
An Optical Flow based Method for the
Segmentation of Image Sequences

Espen Johansen Velsvik

Master of Science in Physics and Mathematics

Supervisor: Markus Grasmair, IMF
Co-supervisor: Sondre Andreas Engebråten, Forsvarets Forskningsinstitutt

Department of Mathematical Sciences

Submission date: January 2017

Norwegian University of Science and Technology

i

Abstract

The segmentation of motion in an image sequence is an important
task in many computer vision applications. This thesis presents the
theory and numerical algorithm for the detection of object boundaries
of moving objects in an image sequence, using optical flow to estimate
movement and active contours to locate flow boundaries. Three different
methods for regularizing optical flow are presented and analyzed based
on the application of this flow field in a segmentation framework. This
active contours framework is formulated as the computation of geodesic
curves in a Riemannian space defined by the gradients of the optical
flow field. We will use a level set function to describe and evolve these
contours, effectively incorporating structural information of the flow
field in the level sets of this function. A Mumford-Shah segmentation
is used to extract this information from the flow field. The boundary
of this segmentation is represented by a cubic B-spline. This leads to
a combined evolution of the level set function and the B-spline curve.
The performance of the algorithm is validated on two real-world data
sets, provided by the Norwegian Defence Research Establishment (FFI).

iii

Samandrag

Rørslesegmentering i ein biletesekvens er ei viktig oppgåve i mange
applikasjonar innan maskinsyn. Denne avhandlinga presenterer teorien
og den numeriske framgangsmåten for å detektere omrisset av objekt i
rørsle i ein biletesekvens. Dette vert gjort ved å bruke optisk flyt for å es-
timere rørsle og aktive konturar for å lokalisere flytgrenser. Vi vil saman-
likne tre regulariseringsmåtar for flytestimering basert på bruken av
dette flytfeltet i eit segmenteringsrammeverk. Segmenteringsoppgåva
er formulert som ei lengdeminimering i eit Riemannsk rom, definert
av gradientane til det optiske flytfeltet. For å beskrive utviklinga av
dei aktive konturane, vil vi bruke ein nivåmengde-funksjon, noko som
fører til at informasjon om strukturen til det optiske flytfeltet vert
integrert i nivåmengdene til denne funksjonen. Denne strukturinfor-
masjonen vert henta ut ved å utføre ein Mumford-Shah-segmentering
av nivåmengde-funskjonen. Segmenteringsgrensene for denne pros-
essen vert beskrivne av ein kubisk B-spline. Dette fører til ei kom-
binert utvikling av nivåmengde-funksjonen og B-spline-kurven. Den
numeriske algoritma er testa på to røynlege datasett, innsamla av
Forsvarets Forskningsinstitutt (FFI).

v Preface

Preface
This master thesis completes my studies at the Norwegian University of
Science and Technology (NTNU) in the field of applied mathematics. The
work was carried out during the spring and fall semesters of 2016 at the
Department of Mathematical Science in Trondheim, Norway.

My sincere gratitude and thanks goes to my supervisor, prof. Markus
Grasmair, for sharing his knowledge and taking the time for weekly discus-
sions. His contribution to this thesis has been invaluable.

I also would like to thank the Norwegian Defence Research Establish-
ment (FFI), for providing me with datasets for the thesis. In particular,
thanks is due to my contacts, Sondre Andreas Engebråten and Trym Vegard
Haavardsholm.

For her moral support, patience and continuous optimism, I thank my
significant other, Jorid.

Espen Johansen Velsvik
Trondheim, January 2017

vii Contents

Contents
List of Figures ixix

List of Abbreviations xixi

1 Introduction 11
1.1 Optical flow . 11
1.2 Motion segmentation . 22
1.3 Thesis outline . 33

2 Segmentation of optical flow 55
2.1 The optical flow equation . 55
2.2 Segmentation . 77

3 Motion detection by optical flow 1111
3.1 Variational optical flow . 1111
3.2 The data term . 1212
3.3 The smoothness term . 1616
3.4 Optical flow summary . 2222

4 Active contours 2525
4.1 Energy based active contours 2525
4.2 Level set formulation . 3030

5 A modified Mumford-Shah segmentation 3535
5.1 Segmenting the level set function 3535
5.2 Using splines for representing the segmentation boundary . . 3939

6 Implementation 4343
6.1 Solving the optical flow system 4343
6.2 Solving the segmentation system 4545
6.3 The Python implementation 5656

7 Numerical results and discussion 5757
7.1 Optical flow results . 5757
7.2 Segmentation results for the Hamburg taxi sequence 6363

8 Segmentation results using real-world data 6767
8.1 Segmenting concave regions 6868
8.2 Segmenting multiple objects 7272
8.3 Tracking movement . 7878
8.4 Tracking movement with a moving camera 7979
8.5 General discussion and future work 8585

Contents viii

9 Conclusion 9191

Appendices 9393

Appendix A The Euler-Lagrange equation 9595

Appendix B The elements of the circulant matrix 9797

Appendix C Shape analysis and statistical shape priors 101101
C.1 Shape representation . 101101
C.2 Bayesian active contours . 104104

Appendix D Python code 109109
D.1 Optical flow code . 109109
D.2 Spline curve evolution . 118118
D.3 Level set function evolution 128128

Bibliography 131131

ix List of Figures

List of Figures
2.1 Flow estimation example . 55
2.2 The aperture problem . 66
2.3 Segmentation example . 88

3.1 Geometric reasoning for normalization 1414

4.1 Example of vanishing boundaries 3333

6.1 Series of B-splines. 4949
6.2 The four basis functions . 5050
6.3 Types of self-intersections . 5555

7.1 The colorwheel. 5858
7.2 Frame 10 and 11 of the Hamburg Taxi sequence. 5858
7.3 HS regularized optical flow from the HT sequence. 5959
7.4 ID regularized optical flow from the HT sequence. 6060
7.5 FD regularized optical flow from the HT sequence. 6161
7.6 Contour plot of edge detector function for HS, ID and FD regu-

larization. 6262
7.7 Segmenting the black car of the HT sequence. 6464
7.8 The effect of the balloon force . 6565
7.9 Self-intersection and curve splitting for the HT sequence 6666

8.1 Images from the DFM sequence 6767
8.2 Images from the WMFR sequence 6767
8.3 Images from the WMFL sequence 6868
8.4 Images from WMFR sequence and FD regularized flow field . . . 6969
8.5 Segmentation of concave regions in WMFR sequence 7070
8.6 Segmentation using HS regularized flow field and level set ini-

tialization . 7373
8.7 Segmenting HS flow field using larger time step and fewer itera-

tions. 7373
8.8 Images from WMFL sequence with FD regularized flow field . . 7474
8.9 Segmentation of multiple objects in WMFL sequence with auto-

matic splitting . 7575
8.10 Segmented regions from WMFL image 7676
8.11 Unstable level set evolution . 7777
8.12 Plot of integral of norms of level set gradient H(ϕ) as a function

of time τ . 7777
8.13 The effect of using higher edge detector sensitivity 7878
8.14 Images in tracking sequence and initial segmentation 7979
8.15 Tracking movement with a stationary camera 8080

List of Figures x

8.16 First and last image of unmanned aerial vehicle (UAV) tracking
sequence and initial segmentaiton 8181

8.17 Tracking movement with a moving camera 8282
8.18 Tracking movement with a moving camera using two combined

evolution iterations . 8383
8.19 Comparing single combined evolution, double combined evolu-

tion and double combined evolution using GMRES 8484

xi List of Abbreviations

List of Abbreviations
AC active contours

BCA brightness constancy assumption

CCTV closed-circuit television

DFM Drone flying over man

FD flow driven

GCA gradient constancy assumption

HS Horn and Schunck

ID image driven

MS Mumford-Shah

OF optical flow

PDE partial differential equation

TV total variation

UAV unmanned aerial vehicle

WMF Walking man in forest

WMFL Walking man in forest - Left

WMFR Walking man in forest - Right

1 Introduction

1 Introduction
The relative motion of objects is important in how we perceive the world.
Humans are naturally good at registering movement and at inferring aspects
from this movement. From the movement of a car, a person would be able
to reason from what direction it came, and where it is headed. Motion
is also an essential element of social interaction, and actions like waving,
nodding and bowing all have different social interpretation. We are also
able to distinguish between motion patterns, say for example when meeting
another car while driving. Due to the car’s movement, the scenery looks
like it is moving, but one can still see the movement of the other car, which
exhibits a different motion pattern than the background. This ability of
distinguishing between moving objects is called motion segmentation.

The segmentation of motion is a key feature in many applications and
is an important step in various computer vision tasks such as action recog-
nition, movement tracking and motion scene analysis. An example of such
an application is the use of motion segmentation in surveillance. Surveil-
lance cameras can be stationary cameras like the CCTV cameras found in
most public areas, or they could be moving cameras, for instance a camera
mounted to a flying drone, also called an UAV. Motion segmentation is used
to detect moving objects in the surveillance video, and also to track the
movement of these objects.

1.1 Optical flow
The process of motion segmentation involves both the detection of apparent
motion, and the localization and representation of the boundaries of this
motion. One way of detecting motion in an image is to look at the movement
of each point from one frame to the next, and try to map the position of each
point in the first frame to a position in the next frame by some translation.
For each point, this mapping results in a vector that yields the movement of
this point. This vector field is called the optical flow.

Let Ω ∈ R2 be the image plane, and let f (x, t) ∈ R be the brightness
pattern or grayscale value of some image sequence at x ∈Ω and some time
t ∈ [0,T]. The optical flow w(x, t) ∈ R2 yields the relative velocity at position
x ∈Ω and time t ∈ [0,T]. This vector field is found by looking at the change
in brightness between consecutive frames in the image sequence. More
precisely, one makes the assumption that a moving object has a constant
brightness along its trajectory. This assumption was first introduced by
Horn and Schunck, and it is most often referred to as the brightness constancy
assumption (BCA). In the example of the moving car, this assumption says
that the car does not change its appearance when it moves. Using the BCA
one can derive an equation that must hold for the optical flow field. This

Motion segmentation 2

equation is called the optical flow equation and will be derived in section 2.12.1.
The optical flow equation is known to be ill-posed, and does not admit

a unique solution. Solving this equation requires the use of regularization
in the form of an added smoothness constraint. This constraint, called
the spatial coherence assumption, states that points on the same object can
not move independently. One would like the vector field to be smooth
within objects, with discontinuities only occurring along the edges of regions
exhibiting different motion patterns. For the moving car, this assumption
imposes the constraint that the different parts of the car have to move in
approximately the same direction.

1.2 Motion segmentation
The optical flow field provides a velocity field at every point in the image
plane Ω, but does not yield an explicit description of the moving regions
in the image. This is the aim of the motion segmentation process. More
accurately, one tries to divide the image into parts that describe moving
objects. This problem amounts to correctly localizing the boundaries of the
moving objects in the image scene, which will correspond to discontinuities
in the optical flow field.

This thesis presents a geodesic active contours (AC) approach to segmen-
tation. The theory of geodesic active contours is due to Caselles et al. [77],
and is based on the classical method of snakes, first introduced by Kass et
al. [1515] in an image segmentation framework. The method aims to deform a
closed curve C, a contour, to lock onto boundaries in the image f . The idea
is to associate an energy with the closed curve, and use this energy to guide
the search for image edges. These image edges can be identified by using a
so called edge detector g, a function which intention is to stop the evolution
of the curve at these edges. The geodesic framework reformulates this energy
based active contours model as a search for a curve of minimal length in
a Riemannian space whose metric is defined by the edge detector g. Now,
the segmentation of motion is not so much concerned with finding image
edges, but flow edges. Thus, we propose to use an edge detector for flow
edges instead of image edges. This changes the metric of the Riemannian
space from being defined by the content of one single image to being defined
by the content of two consecutive images in an image sequence, and in
particular the gradients of each component in the optical flow field.

For representing these active contours a level set function will be used.
The level set method was developed in the late 1980s by Osher and Sethian
[2424], and has been a widely used representation for closed curves in image
processing. The method assumes that the active contours can be described by
the level sets of a function ϕ. This representation is convenient as it allows
for intrinsic geometric properties of the contour to be easily determined. In
addition, the function representation facilitates the use of simple methods
for numerical approximation [2828, p. 13]. As proposed by Fusch et al. [1212],

3

a Mumford-Shah (MS) type segmentation will be employed to make use
of information from all level sets of ϕ and not just the level set describing
the active contour. The curve describing the segmentation boundary of this
process is parametrized by using a periodic cubic B-spline, leading to a
combined evolution of the level set function and the spline curve.

1.3 Thesis outline
The framework in this paper can be divided into two parts, the optical flow
estimation and the active contours segmentation. Chapter 22 presents an
outline of these two frameworks in order to introduce concepts that will
be relevant in the further analysis. Chapter 33 gives a detailed description
of optical flow estimation by variational methods. The chapter starts out
with a presentation of alternative assumptions for the optical flow equation
along with remedies for increasing the robustness of the model in section 3.23.2.
In section 3.33.3 we show three different methods of regularization, namely
the classical method of Horn and Schunck (HS) [1313], the anisotropic image
driven (ID) regularization of Nagel and Enkelmann [2222] and the flow driven
(FD) regularization of Shulman and Herve [2929].

The active contours segmentation is presented in chapter 44. Section
4.14.1 describes the classical method of snakes, which was the first model
for energy based active contours. The section continues by showing an
alternative way of expressing the snake model by formulating the active
contours segmentation as a problem of finding geodesics in a Riemannian
space. The details of the level set method is shown in section 4.24.2 along
with the evolution of the level sets of ϕ given by the gradient flow. Chapter
55 presents a modified Mumford-Shah functional to segment the level set
function along with the details regarding the B-spline formulation of the
segmentation boundary.

In chapter 66 we show some of the numerical details and implemented
features. In particular, we present a splitting algorithm used to handle
self-intersections in the evolving curve. The results are shown in chapters 77
and 88. Chapter 77 starts by comparing the results from the three different
regularization methods for optical flow. Then follows a demonstration of
the combined algorithm for segmenting flow fields. Real-world examples
are presented in chapter 88, showing the performance of the segmentation
algorithm for data sets provided by the Norwegian Defence Research Estab-
lishment.

5 Segmentation of optical flow

2 Segmentation of optical flow
We will start our treatment of optical flow segmentation by providing the
reader with an outline of the main topics in this thesis, namely optical flow
estimation and segmentation.

2.1 The optical flow equation
The optical flow (OF), or optic flow, is a flow field that describes apparent
motion in an image scene. This apparent motion may be the result of actual
motion between the observer and some objects. An example of such a
flow field is shown in figure 2.12.1, with the flow field of three moving cars.
Alternatively the apparent motion may be induced by illumination changes
in the image. Conversely, motion need not result in an optical flow. Consider
rotating a uniform sphere around its center. If the surface of the sphere is
uniform, both in color and shape, this rotation is not observable.

These examples illustrate that there need not be a relation between the
optical flow and the motion of objects. To be able to associate the optical
flow with motion, one must first assume that motion always corresponds to
a visible optical flow. Additionally, one needs to assume that there are no
illumination changes in the image scene. This assumption is artificial and is
often violated in real life. Nevertheless, we will assume this in able to make
the connection between optical flow and the motion of objects.

To estimate the optical flow from an image sequence we need to make
some assumptions about how objects appear when they move through an
image scene. The optical flow pioneers Horn and Schunck introduced what

(a) Some image scene (b) Example of estimated optical flow

Figure 2.1: The left image shows one image in the Hamburg taxi sequence. The
right image shows an example of some optical flow estimation. The colorwheel
indicates the direction of the movement.

The optical flow equation 6

Figure 2.2: Illustration of the aperture problem. Moving the gray rectangle
in the direction of any of the two red arrows both give the movement shown
by the green arrow if seen through the green circled aperture.

is known as the brightness constancy assumption. This assumption says that
objects moving in an image scene will have a constant brightness pattern
along their trajectory. Let f (x, t) be the brightness, or image intensity, at
position x ∈Ω and time t, where Ω is a rectangular image domain. Consider
an object moving along the trajectory r(t) such that

dr
dt

= w

along the trajectory of this motion, where w = (u,v) is called the optical flow.
By assuming a constant brightness along this trajectory, we are essentially
imposing the constraint

d
dt
f (r, t) = 0, (2.1)

which, by using the chain rule of differentiation, gives

∇f Tw+ ft = 0. (2.2)

We call this the optical flow equation. Since the flow consists of two com-
ponents, this equation is not sufficient to determine the flow, but only the
component of the flow in the direction of the gradient, or what is known as
the normal flow. This is called the aperture problem and it is illustrated in
figure 2.22.2. One way of solving this problem is to introduce an additional
constraint. This constraint is called the spatial coherence assumption, and it
says that points within objects can not move independently. This assumption
is explained in detail in chapter 33.

For now we denote

ΥBCA(w) = ∇f Tw+ ft ,

and let M(w) ≥ 0 be a term so that the solution to

M(w) = 0

7

is also the solution to

ΥBCA(w) = 0.

Also, we let V (∇u,∇v) ≥ 0 be a function that penalizes the constraint from
the spatial coherence assumption, so that the solution to

V (∇u,∇v) = 0,

gives a flow field satisfying this assumption. One way to look at M(w) and
V (∇u,∇v) is to consider them as functions measuring the error in the BCA
and the smoothness constrain. As Horn and Schunck [1313] argued, one can
not expect these to be identically zero simultaneously. We define the total
error as the global energy function

EOF(u,v) =
∫
Ω
M(u,v) +

1
ξ2V (∇u,∇v)dx1 dx2, (2.3)

using a parameter ξ > 0 to determine the strength of the regularization. To
simultaneously minimize M(u,v) and V (∇u,∇v) one wants to find the mini-
mum of the energy functional EOF(u,v), solving the optimization problem

minimize
u,v

EOF(u,v) . (2.4)

This can be done by using results from variational calculus, and the details
are shown in chapter 33. Now we turn our focus to the segmentation of a flow
field that solves (2.42.4).

2.2 Segmentation
By segmentation we mean the task of partitioning an image into regions with
some common characteristic. Given an image sequence, the objective is to di-
vide the image into regions with movement and regions without movement.
The segmented regions can be described by either a set of closed curves,
or the pixels enclosed by these curves, where the former representation is
used in the proposed framework. This thesis will present an energy based
approach to segmentation, where the solution to the partitioning problem is
assumed to be the minimum of some energy functional. That is, we try to
find closed curves C(t) : [0,1]→ R2 that solve the optimization problem

minimize
C

EAC(C) (2.5)

where EAC is some appropriate energy functional. The best known of these
energy based segmentation approaches is called snakes, and was developed
by Kass et al. [1515]. It is an active contours model, which means that the
curves, called snakes due to their slithering behaviour, lock onto nearby

Segmentation 8

(a) Some image scene (b) Segmented moving objects.

Figure 2.3: The left image shows one image in the Hamburg taxi sequence. The
right image shows a segmentation of the image into 4 regions, where 3 regions
describe moving objects.

edges. Chapter 44 gives an outline of this active contours model. For our
energy based framework, we will use an energy functional of the form

EAC(C) = 2

1∫
0

|C′(t)|g (C(t)) dt, (2.6)

as proposed by Caselles et al. [77], where g is some flow edge detector function
that is monotonically decreasing and such that

g(x)→ 0 as ∇u(x)→∞ or ∇v(x)→∞. (2.7)

The role of the flow edge detector is to draw the curve C towards the flow
edges, leading to the behaviour described for the active contours model.

Let now J and O denote the interior and exterior of the curve C respec-
tively. To describe the curve C, we will use a level set function ϕ : R2→ R
so that

ϕ(x, τ) < 0 for x ∈ J (2.8)

ϕ(x, τ) > 0 for x ∈ O (2.9)

ϕ(x, τ) = 0 for x on C. (2.10)

This level set encoding is illustrated in figure 2.32.3 for hand drawn segmen-
tation boundaries. Our aim is to evolve this level set function from some
starting point ϕ0, guided by the energy functional (2.62.6), so that the zero
level set describes the edges of the flow w that solves problem (2.42.4).

In the optical flow based segmentation process we first compute a flow
field w by solving (2.42.4), and then solve (2.52.5) to segment the flow field. Since
the role of the flow edge detector is to detect flow edges, it is important
for the segmentation process that the optical flow estimation returns a flow

9

field with edges that g can actually detect. Thus, the performance of the
segmentation algorithm will depend heavily on the quality of the flow field.
Also, since the goal of the segmentation is to describe the boundaries of the
moving objects, the estimated optical flow should give a good description of
these objects. This means that the flow boundaries must be well localized.

11 Motion detection by optical flow

3 Motion detection by optical flow
This chapter presents the theory behind the method used for optical flow
estimation. Most of the theory presented is due to the pioneers Horn and
Schunck [1313], which made significant contributions to the field of variational
optical flow. The first part of the chapter will give a derivation of the
variational formulation of the optical flow problem, starting at the optical
flow equation.

3.1 Variational optical flow
Let f0(x, t) be some image where x = (x1,x2) ∈Ω for some rectangular image
plane Ω. The theory presented here will require a smooth image, and so a
pre-processing step is required in able to guarantee this. This pre-processing
step consists of convolving the image with a Gaussian filter, and so we let

f (x, t) = (Kσ ∗ f0), (3.1)

where Kσ denotes a spatial Gaussian filter with standard deviation σ , so that
f ∈ C∞. The goal of the variational approach to optical flow is to find the
flow field w = (u,v) that best approximates the solution to the following set
of equations

M(w) = 0 (3.2)

V (w) = 0, (3.3)

where M(w) is called the data term and V (∇u,∇v) is called the smoothness
term. In the upcoming sections we will give a derivation of these two terms.
To find the flow field that solves both (3.23.2) and (3.33.3) we want to minimize
the energy functional

E(w) =
∫
Ω
M(w) +

1
ξ2V (∇u,∇v)dx, (3.4)

where ξ is some regularization parameter. That is, we are looking for
solutions to the optimization problem

minimize
w

E(w) .

This can be achieved by rewriting the optimization problem above as a PDE,
and then solving this PDE to find the flow field. Let F be a function with
continuous first partial derivatives. From calculus of variations we have that
if w minimizes a functional

J(w) =
"
Ω

F(x1,x2,w,wx1 ,wx2)dx1 dx2,

The data term 12

we have

Fw −
d

dx1Fwx1 −
d

dx2Fwx2 = 0 in Ω,

Fwx1 = 0 on ΓE and ΓW ,

Fwx2 = 0 on ΓN and ΓS ,

where ΓE , ΓW , ΓN and ΓS are the east, west, north and south boundaries
of our domain respectively. This is called the Euler-Lagrange equation of
variational calculus (see appendix AA). From this result it is easy to see that
the following must hold for (3.43.4):

∂wM −
1
ξ2

(
d

dx1∂wx1V +
d

dx2∂wx2V

)
= 0 in Ω,

∂wx1V = 0 on ΓE and ΓW ,

∂wx2V = 0 on ΓN and ΓS .

(3.5)

Given a data term and a smoothness term, this PDE can be solved to find
the optical flow w.

3.2 The data term
The derivation of the data term (3.23.2) is based on two assumptions, namely the
brightness constancy assumption (BCA) and the gradient constancy assumption
(GCA), where the former was used by Horn and Schunck [1313], and the latter
was introduced by Brox et al. [55]. These assumptions will lead to constraints
in the form of equations

ΥBCA(w) = 0, (3.6)

ΥGCA(w) = 0, (3.7)

that can be combined to form one data term M(w) by some method of
penalization. The following subsections presents these assumptions.

3.2.1 The brightness constancy assumption
The most fundamental assumption for the construction of the data term
(3.23.2) is the the brightness constancy assumption introduced in section 2.12.1.
Remember that

ΥBCA(w) = ∇f Tw+ ft ,

and that this assumption resulted in the constraint

ΥBCA(w) = 0.

13

As mentioned in section 2.12.1, the system is ill-posed, and trying to solve (3.63.6)
results is an under-determined system (the flow has two components). How-
ever, it does allow us to compute the normal component of the flow in the
direction of the gradient ∇f , the normal flow. To obtain a fully determined
system we need to impose some smoothness constraint. This constraint
comes from the spatial coherence assumption, which is described in detail in
section 3.33.3. These two constraints result in a system with a unique solution,
but to make the model more robust against additive illumination changes in
the image scene, Brox et al. [55] suggested to include an additional constraint
on the gradients of the image along the trajectory. This constraint comes
from the gradient constancy assumption.

3.2.2 The gradient constancy assumption
In the model so far we have assumed that the illumination is the same for
the whole scene, but this assumption is very likely to be violated. Thus, to
make the model more robust against additive illumination changes in the
image scene Brox et al. [55] proposed to include a constraint regarding the
gradients of the brightness. The assumption is called the gradient constancy
assumption (GCA), and it says that gradients remain constant under their
displacement, that is

d
dt
∇f (r(t), t) = 0, (3.8)

which gives

∇f Tx1w+ fx1t = 0 and ∇f Tx2w+ fx1t = 0. (3.9)

We will combine these two into one term ΥGCA(w) by defining

Υx1(w) = ∇f Tx1w+ fx1t and Υx2(w) = ∇f Tx2w+ fx2t , (3.10)

and letting

ΥGCA(w)2 = Υx1(w)2 +Υx2(w)2. (3.11)

The solution to

ΥGCA(w) = 0,

is given by the flow field w that satisfies (3.93.9).

3.2.3 Robust penalization of the data term
We now want to construct a data term which aims to penalize high values of
the constraint terms ΥBCA and ΥGCA, but first we make some enhancements
to make the model more robust.

The data term 14

Figure 3.1: Geometric interpretation of the line of reasoning for normaliza-
tion.

Zimmer et al. [3535] argued that what one actually wants to minimize is the
distance between the flow vector w and the nearest solution to equation (3.63.6)
coming from the BCA. This distance is denoted as d, and it is the shortest
distance from w and the line defined by ∇f Tw + ft = 0. This is shown in
figure 3.13.1. The distance d is given by

d =
∇f Tw+ ft
|∇f |

,

if |∇f |6= 0, which gives

ΥBCA(w) = |∇f |d. (3.12)

In [3535] the authors reported that normalizing the data term can be beneficial,
and suggested that one should ideally use d2 to penalize the constraint
coming from the BCA, which is weighted by the square of the image gradient
in the expression for Υ2

BCA, as seen in (3.123.12). We define the normalized
constraint as

ῩBCA = θBCA(∇f Tw+ ft) ≈ d, (3.13)

where the normalisation factor θBCA is defined as

θBCA =
1√

|∇f |2+ζ2
.

The regularization parameter ζ > 0 avoids division by zero and simultane-
ously reduces the effect of small gradients. This normalization prevents an
undesirable overweighting of the BCA-constraint in areas where the image
gradient is large [3535].

The geometric reasoning above can also be applied to the GCA, and thus
we define the normalized GCA-constraints as

Ῡx1(w) = θx1(∇f Tx1w+ fx1t) and Ῡx2(w) = θx2(∇f Tx2w+ fx2t), (3.14)

15

where

θx1 =
1√

|∇fx1 |2+ζ2
and θx2 =

1√
∇fx2 |2+ζ2

.

