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Abstract

In this thesis we present many properties of bivariant periodic cyclic homology
with the purpose of then constructing two bivariant Connes-Chern characters
from algebraic versions of Kasparov’s KK -theory with values in bivariant periodic
cyclic homology. The thesis is naturally divided into three parts.

In the first part, which spans the two first chapters, periodic cyclic theory is
presented, starting with the very basic definitions in cyclic theory. The properties
of differential homotopy invariance, Morita invariance, and excision, all of which
are important for the construction of bivariant Connes-Chern characters, are
discussed.

In the second part we discuss algebraic KK -theory based on the reformulations
of Kasparov’s KK -theory by Cuntz [3], [4], and Zekri [15], [16]. By using the
properties of bivariant periodic cyclic theory from the first part, we construct
two different bivariant Connes-Chern characters.

In the third part we discuss possible extensions of the theory to topological
algebras, in particular a well-behaved class of topological algebras known as
m-algebras.
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Sammendrag

Denne avhandlingen presenterer en rekke egenskaper ved bivariant periodisk syk-
lisk homologi med form̊alet å konstruere to bivariante Connes-Chern-karakterer
fra algebraiske versjoner av Kasparovs KK -teori med verdier i bivariant periodisk
syklisk homologi. Avhandlingen er naturlig delt inn i tre deler.

I den første delen, som omfatter de to første kapitlene, presenterer vi periodisk
syklisk teori, bygget opp fra de mest elementære definisjonene i syklisk teori.
Egenskaper som homotopiinvarians under glatte homotopier, Morita-invarians, og
eksisjonsegenskapen, som alle er av stor interesse i konstruksjonen av bivariante
Connes-Chern-karakterer, blir diskutert.

I den andre delen diskuteres algebraisk KK -teori basert p̊a reformuleringer
av Kasparovs KK -teori gjort av Cuntz [3], [4], og Zekri [15], [16]. Ved å bruke
egenskapene til bivariant periodisk syklisk teori fra den første delen konstruerer
vi to forskjellige bivariante Connes-Chern-karakterer.

I den tredje delen diskuterer vi mulige utvidelser av teorien til topologiske
algebraer, spesifikt til en spesiell klasse topologiske algebraer kjent som m-
algebraer.
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Introduction and Overview

In 1980 Kasparov introduced what is now known as KK -theory [13] which is a
bivariant theory generalizing both K-theory and K-homology for C∗-algebras.
The formulation of this theory is typically in terms Kasparov modules, and in
general the theory is known to be technically very involved. Therefore, throughout
the 1980’s an effort was made to reformulate KK -theory algebraically. More
specifically, Cuntz and Zekri reformulated the two KK -groups KK 0 and KK 1
in terms of universal C∗-algebras in a series of papers [3], [4], [15], [16]. These
reformulations also respected the important product structure of Kasparov KK -
theory. The reformulations allow us to define KK -theory for arbitrary algebras,
and it is this point of view we shall take in this thesis.

In algebraic topology the Chern character provides a map from topological K-
theory to rational cohomology. A major problem in the realm of noncommutative
geometry has been to construct a similar map from C∗-algebra K-theory with
values in some fitting homology theory. This fitting homology theory is known as
periodic cyclic homology. It turns out that we can construct a bivariant theory
known as bivariant periodic cyclic homology that generalizes both periodic
cyclic homology and its dual theory, periodic cyclic cohomology. Further, we
can construct a bivariant map from KK -theory to bivariant periodic cyclic
homology generalizing the map from K-theory to periodic cyclic homology. In
addition, bivariant periodic cyclic homology is naturally equipped with a product
structure, just as KK -theory, and the map can be made to respect the product
structures. This is known as the bivariant Connes-Chern character. It should
be mentioned that although we get a bivariant Connes-Chern character using
bivariant periodic cyclic homology, it is in general not desirable to use this
for C∗-algebras. The reason is that (bivariant) periodic cyclic homology give
degenerate and pathological results for C∗-algebras. A more modern approach is
to use Puschnigg’s local theory [14] as a receptacle for a (bivariant) Connes-Chern
character for C∗-algebras.

Periodic cyclic homology exists for any algebra, and so with the algebraic
reformulation of KK -theory we will in this thesis construct two Connes-Chern
characters from algebraic KK -theory to bivariant periodic cyclic homology for
arbitrary algebras. This will require several important properties of periodic
cyclic homology such as homotopy invariance under differentiable homotopies,
Morita invariance, and excision. These properties were established by Cuntz
and Quillen in a series of papers in the 1990’s [11], [12], [8], where in [12] a
suggestion for such a bivariant Connes-Chern character was given. We will use
their approach and construct both their Connes-Chern character, as well as a
similar Connes-Chern character.

The thesis is divided into three chapters: In Chapter 1 we introduce the
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2 INTRODUCTION AND OVERVIEW

very basic definitions of cyclic theory building up to bivariant periodic cyclic
theory. In order to introduce this, however, we will need the notions of quasi-free
algebras and differentiable homotopies, both of which are also covered in this
chapter. Much of the theory presented in this thesis can be developed for a
larger category of algebras, known as pro-algebras, and so a short treatment of
pro-categories is included.

In Chapter 2 we give an overview of important properties of bivariant periodic
cyclic theory, such as homotopy invariance under differentiable homotopies,
Morita invariance, and excision. We also show that bivariant periodic cyclic
homology indeed generalizes both periodic cyclic homology and periodic cyclic
cohomology. Further we calculate the periodic cyclic homology for some simple
algebras. We also demonstrate the existence of canonical invertible elements in
bivariant periodic cyclic homology for two algebras we will use for our bivariant
Connes-Chern characters, namely for an algebra A, the tensor algebra TA and
the suspension SA.

Lastly, in Chapter 3 we give an overview of the algebraic reformulation of KK -
theory, before at last defining a product in algebraic KK -theory and constructing
two bivariant Connes-Chern characters which are compatible with the product
structures of algebraic KK -theory and bivariant periodic cyclic theory. We also
discuss how we can extend the theory to a certain class of topological algebras
known as m-algebras.

The appendix covers some basic material on two universal algebras that will
be of significant importance in this thesis.

Conventions
We will work in the category of nonunital algebras. In other words, algebras
will not be assumed to be unital, and even if they are, the morphisms will not
be assumed to be unit preserving. Also, all algebras will be over the complex
numbers, and all tensor products will, unless otherwise stated, be understood to
be over this field. It should be noted that most of the theory presented in this
thesis would work equally well over any field of characteristic zero, the exception
being some material on KK -theory and the Connes-Chern character presented
in Chapter 3.



Chapter 1

Basic Cyclic Theory

1.1 Cyclic theory and the algebra of differential
forms

Although perhaps a bit unorthodox, we will introduce cyclic homology and
Hochschild homology of an algebra A first through the use of the algebra ΩA of
differential forms over A. A consequence of this way of presenting the material is
that some of the definitions in this section will seem somewhat artificial. However,
this version of the theory is perhaps easier to envision. Also, most operators have
a very nice form, with the trade-off of being a bit abstract. The connection to
what is known as the cyclic complex, the more traditional way to introduce cyclic
theory, will be covered in Section 1.3. This viewpoint will make it easier for us
to actually perform calculations in cyclic theory, although this is not something
we will do much.

Let A be an algebra. The algebra of differential forms over A, denoted ΩA,
is the universal algebra generated by x ∈ A with relations of A and symbols dx,
x ∈ A, satisfying linearity in x and d(xy) = xdy + d(x)y. If A is unital, we will
not require d(1) = 0. Note that this would be equivalent to introducing 1 ·ω = ω
for all ω in ΩA.

We may consider the linear span of all elements of the form x0dx1 · · · dxn
and dx1 · · · dxn, xi ∈ A for all i. Denote the span by ΩnA. Then ΩA may be
considered as a vector space in the following way

ΩA =
∞⊕
n=0

ΩnA (1.1)

and d can be regarded as a linear map d : ΩnA→ Ωn+1A satisfying the following
relations

d : x0dx1 · · · dxn 7→ dx0dx1 · · · dxn
d : dx1 · · · dxn 7→ 0

(1.2)

We also see d2 = 0, and so ΩA becomes a differential graded algebra.

Remark 1.1. For dimensions n ≥ 1 elements of ΩnA of the form x0dx1 · · · dxn
or dx1 · · · dxn will sometimes be written as ωdxn, with the implicit understanding
that ω is the obvious element in Ωn−1A.

3



4 CHAPTER 1. BASIC CYCLIC THEORY

Note that for a homogeneous element ω in ΩA, that is, an element of ΩnA,
we say its degree is n and denote this by deg(ω) = n. We now present a series
of different operators on ΩA which will allow us to define cyclic homology and
in turn periodic cyclic homology. Consider first the operator b : ΩnA→ Ωn−1A
which acts on elements ωdx as

b(ωdx) = (−1)deg(ω)[ω, x], b(dx) = 0, and b(x) = 0 for x ∈ A, (1.3)

where [·, ·] : A×A→ A is the commutator. The operator is extended by linearity
to make b an endomorphism on ΩA. A simple, straightforward calculation will
show that b2 = 0, and so b defines a differential on ΩA, making

(
ΩA, b

)
into a

chain complex. Furthermore, we introduce the number operator N , defined as
as the linear extension of the operator which multiplies a homogeneous element
by its degree. In other words, N acts on an element ω in degree n as

N(ω) = deg(ω)ω = nω. (1.4)

Finally we introduce the Karoubi operator κ by

κ(ωdx) = (−1)deg(ω)dx · ω (1.5)

for homogeneous elements ω, and we extend by linearity.

Lemma 1.2. κ = 1− (bd+ db)

Proof. This is a simple calculation:

(1− (bd+ db))(ωdx) = ωdx− b(dωdx)− (−1)deg(ω)d[ω, x]
= ωdx− (−1)deg(ω)+1[dω, x]− (−1)deg(ω)d[ω, x]
= ωdx− [ω, dx] = ωdx− ωdx+ (−1)deg(ω)dx · ω = κ(ωdx).

An important property of κ is the following

Lemma 1.3.
(
κn − 1

)(
κn+1 − 1

)
= 0

Proof. Note first that

κn(a0da1 · · · dan) = da1 · · · dana0

from which we deduce

κn(a0da1 · · · dan)− a0da1 · · · dan = [da1 · · · dan, a0]
= (−1)nb(da1 · · · danda0) = bκ−1d(a0da1 · · · dan)

which shows κn − 1 = bκ−1d. Then it follows that

κn+1 = κ
(
1 + bκ−1d

)
= κ+ κbκ−1d
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Since by Lemma 1.2

κb =
(
1−

(
db+ bd

))
b = b− db2 − bdb = b− bdb

= b
(
1− db

)
= b

(
1−

(
bd+ db

))
= bκ

b commutes with κ. Hence from the above and Lemma 1.2 we obtain

κn+1 = κ+ bd = 1− bd− db+ bd = 1− db

which combined with d2 = 0 now easily gives
(
κn − 1

)(
κn+1 − 1

)
= 0.

