s . ToggleLeds () ;
LedDelay = LED_DELAY;

}
i f (CommunicationModuleDelay == 0)
{

comm. runCommunicationModule () ;
CommunicationModuleDelay = COMMUNICATION_MODULE_DELAY;

}
i f (CommunicationModuleReadDelay == 0)
{

comm. readPwmInput () ;
CommunicationModuleReadDelay = COMMUNICATION_MODULE_READ_DELAY;

}
i f (MotorControlModuleDelay == 0)

48 9. SOFTWARE DEVELOPMENT

{
motorControl . runMotorControlModule () ;
MotorControlModuleDelay = MOTOR_CONTROL_MODULE_DELAY;

}
}

}

The threading would not be necessary if all the modules could run with the same
frequencies, but that is not the case. There is no need to run the communication
module as often as the motor control module because it would be impossible to
read in real time with the human eye. The same goes with the LED-module. The
constants used in the main.cpp file, such as the COMMUNICATION_ MODULE_
DELAY are "const uint32_ t" variables. The values of the delay constants are 500(ms)
for the COMMUNICATION_ MODULE_ DELAY, and for the LED_ DELAY,
while it is only 10(ms) for MOTOR_ CONTROL_ MODULE_ DELAY.

9.5 Communication Between Different Electronic Hardware
Components

The communication between the different hardware components in this project goes
via serial communication, or USART (Universal Synchronous/Asynchronous Re-
ceiver/Transmitter). USART is not the fastest protocol for transmitting data, but it
is easy to set up and does not take much processing capacity. Also, the amount of
data sent and received between the units in the robot is fairly low, so USART works
well in this case. There is not made a program for a computer to communicate with
the robot. All communication is via a serial data transmitter/receiver program, e.g.
Termite [6]. The USART module is set up on the Discovery STM32F4 by using some
of the functions included in the HAL from Atollic TrueStidio. Some of the variables
that have to be set in the software are the baud rate, which is set to 9600[b/second],
and the priority of the interrupts. The software on the Discovery motherboard
consists of two different serial communication lines. One for communication with
the computer, and one for communication with the Arduino that sends the radio
controller input. For more information on how USART communication works, see
chapter 2.2.

To see how the timers for the USART are set up in the software, and how the
different channels are assigned to the IO pins, see appendix C.5.2.

9.6. SHARED DATA 49

9.6 Shared Data

The program has a lot of data that has to be accessed from different files. Most of
the values are created and used by the Leg control module, but some of the data
come from the environment, such as through messages via the serial communication
line from the computer, and from the PWM input signals from the radio controller.
The data input from the computer is not very essential now that the robot is done,
but the data from the radio controller is crucial. If someone is to continue working
with the robot, other data, such as sensor readings will also be important to send
and read between different modules in the software. This means the shared data
module will be even more important. Figure 9.1 shows how the different modules all
are connected to the shared data module.

Figure 9.1: Software Layout

The shared data module is initialized in the main function and is passed on as an
input to the other modules that need access to the shared data. They then use a
pointer to the shared data object to include it in their own class in their initialization.
The data can then easily be accessed via a couple of lines of code.

It is important that the different modules do not try to access the shared data
at the same time. Therefore a semaphore is used to ensure that only one instance

50 9. SOFTWARE DEVELOPMENT

can access the shared data at the time. It should not be a problem, in theory, since
the modules are rarely interrupted. First, they were only interrupted when a serial
message was coming in from the computer, but when the signals from the radio
controller were introduced, these interruptions occur four times per second. The
semaphore is a simple function written in the shared data class, as seen below.

bool SharedDataModule : : l o ck ()
{

i f (th i s−>m_semaphore)
{

th i s−>m_semaphore = f a l s e ;
r e turn true ;

}
e l s e
{

re turn f a l s e ;
}

}

bool SharedDataModule : : unlock ()
{

i f (! th i s−>m_semaphore)
{

th i s−>m_semaphore = true ;
r e turn true ;

}
e l s e
{

re turn f a l s e ;
}

}

The shared data is then accessed by any class that has included the shared data
module by using the following lines of code:

i f (th i s−>m_pSharedData−>lock ())
{

i n t foo = th i s−>m_pSharedData−>value1 ;
th i s−>m_pSharedData−>unlock () ;

}

9.7. PWM PROGRAMMING 51

9.7 PWM Programming

The PWM control code in the Discovery is also from the HAL. There are some
variables that must be set for the PWM control to work with our PWM motors.
The PWM module is a counter that counts from zero up to a given value, called
the "count register" or TIMx_CNT , before it starts over. The output pulse is set
to HIGH when the counter reaches the "compare value", or TIMx_CCRx (Count
Compare Register x), and it stays high until the counter reaches the count register.
See figure 9.2. The x’es in "TIMx" refer to what timer that is being set up. The x
in "CCRx" refers to what channel, or to what pin, that is used on that timer. Most
of the timers have four channels, which means to get 18 PWM outputs, five timers
are needed. Luckily. There are four PWM timers that have four outputs channels
each on the Discovery STM32F4. The rest of the timers have only one or two output
channels. To achieve the 18 PWM outputs that are needed. All the four timers with
four PWM outputs are used, in addition to one timer with two PWM outputs.

Figure 9.2: PWM Counter

To set the correct period, we must consider what counter interval we want to use.
We know that our PWM motors use a 20ms period. For precision, it is desirable
to be able to control on a µs level. 20ms = 20000µs. Therefore the count register,
TIMx_CNT = 19999. That is 20 000 - 1, since the counter starts on 0.

There are some variations on the different timers used for the PWM outputs. To
explain how the values for the initialization for the timers are found, we will use the
characteristics of timer 2. See table 9.1 for the values for all the different timers.

52 9. SOFTWARE DEVELOPMENT

Most of the clocks on the timers on the Discovery runs at 84MHz. We want the
PWM counter to count to 19999 (20 000 - 1). If we want the period to be exactly 20
000µs, we need to decide on how many ticks on the clock to go by before incrementing
the counter. The frequency needed for the timer is the value of the count register
times the frequency of the time interval, 50 times per second.

Timer_Frequency = 20000 · 50Hz = 1000000Hz = 1MHz (9.1)

The prescaler variable decides how many ticks on the timer clock that is needed for
one incrementation on the counter.

Timer_Frequency = 84MHz

Prescaler
= 1MHz (9.2)

As we see in equation 9.2, if the prescaler is chosen to be 84, the counter will have a
frequency of 1MHz, which is what we need.

Below is a list of the different timers used, and the different timer values used to
achieve a 20 µs PWM period.

Timer nr. Timer frequency Prescaler Count Register Number of Channels
2 84MHz 84 19999 4
3 84MHz 84 19999 4
4 84MHz 84 19999 4
5 164MHz 164 19999 4
9 84MHz 84 19999 2

Table 9.1: Values for initialization of the timers for PWM outputs

To see how the PWM timers are initialized and how their channels are assigned
to the IO pins, see appendix C.6.2.

9.8 Walking Algorithm

The walking algorithm is programmed pretty much the same way as described in
chapter 8. The algorithm creates the triangle from figure 8.2 in chapter 8.1. It uses a
counter to traverse the lines between the endpoints of the triangle and calculates the
next endpoint for each leg. It uses the variables steeringAngle and speed (walking
speed) from the Shared Data Module to scale up or down the magnitude of the triangle
and to rotate it to make the robot walk in the right direction. The code for the function
can be found in appendix C.7.2. See function "void LegControl::UpdateEndpoints(int
i), as this acts as the walking algorithm.

9.9. LEG CONTROL 53

9.9 Leg Control

The Leg Control Class has a variable named "double **m_LegPosition". It is a
pointer to a pointer to a double variable m_LegPosition[i][j] which corresponds to a
point in the triangle discussed in chapter 8.1. As seen in figure 8.2. "i" refers to the
point number, and "j" refers to what coordinate (X, Y or Z) it is. The leg control
function runs through once for each leg and uses the endpoints found in the walking
algorithm to calculate the motor angles for each motor in that leg by using the math
found in chapter 7. The code can be seen in appendix C.7.2. See function "void
LegControl::CalculateMotorPositions(int i), as this acts as the leg controller.

Chapter10Further Work

Since the robot needs some modifications to work properly, it might suit as a future
master’s thesis for another student. Besides changing the motors, this chapter will
give some ideas on what features that could be added to the hexapod.

10.1 Acrobatic Mode

If the robot is going to be used for promotion of the engineering studies at upper
secondary schools (VGS in Norwegian) in the future, it would be good to have an
extra show off factor. An example is to rotate the body, lean to the sides, or to tilt
it using the joystick that is not used for walking. An example is shown in the start
of this Youtube video: https://www.youtube.com/watch?v=rAeQn5QnyXo

10.2 Positioning System and Autonomous Control

If an autonomous controller is implemented, the robot would need a positioning
system. Using a GPS is one option, but it is not very accurate. A standard GPS has
an error of some meters, which is a lot when the robot itself is less than a meter wide.
One solution is to use a differential GPS system. They are more accurate, as they
use one GPS receiver on a stationary base and one GPS receiver on the robot. The
GPS module then calculates the difference in position and gives the relative position
of the robot. These solutions are very accurate, as they give the relative position
with an error as low as a couple of centimeters. However, they are quite expensive.
Other local positioning equipment should also be considered.