Then we define

ῩGCA(w)2 = Ῡx1(w)2 + Ῡx2(w)2, (3.15)

and write the normalized version of (3.73.7) as

ῩGCA(w) = 0. (3.16)

We now want to create a data term M(w) that penalizes high values of
ῩBCA and ῩGCA, starting with a joint penalization of the two terms. Denote

Ῡ(w)2 = ῩBCA(w)2 +γOFῩGCA(w)2, (3.17)

where γOF > 0 controls the contribution of the GCA part of the data term.
Let Ψ(h2) be a function that penalizes high values of h2. By setting the data
term to be

M(w) = Ψ
(
Ῡ(w)2

)
, (3.18)

we jointly penalize the BCA and the GCA. The contribution to the Euler-
Lagrange system (3.53.5) is

∂wM = 2Ψ′
(
Ῡ2

)(
ῩBCA∂wῩBCA +γOFῩGCA∂wῩGCA

)
,

where

∂wῩBCA =
∇f√
|∇f |+ζ2

, (3.19)

∂wῩGCA =
1

ῩGCA

Ῡx1
∇fx1√
|∇fx1 |+ζ2

+ Ῡx2
∇fx2√
|∇fx2 |+ζ2

 . (3.20)

Thus the contribution to the system is seen to be

∂wM = 2Ψ′
(
Ῡ2

)(
ῩBCA∇f +γOF

(
Ῡx1∇fx1 + Ῡx2∇fx2

))
, (3.21)

where we simplify the notation by defining

∇f =
∇f√
|∇f |+ζ2

, ∇fx1 =
∇fx1√
|∇fx1 |+ζ2

, ∇fx2 =
∇fx2√
|∇fx2 |+ζ2

. (3.22)

When the brightness constancy assumption was first introduced, Horn
and Schunck used a quadratic penalization of ΥBCA,

Ψ(h2) = h2,

The smoothness term 16

which is equivalent to a least-squares minimization. This penalization
reduces (3.213.21) to

∂wM = 2ῩBCA∇f + 2γOF
(
Ῡx1∇fx1 + Ῡx2∇fx2

)
,

which is the same as

∂wM = 2
∇f Tw+ ft
|∇f |2+ζ2 + 2γOF

∇f Tx1w+ ft
|∇fx1 |2+ζ2 +

∇f T
x2w+ ft

|∇fx2 |2+ζ2

 . (3.23)

Other methods of penalization have been proposed. Black and Anandan
[44] proposed several subquadratic penalizer functions, arguing that a sub-
quadratic penalizer would improve the robustness in the presence of outliers.
Still, due to its simplicity and satisfactory results, we will only use quadratic
penalizations of the data term in this thesis.

By using two assumptions, the BCA and the GCA, we have derived two
constraints for our optical flow model, and combined them in one constraint
term called the data term. In the earliest framework for variational optical
flow, proposed by Horn and Schunck, the data term only included the BCA.
As we noted in section 2.12.1 the BCA does not admit a unique solution. To ob-
tain a unique solution Horn and Schunck suggested imposing a smoothness
constraint on the flow.

3.3 The smoothness term
As a reminder we state the energy functional for optical flow given in section
3.13.1,

E(w) =
∫
Ω
M(w) +

1
ξ2V (∇u,∇v)dx,

where M(w) denotes the data term derived in the previous section, and
V (∇u,∇v) is a smoothness term to be derived in this section. As noted
previously, the optical flow equation does not admit a unique solution using
only the BCA. To get uniqueness of solutions a common approach is to
incorporate a smoothness constraint in the model, an idea introduced by
Horn and Schunck [1313]. This smoothness constraint, also called the spatial
coherence assumption [44], says that points can not move independently in
the brightness pattern. There has to be some smoothness in the flow vector
for points belonging to the same object. In other words, points on the
same object move with approximately the same velocity. A natural way of
obtaining a smoother solution would be to minimize some term depending
on the sizes of the gradients ∇u and ∇v. The penalization of these terms will
be either quadratic or subquadratic, and it will be instructive to write the

17

Euler-Lagrange system in the form

∂uM(w)− 1
ξ2 div(Θu∇u) = 0,

∂vM(w)− 1
ξ2 div(Θv∇v) = 0,

(3.24)

where the data term contribution is given by equation (3.213.21). The matrices
Θu = Θu(x1,x2,∇u,∇v) and Θv = Θv(x1,x2,∇u,∇v) will be called the diffu-
sion matrices, as they control the direction and strength of the diffusion
process; their eigenvectors and eigenvalues determine the direction and
strength respectively. We will start by looking at the simplest smoothness
term, namely the isotropic smoothing of Horn and Schunck.

3.3.1 Isotropic smoothing
The smoothness term used by Horn and Schunck is

V (∇u,∇u) = |∇u|2+|∇v|2.

This is a homogeneous regularizer which means that it applies an equal
amount of diffusion in all directions. In the framework of (3.243.24), this is
equivalent to the diffusion matrices Θu and Θv being the identity matrix.
Using this function as a flow regularizer gives

∂wx1V = 2wx1 ,

∂wx2V = 2wx2 .

In their original paper Horn and Schunck used a quadratic penalization
of the data term without normalization and with no gradient constancy
constraint (γOF = 0). This results in the system

(fx1u + fx2v + ft)fx1 −
1
ξ2

(
d

dx1ux1 +
d

dx2ux2

)
= 0 in Ω,

(fx1u + fx2v + ft)fx2 −
1
ξ2

(
d

dx1 vx1 +
d

dx2 vx2

)
= 0 in Ω,

wx1 = 0 on ΓE and ΓW ,
wx2 = 0 on ΓN and ΓS ,

(3.25)

which can be seen as a system of coupled linear elliptic equations with
Neumann boundary conditions:

− 1
ξ2∆u + f 2

x1u = −(F(v) + ftfx1),

− 1
ξ2∆v + f 2

x2v = −(F(u) + ftfx2),

The smoothness term 18

where F(q) = fx1fx2q.
This smoothness term smooths the flow in all directions, which is not

always desirable as this may blur out important flow edges. We want to
keep the flow field discontinuous at the optical flow boundaries. These
flow boundaries are not known a priori, but one might expect them to
coincide with the image edges. This is the reasoning behind the anisotropic
smoothness term of Nagel and Enkelmann [2222].

3.3.2 Anisotropic image driven smoothing
As one of the assumptions to the optical flow model is that different objects
have different brightness patterns, one would expect that flow boundaries
are contained in image edges. Thus, an amendment to the issue of blurry
flow edges is to construct a smoothness term which takes the gradients of the
image into account, and smooths the flow field along image edges instead of
across them. Such methods are called image driven regularization methods.
To that end, consider the 2× 2 structure matrix

Sρ = Kρ ∗
[
∇f ∇f T

]
, (3.26)

where Kρ is a spatial Gaussian with standard deviation ρ, and denote its
eigenvectors as s1 and s2. These eigenvectors point across and along image
structures respectively [3535]. For ρ = 0 these vectors correspond to the unit
vectors

s0
1 =

1
|∇f |

[
fx1

fx2

]
, s0

2 =
1
|∇f |

[
−fx2

fx1

]
. (3.27)

The anisotropic regularizer of Nagel and Enkelmann [2222] performs smooth-
ing in the direction given by s2, that is, along image structures, and prevents
smoothing across image structures. Given a vector z ∈ R2 with an orthogonal
vector z⊥ of same length, let P (z) be a 2× 2 regularized projection matrix
defined as

P (z) =
1

|z|2+2κ2 (z⊥(z⊥)T +κ2I),

where κ > 0 is a regularization parameter. For κ = 0 (and |z|) the matrix
multiplication P (z)q projects the vector q in the direction given by z⊥. To
prevent numerical issues in the cases where |z| ≈ 0, we will use a small
regularization. The smoothness term of Nagel and Enkelmann is given as

V (∇u,∇v) = ∇uT P (∇f)∇u +∇vT P (∇f)∇v

=
(f 2
x1 +κ2)(ux1)2 − 2fx1fx2ux1ux2 + (f 2

x2 +κ2)ux2

|∇f |2+2κ2

+
(f 2
x1 +κ2)(vx1)2 − 2fx1fx2vx1vx2 + (f 2

x2 +κ2)vx2

|∇f |2+2κ2 .

19

Now we define the following directional derivatives

us1
= sT1 ∇u =

fx1ux1 + fx2ux2

|∇f |
, vs1

= sT1 ∇v =
fx1vx1 + fx2vx2

|∇f |
, (3.28)

us2
= sT2 ∇u =

−fx2ux1 + fx1ux2

|∇f |
, vs2

= sT2 ∇v =
−fx2vx1 + fx1vx2

|∇f |
. (3.29)

Using this notation we can write the smoothness term of Nagel and Enkel-
mann as

V (∇u,∇v) =
|∇f |u2

s2
+κ2

(
u2
s1

+u2
s2

)
|∇f |2+2κ2 +

|∇f |v2
s2

+κ2
(
v2
s1

+ v2
s2

)
|∇f |2+2κ2

=
κ2

|∇f |2+2κ2

(
u2
s1

+ v2
s1

)
+
|∇f |2+κ2

|∇f |2+2κ2

(
u2
s2

+ v2
s2

)
.

If κ is small, setting Θu = Θv = P in (3.243.24) steers the diffusion so that flow
vectors are smoothed along image edges and not across them. This leads to
the following Euler-Lagrange system:

∂M
∂u
− 1
ξ2 div(P∇u) = 0,

∂M
∂v
− 1
ξ2 div(P∇v) = 0,

or equivalently

∂M
∂u
− 2
ξ2

 d

dx1

(f 2
x2 +κ2)ux1 − fx1fx2ux2

|∇f |2+2κ2 +
d

dx2

−fx1fx2ux1 + (f 2
x1 +κ2)ux2

|∇f |2+2κ2

 = 0,

∂M
∂v
− 2
ξ2

 d

dx1

(f 2
x2 +κ2)vx1 − fx1fx2vx2

|∇f |2+2κ2 +
d

dx2

−fx1fx2vx1 + (f 2
x1 +κ2)vx2

|∇f |2+2κ2

 = 0.

As this diffusion matrix uses structural information of the image to steer
the diffusion, the resulting flow field may induce flow discontinuities at
image edges that does not coincide with flow edges. An amendment to this
oversegmentation is to make the diffusion matrix depend on the flow edges,
and not the image edges; a flow driven approach.

3.3.3 Isotropic flow driven smoothing
As mentioned in the previous subsection, a drawback of the image driven
approach to regularization is that there is often a great deal of oversegmen-
tation, since image boundaries are not necessarily flow boundaries. The
solution is to decrease the smoothing at flow boundaries, which leads to a
so called flow driven approach. An obvious problem here is that the flow
boundaries are not known a priori. The flow boundaries are located in

The smoothness term 20

regions where the values of the flow derivatives are high, and so the aim
is to reduce smoothing in these regions. This can be done by the use of a
subquadratic penalization of the flow gradients. Shulman and Herve [2929]
suggested using a subquadratic penalizer instead of a quadratic one. They ar-
gued that a quadratic penalizer assumes a Gaussian distribution of the flow
gradients which would penalize large gradients, assumed to correspond to
flow boundaries, too much. The flow driven smoothness term can be written
as

V (∇u,∇v) = ψV
(
|∇u|2+|∇v|2

)
,

where ψV (h2) is some subquadratic penalizing function performing a nonlin-
ear isotropic diffusion, reducing the diffusion at flow boundaries by means
of the decreasing diffusivity ψ′ . The contribution to (3.53.5) is

div
([
∂ux1V ,∂ux2V

])
.

Computing the individual components, we get

∂ux1V = 2ψ′V
(
|∇u|2+|∇v|2

)
ux1

∂ux2V = 2ψ′V
(
|∇u|2+|∇v|2

)
ux2 ,

and similarly for (∂vx1V ,∂vx2V). Thus the diffusion matrices of (3.243.24) is
given as

Θu = Θv = 2ψ′V
(
|∇u|2+|∇v|2

)
I,

where I is the identity matrix. The diffusion matrix is now seen to be a
function of the flow gradients, and the strength of the diffusion will depend
on the sizes of the gradients.

As a convex penalizer, Cohen [1010] suggested the following total variation
(TV) regularizer:

ψV (h2) =
√
h2 + ε2

OF , (3.30)

with εOF > 0 being a small regularization parameter. The TV regularizer
essentially minimizes the L1-norm of the gradient of the flow, which has
shown to give good results for image denoising [2525]. In addition to being
more robust to outliers compared to the minimization of the L2-norm, the
total variation allows for sharp edges and discontinuities in the flow [1010].
The diffusivity is

ψ′V (h2) =
1

2
√
h2 + ε2

OF

.

21

This penalizer function results in the Euler-Lagrange system

∂uM −
1
ξ2

 ∂

∂x1

 ux1√
|∇u|2+|∇v|2+ε2

OF

+
∂

∂x2

 ux2√
|∇u|2+|∇v|2+ε2

OF

 = 0,

∂vM −
1
ξ2

 ∂

∂x1

 vx1√
|∇u|2+|∇v|2+ε2

OF

+
∂

∂x2

 vx2√
|∇u|2+|∇v|2+ε2

OF

 = 0.

(3.31)
Unlike the previous linear systems, which could be solved directly, this
system is nonlinear and must be solved by some iterative method. We
propose to do this by ussing the method of lagged diffusivity.

Themethod of lagged diffusivity
From equation (3.313.31), the lagged diffusivity fixed point iteration can be
defined as

∂uk+1M −
1
ξ2

 ∂∂x
 uk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂

∂x2

 uk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0,

∂vk+1M −
1
ξ2

 ∂∂x
 vk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂

∂x2

 vk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0,

where the flow components uk+1 and vk+1 are obtained by using the dif-
fusivity from the previous iteration. If we let the data term be penalized
quadratically, we get the system

ῩBCA

(
wk+1

)
fx1 +γOF

(
Ῡx1

(
wk+1

)
fx1x1 + Ῡx2

(
wk+1

)
fx1x2

)
− 1

2ξ2

 ∂∂x
 uk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂

∂x2

 uk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0,

ῩBCA

(
wk+1

)
fx2 +γOF

(
Ῡx1

(
wk+1

)
fx1x2 + Ῡx2

(
wk+1

)
fx2x2

)
− 1

2ξ2

 ∂∂x
 vk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂

∂x2

 vk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0,

where the bar notation is used to indicate the normalization of the data term
as seen in equation (3.223.22). The convergence of the system above has been

Optical flow summary 22

shown in [3434] provided

ψ′V (|∇uk |2+|∇vk |2) =
1

2
√
|∇uk |2+|∇vk |2+ε2

OF

is bounded. The rate of convergence is linear, with a convergence constant
depending on the upper and lower bound of ψ′V (|∇uk |2+|∇vk |2), and in par-
ticular the value of εOF ; as εOF decreases, the rate of convergence decreases.

3.4 Optical flow summary
We have now obtained the data term and the smoothness term. The data term
consists of the brightness constancy assumption and the gradient constancy
assumption. These are penalized jointly using a quadratic penalization.

We also have three different methods of regularizing optical flow. The
original isotropic smoothing of Horn and Schunck smooths the flow field an
equal amount in all directions. The system is given as

∂uM −
1
ξ2

(
d

dx1ux1 +
d

dx2ux2

)
= 0,

∂vM −
1
ξ2

(
d

dx1 vx1 +
d

dx2 vx2

)
= 0.

The anisotropic smoothing of Nagel and Enkelmann, also called image
driven smoothing, looks at the image edges and tries to smooth the field
along image edges, and not across them. The system can be written as

∂uM −
2
ξ2

 d

dx1

(f 2
x2 +κ2)ux1 − fx1fx2ux2

|∇f |2+2κ2 +
d

dx2

−fx1fx2ux1 + (f 2
x1 +κ2)ux2

|∇f |2+2κ2

 = 0,

∂vM −
2
ξ2

 d

dx1

(f 2
x2 +κ2)vx1 − fx1fx2vx2

|∇f |2+2κ2 +
d

dx2

−fx1fx2vx1 + (f 2
x1 +κ2)vx2

|∇f |2+2κ2

 = 0.

The flow driven regularization aims to reduce the smoothing at flow bound-
aries. The method performs an isotropic smoothing, but controls the
strength of the smoothing so that points close to the flow boundaries are
not smoothed out as much as other points. The flow driven regularization
results in the system

∂uM −
1
ξ2

 ∂

∂x1

 ux1√
|∇u|2+|∇v|2+ε2

OF

+
∂

∂x2

 ux2√
|∇u|2+|∇v|2+ε2

OF

 = 0,

∂vM −
1
ξ2

 ∂

∂x1

 vx1√
|∇u|2+|∇v|2+ε2

OF

+
∂

∂x2

 vx2√
|∇u|2+|∇v|2+ε2

OF

 = 0.

23

When these regularization methods were proposed, none of them used
the GCA. Thus, to compare these methods, chapter 77 presents the results
without using the GCA (γOF = 0). In some image scenes, however, using the
GCA can lead to more favourable results. Hence, some of the segmentation
results in chapter 88 are computed from flow fields using the GCA. This will
be clarified when necessary.

25 Active contours

4 Active contours
Having found an optical flow field by using the methods of the previous
chapter, we are now concerned with detecting the contours of this flow field.
Traditionally, the methods presented in this chapter have been aimed at
finding the contours of an image. Hence, we will start by presenting the
methods in an image analysis framework. Section 4.14.1 begins by introducing
the snakes model [1515] for detecting image contours before turning to the
model of geodesic active contours. Section 4.1.24.1.2 applies these methods
of image contours to the problem of finding flow contours. Section 4.24.2
describes the level set method, which is a way of representing the contours
found by the active contours model.

4.1 Energy based active contours
This section presents the classical energy based snakes approach. Let f :
Ω→ R be a given image. The goal of the snakes approach is to detect image
boundaries of f , minimizing

E1(C) = α

1∫
0

|C′(t)|2 dt + β

1∫
0

|C′′(t)|2 dt −λ
1∫

0

|∇f (C(t))|dt

over all parametrized closed curves C(t) : [0,1]→ R2, where α, β and γ are
real positive constants. We will additionally assume that the closed curve
C is a Jordan curve parametrized in such a way that the curve is traced
clockwise. In this energy functional the first two terms serve to penalize
first and second order derivatives of the curve, and thus they control the
smoothness of the detected contours. The last term serves to attract the
curve towards the image features with high gradients. Caselles et al. [77]
derived a relation between the evolution of this energy based snakes contour
and a geometric curve evolution, using β = 0. The authors of [77] argued
that the final active contour is sufficiently smooth, which makes the second
term of the energy functional unneeded. Assuming β = 0 the curve energy
is reduced to

E1(C) = α

1∫
0

|C′(t)|2 dt −λ
1∫

0

|∇f (C(t))|dt.

Energy based active contours 26

With the above energy depending only on two parameters we can without
loss of generality set α = 1 and obtain

E1(C) =

1∫
0

|C′(t)|2 dt −λ
1∫

0

|∇f (C(t))|dt. (4.1)

In minimizing this functional we are essentially trying to globally maximize
|∇f |, while simultaneously minimizing the curvature. The maxima of |∇f |
correspond to the image edges of f . For that purpose, Caselles et al. [77] in-
troduced an edge detector function g : [0,∞)→ R+ that is strictly decreasing
and satisfies

g(r)→ 0 as r→∞. (4.2)

The ideas is to minimize g(|∇f |)2 instead of minimizing −|∇f |. Replacing
−|∇f | with g(|∇f |)2 in (4.14.1) gives

E1(C) =

1∫
0

|C′(t)|2 dt +λ

1∫
0

g(|∇f (C(t))|)2 dt (4.3)

= Eint(C) +λEext(C), (4.4)

where

Eint(C) =

1∫
0

|C′(t)|2 dt

is the internal energy of the curve C and

Eext(C) =

1∫
0

g(|∇f (C(t))|)2 dt

is the external energy.

4.1.1 The Geodesic model
The energy functional given in (4.14.1) is not intrinsic, as it depends on the
parametrization of C. This is seen by parametrizing the curve C with a new
variable q given by t = φ(q), for some function φ : [0,1]→ [0,1]. Inserting
this into (4.34.3) gives

E1(C) =

1∫
0

|C′(q)|2 1
φ′(q)

dq+λ

1∫
0

g(|∇f (C(q))|)2φ′(q)dq,

27

which clearly depends on the function φ. Thus, as proposed in [77], we define
a new functional

E2(C) =

1∫
0

|C′(t)|g(|∇f (C(t))|)dt, (4.5)

which gives

E2(C) =

1∫
0

|C′(q)|g(|∇f (C(q))|)dq,

and is seen to be intrinsic. In [22, chapter 4,p. 177-181] the authors for-
mulated a definition of equivalence for these two problems, and used this
definition to argue that the problems inf

C
E1(C) and inf

C
E2(C) are equivalent.

Comparing E2(C) with the expression for the Euclidean length of the curve
C

L =

1∫
0

|C′(t)|dt,

we see that our new energy functional is just a weighted length,

LR(C) = E2(C) =

1∫
0

√
C′TRC′ dt =

1∫
0

‖C′‖R dt, (4.6)

where we have defined the norm

‖p‖2R = pTRp.

The positive definite matrix R is given as

R(t) = λg(|∇f (C (t)|)I.

The problem of detecting image boundaries can now be formulated as the
minimization of a length in a curved space defined by the new metric:

minimize
C

1∫
0

‖C′‖R dt. (4.7)

This curve of minimal length is called a geodesic curve.

Energy based active contours 28

4.1.2 Edge detector for optical flow boundaries
Let now the vector field w(x) = (u(x),v(x)) denote the optical flow of some
image sequence. Since our aim is to detect flow boundaries rather than
image boundaries, we want to construct an edge detector that detects flow
edges. The optical flow boundaries are given by the points in the vector
field where |∇u| and |∇v| are large, thus instead of the edge detector given in
the previous section we define an edge detector g(r,q) : [0,∞)→ R+ that is
strictly decreasing in both arguments and is such that

g(r,q)→ 0 as r→∞ or q→∞, (4.8)

analogous to assumption (4.24.2) for the image edge detector. Setting

R(t) = λg (|∇u (C (t))|, |∇v (C (t))|) I, (4.9)

and solving the minimization problem of equation (4.74.7) should draw the
curve C towards flow boundaries.

4.1.3 Curve evolution
The steepest descent method will be used to solve the optimization problem
(4.74.7). We start by finding an expression for the variation of

J(C) =

1∫
0

g (|∇u (C (t))|, |∇v (C (t))|) |C′ (t)|dt,

assuming C is an immersed closed curve. To simplify the notation, the edge
detector is written as a function of x, so that g(x) = g (|∇u (x)|, |∇v (x)|), and

J(C) =

1∫
0

g(C(t))|Ct |dt, (4.10)

where Ct = C′(t). The first variation of J(C(t)) in direction η(t) is given by

δJ(C;η) =
d
dτ

∣∣∣∣∣
τ=0

J(C(t) + τη(t)),

and so

δJ(C;η) =

1∫
0

d
dτ

∣∣∣∣∣
τ=0

g(C + τη)|Ct + τηt |dt,

29

where we omit specifying the dependence on the space parameter t for C
and η. By using the product rule for differentiation we get

δJ(C;η) =

1∫
0

|Ct + τηt |τ=0
d
dτ

∣∣∣∣∣
τ=0

g(C + τη)dt

+

1∫
0

g(C + τη)τ=0
d
dτ

∣∣∣∣∣
τ=0
|Ct + τηt |dt

=

1∫
0

(∇g(C) · η)|Ct |+g(C)(T · ηt)dt, (4.11)

where T is the unit tangent vector to the curve C, defined as

T (t) =
Ct(t)
|Ct(t)|

.

Using integration by parts we obtain

1∫
0

g(C)T · ηt dt = [g(C)T · η]1
0 −

1∫
0

(g(C)T)t · η dt

= −
1∫

0

(g(C)T)t · η dt

= −
1∫

0

[∇g(C) ·CtT + g(C)Tt] · η dt

= −
1∫

0

[∇g(C) ·Ct] [T · η] + [g(C)Tt · η] dt,

where we have used the assumption that C(t) and η(t) are closed curves so
that C(0) = C(1) and η(0) = η(1). Inserting this in (4.114.11) leads to

δJ(C;η) =

1∫
0

[∇g(C) · η] |Ct |− [∇g(C) ·Ct] [T · η]− [g(C)Tt · η] dt.

Now, let s denote the arc-length ofC(t), and note thatCt = T (t)|Ct |, Tt = Ts |Ct |
and ds = |Ct |dt. By parametrizing the curve by arc-length the variation can

Level set formulation 30

be written as

δJ(C;η) =

L(C)∫
0

∇g(C(s)) · η(s)

− [∇g(C(s)) ·T (s)] [T (s) · η(s)]− g(C(s))Ts(s) · η(s)ds.

Let the signed curvature be defined as

κ = Ts ·N , (4.12)

where N is the unit inward normal assuming the curve C(t) is traced clock-
wise for increasing values of t. Then, observe that

Ts = κN and ∇g(C)− (∇g(C) ·T)T = (∇g(C) ·N)N .

We have arrived at the following expression for the variation:

δJ(C;η) =

L(C)∫
0

[(∇g(C) ·N)N − g(C)κN] · η ds. (4.13)

One might be tempted to conclude that we have found a derivative, and
consequently a gradient, for the energy functional J(C). But care must be
taken, as there is no obvious way to define a tangent space on this space
of curves (see, however, appendix CC). We can at least define the formal
gradient as

∇J(C) = (∇g(C) ·N)N − g(C)κN . (4.14)

Using the steepest descent method to evolve the curve we set

Cτ = g(w)κN − (∇g(w) ·N)N (4.15)

=ωN , (4.16)

where g(w) = g (|∇u (C (t))|, |∇v (C (t))|) and

ω = g(w)κ −∇g(w) ·N . (4.17)

4.2 Level set formulation
The previous section derived an evolution of a parametrized curve. In
this section the representation of the curve C by a parametrization will be
replaced by a level set representation. It is now assumed that the evolving
curve C(τ) can be described by a level set of some function ϕ, called the
level set function. Instead of using (4.154.15) to evolve the curve C we would
like to find an expression for the evolution of the level set function, and let

31

this expression guide the evolution of the curve. The following geometric
derivation is presented in [77], and the method was first proposed by Osher
and Sethian [2424]. We will assume that the zero level set of ϕ describes the
curve C. To this end, let the zero level set Γ of ϕ be a closed curve dividing
R2 into two regions, the interior J and the exterior O, so that

ϕ(x, τ) < 0 for x ∈ J(τ), (4.18)

ϕ(x, τ) > 0 for x ∈ O(τ), (4.19)

ϕ(x, τ) = 0 for x ∈ Γ(τ). (4.20)

The goal is to find an evolution of ϕ(τ) such that C(τ) = Γ(τ), given

Cτ =ωN .

Differentiating (4.204.20) with respect to τ gives

Γτϕ +ϕτ = 0.

From equations (4.184.18) – (4.204.20) it is seen that the gradient at Γ is pointing
outwards, that is

∇ϕ
|∇ϕ|

= −N .

Setting Γτ = Cτ =ωN gives

ϕτ =ω|∇ϕ|.

This PDE governs the time-dependent evolution of the level sets of ϕ, with
ω giving the speed in the normal direction [2828]. Inserting the expression for
ω given in (4.174.17) results in

ϕτ = (g(w)κ −∇g(w) ·N)|∇ϕ| (4.21)

= g(w)κ|∇ϕ|+∇g(w) · ∇ϕ, (4.22)

where the term g(w)κ−∇g(w) ·N is evaluated at the level sets of ϕ. From [77]
we have that the curvature is given by

κ = div
(
∇ϕ
|∇ϕ|

)
, (4.23)

so that (4.214.21) can be rewritten as

∂ϕ

∂τ
= g(w)div

(
∇ϕ
|∇ϕ|

)
|∇ϕ|+∇g(w) · ∇ϕ

= |∇ϕ|div
(
g(w)

∇ϕ
|∇ϕ|

)
.

Level set formulation 32

Caselles et al. [77] noted that the level set evolution can get stuck at unwanted
local minima, and thus argued that adding a velocity term γg(w)|∇ϕ| could
be beneficial. This term is called the balloon force, and the authors of [77]
pointed out that adding this term will increase the speed of convergence.
The curve evolution with the added motion term is given by

∂ϕ

∂τ
= |∇ϕ|div

(
g(w)

∇ϕ
|∇ϕ|

)
+γg(w)|∇ϕ|,

which is equivalent to

∂ϕ

∂τ
= |∇ϕ|g(w)(κ+γ) +∇g(w) · ∇ϕ, (4.24)

with the curvature κ given in equation (4.234.23). The existence and uniqueness
of solutions have been shown using the theory of viscosity solutions [77, 11,
1111], assuming a sufficiently regular image (or flow field in this setting) and
initial data ϕ0. The authors of [77] considered an ideal edge where g → 0.
Assuming an initial level set function ϕ0 enclosing the objects, they proved
that all level sets of this function will converge to this ideal edge with respect
to the Hausdorff distance.

Our segmentation process is now driven by the gradient flow of a level
set function. This gradient flow has two driving forces, namely the diffusion
term div

(
g(w) ∇ϕ|∇ϕ|

)
and the balloon force term γg(w)|∇ϕ|. The behaviour of

the level set evolution depends on three parameters:

• The balloon force γ ,

• The initial level set function ϕ0,

• The edge detector function g, which also includes a sensitivity param-
eter η, for controlling how sensitive the edge detector is with respect
to gradients.