As a consequence of Lemma 1.3, we deduce from linear algebra that there is
a spectral projection operator, say P , onto the generalized eigenspace for 1 for κ.
If we set L =

(
Nd

)
b+ b

(
Nd

)
we find through a calculation that on ΩnA,

L =
(
κ− 1

)2(
κn−1 + 2κn−2 + · · ·+

(
n− 1

)
κ+ n

)
. (1.6)

and from this we obtain ΩA = Ker(L) ⊕ Im(L), with P being the projection
onto Ker(L) [9].

Remark 1.4. Note that P by construction commutes with N , b and d.

We will not have much interest in the operator P in itself. There is an
interpretation of L as being an abstract Laplace operator and elements of
Ker(L) = Im(P ) being abstract harmonic forms, but we will not explore this.
Instead we will be interested in the operator B, defined as B = NPd. Then
Bb+ bB = 0 and B2 = 0. These two equalities give us the

(
B, b

)
-bicomplex

Ω0A

Ω1A

Ω2A

Ω3A

Ω0A

Ω1A

Ω2A

Ω0A

Ω1A Ω0A

b

b

b

b

b

b

b b b b
BBB

BB

B

Remark 1.5. A sign change from b to −b does not affect the fact that this is
a bicomplex. We call the resulting bicomplex with differentials B and −b the
(B,−b)-bicomplex.

Now set
DΩA

2n = Ω0A⊕ Ω2A⊕ · · · ⊕ Ω2nA (1.7)
and

DΩA
2n+1 = Ω1A⊕ Ω3A⊕ · · · ⊕ Ω2n+1A (1.8)
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Definition 1.6. Let A be an algebra. The cyclic homology HCn(A) of A is the
homology of the total complex for the

(
B,−b

)
-bicomplex, that is, the homology

of the complex

... DΩA
n DΩA

n−1 ... DΩA
1 DΩA

0 0
B′ − b B′ − b B′ − b B′ − b B′ − b

where B′ is the truncated B-operator, meaning it is equal to B on every component
of DΩA

n except on ΩnA, where it is defined to be zero.

Remark 1.7. By [9] the total complexes of the (B, b)-bicomplex and the (B,−b)-
bicomplex are quasi-isomorphic. Thus for the purposes of homology, the sign
change from b to −b does not matter.

Definition 1.8. Let A be an algebra. The Hochschild homology HH n(A) of A
is defined as the homology of the complex

... DΩA
n DΩA

n−1 ... DΩA
1 DΩA

0 0b b b b b

We also introduce Connes’ S-operator and the SBI-sequence, an important
computational tool in cyclic theory. In our current framework, S acts as simple
as ”deleting” the top component of DΩA

n . Equivalently, S is the projection

DΩA
n = ΩnA⊕ Ωn−2A⊕ · · · −→ Ωn−2A⊕ Ωn−4A⊕ · · · = DΩA

n−2 (1.9)

Consider
(
ΩA,−b

)
as the leftmost column in

Ω0A

Ω1A

Ω2A

Ω3A

Ω0A

Ω1A

Ω2A

Ω0A

Ω1A Ω0A

−b

−b

−b

−b

−b

−b

−b −b −b −b
BBB

BB

B

and view it as a chain complex. Denote by D(A) the total complex with
differential B′ − b as above. Then we have the following short exact sequence of
chain complexes

0 ΩA D(A) D(A)[2] 0
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where D(A)[2] is the double suspension of D(A). Changing the operator from b
to −b does not change the homology of ΩA (under the differential ±b), and so
the homology of the leftmost column is still the Hochschild homology of A. We
then get a long exact sequence in homology

· · · HH n+2(A) HCn+2(A) HCn(A) HH n+1(A) · · ·I S B̃

where I is induced by the inclusion of the first column into the total complex, S
is the map induced by (1.9), and B̃ is the map induced by applying the operator
B to the top form in an element of HCn(A). It is customary to denote both B
and B̃ by B.

Lastly we mention that we can apply HomC
(
−,C) = Hom(−,C) to any

diagram in this section to obtain the dual theory, called cyclic cohomology.

1.2 ΩA and the Fedosov product
In this section we will construct an isomorphism between a subalgebra of ΩA
(with a different product) for an algebra A, and the tensor algebra TA, see
Appendix A.2. This isomorphism will provide an interesting point of view when
working with the bivariant theory. We first decompose ΩA into even and odd
forms,

ΩevA =
∞⊕
n≥0

Ω2nA and ΩoddA =
∞⊕
n≥0

Ω2n+1A (1.10)

Define now on ΩA the following product ◦ given by

ω1 ◦ ω2 = ω1ω2 − dω1dω2 (1.11)

This product is called the Fedosov product, and it is straight-forward to verify
that this defines an associative and bilinear product on ΩA. In particular, the
Fedosov product is compatible with the even-odd-grading given above.

Proposition 1.9. For any algebra A,
(
ΩevA, ◦

)
is isomorphic to the tensor

algebra over A, TA. Under the same isomorphism, JA ∼=
(
⊕n≥1 Ω2nA, ◦

)
.

Proof. The isomorphism is given by the extension of the map

x 7→ x, dxdy 7→ xy − x⊗ y (1.12)

for x, y ∈ Ω0A. If ρ : A → TA is the natural inclusion of the algebra A into
its tensor algebra and ω(xy) = ρ(xy) − ρ(x)ρ(y), then we may describe this
extension as

x0dx1dx2 · · · dxn 7→ ρ(x0)ω(x1, x2)ω(x3, x4) · · ·ω(xn−1, xn) (1.13)

It is routine to verify that this is an isomorphism.
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1.3 The cyclic complex
A computationally easier approach to the cyclic theory is through the cyclic
complex. To introduce this let Ã be the unitalization of the algebra A. We first
note that as vector spaces we have isomorphisms

ΩnA ∼= Ã⊗ A⊗n ∼= A⊗n+1 ⊕ A⊗n (1.14)

given by the map defined by

dx1dx2 · · · dxn 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn (1.15)
x0dx1 · · · dxn 7→ x0 ⊗ x1 ⊗ · · · ⊗ xn (1.16)

and so by transferring all definitions from Section 1.1 we may get a completely
equivalent way of looking at cyclic homology. To do this consider the following
bicomplex, called the cyclic complex, denoted CC(A)

A A A · · ·

A⊗2 A⊗2 A⊗2 · · ·

A⊗3 A⊗3 A⊗3 · · ·

1− λ Q 1− λ

1− λ Q 1− λ

1− λ Q 1− λ

b̃

b̃

b̃

−b̃′

−b̃′

−b̃′

b̃

b̃

b̃

where we think of the leftmost column as being centered in degree zero. The
operator b̃′ is defined as

b̃′
(
x0 ⊗ x1 ⊗ · · · ⊗ xn

)
=

n−1∑
j=0

(−1)jx0 ⊗ · · · ⊗ xjxj+1 ⊗ · · · ⊗ xn (1.17)

while b̃ is can be obtained as extending b̃′ to the last factor in the tensor product
as well, that is

b̃
(
x0⊗x1⊗· · ·⊗xn) = b̃′

(
x0⊗x1⊗· · ·⊗xn

)
+(−1)nxnx0⊗x1⊗· · ·⊗xn−1. (1.18)

Furthermore, λ is defined as

λ
(
x0 ⊗ x1 ⊗ · · · ⊗ xn) = (−1)nxn ⊗ x1 ⊗ · · · ⊗ xn−1 (1.19)

and Q is

Q
(
x0 ⊗ x1 ⊗ · · · ⊗ xn

)
=

n∑
j=0

(−1)jnxj ⊗ · · · ⊗ xn ⊗ x0 ⊗ · · · ⊗ xj−1 (1.20)

We see that the rows of CC(A) are exact in positive degrees. Lengthy calculations
will also show that

b̃2 = 0 = b̃′2, Qb̃ = b̃′Q, and b̃
(
1− λ

)
=
(
1− λ

)
b̃′ (1.21)
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which shows that CC(A) indeed is a bicomplex.
It turns out the cyclic homology of A, HCn(A), can be realized as the homol-

ogy of the total complex of CC(A). This is done by via the isomorphism (1.14),

under which we find that b corresponds to
(
b̃ 1− λ
0 −b̃′

)
, while B corresponds to(

0 0
Q 0

)
, from which we may deduce that the

(
B, b

)
-bicomplex and the cyclic

bicomplex CC(A) have isomorphic total complexes, meaning they will give the
same notion of cyclic homology [9].

As a last version of cyclic homology we also present the following complex,
which is also taken from [9]. Let A be an algebra. Set

Cλ
n(A) : = A⊗n+1/(1− λ)A⊗n+1 (1.22)

Then HCn(A) is equal to the homology of the complex

· · · Cλ
n(A) Cλ

n−1(A) · · · Cλ
0 (A) 0b̃ b̃ b̃ b̃

Using this last picture of cyclic homology we may describe HCn(A) as homology
classes of tensors x0 ⊗ x1 ⊗ · · · ⊗ xn which satisfies

x0 ⊗ x1 ⊗ · · · ⊗ xn = (−1)nxn ⊗ x0 ⊗ · · · ⊗ xn−1 (1.23)

By applying Hom(−,C) we also obtain the cochain complex Cn
λ (A), and we can

describe the nth cyclic cohomology of A as homology classes of (n + 1)-linear
functionals φ : A⊗n+1 → C satisfying

φ(x0, x1, ..., xn) = (−1)nφ(xn, x1, ..., xn−1) (1.24)

with differential Hom(b̃,C).

1.4 Periodic cyclic homology

In general, cyclic homology HCn does not enjoy the good properties of homotopy
invariance, Morita invariance, and excision. The sense in which these three
properties hold for HCn(A) for an algebra A is very limited and will require
restrictions on A itself [10]. However, the properties hold if we stabilize the
diagonals of the

(
B,−b

)
-bicomplex with respect to Connes’ S-operator and then

apply the homology functor. This is the motivation for the definition of periodic
cyclic homology.

Keeping with the periodic aspect of periodic cyclic theory, we define for an
algebra A its periodic cyclic homology HP i(A) as the homology of the periodic
total complex of the following extension of the (B,−b)-bicomplex
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Ω0A

Ω1A

Ω2A

Ω3A

Ω0A

Ω1A

Ω2A

Ω0A

Ω1A Ω0A

· · ·

· · ·

· · ·

· · ·

−b

−b

−b

−b

−b

−b

−b −b −b −b
BBB

BB

B

This easily seen to be the same as the homology of the Z/2-graded complex, or
supercomplex,

Ω̂evenA Ω̂oddA

B − b

B − b

where Ω̂evenA are the even forms, and Ω̂oddA are the odd forms, in Ω̂A =∏
n≥0 ΩnA. It is this viewpoint which will be easiest when we start working with

bivariant periodic cyclic theory, although we shall introduce it without mention of
Ω̂A. Note that Ω̂A is the completion of ΩA with respect to the natural filtration
(hence the use of the ”hats”).