Software written for a computer could also be made, which communicates with
the robot, sending messages through the telemetry link. The program could give

55

56 10. FURTHER WORK

instructions to start or stop walking, and display the robot’s position on a map in
real time.

10.3 Anti-Collision System

If an autonomous controller is implemented, there should be an anti-collision system.
This is needed because the positioning system might not be very accurate. The robot
should have distance sensors to see the distance to walls etc. Also, it should respond
to obstacles that are not stationary, such as humans, furniture or other obstacles.

10.4 Automatic Wireless Charging

Assuming one has a positioning system and an autonomous controller implemented,
the robot could walk around on its own. A feature that would make it even more
autonomous is if it would charge itself, e.g. by walking to a charging station and
charge using induction. This way, the robot could walk for days, or weeks, without
interacting with humans.

10.5 Camera with live feed

A feature that would be nice to have, although not necessary, is a camera on top of
the robot with a live feed to a computer, or even better, a live feed to VR goggles.
The "best" solution would be a camera on top of a motor that could rotate the camera
according to the motion of the VR goggles. This way the robot could change the
forward direction to whatever direction the person is looking so that when walking
forwards with the controller, it would always be the direction that is forward in the
VR goggles.

Chapter11Discussion

11.1 Insufficient Torque In The Motors

The motors that were ordered were not strong enough to lift the body of the robot
off of the ground. However, the project was finished to produce a working hexapod
software.

The reason why the motors were not strong enough may be many. The motors
were ordered from a not so reliable online site, and thus might be cheap copies
that do not satisfy the specifications listed in the datasheet. Another reason might
be that the total weight of the hardware was heavier than expected. Most of the
specifications of the components were known when the calculations were done in the
pre-project, but some were unknown, and some of the components were added later
on. Besides, the weight of the mass density of the 3D-prints was not known. The last
possibility is that there were some errors in the calculations done in the pre-project,
which led to wrong torque requirements for the robot.

This problem was discovered late this semester, as the robot required almost
finished source code to power all the motors at the same time. The motors will not
hold any position without having an input PWM signal. While it is not very difficult
to fix, either by ordering new motors or 3D-printing shorter legs it was not enough
time to do so before the submission date of this report.

To work around the motor problem while the robot was being tested, it was
placed on top of a little box to see that all the legs moved as they were supposed to,
and the walking algorithm seems to work fine. A video of a demonstration of the
robot is attached to this thesis. It can also be found on Youtube:
https://www.youtube.com/watch?v=KO0w32_NCcQ&feature=youtu.be

57

58 11. DISCUSSION

11.2 Reliability Of The Software

It has been verified that the robot responds correctly to the radio controller input
and that it can walk in all directions. It has also been set to walk and left walking for
more than 15 minutes with no problems. This suggests that the semaphores that are
implemented are working properly, preventing the software from freezing, or doing
unexpected movements. The semaphores keep the different modules from accessing
the shared variables at the same time. For higher efficiency, one could have used
different semaphores for different types of variables, but during regular use, only
the radio hand controller uses interrupt programming, which is only four times per
second, and it does not seem to be a problem.

11.3 3D-Printed Parts

The parts designed in SolidWorks seem to be working as they intended. The different
mechanisms for attaching the motors to the joints is working as expected, and the
printed parts are more than strong enough, which was a concern before actually
testing them, as there was little knowledge of how strong the plastic used in the
3D-printer was. If anything is to be changed, it would be the attachment from the
motors to the legs. The innermost motor in each leg is attached on both sides of
the rotational axis of the motor and seems to be more than strong enough. The rest
of the motors are only attached on one side of the motors, the side that the rotors
come out. Of course, adding an attachment on the other side as well would increase
the amount of plastic used, and thus increase the weight of the robot in total. The
connections, as they are now, seems to be working fine. However, to increase the
robustness of the robot, this could be given one more round of consideration.

11.4 USART Communication

The communication protocol used between the electronic components in this project,
USART, is not the fastest way of communicating, and it needs one separate connection
line between each of the components. However, the amount of data transmitted is
quite low, so the USART communication seems to be sufficient. Other communication
protocols, such as I2C, could have been used. However, they would not work with
the radio link used in this project. Of course, there are other ways of communicating
that can send more data if that is needed for e.g. a camera feed. This would require
a communication protocol with a higher bandwidth. Using a Wifi module, and
implement a socket connection with a computer could be the solution for this, but
for now, the USART ports work just fine.

11.5. FUTURE MODIFICATIONS OF THE SOFTWARE 59

11.5 Future Modifications of the Software

The main task of this project was to make a robot that could walk in all directions,
which was controlled by a handheld radio controller. This has been done, and the
robot is reading the direction of the joysticks on the radio controller, and translating
it into a walking speed variable and a walking direction variable. This means that it is
easy for someone who has read this report and has access to the source code to modify
the software to doing more complex tasks, such as implementing an autonomous
controller. All that has to be done is change the way that the walking speed and
walking direction variables are controlled.

Chapter12Conclusion

The robot is now done, and the legs move satisfyingly in a walking pattern. The
robot is also controllable via a handheld radio controller, and it can walk in all
directions by changing what end that acts as the front end, according to the problem
description. The robot is also quite modifiable, if someone wants to implement an
autonomous controller, or adding more sensors or features in the future.

As mentioned earlier in the report, the torque of the motors are not sufficient to
lift the robot off of the ground, which means the robot can not walk, but the rest of
the hardware and software work properly.

All in all the robot is doing what it is supposed to do, and the software is reliable
as it does not freeze, whatever input is applied by either the radio controller or the
USART serial communication line.

I hope that someone will continue the work on this robot in the future, to fix the
motor problems, and maybe also add some new features, either some of the ones
that are mentioned in chapter 10, or some that have not yet been considered. This
way, there is still possible that Kybulf jr. some day will be put to use, promoting the
engineering studies at NTNU.

61

References

[1] ST Microelectronics,
STM32F407xx Microcontroller Datasheet,
4th revision, 2013

[2] Electricks
http://www.elektricks.net/wp-content/uploads/2015/02/STM32F4-
Discovery.jpg
07.06.2016

[3] Tower Pro
http://www.micropik.com/PDF/SG90Servo.pdf
07.06.2016

[4] Robotplatform
http://www.robotplatform.com/knowledge/servo/servo_control_tutorial.html
07.06.2016

[5] Flysky FS-T4B Radio Controller
http://www.flysky-cn.com/products_detail/productId=39.html
04.01.2017

[6] Termite
http://www.compuphase.com/software_termite.htm
04.01.2017

[7] 3DRRadio
http://img.banggood.com/thumb/water/upload/2015/06/SKU248598-9.jpg
04.01.2017

[8] 3DR Radio Config software
http://ardupilot.org/copter/docs/common-downloads_advanced_user_tools.html
04.01.2017

[9] Arduino Nano
http://brantelonline.com/image/catalog/Arduino%20Nano%20(Original)/3.png
04.01.2017

63

64 REFERENCES

[10] Bronto Rx Pack Battery
http://www.elefun.no/p/prod.aspx?v=15855
04.01.2017

[11] Clas Ohlson Power Bank
http://www.clasohlson.com/no/Clas-Ohlson,-Powerbank-2600-mAh-
/Pr386941000
04.01.2017

[12] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar
Robot Modeling and Control
John Wiley & Sons, INC. 1st Edition 2005

[13] Law of Cosines Illustration
http://mathworld.wolfram.com/LawofCosines.html
07.06.2016

[14] Pinout Overview of Discovery STM32F4
http://stm32f4-discovery.com/wp-content/uploads/2014/06/stm32f4_discovery1.jpg
11.01.2017

[15] SolidWorks Model of TowerPro 9g Servo Motor
https://grabcad.com/library/micro-servo-9g-sg90-tower-pro-1
11.01.2017

[16] Figure of Rotation Around the Z-axis
http://www.neilmendoza.com/wp-content/uploads/2013/01/Rotation_about_z-
axis.png
11.01.2017

[17] USART Communication
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter#/media/
File:UART_timing_diagram.svg
11.01.2017

ChapterACommunication Protocol

A.1 Communication Protocol

This is a description of the main USART serial channel. On the Discovery STM32F4
board, the RX pin is PA2, and the TX pin is PA3. Every message that is sent starts
with “$xx,messageData;’0xA’ ”, where xx is the MessageID and messageData is the
payload data. All the messages is ended with a ‘0xA’(linefeed).

The Communication Protocol is easily expanded to adapt to data we need to
send. Note that in the table %d stands for an int variable, and %f stands for a float
variable.