Choosing appropriate values for these is not an easy task, and failing to do
so might lead to unwanted behaviour. For instance, if the edge of the optical
flow field is not strong enough or the sensitivity of the edge detector is chosen
too low, the contour might cross the edge due to numerical inaccuracies.
Also, since the balloon force results in an added velocity term, the zero
level set will eventually cross the edges. If the level set evolves from the
outer parts of the domain, the contour might cross through edges in the
outer parts of the optical flow field before the whole object is completely
segmented. This problem can be, to some extent, amended by choosing a
steep initial function φ0, however, a steep level set function is more sensitive
to noise [1212].

The behaviour discussed above is illustrated in figure 4.14.1, which shows
an attempt to segment an optical flow field estimated from the Hamburg
taxi sequence (the original image is shown in figure 2.1a2.1a). The zero level

33

Figure 4.1: The problem of a vanishing zero level set. The dark blue line
shows the zero level set, the light blue line shows the line ϕ = 2, the yellow
line shows ϕ = 4 and the red line shows ϕ = 6.

set (dark blue line) is seen to enter the black car. As a result the active
contour described as the zero level set is not able to segment the object
correctly. Nonetheless, if the zero level set passes through the edge, other
level sets of the function ϕ might give an accurate description of the wanted
segmentation boundary. This is seen from the situation at τ = 300.0 shown
in figure 4.14.1. The level set ϕ = 6 (red line) gives a good description of the
boundary of the optical flow field for the black car. Thus, in the case of
vanishing zero level sets, one may want to consider more than one level set
of ϕ in the estimation of the segmentation boundary. This is the motivation
for the next approach, namely a Mumford-Shah type segmentation of the
level set function.

35 AmodifiedMumford-Shah segmentation

5 AmodifiedMumford-Shah segmentation
The Mumford-Shah segmentation functional, proposed by Mumford and
Shah [2121] in 1989, establishes an energy that can be used to segment an
image into subregions. The original functional is given as

E(f ,C) = α
∫
Ω

(f0 − f)2 dx+
∫

Ω\C

|∇f |2 dx+ βL(C), (5.1)

where f0 is the image, C is some closed curve dividing the image domain Ω
into two parts, L(C) is the length of the curve and α and β are positive con-
stants. In the Mumford-Shah functional the first term tries to approximate
the image f0, the second term penalizes high gradients and tries to prevent
f from varying too much, while the third term penalizes long segmentation
boundaries C. When minimizing this energy the resulting function f will
be smooth inside C, with a sharp boundary at C. Versions of the functional
have been widely used for the segmentation of images, also in combination
with the active contours approach [99]. As proposed by Fuchs et al. [1212],
we will use a modified version of this functional for segmenting the active
contour driven level set function.

5.1 Segmenting the level set function
In section 4.24.2 the problem of vanishing boundaries was explained and
illustrated using an example from the Hamburg taxi sequence. But, as
figure 4.14.1 shows, the level set function can still give an estimation for the
segmentation boundaries through other level sets. Fuchs et al. [1212] remarked
that by using a Mumford-Shah type segmentation of the level set function ϕ,
one can extract information from all level sets of ϕ instead of just one. This
approach will be followed here, using a modified version of the Mumford-
Shah functional,

I(C) = α
∫

int(C)

(ϕint −ϕ)2 dx+α
∫

ext(C)

(ϕext −ϕ)2 dx+ βL(C), (5.2)

where C is some closed curve. We use int(C) and ext(C) to denote the part
of Ω lying inside and outside the curve C respectively, and

ϕint =
1
Aint

∫
int(C)

ϕdx ϕext =
1
Aext

∫
ext(C)

ϕdx. (5.3)

The areas Aint and Aext are the areas of the regions int(C) and ext(C) respec-
tively. Given a level set function ϕ and parameters α,β > 0, the aim is to

Segmenting the level set function 36

solve the optimization problem

minimize
C

I(C) (5.4)

for closed curves C : [0,1] → R2. The first two terms will try to find a
closed curve that minimizes the variance of the level set function inside and
outside the curve respectively, while the second term will aim to minimize
the length of the curve. The problem, which is often referred to as the
minimal partition problem, was also studied in [2121]. In [2020, p. 47] the
existence of a minimizer was proved for a measurable bounded function ϕ,
and an extensive treatment of the regularity of solutions can be found there.
Alternatively, see [22, chapter 4, p. 154] for a shorter treatment.

The functional can be minimized by using a gradient descent method,
and so we want to proceed by calculating a gradient to the functional. Theo-
retically this is challenging, as one needs some inner product on the space
of all curves for a theoretical gradient to exist. However, one can calculate
the variation and define a formal gradient. To compute the variation of (5.25.2)
with respect to C, we start by assuming that the boundary C = C(τ) deforms
with velocity dx

dτ = v(τ,x). For simplicity, it is also assumed that the curve is
traced with unit speed, so that |C′ |= 1. We follow the ideas of Aubert and
Kornprobst [22, chapter 4, p. 158–161], and define the function

f (τ) = α
∫

int(C(τ))

(ϕint(τ)−ϕ)2 dx+α
∫

ext(C(τ))

(ϕext(τ)−ϕ)2 dx+ β
∫
C(τ)

ds,

where the length is given as

L(C) =
∫
C

ds.

When computing the derivative of the first two integrals, we will use Leibniz’
integral rule for the derivative of a domain integral, more commonly known
as Reynolds transport theorem. This says that if l(τ,x) is a regular function
defined on a regular domain w(τ) of R2, and

g(τ) =
∫
w(τ)

l(τ,x)dx,

then

g ′(τ) =
∫
w(τ)

∂l
∂τ

(τ,x)dx+
∫

∂w(τ)

l(τ,x)v ·N ds, (5.5)

37

where ∂w(τ) is the boundary of w(τ) with outward normal N , moving with
velocity v. For the derivative of the last integral, note that

d
dτ

∫
C(τ)

dσ

 =
∫
C(τ)

κv ·N ds, (5.6)

where κ is the curvature of C(τ). To see this, consider (4.104.10) with the choice
g(C) = 1. This choice results in ∇g = 0, and thus, by using (4.134.13) it is seen
that the variation simplifies to the expression above. The minus sign is due
to N denoting an inward normal in (4.134.13) and an outward normal here.
Using (5.55.5) and (5.65.6) we get

f ′(τ) = α

2
∫

int(C(τ))

(
ϕint(τ)−ϕ

) ∂ϕint
∂τ

(t)dx +
∫
C(τ)

(
ϕint(τ)−ϕ

)2 v ·N ds

+ 2
∫

ext(C(τ))

(
ϕext(τ)−ϕ

) ∂ϕext
∂τ

(τ)dx −
∫
C(τ)

(
ϕext(τ)−ϕ

)2 v ·N dσ

+ β

∫
C(τ)

κv ·N ds.

As ϕint(τ) and ϕext(τ) are piecewise constant functions on int(C(τ)) and
ext(C(τ)), these functions, along with their time derivatives, can be put
outside the integrals in the above expression. This gives

∫
int(C(τ))

(
ϕint(τ)−ϕ

) ∂ϕint
∂τ

(τ)dx =
∂ϕint
∂τ

(τ)

Aintϕint(τ)−
∫

int(C(τ))

ϕdx

 ,
∫

ext(C(τ))

(
ϕext(τ)−ϕ

) ∂ϕext
∂τ

(τ)dx =
∂ϕext
∂τ

(τ)

Aextϕext(τ)−
∫

ext(C(τ))

ϕdx

 .
Now, using the definitions of ϕint(τ) and ϕext(τ) given in (5.35.3), it is seen that

Aintϕint(τ)−
∫

int(C(τ))

ϕdx = 0,

Aextϕext(τ)−
∫

ext(C(τ))

ϕdx = 0.

Segmenting the level set function 38

As a result, the derivative f ′(τ) is reduced to

f ′(τ) =
∫
C(τ)

(
α
(
ϕint(τ)−ϕ

)2 −α
(
ϕext(τ)−ϕ

)2 + βκ
)
v ·N ds.

We are interested in expressing the curvature κ in terms of the parametrized
curve C. To do this, recall that the curvature can be expressed as

κN = −Ts,

where T is the unit tangent vector, N is the unit outward normal, and s is
the arc-length of C. This unit tangent vector, as a function of arc-length, can
be written as

T (s) = C′(s),

and it is easily verified that this is indeed a unit vector. This leads to

κN = −C′′(s),

and thus

f ′(τ) =
∫
C(τ)

(
α
[(
ϕint(τ)−ϕ

)2 −
(
ϕext(τ)−ϕ

)2
]
N − βC′′

)
· vds.

To find a variation for all parametrized closed curve, and not just the ones
with |C′ |= 1, note that

ds = |C′ |dt,

where t is the parametrization variable. Thus, the derivative can be rewritten
as

f ′(τ) =
∫
C(τ)

(
α
[(
ϕint(τ)−ϕ

)2 −
(
ϕext(τ)−ϕ

)2
]
|C′ |N − β|C′ |C′′

)
· vdt.

Formally this is an expression for the directional derivative of the functional
I(C) in direction v. The formal gradient is then defined as

∇I(C) = α
[(
ϕint(τ)−ϕ

)2 −
(
ϕext(τ)−ϕ

)2
]
|C′ |N − β|C′ |C′′ , (5.7)

which is an element in an infinite-dimensional space. We will use a gradient
descent method to drive the evolution of the curve, and thus we set

∂C
∂τ

= −∇I(C(τ)). (5.8)

39

Combining this evolution with the evolution of the level set, we have
now obtained a system for a combined evolution of the level set function
and the curve C:

ϕ(0) = ϕ0,

C(0) = C0,

∂ϕ

∂τ
= |∇ϕ|div

(
g(w)

∇ϕ
|∇ϕ|

)
+γg(w)|∇ϕ|,

∂C
∂τ

= −∇I(C(τ)).

(5.9)

5.2 Using splines for representing the segmentation boundary
As previously mentioned, the result of a segmentation process can either be
described as a region in Ω, or a curve enclosing this region. In the framework
described in the previous section it was assumed the segmentation boundary
can be described as a parametrized curve, which is evolve according to
equation (5.85.8). Now, we let the parametrized curve C(τ) be represented as a
periodic cubic B-spline curve. To this end, let C1

p([0,1],R2) be the space of
continuously differentiable and periodic curves with the L2-norm. Further,
let C(τ) be interpreted as a mapping from K control points

p(τ) = (p1(τ),p2(τ), ...,pK (τ)), (5.10)

where pk(τ) = (p1
k (τ),p2

k (τ)), to a parametrized curve

C : (R2)K → C1
p([0,1],R2).

Additionally, denote by ψ = (ψk : [0,1]→ R)1≤k≤K the basis of periodic cubic
B-splines with uniformly distributed knots. The mapping above is then
given by

C(p) =
K∑
k=1

pk(τ)ψk ,

where pk(τ) are the time evolving spline control points. We now want to
map the evolution of the curve to an evolution of the spline control points.
To this end, let DC(p) denote the derivative of the curve with respect to the
spline control points. Then DC(p) is a linear mapping that maps a vector
v ∈ (R2)K to a curve DC(p)v ∈ C1

p([0,1],R2). The gradient descent evolution
can now be written as

DC(p)
∂p

∂τ
= −∇I (C (p)) .

Using splines for representing the segmentation boundary 40

This is an overdetermined system, since p is a vector of control points with
length K and the gradient on the right hand side is defined on an infinite-
dimensional space. Thus, to solve this equation we minimize

||DC(p)
∂p

∂τ
+∇I(C)||2

with respect to the derivative ∂p
∂τ . This is a convex quadratic minimization

problem, and it is solved by the normal equations,

DC(p)∗
(
DC(p)

∂p

∂τ
+∇I(C)

)
= 0,

where DC(p)∗ denotes the adjoint of DC(p). Since DC(p)v ∈ C1
p([0,1],R2) is

a B-spline for any v ∈ (R2)K , we can write

DC(p)v =
K∑
k

vkψ
k . (5.11)

From the definition of the adjoint operator, we have for some h ∈ C1
(
[0,1],R2

)
〈DC(p)∗h,v〉(R2)K = 〈h,DC(p)v〉L2([0,1],R2),

where the inner product on the left hand side is taken in the space of control
points, and the inner product on the right hand side is an L2 inner product
taken in the space of continuously differentiable functions. From (5.115.11) we
get

〈h,DC(p)v〉L2([0,1],R2) =

1∫
0

h(t)
K∑
k=1

vkψ
k(t)dt

=
K∑
k=1

vk

1∫
0

h(t)ψk(t)dt

= 〈v,ϑ〉(R2)K ,

where

ϑ =

1∫

0

h(t)ψk(t)dt

K

k=1

denotes an element in (R2)K . As the inner product is symmetric in (R2)K we
can conclude that

DC(p)∗h = ϑ

41

for every h ∈ C1([0,1],R2). Letting

h =DC(p)
∂p

∂τ
,

it is seen that, using equation (5.115.11),

DC(p)∗DC(p)
∂p

∂τ
=

1∫

0

K∑
j

∂pj
∂τ

ψj (t)ψk(t)dt

K

k=1

=

K∑
j

∂pj
∂τ

1∫
0

ψj (t)ψk(t)dt

K

k=1

= A
∂p

∂τ
,

where

Aij =

1∫
0

ψi(t)ψj (t)dt and
∂p

∂τ
=

[
∂pk
∂τ

]K
k=1

. (5.12)

The system governing the evolution of the control points can now be written
as

A
∂p

∂τ

c

= −

1∫

0

∇I(C(p))(t)cψk(t)dt

K

k=1

(5.13)

= Φc, (5.14)

where Φ ∈ (RK)2 and c ∈ {1,2} denotes the spatial component. This is a
system for the evolution of the control points of the periodic cubic B-spline
curve. The combined evolution can now be stated as

ϕ(0) = ϕ0,

p(0) = p0,

∂ϕ

∂τ
= |∇ϕ|div

(
g(w)

∇ϕ
|∇ϕ|

)
+γg(w)|∇ϕ|,

A
∂p

∂τ

c

= Φc(C(p(τ))),

(5.15)

for c ∈ {1,2}. The next chapter will give the numerical details on how to
solve this system.

43 Implementation

6 Implementation
This chapter presents the numerical details for the optical flow estimation
and the segmentation process. Recall that the system to solve for computing
the optical flow can be formulated as the coupled system of PDEs

∂uM(w)− 1
ξ2 div(Θu∇u) = 0,

∂vM(w)− 1
ξ2 div(Θv∇v) = 0,

(6.1)

where the matrices Θu = Θu(x1,x2,∇u,∇v) and Θv = Θv(x1,x2,∇u,∇v) are
called the diffusion matrices, since they control the direction and strength
of the diffusion process. The segmentation process is driven by

∂ϕ

∂τ
= |∇ϕ|div

(
g(w)

∇ϕ
|∇ϕ|

)
+γg(w)|∇ϕ|,

A
∂p

∂τ

c

= Φc (C (p (τ))) for c ∈ {1,2}.
(6.2)

Note that these systems, (6.16.1) and (6.26.2), are partially coupled in the sense
that the solution of the latter depends on the solution of the former, but not
the other way around. In this thesis, we will solve them separately, solving
(6.16.1) to find a flow field w = (u,v), and then segmenting moving regions of
this flow field by solving the combined evolution (6.26.2) and ultimately finding
the cubic B-spline that describes this region. We will start by outlining the
numerical methods for solving the optical flow system.

6.1 Solving the optical flow system
Let Ω denote a flattened m×n pixel grid, so that the mapping from a pixel
at position x = i in the flattened grid is given by

(x1,x2) = (bi/mc , i − bi/mc),

where (x1,x2) denotes the coordinates of the rectangular grid.

6.1.1 The data term
Recall from chapter 33 that the contribution to the Euler-Lagrange system
coming from the data term is

∂wM = 2
∇f Tw+ ft
|∇f |2+ζ2 + 2γOF

∇f Tx1w+ ft
|∇fx1 |2+ζ2 +

∇f T
x2w+ ft

|∇fx2 |2+ζ2

 .

Solving the optical flow system 44

From the above, it is seen that we need to find approximations for the
spatial derivatives and the time derivatives. As the distance between grid
points in fixed, there is little to gain from choosing a higher order derivative
approximation. Thus, we will use the forward difference to approximate
the derivatives in both time and space. Let g be a vector in RK , the forward
differences are defined as the operators

δ
f w
x1 gk = gk+m − gk ,

δ
f w
x2 gk = gk+1 − gk ,

where δf w
x1 and δf w

x2 denotes the forward difference in directions x1 and x2
respectively.

6.1.2 The divergence operator
The divergence operator in the smoothness term will be approximated by a
backward difference. The backward difference operators are defined as

δbw
x1 gk = gk − gk−m,

δbw
x2 gk = gk − gk−1,

where δbw
x1 and δbwx2 denote the backward differences in directions x1 and

x2, respectively. The divergence operator is then approximated as

div(∇gk) ≈ δbwx1 δ
f w
x1 gk + δbw

x2 δ
f w
x2 gk

= δbw
x1 (gk+m − gk) + δbw

x2 (gk+1 − gk)
= (gk+m − 2gk + gk−m) + (gk+1 − 2gk + gk−1),

or what is more commonly known as the second order central difference.

6.1.3 The boundary conditions
The optical flow system is solved using Neumann boundary condition, which
says that the normal derivatives on the boundaries vanish. For the eastern
boundary ΓE and the southern boundary ΓS we will impose that the back-
ward difference is zero in x1- and x2-direction respectively. For our flattened
grid, this leads to

u(x −m) = u(x),

v(x) = v(x),

for x ∈ ΓE . Equivalently, when x ∈ ΓS ,

u(x − 1) = u(x),

v(x − 1) = v(x).

45

On the two other boundaries, the western boundary ΓW and the northern
boundary ΓN , we will enforce the forward differences to be zero. For x ∈ ΓW
this leads to

u(x) = u(x+m),

v(x) = v(x+m),

and likewise for x ∈ ΓN ,

u(x) = u(x+ 1),

v(x) = v(x+ 1).

These conditions are enforced on the boundary when solving the system.

6.1.4 The lagged diffusivity iterations
Recall that the flow driven regularization lead to a nonlinear system. We
proposed to solve this system using the method of lagged diffusivity. The
iteration scheme can be formulated as

∂uk+1M −
1
ξ2

 ∂∂x
 uk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂
∂y

 uk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0,

∂vk+1M −
1
ξ2

 ∂∂x
 vk+1

x1√
|∇uk |2+|∇vk |2+ε2

OF

+
∂
∂y

 vk+1
x2√

|∇uk |2+|∇vk |2+ε2
OF

 = 0.

To improve the computation time of the iterative scheme, we will use GMRES
to solve the linear system in each iteration. For details on the GMRES
algorithm we refer to [2626, chapter 6, p. 164].

6.2 Solving the segmentation system
The segmentation system (6.26.2) evolves the level set function and the cubic
B-spline function. Since the evolution of the spline curve depends on the
evolution of the level set function, but not the other way around, the system
is partially decoupled. Using the terminology of [1212], we denote the algo-
rithm evolving the level set and the curve simultaneously as the combined
evolution. One iteration of the combined evolution will consist of a specified
number of level set evolutions and a specified number of curve evolutions.
In the discussion of the segmentation results we will use a special notation
to denote the number of level set iterations and spline iterations in the
combined evolution. If one iteration of the combined evolution consists of
k level set iteration and l spline iterations, the evolution is called a ”k : l
combined evolution scheme” or simply a ”k : l combined evolution”. The
number of iterations used for each combined evolution scheme will be given

Solving the segmentation system 46

in each experiment. The following subsections will present the numerical
framework for these evolutions. A notational change is made from the pre-
vious section; the domain Ω is now a rectangular pixel grid of size m×n. We
will start by discretizing the evolution the level set function.

6.2.1 The level set evolution
Given a level set solution ϕ(τ) and a time step δ > 0, the authors of [1212] used
the semi-implicit time discretization

ϕ(τ + δ)−ϕ(τ)
δ

= |∇ϕ(τ)|div
(
g(w)

∇ϕ(τ + δ)
|∇ϕ(τ)|

)
+γg(w)|∇ϕ(τ)|. (6.3)

to find the level set at ϕ(τ + δ). A finite difference scheme is used to solve
this, where the first derivatives are computed using a forward difference
approximation (shown in section 6.1.16.1.1), and the divergence is computed as
in section 6.1.26.1.2.

The boundary condition
A Neumann boundary condition is used For the level set function. As argued
in [11], the image Ω is some part of a larger scene, thus it is natural to impose
Neumann boundary conditions on the level set solution. This condition is
given as

∇ϕ ·N = 0 on ∂Ω (6.4)

for the level set function, where ∂Ω is the boundary of Ω. Similarly to the
optical flow components, this condition results in equations for the value of
the level set function at the boundary pixels. These equations are equivalent
to the ones for the flow field, and will be imposed in each evolution of the
level set function.

The initial data
As proposed in [77] we will use the signed distance function to some curve σ
as the initial level set function ϕ0. The signed distance function of σ can be
defined as

d(x,σ) =
{
d(x,σ) if x ∈ ext(σ),
−d(x,σ) if x ∈ int(σ), (6.5)

where d(x,σ) is the Euclidean distance. We will use some scaling of this
function, defining a scaling parameter s, and setting ϕ(x) = sd(x,σ). As
Fuchs et al. [1212] noted, steeper level set functions are more sensitive to noise.
Thus, in flow fields with a lot of noise or irregularity, we may choose a low
value for s to obtain global stability for our level set evolution. The curve
σ used in the defininition of the initial level set function, will always be

47

a circle, where the moving object is at least partly inside σ . The signed
distance function satisfies

|∇d(x,σ)| = 1,

and thus,

|∇ϕ0| = s. (6.6)

ε-regularization
In order to avoid numerical issues for small values of |∇ϕ| a regulariza-
tion term is added [1212]. In the numerical computations we will replace√
ϕ2
x1 +ϕ2

x2 with
√
ϕ2
x1 +ϕ2

x2 + ε, and the approximation will be called the
ε-regularization. From (6.66.6) we have that the gradient of the initial function
is scaled by the parameter s, and thus the regularization parameter ε should
be scaled to match this scaling. However, choosing a too low value for ε
might lead to numerical issues. Hence, a compromise must be made between
numerical stability and the scaling of ε.

Reinitialization
As noted in [22, chapter 4, p. 194], the gradients of our level set function
may become unbounded, which can cause the curve evolution to become
unstable. Thus, in some cases it might be necessary to reinitialize the level
set function. This is done by simply setting the level set function to the
signed distance function we started with, but more advanced methods of
reinitialization have been proposed (see [22, chapter 4, p. 194]). The need to
reinitialize can be assessed by measuring the size of the norm of the gradient
ϕ. To this end, define the energy

H(ϕ) =
∫
Ω

|∇ϕ|dx. (6.7)

If this energy becomes relatively large, we may need to reinitialize the level
set function. This function is computed using the forward difference approx-
imation for the gradient, and summing up the values over the discretized
domain Ω. This provides a sufficiently accurate estimate of the energy for
the purpose of determining the need for reinitialization.

The edge detector
Details of the edge detector g(∇u,∇v) has not yet been discussed, other than
the properties

g(r,q)→ 0 as r→∞ or q→∞.

Solving the segmentation system 48

A common choice [88] in a segmentation controlled by image edges is the
edge detector

g =
1

1 + η|∇f |p
, (6.8)

for p = 1 or p = 2, where η is some sensitivity parameter. Thus, in a segmen-
tation process steered by the edges of the flow, we propose to use

g =
1

1 + η (|∇u|p+|∇v|p)
. (6.9)

This function would stop the evolving contour at what the authors of [77]
considered an ”ideal” edge. In our numerical experiments we have used
p = 1.

6.2.2 The curve evolution
For representing the curve C(τ) we will use periodic cubic B-splines, for
which an example is shown in figure 6.16.1. We now interpret C(τ) as a map-
ping from K control points

p(τ) = (p1(τ),p2(τ), ...,pK (τ)),

where pk(τ) = (pxk (τ),pyk (τ)), to a parametrized curve

C : (R2)K → C1
p([0,1],R2).

Let ψ = (ψk : [0,1]→ R)1≤k≤K be the basis of periodic cubic B-splines with
uniformly distributed knots. The mapping above is then given by

C(p) =
K∑
k=1

pk(τ)ψk ,

where pk(τ) are the time evolving spline control points. Each basis function
ψk(t) is a piecewise cubic polynomial defined over an interval of five knots
with a uniform knot spacing of tk − tk−1 = 1

K , such that

ψk(t) =

a(K(t − tk−2)) for tk−2 ≤ t ≤ tk−1,

b(K(t − tk−1)) for tk−1 ≤ t ≤ tk ,
c(K(t − tk)) for tk ≤ t ≤ tk+1,

d(K(t − tk+1)) for tk+1 ≤ t ≤ tk+2,

(6.10)

49

Figure 6.1: Example of a series of cubic B-splines.

where the functions a(s), b(s), c(s) and d(s) are defined as

a(s) =
s3

6
, (6.11)

b(s) =
−3s3 + 3s2 + 3s+ 1

6
, (6.12)

c(s) =
3s3 − 6s2 + 4

6
, (6.13)

d(s) =
−s3 + 3s2 − 3s+ 1

6
, (6.14)

for s ∈ [0,1]. These elements are shown in figure 6.26.2. This essentially
means that for any given value t̃ on any line element [tk , tk+1] ⊂ [0,1], the
parametrized curve is evaluated as a sum of these four function elements.
Let γ(t) ∈ C1

p([0,1],R2) be the parametrized curve. Then, using the transfor-
mation

s(t) = K(t − tk) ∈ [0,1], (6.15)

we get

γ(t̃) = pk+2a(s(t̃)) + pk+1b(s(t̃)) + pkc(s(t̃)) + pk−1d(s(t̃)) (6.16)

The transformation (6.156.15) linearly maps the subinterval [tk , tk+1] to the unit
interval.

Computing derivatives
To find the derivative of the curve with respect to the parametrization
variable t we need to know the derivatives11 of the basis functions. As
previously mentioned, a basis function will have compact support over five
knots, and the derivative of each basis function will have compact support
over these five knots. For each element, the curve is a sum of the four basis
functions shown in figure 6.26.2, and so the evaluation of the derivative at a
point t̃ ∈ [0,1] is a sum of four derivatives. For the basis function ψk shown

1The differentials in this subsection is denoted by an ”upright” d in order to avoid confusion
with the basis function d.

Solving the segmentation system 50

Figure 6.2: Contributing basis functions inside each element.

in equation (6.106.10) we obtain the derivative

dψk

dt
(t) =

da
dt (K(t − tk−2)) for tk−2 ≤ t ≤ tk−1,
db
dt (K(t − tk−1)) for tk−1 ≤ t ≤ tk ,
dc
dt (K(t − tk)) for tk ≤ t ≤ tk+1,
dd
dt (K(t − tk+1)) for tk+1 ≤ t ≤ tk+2,

(6.17)

where the derivatives are computed as

da
dt

(s) =
ds
dt

da
ds

(s) = K
s2

2
,

db
dt

(s) =
ds
dt

db
ds

(s) = K
−3s2 + 2s+ 1

2
,

dc
dt

(s) =
ds
dt

dc
ds

(s) = K
3s2 − 4s

2
,

dd
dt

(s) =
ds
dt

dd
ds

(s) = K
−s2 + 2s − 1

2
,

for s ∈ [0,1]. Letting γ(t) be the parametrized curve, we can now evaluate
the derivative at a point t̃ ∈ [tk , tk+1] ⊂ [0,1] as

dγ
dt

(t̃) = K
(
pk+2

da
ds

(s(t̃)) + pk+1
db
ds

(s(t̃)) + pk
dc
ds

(s(t̃)) + pk−1
dd
ds

(s(t̃))
)
,

where as before, we have used the transformation s(t) = K(t − tk) ∈ [0,1].
The second derivatives are computed in the same manner with the same

set of compact support for each basis function. That is,

d2ψk

dt2
(t) =

d2a
dt2 (K(t − tk−2)) for tk−2 ≤ t ≤ tk−1,
d2b
dt2 (K(t − tk−1)) for tk−1 ≤ t ≤ tk ,
d2c
dt2 (K(t − tk)) for tk ≤ t ≤ tk+1,
d2d
dt2 (K(t − tk+1)) for tk+1 ≤ t ≤ tk+2,

(6.18)

51

with the second derivatives of the polynomials given as

d2a

dt2
(s) =

(
ds
dt

)2 d2a

ds2
(s) = K2s,

d2b

dt2
(s) =

(
ds
dt

)2 d2b

ds2
(s) = K2(−3s+ 1),

d2c

dt2
(s) =

(
ds
dt

)2 d2c

ds2
(s) = K2(3s − 2),

d2d

dt2
(s) =

(
ds
dt

)2 d2d

ds2
(s) = K2(−s+ 1).