Let DΩA
n = ΩnA⊕Ωn−2A⊕· · · as before. Remembering the action of Connes’

S-operator, see (1.9), we obtain

Ω̂A = lim←−
S

(
DΩA

2n ⊕DΩA
2n+1

)
(1.25)

Once again we may do exactly the same for the cohomology case. For an
algebra A we have (

Ω̂A
)′

=
⊕
n≥0

(
ΩnA

)′
(1.26)

for which we may once again consider the even and odd forms, and we define
the periodic cyclic cohomology HP i(A), i ∈ Z/2, of A as the homology of the
following supercomplex

(
Ω̂evenA

)′ (
Ω̂oddA

)′
B − b

B − b

As with Ω̂A, we also have the following description of
(
Ω̂A

)′
(
Ω̂A

)′
= lim←−

S

(
DΩA

2n ⊕DΩA
2n+1

)′
. (1.27)
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1.5 Pro-algebras and pro-vector spaces
To properly introduce bivariant periodic cyclic homology, it will be helpful to use
pro-algebras. A pro-algebra A is an inverse limit of algebras Ai, i ∈ I, where I is
a partially ordered set. We will only need the case where I is countable, which
simplifies the theory somewhat as we will see below. The theory on pro-objects
and in particular pro-algebras and pro-vector spaces is covered extensively in
both [1] and [12], and we will only give a brief exposition of the material relevant
to the sections and chapters to come.

For any category C we may consider its corresponding pro-category pro− C.
The objects of pro − C are inverse systems (Ai)i∈I for I a directed partially
ordered set and Ai ∈ ObjC for all i ∈ I. The set I is not fixed. The morphisms
between two objects X = (Xi)i∈I and Y = (Yj)j∈J of pro− C are defined to be

Hom(X, Y ) = lim←−
j

(
lim−→
i

Hom(Xi, Yj)
)

(1.28)

Hence by definition of inverse limit, a morphism f : X → Y is really a system
(fj)j∈J compatible with the structure maps where fj ∈ lim−→i

Hom(Xi, Yj) for all
j ∈ J . But by definition of direct limit, this just means that for all j ∈ J there
is i ∈ I such that

fij : Xi → Yj (1.29)
represents fj.

We see now that for any pro-object (Xi)i∈I we may restrict to another index
set I0 which is cofinal in I [1]. (Xi)i∈I0 is then isomorphic to (Xi)i∈I . In particular
(Xi)i∈I is isomorphic to (Xα(j))j∈J for any order preserving map α : J → I with
α(J) cofinal in I.

Restricting to the countable case, we note that any countable directed set I
admits an order preserving map α : N → I with α(N) cofinal in I [12]. Hence
the pro-objects in this thesis will be of the form (Xn)n∈N.

Remark 1.10. Note that any object C in a category C is also a pro-object in
pro− C by choosing the index set I to be the one-point partially ordered set.

Remark 1.11. Even if the category C does not admit arbitrary inverse limits,
the category pro− C exists.

It also turns out that given a morphism of pro-objects f : (Xi)i∈I → (Yj)j∈J
we may reindex to one variable [1], [12]. We may represent f as {fij : Xi →
Yj|(i, j) ∈ F} for F a cofinal subset of I × J under the product ordering

(i, j) ≤ (i′, j′) ⇐⇒ i ≤ i′ and j ≤ j′. (1.30)

By setting k = (i, j) and k ≤ k′ if and only if (i, j) ≤ (i′, j′), we obtain the
representation of f as {(fk)k∈F |fk : Xk → Yk} with Xk = Xi and Yk = Yj.

Once again restricting to the countable case, if f : (Xi)i∈I → (Yj)j∈J is a
map of pro-objects with I and J countable we use the above results to obtain
f : (Xn)n∈N → (Yn)n∈N represented by (fn)n∈N with fn : Xn → Yn for all n ∈ N.
Inductively, we may do this for any finite system of maps, reindexing maps one
by one.
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Pro-algebras and pro-vector spaces are now the obvious pro-categories of the
category of algebras and the category of vector spaces, respectively.

For a morphism f of pro-vector spaces we may define the kernel, cokernel,
and image of f . They will just be the pro-vector spaces (Kerfn), (Cokerfn),
and (Imfn). The resulting pro-vector spaces do not depend on the choice of
representation of f [12]. The morphism f is said to be injective if Kerf ∼= 0
and surjective if Cokerf ∼= 0. We note that the category of pro-vector spaces is
abelian [1]. We also obtain a notion of pro-complexes as a graded pro-vector space
with a differential of degree 1. The notion of ideal is extended to pro-algebras by
saying that an ideal is a kernel of a morphism of pro-algebras.

We extend the notion of projective and injective objects to pro-objects in
the natural way. If (Xn) is projective then Hom((Xn),−) preserves epimor-
phisms, and if (Yn) is injective then Hom(−, (Yn)) carries monomorphisms to
epimorphisms. For abelian pro-categories we may of course instead say that (Xn)
is projective implies Hom((Xn),−) is exact, and (Yn) being injective implies
Hom(−, (Yn)) is exact. The following two results are from [12].

Lemma 1.12. Let (Vn)n∈N be a sequence of vector spaces and

WN =
N⊕
n=1

Vn.

Then the pro-vector space (WN ) with natural projection WN+1 → WN as structure
map, is injective.

Lemma 1.13. Let (Vn)n∈N be a sequence of vector spaces and

WN =
⊕
n≥N

Vn.

Then the pro-vector space (WN ) with natural inclusion WN+1 → WN as structure
map, is projective.

In particular the pro-vector space
( N⊕
n=0

ΩnA
)
N∈N

(1.31)

is injective for all algebras A, and the pro-vector space( ⊕
n≥N

ΩnA
)
N∈N

(1.32)

is projective for all algebras A.
As already mentioned, any object is a pro-object by using the trivial poset

with one element. Then, for example, any result which is true for pro-algebras
must also be true for algebras. On the other hand, we may often prove theorems
for pro-algebras by restricting to the category of algebras. This is true whenever
the result is functorial and is natural. In particular, everything introduced until
now also holds true for a pro-algebra (Ak)k, replacing ΩnA by (ΩnAk)k and so on.
We will not make an effort to make results in this thesis as general as possible
with respect to pro-algebras. It is included only because it is a natural way to
introduce bivariant periodic cyclic homology.
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1.6 Quasi-free algebras
The notion of a quasi-free pro-algebra will be of importance when defining
bivariant periodic cyclic homology. Given a pro-algebra A and an ideal I in
A, denote by A/I∞ the pro-algebra (A/In)n∈N. We list the following theorem
from [11], [7]:
Proposition 1.14. For a pro-algebra A the following conditions are equivalent:

1. There exists a morphism of pro-algebras A→ TA/(JA)∞ lifting the natural
quotient map TA/(JA)∞ → TA/JA ∼= A as in the following diagram

TA/(JA)∞ TA/JA 0

A

∼=

2. If 0 → S → P → Q → 0 is an extension of pro-algebras which admits
a linear splitting and A → Q a morphism of pro-algebras, then the map
A→ P/S∞ in the following diagram exists and the diagram commutes

P/S∞ P/S ∼= Q 0

A

3. The lifting property in (2) holds for nilpotent extensions, that is, for
extensions as in (2) where there exists k ≥ 1 such that Sk = 0.

Definition 1.15. A quasi-free pro-algebra is a pro-algebra satisfying any of the
equivalent conditions in Proposition 1.14.

The list of equivalent conditions in Proposition 1.14 can be extended con-
siderably, and we will come back to one extra equivalent condition when it will
be needed in Section 2.3. For now, the existence of lifts is what should be
emphasized.
Proposition 1.16. Let A be a quasi-free pro-algebra and let K be an ideal in
A. Then A/K∞ is also quasi-free.
Proof. Given a short exact sequence of pro-algebras 0 → S → P → Q → 0, a
morphism α : A/K∞ → Q is just a morphism β : A→ Q vanishing on K∞. Since
A is quasi-free, β lifts to a morphism β′ : A → P/S∞ sending K∞ into S/S∞,
hence K∞ ∼= (K∞)∞ into (S/S∞)∞ ∼= 0. Hence we have a lift α′ : A/K∞ →
P/S∞ for α.

We note in particular that for any pro-algebra A, the tensor algebra TA is
free, and therefore admits arbitrary lifts. Hence TA satisfies condition (2) in
Proposition 1.14, and is therefore a quasi-free pro-algebra. It is the ”canonical”
quasi-free pro-algebra associated to a pro-algebra A.
Definition 1.17. An extension of pro-algebras 0 → Q → T → A → 0 with T
quasi-free will be called a quasi-free extension.
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1.7 Differentiable homotopies
It turns out (bivariant) periodic cyclic homology can in general not ”detect”
continuous homotopies, only differentiable homotopies. Thus we have the need
for the following definition

Definition 1.18. A differentiable homotopy between two pro-algebras (An)n
and (Bm)m is a homomorphism φ : (An) → (Bm ⊗ C∞[0, 1]), where C∞[0, 1]
here denotes the space of smooth functions on the unit interval [0, 1]. We
will denote by φt the evaluation of φ in the point t ∈ [0, 1]. Then φt is a
homomorphism φt : (An)→ (Bm). Two homomorphisms α, β : (An)→ (Bm) will
be called differentiably homotopic if there exists a homomorphism φ : (An) →
(Bm ⊗ C∞[0, 1]) with φ0 = α and φ1 = β.

The following two results from [12] will be important when we define bivariant
periodic cyclic homology.

Theorem 1.19. If 0 → S → P → Q → 0 is an extension of pro-algebras
admitting a linear splitting and α : T → Q is a morphism of pro-algebras where
T is quasi-free, then any two lifts T → P/S∞ are differentiably homotopic.

Then the following is immediate from Proposition 1.16 and Theorem 1.19.

Theorem 1.20. If 0 → K1 → T1 → A → 0 and 0 → K2 → T2 → A → 0
are two quasi-free extensions of A admitting linear splittings, then T1/K

∞
1 and

T2/K
∞
2 are differentiably homotopy equivalent.

1.8 The X-complex and bivariant theory
To define the bivariant theory we will need a particular supercomplex.

Definition 1.21. For any pro-algebra A the X-complex of A, X(A), is the
following supercomplex

A Ω1A\
\d

b

where Ω1A\ = Ω1A/([A,Ω1A]), b(\(xdy)) = [x, y], \ is the natural quotient map
and \d(x) = \(dx).