65

66 A. COMMUNICATION PROTOCOL

MessageID Payload Value Description Explanation
01 %d,%d PWM1, PWM2, PWM3 Used to change the PWM

motor angles(for testing)
02 %d,%d Angle1, Angle2 Used to set angles of servomotors
03 %f, %f, %f X, Y, Z Used to set the coordinates of the

endpoint of a leg. (Used for testing
during development)

04 %f steeringAngle Used to set the steering angle of the
robot (Can be used to control robot
without radio controller)

05 %f walkingSpeed Used to set the walking speed of
the robot (Can be used to control
robot without radio controller)

06 - - -
50 %d,%d,%d PWM1, PWM2, PWM3 Used to send current PWM values

of leg 1
51 %f,%f,%f endX,endY,endZ Used to send the current

endpoint values of leg 1
52 %f,%f,%f,%f WalkingCounter, Sends the current walkingCounter

walkingSpeed, (step # in the walking triangle),
WalkingAngle walking speed, walking angle
Elevation and elevation of the robot

53 - - -

Table A.1: Comparing the Motor Alternatives

ChapterBCAD Drawings

This appendix contains the CAD drawings for the parts that were designed in
SolidWorks. The drawings show measurements that are needed to recreate the parts.
The parts are also included as SolidWorks parts in the zip folder attached to this
thesis. Note that some of the measurements for the Middle Leg and the Outer Leg
are hard to show in the cad files. The important measurements for these parts are
the distances between the axis of rotation, which are 100 and 150 mm for the middle
leg and the outer leg respectively, in addition to the measurements of the indents
used to attach them to the motors. The rest of the measurements for those parts are
mostly cosmetic.

The CAD drawing for the inner leg in figure B.4 lack some of the measurements.
That is because if all the measurements are included the drawing would be very
messy. The inner leg consists of two parts that are the same as the outer motor
socket, and the measurements for each motor socket in the inner leg are the same as
the measurements in figure B.3

All the measurements given in the CAD drawings are given in mm.

67

68 B. CAD DRAWINGS

 180

 2
2 1
7 2

 5

 8

 R7

2

 30
°

 3
0°

 R5

 82
,50

 15

 27,05

 1
03

 80
 1

00

 3

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

BaseWithCardHolderSOLIDWORKS Educational Product. For Instructional Use Only

Figure B.1: Cad Drawing of Lower Base with Card Holder

69

 180

 7,42°

 R4,10

 R2,1
0

 10,12
 8

 3
0°

 30°
 43,70

 R5 R7
 R75

 82
,50

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

base2SOLIDWORKS Educational Product. For Instructional Use Only

Figure B.2: Cad Drawing of Upper Base

70 B. CAD DRAWINGS

 7

 1
3

 4,30 4,30 24

 2,70

 4
 1

9,
50

 3
6

 1,40

 32,60

 38

 1
6

 1
2,

50

 2,70

 2,50

 4,30

 5
,9

0

 14,90

 5
,0

5

 9,65

 8

 6

 2

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:2:1 SHEET 1 OF 1

A4

WEIGHT:

MotorSocketOuterSOLIDWORKS Educational Product. For Instructional Use Only

Figure B.3: Cad Drawing of the Outer Motor Socket

71

 38

 76

 4

 3
6

 1
6

 1
6

 5

 1
0

4

 24,05

 8

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

InnerLegSOLIDWORKS Educational Product. For Instructional Use Only

Figure B.4: Cad Drawing of the Inner Leg

72 B. CAD DRAWINGS

 R4

 R2

 1
0,

27

 8,44° R10

 R10

 R5

 R5

 1
00

 R330 R330 2

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

MiddleLegSOLIDWORKS Educational Product. For Instructional Use Only

Figure B.5: Cad Drawing of the Middle Leg Part

73

 1
5

 6

 R300

 R330

 R10

 R10

 R0,50

 5

 2

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A4

WEIGHT:

OuterLegSOLIDWORKS Educational Product. For Instructional Use Only

Figure B.6: Cad Drawing of the Outer Leg Part

ChapterCSoftware
This appendix contains some of the software developed for this project.

C.1 Main.cpp

Main.cpp acts as the replacement of the real-time operative system. It uses the
SysT ick_Handler() function in section C.2 that is found in src/stm32f4xx_it.c to
decide how often each of the modules are running.

/∗ Inc l ude s ∗/
#include <s td i o . h>
#include " stm32f4xx . h "
#include " stm32f4xx_usart . h "
#include " Led . h "
#include " CommunicationModule . h "
#include "MotorControlModule . h "
#include " SharedDataModule . h "
#include <math . h>

extern __IO uint32_t TimingDelay ;
extern __IO uint32_t LedDelay ;
extern __IO uint32_t CommunicationModuleDelay ;
extern __IO uint32_t CommunicationModuleReadDelay ;
extern __IO uint32_t MotorControlModuleDelay ;

const uint32_t LED_DELAY = 500 ;
const uint32_t COMMUNICATION_MODULE_DELAY = 500 ;
const uint32_t COMMUNICATION_MODULE_READ_DELAY = 1 ;
const uint32_t MOTOR_CONTROL_MODULE_DELAY = 10 ;

void In i tTimers (void) ;

int main (void)

75

76 C. SOFTWARE

{
// SysTick Conf i gura t ion : S u b t r a c t s 1 from a l l the t imers each

ms .
SysTick_Config (SystemCoreClock /1000) ;
In i tTimers () ;

SharedDataModule SharedData ;
Leds l e d s ;
CommunicationModule comm(SharedData) ;
MotorControlModule motorControl (SharedData) ;

while (1)
{

i f (LedDelay == 0)
{

l ed s . ToggleLeds () ;
LedDelay = LED_DELAY;

}
i f (CommunicationModuleDelay == 0)
{

comm. runCommunicationModule () ;
CommunicationModuleDelay = COMMUNICATION_MODULE_DELAY;

}
i f (CommunicationModuleReadDelay == 0)
{

comm. readPwmInput () ;
CommunicationModuleReadDelay = 1 ;

}
i f (MotorControlModuleDelay == 0)
{

motorControl . runMotorControlModule () ;
MotorControlModuleDelay = MOTOR_CONTROL_MODULE_DELAY;

}
}

return 0 ;
}

void In i tTimers (void)
{

LedDelay = LED_DELAY;
CommunicationModuleDelay = COMMUNICATION_MODULE_DELAY;
MotorControlModuleDelay = MOTOR_CONTROL_MODULE_DELAY;

}

C.2. SYSTICKHANDLER 77

C.2 SystickHandler

This is a function from the file src/stm32f4xx_it.c.

void SysTick_Handler (void)
{

/∗ TimingDelay_Decrement () ; ∗/
i f (TimingDelay > 0)
{
TimingDelay−−;
}
i f (LedDelay > 0)
{
LedDelay−−;
}
i f (CommunicationModuleDelay > 0)
{
CommunicationModuleDelay−−;
}
i f (MotorControlModuleDelay > 0)
{
MotorControlModuleDelay−−;
}

}

78 C. SOFTWARE

C.3 Usart communication handling

Note that this function only saves the messaged received in the volatile "MyMessage-
Buffer" variable. Another program checks the "IncommingMessage" variable, and if
it is 1, it reads the buffer and sets "IncomingMessage" to 0. This function is also part
of the src/stm32f4xx_it.c file, as it is the file that handles all the interruptions.

void USART2_IRQHandler(void)
{

// Check the I n t e r r u p t s t a t u s to ensure the Rx i n t e r r u p t was
t r i g g e r e d , not Tx

i f (USART_GetITStatus (USART2, USART_IT_RXNE))
{

stat ic int cnt = 0 ;
// Get the by t e t h a t was t r a n s f e r r e d
char ch = USART2−>DR;

// Check f o r " Enter " key , or Maximum c h a r a c t e r s
i f ((ch != ’ \n ’) && (cnt < MAX_BUFFER_LENGTH))
{

MyMessageBuffer [cnt++] = ch ;
}
else
{

MyMessageBuffer [cnt] = ’ \n ’ ;
cnt = 0 ;
IncommingMessage = 1 ;
CommunicationModuleDelay = 0 ; // To read the message r i g h t

away

}
}

}

C.4. SHARED DATA MODULE 79

C.4 Shared Data Module

Some of the variables in the shared data module are removed from the script below.
That is because they are not used in the software in the walking algorithm, but they
were used during the software development. They are still in the source code in the
zip folder.