The second derivative of the parametrized curve itself is then straightfor-
ward, and is given by

d2γ

dt2
(t̃) = K2

(
pk+2

d2a

ds2
(s(t̃)) + pk+1

d2b

ds2
(s(t̃)) + pk

d2c

ds2
(s(t̃)) + pk−1

d2d

ds2
(s(t̃))

)
.

Evolving the control points
Recall that the evolution of the spline control points is driven by the equation

A
∂p

∂τ

c

= Φc, (6.19)

where

Φc = −

1∫

0

∇I(C(p))(t)cψk(t)dt

K

k=1

,

and c ∈ {1,2} denotes the spatial component. Since the curve is traced
clockwise with increasing curve parameter, we have

|C′ |n(t) =

− K∑
k=1

p2
k

dψk

dt
(t),

K∑
k=1

p1
k

dψk

dt
(t)

 ,
and components of the gradient of the energy functional are given as

∇I(C(p))(t)1 = −α
[
(ϕint −ϕ(C(p)(t)))2 − (ϕext −ϕ(C(p)(t)))2

] K∑
k=1

p2
k

dψk

dt
(t)

− β

√√√√ K∑
k=1

p1
k

dψk

dt
(t)

2

+

 K∑
k=1

p2
k

dψk

dt
(t)

2 K∑
k=1

p1
k

d2ψk

dt2 (t),

Solving the segmentation system 52

∇I(C(p))(t)2 = α
[
(ϕint −ϕ(C(p)(t)))2 − (ϕext −ϕ(C(p)(t)))2

] K∑
k=1

p1
k

dψk

dt
(t)

− β

√√√√ K∑
k=1

p1
k

dψk

dt
(t)

2

+

 K∑
k=1

p2
k

dψk

dt
(t)

2 K∑
k=1

p2
k

d2ψk

dt2 (t).

Numerical Integration Scheme
For solving the integral in (6.196.19) we divide the interval between each knot
[tk , tk+1] into T subintervals, each with length

∆t =
tk+1 − tk
T

=
1
TK

. (6.20)

On each subinterval we compute the contribution to the integral by using the
trapezoidal rule for numerical integration. Each such subinterval [tk , tk+1] is
contained in the support of four basis functions, shown in figure 6.26.2. So the
contribution ∆Φck ∈ R

K , from the integration over the interval [tk , tk+1], to
Φc on the right hand side of (6.196.19) is

∆Φck =
T∑
i=1

−∇I(C(p))(tk + i∆t)c(a(ski)ek+2 + b(ski)ek+1 + c(ski)ek + d(ski)ek−1),

(6.21)

where ski = s(tk+i∆t) with the transformation s(t) given in (6.156.15), and ej ∈ RK
being the j-th unit basis vector. The right hand side of (6.196.19) is computed as

Φc =
K∑
k=1

∆Φck . (6.22)

We do not need to give special treatment to the endpoints, since the curve is
periodic.

Solving the normal equations
Since the curve is periodic, the matrix A in the system given in (6.196.19) will be
a circulant matrix. The elements of the matrix are given as

Aij =

1∫
0

ψi(t)ψj (t)dt.

The functions ψ(t) are known basis functions given in (6.106.10), and so we can
compute the elements of the matrix A. The calculations can be found in
appendix BB. We define the circulant vector a ∈ RK as

a = [a0, a1, a2, a3,0, ...,0, a3, a2, a1] , (6.23)

53

where
a0 =

604
35

1
36K

a1 =
1191
140

1
36K

a2 =
6
7

1
36K

a3 =
1

140
1

36K
.

(6.24)

The matrix A ∈ RK×K is the matrix with the vector a as the first row, and
the remaining rows being cyclic permutations of this row. Now, since A is a
circulant matrix, the linear system

A
∂p

∂τ

c

= Φc,

can be written as the convolution

a ∗
∂p

∂τ

c

= Φc, (6.25)

with cyclically extended vectors ∂p
∂τ

c
and Φc. Using the circulant convolution

theorem, we can write the system as

FK

(
a ∗
∂p

∂τ

c)
= FK (a)FK

(
∂p

∂τ

c)
= FK (Φc) ,

where FK denotes the discrete Fourier transform (DFT). Thus, we can solve
the system by taking the inverse Fourier transform:

∂p

∂τ

c

= F−1
K

(
FK (Φc)
FK (a)

)
. (6.26)

Parameter scaling
In an attempt to obtain some comparable parameter values, we want to
scale the parameters. This scaling can be obtained by doing a dimensional
analysis of the two terms in the modified Mumford-Shah functional,

I(C) = α
∫

int(C)

(ϕint −ϕ)2 dx+α
∫

ext(C)

(ϕext −ϕ)2 dx+ βL(C).

We want to find characteristic sizes for the dimensions that occur in this
energy functional. To this end, we define the scaling constants $α and $β
and let

α = α0$α and β = β0$β , (6.27)

where α0 and β0 are chosen parameter values.
We start by looking at the dimensions of the terms

(ϕint −ϕ)2 and (ϕext −ϕ)2.

Solving the segmentation system 54

The value of the level set function is scaled by the initial scale s, and thus,
these term will be scaled by s2. We then integrate over int(C) and ext(C).
The areas of these subsets of Ω are Aint and Aext respectively. Since the sum
of these two areas constitute the area of the whole image, their sizes will be
in some sense comparable to the size of the image, which is m×n. From the
reasoning above, we have that

$α =
1

s2mn
. (6.28)

The second term of the energy functional is just the length of the curve
C. From [99] we have that if Ω ⊂ RN then L(C)N/(N−1) is in some sense
comparable with Aint , which is scaled by the size of the domain. Thus,
letting $β be the scaling for β, we let

$β =
1
√
mn

. (6.29)

6.2.3 A simple splitting algorithm
In the evolution of the spline curve, we might encounter self-intersections.
These self-intersections can be of two types, orientation-preserving self-
intersections and orientation-reversing self-intersections, and they arise for
different reasons. An example of an orientation-preserving self-intersection
is the self-intersection formed when joining the close intersecting parts of the
curve shown in figure 6.3a6.3a. It is seen that this self-intersection preserves the
orientation of the curve, which means it also preserves the direction of the
inward normal vector, which is important in the calculation of the gradient.
An example of an orientation-reversing self-intersection is shown in figure
6.3b6.3b, and it is seen that this self-intersection reverses the orientation of the
curve; the left part is traced clockwise and the right part is traced counter-
clockwise. Usually, only orientation-preserving self-intersections can be
caused by the actual shape of the objects in the image, and the occurrence of
the orientation-reversing self-intersection is mainly due to numerical issues.
Nevertheless, if either of these self-intersections occur, we will remove them
by a naive splitting algorithm.

The splitting algorithm can be divided into two parts, namely the de-
tection of a self-intersection and the splitting of the curve. The function
find_selfintersection of the JordanCurve class (shown in appendix D.2D.2) finds
the values of the curve parameter where the curve intersects itself. These
values are sent to the splitting algorithm, which can be found in the function
split_curve. A pseudo-code version of the splitting procedure is shown in
algorithm 11, which returns the number of added curves to the collection of
curves.

55

Algorithm 1 Split curve

t1, t2 are the values for self-intersection
K are the number of control points

Require: t2 6= 0
k1 = bt1Kc
k2 = bt2Kc
split = 0
if |k2 − k1|> 1 then

if |k2 − k1|> 5 then
Initialize curve C1 with points between pk1

and pk2
end if
if K − |k2 − k1|> 5 then

Initialize curve C2 with the rest of the points
end if
if C1 or C2 has been initialized then

Delete curve C from collection of curves
split = split − 1
if C1 is initialized then

Add C1 to collection of curves
split = split + 1

end if
if C2 is initialized then

Add C2 to collection of curves
split = split + 1

end if
end if

end if
return split

(a) Orientation-preserving self-
intersection.

(b) Orientation-reversing self-
intersection.

Figure 6.3: Types of self-intersections.

The Python implementation 56

6.2.4 A backtracking line search
As a measure to enhance the stability of the evolution, it can be useful to
employ a line search to find a suitable step size. Thus, in some cases we will
make use of the backtracking line search shown in algorithm 22. Assume we
have a flattened vector of control points pk ∈ R2K , and a search direction

∆p =
∇I(C(p))
|∇I(C(p))|

. (6.30)

Then the backtracking line search will find a step length that yields a suffi-
cient decrease in our functional I . The sufficient decrease condition is given
by the Armijo condition. We refer to [2323, p. 33–37] for more information on
the Armijo condition and the backtracking line search.

Algorithm 2 Backtracking line search

Given a starting point pk ∈ R2K , and a unit length vector ∆p ∈ R2K

Choose λ > 0, p,c ∈ (0,1),ρ ∈ (0,1)
while I(C(p+λδp))− I(C(p)) > λc∇I(C(p))T∆p do
λ = ρλ

end while
Set p = p+λ∆p

6.3 The Python implementation
All of the systems above is implemented in Python with extensive use of the
Numpy and Scipy libraries. The optical flow system was built using sparse
matrices from the sparse package of the Scipy library, and solved using a
built-in GMRES solver from the submodule linalg.

The linear equation for the solution of the level set function was also
solved by building sparse matrices, but was solved using the sparse linear
solver spsolve from the linalg submodule. The numerical integration for the
spline evolution was done by fixing a small increment and looping through
the interval [0,1]. The linear equation was solved using the solve_circulant-
function of the linalg submodule, which takes the vector a associated with
the circulant matrix A and the right hand side vector Φ, and performs a
division in Fourier space.

57 Numerical results and discussion

7 Numerical results and discussion
This section presents the most important results, in order to show some
of the features of the algorithm. Section 7.17.1 compares the three different
methods of regularization presented in chapter 33, namely the isotropic
smoothing of Horn and Schunck, the image driven regularization and the
flow driven regularization. Section 7.27.2 presents the results for the segmen-
tation algorithm using an optical flow field computed using a flow driven
regularization.

The image sequences used in these experiments is the Hamburg taxi
sequence, for which two consecutive frames are shown in figures 7.2a7.2a and
7.2b7.2b. The sequence shows a white taxi turning right onto the street coming
down from the top of the image, a black right-moving car on the left side
of the image, and a left-moving van on the right side, partly occluded by
branches from a tree. In addition to the cars moving, there is a pedestrian
walking on the sidewalk in the upper left part of the image.

7.1 Optical flow results
This section presents some results for the optical flow estimation, ordered by
the methods of smoothness regularization presented in section 3.33.3. We will
measure the quality of the optical flow field by features that are important
in the segmentation process. Due to the property

g(r,q)→ 0 as r→∞ or q→∞,

of the edge detector g(∇u(C),∇v(C)) presented in section 4.1.24.1.2, we seek a
flow field with sharp edges and high gradients. Also, since the active contour
will stop at these sharp edges, we want the amount of oversegmentation in
the optical flow to be as little as possible.

To display the computed flow field each flow vector was mapped to the
colorwheel shown in figure 7.17.1, where the hue represents the direction and
the value represents the length of the vector. This mapping was computed
using a flow code provided by Sun [3131].

7.1.1 Results for the isotropic regularization
As noted in section 3.3.13.3.1, the isotropic smoothness term of Horn and Schunck
performs a homogeneous diffusion. Figure 7.3a7.3a shows the result using this
regularization method with quadratic data term penalization. The method
successfully reveals the motion of the three moving cars in the image, and
the directions correspond to the directions of motion in the first considered
frame of the Hamburg taxi sequence seen in figure 7.2a7.2a. However, the flow
boundaries are smoothed out, especially for the right moving car. As stated

Optical flow results 58

Figure 7.1: The colorwheel.

(a) First image. (b) Second image.

Figure 7.2: Frame 10 and 11 of the Hamburg Taxi sequence.

above, this is to be expected as the Horn and Schunck smoothness term
performs a homogeneous diffusion that smooths the flow field uniformly
in all directions. In addition to the moving cars, the method also detects a
lot of image structure and background detail from the street, possibly due
a slight movement of the camera. The movement of the camera will result
in many of the image structures in the original frame being picked up as
movement.

The issue of noise detection and visible background details can to some
extent be enhanced by normalizing the data term. This is seen in figure
7.3b7.3b, which shows the resulting flow field using the Horn and Schunck
smoothness term with a normalized quadratic data term. The normalization
is seen to remove a lot of the inner image structures of the moving objects
along with the image structures of the surroundings, though there is still
some visible image structure in the right-moving car. The normalization
also seems to separate the flow boundaries of the taxi and the right-moving
car on the left, which are very smudged in the result for the original Horn
and Schunck method.

In figure 7.3c7.3c the gradient constancy assumption (GCA) is included in
the data term, which is normalized and quadratically penalized. To prevent
oversegmentation and to reduce the effect of noise, the spatial Gaussian
used in the experiment was σ = 1.5. The Gaussian presmoothing blurs the
image, and noisy pixels are smoothed out over a larger area. This also serves

59

as a remedy for not detecting unwanted image structures. However, the
presmoothing has the unwanted effect that the objects are more smudged,
and the right moving car and the taxi are now almost overlapping due to
the strong smoothing. On the other hand, the flow field is not as faded as
in the case of the normalized data term shown in Figure 7.3b7.3b, but there is
a considerable amount of detected image structures from the background
if compared with the flow field in Figure 7.3b7.3b. Also, the high value for the
standard deviation in the Gaussian smoothing results in objects appearing
to be larger than they actually are, because the movement is smoothed out
over the neighbouring pixels. This is seen from comparing the size of the
right-moving car with figure 7.3b7.3b.

(a) Quadratic penaliza-
tion, β = 0.02, σ = 0.5.

(b) Normalized quadratic
penalization, ζ = 5.0,β =
0.15,σ = 0.5.

(c) Normalized
quadratic penalization
with GCA,β = 0.05,
σ = 1.5,ζ = 5.0,
γOF = 20.

Figure 7.3: Directional mapping of the flow field obtained using the Horn and
Shunck smoothness term with different data terms. The directions correspond to the
motion of the objects in the image. Flow boundaries are smoothed out as the Horn
and Schunck method performs a homogenous diffusion. The normalized data term
7.3b7.3b reduces the degree of internal image structure for moving objects along with
image structures from the surroundings. The flow field using the data term with the
gradient constancy assumption 7.3c7.3c requires a high value of the spatial Gaussian to
avoid oversegmentation and noise. This results in nonlocalized flow boundaries but
less internal structure than seen in 7.3a7.3a.

7.1.2 Results for the image drivenmethod
The Horn and Schunck method clearly suffers from smoothing out important
flow boundaries, which can make the task of segmentation difficult. Figure
7.4a7.4a shows the result for the image-driven method of Nagel and Enkelmann
with quadratic data term penalization, as presented in section 3.3.23.3.2. The
anisotropic regularization produces flow boundaries that are more localized
than for the homogeneous regularizer, but the image structures of the taxi are
slightly stronger in this case. The method also suffers from oversegmentation
and captures a lot of the unwanted image structure from the background.
Nagel and Enkelmann used a local smoothness term with no weighting of
neighboring pixels. With increasing standard deviations ρ, the structure

Optical flow results 60

(a) β = 0.015, ρ = 0.0 (b) β = 0.015, ρ = 1.0 (c) β = 0.06, ζ = 3.0, ρ =
1.0

Figure 7.4: Image driven smoothness term with quadratically penalized data terms.
7.4a7.4a shows the result of using the eigenvectors of a structure matrix without inte-
grating neighborhood information as smoothing directions. 7.4b7.4b shows the result
when integrating over a neighborhood with standard deviation ρ = 1.0. 7.4c7.4c shows
the flow field when using an image driven smoothness term with a normalized data
term. This removes a lot of the background details.

matrix in equation (3.263.26) integrates more of the neighborhood around a
given pixel. Figure 7.4b7.4b shows the estimated flow field found by using
ρ = 1.0. This has the benefit of reducing the effect of noise, but at the
same time gives nearby pixels with large gradients a higher weighting.
Furthermore, a higher value for ρ results in smoother flow discontinuities
giving objects more rounded corners. As noted above, the method suffers
from oversegmentation, but normalization can offer some improvement
in this direction as seen from figure 7.4c7.4c. The image structures of the
background are almost invisible and there is no visible image structure
inside the taxi.

7.1.3 Results for the flow drivenmethod
The flow-driven regularization of section 3.3.33.3.3 aims to reduce the smooth-
ing at flow edges, and the smoothing strength is determined by the TV-
functional given in (3.303.30), which essentially models the L1-norm of the flow
gradients for small values of εOF . Figure 7.5a7.5a shows the result for the flow
driven method with quadratic data term penalization. The method reduces
the amount of smoothing close to flow boundaries so that these are more
localized than for the image driven method. Moreover, there is less internal
structure in the taxi, which has a more homogeneous flow pattern than for
the result seen in figure 7.4a7.4a. This is expected as the smoothing of the flow
driven method is not so much dependent on the structure information of the
image. In the right-moving car (the red part of figure 7.4a7.4a) the flow pattern
is nonhomogeneous, with darker shades of red in some parts of the car. This
might cause the level set function to describe this internal stucture instead
of the whole object.

Increasing the standard deviation in the presmoothing process (figure
7.5b7.5b) leads to a more uniform flow pattern in the taxi, but not the right-

61

(a) Quadratic data term
penalization, β = 0.2, σ =
1.5

(b) Quadratic data term
penalization, β = 0.2, σ =
3.0

(c) Normalized quadratic
data term penalization,
β = 0.6, σ = 3.0, ζ = 1.0

Figure 7.5: Flow driven smoothness term with different data terms and penaliza-
tions of data terms. 7.5a7.5a shows the flow driven smoothness term with a quadratically
penalized data term. Some background noise is present and the flow has some
discontinuities inside the moving objects. 7.5b7.5b shows the situation in 7.5a7.5a but with
an increased standard deviation for the presmoothing process. The influence of
the background movement is reduced but the right-moving car is faded. Boundary
effects caused by the TV-regularization are present. The flow is more uniform inside
the taxi and the left-moving van. 7.5c7.5c shows situation with a normalized data term
and a higher regularization parameter for the smoothness term. No background
details are present, but internal flow discontinuities are introduced.

moving car. The method is also seen to suffer from boundary effects (the
flow pattern of the right moving car is enclosed over the boundary, when
the whole car is actually in the image). This is a result of minimizing the
(approximation of) the L1-norm of the gradient of the flow components.

The result for the normalized data term with quadratic penalization is
shown in figure 7.5c7.5c. The normalization removes a lot of the noise from the
background, but some additional discontinuities arise in the objects.

7.1.4 Comparing the regularizationmethods
As previously noted, to aid the segmentation process, we are looking for
flow fields that will cause the level sets of the level set function ϕ to describe
the outer structure of the objects. The evolution of the level sets will stop at
edges detected by the edge detector function g, and thus it makes sense to
compare how the edge detector performs in detecting edges for each of the
regularization methods in the above sections. Figure 7.67.6 shows the contour
lines of the edge detector function, using p = 1 and η = 100, for the flow
fields in figures 7.3a7.3a, 7.4a7.4a and 7.5a7.5a. The edges of the isotropic regularized
flow shown in figure 7.6a7.6a are seen to give a poor description of the objects in
the image. Only the shape of the taxi can be recognised in the contour lines,
which are partially merged with the contour lines from the right moving car.
There is also a lot of noise present, which will lead to a slower evolution of
the level set, and may also cause these objects to be segmented instead of
the moving cars.

Optical flow results 62

(a) Isotropic regulariza-
tion.

(b) Image driven regular-
ization.

(c) Flow driven regulariza-
tion.

Figure 7.6: The contour lines of the edge detector g using p = 1 and η = 35.0 for flows
with different regularization. The contour lines of figure 7.6a7.6a are computed from
the isotropic regularized flow field shown in figure 7.3a7.3a. The flow edges of different
objects are not clearly separated, and there is a lot of noise present. Figure 7.6b7.6b shows
the edges deteted from the flow in figure 7.4a7.4a, using image driven regularization.
Edges are more separated, but there is a great deal of oversegmentation from objects
in the background. Figure 7.6c7.6c shows the edges detected from the flow driven
regularized flow field shown in figure 7.5a7.5a. The edges of different objects are more
separated, and they describe the outer structure of the objects nicely. There are still
some artifacts present from the background, but fewer than for the two other flow
fields.

Figure 7.6b7.6b shows the flow edge detection for the flow field with image
driven regularization. There is clearly a great deal of oversegmentation, even
more than for the isotropic smoothing. The flow edges consists of a number
of smaller disconnected parts, and does not give a smooth representation.

The edges detected from the flow using a flow driven regularization are
seen in figure 7.6c7.6c. The flow boundaries of different objects are more sepa-
rated than for the two other flow fields. Furthermore, the edges are smoother
and more localized, and there is not as much noise from the background.
Some objects from the background are visible, which might cause a slower
evolution for the level set. Still, the amount of oversegmentation is less than
for the two other flow fields, and the edges give a good description of the
outer structure of the objects.

As a result of the improved performance with respect to the measure of
quality mentioned in the beginning of section 7.17.1, the flow driven regular-
ization will be used to compute flow fields for the segmentation process. The
downside of this method is the increased computation time as compared
to the two previous methods due to the lagged diffusivity iteration. The
iteration scheme converges fairly quickly to a result that does not admit any
visible differences in the flow field. However, the convergence rate slows
down after a few iterations. Thus, computing a flow field with high accuracy
takes considerably more time. This will not be needed in practice, since
there is no change in the visual result of the flow estimation after a few
iterations.

63

7.2 Segmentation results for the Hamburg taxi sequence
In the previous section the different types of optical flow regularization was
compared. It was seen that the flow driven regularization gives the best
result with regards to obtaining a successful segmentation. This section aims
at showing the performance of the segmentation algorithm, given a flow
field computed using this regularization method. To demonstrate different
situations that might occur, and how we will handle them, the Hamburg
taxi sequence will be used, for which two consecutive images are shown in
figure 7.27.2. The size of each frame in this image sequence is 190× 256.

The following subsections will look at some interesting segmentation
cases. The level set function used in the experiment is the signed distance
function of a circle with varying radius and center, and the initial spline
curve will also be a circle, but not necessarily with the same radius and
center as the initial level set function.

7.2.1 Single curve evolution
Figure 7.77.7 shows the segmentation of the black car. The initial spline curve,
a circle with center approximately on the hood of the black car, is shown
in figure 7.7a7.7a and is formed by K = 20 control points. The parameters
used in the spline evolution are α = 5.0 · 10−4/(0.0012 × 190 × 256), β =
5.0 · 10−5/

√
190× 256 and δ′ = 5.0. The initial level set function used is the

signed distance function of this initial spline curve, using a scaling s = 0.001,
and the evolution of this level set function uses parameter values δ = 50,
γ = 0.5, η = 10 and ε = 0.0001. The result shown in figure 7.7b7.7b was obtained
after 11 iterations of a 1:50 combined evolution. Figure 7.7c7.7c shows the
resulting segmented region in the original shown in figure 7.2a7.2a. It is seen
that the curve successfully describes the edge of the flow field, but due to a
non-localized flow boundary, the region is seen to enclose a relatively large
area around the taxi which is not moving.

7.2.2 Different initial data and the effect of the balloon force
The previous experiment used the same curve for initializing the level
set function and the spline curve. The following experiment uses non-
coinciding curves for the initial level set and the initial spline curve. Figure
7.8a7.8a shows selected contours of the initial level set function and 7.8b7.8b shows
the initial spline curve. The center of the level set contours is seen to lie in
between the black car and the taxi, and the spline curve is centered inside the
taxi. Figure 7.8c7.8c shows the selected contours after an initialization process
of 30 level set iterations, and figure 7.8d7.8d shows the resulting curve after 9
iterations of a 1:30 combined evolution. With the right choice of parameters
for the spline evolution, one can obtain a stable evolution of the spline
curve when the initial contours are no longer describing a signed distance
function, and the initial spline curve is relatively far from coinciding with

Segmentation results for the Hamburg taxi sequence 64

(a) Flow field with initial
curve.

(b) Flow field with curve af-
ter segmentation process.

(c) Original image with
curve after segmentation.

Figure 7.7: Segmenting the black car of the Hamburg taxi sequence. Figure 7.7a7.7a
shows the flow field computed using the flow driven regularization along with the
initial curve. Figure 7.7b7.7b shows the flow field and the curve after the segmentation
process. Figure 7.7c7.7c shows the segmented region in the original image.

these contours. Now, the result of the segmentation shown in figure 7.8d7.8d
is not a particularly good one. The contours of the level set function is
describing the black car and the taxi as one connected component, and as a
consequence the spline curve will try to do the same.

The level set evolution of figure 7.8c7.8c used γ = 0.1 as the value for the
balloon force parameter. By using a higher balloon force parameter, one can
drive the contours of the level set function past these local minima. This is
shown in figure 7.8e7.8e, which shows the same contours after the same amount
of initial level set evolutions using γ = 0.2. It it seen that the level curves
have separated into two disconnected regions describing the boundary of
the flow. The initial spline 7.8b7.8b is closer to segmenting the taxi than the
black car. The result shown in figure 7.8f7.8f is obtained in one combined
evolution of one level set evolution and 30 spline evolutions, using spline
parameters α = 5.0 · 10−3/(1.02 × 190× 256), β = 2.0 · 10−5/

√
190× 256 and

δ′ = 10. This result can also be controlled by the value of β. Higher values
of β will give more penalization to the length of the curve, making regions
of high curvature unattractive.

7.2.3 Detecting self-intersections and curve splitting
Section 6.2.36.2.3 presented the algorithm for splitting a curve into two parts
if a self-intersection is encountered. Figure 7.9a7.9a shows a spline curve after
6 iterations of a 1:30 combined evolution scheme. The level set function
is evolving using parameters δ = 100, ε = 0.001, γ = 0.5 and η = 100.
The spline curve consists of K = 30 control points, and is evolved with
parameters α = 5.0 · 10−3/(1.02 × 190× 256), β = 2.0 · 10−5/

√
190× 256 and

δ′ = 0.5. It is seen from figure 7.9a7.9a that the curve is close to self-intersecting,
forming a orientation-preserving self-intersection.

Figure 7.9b7.9b shows the situation after doing one more spline evolution.
The self-intersection was the detected by the detection algorithm, and the
splitting algorithm performed a splitting, leaving two closed curves. These

65

(a) Contours of initial level set. (b) Initial spline curve.

(c) Contours after 30 iterations
with γ = 0.1.

(d) Curve after 9 combined evolu-
tions of level set and curve.

(e) Contours after 30 iterations
with γ = 0.2.

(f) Curve after 1 combined evolu-
tions of level set and curve.

Figure 7.8: The effect of the balloon force. Figure 7.8a7.8a shows some selected contours
of the signed distance function for a circle centered between the black car and the
taxi. Figure 7.8b7.8b shows the initial spline curve as a circle with center inside the taxi.
Figure 7.8c7.8c shows the selected contours of the level set function shown in figure 7.8a7.8a
after 30 iterations using γ = 0.1 and step length δ = 30. The contours are seen to
enclose both the black car and the taxi as connected curves. Figure 7.8d7.8d shows the
result of the following segmentation, using 9 iterations of a 1:30 combined evolution,
after the initial 30 iterations of the level set function. The spline curve is seen to
enclose both the taxi and the black car, describing them as one connected component.
Figure 7.8e7.8e shows the resulting level set curve when running 30 initial iterations
with γ = 0.2. The connected component is seen to break off, and form two separate
regions. Figure 7.8f7.8f shows the result of one iteration of a 1:30 combined evolution
after the initial 30 level set iterations. The curve initialized inside the taxi is seen
to successfully describe the computed flow field of the taxi. The parameters used
for the spline iterations is α = 5.0 · 10−3/(1.02 × 190× 256), β = 2.0 · 10−5/

√
190× 256

and δ′ = 10, and the edge detector used η = 100.

Segmentation results for the Hamburg taxi sequence 66

(a) Curve before splitting. (b) Curves after splitting. (c) Separately evolved
curves after splitting.