Given two (pro-)complexes C = ((Cn), ∂C) and D = ((Dn), ∂D) (not necessar-
ily supercomplexes) we may define the Hom-complex Hom(C,D). The chains of
Hom(C,D) are linear maps between the complexes C and D. Indeed Hom(C,D)
is graded by the degrees of the linear maps. It becomes a complex with the
differential ∂ defined by

∂(φ) = ∂D ◦ φ− (−1)deg(φ)φ ◦ ∂C (1.33)

We are finally ready to define bivariant periodic cyclic homology in a sufficiently
general way.
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Definition 1.22. Given two pro-algebras A and B we define the bivariant
periodic cyclic homology HP∗(A,B), ∗ = 0, 1, as H∗Hom(X(P/Q∞), X(T/S∞)),
where 0 → Q → P → A → 0 is a quasi-free extension of A admitting a linear
splitting, and 0→ S → T → B → 0 is a quasi-free extension of B admitting a
linear splitting.

The fact that this is well-defined, that is, independent of the choices of
quasi-free extensions for A and B, will follow from Theorem 1.20 after we discuss
homotopy invariance in Section 2.2.

We note that there is now a ”canonical” choice of X-complex for calculating
the bivariant periodic cyclic homology of two algebras A and B, namely 0 →
JA → TA → A → 0 and 0 → JB → TB → B → 0, giving HP∗(A,B) =
H∗Hom(X(TA/(JA)∞), X(TB/(JB)∞)).

If f is a morphism of complexes between X(P/Q∞) and X(T/S∞) in the
setup of Definition 1.22 then f represents an element of HP0(A,B). Likewise,
a linear map between X(P/Q∞) and X(T/S∞) which is in the kernel of the
differential of (1.33) gives an element of HP1(A,B). We will denote the homology
class of f by ch(f) or [f ]. The use of ch to denote elements will make more sense
in Chapter 3, where we construct the Connes-Chern characters.

Remark 1.23. A morphismA→ B of (pro-)algebras induces a mapX(TA/(JA)∞)→
X(TB/(JB)∞) compatible with the differentials, hence induces an element of
HP0(A,B).
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Chapter 2

Properties of Periodic Cyclic
Theory

2.1 The composition product in bivariant peri-
odic cyclic homology

There is a very natural product in bivariant periodic cyclic homology given by
composition of linear maps of X-complexes as in Definition 1.22. To be more
specific, given three (pro-)algebras A, B and C we have the following associative
product

HP i(A,B)× HPj(B,C)→ HP i+j(A,C)
(ch(f), ch(g)) 7→ ch(f) · ch(g) = ch(g ◦ f)

(2.1)

The product will just be denoted ·, that is, we will write ch(f) · ch(g), sometimes
even dropping · to ease the notation.

The first thing we notice is that for any (pro-)algebra A, HP0(A,A) is a unital
ring with unit ch(1A), where 1A is the identity map on an X-complex defining
HP∗(A,A). We may therefore talk about invertible elements. Indeed, we can
extend this notion to homology classes of maps between X-complexes defining
HP for (pro-)algebras A and B, where A and B are not necessarily the same
(pro-)algebra. An element ch(f) ∈ HP∗(A,B) will be called invertible if there is
ch(g) ∈ HP∗(B,A) such that ch(f) · ch(g) = ch(1A) and ch(g) · ch(f) = ch(1B).
An invertible element of degree zero will be called an HP-equivalence. If there
is invertible ch(f) ∈ HP0(A,B) then the (pro-)algebras A and B will be called
HP-equivalent. HP∗(·, ·) is a bifunctor, and when A and B are HP-equivalent the
functor HP∗(A, ·) is isomorphic to HP∗(B, ·), and similarly in the contravariant
case. The isomorphism is implemented by multiplication by the HP-equivalence.

2.2 Homotopy invariance
In order to discuss homotopy invariance of bivariant periodic cyclic homology
under differentiable homotopies, we need the notion of Lie derivative. We will
not treat the Lie derivative in its full generality. Lie derivative will for us mean
the induced map on the X-complexes, see [11].

17
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Definition 2.1. Let f : A → B be a morphism of pro-algebras admitting a
derivation, that is, there exists a linear map ḟ : A → B such that ḟ(xy) =
f(x)ḟ(y)+ḟ(x)f(y). The Lie derivative Lf of f is then the map of supercomplexes
X(A)→ X(B) given by

Lf (x) = ḟ(x), Lf (\(xdy)) = \(ḟ(x)d(f(y)) + f(x)d(ḟ(y)). (2.2)

Cuntz and Quillen proved the following in [11], adjusting for pro-algebras.
Proposition 2.2. Let f : A → B be a morphism of pro-algebras admitting a
derivation, with A quasifree. Then its associated Lie derivative Lf : X(A) →
X(B) is null-homotopic.

Suppose we now have a differentiable homotopy between two pro-algebras A
and B, that is, a family f : A→ B ⊗ C∞[0, 1] with ft : A→ B for all t ∈ [0, 1].
Suppose further that A is quasifree. From this we get a resulting family of
derivatives ḟt, and in turn a family of Lie derivatives (Lft )t∈[0,1] = (Lft)t∈[0,1] with
Lft : X(A) → X(B). For every t ∈ [0, 1] Proposition 2.2 gives a homotopy ht
such that Lft = ∂ht + ht∂, where ∂ has been used to denote the boundary maps
in both X(A) and X(B). By integrating this with respect to t over [0, 1] we
obtain Lf1 − L

f
0 = ∂H +H∂, where

H =
∫ 1

0
htdt (2.3)

We sum this up in the following proposition
Proposition 2.3. Let f : A→ B ⊗ C∞[0, 1] be a morphism of pro-algebras, and
let A be quasifree. The induced actions of f0 and f1 on HP∗(A,B) are the same.
In particular, morphisms of quasifree pro-algebras connected by a differentiable
homotopy induce the same map in bivariant periodic cyclic homology.

Now we get immediately from Theorem 1.20 that the definition of bivariant
periodic cyclic homology, Definition 1.22, is well defined.

We now recall ΩevA ∼= TA from Section 1.2. It can be shown [11] that
this extends to a natural identification of X(TA) with ΩA compatible with the
Z/2-grading, which is also continuous with respect to the filtrations. With this
identification one may further show [11], [12], that X(TA/JA∞) is homotopy
equivalent to the pro-vector space ξA =

(⊕n
k=0 ΩkA,B − b

)
for any pro-algebra

A. Hence for algebras A and B, we may rewrite

HP∗(A,B) = H∗Hom(ξA, ξB) (2.4)

by homotopy invariance. In fact, now we are essentially back to looking at
morphisms of complexes as in Section 1.4, albeit ΩA is now considered as a
pro-vector space. Indeed we may now look at HP∗(A,B) as equivalence classes
of continuous linear maps between the completions Ω̂A and Ω̂B with the natural
filtration. Let’s make the notion of continuity more precise. Ω̂A is naturally a
complete metric space with the following metric. Let (xn) and (yn) be elements
of Ω̂A = ∏

n≥0 ΩnA. Their distance is ≤ 2−k if the first k entries are equal.
Hence we may regard bivariant periodic cyclic homology as

HP∗(A,B) = H∗Hom(Ω̂A, Ω̂B) (2.5)

which is perhaps the most natural version in view of Section 1.4.
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Remark 2.4. Two algebrasA andB are HP-equivalent if and only ifX(TA/(JA)∞)
and X(TB/(JB)∞) are homotopy equivalent [12], [9].

Lastly in this section we present an important computational tool, Good-
willie’s theorem. In fact, we will present a stronger version of it, known as the
generalized Goodwillie’s theorem. We need the following lemma whose proof is
from [12].

Lemma 2.5. Let K be an ideal in a pro-algebra B. Then there is a differentiable
homotopy equivalence between T (B/K)/(J(B/K)∞) and T (B/K∞)/(J(B/K∞)∞)

Proof. Denote by S the kernel of the composition of natural maps

T (B/K∞)→ T (B/K∞)/J(B/K∞) ∼= B/K∞ → B/K (2.6)

Now note that the following diagram is commutative

B/K∞ T (B/K∞) T (B/K∞)/(J(B/K∞))

B/K

ρ π

where ρ is the natural inclusion of an algebra into its tensor algebra, π is the
quotient map, the left sloping arrow is the natural quotient map, and the right
sloping arrow is the composition T (B/K∞)/(J(B/K∞)) ∼= B/K∞ → B/K,
where once again the last map is the natural quotient map. The composition of
the top arrows yield an isomorphism, from which we get that the kernel of the map
B/K∞ → B/K is isomorphic to the kernel of the map T (B/K∞)/(J(B/K∞))→
B/K. Hence S/J(B/K∞) ∼= K/K∞. This again gives S∞ ⊂ J(B/K∞), and
therefore T (B/K∞)/J(B/K∞)∞ ∼= T (B/K∞)/S∞.

Both 0 → J(B/K) → T (B/K) → B/K → 0 and 0 → S → T (B/K∞) →
B/K → 0 are quasi-free extensions of B/K admitting linear splittings. Thus by
invoking Theorem 1.20, we get that T (B/K∞)/S∞ is differentiably homotopy
equivalent to T (B/K)/J(B/K), from which the result follows.

Lemma 2.5 immediately yields the following version of the generalized Good-
willie’s theorem

Theorem 2.6. Let K,K ′ be two ideals in a pro-algebra A such that K∞ = K ′∞.
Then A/K and A/K ′ are HP-equivalent. In particular, A/K and A/K∞ are
HP-equivalent for any ideal K.

2.3 Restriction to periodic cyclic homology
Now we will verify that bivariant periodic cyclic homology indeed generalizes
both periodic cyclic homology and periodic cyclic cohomology. To be more
precise, we verify that when using C as one of the arguments, the resulting
groups are isomorphic to the groups obtained from the nonbivariant theory. In
particular we will see

HP∗(A,C) = HP∗(A) and HP∗(C, A) = HP∗(A) (2.7)



20 CHAPTER 2. PROPERTIES OF PERIODIC CYCLIC THEORY

This reduction to the nonbivariant theories is a property bivariant periodic cyclic
theory has in common with KK -theory.

We finally have need for the following equivalent condition of a pro-algebra
being quasi-free [11].

Proposition 2.7. For a pro-algebra A, the following are equivalent

1. A is quasi-free

2. There exists a linear map φ : A→ Ω2A satisfying

φ(xy) = xφ(y) + φ(x)y + dxdy. (2.8)

By this proposition we obtain

Proposition 2.8. C is quasi-free.

Proof. 1 generates C, and we see that the linear map

φ(1) = d1d1− 2(1 · d1d1)

satisfies the requirement.