C.4.1 SharedDataModule.h

#ifndef SHAREDDATAMODULE_H_
#define SHAREDDATAMODULE_H_

#include " stm32f4xx . h "

class SharedDataModule
{

public :
SharedDataModule () ;
~SharedDataModule () ;
bool l o ck () ;
bool unlock () ;

bool m_changes ;
uint32_t m_Pwm1Output ;
uint32_t m_Pwm2Output ;
uint32_t m_Pwm3Output ;
double m_endX;
double m_endY;
double m_endZ ;
uint32_t ∗m_PwmIn;
double m_steeringAngle ;
double m_speed ;
double m_elevationRate ;
double m_elevation ;
uint32_t m_walkingCounter ;

private :
bool m_semaphore ;

} ;

extern SharedDataModule SharedData ;
#endif /∗ SHAREDDATAMODULE_H_ ∗/

80 C. SOFTWARE

C.4.2 SharedDataModule.cpp

#include " SharedDataModule . h "

SharedDataModule : : SharedDataModule ()
: m_changes (fa l se) ,
m_Pwm1Output(1250) ,
m_Pwm2Output(1250) ,
m_Pwm3Output(1250) ,
m_endX(20) ,
m_endY(0) ,
m_endZ(−15) ,
m_steeringAngle (0) ,
m_speed (0) ,
m_elevationRate (0) ,
m_elevation (0) ,
m_walkingCounter (0) ,
m_semaphore (true)

{
m_PwmIn = new uint32_t [4] ;
for (int i =0; i <4; i++)
{

m_PwmIn[i] = uint32_t (1250) ;
}

}

SharedDataModule : : ~ SharedDataModule ()
{

}

bool SharedDataModule : : l o ck ()
{

i f (this−>m_semaphore)
{

this−>m_semaphore = fa l se ;
return true ;

}
else
{

return fa lse ;
}

}

bool SharedDataModule : : unlock ()

C.4. SHARED DATA MODULE 81

{
i f (! this−>m_semaphore)
{

this−>m_semaphore = true ;
return true ;

}
else
{

return fa l se ;
}

}

82 C. SOFTWARE

C.5 Communication Module

The communication module is also a bit simplified. Only the code used to initialize
one of the USART ports are included below. Both are of course included in the file at-
tached in the zip-folder. Also, most of the functions used in voidCommunicationModule ::
sendUsartStatus() are excluded, as they all look very similar to the first one, which
is included here.

C.5.1 CommunicationModule.h
#ifndef COMMUNICATIONMODULE_H_
#define COMMUNICATIONMODULE_H_

#include " stm32f4xx . h "
#include " stm32f4xx_usart . h "
#include " SharedDataModule . h "
#include <s td i o . h>
#include <s t d l i b . h>
#include <s td i n t . h>
#include " SharedDataModule . h "

const int MAX_BUFFER_LENGTH = 50 ;

extern __IO uint32_t IncommingMessage ;

class CommunicationModule
{
public :

CommunicationModule (SharedDataModule &SharedData) ;
~CommunicationModule () ;
void runCommunicationModule () ;
void readPwmInput () ;
void USART_puts(USART_TypeDef ∗USARTx, volat i le char ∗ s t r) ;

private :
GPIO_InitTypeDef m_GPIO_D_InitStructure ;
GPIO_InitTypeDef m_GPIO_A_InitStructure ;
USART_InitTypeDef m_USART_InitStructure ;
NVIC_InitTypeDef m_NVIC_2_InitStructure ;
NVIC_InitTypeDef m_NVIC_1_InitStructure ;

SharedDataModule ∗m_pSharedData ;

uint32_t m_MaxBufferLength ;
char m_receivedBuffer [MAX_BUFFER_LENGTH + 1] ;
char m_receivedPWMBuffer [MAX_BUFFER_LENGTH + 1] ;

C.5. COMMUNICATION MODULE 83

uint32_t m_messageStart ;

void messageHandler () ;
void updateParameters () ;
void updatePWMInput () ;
void sendUsartStatus () ;
void sendPwmStatus () ;
void sendEndpointStatus () ;
void s endCont ro l l e rS ta tu s () ;
void sendLineBreak () ;

} ;

#endif /∗ COMMUNICATIONMODULE_H_ ∗/

84 C. SOFTWARE

C.5.2 CommunicationModule.cpp

#include " CommunicationModule . h "
#include <st r i ng>
#include <sstream>

extern __IO char MyMessageBuffer [1 0 0] ;
extern __IO char PWMMessageBuffer [1 0 0] ;

double s i gn (double i) ;

CommunicationModule : : CommunicationModule (SharedDataModule &
SharedData)

: m_pSharedData(&SharedData) ,
m_MaxBufferLength (MAX_BUFFER_LENGTH) ,
m_messageStart (0)
{

// Enable the per iph c l o c k f o r USART2;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE) ;
// Enable the GPIOD c l o c k ;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE) ;

// Setup the GPIO pins f o r Tx (PD5) and Rx(PD6)
m_GPIO_D_InitStructure .GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 ;
m_GPIO_D_InitStructure .GPIO_Mode = GPIO_Mode_AF;
m_GPIO_D_InitStructure .GPIO_Speed = GPIO_Speed_50MHz ;
m_GPIO_D_InitStructure .GPIO_OType = GPIO_OType_PP;
m_GPIO_D_InitStructure .GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init (GPIOD, &m_GPIO_D_InitStructure) ;

// Connect PD5 and PD6 with the USART2 Al t e rna t e Function
GPIO_PinAFConfig (GPIOD, GPIO_PinSource5 , GPIO_AF_USART2) ;
GPIO_PinAFConfig (GPIOD, GPIO_PinSource6 , GPIO_AF_USART2) ;

m_USART_InitStructure .USART_BaudRate = 9600 ;
m_USART_InitStructure .USART_WordLength = USART_WordLength_8b

;
m_USART_InitStructure . USART_StopBits = USART_StopBits_1 ;
m_USART_InitStructure . USART_Parity = USART_Parity_No ;
m_USART_InitStructure . USART_HardwareFlowControl =

USART_HardwareFlowControl_None ;
m_USART_InitStructure .USART_Mode = USART_Mode_Tx |

USART_Mode_Rx;
USART_Init (USART2, &m_USART_InitStructure) ;

C.5. COMMUNICATION MODULE 85

/∗ Enable the USART2 r e c e i v e i n t e r r u p t and c o n f i g u r e
the i n t e r r u p t c o n t r o l l e r to jump to USART2_IRQHandler () i f

the USART2 r e c e i v e i n t e r r u p t occurs
∗/
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE) ;
/∗ ∗∗∗∗∗∗∗∗∗∗∗ See stm32f4xx_it . c f o r i n t e r r u p t hand l ing

∗∗∗∗∗∗∗∗∗∗∗ ∗/

// NVIC_PriorityGroupConfig (NVIC_PriorityGroup_1) ;
m_NVIC_2_InitStructure . NVIC_IRQChannel = USART2_IRQn

;
m_NVIC_2_InitStructure . NVIC_IRQChannelPreemptionPriority = 0 ;
m_NVIC_2_InitStructure . NVIC_IRQChannelSubPriority = 1 ;
m_NVIC_2_InitStructure .NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&m_NVIC_2_InitStructure) ;

// F i n a l l y enab l e the USART2 p e r i p h e r a l
USART_Cmd(USART2, ENABLE) ;

}

void CommunicationModule : : USART_puts(USART_TypeDef ∗USARTx,
volat i le char ∗ s t r) {

while (∗ s t r) {
// Wait f o r the TC (Transmission Complete) Flag to be s e t
// wh i l e (! (USARTx−>SR & 0x040)) ;
while (USART_GetFlagStatus (USART2, USART_FLAG_TC) == RESET) ;
USART_SendData(USARTx, ∗ s t r) ;
∗ s t r++;

}
}

void CommunicationModule : : runCommunicationModule ()
{

this−>updateParameters () ;
this−>sendUsartStatus () ;

}

void CommunicationModule : : updateParameters ()
{
i f (1 == IncommingMessage)

{
// Buf fer from USART2:
stat ic uint32_t cnt = 0 ;
for (int i =0; i<MAX_BUFFER_LENGTH+1; i++)

86 C. SOFTWARE

{
m_receivedBuffer [i] = ’ \0 ’ ;

}
// Get the by t e t h a t was t r a n s f e r r e d
char ch = MyMessageBuffer [cnt] ;

// Check f o r " Enter " key , or Maximum c h a r a c t e r s
while ((ch != ’ \n ’) && (cnt < this−>m_MaxBufferLength))
{

m_receivedBuffer [cnt] = ch ;
cnt++;
ch = MyMessageBuffer [cnt] ;

}
m_receivedBuffer [cnt] = ’ \n ’ ;
cnt = 0 ;
USART_puts(USART2, m_receivedBuffer) ;

IncommingMessage = 0 ;
this−>messageHandler () ;

}
}

void CommunicationModule : : messageHandler ()
{

uint32_t messageId = 0 ;
uint32_t c rc ;
s s c an f ((char ∗)&m_receivedBuffer , " $%d , " , &messageId) ;

switch (messageId)
{
case 1 :
{

// Updating PWM s i g n a l s
uint32_t Pwm1;
uint32_t Pwm2;
uint32_t Pwm3;
s s c an f ((char ∗)&m_receivedBuffer [4] , "%d,%d,%d ; " , &Pwm1, &Pwm2

, &Pwm3) ;
i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_Pwm1Output = Pwm1;
m_pSharedData−>m_Pwm2Output = Pwm2;
m_pSharedData−>m_Pwm3Output = Pwm3;

C.5. COMMUNICATION MODULE 87

m_pSharedData−>m_changes = true ;
m_pSharedData−>unlock () ;