Figure 7.9: The results of the simple splitting algorithm. Figure 7.9a7.9a shows the
spline curve enclosing both the taxi and the black car, with a level set topology
leading to a self intersection in the curve. Figure 7.9b7.9b shows the spline curves after
the detection of a self-intersection and the successive curve splitting, resulting in
two closed curves. Figure 7.9c7.9c shows the result after independently evolving the two
spline curves.

curves are added to the collection of curves, and their further evolutions
are independent. Figure 7.9c7.9c shows the result after doing one combined
evolution after the splitting. The spline curves are seen to lock on to the
level sets shown in figure 7.8e7.8e

67 Segmentation results using real-world data

8 Segmentation results using real-world data
In the previous chapter we saw the results of the segmentation for the Ham-
burg taxi sequence. This sequence is a particular nice image sequence for
estimating optical flow. The size of the images is relatively small which en-
courages the use of the direct solvers for sparse systems found in the Python
module scipy. The brightness is also fairly homogeneous in the image scene,
which is an important assumption for estimating optical flow. In this chapter
we will look at segmentation results using two real-world data sets. The im-
age sets were provided by the Norwegian Defence Research Establishment, or
Forsvarets Forskningsinsitutt (FFI), which is the prime institution responsible
for defence-related research in Norway. We will denote the two image sets
by Walking man in forest (WMF) and Drone flying over man (DFM).

Figure 8.18.1 shows a cropped selection of the DFM image sequence. The
DFM image sequence is taken from a drone (UAV) flying over a field, follow-
ing the movement of a walking person. The movement of the person relative
to the field can be seen by looking at the position of the person relative to
the diagonal lines, which are a part of the field. The sun is shining in from
the right in the image, and thus the person is casting a large shadow com-
pared to the size of the person. The lighting conditions of the image scene
are fairly homogeneous, and thus one may expect the brightness constancy
assumption to hold. The image size for the DFM sequence is 600× 800.

Figure 8.1: Cropped selection of images from the DFM sequence.

Figure 8.2: Cropped selection of images from the WMFR sequence.

Segmenting concave regions 68

Figure 8.3: Cropped selection of images from the WMFL sequence.

The WMF sequence consists of two sets of images, taken from two differ-
ent angles. We will denote the image sequence taken by the left camera as
WMFL, and the sequence taken by the right camera as WMFR. A cropped se-
lection of the WMFR image sequence is shown in figure 8.28.2. It shows a man
walking into a shaded area of a forest, moving away from the camera. The
camera is stationary, and there is no movement in the image sequence except
from the walking man. The illumination in the image is clearly changing as
the person moves into the shadow, and one can expect a considerable viola-
tion of the brightness constancy assumption in the first image of figure 8.28.2.
However, once in the shadow, there is relatively little change in brightness
for the internal pixels of the walking man, and thus one could expect this
part of the sequence to yield the best optical flow results. A cropped selec-
tion of the WMFL image sequence, corresponding to the selection from the
WMFR sequence, is shown in figure 8.38.3. From this angle one can see another
person moving in the image in addition to the person from WMFR. The
person from the WMFR image sequence is seen to enter the image from the
right boundary. The original image size for each frame in these sequences is
2048× 2048, which is relatively large for the computation of optical flow. In
the pre-processing step for the optical flow computation the images were
resized to 30% of the original size and then cropped to the size 614× 307.
The resizing was done using a billinear interpolation of pixels.

8.1 Segmenting concave regions
This section presents segmentation results using two consecutive images
in the WMFR image sequence. These two images are shown in figures 8.4a8.4a
and 8.4b8.4b. Figure 8.4c8.4c shows the resulting flow field computed using a flow
driven regularization as presented in section 3.3.33.3.3. The flow field is seen to
describe the features of the person rather well, successfully depicting the
head, the legs and the right arm. The flow was computed using a flow driven
regularization with parameters σ = 1.0, γOF = 2.0, ζ = 0.5, εOF = 0.01 and
ξ = 0.7. The smoothness parameter ξ was chosen relatively high to allow
more flow discontinuities. This is seen from the localized flow boundary

69

(a) Image 1 (b) Image 2 (c) Flow field

Figure 8.4: Figures 8.4a8.4a and 8.4b8.4b are two consecutive images in a sequence of a
person walking in a forest, taken by a still camera. The illumination is seen to change
through the image scene. The optical flow field computed from the two images,
using a flow driven smoothness term, is shown in figure 8.4c8.4c.

around the outer structure of the person, and the discontinuous flow inside
the person. In an attempt to compensate for illumination changes, the GCA
parameter γOF is chosen to be nonzero.

As the flow field has a lot of discontinuities inside the walking man,
there is a lot of noise the edge detector can pick up on. To make the level
set function more robust to this noise, we choose a smaller scaling for the
initial level set function (s = 0.0001). We can also make sure the sensitivity
parameter for the edge detector is not too high by plotting the edge detector
for different values of η. It was found that η = 100 gave a good compromise
between detecting outer structure and not detecting noise. Moreover, we
need to avoid unbounded gradients of the level set function for the edges
inside the person. This is done by choosing a high value of the balloon force
(γ = 0.5) in combination with a lower value for the step size (δ = 20). The
added velocity of the level set evolution coming from the balloon force will
help to drive the level set flow past the internal flow boundaries. Using this
along with a low value for δ avoids the need for reinitializing the level set
function while still achieving convergence for the spline curve.

Furthermore, to avoid numerical issues causing self-intersecting curves
of the orientation-reversing type, we let the spline curve evolve with a more
stringent length penalization, using α = 1.0 · 10−7/(0.00012 × 614× 307) and
β = 5.0 · 10−5/

√
614× 307. To further assist the curve in maintaining a robust

Segmenting concave regions 70

(a) 10 iterations (b) 20 iterations

(c) 50 iterations (d) 100 iterations

Figure 8.5: Segmentation of the flow field shown in figure 8.4c8.4c. The parameters
used in the level set evolution is γ = 0.5, η = 100, ε = 0.01, δ = 20 with ϕ0 being the
signed distance function with s = 0.0001. The spline consists of K = 50 points and
the parameters used is α = 1.0 ·10−7/(0.00012 ×614×307), β = 5.0 ·10−5/

√
614× 307.

The experiment was run iteratively using a 1:15 combined evolution scheme. Figures
8.5a8.5a, 8.5b8.5b, 8.5c8.5c and 8.5d8.5d shows the spline curve after 10, 20, 50 and 100 iterations
respectively. It is seen that the convex region of body is segmented relatively fast, but
the curve requires considerably more iterations to successfully describe the concave
region between the legs.

evolution, we use a backtracking line search for the step size, using λ = 5 as
the initial step size.

The curve is initialized inside the person, using K = 50 control points.
A 1:15 combined evolution scheme is used to evolve the level set and the
spline curve. Figure 8.58.5 shows the evolution of the spline curve. Figure
8.5a8.5a shows the spline curve after 10 iterations of the combined evolution.

71

It is seen that the spline curve describes the outline of the body, but not
the head or the legs. Figure 8.5b8.5b shows the spline curve after 20 combined
evolutions. The curve is describing the head, and the shape of the body is
more detailed. The curve still has problems describing the legs of the person,
but it is seen to have started deforming upwards. Figure 8.5c8.5c shows the
spline curve after 50 combined iterations. The head and shoulders are well
described, the shape of the body is more detailed than in figure 8.5b8.5b. The
legs are more clearly described in this figure, but there is still a large area
beneath the pelvic region not described by the curve. Figure 8.5d8.5d shows the
curve after 100 iterations. The curve is very close to accurately describing
the most important features of the shape of the person. The legs, the right
arm, the head, the shoulders and even the elbow of the left arm arm can be
recognised in the shape of the spline curve.

From the above analysis it is clear that convex regions are described
relatively fast, but concave regions, like the region between the legs, take
longer time to segment. This is due to the strong length penalization of the
Mumford-Shah functional, which will try to avoid regions of high curvature
in the curve. Moreover, in the initial steps of the algorithm control points
are spreading out along the length of the curve. After these eight iterations,
the points are forced to move along the curve to be able to deform into the
concave region seen in figure 8.5d8.5d. There are several ways of approaching
this issue. One suggestion might be to reduce the value of β, allowing the
curve to more easily deform into concave regions. In some cases this might
be sufficient. However, in this case we need the high value of β to avoid the
numerical issues discussed. A better alternative might be to implement a
control point insertion algorithm, adding a control point along the concave
segment of the curve.

8.1.1 Initialization process for the level set function
In some cases the spline curve will evolve very slowly in the initial iterations
of the combined evolutions. It can be advantageous to perform some initial
level set iterations before starting the combined evolution of the spline curve
and the level set function. This process is referred to as the initialization
process. Figure 8.68.6 demonstrates the result of this initialization process on
a flow field computed using the Horn and Schunck method. The level set
function is initialized as the signed distance function of the curve seen in
Figure 8.6a8.6a with scaling s = 0.001. The level set function is evolved using
parameters δ = 50, ε = 0.001, γ = 0.9 and η = 100. Before the combined
evolution, the level set is evolved using five iterations, without evolving the
spline curve. After this initialization process, a 1:50 combined evolution
scheme is initialized. Figure 8.6b8.6b shows the spline curve after two combined
iterations. The curve is shown in black, drawn onto the color coded flow
field. Figure 8.6c8.6c shows the curve drawn onto the original image. It is seen
that the curve gives a good segmentation of the flow field after two combined

Segmentingmultiple objects 72

iterations. The spline curve surrounds the objects, and has a small concavity
between the feet of the person.

From this experiment we can also compare the segmentation results for
the Horn and Schunck (HS) method with the flow driven (FD) regularization.
From the flow field itself we can see that there is more noise present in the
HS flow field compared to the FD flow field. There are also some image
structures visible in the HS flow, like the two trees close to the left and
right boundaries. This can be a challenge for the segmentation of objects,
as detection of image structures and noise can lead to the edge detector
stopping the evolution at these boundaries. However, for this particular flow
field, initial spline curve and parameter choice, this is not a problem. We
can also note the stronger flow boundaries for the FD flow field, due to the
decreased smoothing in these areas. The isotropic smoothing will lead to a
more smudged flow field, which can make small concave regions difficult
to segment. Nevertheless, the HS method is appealing due to its simplicity
and computation time. This will be further discussed in section 8.58.5.

Figure 8.78.7 shows the result when doubling δ and δ′ from the previous
experiment. Two initial level set iterations are run before the combined
evolution. The result shown is obtained after only one combined evolution.
The result is seen to give a slightly less accurate description of the flow
boundary than for the result seen in figure 8.68.6, but the curve is still able
to segment the head and parts of the legs, using approximately half the
computation time from the previous experiment.

8.2 Segmentingmultiple objects
Figures 8.8a8.8a and 8.8b8.8b show two images from the WMFL image sequence,
and figure 8.8c8.8c shows the computed flow field using the flow driven regular-
ization with parameters σ = 1.0, ξ = 0.7, γOF = 1.0, ζ = 0.1 and εOF = 0.01.
A successful segmentation of these objects would result in two separated
regions describing the shapes of two persons. The following segmentation
experiment is run with level set parameters δ = 50, γ = 0.9, η = 150 and
ε = 0.001. The level set function is initialized as the signed distance function
of the circle shown in figure 8.9a8.9a with scaling s = 0.001. As an initialization
procedure the level set was evolved using four iterations without performing
any spline iterations. After this, the spline curve is initialized with K = 100
control points as the circle shown in figure 8.9a8.9a, and evolved using a 1:50
combined evolution scheme. The parameters for the spline curve evolution
is δ′ = 0.25, α = 1 · 10−5/(0.0012 × 614× 307) and β = 2.0 · 10−5/

√
614× 307.

The ratio α0/β0 is chosen relatively high as to allow for the curve to deform
into concave regions more easily. Figure 8.9b8.9b shows the spline curve drawn
on the color coded flow field after seven combined iterations. The curve is
seen to enclose both objects, and the balloon force is forcing the curve into a
concave segmentation between the objects. After eight combined iterations
the curve has self-intersected, and the splitting algorithm has performed

73

(a) Initial curve (b) Curve after two itera-
tions

(c) Segmented region

Figure 8.6: The result of segmenting a flow field using the Horn and Schunck
smoothing term, doing five level set iterations before the combined evolution. The
level set function is evolved using parameters δ = 50, ε = 0.001, γ = 0.9 and η = 100,
and the spline curve is evolved using α = 1.0 · 10−4/(0.0012 × 614 × 307), β = 2.0 ·
10−5/

√
614× 307 and δ′ = 1.0. Figure 8.6a8.6a shows the initial spline curve formed by

K = 30 control points. Figure 8.6b8.6b shows the spline curve after two 1:50 combined
evolutions. The splitting algorithm has reduced the number of points from 30 to 21.
The result is seen to surround the convex areas of the person, and forms a slightly
concave regions between the legs. Figure 8.6c8.6c shows the segmented region in the
original image.

Figure 8.7: The segmentation result of a Horn and Schunck flow field. The level set
function is evolved using the same parameters as in the experiment shown in figure
8.68.6, but with δ = 100 and δ′ = 2.0. Two initial level set evolutions was run before
commencing with the combined evolution. The result seen above is obtained after
one iteration of a 1:50 combined evolution.

Segmentingmultiple objects 74

(a) Image 1 (b) Image 2 (c) Flow field

Figure 8.8: Figures 8.8a8.8a and 8.8b8.8b are two consecutive images in a sequence of two
people walking, taken by a still camera. The optical flow field computed from the
two images, using a flow driven smoothness term, is shown in figure 8.8c8.8c.

an automatic splitting, as shown in figure 8.9c8.9c. This splitting results in two
sharp edges. The further evolution will remove those points that would
cause the curve to self-intersect, so that the curve can lock onto the strongest
flow boundaries. This is shown in figure 8.9d8.9d, which shows the segmentation
result after 10 combined evolutions. These regions are also shown in figure
8.108.10. It is seen that the spline curve has failed to successfully describe the
shoulder of the person on the right. This happens because the flow boundary
is too weak for the edge detector to stop the level set evolution at this part
of the boundary. Because of this, the curve will enter the body of the person.

A possible amendment to this issue is to choose a higher value for the
sensitivity parameter in the edge detector. The segmentation result when
running the same experiment, but with η = 225 is shown in figure 8.138.13. The
curve is seen to give a better description of the shape of the shoulder, but
the increased sensitivity parameter also leads to some issues. This is seen
from noting the bad segmentation of the feet of the right person due to some
noise in this area. The choice of sensitivity parameter leads to this noise
being segmented as a part of the person.

Note that the combined evolution must be monitored to avoid numerical
instability. Due to the added velocity term coming from the balloon force,
the gradients of the level set function are unbounded, and the norms will
increase linearly. However, this term may lead to problems if the parameters
δ, γ and ε are not chosen correctly, which will cause an exponential increase

75

(a) Initial curve (b) Seven iterations

(c) Eight iterations (d) Ten iterations

Figure 8.9: The segmentation of two people walking. The four figures show the
spline curve in black drawn onto the color coded flow field. The experiment was
run using level set parameters δ = 50, η = 150, γ = 0.9 and s = 0.001, and spline
parameters δ′ = 0.25, α = 1 · 10−5/(0.0012 × 614× 307) and β = 2.0 · 10−5/

√
614× 307.

Four initial level set iteration were run as an initialization procedure, before a series
of 1:50 combined evolutions. The curve was initiated as a circle with K = 100 control
points. This initial spline curve is shown in figure 8.9a8.9a. Figure 8.9b8.9b shows the spline
curve after seven combined evolutions. The spline curve is seen to segment both
regions as one. Figure 8.9c8.9c shows the spline curve after eight combined evolutions.
The automatic detection and splitting algorithm has detected a self-intersection, and
split the curve, leaving two independent closed curves. Figure 8.9d8.9d shows the curve
after ten combined evolutions. The spline curve is unable to correctly segment the
shoulder of the right person due to a weak flow boundary in this area.

Segmentingmultiple objects 76

(a) Region 1 (b) Region 2

Figure 8.10: The two segmented regions from the experiment shown in figure 8.98.9.
The concave regions are segmented relatively fast, resulting from a high balloon
force parameter. A weak flow boundary on the shoulder of the person in figure
8.10b8.10b leads to the curve entering the body in this region, and fails to give a satisfying
segmentation of the shoulder area.

in the norms of the gradients of the level set function. In particular, if we
choose the balloon force parameter γ too high, the level set evolution may
become unstable. An example of such an instability is seen in figures 8.11a8.11a
and 8.11b8.11b, which show contour plots of the level set function after 10 and
11 combined iterations respectively (a total of 14 and 15 iterations due to
the initialization procedure of four level set iterations). The growing region
beneath the two persons is not due to any flow gradients, but to a numerical
instability. In this case, the value of ϕext will become too large, and the
curves will try to segment this area, as shown in figure 8.11c8.11c. Figure 8.12a8.12a
shows a plot of the approximation of the energyH(ϕ) given in equation (6.76.7)
for different values of γ , keeping the other parameters fixed. A straight line
indicates a stable increase in H(ϕ), while an exponential increase indicates
instability. The plot shows that lower values of γ will lead to a stable level
set evolution for a longer time. For γ = 0.9 the curve starts increasing
exponentially after τ = 400, while the curve is seen to maintain a stable
increase until τ = 1000 for γ = 0.7. Figure 8.12b8.12b shows the same energy
for two different values of the time step δ for γ = 0.5. It is seen that using
δ = 100 leads to the evolution becoming unstable at τ ≈ 1500. Reducing
the step size from δ = 100 to δ = 50 yields a stable evolution after time
τ = 3000. The instability for the high values of the time step implies that the
unstable evolution can be due to the semi implicit scheme that is used to
solve the PDE for the level set function. Sethian [2727, 2828] suggested to solve
the level set PDE using methods from hyperbolic conservation laws, based
on higher-order upwind schemes, as such methods are more stable.

77

(a) Level set function af-
ter 10 iterations

(b) Level set function af-
ter 11 iterations

(c) Spline curve after 12
iterations

Figure 8.11: Unstable evolution of the level set function for the experiment shown
in figure 8.88.8. Figures 8.11a8.11a and 8.11b8.11b show the contour plots of the level set function
after 10 and 11 iterations respectively. It is seen that the level set function does
no longer give a good description of the flow boundaries after 11 iterations. This
is due to the velocity added by the balloon force. Figure 8.11c8.11c shows the resulting
segmentation after 12 combined evolutions. It is seen that the continued evolution
results in unsatisfactory segmentation results.

(a) The energy H(ϕ) for different values
of γ .

(b) The energy H(ϕ) for different values
of δ.

Figure 8.12: The figures show plots for the energy H(ϕ). Note the different scaling
on the y-axis for the two plots. Figure 8.12a8.12a shows the value of the energy H(ϕ)
(given in (6.76.7)) as a function of time τ for different values of γ , with the other
parameters being constant. It is seen that lower values for γ leads to a more stable
evolution. Figure 8.12b8.12b shows the same energy as a function of time for two different
values of the time step size δ, keeping the other parameters constant. The figure
shows that decreasing the step length can serve to stabilize the evolution.

Trackingmovement 78

Figure 8.13: The segmentation result for the same experiment as shown in figure
8.98.9, but with a higher sensitivity parameter for the edge detector (η = 225). The
shoulder of the person on the right is not as badly described as in the previous
experiment, but the curve segments a large region close to the boundary, near the
feet, due to some noise in the flow field.

8.3 Trackingmovement
In this section we will look at how the spline curve can be used to track
the motion of an object. We will use a sequence of images from the WMFR
image sequence, where the first and last image of this sequence is shown in
figures 8.14a8.14a and 8.14b8.14b respectively. The process consists of an initialization
process and a tracking process, both using the same evolution parameters
as in section 8.18.1, except from the changes δ = 200, δ′ = 1.3 and K = 30. The
initialization of the spline curve was performed using an evolution of one
level set iteration followed by 200 spline iterations, and the resulting spline
curve is shown as the red line in figure 8.14c8.14c.

In the tracking process we use a reinitialization of the level set for each
step followed by 20 spline evolutions, using the spline curve from the previ-
ous segmentation as the starting point. Figure 8.158.15 shows the segmented
region after each combined evolution in the tracking process. It is seen
that the spline curve follows the shape of the body fairly well for most of
the sequence. In the last step (the bottom right image of figure 8.158.15) the
movement projected onto the camera is large, since the person is moving
his feet together in one image. The resulting segmentation is seen to be
affected by this, as the last image has a ”tail” hanging from the feet of the
person. A possible explanation for this is that there may be a clustering of
control points in this region due to the curve trying to describe the concave
region between the legs five steps earlier. When the person is closing his
feet together, the whole length of this slightly concave region in the bottom
left of figure 8.158.15 is reduced to the small length occupied by the feet in
the last image (bottom right). In this transition the points must distribute

79

(a) First image (b) Last image (c) Initial segmentation.

Figure 8.14: Figures 8.14a8.14a and 8.14b8.14b show the first and last image used for seg-
menting the movement of a person walking in a forest. This sequence consists of 18
images. Figure 8.14c8.14c shows the result of the initialization procedure of one level set
iteration and 200 spline iterations. The movement segmentation for the rest of the
sequence is shown in figure 8.158.15.

themselves along this short length.

8.4 Trackingmovement with amoving camera
In this section we will look at a part of the DFM image sequence. The aim is
to track the movement of the person in the DFM sequence using a similar
strategy as in section 8.38.3. Starting from the signed distance function with
scaling s = 0.0001 the level set is evolved using three consecutive iterations
with parameters γ = 0.5, ε = 0.01, η = 200 and δ = 200. Then, we initialize
the spline curve as a circle enclosing the person and do 400 evolutions using
parameters α = 1.0 ·10−7/(0.00012×600×800), β = 1.0 ·10−5/

√
600× 800 and

δ′ = 1.3. Figure 8.16c8.16c shows the result of this initial segmentation process.
The further tracking process is executed slightly different than the one

in section 8.38.3. Instead of reinitializing the level set function at each step, we
set δ = 20 for the rest of the evolution. By using a small value for the step
length of the level set function, we avoid the need for reinitialization due to
unbounded gradients. The curve is seen to segment a part of the area under
the shadow. This can be interpreted as the level set not evolving enough to
closely segment the shadow of the person. Moreover, the curves displayed

Trackingmovement with amoving camera 80

Figure 8.15: Tracking the movement of a person using flow segmentation. The
parameters used in the level set evolution is γ = 0.5, η = 100, ε = 0.01, δ = 20 with
ϕ0 being the signed distance function with s = 0.0001. The spline curve consists
of K = 50 points and the parameters used is α = 1.0 · 10−7/(0.00012 × 614 × 307),
β = 5.0 · 10−5/

√
614× 307 and δ′ = 1.3. The initialization process was executed

using one level set iteration and 200 spline iterations. Then, each consecutive
segmentation is found by reinitializing the level set function (with the parameters
above) and running 20 spline evolutions. The reinitialization is done to prevent
numerical instability.

81

(a) First image (b) Last image (c) Initial segmentation.

Figure 8.16: Figures 8.16a8.16a and 8.16b8.16b shows the first and last image used for
segmenting the movement of a person tracked by a flying drone. The person is
moving across a part of the field in a sequence of 56 images. Figure 8.16c8.16c shows the
result of the initial segmentation.

in the images on the fourth row are entering the shadow around its head.
This issue can also be due to an under-evolved level set function. A solution
to this problem could be to either use a larger step length in the level set
iteration or to use more than one iteration of the combined evolution for
each frame in the image sequence.

Figure 8.188.18 shows the result when running the same experiment as above,
but now using two combined evolutions in each tracking step instead of
one. The result is noticeably better. The first two columns of figure 8.198.19
shows selected frames from the two experiments. The curve is now tracking
the shape of the person (and the shadow) more closely. Furthermore, the
issue of the curve entering the shadow is no longer present, as seen from
comparing figures 8.19a8.19a and 8.19b8.19b. Running one additional combined
evolution is seen to give an apparent improvement of the segmentation
result in each image frame. However, this improvement has its cost in the
form of added computation time. The experiment above resulted in an
average computation time of 8.4 seconds for each level set iteration and 11.4
seconds for 50 spline iterations, resulting in a total of 19.8 seconds for each
additional combined evolution.

The computation time for each level set iteration is quite substantial,
but can be significantly reduced by using a GMRES solver for solving the
linear system. Running the same experiment as above with a GMRES solver
instead of an exact solver for the level set iterations resulted in an average
computation time of 2.3 seconds for each level set iteration. The residual
tolerance was set to tol = 0.0001. The third column of figure 8.198.19 shows
selected frames from the experiment using two combined evolutions with
a GMRES solver. By comparing this with the results for the experiment
using two combined evolution with an exact solver, shown in the second
column, one can see that there are no visible differences. Hence, choosing an
appropriate value for the tolerance in the GMRES scheme, one can obtain
an apparently similar result with a considerable reduction in computation
time.

Trackingmovement with amoving camera 82

Figure 8.17: Segmentation of each frame in the drone sequence, using parameters
γ = 0.5, η = 200 and ϕ0 being the signed distance function with initial scaling
s = 0.0001. The spline consists of K = 20 points and the parameters used are
α = 1.0 ·10−7/(0.00012 ×600×800), β = 1.0 ·10−5/

√
600× 800. The first image shows

the curve after an initialization procedure of three level set iterations with δ = 200,
followed by 400 spline iterations using δ′ = 1.3. The evolution of the consecutive
curves are modelled using a decreased level set step size δ = 20 and doing one level
set iteration followed by 50 spline iterations with δ′ = 1.3. The evolution of the
spline curve also uses the splitting algorithm in the case of a self-intersection.

83

Figure 8.18: Segmentation of each frame in the drone sequence, using parameters
γ = 0.5, η = 200 and ϕ0 being the signed distance function with initial scaling
s = 0.0001. The spline consists of K = 20 points and the parameters used are
α = 1.0 ·10−7/(0.00012 ×600×800), β = 1.0 ·10−5/

√
600× 800. The first image shows

the curve after an initialization procedure of three level set iterations with δ = 200,
followed by 400 spline iterations using δ′ = 1.3. The movement of the object is
then tracked using two iterations of a 1:50 combined evolution scheme with step
sizes δ = 20 and δ′ = 1.3. The evolution of the spline curve also uses the splitting
algorithm in the case of a self-intersection.

Trackingmovement with amoving camera 84

(a) Frame 25 using one
combined evolution.

(b) Frame 25 using two
combined evolutions.

(c) Frame 25 using GM-
RES solver.

(d) Frame 38 using one
combined evolution.

(e) Frame 38 using two
combined evolutions.

(f) Frame 38 using GM-
RES solver.

(g) Frame 54 using one
combined evolution.

(h) Frame 54 using two
combined evolutions.

(i) Frame 54 using GM-
RES solver.

Figure 8.19: Comparison of the segmentation results for different frames in the
DFM sequence using one combined evolution, two combined evolutions and two
combined evolutions with a GMRES solver. The spline curve segmenting the image is
shown in red. The first column shows the results from using one combined evolution
consisting of one level set iteration and 50 spline iterations in each tracking step after
the initialization procedure. The second column shows the results from using two
combined evolutions in each step after the initialization. The third column shows
the resulting segmentation when using two combined evolutions in each step where
the level set iteration is solved using GMRES with residual tolerance 0.0001. Using
two combined iterations (2nd column) is seen to be an improvement from using one
combined evolution (1st column). The GMRES solver (3rd column) is seen to give
the same visual result as the exact solver (2nd column).

85

8.5 General discussion and future work
This section presents a general discussion of the results presented in chapter
77 and chapter 88. We have seen that using the optical flow one can obtain a
vector field which describes the movement in an image sequence, and that
one can describe the contours of objects in this flow field by evolving a level
set function. Choosing an appropriate value for the sensitivity parameter,
the level sets of this function can in some sense describe the structure of
the objects. By using a Mumford-Shah type segmentation on this level set
function one can obtain a satisfying segmentation of the flow boundaries of
objects in the image.