Then the extension 0→ 0→ C→ C→ 0 is a quasi-free extension of C. To
calculate the bivariant periodic cyclic homology of an algebra A with respect to
C we then need to consider X(C/0∞) ∼= X(C). Now consider

C Ω1C\

\d

b

Note that Ω1C\ is generated by \(d(1)) and \(1·d(1)). Now since 1·d(1)−d(1)·1 ∈
[C,Ω1C\],

\(1 · d(1)) = \(1 · d(1 · 1)) = \(1 · (1 · d(1) + d(1) · 1)) = \(2 · d(1)) = 2\(1 · d(1))

which shows \(1 · d(1)) = 0. Then

\(d(1)) = \(d(1 · 1)) = \(1 · d(1) + d(1) · 1) = 2\(1 · d(1)) = 0

as above. Hence Ω1C\ = 0 and we may instead consider the following complex

C 0

Combining this with (2.5) in Section 2.2, we see that for any algebra A,

HP∗(A,C) = HP∗(A) and HP∗(C, A) = HP∗(A) (2.9)
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2.4 Morita invariance and the trace map
Cuntz showed in [8] that a generalized version of Morita equivalence holds for
bivariant periodic cyclic homology. In fact, this is actually a consequence of the
homotopy invariance of HP.

Proposition 2.9. Let A be an algebra, and let X and Y be linear subspaces.
Denote by A(XY ) the subalgebra of A generated by products xy, x ∈ X, y ∈ Y .
Then A(XY ) and A(Y X) are HP-equivalent.

In particular this implies the existence of an invertible element in HP0(A,B)
for any two algebras A and B related by a Morita context in a special way. We
adopt the following definition. A Morita context(

A X
Y B

)
(2.10)

for two algebras A and B is an algebra with a splitting into four linear subspaces
A,B,X, Y , such that when the elements are written as 2 x 2 matrices the
multiplication is consistent with matrix multiplication.

If A and B are connected by a Morita context and in addition satisfy A = XY ,
B = Y X in the setting above, then clearly A and B are HP-equivalent by
Proposition 2.9. This result will have a very important application for us in
the construction of a Connes-Chern character from Kasparov’s KK -theory with
values in HP in Chapter 3. We take a look at the relevant construction right
now.

Denote by Mn(A) the algebra of n× n-matrices over an algebra A, and let
M∞(A) denote lim−→n

Mn(A), where the structure maps are the usual inclusion
of Mn(A) into the top left corner of Mn+1(A). The elements of M∞(A) may
be regarded as infinite matrices with only finitely many nonzero terms up to
equivalence given by the structure maps. We note that Mn(A) ∼= Mn(C)⊗A for
all n ∈ N ∪ {∞}.

The following is then a Morita context of A and Mn(A) for any finite n:
Consider Mn+1(A), where we put A and Mn(A) as blocks along the diagonal.
Assume without loss of generality that A is in the top left corner. In the same
setup we had in the definition of a Morita context with B = Mn(A), we get
a linear subspace X which is just the top row in Mn+1(A) except for the very
first entry where we put A itself. We similarly get a linear subspace Y which is
just the leftmost column except for the first entry where we put A. The same
construction also works for M∞(A). But then we know from the above discussion
and Proposition 2.9 that A and Mn(A) are HP-equivalent for all n ∈ N ∪ {∞}.

Indeed, the canonical inclusion in the top left corner jAk : A → Mk(A),
k = 1, 2...,∞ represents an invertible element. To see this we construct the
inverse. Throughout the following discussion, we will write Mk instead of Mk(C)
for all k = 1, 2, ...,∞ to ease notation. The map we construct will be from
X(T (Mk ⊗A)/(J(Mk ⊗A)∞) to X(TA/(JA)∞). It is the following composition

X(T (Mk ⊗ A)/(J(Mk ⊗ A)∞)→ (Mk)\ ⊗X(TA/(JA)∞)
∼= X(TA/(JA)∞)

(2.11)
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where the first map is induced by the homomorphism

T (Mk ⊗ A)→Mk ⊗ TA
ρ(m⊗ a) 7→ m⊗ ρ(a)

(2.12)

and the morphism of complexes

X(Mk ⊗ A)→ (Mk)\ ⊗X(A)
\((m1 ⊗ a1)d(m2 ⊗ a2)) 7→ \(m1m2)⊗ \(d(a1a2))

(2.13)

for a, a1, a2 ∈ A, m,m1,m2 ∈ Mk, and ρ the canonical inclusion of an algebra
into its tensor algebra. It can be seen that the first morphism maps J(Mk ⊗ A)
into Mk ⊗ JA. The isomorphism is obtained by realizing that (Mk)\ = C. We
will denote this composition by TrkA, where Tr is short for trace.

Proposition 2.10. ch(jAk ) defines an invertible element in HP0(A,Mk(A)) for
k ∈ N ∪ {∞} with inverse TrkA.

Proof. Note first that ch(jAk ) · ch(TrkA) = ch(IdA) is clear.
Now, jMk(A)

k : Mk(C)⊗A→Mk(C)⊗Mk(C)⊗A. Let σ be the automorphism
interchanging the two tensor factors Mk(C). This is (differentiably) homotopic
to the identity, so ch(jMk(A)

k ) = ch(σ ◦ jMk(A)
k ), the the following two identities

ch(jMk(A)
k ) · ch(TrkMk(A)) = ch(IdMk(A))

ch(σ ◦ jMk(A)
k ) · ch(TrkMk(A)) = ch(TrkA) · ch(jAk )

proves the proposition.

2.5 Excision
The fact that bivariant periodic cyclic homology satisfies excision makes it a lot
easier to calculate HP-groups by choosing suitable extensions. We present the
Cuntz-Quillen excision theorem [12] and closely follow their exposition.

Theorem 2.11. For any algebra A and any extension of algebras 0 → S →
P → Q→ 0 there are two natural six-term exact sequences

HP0(A, S) HP0(A,P ) HP0(A,Q)

HP1(A, S)HP1(A,P )HP1(A,Q)

δ1
Aδ0

A

and

HP0(S,A) HP0(P,A) HP0(Q,A)

HP1(S,A)HP1(P,A)HP1(Q,A)

δA
0δA

1

where the horizontal maps are induced by the maps in the extension.
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A description of the vertical maps, that is, the connecting morphisms, is
of significant interest. In order to do this, we first make note of the following
result, which follows from naturality of the connecting morphisms, the definition
of the differential in the Hom-complex, and the fact that products in HP are
composition products.

Proposition 2.12. Let 0→ S → P → Q→ 0 be an extension of algebras and
denote it by E.

1. Let A1, A2 be algebras and let δ1, δ2 be the connecting morphisms in the
six-term exact sequences in HP∗(A1,−) and HP∗(A2,−) associated to E.
For any x ∈ HP∗(A1, A2) and y ∈ HP∗(A2, Q) we have

δ1(x · y) = (−1)deg(x)(x · δ2(y))

2. Let A1, A2 be algebras and let δ1, δ2 be the connecting morphisms in the
six-term exact sequences in HP∗(−, A1) and HP∗(−, A2), associated to E.
For any x ∈ HP∗(S,A1) and y ∈ HP∗(A1, A2) we have

δ2(x · y) = δ1(x) · y

With this proposition we can start talking about the canonical element ch(E)
associated to any extension E of algebras, and in turn get a description of the
vertical maps in Theorem 2.11.

Consider an extension E : 0→ S → P → Q→ 0 as above, and let δ, δ′ be the
connecting morphisms in the six-term exact sequences obtained from HP∗(−, S)
and HP∗(Q,−), respectively. We first note that δ(ch(IdS)), δ′(ch(IdQ)) ∈
HP1(Q,S). In fact, one may through a tedious homological argument show [12]

Proposition 2.13. δ′(ch(IdQ)) = −δ(ch(IdS))

For E : 0→ S → P → Q→ 0 as above we now define ch(E) to be equal to
δ′(ch(IdQ)) = −δ(ch(IdS)). The following description of the vertical maps in
Theorem 2.11 is then an immediate consequence of Proposition 2.12.

Theorem 2.14. Let E : 0→ S → P → Q→ 0 be an extension of algebras and
let A be an algebra. In the first exact sequence of Theorem 2.11, the vertical
maps act on HPj(A,Q) by multiplication on the right by (−1)jch(E), while in
the second exact sequence both connecting maps are given by multiplication on
the left by −ch(E).

2.6 Contractibility of the cone
When constructing the bivariant Connes-Chern character from algebraic KK -
theory to bivariant periodic cyclic homology in Chapter 3, we will have need for
the existence of a canonical invertible element in HP1(A, SA), where SA is the
(smooth) suspension of the algebra A. As bivariant periodic cyclic homology is
invariant only under differentiable homotopies, not under continuous homotopies,
we will need to use the smooth suspension.

Let A be an algebra. The (smooth) cone over A, denoted CA, is the algebra
A⊗ C∞0 (0, 1]. We will formally use f(0) = 0 for f ∈ CA. Using the evaluation
map in 1, denoted π1, we obtain the short exact sequence of algebras
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0 Ker(π1) CA A 0ι π1

where ι is the inclusion. We define the the suspension of A to be the kernel of π1
and we denote it by SA. SA can also be realized as A⊗ C∞0 (0, 1). We have the
following result.

Proposition 2.15. For any algebra A, CA is differentiably homotopy equivalent
to 0.

Proof. We prove the result by showing that the identity on CA is differentiably
homotopic to zero. This can be seen by considering the family F : CA →
CA⊗ C∞[0, 1], where Ft, the evaluation of F in t ∈ [0, 1], is given by

a⊗ f(s) 7→ a⊗ f(ts) (2.14)

that is, given by a ”precomposition” with the function t 7→ t.

By differential homotopy invariance we immediately get that HP i(CA,B) = 0
and HP i(B,CA) = 0 for all algebras B. In particular, once again using the short
exact sequence

0 SA CA A 0ι π1

and the excision theorem, we obtain a long exact sequence of period six of the
form

HP0(A, SA) 0 HP0(A,A)

HP1(A, SA)0HP1(A,A)

δ1
Aδ0

A

The vertical maps are then isomorphisms, and it follows that there is a canonical
invertible element in HP1(A, SA), say γA1 , namely the image of ch(IdA) under
δ1
A.

2.7 Contractibility of the tensor algebra
We will also have need for a canonical invertible element in HP1(A, JA) when
constructing the second bivariant Connes-Chern character in Section 3.2.

Let A be an algebra and consider TA, the tensor algebra over A with the
natural inclusion ρ.

Proposition 2.16. TA is differentiably contractible.

Proof. Consider the family of linear maps ρt : A→ TA given by ρt = tρ where
ρ is the canonical inclusion. This induces a family of algebra homomorphisms
φt : TA→ TA. In particular φ0 = 0 and φ1 = Id, showing that TA is differen-
tiably contractible.