}
break ;

}
// case 2 : . . . The r e s t o f the cases are exc luded in the appendix
default :

break ;
}

}

void CommunicationModule : : sendUsartStatus ()
{

this−>sendPwmStatus () ;
this−>sendEndpointStatus () ;
this−>sendCont ro l l e rS ta tu s () ;
this−>sendLineBreak () ;

}

void CommunicationModule : : sendPwmStatus ()
{

int PWM1;
int PWM2;
int PWM3;
i f (m_pSharedData−>lock ())
{

PWM1 = (int)m_pSharedData−>m_Pwm1Output ;
PWM2 = (int)m_pSharedData−>m_Pwm2Output ;
PWM3 = (int)m_pSharedData−>m_Pwm3Output ;
m_pSharedData−>unlock () ;

}

char bu f f e r [MAX_BUFFER_LENGTH] ;
s p r i n t f (bu f f e r , "&50,␣%i , ␣%i , ␣%i ; \ n " , PWM1, PWM2, PWM3) ;
this−>USART_puts(USART2, bu f f e r) ;

}

void CommunicationModule : : readPwmInput ()
{

// Buf fer from PWM input :
stat ic uint32_t cnt = 0 ;
cnt = 0 ;

88 C. SOFTWARE

for (int i =0; i<MAX_BUFFER_LENGTH+1; i++)
{

m_receivedPWMBuffer [i] = ’ \0 ’ ;
}
// Get the by t e t h a t was t r a n s f e r r e d
char ch = PWMMessageBuffer [cnt] ;

// Check f o r " Enter " key , or Maximum c h a r a c t e r s
while ((ch != ’ \n ’) && (cnt < this−>m_MaxBufferLength))
{

m_receivedPWMBuffer [cnt] = ch ;
cnt++;
ch = PWMMessageBuffer [cnt] ;

}
m_receivedPWMBuffer [cnt] = ’ \n ’ ;
cnt = 0 ;

this−>updatePWMInput () ;

}

void CommunicationModule : : updatePWMInput ()
{

int inputChannel ;
int PwmInput [4] ;
int b=0;
for (int i =0; i <4; i++)
{

PwmInput [i] = 0 ;
}

s s c an f ((char ∗)&m_receivedPWMBuffer , "Ch0:%d.%d ,Ch1:%d.%d ,Ch2:%d
.%d ,Ch3:%d.%d , " , &PwmInput [0] , &b , &PwmInput [1] , &b , &
PwmInput [2] , &b , &PwmInput [3] , &b) ;

i f (m_pSharedData−>lock ())
{

for (int i =0; i <4; i++)
{

i f (PwmInput [i] != 0)
m_pSharedData−>m_PwmIn[i] = (uint32_t)PwmInput [i] ;

}
m_pSharedData−>unlock () ;

}

C.5. COMMUNICATION MODULE 89

}

90 C. SOFTWARE

C.6 MotorControl Module

This section is also very simplified in the appendix. The code below shows how to
set up two PWM timers, and connect them to pins. A lot of the code that was
used during development and tuning is not included here in the appendix. They are
included in the attached zip-folder.

C.6.1 MotorControlModule.h
#ifndef MOTORCONTROLMODULE_H_
#define MOTORCONTROLMODULE_H_

#include " stm32f4xx . h "
#include " stm32f4xx_usart . h "
#include <math . h>
#include " SharedDataModule . h "

#include " LegControl . h "

const uint32_t PWM_CH0_MIN = 1050 ;
const uint32_t PWM_CH0_MAX = 1950 ;
const uint32_t PWM_CH0_AVG = 1500 ;
const uint32_t PWM_CH1_MIN = 1120 ;
const uint32_t PWM_CH1_MAX = 1770 ;
const uint32_t PWM_CH1_AVG = 1445 ;
const uint32_t PWM_CH2_MIN = 1080 ;
const uint32_t PWM_CH2_MAX = 1900 ;
const uint32_t PWM_CH2_AVG = 1490 ;
const uint32_t PWM_CH3_MIN = 1070 ;
const uint32_t PWM_CH3_MAX = 1960 ;
const uint32_t PWM_CH3_AVG = 1515 ;
const uint32_t PWM_OUT_MAX = 1800 ;
const uint32_t PWM_OUT_MIN = 700 ;
const uint32_t PWM_OUT_AVG = 1250 ;

class MotorControlModule
{
public :

MotorControlModule (SharedDataModule &SharedData) ;
~MotorControlModule () ;
void runMotorControlModule () ;

private :
// S t r u c t u r e s f o r c o n f i g u r a t i o n
GPIO_InitTypeDef m_GPIO_B_InitStructure ;
TIM_TimeBaseInitTypeDef m_TIM_4_TimeBaseStructure ;
TIM_TimeBaseInitTypeDef m_TIM_3_TimeBaseStructure ;

C.6. MOTORCONTROL MODULE 91

TIM_OCInitTypeDef m_TIM_OCInitStructure ;

SharedDataModule ∗m_pSharedData ;

uint32_t m_DutyCycleMax ;
uint32_t m_DutyCycleMin ;
uint32_t m_Counter ;
double m_PI;
int32_t m_Angle1Output ;
int32_t m_Angle2Output ;
uint32_t m_PWM1Output;
uint32_t m_PWM2Output;
uint32_t m_PWM3Output;
uint32_t ∗m_PwmInput ;
double ∗m_PwmScalarInput ;
double ∗m_LegAngles ;
double m_steeringAngle ;
double m_velocity ;
double m_speed ;
double m_elevationRate ;
uint32_t ∗∗m_PwmOutput ;

uint32_t deg2PWM(double degree s) ;
uint32_t rad2PwmInnerMotor (double rad ians) ;
uint32_t rad2PwmMiddleMotor (double rad ians) ;
uint32_t rad2PwmOuterMotor (double rad ians) ;
void ScalePwmInputParameters () ;
void UpdatePwmInput () ;
void UpdateSpeed () ;
void UpdateSteer ingAngle () ;
void UpdateElevationRate () ;

void SetAngle () ;
void RunSineWave () ;
void RunTickTack () ;
void RunLegControl ler () ;
void UpdatePwmFromInput () ;

void UpdatePwm() ;
void UpdateMotors () ;
void UpdateAngles () ;
void AdjustAngles () ;

void UpdateFromLegControl () ;
LegControl m_leg ;

92 C. SOFTWARE

} ;

#endif /∗ MOTORCONTROLMODULE_H_ ∗/

C.6. MOTORCONTROL MODULE 93

C.6.2 MotorControlModule.cpp

#include<vector>

#include "MotorControlModule . h "
MotorControlModule : : MotorControlModule (SharedDataModule &

SharedData)
:m_DutyCycleMax(1800) ,
m_DutyCycleMin (700) ,
m_Counter (0) ,
m_PI(3 .141592) ,
m_PWM1Output ((m_DutyCycleMax + m_DutyCycleMin) /2) ,
m_PWM2Output ((m_DutyCycleMax + m_DutyCycleMin) /2) ,
m_PWM3Output ((m_DutyCycleMax + m_DutyCycleMin) /2) ,
m_steeringAngle (0) ,
m_velocity (0) ,
m_speed (0) ,
m_elevationRate (0) ,
m_leg (∗m_pSharedData)
{

m_PwmInput = new uint32_t [4] ;
m_PwmScalarInput = new double [4] ;
for (int i =0; i <4; i++)
{

m_PwmInput [i] = 1250 ;
m_PwmScalarInput [i] = 0 ;

}
m_LegAngles = new double [NUMBER_OF_LEGS] ;
m_PwmOutput = new uint32_t ∗ [NUMBER_OF_LEGS] ;
for (int i =0; i<NUMBER_OF_LEGS; i++)
{

m_LegAngles [i] = 0 + i ∗2∗PI/NUMBER_OF_LEGS;
m_PwmOutput [i] = new uint32_t [MOTORS_PR_LEG] ;
for (int j =0; j<MOTORS_PR_LEG; j++)
{

m_PwmOutput [i] [j] = 0 ;
}

}
m_pSharedData = &SharedData ;
// TIM4 Clock Enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE) ;
// TIM3 Clock Enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE) ;

// GPIOB Clock Enable
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE) ;

94 C. SOFTWARE

// I n i t a l i z e PB6−9 (TIM4 Ch1−4) , PB0−1 (TIM3 Ch3−4) , PB3 (TIM2
Ch2) and PB10−11 (TIM2 Ch3−4)

m_GPIO_B_InitStructure .GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 |
GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_0 |GPIO_Pin_1 |

GPIO_Pin_10 | GPIO_Pin_11 ;
m_GPIO_B_InitStructure .GPIO_Mode = GPIO_Mode_AF;
m_GPIO_B_InitStructure .GPIO_Speed = GPIO_Speed_100MHz ; //

GPIO_High_Speed
m_GPIO_B_InitStructure .GPIO_OType = GPIO_OType_PP;
m_GPIO_B_InitStructure .GPIO_PuPd = GPIO_PuPd_UP; //