8.5.1 Unbounded gradients of the level set function
In the current implementation the combined evolution must be monitored.
Due to the presence of an additional velocity term, which size is controlled
by the parameter γ , the gradients of the level set function is unbounded. To
avoid an unstable evolution of the spline curve as seen in figure 8.118.11 this
unboundedness must either be avoided by choosing lower values of γ and δ
in the evolution, or find a way to detect this issue and reinitialize the level set
function when it happens. As previously discussed, the former option would
lead to a slower level set evolution, and consequently a slower convergence,
which is unwanted for obvious reasons. Thus, as future work we propose
to implement an automatic detection and reinitialization algorithm that
would handle this issue for the level set function. The detection part of the
algorithm can be done by measuring the energy H(ϕ) given in (6.76.7), and
reinitialize the level set function if this energy becomes large in a relative
sense. In this case we propose to reinitialize the level set function as the
signed distance function of the spline curve C, that is,

ϕ = sd(x,C), (8.1)

where d(x,σ) is defined in equation 6.56.5. This can be done ([22] p. 194) by
solving

∂ϕ

∂t
+ sign(C)(|∇ϕ| − 1) = 0, (8.2)

ϕ(x,0) = C, (8.3)

where

sign(σ) =

1 if x ∈ ext(σ)
0 if x ∈ σ
−1 if x ∈ int(σ)

 . (8.4)

8.5.2 The splitting algorithm and the evolution of multiple curves
Some flow fields can lead to self-intersections in the curve. These self-
intersections are handled by an automatic detection and splitting algorithm,

General discussion and future work 86

which splits the curve depending on the number of control points on each
side of the self-intersection. More precisely, a segment consisting of more
than five control points will be made into a new closed curve. If it contains
less than five control points the segment will be neglected and the control
points will be dropped from the evolution.

In two of the image sequences we segmented multiple objects. This
was done by initializing one curve at some appropriate starting location
in the image, and choosing high values for the balloon force so that a split
would occur. After the splitting the two curves are evolved separately and
independently.

As seen from the segmentation of the Hamburg taxi sequence, the con-
verged solution is dependent on the initialization of the curve. We previously
noted that the initial curve must enclose the objects, but it is seen from ex-
periments that one can segment even partially enclosed objects. However, in
some cases the initialization can lead to an unwanted segmentation result (if
flow boundaries are weak e.g.). As the numerical algorithm enables multiple
curves to be evolved simultaneously, a possible amendment to this issue is
to initialize multiple curves and evolve them in parallel.

8.5.3 Computation time
The total computation time depends on both the size of the problem, the
segmentation accuracy and the method for computing optical flow.

Optical flow estimation
The Horn and Schunck method for computing optical flow involves solving
a system of 2×m×n unknowns. Hence, the computation time will depend
on the size of the image. In the current implementation, the linear sys-
tem is solved by either using the sparse linear solver in the Scipy library,
which solves the system by LU-decomposition using the C library Super LU
[1717], or the Scipy implementation of the GMRES method. As previously
mentioned, the computation time can be significantly reduced by using a
GMRES scheme for solving the sparse linear system in the HS method. The
computation of the flow image used in the experiment shown in figure 8.68.6
used approximately 2.7 seconds, corresponding to ∼ 14% of the computation
time using the built in sparse linear solver.

In their paper [66] Bruhn et al. suggested using a multigrid scheme com-
bining the local method of Lucas-Kanade [1818] with the global Horn and
Schunck method to efficiently estimate the optical flow. The authors were
able to compute the optical flow in real time using variatonal optical flow.
This suggests that there are considerable enhancements to be made by with
regards to the numerical implementation, and that variational optical flow
can provide a good alternative for detecting motion in real-time.

In most of the motion segmentation experiments we have used a flow
field computed using a flow driven regularization. Recall that this flow field

87

was computed using an iterative method. Solving the system by an iterative
method will increase the computation time, as one has to solve a linear
system of 2×m× n unknowns in each iteration. The method can be made
to converge fast by choosing a higher value of εOF in the lagged diffusivity
system, and the results seen in this chapter was computed using only 10
lagged diffusivity iterations. Still, the computation time using a flow driven
regularization will always exceed the computation time of a method solving
the system of 2×m×n unknowns only once.

The segmentation system
In the segmentation part of the computations we are iteratively solving an
equation for the level set function and an equation for the spline curve.
The number of unknowns in the level set function is m × n, and thus the
computation time of this system will also depend on the size of the image. It
has already been seen that the GMRES shceme can reduce the computation
time considerably without altering the visual result of the segmentation.
The number of iterations can be reduced by increasing the step size δ, as
seen from figure 8.78.7, but care must be taken as the level set function will
become unbounded for high values of γ and the spline curve evolution can
become unstable when choosing a high δ′ .

The spline curve iterations are in general faster than the level set iter-
ations. This is due to the computation time not being directly dependent
on the size of the image, but rather the number of control points K , the
length of the curve L and the area enclosed by the curve Aint . To explain
this, one needs to look at how the system is built inside the algorithm. In
each step one needs to approximate the values ϕint and ϕext , and conse-
quently a representation of the interior and the exterior of the curve. This
is done by discretizing the curve in the same mesh as the image, and then
tracing the curve to map the curve coordinates to pixels in the image, so
that the traced pixels divide the mesh Ω into the interior and the exterior
of the curve. A floodfill algorithm is then used to find a representation for
int(C). This part of the algorithm is obviously dependent on the number of
pixels one has to trace to map the curve to the mesh, and also the number
of iterations performed by the floodfill algorithm. Further, the right hand
side of the equation is constructed by performing a numerical integration.
This is done by using the trapezoidal rule, with some step size depending on
the number of control points K . The numerical integration scheme has the
potential to run faster than the current implementation due to restrictions in
Python. For real-time computations, an adaptive integration scheme should
be employed.

The computation time for solving the system using the FFT will also de-
pend on the number of control points, and in particular whether the number
of control points is even, odd or prime; the function is most efficient for even
numbers and least efficient for prime numbers. The computation time of
the FFT is of order O(K log(K)), and same for the inverse Fourier transform.

General discussion and future work 88

However, as K << mn, this computation time is negligible compared to the
numerical integration.

8.5.4 The segmentation of concave regions
As seen from section 8.18.1 the method allows for an accurate description of
concave regions. However, the required number of iterations is exceeding
what is acceptable in any application expected to run in real time. This
behaviour is expected, as the regularization term controlled by the parameter
β will aim to minimize the length of the curve. Possible remedies was
discussed in section 8.18.1, one of them being a control point insertion along
segments where the curve is trying to describe a concave region. For the
detection of these regions one could use the average value of the signed
curvature over a given segment of the curve. If the signed curvature is large
and negative the curve is concave. Having located this segment of the curve
∆C, one can find the point along this segment with the highest absolute
value of the signed curvature and insert a new control point close to this
point. Some care must be taken as to not insert a new control point too close
to an existing control point to avoid numerical issues.

As the convex segments of the curve are segmented faster than the
concave region, an additional remedy could be to evolve only the control
points of concave regions after some initial combined evolutions. This is
done by extracting a submatrix of the circulant matrix in (5.125.12) and the
corresponding elements of the right hand side vector, and solving this
system in some additional evolution steps independent of the rest of the
control points.

8.5.5 Choosing themethod for optical flow estimation
Which method to use for computing the optical flow depends on the required
accuracy of the segmentation, and the need for an accurate description of
objects. For practical applications the use of optical flow data may be time
critical. One example of such an application is real-time surveillance and
automated movement detection. In such a scenario a coarse contour may
be of more use than a perfectly matched segmentation, as the validity and
value of the data may decrease rapidly over time. Another example is the
use of motion segmentation computed by small unmanned vehicles, these
may carry a camera and be able to collect large amounts of data but the size
of the platform will limit the available computational resources and a video
stream may quickly overwhelm even high capacity wireless links. In this
case, optical flow and segmentation methods could be used to reduce the
required bandwidth by only transferring part of images with movement,
given that the required computation can be done at sufficient speed. This
encourages the use of a non-iterative method for optical flow estimation, like
the method of Horn and Schnuck. As seen from figure 8.78.7, a satisfying result
with respect to the requirements stated above can be obtained in only one

89

combined iterations for the right choice of optical flow parameters. However,
the method is less robust than the flow driven approach, and noisy images
or poor choice of parameters may lead to noise in the flow field, which can
lead to a failed segmentation.

The experiment shown in figure 8.88.8 shows that weak flow boundaries
can lead to issues in the segmentation process. The shoulder of the right
person has a non-localized flow boundary, and thus the edge detector fails
to stop the evolution at this edge. This is a known drawback from the flow
driven approach. The image and flow driven approach [3232] combines the
sharp boundaries of the image driven approach with the reduced overseg-
mentation of the flow driven approach. The method is anisotropic as it uses
the eigenvectors of the structure matrix in equation (3.263.26) to smooth the flow
field along image edges, while using the subquadratic penalizer shown in
equation (3.303.30) to decrease smoothing at flow boundaries. Chapter 7 of [3333],
based on the framework presented by Zimmer et al. [3535], gives the details
of this method for the choice ρ = 0 in the structure matrix, and suggests to
solve the system by a lagged diffusivity iteration. The results are reported to
give more localised flow boundaries than the isotropic flow driven method.
This combined image and flow driven regularization method can be a good
alternative if the application requires a more accurate and robust segmenta-
tion then the Horn and Schunck method can provide. Similar to the flow
driven regularization, the combined image and flow driven regularization
results in a nonlinear system, and must be solved iteratively. Hence, the
computation time can not be expected to improve from the flow driven
method.

8.5.6 Combined algorithm for localizing flow boundaries
An idea that has been considered as a viable approach for improving the
estimation of the flow field is to construct a combined algorithm for comput-
ing the optical flow and segmentation. The aim of this combined algorithm
is to use the segmentation boundary in regularizing the optical flow. As
future work we propose to look into how an iterative scheme can be used to
obtain better segmentation results, for which a proposed outline is shown in
algorithm 33.

Algorithm 3 Combined flow and segmentation algorithm

Given initial flow field w0 and contour C0
k = 0
while Segmentation is non-satisfactory do

Estimate flow field wk+1 using flow field wk and contour Ck
Estimate contour Ck+1 using flow field wk+1 and contour Ck
k = k + 1

end while
return wk and Ck

General discussion and future work 90

8.5.7 Adding a shape prior to the segmentationmodel
In many applications motion segmentation is used to detect a certain type of
objects, and so it makes sense to incorporate this information in the segmen-
tation model. By incorporating this information into the model prior to the
search, one could guide the evolution, looking for shapes that are similar
to the shapes of these objects. To do this one needs some way to measure
the similarity of shapes, and to extract information about a particular shape.
Appendix CC gives an outline for a theory on shape representations along
with a suggestion for how this can be incorporated into the existing model.

91 Conclusion

9 Conclusion
The framework proposed in this paper segments moving objects from an
image sequence by performing an active contours segmentation on an optical
flow field. The constructed numerical algorithm can be divided into two
parts; the optical flow estimation and the active contours segmentation.

The segmentation aims to evolve an initial contour to determine shape
of moving object using the boundaries of the optical flow field. This is
done by using a flow edge detector to stop the evolution of the level sets of
some function at these boundaries. The contour of the moving objects are
represented by a cubic periodic B-spline curve, and the evolution of this
contour is guided by a modified Mumford-Shah functional, resulting in a
combined evolution of level sets and B-spline curves as proposed by Fusch
et al. [1212].

The optical flow problem is ill-posed and requires the use of regulariza-
tion to obtain a unique solution. Three methods of regularizing optical flow
has been compared based on the choice of edge detector and the resulting
segmentation. These methods are the isotropic regularization of Horn and
Schunck [1313], the anisotropic image driven regularization of Nagel and
Enkelmann [2222] and the isotropic flow driven method [2929].

The use of a purely image driven regularization was discarded due to
large amounts of image structure in the optical flow field. The use of the
isotropic regularization of Horn and Schunck yields a very smooth flow field
with non-localized flow boundaries. Since the evolution of the segmentation
boundaries will stop at the detected flow boundaries, this may lead to
a segmentation where the contour gives an inaccurate description of the
moving objects. In particular, the segmentation process may fail to describe
concave segments due to the isotropic smoothing. The method has a clear
advantage in the form of a relatively low computation time. The use of
segmentation in real-time applications does not require high accuracy in
the description of objects. Consequently, the isotropic smoothing of Horn
and Schunck is a viable method for estimating optical flow in real-time
applications. The flow driven method reduces smoothing at flow boundaries.
This has the effect that the boundaries are more localized than for the
Horn and Schunck method, which will lead to more localized segmentation
boundaries. A number of segmentation experiments have been executed
on flow fields produced by the use of this regularization method, showing
both the performance of the segmentation algorithm and the quality of the
flow fields. We have shown that the flow driven method gives flow fields
which are in many cases suitable for segmentation. However, the flow driven
method has the disadvantage of increased computation time compared to
the two other methods.

The segmentation algorithm has been tested on three real-world data
sets, demonstrating the performance of the combined evolution along with

Conclusion 92

the splitting algorithm. If the boundaries of the flow field are well localized,
the evolution will converge to the outer flow boundaries of the moving
objects. It is seen that the contour is able to describe convex regions of the
objects in relatively few iterations, while concave regions takes longer time
to successfully segment. How fast the curve deforms into these regions can
be controlled by the balloon force. The evolution, and also the converged
solution, of the active contour is seen to be dependent on the parameters of
the segmentation model and the initial data.

Multiple objects can be segmented by initializing a single curve. This
is done by initializing the curve appropriately and choosing a high value
for the balloon force. The level set evolution is seen to force the contour
to self intersect. We have seen that the algorithm automatically detects
these self-intersections, and handles them by either splitting the curve or
removing control points. If the curve is split, the two resulting curves will
evolve independently after the splitting.

Appendices

95 The Euler-Lagrange equation

A The Euler-Lagrange equation
We derive the Euler-Lagrange equation. Let

J(w) =
"
Ω

F(x1,x2,w,wx1 ,wx2)dx1 dx2.

For an element w minimizing J(w), the first variation must be zero, that is,

δJ(w;η) =
d
dε

∣∣∣∣∣
ε=0

[
J(w+ εη)

]
= 0,

at ε = 0 for any arbitrary function η(x1,x2). We get

δJ(w;η) =
"
Ω

d
dε

∣∣∣∣∣
ε=0
F(x1,x2,w+ εη,wx1 + εηx1 ,wx2 + εηx2)dx1 dx2

=
"
Ω

ηFw +ηx1Fwx1 +ηx2Fwx2 dx
1 dx2

=
"
Ω

ηFw +
d

dx1 (ηFwx1) +
d

dx2 (ηFwx2)−η
(
d

dx1Fwx1 +
d

dx2Fwx2

)
dx1 dx2.

Now let ΓE , ΓW , ΓN and ΓS be the east, west, north and south boundary of
our domain respectively. Then using Gauss’ Theorem gives"

Ω

d

dx1 (ηFwx1) +
d

dx2 (ηFwx2)dx1 dx2

=
∫
ΓE
ηFwx1 dx

1 −
∫
ΓW
ηFwx1 dx

1 +
∫
ΓN
ηFwx2 dx

2 −
∫
ΓS
ηFwx2 dx

2.

Using this result, we get

δJ(w;η) =
"
Ω

η

(
Fw −

d

dx1Fwx1 −
d

dx2Fwx2

)
dx1 dx2

+
(∫

ΓE
ηFwx1 dx

1 −
∫
ΓW
ηFwx1 dx

1 +
∫
ΓN
ηFwx2 dx

2 −
∫
ΓS
ηFwx2 dx

2
)

= 0.

Since this must hold for any arbitrary function η(x1,x2) it follows that

Fw −
d

dx1Fwx1 −
d

dx2Fwx2 = 0 in Ω,

Fwx1 = 0 on ΓE and ΓW ,

Fwx2 = 0 on ΓN and ΓS .

This is called the Euler-Lagrange equation of variational calculus.

97 The elements of the circulant matrix

B The elements of the circulantmatrix
In evolving the spline curve, we are concerned with solving the system

A
∂p

∂τ

c

= Φc, (B.1)

for c ∈ {1,2}, where the elements of the matrix A are

Aij =

1∫
0

ψi(t)ψj (t)dt. (B.2)

Since the curve is periodic, this matrix will be a circulant matrix. The
functions ψk(t) are the basis functions of the cubic B-spline, which are
known. This means that the integral in (B.2B.2) can be computed analytically.
Recall that the basis functions are given as

ψk(t) =

a(K(t − tk−2)) for tk−2 ≤ t ≤ tk−1,

b(K(t − tk−1)) for tk−1 ≤ t ≤ tk ,
c(K(t − tk)) for tk ≤ t ≤ tk+1,

d(K(t − tk+1)) for tk+1 ≤ t ≤ tk+2,

(B.3)

with

a(s) =
s3

6
, b(s) =

−3s3 + 3s2 + 3s+ 1
6

,

c(s) =
3s3 − 6s2 + 4

6
, d(s) =

−s3 + 3s2 − 3s+ 1
6

.

The K×K circulant matrix can be defined by cyclically permuting a circulant
vector a of length K . We will define this vector as the first row of the matrix,
and calculate its values. As each basis function has compact support over
four subintervals [tk , tk+1] ⊂ [0,1], the vector has seven nonzero entries where
four of them are distinct. Figures 6.16.1 and 6.26.2 can help to convince the reader
of this statement. The vector can be written as

a = [a0, a1, a2, a3,0, ...,0, a3, a2, a1] , (B.4)

and the elements are given as

a0 =

1∫
0

ψi(t)ψi(t)dt a1 =

1∫
0

ψi(t)ψi−1(t)dt

a2 =

1∫
0

ψi(t)ψi−2(t)dt a3 =

1∫
0

ψi(t)ψi−3(t)dt.

(B.5)

The elements of the circulant matrix 98

The following shows the computation of these four integrals:

a0 =

1∫
0

ψi(t)ψi(t)dt =

ti+2∫
ti−2

ψi(t)ψi(t)dt

=

ti−1∫
ti−2

ψi(t)ψi(t)dt +

ti∫
ti−1

ψi(t)ψi(t)dt +

ti+1∫
ti

ψi(t)ψi(t)dt +

ti+2∫
ti+1

ψi(t)ψi(t)dt

=

1∫
0

a(s)a(s)
dt
ds
ds+

1∫
0

b(s)b(s)
dt
ds
ds+

1∫
0

c(s)c(s)
dt
ds
ds+

1∫
0

d(s)d(s)
dt
ds
ds

=
1

36K

1∫
0

(
s3

)2
+
(
−3s3 + 3s2 + 3s+ 1

)2

+
(
3s3 − 6s2 + 4

)2
+
(
−s3 + 3s2 − 3s+ 1

)2
ds

=
1

36K

1∫
0

20s6 − 60s5 + 42s4 + 16s3 − 18s2 + 18ds

=
1

36K
604
35

,

a1 =

1∫
0

ψi(t)ψi−1(t)dt =

ti+1∫
ti−2

ψi(t)ψi−1(t)dt

=

ti−1∫
ti−2

ψi(t)ψi−1(t)dt +

ti∫
ti−1

ψi(t)ψi−1(t)dt +

ti+1∫
ti

ψi(t)ψi−1(t)dt

=

1∫
0

a(s)b(s)
dt
ds
ds+

1∫
0

b(s)c(s)
dt
ds
ds+

1∫
0

c(s)d(s)
dt
ds
ds

=
1

36K

1∫
0

(
s3

)(
−3s3 + 3s2 + 3s+ 1

)
+
(
−3s3 + 3s2 + 3s+ 1

)(
3s3 − 6s2 + 4

)
+
(
3s3 − 6s2 + 4

)(
−s3 + 3s2 − 3s+ 1

)
ds

=
1

36K

1∫
0

−15s6 + 45s5 − 33s4 − 9s3 + 12s2 + 8ds

=
1

36K
1191
140

,

99

a2 =

1∫
0

ψi(t)ψi−2(t)dt =

ti∫
ti−2

ψi(t)ψi−2(t)dt

=

ti−1∫
ti−2

ψi(t)ψi−2(t)dt +

ti∫
ti−1

ψi(t)ψi−2(t)dt

=

1∫
0

a(s)c(s)
dt
ds
ds+

1∫
0

b(s)d(s)
dt
ds
ds

=
1

36K

1∫
0

(
s3

)(
3s3 − 6s2 + 4

)
+
(
−3s3 + 3s2 + 3s+ 1

)(
−s3 + 3s2 − 3s+ 1

)
ds

=
1

36K

1∫
0

6s6 − 18s5 + 15s4 − 3s2 + 1ds

=
1

36K
6
7
,

a3 =

1∫
0

ψi(t)ψi−3(t)dt =

ti−1∫
ti−2

ψi(t)ψi−3(t)dt

=

1∫
0

a(s)d(s)
dt
ds
ds

=
1

36K

1∫
0

(
s3

)(
−s3 + 3s2 − 3s+ 1

)
ds

=
1

36K

1∫
0

−s6 + 3s5 − 3s4 + s3 ds

=
1

36K
1

140
.

The number K corresponds to the number of control points, and conse-
quently the number of basis functions in the spline curve.

101 Shape analysis and statistical shape priors

C Shape analysis and statistical shape priors
In the segmentation process we aim to find a curve that segments moving
objects by using a level set function. Let us now assume that we know
the type of objects we are looking for in advance of the segmentation. By
incorporating this information into the model prior to the search, one could
guide the evolution, looking for shapes that are similar to the shapes of
these objects. To do this one needs some way to measure the similarity of
shapes, and to extract information about a particular shape. This is the goal
of statistical shape analysis.

This chapter will discuss the use of shape statistics as a measure for
obtaining better results in the segmentation process. The methods presented
here have not been implemented, but the theory is to be read as a suggestion
for future work. We start by presenting some theory on how shapes can be
presented in section C.1C.1. We will look at a particular shape representation
called the square-root velocity, given in section C.1.1C.1.1. Further, section C.1.2C.1.2
proceeds to present a shape representation called th orbits of a curve. Section
C.2C.2 gives the outline for an approach of how one might incorporate a prior
shape into the active contours model using these orbits.

C.1 Shape representation
One of the most prominent ideas for representing shapes has been the
concept of landmarks [1616], which are finite collections of important feature
points. These points could be corners or infliction points, or they could be
anatomical landmarks that specify some biologically meaningful points, like
the joints in a human body. One might argue that this way of representing
points is too subjective, as landmarks can be chosen differently for the same
objects, and that object boundaries is better seen as being continuous. Thus
a recent focus in this area has been the formulation of shapes as elements in
infinite-dimensional Riemannian manifolds called shape spaces. Srivastava
et al. [3030] introduced a convenient shape representation for parametrized
curves in such a shape space, by defining a shape representation called the
square-root velocity (SRV).

C.1.1 The square root velocity representation
Going back to our parametrized curve C(t), the SRV of C is defined as a
mapping q : [0,1]→ R2 given by

q(t) =
{
C′(t)/

√
‖C′(t)‖ if ‖C′(t)‖ 6= 0

0 if ||C′(t)||= 0
(C.1)

where C′(t) denotes the derivative of C with respect to t. The mapping is
not injective, but for every q ∈ L2([0,1],R2) there exist a curve, unique up

Shape representation 102

to a translation, such that the SRV of this curve is equal to q. This curve is
given by

C(t) =

t∫
0

q(s)||q(s)||ds. (C.2)

To make the curve representation scale invariant, the authors of [3030] pro-
ceeded to rescale the curves to unit length, so that∫ 1

0
||C′(t)||dt =

∫ 1

0
||q(t)||2 dt = 1.

Further, since all curves considered here are closed curves, we have
C(0) = C(1), which gives ∫ 1

0
q(t)||q(t)||dt = 0.

We can now proceed to present what is called the preshape space of closed
curves P represented by the SRV such that

P =
{
q ∈ L2([0,1],R2) :

∫ 1

0
||q(t)||2 dt = 1,

∫ 1

0
q(t)||q(t)||dt = 0

}
. (C.3)

This is a submanifold of L2([0,1],R2), and it can be shown that the tangent
space of P is a well defined subset of L2([0,1],R2), so that Riemannian
structures can be defined on the preshape space. In particular we have the
following (see [3030] for details):

Theorem 1. The image of the SRV mapping given in (C.1C.1) for closed curves is a
submanifold of L2([0,1],R2). The normal space is given by

N (q) = span
{
q(t),

(
qi(t)
||q(t)||

q(t) + ||q(t)||ei
)
, i = 1,2

}
(C.4)

From the theorem above we can characterize the tangent space as

T (q) =
{
v ∈ L2([0,1],R2) :< v,w >= 0,∀w ∈N (q)

}
. (C.5)

Now, let q1,q2 ∈ P and choose a smooth parametrized path α : [0,1]→ P
starting in q1 and ending in q2. The length of α in P is

L(α) =
∫ 1

0
||α′(τ)||dτ, (C.6)

and the distance between q1 and q2 is given by

dp(q1,q2) = inf
α
L(α).

103

From [33] we have that the geodesic distance is given by the L2-norm

dp(q1,q2) =
∫ 1

0
(q1(t)− q2(t))2 dt. (C.7)

Let us stop here, to dwell on what was just presented: P is now a space
of shape representations q ∈ L2([0,1],R), for shapes with the same scaling
and where translation has been removed. The distance measure d(·, ·) is the
distance between two parametrized curves in this shape space.

C.1.2 Orbits and the shape space
Preferably, we would like our shape space to be constructed so as to also
consider rotations and reparametrizations, and we would like curves that
have the same shape, but with different rotations and parametrizations, to
map to the same point in the shape space. To this end, consider a rotation
matrix O,

O =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (C.8)

for θ ∈ R. The rotation of a closed curve C is given by (O,C(t)) =OC(t), and
it is seen that the SRV q̃ of the rotated curve is given by

q̃ =
OC′(t)√
||OC′(t)||

=
OC′(t)√
||C′(t)||

=Oq(t),

where q is the SRV of C. That is, rotating the curve C(t) ∈ R2 results in the
same rotation of q(t) ∈ R2. Further, consider reparametrizations γ ∈ Γ, where
Γ is the set of all orientation-preserving diffeomorphisms of [0,1], that is,

γ : [0,1]→ [0,1] , (C.9)

such that γ ∈ C∞, γ(0) = 0 and γ(1) = 1. To see the result of a reparametriza-
tion γ , we let C(γ(t)) denote the reparametrized curve and q̃ its SRV. Letting
q be the SRV of C, then q̃ is given by

q̃ =
C′(γ(t))γ ′(t)√
||C′(γ(t))γ ′(t)||

=
C′(γ(t))

√
γ ′(t)√

||C′(γ(t))||
= q(γ(t))

√
γ ′(t).

From [3030] we also have that the actions of rotation and reparametrization
commute, and that the action ((O,γ),q) =O(q ◦γ))

√
γ ′ of the product group

Γ× SO(2) is an isometry with respect to the chosen metric. We now define
our shape space S as the quotient space

S = {[q] : q ∈ P } , (C.10)

Bayesian active contours 104

where [q] is called the orbit of q and is the set

[q] =
{
O(q ◦γ)

√
γ ′ : (γ,O) ∈ Γ× SO(2)

}
.

The orbit associated with a shape is unique, and will be the representation
for measuring the similarity between shapes. It is shown in [3030] that S
inherits the Riemannian structure from P, and that the geodesic distance
between points in S is

ds([q1], [q2]) = inf
(γ,O)∈Γ×SO(2)

dp(q1,O(q1 ◦γ)
√
γ ′). (C.11)

For the computation of this distance we refer to the path straightening
method presented in [3030]. The reminder of this chapter will focus on the
statistical methods of building and incorporating shape priors in the seg-
mentation process.

C.2 Bayesian active contours
The active contours approach presented in chapter 44 aims to draw some
active contour C to lock on to image boundaries by minimizing some energy.
Let us now assume that we know, prior to the active contours segmentation,
the type of objects in the image, or rather the shape of the subset of Ω we are
trying to segment. In this section we aim to provide a framework for how
one may incorporate this information in the active contours model. To do
this, we will utilize the shape space S and the geodesic distance based on
the SRV, presented in the previous section.

Let us assume that we have N samples of car shapes, and we want to
create a prior shape segment cars from an image. A natural thing would be
to use the mean of the shapes. The Karcher mean is defined as the element
µ ∈ S that minimizes

∑N
i=1 d([µ], [qi])2, where qi is the SRV of the curve with

parametrization Ci(t). Joshi [1414] presented a comprehensive framework
for representing and building statistical shape priors, and we refer to his
phd-thesis for a more extensive treatment than what is presented here.