We now consider the short exact sequence 0 → JA → TA → A → 0 and
use Theorem 2.11 and differential homotopy invariance to obtain the long exact
sequence
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HP0(A, JA) 0 HP0(A,A)

HP1(A, JA)0HP1(A,A)

δ1
Aδ0

A

so as in the previous section, there exists a canonical invertible element in
HP1(A, JA), say γ̄A1 , which is equal to δ1

A(IdA).

2.8 The exterior product
With homotopy invariance and excision at our disposal, we include a very brief
discussion of the exterior product for the sake of completeness. We shall however
have very little need for it in this thesis.

Let A be a unital (pro-)algebra, and let χA be the X-complex of the pro-
algebra RA/JA∞ where RA is the unital free tensor algebra over A and JA the
kernel of the natural map RA→ A.

It was shown in [11] and [12] that for unital (pro-)algebras A and B there is
a homotopy equivalence between χA ⊗ χB and χA⊗B. This shows the existence
of an exterior product for unital algebras

HP i(A1, B1)⊗ HPj(A2, B2)→ HP i+j(A1 ⊗ A2, B1 ⊗B2) (2.15)

Using excision, this has also been extended to the non-unital case, that is, (2.15)
holds for arbitrary (pro-)algebras.

2.9 Examples
We will in this section use some of the many results we now have at hand and
apply them to specific examples.

Example 2.17. Although not explicitly mentioned earlier, we have immediately
from Section 2.3 that

HP0(C) = HP0(C) = C, HP1(C) = HP1(C) = 0 (2.16)

By Morita invariance we have, for any algebra A, HP∗(A) ∼= HP∗(Mn(A)) and
HP∗(A) ∼= HP∗(Mn(A)) for ∗ = 0, 1 and n ∈ N ∪ {∞}. In particular we get

HP0(Mn(C)) = HP0(Mn(C)) = C, HP1(Mn(C)) = HP1(Mn(C)) = 0 (2.17)

Given any algebra A, the inclusion j : An → A gives an HP-equivalence
between An and A. To see this, note that we have a canonical short exact
sequence 0 → An

j−→ A → A/An → 0. Using the excision theorem and
the fact that HP∗(A/An, B) = 0 for all algebras B by Theorem 2.6, we get
HP∗(An, B) ∼= HP∗(A,B) and HP∗(B,An) ∼= HP∗(B,A) for any algebra B, and
the isomorphisms are induced by ch(j). The following is then immediate

Proposition 2.18. Any nilpotent algebra is HP-equivalent to 0.
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Example 2.19. Consider an infinite-dimensional separable Hilbert space H with
an orthonormal basis (ξn)n∈N. Let B(H) be the bounded operators on H. Given
positive S ∈ B(H) we may consider

Tr(S) =
∞∑
i=1
〈Sξi, ξi〉 (2.18)

There is no reason why this should be finite. Indeed for general operators S it
is not. We can however always say that it is ≥ 0. It can further be shown that
Tr(S∗S) = Tr(SS∗) for all S ∈ B(H), and that Tr(S) is independent of the
choice of orthonormal basis. We now define

Sp = {S ∈ B(H) : Tr(|S|p) <∞} (2.19)

where |x| = (x∗x)1/2 by standard functional calculus. This can be shown to
be an ideal in B(H) for all p ≥ 1 and in general Sp ⊂ Sq for p ≤ q. Sp is
known as the p’th Schatten ideal. By the above discussion all Schatten ideals
are HP-equivalent [12]. This is true also if one consider the Schatten ideals as
m-algebras [10] (see Section 3.3).



Chapter 3

Bivariant Connes-Chern
Characters

In this chapter we will construct bivariant Connes-Chern characters from the
algebraic version of Kasparov’s KK -theory to bivariant periodic cyclic homology.
To do this, we will first present Cuntz’s and Zekri’s reformulations [3], [4], [15], [16]
of Kasparov’s KK -theory. We will not present Kasparov’s formulation in terms
of Hilbert C∗-modules as this does not make sense for arbitrary algebras. We will
also no longer specify when results hold for pro-algebras rather than algebras.

3.1 An algebraic reformulation of KK -theory
In the trivially graded, or ungraded, version of Kasparov’s KK -theory, it is
possible to make a reformulation of KK 0, the first Kasparov KK -theory group,
in terms of generalized homomorphisms.

Definition 3.1. Let A and B be C∗-algebras. A prequasihomomorphism from
A to B is a triple (Φ, E, µ), where Φ = (φ, φ̄) is a pair of homomorphisms from
A into a C∗-algebra E, and µ is a homomorphism J → B, where J is an ideal in
E such that for all a ∈ A, φ(a)− φ̄(a) ∈ J .

A quasihomomorphism from A to B is a prequasihomomorphism where in
addition

1. µ is an inclusion
2. E is the C∗-algebra generated by φ(A) and φ̄(A)
3. J is the closed, two-sided ideal generated by φ(A)− φ̄(A)
4. The composition of φ : A→ E and the quotient map E → E/J is injective.

Every prequasihomomorphism determines a unique quasihomomorphism [4].
Given any pair of homomorphisms (α, β) from A to E we obtain a unique

homomorphism QA→ E, sending ι(x) and ῑ(x) to α(x) and β(x), respectively.
Here ι and ῑ are the canonical inclusions A → QA. Conversely, given a map
Ψ: QA → B, we get a unique pair (α, β) of morphisms A → B by setting
α(x) = Ψ(ι(x)) and β(x) = Ψ(ῑ(x)) for all x ∈ A.

Let (Φ, E, µ) be a quasihomomorphism from a C∗-algebra A to a C∗-algebra
B. Under the above correspondence we get a homomorphism qA→ B since the
ideal J in E is the ideal generated by φ(A)− φ̄(A).

27
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In [3] it was shown that Kasparov’s KK 0 and the product KK 0×KK 0 → KK 0
can be equivalently formulated by looking at homotopy classes of quasihomo-
morphisms between C∗-algebras, with product being a somewhat technical
”composition” of (generalized) homomorphisms. Building on this, it was shown
in [4] that for any pair of C∗-algebras A and B, KK 0(A,B) can be realized
as homotopy classes of homomorphisms from qA to K ⊗ B, where K is the
C∗-algebra of compact operators on a infinite-dimensional, separable Hilbert
space. We denote the set of homotopy classes of such homomorphisms from qA
to K⊗B by [qA,K⊗B]. The product in KK -theory also becomes easy to write
down but builds on homotopy invariance and stability of the functor KK , as
well as a lifting property which holds for C∗-algebras.

Denote by j0 : B → M2(B) the inclusion in the top left corner, and let
π0 : qB → B be the restriction to qB of the homomorphism QB → B defined
by the pair (IdB, 0). The following theorem from [4] is important to define the
product.

Theorem 3.2. Let A be a separable C∗-algebra. There exists a homomorphism
φA : qA→M2(q2A) such that π0φA is homotopic to j0 : qA→M2(qA), and such
that φAπ0 is homotopic to j0 : q2A → M2(q2A). Here q2A = q(qA), and π0 is
also used for the obvious extension to M2(q2A).

Using Theorem 3.2, that is, homotopy invariance of qnA = q(qn−1A) modulo
stabilization by 2× 2-matrices for separable A, we can now define the product:
Let A,B and C be C∗-algebras, with A separable and B,C stable. Then the
pairing [qA,B]× [qB,C]→ [qA,C] given by

([α], [β]) 7→ [β′q(α)′φA] (3.1)

defines a bilinear, associative product. Here β′ and q(α)′ are the natural exten-
sions of β and q(α) to 2 × 2-matrices, and q(α) is the naturally induced map,
that is, given α : A→ B, q(α) : qA→ qB is the map

a0q(a1) · · · q(an) 7→ α(a0)q(α(a1)) · · · q(α(an)). (3.2)

Now, K ⊗ B is stable for any C∗-algebra B, so we thus have that the above
pairing gives for C∗-algebras A,B and C, with A separable, a bilinear, associative
product

[qA,K⊗B]× [qB,K⊗ C]→ [qA,K⊗ C] (3.3)

A similar reformulation for KK 1 was done by Zekri in [15]. Indeed, there
exists another universal algebra construction which describes KK 1 for separable
C∗-algebras.

First we need the notion of KK-equivalence. Denote by [x] an element of
KK i(A,B), i = 0, 1, for arbitrary C∗-algebras A and B. Note that in general,
homomorphisms of C∗-algebras induce elements of the KK -groups [2]. Thus
it makes sense to talk about [IdA] in KK 0(A,A). Two C∗-algebras A and B
are called KK-equivalent if there exists an element [x] ∈ KK 0(A,B) and an
element [y] ∈ KK 0(B,A) such that [x][y] = [IdA] and [y][x] = [IdB], where
the product is the Kasparov product (or, if we want we could do this in terms
of quasihomomorphisms as in the discussion above). If two C∗-algebras are



3.2. BIVARIANT CONNES-CHERN CHARACTERS 29

KK -equivalent, they share all KK -theoretic properties, which is the only fact
about KK -equivalence we will need in the sequel.

Let A be a C∗-algebra. We set EA to be the universal algebra generated
by A and a self-adjoint F , where F 2 = 1 acts on EA as the identity. This is
a C∗-algebra when equipped with the greatest C∗-norm. We define εA to be
the ideal in EA generated by [A,F ] = {aF − Fa|a ∈ A}. Zekri showed in [15]
that the group KK 1(A,B) could, for separable A and B, be identified with
homotopy classes of homomorphisms εA→ K⊗B, which we once again denote
by [εA,K⊗B]. It was also shown that graded products KK i ×KK j → KK i+j,
addition modulo 2, exist and coincide with the products in Kasparov’s KK -
theory. Furthermore, it was shown in [16] that εA is KK -equivalent to SA,
where SA = A⊗ C0(0, 1) is the C∗-algebra suspension of A.

In order to reformulate KK -theory in a purely algebraic manner we now need
to ”delete” some topological aspects. In particular, tensor products with K will
be replaced by tensor products with M∞(C), that is, for an algebra A, instead of
K⊗ A we will consider M∞(A) = lim−→Mn(A) with the standard inclusion in the
top left corner. In addition, we will consider an algebraic version of εA, which
we will denote by εaA. This is obtained by, for an algebra A, letting A[F ] be
the algebra obtained by adjoining an element F with F 2 = 1. Then we let EaA
be the ideal generated by A in A[F ] and εaA be the ideal in A[F ] generated by
{aF − Fa|a ∈ A}, essentially the same as the C∗-algebra construction. We then
have a canonical short exact sequence

0 εaA EaA A⊕ A 0

For the construction of the second Connes-Chern character in Section 3.2 we
note that it was shown in [5] that there is a bijection between traces on εaA and
traces on JA, where JA is the standard kernel in the surjection TA→ A.