Weak Pul l−up f o r s a f e t y during s t a r t u p
GPIO_Init (GPIOB, &m_GPIO_B_InitStructure) ;

// Assign A l t e rna t e Functions to p ins : B
GPIO_PinAFConfig (GPIOB, GPIO_PinSource0 , GPIO_AF_TIM3) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource1 , GPIO_AF_TIM3) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource3 , GPIO_AF_TIM2) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource6 , GPIO_AF_TIM4) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource7 , GPIO_AF_TIM4) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource8 , GPIO_AF_TIM4) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource9 , GPIO_AF_TIM4) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource10 , GPIO_AF_TIM2) ;
GPIO_PinAFConfig (GPIOB, GPIO_PinSource11 , GPIO_AF_TIM2) ;

uint16_t Presca l e rVa lue = (uint16_t) 84 ;

// Time Base Conf i gura t ion
m_TIM_4_TimeBaseStructure . TIM_Period = 19999;
m_TIM_4_TimeBaseStructure . TIM_Prescaler = Presca l e rVa lue ;
m_TIM_4_TimeBaseStructure . TIM_ClockDivision = 0 ;
m_TIM_4_TimeBaseStructure . TIM_CounterMode =

TIM_CounterMode_Up ;

TIM_TimeBaseInit (TIM4, &m_TIM_4_TimeBaseStructure) ;

m_TIM_3_TimeBaseStructure . TIM_Period = 19999 ;
m_TIM_3_TimeBaseStructure . TIM_Prescaler = Presca l e rVa lue ;
m_TIM_3_TimeBaseStructure . TIM_ClockDivision = 0 ;
m_TIM_3_TimeBaseStructure . TIM_CounterMode = TIM_CounterMode_Up ;

TIM_TimeBaseInit (TIM3, &m_TIM_3_TimeBaseStructure) ;

m_TIM_2_TimeBaseStructure . TIM_Period = 19999 ;
m_TIM_2_TimeBaseStructure . TIM_Prescaler = Presca l e rVa lue ;

C.6. MOTORCONTROL MODULE 95

m_TIM_2_TimeBaseStructure . TIM_ClockDivision = 0 ;
m_TIM_2_TimeBaseStructure . TIM_CounterMode = TIM_CounterMode_Up ;

m_TIM_OCInitStructure .TIM_OCMode = TIM_OCMode_PWM1; // Set
on compare match

m_TIM_OCInitStructure . TIM_OutputState = TIM_OutputState_Enable ;
// Set p u l s e when CNT = CCRx

m_TIM_OCInitStructure . TIM_Pulse = 0 ;
// I n i t i a l duty c y c l e

m_TIM_OCInitStructure . TIM_OCPolarity = TIM_OCPolarity_High ;
// Act ive High , i . e . 0 −> 1 s t a r t s duty c y c l e

// TIM4
// Channel 1
TIM_OC1Init (TIM4, &m_TIM_OCInitStructure) ;
TIM_OC1PreloadConfig (TIM4, TIM_OCPreload_Enable) ;
// Channel 2
TIM_OC2Init (TIM4, &m_TIM_OCInitStructure) ;
TIM_OC2PreloadConfig (TIM4, TIM_OCPreload_Enable) ;
// Channel 3
TIM_OC3Init (TIM4, &m_TIM_OCInitStructure) ;
TIM_OC3PreloadConfig (TIM4, TIM_OCPreload_Enable) ;
// Channel 4
TIM_OC4Init (TIM4, &m_TIM_OCInitStructure) ;
TIM_OC4PreloadConfig (TIM4, TIM_OCPreload_Enable) ;

TIM_ARRPreloadConfig (TIM4, ENABLE) ;

// TIM3
// Channel 1
TIM_OC1Init (TIM3, &m_TIM_OCInitStructure) ;
TIM_OC1PreloadConfig (TIM3, TIM_OCPreload_Enable) ;
// Channel 2
TIM_OC2Init (TIM3, &m_TIM_OCInitStructure) ;
TIM_OC2PreloadConfig (TIM3, TIM_OCPreload_Enable) ;
// Channel 3
TIM_OC3Init (TIM3, &m_TIM_OCInitStructure) ;
TIM_OC3PreloadConfig (TIM3, TIM_OCPreload_Enable) ;
// Channel 4
TIM_OC4Init (TIM3, &m_TIM_OCInitStructure) ;
TIM_OC4PreloadConfig (TIM3, TIM_OCPreload_Enable) ;
TIM_ARRPreloadConfig (TIM3, ENABLE) ;

// S t a r t t imer :

96 C. SOFTWARE

TIM_Cmd(TIM4, ENABLE) ;
TIM_Cmd(TIM3, ENABLE) ;

}

void MotorControlModule : : runMotorControlModule ()
{

// t h i s −>UpdatePwmFromInput () ; // Comment in t h i s to t e s t the
motors manually .

this−>UpdatePwmInput () ;
this−>RunLegControl ler () ;
this−>UpdateMotors () ;

}

void MotorControlModule : : UpdatePwmInput ()
{

i f (m_pSharedData−>lock ())
{

for (int i =0; i <4; i++)
{

m_PwmInput [i] = m_pSharedData−>m_PwmIn[i] ;
}

m_pSharedData−>unlock () ;
}
this−>ScalePwmInputParameters () ;
i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_steeringAngle = this−>m_steeringAngle ;
m_pSharedData−>m_speed = this−>m_speed ;
m_pSharedData−>unlock () ;

}
}

void MotorControlModule : : ScalePwmInputParameters ()
{

m_PwmScalarInput [0] = (m_PwmInput[0] − ((double)PWM_CH0_AVG)) /((
double)PWM_CH0_MAX−(double)PWM_CH0_AVG) ;

m_PwmScalarInput [1] = (m_PwmInput[1] − ((double)PWM_CH1_AVG)) /((
double)PWM_CH1_MAX−(double)PWM_CH1_AVG) ;

m_PwmScalarInput [2] = (m_PwmInput[2] − ((double)PWM_CH2_AVG)) /((
double)PWM_CH2_MAX−(double)PWM_CH2_AVG) ;

m_PwmScalarInput [3] = (m_PwmInput[3] − ((double)PWM_CH3_AVG)) /((
double)PWM_CH3_MAX−(double)PWM_CH3_AVG) ;

for (int i =0; i <4; i++)

C.6. MOTORCONTROL MODULE 97

{
i f (m_PwmScalarInput [i] < −1)
{

m_PwmScalarInput [i] = −1;
}
i f (m_PwmScalarInput [i] > 1)
{

m_PwmScalarInput [i] = 1 ;
}

}
this−>UpdateSpeed () ;
this−>UpdateSteer ingAngle () ;
this−>UpdateElevationRate () ;
i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_speed = this−>m_speed ;
m_pSharedData−>m_steeringAngle = this−>m_steeringAngle ;
m_pSharedData−>m_elevationRate = this−>m_elevationRate ;
m_pSharedData−>unlock () ;

}
}

void MotorControlModule : : UpdateSpeed ()
{

m_speed = sq r t (m_PwmScalarInput [3] ∗ m_PwmScalarInput [3] +
m_PwmScalarInput [2] ∗ m_PwmScalarInput [2]) ;

double tempSpeed = 0 ;
for (int i =0; i <6; i++)
{

double j = (double) i ;
i f (m_speed > j /5)
{

tempSpeed = (j /5) ;
}

}
m_speed = tempSpeed ;

}

void MotorControlModule : : RunLegControl ler ()
{

this−>m_leg . RunLegControl ler () ;
for (int i =0; i<NUMBER_OF_LEGS; i++)
{

98 C. SOFTWARE

uint32_t pwmValue = rad2PwmInnerMotor (m_leg . getMotorAngle (i
, 0)) ;

pwmValue = rad2PwmMiddleMotor (m_leg . getMotorAngle (i , 1)) ;
pwmValue = rad2PwmOuterMotor (m_leg . getMotorAngle (i , 2)) ;

}
i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_Pwm1Output = m_PwmOutput [0] [0] ;
m_pSharedData−>m_Pwm2Output = m_PwmOutput [0] [1] ;
m_pSharedData−>m_Pwm3Output = m_PwmOutput [0] [2] ;
m_pSharedData−>unlock () ;

}
}

void MotorControlModule : : UpdatePwm()
{

int tempPwm1=0;
int tempPwm2=0;
int tempPwm3=0;

i f (m_pSharedData−>lock ())
{

tempPwm1 = m_pSharedData−>m_Pwm1Output ;
tempPwm2 = m_pSharedData−>m_Pwm1Output ;
tempPwm3 = m_pSharedData−>m_Pwm1Output ;
m_pSharedData−>unlock () ;

}
this−>m_PWM1Output = tempPwm1 ;
this−>m_PWM2Output = tempPwm2 ;
this−>m_PWM3Output = tempPwm3 ;

}

void MotorControlModule : : UpdateMotors ()
{

TIM4−>CCR1 = this−>m_PwmOutput [0] [0] ; // t h i s −>m_PWM1Output;// l e g
1 motor 1