C.2.1 Choosing the curve representation for shape extraction
In section 4.24.2 we presented the method of representing the evolving contour
as the level set of some function φ. Chapter 55 presented a Mumford-Shah
segmentation of this level set function using a parametrized curve. The
question arises as to which of the two ways of describing the active contour
to use for the shape extraction process. Joshi [1414] argued that using a level
set, one might run into difficulties when trying to build a representation
that is invariant to similarity transformations. Thus, we will assume that the
parametrized curve C(t), found through the Mumford-Shah segmentation,
describes the active contours. The parametrized curve representation also
coincides with the intrinsic shape analysis of section C.1C.1, and we can directly

105

apply the SRV transformation to the paramterized curve. This will allow
us to make use of the orbit representation for shapes, and consequently
the quotient space S defined in equation (C.10C.10). The use of this shape
space can be further justified by looking at the choice of shape metric and
how this metric compares shapes. To do this, we will look at the physical
interpretation of the shape matching.

C.2.2 Elastic shape deformations
When going from one shape to another in the shape space, it is preferable
that the changes to the curve itself corresponds to elastic deformations like
stretching, compression and bending. A metric that achieves this is called
an elastic metric. The following definition gives the elastic representation of
shapes:

Definition 1. Let C : [0,1]→ R2 be a parametrized curve and defineφ : [0,1]→
R by

φ(t) = ln(||C′(t)||),

and θ : [0,1]→ R2 by

θ(t) =
C′(t)
||C′(t)||

.

The pair (φ,θ) ∈ (Φ×Θ) is called the elastic representation of C and defines a set
of curves, unique up to a translation, such that

C′(t) = eφ(t)θ(t).

In terms of the elastic representation, the SRV is given as

q(t) = e1/2φ(t)θ(t).

Mio et. al [1919] gives the following definition of an elastic Riemannian metric
on (Φ×Θ):

Definition 2. Let a and b be positive real numbers, (φ,θ) ∈ (Φ ×Θ) and let
hi and fi represent infinitesimal deformations of φ and θ, so that (h1, f1) and
(h2, f2) are tangent vectors to (Φ×Θ) at (φ,θ) . Define the inner product

〈(h1, f1), (h2, f2)〉(φ,θ) = a2
∫ 1

0
h1(t)h2(t)eφ(t) dt + b2

∫ 1

0
〈f1(t)f2(t)〉eφ(t) dt.

(C.12)

The first integral in the inner product given above controls the amount of
stretching, and the second integral controls the bending. The ratio a/b shows
the amount of stretching versus bending, and gives a basis for comparing

Bayesian active contours 106

how metrics elastically deform curves. It can be shown that the L2 metric on
the space of SRV functions correspond to the elastic metric with a = 1/2 and
b = 1. However, using the L2 metric in the space L2([0,1],R2) , and letting f1
and f2 be two tangent vectors at a point q ∈ L2([0,1],R2) we get that

〈f1, f2〉 =
∫ 1

0
〈f1(t), f2(t)〉dt,

which gives an efficient way of computing geodesics using the SRV.

C.2.3 Adding the prior energy term
We are now ready to form a new energy term, also taking into account the
prior information discussed in the beginning of this section. Let C be the
curve describing the active contour, and [q] the corresponding orbit. Let [µ]
be the orbit of the boundary we want to find in the optical flow image. The
proposed energy to be minimized is

E(C) = Eϕ(C) +Eprior (C) (C.13)

= α
∫

int(C)

(ϕint −ϕ)2 dx+α
∫

ext(C)

(ϕext −ϕ)2 dx+λds([q], [µ])2, (C.14)

where λ is some positive constant. Comparing this energy functional with
the energy given in 5.25.2, we see that the length term has been removed, and
the energy

Eprior = λds([q], [µ])2, (C.15)

has been added. We argue that the energy Eprior will provide sufficient
regularization and that the length term can be dropped.

From section 5.15.1 we have that

∇Eϕ(C) = α
[(
ϕint(τ)−ϕ

)2 −
(
ϕext(τ)−ϕ

)2
]
|C′ |N , (C.16)

where N is the outward unit normal of the curve C. And the gradient ∇E(C)
is given as

∇E(C) = ∇Eϕ(C) +∇Eprior (C). (C.17)

Moreover, ∇Eprior (C) can be computed using C.7C.7 and C.11C.11. Using the gradi-
ent descent method to evolve the curve, we set

∂C
∂τ

= −∇E(C). (C.18)

107

C.2.4 The evolving the spline curve
Now, as done in section 5.25.2, we want to represent the curve by a periodic
cubic B-spline. Hence, we want to map the evolution of the curve to the
evolution of the spline control points. By using the same procedure as in
section 5.25.2, we are lead to solving the normal equations

DC(p)∗
(
DC(p)

∂p

∂τ
+∇E(C)

)
= 0, (C.19)

where DC(p) denotes the derivative of the curve with respect to the control
points, and DC(p)∗ denotes the adjoint of DC(p). The element ∂p

∂τ ∈ (R2)K

solving this equation is given by the solution to the system

A
∂p

∂τ

c

= −

1∫

0

∇E(C(p))(t)cψk(t)dt

K

k=1

(C.20)

= Φc, (C.21)

where the elements of the matrix A is given in equation (5.125.12).
The energy Eprior is here chosen to be a quadratic penalization of the

geodesic distance between the two shapes in the shape space S. However,
this is not the only way of defining this energy. Joshi [1414] proposed using
principal component analysis (PCA) of the observed set of curves on the
tangent space T (µ) defined in (C.5C.5). Let M ⊂ T (µ) be this subspace. We
then project the active contour onto this subspace, and use an imposed
probability density to estimate its energy. We refer to [1414] for more details.

By using a unique shape representation called orbits we have constructed
a shape space with a distance measure. This has enables us to find a geodesic
path between two orbits. Given some collection of shape representations,
we can guide our segmentation towards a mean of these shapes, called
the prior. This is done by perturbing the shape representation along the
direction given by the geodesic path from the current shape to the prior. This
perturbation in the shape representation results in a unique perturbation
in the parametrized curve C. Incorporating this into a modified version of
the Mumford-Shah functional can lead to enhanced segmentation results. A
more extensive treatment of shape priors and their gradients can be found
in [1414]. See also [3030] for the theory and methods of the shape space and the
computation of the geodesic distance.

109 Python code

D Python code
This chapter presents some of the code used to produce the results in chap-
ters 77 and 88. Section D.1D.1 presents the optical flow code, section D.2D.2 presents
the code for the spline curve evolution and section D.3D.3 shows the code for
the level set evolution. In each section a short explanation for each class and
function is given.

D.1 Optical flow code
The optical flow code consists of the assembly functions shown in section
D.1.1D.1.1, which is a collection of functions used to build the optical flow
systems, the Horn and Schunck flow estimation shown in section D.1.2D.1.2, the
image driven flow estimation shown in section D.1.3D.1.3 and the flow driven
function shown in section D.1.4D.1.4.

D.1.1 Assembly functions
The functions called the assembly functions are functions used to build the
optical flow system. One can divide the collection into four parts; the data
term methods, the smoothness term methods, the differentiation methods
and the boundary method.

The data termmethods
MotionTerms Function: constructs the image derivatives used

in the data term.

makeQuadraticDataTerm Function: constructs the data term for a quadratic
data term penalization.

The smoothness methods
smoothnessHS Function: constructs the HSHS smoothness term.

diDeriv Function: finds the eigenvectors of the structure matrix Sρ
for a given value of the standard deviation ρ (denoted in
the code as sigma). The method also returns the trace of the
structure matrix.

smoothnessNE Function: constructs the IDID smoothness term of Nagel and
Enkelmann.

smoothnessFD Function: constructs the FDFD smoothness term.

Optical flow code 110

The differentiationmethods
The differentiation methods are methods for computing the image deriva-
tives. The methods are

forwardDifferenceImage Function: computes the image derivatives using
the forward difference.

sobelDerivative Function: computes the image derivatives using a
sobel filter.

backwarddDifferenceImage Function: computes the image derivatives us-
ing the backward difference.

centralDifferenceImage1 Function: computes the image derivatives using
the central difference type 1.

centralDifferenceImage2 Function: computes the image derivatives using
the central difference type 2.

makeLmatrix Function: constructs the 2mn×2mn differentiation
operator for the forward difference.

Only the forward difference is used for the results shown in the thesis.

The boundarymethods
Consist of one function, neumann_boundary. This function returns a matrix
and a vector, used in solving the boundary equation. Solving the boundary
equations essentially means setting the boundary rows and columns equal
to the closest row and column, respectively.

1 import numpy as np

2 from scipy import sparse, ndimage

3 import math

4
5
6 #### Data term methods #####

7
8 def MotionTerms(g1,g2,m,n,diff_method,zeta,normalize):

9 g = g1

10
11 if diff_method is ’forward’:

12 [gx,gy] = forwardDifferenceImage(g,m,n)

13 [gxx,gxy] = forwardDifferenceImage(gx,m,n)

14 [gyx,gyy] = forwardDifferenceImage(gy,m,n)

15 [g2x,g2y] = forwardDifferenceImage(g2,m,n)

16 elif diff_method is ’central1’:

17 [gx, gy] = idm.centralDifferenceImage1(g,m,n)

18 [gxx, gxy] = idm.centralDifferenceImage1(gx,m,n)

19 [gyx, gyy] = idm.centralDifferenceImage1(gy,m,n)

20 elif diff_method is ’central2’:

21 [gx, gy] = idm.centralDifferenceImage2(g,m,n)

22 [gxx, gxy] = idm.centralDifferenceImage2(gx,m,n)

23 [gyx, gyy] = idm.centralDifferenceImage2(gy,m,n)

111

24 elif diff_method is ’sobel’:

25 [gx, gy] = idm.sobelDerivative(g,m,n)

26 [gxx, gxy] = idm.sobelDerivative(gx,m,n)

27 [gyx, gyy] = idm.sobelDerivative(gy,m,n)

28
29 gt = np.subtract(g2,g1)

30 gxt = np.subtract(g2x,gx)

31 gyt = np.subtract(g2y,gy)

32
33
34 # Normalisation terms

35 if normalize:

36 # Normalisation terms

37 theta_0 = np.sqrt(np.power(gx,2) + np.power(gy,2) + zeta**2)

38 theta_x = np.sqrt(np.power(gxx,2) + np.power(gxy,2) + zeta**2)

39 theta_y = np.sqrt(np.power(gyx,2) + np.power(gyy,2) + zeta**2)

40 gt = np.divide(gt,theta_0)

41 gxt = np.divide(gxt,theta_x)

42 gyt = np.divide(gyt,theta_y)

43
44 gx = sparse.diags(np.divide(gx,theta_0),0,format=’csr’)

45 gy = sparse.diags(np.divide(gy,theta_0),0,format=’csr’)

46 gxx = sparse.diags(np.divide(gxx,theta_x),0,format=’csr’)

47 gyx = sparse.diags(np.divide(gyx,theta_x),0,format=’csr’)

48 gxy = sparse.diags(np.divide(gxy,theta_y),0,format=’csr’)

49 gyy = sparse.diags(np.divide(gyy,theta_y),0,format=’csr’)

50 else:

51 gx = sparse.diags(gx,0,format=’csr’)

52 gy = sparse.diags(gy,0,format=’csr’)

53 gxx = sparse.diags(gxx,0,format=’csr’)

54 gyx = sparse.diags(gyx,0,format=’csr’)

55 gxy = sparse.diags(gxy,0,format=’csr’)

56 gyy = sparse.diags(gyy,0,format=’csr’)

57
58
59 grad_g = sparse.hstack((gx,gy),format=’csr’)

60 grad_gx = sparse.hstack((gxx,gyx),format=’csr’)

61 grad_gy = sparse.hstack((gxy,gyy),format=’csr’)

62
63 return grad_g, grad_gx, grad_gy, gt, gxt, gyt

64
65 def makeQuadraticDataTerm(g1,g2,m,n,diff_method,zeta,gamma,normalize):

66 # Data term for quadratic penalization

67
68 grad_g, grad_gx, grad_gy, gt, gxt, gyt = MotionTerms(g1,g2,m,n,diff_method,zeta,normalize)

69 #

70 # # Model term

71 M = (grad_g.T).dot(grad_g) + gamma*((grad_gx.T).dot(grad_gx) + (grad_gy.T).dot(grad_gy))

72 # RHS

73 b = - ((grad_g.T).dot(gt) + gamma*((grad_gx.T).dot(gxt) + (grad_gy.T).dot(gyt)))

74
75 return M,b

76
77 ### Smoothness term methods #####

78
79 def smoothnessHS(m,n):

80 # Computes the smoothness term of Horn and Schunck.

81 # Parameters: m: number of rows in the image

82 # n: number of columns in the image

83 # Returns: V: 2mn x 2mn array

84
85 L = makeLmatrix(m,n)

86 V = (L.T).dot(L)

87 return V

88

Optical flow code 112

89 def dirDeriv(g,m,n,sigma,eps):

90 # Finds the unit vevtors in the direction normal to the image edges and

91 # parallel to the image edges (see framework in Optical Flow in Harmony)

92 # Parameters: g: image as m-by-n 2-dimensional array

93 # Returns: s1: direction normal to image edges

94 # s2: direction parallel to image edges

95
96 k = eps # Small parameter to avoid singular matrices

97
98 [Dx, Dy] = forwardDifferenceImage(g,m,n)

99 S11 = np.reshape(np.power(Dx,2),[n,m]).T

100 S12 = np.reshape(np.multiply(Dx,Dy),[n,m]).T

101 S22 = np.reshape(np.power(Dy,2),[n,m]).T

102
103 S11 = ndimage.filters.gaussian_filter(S11,sigma)

104 S11 = np.reshape(S11.T,[1,m*n])[0]

105 S12 = ndimage.filters.gaussian_filter(S12,sigma)

106 S12 = np.reshape(S12.T,[1,m*n])[0]

107 S21 = S12

108 S22 = ndimage.filters.gaussian_filter(S22,sigma)

109 S22 = np.reshape(S22.T,[1,m*n])[0]

110
111 tmp = np.sqrt(np.power(S11,2)-2*np.multiply(S11,S22)+np.power(S22,2)+4*np.multiply(S21,S12))

112
113 # s1 is the eigenvector corresponding to the largest eigenvalue

114 s1_1 = S11 - S22 + tmp

115 s1_2 = 2*S21

116 norm1 = np.sqrt(np.power(s1_1,2)+np.power(s1_2,2)) + eps

117 s1 =

sparse.hstack((sparse.diags(np.divide(s1_1,norm1),0),sparse.diags(np.divide(s1_2,norm1),0)),format

= ’csr’).T

↪→
↪→

118
119 s2_1 = S11 - S22 - tmp

120 s2_2 = 2*S21

121 norm2 = np.sqrt(np.power(s2_1,2)+np.power(s2_2,2)) + eps

122 s2 =

sparse.hstack((sparse.diags(np.divide(s2_1,norm2),0),sparse.diags(np.divide(s2_2,norm2),0)),format

= ’csr’).T

↪→
↪→

123
124 trace = S11 + S22

125
126 return s1,s2,trace

127
128 def smoothnessNE(g,m,n,kappa,sigma,eps):

129 # Computes the anisotropic image driven smoothness term

130 # of Nagel and Enkelmann.

131 # Parameters: g: image as m-by-n array

132 # kappa: regularization parameter

133 # Returns: V: smoothness array

134
135 [s1,s2,trace] = dirDeriv(g,m,n,sigma,eps)

136 A =

sparse.diags(np.divide(np.power(kappa,2)*np.ones(m*n),trace+2*np.power(kappa,2)*np.ones(m*n)),0)↪→
137 A = sparse.kron(sparse.eye(2),A)

138 B = sparse.diags(np.divide(trace +

np.power(kappa,2)*np.ones(m*n),trace+2*np.power(kappa,2)*np.ones(m*n)),0)↪→
139 B = sparse.kron(sparse.eye(2),B)

140 P1 = A.dot(s1.dot(s1.T)) + B.dot(s2.dot(s2.T))

141 P = sparse.kron(sparse.eye(2),P1,format = ’csr’) # Diffusion matrix

142
143 L = makeLmatrix(m,n)

144
145 V = ((L.T).dot(P)).dot(L)

146 return V

147

113

148 def smoothnessFD(grad_w,m,n,eps):

149 # Forms the diffusion matrix in the lagged diffusivity iteration

150 # grad_w: flow gradient (derivatives)

151 # m,n: dimensions of image

152 # eps: parameter in the convex penaliser function

153 # Returns: V: Diffusion matrix

154
155 u_x = grad_w[0:m*n]

156 u_y = grad_w[m*n:2*m*n]

157 v_x = grad_w[2*m*n:3*m*n]

158 v_y = grad_w[3*m*n:4*m*n]

159 psi_deriv = sparse.diags(np.divide(np.ones(m*n),(np.sqrt(np.power(u_x,2) + np.power(u_y,2) +

np.power(v_x,2) + np.power(v_y,2)+math.pow(eps,2)))),0)↪→
160 L = makeLmatrix(m,n)

161 V = ((L.T).dot(sparse.kron(sparse.eye(4),psi_deriv,format = ’csr’))).dot(L)

162 return V

163
164
165 ### Differentiation methods ####

166
167 def forwardDifferenceImage(g,m,n):

168 #forwardDifferenceImage Computes approximation of the image gradient using

169 #forward difference

170 # Boundaries: zero first derivatives

171
172 Lx = sparse.diags([-np.ones(m*n),np.ones((n-1)*m)],[0,m],format = ’lil’)

173 Lx[m*(n-1):m*n,m*(n-1):m*n] = np.zeros((m,m))

174 Lx[m*(n-1):m*n,m*(n-2):m*(n-1)] = np.zeros((m,m))

175 Ly1 = sparse.diags([-np.ones(m), np.ones(m-1)],[0,1],format = ’lil’)

176 Ly1[m-1,:] = np.hstack((np.zeros(m-2),[0,0]))

177 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

178
179 Dx = Lx.dot(g)

180 Dy = Ly.dot(g)

181
182 return Dx,Dy

183
184 def sobelDerivative(g,m,n):

185 # Computes the Dx and Dy submatrices of the model term discretization.

186 # Uses the sobel derivatives as approximation for the image gradients.

187 # Parameters: g: an image as array

188 # Returns: Dx: m*n 1-dimensional array with the approximation of the

189 # derivatives in the x-direction

190 # Dy: m*n 1-dimensional array with the approximation of the

191 # derivatives in the y-direction

192
193 g = np.reshape(g,[n,m]).T

194
195 Gx = np.array([[-1 ,0, 1],[-2, 0 ,2],[-1, 0, 1]])

196 Gy = Gx.T

197
198 Dx = signal.convolve2d(g,Gx,mode=’same’)

199 Dy = signal.convolve2d(g,Gy,mode=’same’)

200
201 Dx = np.reshape(Dx.T,[1,m*n])[0]

202 Dy = np.reshape(Dy.T,[1,m*n])[0]

203 return Dx,Dy

204
205 def backwardDifferenceImage(g,m,n):

206 Lx = sparse.diags([-np.ones(m*n),np.ones((n-1)*m)],[0,m],format = ’lil’)

207 Lx[m*(n-1):m*n,m*(n-2):m*(n-1)] = np.zeros((m,m))

208 Ly1 = sparse.diags([-np.ones(m), np.ones(m-1)],[0,1],format = ’lil’)

209 Ly1[0,:] = np.hstack((np.zeros(m-2),[0,0]))

210 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

211

Optical flow code 114

212
213 Dx = (-Lx.T).dot(g)

214 Dy = (-Ly.T).dot(g)

215
216 return Dx,Dy

217
218 def centralDifferenceImage1(g):

219 #forwardDifferenceImage Computes approximation of the image gradient using

220 # central difference type1

221 lx = sparse.hstack((-sparse.eye(m),np.zeros((m,m))))

222 lx = sparse.hstack((lx,sparse.eye(m)))

223 lx = 1.0/2*lx

224 Lx = 1.0/2*sparse.diags([-np.ones(m*(n-1)),np.ones((n-1)*m)],[-m,m],format = ’lil’)

225 Lx[m*(n-1):m*n,m*(n-3):m*n] = lx

226 Lx[0:m,0:m*3] = lx

227
228 ly = np.array([-1.0,0,1.0])/2

229 Ly1 = sparse.diags([-np.ones(m-1), np.ones(m-1)],[-1,1],format = ’lil’)

230 Ly1[m-1:m,m-3:m] = ly

231 Ly1[0,0:3] = ly

232 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

233
234 Dx = Lx.dot(g)

235 Dy = Ly.dot(g)

236
237 return Dx,Dy

238
239 def centralDifferenceImage2(g):

240 # Central difference type 2

241 lx = sparse.hstack((sparse.eye(m),-8*sparse.eye(m)))

242 lx = sparse.hstack((lx,np.zeros((m,m))))

243 lx = sparse.hstack((lx,8*sparse.eye(m)))

244 lx = sparse.hstack((lx,-sparse.eye(m)))

245 Lx = sparse.diags([np.ones((n-2)*m),-8*np.ones((n-1)*m),8*np.ones((n-1)*m),-np.ones((n-2)*m)],[-

2*m,-m,m,2*m],format=’lil’)↪→
246 Lx[m*(n-1):m*n,m*(n-5):m*n] = lx

247 Lx[0:m,0:m*5] = lx

248 Lx = sparse.csr_matrix(Lx)

249
250 ly = np.array([-8.0,1.0,0,8.0,-1.0])

251 Ly1 = sparse.diags([np.ones(m-2),-8*np.ones(m-1),8*np.ones(m-1),-np.ones(m-2)],[-2,-1,1,2],format =

’lil’)↪→
252 Ly1[m-1,m-5:m] = ly

253 Ly1[0,0:5] = ly

254 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

255
256
257 Dx = Lx.dot(g)/12

258 Dy = Ly.dot(g)/12

259
260 return Dx,Dy

261
262 def makeLmatrix(m,n):

263 # Forms the L matrix used in the flow derivative approximation.

264 # A matrix multipication with Lx and Ly gives the approximation of the

265 # derivatives in x- and y-direction assuming neumann boundary conditions.

266 # Parameters: m: number of rows in the image

267 # n: number of columns in the image

268 # Returns: L: 2-dimensional array of shape 4mn x 2mn. The matrix

269 # multiplication grad_w= L[u,v].T gives a

270 # 4mn vector grad_w = [u_x,u_y,v_x,v_y].T

271
272 Lx = sparse.diags([-np.ones(m*n),np.ones((n-1)*m)],[0,m],format = ’lil’)

273 Ly1 = sparse.diags([-np.ones(m), np.ones(m-1)],[0,1],format = ’lil’)

274 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

115

275 L = sparse.kron(sparse.eye(2),sparse.vstack((Lx,Ly)),format = ’csr’)

276 return L

277
278 #### Boundary Methods ####

279
280 def neumann_boundary(m,n):

281 # Matrices for solving the boundary equations

282
283 neumann_x = sparse.hstack((sparse.diags(-np.ones(m),0),sparse.diags(np.ones(m),0)))

284 neumann_y = sparse.eye(m,format=’lil’)

285 neumann_y[0,:2] = [-1,1]

286 neumann_y[m-1,m-2:m] = [-1,1]

287 neumann = sparse.kron(sparse.eye(n),neumann_y,format = ’lil’)

288 neumann[0:m,0:2*m] = neumann_x

289 neumann[m*(n-1):m*n,m*(n-2):m*n] = neumann_x

290 elim_y = np.ones(m)

291 elim_y[0] = 0

292 elim_y[m-1] = 0

293 elimination_vector =

np.hstack((np.hstack((np.zeros(m),np.kron(np.ones((n-2)),elim_y))),np.zeros(m)))↪→
294
295 elimination_vector = np.hstack((elimination_vector,elimination_vector))

296 neumann = sparse.kron(sparse.eye(2),neumann)

297
298 return neumann, elimination_vector

D.1.2 Horn and Schunckmethod
The estimateFlow_HS function estimates the flow using the isotropic data
term described as the Horn and Schunck method. The function takes two
consecutive images, a global regularization parameter and a standard devia-
tion for the presmooting. The default values of the optional parameters are
set to estimate the flow using the original Horn and Schunck method [1313],
using only the BCA, but this can be changed by passing the parameters γ
and ζ to the function in addition to the required arguments.

1 import numpy as np

2 from scipy import ndimage,sparse

3 from scipy.sparse.linalg import spsolve, gmres

4 import assemble_flow_systems as afs

5 import math

6
7
8 def estimateFlow_HS(g1,g2,xi,sigma_image,gamma = 0.0,zeta = None,diff_method=’forward’,gmres_tol =

None):↪→
9 # Estimates the flow using isotropic smoothing of Horn and schunck

10 # g1 and g2 are two consecutive images represented as numpy arrays

11 # xi: global regularization parameter

12 # sigma_image: std deviation in Gaussian convolution

13 # gamma: GCA parameter

14 # zeta: normalization parameter

15 # diff_method gives the differentiation method for image derivatives

16 # ’forward’ gives forward difference

17 # ’central1’ gives central difference type 1

18 # ’central2’ gives central difference type 2

19 # ’sobel’ gives sobel derivative

20
21 [m,n] = g1.shape

Optical flow code 116

22
23 # Gaussian Smoothing

24 g1 = np.array(g1, dtype=np.double)

25 g2 = np.array(g2, dtype=np.double)

26 g1 = ndimage.filters.gaussian_filter(g1,sigma_image)

27 g2 = ndimage.filters.gaussian_filter(g2,sigma_image)

28 g1 = g1.flatten(order=’F’)

29 g2 = g2.flatten(order=’F’)

30
31 if zeta:

32 normalize = True

33 else:

34 normalize = False

35
36 # Using Horn and Schunck Smoothness term

37 V = afs.smoothnessHS(m,n)

38 M,b = afs.makeQuadraticDataTerm(g1,g2,m,n,diff_method,zeta,gamma,normalize)

39 G = M + math.pow(xi,-2)*V

40
41 neumann, elimination_vector = afs.neumann_boundary(m,n)

42 if gmres_tol:

43 # Interior

44 w,info = gmres(G,b,tol=gmres_tol)

45 # Boundary

46 w, info = gmres(neumann,np.multiply(w,elimination_vector),x0=w,tol=gmres_tol)

47 else:

48 # Interior

49 w = spsolve(G,b)

50 # Boundary

51 w = spsolve(neumann,np.multiply(w,elimination_vector))

52
53 return w

D.1.3 Image drivenmethod
The function estimateFlow_ID estimates the flow using the IDID regularization
term of Nagel and Enkelmann. Similar to the HSHS method, the function
takes a set of required parameters, with a set of optional parameters having
default values corresponding to the original method proposed by Nagel and
Enkelmann [2222].