We may now consider the following two algebraic reformulations of KK -
theory for arbitrary algebras. In either case we will, for algebras A and B, define
KK alg

0 (A,B) = [qA,M∞(B)]. However, due to the KK -equivalence for εA and
SA for C∗-algebras, and the bijection between traces on εaA and traces on JA, we
may define two versions of KK 1(A,B). We will set KKC∗

1 (A,B) = [SA,M∞(B)]
and KK tr

1 (A,B) = [JA,M∞(B)]. Why KK tr
1 (A,B) = [JA,M∞(B)] is a natural

definition will be discussed in the next section. Moreover, the suspension SA
will for us mean the smooth suspension of Section 2.6, and [C,D] will mean
differentiable homotopy classes of homomorphisms C → D. These two variations
of algebraic KK -theory will give us two bivariant Connes-Chern characters.

3.2 Bivariant Connes-Chern characters
First we construct a bivariant Connes-Chern character from the KK -theory with
KK 0(A,B) = [qA,M∞(B)] and KK 1(A,B) = KKC∗

1 (A,B) = [SA,M∞(B)] as
discussed in Section 3.1. We will denote by ch : KK i(A,B) → HP i(A,B) the
Connes-Chern character for i = 0, 1. First we need the following result from [12].

Proposition 3.3. Let A be an algebra and denote by π0 : qA → A the map
induced by Id ∗ 0: QA→ A. Then ch(π0) ∈ HP0(qA,A) is invertible.
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Remark 3.4. The inverse of ch(π0) is actually ch(ι)− ch(ῑ).

Let [α] ∈ [qA,M∞(B)]. Define

ch([α]) = γA0 · ch(α) · ch(Tr∞B ) (3.4)

where Tr∞B : M∞(B)→ B is the trace map of Section 2.4 and γA0 is the inverse
of ch(π0) from Proposition 3.3. Further, we define for [α] ∈ [SA,M∞(B)]

ch([α]) = γA1 · ch(α) · ch(Tr∞B ). (3.5)

where γA1 is the canonical invertible element in HP1(A, SA), see Section 2.6.
Both of these maps are well-defined as both the left and right sides in either

case are defined up to differentiable homotopy.
We wish for the transformation KK ∗(A,B)→ HP∗(A,B) to respect products.

In order to discuss this, we must discuss when products should exist. If we
were working with C∗-algebras (and changing back from M∞(·) to K⊗ and
from εa to ε, taking C∗-tensor products) the products KK i × KK j → KK i+j
(addition modulo 2) would always exist. This is due to canonical homomorphisms
[q2A,K⊗B]→ [qA,K⊗B], [ε(εA),K⊗B]→ [qA,K⊗B] and so on [15]. However,
this requires special properties of C∗-algebras, and we cannot hope this holds
in general. For example, the product [qA,K⊗B]× [qB,K⊗ C]→ [qA,K⊗ C]
exists and is well defined because of Pedersen’s derivation lifting property [4].

Now let A,B and C be algebras, and let α represent an element [α] ∈
[qA,M∞(B)] and β represent an element [β] ∈ [qB,M∞(C)]. The product of [α]
and [β] is said to exist if there exists α′ unique up to differentiable homotopy
such that the following diagram commutes up to differentiable homotopy

qA M∞(B)

M∞(qB)

M∞(C)α

α′
M∞(π0)

M∞(β)

that is, M∞(π0) ◦ α′ is differentiably homotopic to α. The product of [α] and
[β] is then defined to be [M∞(β) ◦ α′] ∈ [qA,M∞(C)]. We have used that
M∞(M∞(C)) ∼= M∞(C), a fact we will continue to use without mention.

Now alter the setting above so that [β] ∈ [SB,M∞(C)]. We then say that
the product of [α] and [β] exists if there is a differentiable homotopy equivalence
M∞(SA)→M∞(SqA). Then we may represent the product with the following
diagram

SA M∞(SA)

SqA M∞(SqA) M∞(SM∞(B)) M∞(SB) M∞(C)

j

j M∞(S(α)) M∞(β)

where the maps j are just sending an element to the same element tensored with
a minimal idempotent in M∞(C). That is, j : a 7→ a⊗ p, where p is a minimal
idempotent in M∞(C). Any two choices of minimal idempotents are connected by
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a differentiable homotopy, so this will be well-defined in HP . We have suppressed
a map here. The map M∞(SM∞(B))→M∞(SB) is the composition of natural
maps M∞(SM∞(B)) → M∞(M∞(SB)) ∼= M∞(SB). We then set the product
of [α] and [β] to be the differentiable homotopy class in [SA,M∞(C)] of the
composition in the diagram from SA to M∞(C).

If instead [α] ∈ [SA,M∞(B)] and [β] ∈ [qB,M∞(C)], we say the product of
[α] and [β] exists if there exists a map α′ unique up to differentiable homotopy
such that the following diagram commutes up to differentiable homotopy.

SA M∞(B)

M∞(qB)

M∞(C)α

α′
M∞(π0)

M∞(β)

If such an α′ exists we set the product of [α] and [β] to be [M∞(β) ◦ α′] ∈
[SA,M∞(C)].

Lastly, if [α] ∈ [SA,M∞(B)] and [β] ∈ [SB,M∞(C)] we say the product
exists if there is a differentiable homotopy equivalence M∞(qA) → M∞(S2A),
where S2A = S(SA). In this case we get the following diagram

qA M∞(qA) M∞(S2A) M∞(SM∞(B)) M∞(SB) M∞(C)

S2A

j M∞S(α) M∞(β)

j

where j is the map above and the map M∞(SM∞(B))→M∞(SB) is the map
M∞(SM∞(B)) → M∞(M∞(SB)) ∼= M∞(SB) as before. If the product exists
we set it to be the equivalence class of the total composition qA→M∞(C) in
the diagram above. This is an element of [qA,M∞(C)].

It now remains to show that our transformation ch : KK i(A,B)→ HP i(A,B)
for i = 0, 1 is compatible with these products. The cases are very similar, so we
include just two of the verifications.

Let α represent [α] ∈ [qA,M∞(B)] and β represent [β] ∈ [qB,M∞(C)], and
suppose the product [α][β] exists. Denote the product by [η] ∈ [qA,M∞(C)].
Then

ch([α])ch([β]) = γA0 ch(α)ch(Tr∞B )γB0 ch(β)ch(Tr∞C ) (3.6)

while

ch([η]) = γA0 ch(M∞(β) ◦ α′)ch(Tr∞C ) = γA0 ch(α′)ch(M∞(β))ch(Tr∞C ) (3.7)

where α′ is the lift of α so thatM∞(π0)◦α′ is differentiably homotopic to α. Indeed
we may write ch(α′) = ch(α)ch(M∞(γB0 )). Checking that the two products are
equal now reduces to checking that ch(M∞(γB0 ))ch(M∞(β))ch(Tr∞C ) is equal to
ch(Tr∞B )γB0 ch(β)ch(Tr∞C ). This follows from that the two paths through the
following diagram give the same HP-class, as well as that ch(j) is invertible,
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M∞(B)

M∞(qB) M∞(C)

B qB M∞(C)

CB

M∞(γB
0 )

M∞(β)

Tr∞C

Tr∞B
γB

0 β

Tr∞C

j

where we have written γB0 also for a representative of the equivalence class. The
verification of the product [SA,M∞(B)]× [qB,M∞(C)]→ [SA,M∞(C)] being
well-defined follows from a very similar argument.

We also include the verification for the product [SA,M∞(B)]×[SB,M∞(C)]→
[qA,M∞(C)]. Let α represent [α] ∈ [SA,M∞(B)] and β represent [β] ∈
[SB,M∞(C)]. Suppose the product [α][β] exists and denote it by [η]. We
have

ch([α])ch([β]) = γA1 ch(α)ch(Tr∞B )γB1 ch(β)ch(Tr∞C ) (3.8)
and

ch([η]) = γA0 ch([qA→M∞(C)])ch(Tr∞C ) (3.9)
where qA→M∞(C) is the composition of the top row in the definition of this
product. All maps in the square in the following diagram are invertible in HP,
hence the two paths through the diagram gives the same ch-class

A qA M∞(qA)

S2A M∞(S2A) M∞(C) C

γA
0 j

γSA
1 ◦ γA

1

j

Tr∞C

where we once again have let γSA1 and γA1 also denote maps that represent
the equivalence classes. Here M∞(S2A) → M∞(C) is the composition in the
definition of the product. The two paths through the following diagram give the
same HP-class.

A

S2A SM∞(B) M∞(SB)

SA M∞(B) M∞(SB)

M∞(C) C

γSA
1 ◦ γA

1

Sα

M∞(β)

γA
1

α M∞(γB
1 )

M∞(β)

Tr∞C

This can be verified by realizing that any map in the diagram not involving α
or β gives an invertible HP-class. It follows that the product is well defined.
Checking that the product [qA,M∞(B)]× [SB,M∞(C)] is compatible with ch
whenever it is defined can be done in essentially the same way. We summarize the
results of this section so far in the following theorem, where the identifications
KK 0(A,B) = [qA,M∞(B)] and KK 1(A,B) = [SA,M∞(B)] have been made.

Theorem 3.5. The map ch : KK i(A,B) → HP i(A,B), i = 0, 1, is compatible
with the product structure of both KK and HP. That is, for elements [α] ∈
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KKi(A,B) and [β] ∈ KKj(B,C) for which the product [α][β] ∈ KK i+j(A,C)
exists, we have

ch([α][β]) = ch([α])ch([β]) ∈ HP i+j(A,C) (3.10)

with addition modulo 2.

We now turn to the other bivariant Connes-Chern character construction
as is done in [12]. Essentially everything is defined and proved in an analogous
way as for the character above, so the treatment will be brief. When defining
the bivariant Connes-Chern character above, the last thing we multiplied with
was the map Tr∞B , in order for ch([α]), [α] ∈ [qA,M∞(B)] or [α] ∈ [SA,M∞(B)],
to define an element of HP i(A,B) rather than an element of HP i(A,M∞(B)).
Using the observation from [5] that there is a bijection between traces on εaA
and JA, the definition KK 1(A,B) = KK tr

1 (A,B) = [JA,M∞(B)] seems fitting.
Once again for [α] ∈ [qA,M∞(B)] we set

ch([α]) = γA0 ch(α)ch(Tr∞B ) (3.11)

and for [β] ∈ [JA,M∞(B)] we set

ch([β]) = γ̄A1 ch(β)ch(Tr∞B ) (3.12)

where γ̄A1 is the canonical invertible element in HP1(A, JA), see Section 2.7.
The products of elements in the sets of differentiable homotopy classes are
said to be defined if they satisfy essentially the same conditions as for the
bivariant Connes-Chern character above. That is, we still require existence of
the appropriate lifts, differential homotopy equivalence between M∞(qA) and
M∞(J2A) = M∞(J(JA)) (instead of between M∞(qA) and M∞(S2A)), and
differential homotopy equivalence between M∞(JA) and M∞(JqA) (instead of
M∞(SA) and M∞(SqA)). Compatibility of ch : KK ∗(A,B)→ HP∗(A,B) with
the respective product structures are proved as for our first bivariant Connes-
Chern character.