TIM4−>CCR4 = this−>m_PwmOutput [1] [0] ; // t h i s −>m_PWM1Output;// l e g
2 motor 1

TIM3−>CCR3 = this−>m_PwmOutput [2] [0] ; // t h i s −>m_PWM1Output;// l e g
3 motor 1

TIM2−>CCR2 = this−>m_PwmOutput [3] [0] ; // t h i s −>m_PWM1Output;// l e g
4 motor 1

C.6. MOTORCONTROL MODULE 99

TIM5−>CCR1 = this−>m_PwmOutput [4] [0] ; // t h i s −>m_PWM1Output;// l e g
5 motor 1

TIM5−>CCR4 = this−>m_PwmOutput [5] [0] ; // t h i s −>m_PWM1Output;// l e g
6 motor 1

TIM4−>CCR2 = this−>m_PwmOutput [0] [1] ; // t h i s −>m_PWM2Output;// l e g
1 motor 2

TIM3−>CCR1 = this−>m_PwmOutput [1] [1] ; // t h i s −>m_PWM2Output;// l e g
2 motor 2

TIM3−>CCR4 = this−>m_PwmOutput [2] [1] ; // t h i s −>m_PWM2Output;// l e g
3 motor 2

TIM2−>CCR3 = this−>m_PwmOutput [3] [1] ; // t h i s −>m_PWM2Output;// l e g
4 motor 2

TIM5−>CCR2 = this−>m_PwmOutput [4] [1] ; // t h i s −>m_PWM2Output;// l e g
5 motor 2

TIM9−>CCR1 = this−>m_PwmOutput [5] [1] ; // t h i s −>m_PWM2Output;// l e g
6 motor 2

TIM4−>CCR3 = this−>m_PwmOutput [0] [2] ; // t h i s −>m_PWM3Output;// l e g
1 motor 3

TIM3−>CCR2 = this−>m_PwmOutput [1] [2] ; // t h i s −>m_PWM3Output;// l e g
2 motor 3

TIM2−>CCR1 = this−>m_PwmOutput [2] [2] ; // t h i s −>m_PWM3Output;// l e g
3 motor 3

TIM2−>CCR4 = this−>m_PwmOutput [3] [2] ; // t h i s −>m_PWM3Output;// l e g
4 motor 3

TIM5−>CCR3 = this−>m_PwmOutput [4] [2] ; // t h i s −>m_PWM3Output;// l e g
5 motor 3

TIM9−>CCR2 = this−>m_PwmOutput [5] [2] ; // t h i s −>m_PWM3Output;// l e g
6 motor 3

}

100 C. SOFTWARE

C.7 Leg Control

C.7.1 LegControl.h
#ifndef LEGCONTROL_H_
#define LEGCONTROL_H_

#include <cmath>
#include " SharedDataModule . h "

const double PI = 3 .141592 ;
#define NUMBER_OF_LEGS 6
#define MOTORS_PR_LEG 3
#define MAX_POSITION_POINTS 11
#define X_COORDINATE 0
#define Y_COORDINATE 1
#define Z_COORDINATE 2
const double SECS_PR_ENDPOINT = 0 . 7 5 ;
const double LEG_POSITION_LOWER_BOUND = −10;
const double LEG_POSITION_UPPER_BOUND = 5 ;

class LegControl
{
public :

LegControl (SharedDataModule &SharedData) ;
~LegControl () ;

void RunLegControl ler () ;
double getMotorAngle (int l eg , int motornr) ;

private :
SharedDataModule ∗m_pSharedData ;
int m_counter ;
int m_legPointCounter ;
double m_centerToLeg ;
double m_innerLegLength ;
double m_middleLegLength ;
double m_outerLegLength ;
double m_elevation ;
double ∗∗m_MotorAngles ;
double ∗m_LegAngles ;
double ∗∗m_LegPositionCentre ;
double ∗∗m_LegPosition ;

double m_X;
double m_Y;

C.7. LEG CONTROL 101

double m_Z;

void UpdateEndpoints (int i) ; // t h i s a c t s as the wa lk ing
a l gor i thm

void Calcu la teMotorPos i t i ons (int i) ; // t h i s a c t s as the l e g
c o n t r o l l e r

} ;
#endif /∗ LEGCONTROL_H_ ∗/

102 C. SOFTWARE

C.7.2 LegControl.cpp

#include " LegControl . h "

LegControl : : LegControl (SharedDataModule &SharedData)
: m_counter (0) ,
m_legPointCounter (0) ,
m_centerToLeg (8 . 5) ,
m_innerLegLength (3) ,
m_middleLegLength (10) ,
m_outerLegLength (15) ,
m_elevation (LEG_POSITION_UPPER_BOUND) ,
m_X(30) ,
m_Y(0) ,
m_Z(−5)
{

m_pSharedData = &SharedData ;
// I n i t i a l i z e s ang l e s f o r the l e g s
m_LegAngles = new double [NUMBER_OF_LEGS] ;
m_LegPositionCentre = new double ∗ [NUMBER_OF_LEGS] ;
for (int i =0; i<NUMBER_OF_LEGS; i++)
{

m_LegAngles [i] = − i ∗2∗PI/NUMBER_OF_LEGS;
while (m_LegAngles [i] < 0)
{

m_LegAngles [i] += (2∗PI) ;
}
m_LegPositionCentre [i] = new double [MOTORS_PR_LEG] ;
m_LegPositionCentre [i] [X_COORDINATE] = cos (this−>m_LegAngles [

i]) ∗(this−>m_centerToLeg + 10) ;
m_LegPositionCentre [i] [Y_COORDINATE] = s i n (this−>m_LegAngles [

i]) ∗(this−>m_centerToLeg + 10) ;
m_LegPositionCentre [i] [Z_COORDINATE] = 0 ;

}

// I n i t i a l i z e s the ang l e ou tpu t s f o r a l l the motors ;
m_MotorAngles = new double ∗ [NUMBER_OF_LEGS] ;
for (int i =0; i< NUMBER_OF_LEGS; i++)
{

m_MotorAngles [i] = new double [MOTORS_PR_LEG] ;
for (int j =0; j<MOTORS_PR_LEG; j++)
{

m_MotorAngles [i] [j] = 0 ;
}

}

C.7. LEG CONTROL 103

// Endpoint o f l e g movement :
m_LegPosition = new double ∗ [MAX_POSITION_POINTS] ;
for (int i =0; i<MAX_POSITION_POINTS; i++)
{

m_LegPosition [i] = new double [3] ;
for (int j =0; j <3; j++)
{

m_LegPosition [i] [j] = 0 ;
}

}
//COORDINATES FOR WALKING PATTERN HERE:
m_LegPosition [0] [X_COORDINATE] = 0 ;
m_LegPosition [0] [Y_COORDINATE] = 0 ;
m_LegPosition [0] [Z_COORDINATE] = 0 ;

m_LegPosition [1] [X_COORDINATE] = 0 ;
m_LegPosition [1] [Y_COORDINATE] = −5;
m_LegPosition [1] [Z_COORDINATE] = 0 ;

m_LegPosition [2] [X_COORDINATE] = 0 ;
m_LegPosition [2] [Y_COORDINATE] = 0 ;
m_LegPosition [2] [Z_COORDINATE] = 6 ;

m_LegPosition [3] [X_COORDINATE] = 0 ;
m_LegPosition [3] [Y_COORDINATE] = 5 ;
m_LegPosition [3] [Z_COORDINATE] = 0 ;

m_LegPosition [4] [X_COORDINATE] = 0 ;
m_LegPosition [4] [Y_COORDINATE] = 0 ;
m_LegPosition [4] [Z_COORDINATE] = 0 ;

m_LegPosition [5] [X_COORDINATE] = 0 ;
m_LegPosition [5] [Y_COORDINATE] = −5;
m_LegPosition [5] [Z_COORDINATE] = 0 ;

}

LegControl : : ~ LegControl ()
{

}

void LegControl : : RunLegControl ler ()
{

//Update E l eva t i on

104 C. SOFTWARE

double tempElevation = this−>m_elevation ;
double e l evat i onRate = 0 ;
i f (m_pSharedData−>lock ())
{

e l evat i onRate = m_pSharedData−>m_elevationRate ;
m_pSharedData−>unlock () ;

}
tempElevation += (e l evat i onRate /100) ; // g i v e s a max e l e v a t i o n

ra t e on 1 cm/ second
i f (tempElevation > LEG_POSITION_UPPER_BOUND)
{

tempElevation = LEG_POSITION_UPPER_BOUND;
}
else i f (tempElevation < LEG_POSITION_LOWER_BOUND)
{

tempElevation = LEG_POSITION_LOWER_BOUND;
}
this−>m_elevation = tempElevation ;
i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_elevation = this−>m_elevation ;
m_pSharedData−>unlock () ;

}

this−>m_counter++;
i f (this−>m_counter >= (SECS_PR_ENDPOINT∗100))
{

this−>m_counter = 0 ;
this−>m_legPointCounter++;
i f (m_legPointCounter > 3)

m_legPointCounter = 0 ;
}

i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_walkingCounter = (uint32_t)m_legPointCounter
;

m_pSharedData−>unlock () ;
}

for (int i =0; i < NUMBER_OF_LEGS; i++)
{

this−>UpdateEndpoints (i) ;
this−>Calcu la teMotorPos i t i ons (i) ;

}

C.7. LEG CONTROL 105

}

void LegControl : : UpdateEndpoints (int i) // This i s the wa lk ing
a l gor i thm

{
int pos = this−>m_legPointCounter ;
i f (i%2 == 0)
{

pos += 2 ;
}
double tempX1 = this−>m_LegPosition [pos] [X_COORDINATE] ;
double tempX2 = this−>m_LegPosition [pos + 1] [X_COORDINATE] ;
double deltaX = tempX2−tempX1 ;

double tempY1 = this−>m_LegPosition [pos] [Y_COORDINATE] ;
double tempY2 = this−>m_LegPosition [pos + 1] [Y_COORDINATE] ;
double deltaY = tempY2−tempY1 ;

double tempZ1 = this−>m_LegPosition [pos] [Z_COORDINATE] ;
double tempZ2 = this−>m_LegPosition [pos + 1] [Z_COORDINATE] ;
double de l taZ = tempZ2−tempZ1 ;

double DiffX = tempX1 + deltaX ∗(double)m_counter /(
SECS_PR_ENDPOINT∗100) ;

double DiffY = tempY1 + deltaY ∗(double)m_counter /(
SECS_PR_ENDPOINT∗100) ;

double Dif fZ = tempZ1 + deltaZ ∗(double)m_counter /(
SECS_PR_ENDPOINT∗100) ;

double s t e e r ingAng l e = 0 ;
double speed = 0 ;
i f (m_pSharedData−>lock ())
{

s t e e r ingAng l e = m_pSharedData−>m_steeringAngle ;
speed = m_pSharedData−>m_speed ;
m_pSharedData−>unlock () ;

}

this−>m_X = m_LegPositionCentre [i] [X_COORDINATE] + speed ∗(DiffX
∗ cos (s t e e r ingAng l e) − DiffY∗ s i n (s t e e r ingAng l e)) ;

this−>m_Y = m_LegPositionCentre [i] [Y_COORDINATE] + speed ∗(DiffX
∗ s i n (s t e e r ingAng l e) + DiffY∗ cos (s t e e r ingAng l e)) ;

this−>m_Z = m_LegPositionCentre [i] [Z_COORDINATE] + speed∗Di f fZ
+ this−>m_elevation ;

106 C. SOFTWARE

i f (m_pSharedData−>lock ())
{

m_pSharedData−>m_endX = m_X;
m_pSharedData−>m_endY = m_Y;
m_pSharedData−>m_endZ = m_Z;
m_pSharedData−>unlock () ;

}
}

void LegControl : : Ca l cu la teMotorPos i t i ons (int i) // This i s the l e g
c o n t r o l .

{
double l e gPo s i t i o n [3] ;
double tempAngle = m_LegAngles [i] ;
l e gPo s i t i o n [X_COORDINATE] = cos (this−>m_LegAngles [i]) ∗

m_centerToLeg ;
l e gPo s i t i o n [Y_COORDINATE] = s i n (this−>m_LegAngles [i]) ∗

m_centerToLeg ;
l e gPo s i t i o n [Z_COORDINATE] = 0 ;
double r e l a t i v eD i s t an c e [3] ;
r e l a t i v eD i s t a n c e [X_COORDINATE] = m_X − l e gPo s i t i o n [X_COORDINATE

] ;
r e l a t i v eD i s t a n c e [Y_COORDINATE] = m_Y − l e gPo s i t i o n [Y_COORDINATE

] ;
r e l a t i v eD i s t a n c e [Z_COORDINATE] = m_Z − l e gPo s i t i o n [Z_COORDINATE

] ;

double angle1 = atan2 (r e l a t i v eD i s t a n c e [Y_COORDINATE] ,
r e l a t i v eD i s t a n c e [X_COORDINATE]) − this−>m_LegAngles [i] ;

while (ang le1 < −PI /2)
{

angle1 += 2∗PI ;
}

double dist_xy = sq r t (r e l a t i v eD i s t a n c e [X_COORDINATE]∗
r e l a t i v eD i s t a n c e [X_COORDINATE] + r e l a t i v eD i s t a n c e [
Y_COORDINATE]∗ r e l a t i v eD i s t an c e [Y_COORDINATE]) ;

double dist_xyz = sq r t (dist_xy∗dist_xy + r e l a t i v eD i s t a n c e [
Z_COORDINATE]∗ r e l a t i v eD i s t an c e [Z_COORDINATE]) ;

double D = ((dist_xyz ∗dist_xyz − this−>m_middleLegLength∗ this−>
m_middleLegLength − this−>m_outerLegLength∗ this−>
m_outerLegLength) /(2∗ this−>m_middleLegLength∗ this−>
m_outerLegLength)) ;

C.7. LEG CONTROL 107

double angle3 = −acos (D) ;
double angle21 = atan2 (r e l a t i v eD i s t a n c e [Z_COORDINATE] , dist_xy)

;
double E = (this−>m_middleLegLength∗ this−>m_middleLegLength +

dist_xyz ∗dist_xyz − this−>m_outerLegLength∗ this−>
m_outerLegLength) /(2∗ this−>m_middleLegLength∗dist_xyz) ;

double angle22 = acos (E) ;
double angle2 = angle21 + angle22 ;

this−>m_MotorAngles [i] [0] = angle1 ;
this−>m_MotorAngles [i] [1] = angle2 ;
this−>m_MotorAngles [i] [2] = angle3 ;

}

double LegControl : : getMotorAngle (int l eg , int motornr)
{

double ang le = this−>m_MotorAngles [l e g] [motornr] ;
return ang le ;

}

108 C. SOFTWARE

C.8 Arduino PWM reader

This is the only piece of code that is not written for the Discovery STM32F4. It is a
piece of code that is written for an Arduino Nano, which measures the duty cycles of
the PWM signals outputs from the radio remote controller’s receiver, and sends the
values via a serial connection.

double channel [4] ;

void setup () {
pinMode (2 , INPUT) ;
pinMode (3 , INPUT) ;
pinMode (4 , INPUT) ;
pinMode (5 , INPUT) ;
S e r i a l . begin (9600) ;

}

void loop () {
for (int i =0; i <4; i++)
{

channel [i] = pu l s e In (i +2, HIGH) ;
}
for (int i =0; i <4; i++)
{

S e r i a l . p r i n t ("Ch") ;
S e r i a l . p r i n t (i) ;
S e r i a l . p r i n t (" : ") ;
S e r i a l . p r i n t (channel [i]) ;
S e r i a l . p r i n t (" , ") ;

}
S e r i a l . p r i n t (’ \n ’) ;
de lay (250) ;

}

	Introduction
	Motivation
	Outline of the Thesis

	Background
	Previous Work
	USART Communication
	Pulse Width Modulation (PWM) Motors
	Learning Outcome

	Background: Electronic Hardware
	Discovery STM32F4 - Microcontroller
	Motors
	Telemetry Kit
	Radio Controller
	Arduino Nano - Microcontroller
	Power Sources
	Power Distributor

	The Robot's Design
	Body
	Legs

	3D-Modeling and 3D-Printing
	Motors
	Body
	Legs
	Full Model
	3D-Printed parts
	Motor Sockets
	Body
	Legs

	Assembling the Robot
	Checking the Motors
	Assembling the Legs
	Assembling the Body
	Wiring
	Final Assembly

	Leg Control Mathematics
	Calculating the Legs Motor Angles
	Calculation of Angle 1
	Calculation of Angles 2 and 3

	Walking Algorithm
	Walking Pattern
	Changing Speed
	Changing Direction
	Summary

	Software Development
	Integrated Development Environment (IDE)
	Hardware Abstraction Layer (HAL)
	The Main Structure of the Software
	Virtual Threading
	Communication Between Different Electronic Hardware Components
	Shared Data
	PWM Programming
	Walking Algorithm
	Leg Control

	Further Work
	Acrobatic Mode
	Positioning System and Autonomous Control
	Anti-Collision System
	Automatic Wireless Charging
	Camera with live feed

	Discussion
	Insufficient Torque In The Motors
	Reliability Of The Software
	3D-Printed Parts
	USART Communication
	Future Modifications of the Software

	Conclusion
	References
	Communication Protocol
	Communication Protocol

	CAD Drawings
	Software
	Main.cpp
	SystickHandler
	Usart communication handling
	Shared Data Module
	SharedDataModule.h
	SharedDataModule.cpp

	Communication Module
	CommunicationModule.h
	CommunicationModule.cpp

	MotorControl Module
	MotorControlModule.h
	MotorControlModule.cpp

	Leg Control
	LegControl.h
	LegControl.cpp

	Arduino PWM reader