3.3 Topological algebras
So far everything we have done has been without regard to any topology on
our algebras, and we have not imposed continuity on any of our morphisms or
linear splittings. It turns out [7], [9] essentially the entire theory carries over to
a certain type of topological algebras.

Definition 3.6. A topological algebra A is an algebra equipped with a topology
such that multiplication A× A→ A is jointly continuous.

We want to carry over as much of our theory as possible to topological
algebras. This includes the incredibly important excision theorem. We based
the excision theorem on the proof of Cuntz and Quillen from [12], which relies
on the existence of canonical quasi-free algebras so that for any algebra A we
could find a quasi-free extension of A. The algebra used for this was the tensor
algebra TA. However, general tensor algebras do not exist in the category of
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topological algebras (with continuous algebra homomorphisms as morphisms).
To make things easier for us, and to continue to use most of the same theory, we
specialize to a subcategory of the category of topological algebras where tensor
algebras exist. The (full) subcategory we specialize to is the one of m-algebras.

Definition 3.7. An m-algebra is a topological algebra with topology defined by
a family of submultiplicative seminorms. Equivalently, it can be written as the
projective limit of a system of Banach algebras.

For any m-algebra A the corresponding tensor algebra TA is also an m-algebra
(see Appendix A.2).

We may now carry over all of our theory on the universal differential algebra
ΩA to the category of m-algebras. The essence of adapting the theory to the
topological case is to make all tensor products into completed projective tensor
products, as well as making all homomorphisms and linear splittings continuous.
Using the completed projective tensor products in both the cyclic bicomplex
version of (periodic) cyclic homology, and in the (B,−b)-bicomplex version
of (periodic) cyclic homology, we find that all the basic operators (in both
frameworks) are continuous and extend to the completions. In applying the
homology functor to obtain (bivariant) periodic cyclic homology, we take the
quotient by the image of the differential, not by the closure of the image.

The definition of differentiable homotopy requires a similar (completed)
projective tensor product. A differential homotopy from an algebra A to an
algebra B is now defined as a continuous map from A into B⊗̂C∞([0, 1]). With
this definition of differentiable homotopy, both homotopy invariance under
differentiable homotopies and Morita invariance holds for HP applied to the
category of m-algebras. We mention that a slight modification has to be made
to Morita invariance, specifically that it is the completions of the subalgebras
generated by the products of the linear subspaces that will be HP-equivalent.
The all-important property of excision also holds. Hence we have (bivariant)
periodic cyclic homology on the category of m-algebras, and all the previously
covered properties still hold.

With this we have a proper receptacle for a bivariant Connes-Chern character
from the category of m-algebras. However, our definitions of the algebraic KK -
groups must now be made topological. First note that if A is an m-algebra, then
both qA and JA are m-algebras (see Appendix A.1 and Appendix A.2). Further,
TA is still differentiably contractible. Hence there is a canonical invertible
element γ̄A1 ∈ HP1(A, JA) for any m-algebra A. The map π0 : qA → A is
also continuous for any m-algebra A and its inverse gives an invertible element
γA0 ∈ HP0(A, qA).

For an m-algebra A, define the cone ĈA of A by

ĈA = C̄∞0 ((0, 1])⊗̂A (3.13)

where C̄∞0 ((0, 1]) is the m-algebra of smooth functions on [0, 1] vanishing at 0
whose derivatives to arbitrary orders vanish at both 0 and 1. From this we also
get the suspension of A

ŜA = Ker [ev1 : ĈA→ A] (3.14)
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where ev1 is the evaluation in 1. ŜA can be realized as C̄∞0 ((0, 1))⊗̂A with the
obvious corresponding vanishing conditions on the derivatives of functions in
C̄∞0 ((0, 1)). Also, ĈA is differentiably contractible by the same argument as
before. Hence there is a canonical invertible element γA1 ∈ HP1(A, SA).

Finally we need an m-algebra analogue of M∞(A) = M∞(C)⊗ A. This role
will be played by the m-algebra K of smooth compact operators, which can
be realized as N × N-matrices over C with rapidly decreasing coefficients. In
particular its topology is defined by the family of multiplicative norms given by

pn((aij)) =
∑
i,j∈N
|1 + i+ j|n|aij| (3.15)

There is a canonical inclusion jA : A → K⊗̂A which by Morita equivalence is
invertible in HP0(A,K⊗̂A). We denote its inverse in HP by ch(TrA).

With this we obtain two Connes-Chern characters from our KK -theory for
m-algebras with values in HP.

We base the first character on the suspension, as we did in the algebraic
case. Now let [C,D] be the set of differentiable homotopy classes of continuous
homomorphisms from C to D. Define

KK 0(A,B) = [qA,K⊗̂B], KK 1(A,B) = [ŜA,K⊗̂B] (3.16)

The existence of products is the same as in Section 3.2 with the obvious adjust-
ments for continuity, and K instead of M∞(C). We then define the bivariant
Connes-Chern character as in Section 3.2. For [α] ∈ KK0(A,B) with a represen-
tative α, we set

ch([α]) = γA0 · ch(α) · ch(TrB) (3.17)
and for [β] ∈ KK 1(A,B) with a representative β, we set

ch([β]) = γA1 · ch(β) · ch(TrB) (3.18)

The compatibility of ch with the respective product structures is verified as in
Section 3.2, adjusting for continuity, and K instead of M∞(C).

Likewise we may construct the topological analogue of the second Connes-
Chern character of Section 3.2 by setting

KK 0(A,B) = [qA,K⊗̂B], KK 1(A,B) = [JA,K⊗̂B] (3.19)

The product structure is the same as in the previous section adjusting for conti-
nuity, and K instead of M∞(C). The second bivariant Connes-Chern character
can then be defined from our KK -theory for m-algebras with values in HP in
the following way. Let [α] ∈ KK 0(A,B) and let α be a representative. Then set

ch([α]) = γA0 · ch(α) · ch(TrB) (3.20)

and for [β] ∈ KK 1(A,B) with representative β set

ch([β]) = γ̄A1 · ch(β) · ch(TrB) (3.21)

Once again, verifying the compatibility of ch with the respective product struc-
tures is just as in Section 3.2 adjusting for continuity, and K instead of M∞(C).
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We have here only adapted HP to a topological setting and imposed continuity
on the homomorphisms in our (algebraic) KK -theory. From this we easily got
two Connes-Chern characters. There is however no reason why this should be
particularly well-behaved in the case of m-algebras. Indeed, for m-algebras
it it possible to rather alter the bivariant K-theory we use as the source of
our Connes-Chern character. Such a construction was done by Cuntz in [6].
Doing this we may construct an altered category of m-algebras where differential
homotopy classes of m-algebra homomorphisms are identified, and it turns out
there exists a unique multiplicative Connes-Chern character from this category
with values in HP.



Appendix A

Some Algebraic Constructions

A.1 The free product of algebras
The (nonunital) free product of two algebras, denoted A1 ∗ A2, is the universal
algebra equipped with two homomorphisms ι1 and ι2 such that for any pair
of algebra homomorphisms φ1 : A1 → E and φ2 : A2 → E into an algebra E,
there exists a unique algebra homomorphism φ1 ∗ φ2 : A1 ∗ A2 → E such that
φj =

(
φ1 ∗ φ2

)
◦ ιj, j = 1, 2.

Explicitly this algebra is realized as

A1∗A2 = A1 +A2 +A1⊗A2 +A2⊗A1 +A1⊗A2⊗A1 +A2⊗A1⊗A2 + · · · (A.1)

with multiplication being concatenation and simplification of tensors using the
multiplication in A1 and A2.

We shall be particularly interested in QA = A ∗ A for an algebra A. In
particular we note that there is a canonical ideal qA in QA, called the folding
ideal, which is the kernel of the map QA → A obtained from the universal
property applied to the identity map A→ A in both factors. This map is called
the folding map. In case of the free product QA we will denote the canonical
homomorphisms ι and ῑ.

QA may equivalently be described as the universal algebra generated by
symbols x, q(x) satisfying

q(xy) = xq(y) + q(x)y − q(x)q(y) (A.2)

where the canonical homomorphisms ι, ῑ are given by ι(x) = x and ῑ(x) = x−q(x)
[4].

The free product of two m-algebras A1 and A2 (see Section 3.3) equipped
with families of seminorms {pi1} and {pj2} respectively, is

A1∗̂A2 = A1 +A2 +A1⊗̂A2 +A2⊗̂A1 +A1⊗̂A2⊗̂A1 +A2⊗̂A1⊗̂A2 + · · · (A.3)

where the tensor products are completed projective tensor products, and it
becomes an m-algebra when equipped with the family of seminorms pi1∗̂p

j
2

defined by
pi1∗̂p

j
2 = pi1 + pj2 + pi1⊗̂p

j
2 + pj2⊗̂pi1 + · · · (A.4)

The folding ideal is also an m-algebra with the induced topology.
The free product of two m-algebras is the free product in the category of

m-algebras.

37
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A.2 The tensor algebra
For any vector space V we may consider the tensor algebra over V , denoted
TV , which is the universal algebra equipped with an inclusion ρ : V → TV such
that for any linear map φ : V → E into an algebra E, there is a unique algebra
homomorphism Φ: TV → E such that φ = Φ ◦ ρ.

Explicitly this algebra can be realized as

TV = V + V ⊗2 + V ⊗3 + · · · (A.5)

with multiplication being concatenation of tensors. The canonical inclusion ρ
is then inclusion into the first summand. Given a linear map φ : V → E into
an algebra E as above, the unique algebra homomorphism Φ obtained from the
universal property of TV can then be described as the linear extension of

x1 ⊗ x2 ⊗ · · · ⊗ xn 7→ φ(x1)φ(x2) · · ·φ(xn) (A.6)

for xi ∈ V .
Specializing to algebras we can consider the tensor algebra TA over an algebra

A. There is then a canonical ideal JA in TA which is the kernel of the natural
surjective algebra homomorphism TA→ A obtained by the universal property
of TA applied to the identity A→ A.

For a complete locally convex vector space V with topology defined by a
family of seminorms {pi} the tensor algebra TV becomes an m-algebra under
completed projective tensor products

TV = V + V ⊗̂2 + V ⊗̂3 + · · · (A.7)

with respect to the family of seminorms

p̂i = pi + p⊗̂2
i + p⊗̂3

i + · · · (A.8)

The canonical inclusion ρ : V → TV is continuous and for a continuous linear
map V → E into an m-algebra E the resulting map, (A.6), obtained by the
universal property will be continuous.

In the case of an m-algebra A, the resulting canonical ideal JA is also an
m-algebra with the induced topology from TA.
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