1 import numpy as np

2 from scipy import ndimage,sparse

3 from scipy.sparse.linalg import spsolve, gmres

4 import assemble_flow_systems as afs

5 import math

6
7
8 def estimateFlow_ID(g1,g2,xi,sigma_image,kappa,mu_regTensor,eps=0.001,gamma = 0.0,zeta =

None,diff_method=’forward’,gmres_tol = None):↪→
9 # Estimates the flow using Image driven smoothing

10 # g1 and g2 are two consecutive images represented as numpy arrays

11 # xi: global regularization parameter

12 # sigma_image: std deviation in Gaussian convolution

13 # kappa: regularization parameter in projection matrix

14 # mu_regTensor: std deviation for Gaussian convolution of structure matrix

15 # eps: small parameter to avoid singular matrices

16 # gamma: GCA parameter

17 # zeta: normalization parameter

117

18 # diff_method gives the differentiation method for image derivatives

19 # ’forward’ gives forward difference

20 # ’central1’ gives central difference type 1

21 # ’central2’ gives central difference type 2

22 # ’sobel’ gives sobel derivative

23
24 [m,n] = g1.shape

25
26 # Gaussian Smoothing

27 g1 = np.array(g1, dtype=np.double)

28 g2 = np.array(g2, dtype=np.double)

29 g1 = ndimage.filters.gaussian_filter(g1,sigma_image)

30 g2 = ndimage.filters.gaussian_filter(g2,sigma_image)

31 g1 = g1.flatten(order=’F’)

32 g2 = g2.flatten(order=’F’)

33
34 if zeta:

35 normalize = True

36 else:

37 normalize = False

38
39 # Using Nagel and Enkelmann image driven method

40 V = afs.smoothnessNE(g1,m,n,kappa,mu_regTensor,eps)

41 M,b = afs.makeQuadraticDataTerm(g1,g2,m,n,diff_method,zeta,gamma,normalize)

42 G = M + math.pow(xi,-2)*V

43 G.tocsr()

44
45 neumann, elimination_vector = afs.neumann_boundary(m,n)

46 neumann.tocsr()

47 if gmres_tol:

48 # Interior

49 w,info = gmres(G,b,tol=gmres_tol)

50 # Boundary

51 w, info = gmres(neumann,np.multiply(w,elimination_vector),x0=w,tol=gmres_tol)

52 else:

53 # Interior

54 w = spsolve(G,b)

55 # Boundary

56 w = spsolve(neumann,np.multiply(w,elimination_vector))

57 return w

D.1.4 Flow drivenmethod
1 import numpy as np

2 from scipy import misc, ndimage,sparse, signal

3 from scipy.sparse.linalg import spsolve, gmres

4 import math

5 import assemble_flow_systems as afs

6
7 def estimateFlow_FD(g1,g2,xi,sigma_image,eps= 0.01, gamma = 0.0,zeta =

None,diff_method=’forward’,gmres_tol = None):↪→
8 # Computes the flow using lagged diffusivity

9 # g1 and g2 are two consecutive images represented as numpy arrays

10 # xi: global regularization parameter

11 # sigma_image: std deviation in Gaussian convolution

12 # kappa: regularization parameter in projection matrix

13 # mu_regTensor: std deviation for Gaussian convolution of structure matrix

14 # eps: small parameter to avoid singular matrices

15 # gamma: GCA parameter

16 # zeta: normalization parameter

17 # diff_method gives the differentiation method for image derivatives

18 # ’forward’ gives forward difference

Spline curve evolution 118

19 # ’central1’ gives central difference type 1

20 # ’central2’ gives central difference type 2

21 # ’sobel’ gives sobel derivative

22
23 [m,n] = g1.shape

24
25 # Gaussian Smoothing

26 g1 = np.array(g1, dtype=np.double)

27 g2 = np.array(g2, dtype=np.double)

28 g1 = ndimage.filters.gaussian_filter(g1,sigma_image)

29 g2 = ndimage.filters.gaussian_filter(g2,sigma_image)

30 g1 = g1.flatten(order=’F’)

31 g2 = g2.flatten(order=’F’)

32
33 if zeta:

34 normalize = True

35 else:

36 normalize = False

37
38 L = afs.makeLmatrix(m,n)

39 # Initial flow values

40 w = np.zeros(2*m*n)

41 # Flow derivatives

42 grad_w = L.dot(w)

43 # Smoothness term

44 V = afs.smoothnessFD(grad_w,m,n,eps)

45 del_w = 1

46 iter_nr = 0

47 iter_max = 10

48
49 [M,b] = afs.makeQuadraticDataTerm(g1,g2,m,n,diff_method,zeta,gamma,normalize)

50 # Lagged Diffusivity iteration:

51 while np.max(del_w) > 1e-4 and iter_nr <iter_max:

52 print iter_nr

53 iter_nr += 1

54 G = M + math.pow(xi,-2)*V

55 neumann, elimination_vector = afs.neumann_boundary(m,n)

56 if gmres_tol:

57 # Interior

58 w_new,info = gmres(G,b,x0=w,tol=gmres_tol)

59 # Exterior

60 w_new, info = gmres(neumann,np.multiply(w_new,elimination_vector),x0=w_new,tol=gmres_tol)

61 else:

62 # Interior

63 w_new = spsolve(G,b)

64 # Boundary

65 w_new = spsolve(neumann,np.multiply(w_new,elimination_vector))

66 grad_w = L.dot(w_new)

67 V = afs.smoothnessFD(grad_w,m,n,eps)

68 del_w = abs(w_new - w)

69 w = w_new

70 return w

D.2 Spline curve evolution
The following code contains the functions and classes related to the spline
curve. The following is a list of classes and functions in the order they
appear in the code;

JordanCurve Class: contains functions for evaluating spline curve

119

and its derivatives. The class also contains the func-
tions for finding the boundary, finding the enclosed
area, finding self-intersections and drawing func-
tions.

floodfill Function: finds the enclosed area given a boundary
f .

split_curve Function: splits curve into two. Returns the number
of curves that was added to the collection of closed
curves.

makeLagrangianBasis Function: constructs basis coefficients for bilinear
basis functions.

evaluate_function Function: computes a bilinear interpolation of a
function at a position(x,y) given function weights
w.

MS_grad Function: computes the gradient of the modified
Mumford-Shah (MS) functional for a given parame-
ter value t, a curve C and a level set function u (not
flow component).

MS Function: computes value of the modified Mumford-
Shah (MS) functional for a given curve C.

lineSearch Function: performs a backtracking line search given
a search direction dp and a curve C. Returns the
new control points for the curve C.

evolveControlPoints Function: evolves the spline curve control points for
a list of curves. The function takes a list of curves, a
level set function and spline parameters.

initializeControlPoints Function: initializes control points as a circle with
given center and radius.

1 import numpy as np

2 import math

3 from scipy import misc, ndimage,sparse,integrate

4 from PIL import Image

5 import math

6
7
8 class JordanCurve:

9 # Class for a simple Jordan Curve

10 # Initialize with a set of K control points

11 # The control points of the periodic curve need to be in clockwise order

12 def __init__(self,points):

13 # points: Set of K points in clockwise order

14 self.K = len(points)

15 self.points = points

Spline curve evolution 120

16 # Makes vector of control points for a periodic curve

17 self.control_points = np.vstack((points[self.K-1],np.vstack((points,points[0:2]))))

18
19 def evaluate(self,t):

20 # Evaluates the curve at t

21 # t lies in the interval [t_k,t_k+1]

22 if t == 1.0:

23 k = 0

24 else:

25 k = np.floor(t*self.K).astype(int)

26 # Position in vector of control points for point k

27 # points[k] = control_points[i] for k = 0,...,K

28 i = k + 1

29 # Linear combination of the basis functions a, b, c and d

30 return self.control_points[i+2]*self.a(t) + self.control_points[i+1]*self.b(t) +

self.control_points[i]*self.c(t) + self.control_points[i-1]*self.d(t)↪→
31
32 def evaluate_d(self,t):

33 # Evaluates the derivatives

34 # t lies in the interval [t_k,t_k+1]

35 if t == 1.0:

36 k = 0

37 else:

38 k = np.floor(t*self.K).astype(int)

39
40 # Position in vector of control points for point k

41 # points[k] = control_points[i] for k = 0,...,K

42 i = k + 1

43
44 # Linear combination of the derivative of basis functions a, b, c and d

45 return self.K*(self.control_points[i+2]*self.a_d(t) + self.control_points[i+1]*self.b_d(t) +

self.control_points[i]*self.c_d(t) + self.control_points[i-1]*self.d_d(t))↪→
46
47 def evaluate_dd(self,t):

48 if t == 1.0:

49 k = 0

50 else:

51 k = np.floor(t*self.K).astype(int)

52 i = k + 1

53 # Linear combination of the double derivative of basis functions a, b, c and d

54 return self.K*self.K*(self.control_points[i+2]*self.a_dd(t) +

self.control_points[i+1]*self.b_dd(t) + self.control_points[i]*self.c_dd(t) +

self.control_points[i-1]*self.d_dd(t))

↪→
↪→

55
56
57 def set_points(self,points):

58 # Sets new control points

59 # Equivalent to the mapping

60 # control_points -> [param -> points_on_curve]

61 self.points = points

62 self.K = len(points)

63 self.control_points = np.vstack((points[self.K-1],np.vstack((points,points[0:2]))))

64
65 def a(self,t):

66 # t lies in the interval [t_k,t_k+1]

67 k = np.floor(t*self.K).astype(int)

68 # Maps [t_k,t_k+1] to [0,1]

69 s = (t - k*1.0/self.K)*self.K

70 return 1.0/6*np.power(s,3)

71
72 def b(self,t):

73 # k = int(t*self.K)

74 k = np.floor(t*self.K).astype(int)

75 # Maps [t_k,t_k+1] to [0,1]

76 s = (t - k*1.0/self.K)*self.K

121

77 return (-3*np.power(s,3) + 3*np.power(s,2) + 3*s + 1)*1.0/6

78
79 def c(self,t):

80 # k = int(t*self.K)

81 k = np.floor(t*self.K).astype(int)

82 # Maps [t_k,t_k+1] to [0,1]

83 s = (t - k*1.0/self.K)*self.K

84 return 1.0/6*(3*np.power(s,3)-6*np.power(s,2)+4)

85
86 def d(self,t):

87 # k = int(t*self.K)

88 k = np.floor(t*self.K).astype(int)

89 # Maps [t_k,t_k+1] to [0,1]

90 s = (t - k*1.0/self.K)*self.K

91 return 1.0/6*(-np.power(s,3)+3*np.power(s,2)-3*s+1)

92
93 def a_d(self,t):

94 # k = int(t*self.K)

95 k = np.floor(t*self.K).astype(int)

96 # Maps [t_k,t_k+1] to [0,1]

97 s = (t - k*1.0/self.K)*self.K

98 return 1.0/2*np.power(s,2)

99
100 def b_d(self,t):

101 # k = int(t*self.K)

102 k = np.floor(t*self.K).astype(int)

103 s = (t - k*1.0/self.K)*self.K

104 return (-3*np.power(s,2) + 2*s + 1)*1.0/2

105
106 def c_d(self,t):

107 # k = int(t*self.K)

108 k = np.floor(t*self.K).astype(int)

109 s = (t - 1.0/self.K*k)*self.K

110 return 1.0/2*(3*np.power(s,2)-4*s)

111
112 def d_d(self,t):

113 # k = int(t*self.K)

114 k = np.floor(t*self.K).astype(int)

115 s = (t - k*1.0/self.K)*self.K

116 return 1.0/2*(-np.power(s,2)+2*s-1)

117
118 def a_dd(self,t):

119 # k = int(t*self.K)

120 k = np.floor(t*self.K).astype(int)

121 s = (t - k*1.0/self.K)*self.K

122 return 1.0/6*3*2*s

123
124 def b_dd(self,t):

125 # k = int(t*self.K)

126 k = np.floor(t*self.K).astype(int)

127 s = (t - k*1.0/self.K)*self.K

128 return (-3*3*2*s + 3*2)*1.0/6

129
130 def c_dd(self,t):

131 # k = int(t*self.K)

132 k = np.floor(t*self.K).astype(int)

133 s = (t - k*1.0/self.K)*self.K

134 return 1.0/6*(3*3*2*s-6*2)

135
136 def d_dd(self,t):

137 # k = int(t*self.K)

138 k = np.floor(t*self.K).astype(int)

139 s = (t - k*1.0/self.K)*self.K

140 return 1.0/6*(-3*2*s+3*2)

141

Spline curve evolution 122

142 def draw_curve(self,img,T,rgb):

143 dt = 1.0/T

144 t = 0

145 [m,n,c] = img.shape

146 for i in range(T):

147 coord = self.evaluate(t)

148 if int(coord[0]) >= 0 and int(coord[0]) < m and int(coord[1]) >= 0 and int(coord[1]) < n:

149 img[int(coord[0]),int(coord[1])] = rgb

150 t = t + dt

151 return img

152
153 def draw_control_points(self,img,rgb,m,n):

154 for k in range(self.K):

155 i = k+1

156 p = self.control_points[i]

157 if int(p[0]) >= 0 and int(p[0]) < m and int(p[1]) >= 0 and int(p[1]) < n:

158 img[int(p[0]),int(p[1])] = rgb

159 return img

160
161 def find_next_pixel(self,m,n,t):

162 coord = self.evaluate(t)

163 k = np.floor(t*self.K).astype(int)

164 if (k+1)*1.0/(self.K-1) >= 1.0:

165 coord_next = self.evaluate(0.0)

166 else:

167 coord_next = self.evaluate((k+2)*1.0/(self.K+1))

168 cp_next = (k+2)*1.0/(self.K+1)

169 if np.power(int(coord[0])-int(coord_next[0]),2) + np.power(int(coord[1])-int(coord_next[1]),2)

== 0:↪→
170 return cp_next

171 t0 = t

172 dt = (cp_next-t0)*1.0/2

173 t = t0 +dt

174 if t >= 1.0:

175 return 1.0

176 coord_new = self.evaluate(t)

177 while np.power(int(coord[0])-int(coord_new[0]),2) + np.power(int(coord[1])-int(coord_new[1]),2)

> 2:↪→
178 dt = dt*1.0/2

179 t = t0 + dt

180 coord_new = self.evaluate(t)

181 return t

182
183 def find_boundary(self,m,n):

184 t = 0.0

185 f = np.zeros((m,n))

186 coord = self.evaluate(t)

187 if int(coord[0]) >= 0 and int(coord[0]) < m and int(coord[1]) >= 0 and int(coord[1]) < n:

188 f[int(coord[0]),int(coord[1])] = 1

189 while t < 1.0:

190 t = self.find_next_pixel(m,n,t)

191 coord = self.evaluate(t)

192 if int(coord[0]) >= 0 and int(coord[0]) < m and int(coord[1]) >= 0 and int(coord[1]) < n:

193 f[int(coord[0]),int(coord[1])] = 1

194 return f

195
196 def find_enclosed_area(self,m,n,circumf):

197 dt = 1.0/(circumf)

198 boundary = self.find_boundary(m,n)

199 t = 0.0

200 coord_0 = self.evaluate(t)

201 while not (int(coord_0[0]) >= 0 and int(coord_0[0]) < m-1 and int(coord_0[1]) >= 0 and

int(coord_0[1]) < n-1) and t < 1.0-dt:↪→
202 t += dt

203 coord_0 = self.evaluate(t)

123

204 C_deriv_0 = self.evaluate_d(t)

205 normal_inward = np.array([C_deriv_0[1],-C_deriv_0[0]])*1.0/np.linalg.norm(C_deriv_0)

206 # Finding an internal pizel by going in the direction of the inward normal

207 while boundary[int(coord_0[0]),int(coord_0[1])] == 1:

208 coord_0 = coord_0 + normal_inward

209 return floodfill(boundary,int(coord_0[0]),int(coord_0[1]))

210
211 def find_selfintersection(self,m,n):

212 self_inter_1 = 0.0

213 self_inter_2 = 0.0

214 t = 0.0

215 f = np.zeros((m,n))

216 coord_0 = self.evaluate(t)

217 coord = coord_0

218 if int(coord_0[0]) >= 0 and int(coord_0[0]) < m and int(coord_0[1]) >= 0 and int(coord_0[1]) <

n:↪→
219 f[int(coord_0[0]),int(coord_0[1])] = t

220 while t < 1.0:

221 t = self.find_next_pixel(m,n,t)

222 coord_new = self.evaluate(t)

223 if int(coord_new[0]) >= 0 and int(coord_new[0]) < m and int(coord_new[1]) >= 0 and

int(coord_new[1]) < n:↪→
224 if f[int(coord_new[0]),int(coord_new[1])] != 0:

225 if not (int(coord_0[0]) == int(coord_new[0]) and int(coord_0[1]) ==

int(coord_new[1])):↪→
226 self_inter_1 = f[int(coord_new[0]),int(coord_new[1])]

227 self_inter_2 = t

228 break

229 else:

230 coord = coord_new

231 candidate_t = t

232 while t < 1.0:

233 t = self.find_next_pixel(m,n,t)

234 coord_new = self.evaluate(t)

235 if not (int(coord[0]) == int(coord_new[0]) and int(coord[1]) ==

int(coord_new[1])):↪→
236 self_inter_1 = f[int(coord_new[0]),int(coord_new[1])]

237 self_inter_2 = candidate_t

238 break

239 if not (int(coord[0]) == int(coord_new[0]) and int(coord[1]) == int(coord_new[1])):

240 if int(coord[0]) >= 0 and int(coord[0]) < m and int(coord[1]) >= 0 and int(coord[1]) <

n:↪→
241 f[int(coord[0]),int(coord[1])] = t

242 coord = coord_new

243 return self_inter_1,self_inter_2

244
245 def floodfill(f,x,y):

246 [m,n] = f.shape

247 toFill = set()

248 toFill.add((x,y))

249 while len(toFill) > 0:

250 (x,y) = toFill.pop()

251 if not f[x][y] == 0:

252 continue

253 f[x][y] = 1

254 if x > 0:

255 toFill.add((x-1,y))

256 if x < m-1:

257 toFill.add((x+1,y))

258 if y > 0:

259 toFill.add((x,y-1))

260 if y < n-1:

261 toFill.add((x,y+1))

262 return f

263

Spline curve evolution 124

264 def split_curve(closed_curves,j,m,n):

265 C = closed_curves[j]

266 t1,t2 = C.find_selfintersection(m,n)

267 if t2 == 0.0:

268 return 0

269 k1 = int(t1*C.K)

270 k2 = int(t2*C.K)

271 split = 0

272 if np.absolute(k2 - k1) > 1:

273 C1 = 0

274 C2 = 0

275 if np.absolute(k2 - k1) > 5:

276 new_points1 = C.points[k1:k2]

277 C1 = JordanCurve(new_points1)

278 if C.K - np.absolute(k2-k1) > 5:

279 new_points2 = np.vstack((C.points[:k1],C.points[k2+1:C.K]))

280 C2 = JordanCurve(new_points2)

281 if C1 != 0 or C2 !=0:

282 del closed_curves[j]

283 split = split - 1

284 if C1 != 0:

285 closed_curves.append(C1)

286 split = split + 1

287 if C2 != 0:

288 split = split + 1

289 closed_curves.append(C2)

290 return split

291
292 def makeLagrangianBasis():

293
294 # Returns a 4x4 matrix with the 4 basis coefficients of the 4 bilinear basis

295 # functions on the square [-1,1]x[-1,1]

296 # The coefficients are ordered as follows:

297 # b_n(x,y) = basis[n,0]xy + basis[n,1]y + basis[n,2]x + basis[n,3]

298
299 basis = np.zeros((4,4))

300
301 # South West

302 basis[0,0] = 1.0

303 basis[0,1] = -1.0

304 basis[0,2] = -1.0

305 basis[0,3] = 1.0

306
307 # North West

308 basis[1,0] = -1.0

309 basis[1,1] = 1.0

310 basis[1,2] = -1.0

311 basis[1,3] = 1.0

312
313 # South East

314 basis[2,0] = -1.0

315 basis[2,1] = -1.0

316 basis[2,2] = 1.0

317 basis[2,3] = 1.0

318
319 # North East

320 basis[3,0] = 1.0

321 basis[3,1] = 1.0

322 basis[3,2] = 1.0

323 basis[3,3] = 1.0

324
325 basis = 1.0/4*basis

326
327 return basis

328

125

329
330 def evaluate_function(x,y,w,m,n):

331 # Evaluates a function in point (x,y) using bilinear basis functions

332 # Discrete function values are given in the vector w of length m x n

333 # m x n is the size of the domain (image)

334
335 basis = makeLagrangianBasis()

336
337 N = m*n

338
339
340 i = int(x)

341 j = int(y)

342
343
344 x_i = i

345 y_j = j

346
347 if i < 0:

348 i = 0

349 elif i > m-2:

350 i = m-2

351 if j < 0:

352 j = 0

353 elif j> n-2:

354 j = n-2

355
356 indices = [j*m+i,(j+1)*m+i,j*m+i+1,(j+1)*m+i+1]

357
358 for ind in indices:

359 assert ind > 0 and ind < N, "index " + str(ind) + " outside domain"

360
361 q = 2*(x-x_i)-1

362 z = 2*(y-y_j)-1

363
364 return np.dot(np.array([basis[:,0]*q*z + basis[:,1]*z + basis[:,2]*q + basis[:,3]]),w[indices])

365
366
367
368 def MS_grad(t,C,alpha,beta,m,n,u1,u2,u,eps):

369 # Gradient of the Mumford-Shah energy functional

370 # t is the current time

371 # C is a JordanCurve

372
373 # Computes the coordinate [x,y]

374 coord = C.evaluate(t)

375
376 # Computes the derivative

377 C_d = C.evaluate_d(t)

378
379 # Computes the outward normal |C’|n (not unit vector)

380 normal = np.array([-C_d[1],C_d[0]])

381
382 # Norm of derivative

383 C_d_norm = np.linalg.norm(C_d)

384
385 # Computes double derivative

386 C_dd = C.evaluate_dd(t)

387
388 if coord[0] < 0 or coord[0]>m-1 or coord[1] < 0 or coord[1] > n-1:

389 return -(beta*C_d_norm*C_dd)

390
391 return -(alpha*(np.power(u2-evaluate_function(coord[0],coord[1],u,m,n),2) -

np.power(u1-evaluate_function(coord[0],coord[1],u,m,n),2))*normal + beta*C_d_norm*C_dd)↪→
392

Spline curve evolution 126

393 def MS(C,alpha,beta,m,n,u):

394 # Computes the MS energy

395 enclosed = C.find_enclosed_area(m,n,2*np.sqrt(np.power(m,2)+np.power(n,2))).flatten(’F’)

396 enclosed_pixels = sum(enclosed)

397 u_J = u*enclosed

398 u_O = u*(enclosed==0)

399 assert enclosed_pixels>0, "Empty interior"

400 assert enclosed_pixels < m*n, "Empty exterior"

401 u_1_int = integrate.simps(integrate.simps(np.reshape(u_J,(m,n),order= ’F’)))/enclosed_pixels

402 u_2_int = integrate.simps(integrate.simps(np.reshape(u_O,(m,n),order= ’F’)))/(m*n-enclosed_pixels)

403 beta_term = 0.0

404 alpha_term = integrate.simps(integrate.simps(np.power(np.reshape(u_J,(m,n),order= ’F’) -

np.reshape(enclosed,(m,n),order=’F’)*u_1_int,2))) +

integrate.simps(integrate.simps(np.power(np.reshape(u_O,(m,n),order= ’F’) -

np.reshape(enclosed==0,(m,n),order=’F’)*u_2_int,2)))

↪→
↪→
↪→

405 t = 0.0

406 dt = 1.0/1000

407 while t < 1.0:

408 C_d = C.evaluate_d(t)

409 C_d_norm = np.linalg.norm(C_d)

410 beta_term += C_d_norm*dt

411 t += dt

412 I = alpha*alpha_term + beta*beta_term

413 return I

414
415
416 def lineSearch(dp,C,armijo,u,m,n,alpha,beta):

417 # Line Search

418 # dp: Search direction

419 p0 = C.control_points[1:C.K+1].flatten(’F’)

420 c = 1.0

421 # Step reduction parameter

422 step_red = 0.5

423 # Some initial step size

424 step_size = 5.0

425 new_points = p0 + step_size*dp

426 C_new = JordanCurve(new_points.reshape(C.K,2,order=’F’))

427 cf = MS(C,alpha,beta,m,n,u)

428 cf_new = MS(C_new,alpha,beta,m,n,u)

429 while (cf_new - cf) > step_size*c*armijo and step_size > 10-6:

430 step_size = step_size*step_red

431 new_points = p0 + step_size*dp

432 C_new = JordanCurve(new_points.reshape(C.K,2,order=’F’))

433 cf_new = MS(C_new,alpha,beta,m,n,u)

434 return new_points.reshape(C.K,2,order=’F’),np.absolute(cf_new-cf)

435
436 def evolveControlPoints(closed_curves,delt,alpha,beta,u,m,n,lSearch,eps):

437 # Method for evolving Control points

438 # closed_curves is a list of JordanCurve objects

439 # delt is the step length

440 # alpha and beta are parameters in the MS energy functional

441 # u is the level set function

442 # m x n is the image size

443 # lSearch: boolean. True -> lineSearch

444 # eps parameter to avoid division by zero

445
446 dp_norm_max = 0.0

447 N = m*n

448
449 for j in range(len(closed_curves)):

450 C = closed_curves[j]

451 # Number of intervals between each control point

452 T = 20

453
454 # Enclosed area

127

455 enclosed = C.find_enclosed_area(m,n,np.sqrt(np.power(m,2)+np.power(n,2)))

456 enclosed = enclosed.flatten(’F’)

457 # Number of enclosed pixels

458 enclosed_pixels = sum(enclosed)

459 # Interior level set values

460 u_J = u*enclosed

461 # Exterior level set values

462 u_O = u*(enclosed==0)

463
464 # Averages in the interior and exterior

465 u1 = scipy.integrate.simps(scipy.integrate.simps(np.reshape(u_J,(m,n),order=

’F’)))/enclosed_pixels↪→
466 u2 = scipy.integrate.simps(scipy.integrate.simps(np.reshape(u_O,(m,n),order=

’F’)))/(m*n-enclosed_pixels)↪→
467
468 # Padded vector of control points

469 p = C.control_points

470
471 # constant in the A-matrix

472 sc = 1.0/36*1.0/C.K

473
474 # Nonzero values in the circulant matrix

475 A_d0 = 604.0/35*sc

476 A_d1 = 1191.0/140*sc

477 A_d2 = 6.0/7*sc

478 A_d3 = 1.0/140*sc

479
480 # Create the circulant matrix

481 circulant = np.zeros(C.K)

482 circulant[0] = A_d0

483 circulant[1] = A_d1

484 circulant[2] = A_d2

485 circulant[3] = A_d3

486 circulant[C.K-3] = A_d3

487 circulant[C.K-2] = A_d2

488 circulant[C.K-1] = A_d1

489
490 # The right hand side of the evolution

491 evolution_vector = integrate_Trap(C,T,alpha,beta,m,n,u1,u2,u,eps)

492
493 if lSearch:

494 # Linesearch

495 # Solve system

496 dp = scipy.linalg.solve_circulant(circulant,evolution_vector)

497 dp = dp.flatten(’F’)

498 dp_norm = np.linalg.norm(dp)

499 unit_step = dp*1.0/(dp_norm)

500 armijo = -(unit_step).dot(dp)

501 new_points,del_MS = lineSearch(unit_step,C,armijo,u,m,n,alpha,beta)

502 else:

503 # Solve system

504 dp = scipy.linalg.solve_circulant(circulant,evolution_vector)

505 dp_norm = np.linalg.norm(dp)

506 new_points = p[1:C.K+1] + delt*dp.reshape(C.K,2,order=’F’)

507
508 # Set new points

509 C.set_points(new_points)

510
511 if dp_norm > dp_norm_max:

512 dp_norm_max = dp_norm

513
514 # Check for self intersections and tries to split curve

515 split = split_curve(closed_curves,j,m,n)

516 j = j - split

517

Level set function evolution 128

518 return dp_norm_max

519
520
521 def integrate_Trap(C,T,alpha,beta,m,n,u1,u2,u,eps):

522 coeff_vec = np.zeros((C.K+3,2))

523 # Iterate over elements [t_k,t_k+1]

524 for k in range(C.K):

525 # Position in vector of control points

526 i = k + 1

527 # t_k

528 t0 = k*1.0/C.K

529 # t_k+1

530 t1 = (k+1)*1.0/C.K

531 # Time step for integration

532 dt = (t1-t0)*1.0/T

533 # Start at t_k

534 t = t0

535
536 for integration in range(T):

537 grad = MS_grad(t,C,alpha,beta,m,n,u1,u2,u,eps)

538 # Computes the contribution to basis function k - 1

539 coeff_vec[i-1] = coeff_vec[i-1] - dt*grad*(C.d(t))

540 # Computes the contribution to basis function k

541 coeff_vec[i] = coeff_vec[i] - dt*grad*(C.c(t))

542 # Computes the contribution to basis function k +1

543 coeff_vec[i+1] = coeff_vec[i+1] - dt*grad*(C.b(t))

544 # Computes the contribution to basis function k + 2

545 coeff_vec[i+2] = coeff_vec[i+2] - dt*grad*(C.a(t))

546 t = t + dt

547
548 # This is DC(p)* o deriv(I(C))(t)

549 evolution_vector = coeff_vec[1:C.K+1]

550 evolution_vector[C.K-1] = evolution_vector[C.K-1] + coeff_vec[0]

551 evolution_vector[0:2] = evolution_vector[0:2] + coeff_vec[-2:]

552
553 return evolution_vector

554
555 def initializeControlPoints(n_points,r,center):

556 # Clockwise initialization of control points

557 control_points = []

558 for t in range(n_points):

559 theta = -t*1.0/(n_points)*2*math.pi

560 control_points.append([r[0]*math.cos(theta) + center[0],r[1]*math.sin(theta) + center[1]])

561 control_points = np.array(control_points)

562 return control_points

D.3 Level set function evolution
The following code contains the functions related to the level set function.
The following is a list of functions in the order they appear in the code;

assemble_system_LS Function: assembles the matrix on the left hand side
and the vector on the right hand side for the level set
system.

intializeLevelSet Function: initializes the level set function given a cen-
ter and a radius.

129

neumann_boundary Function: assembles a matrix and a vector for the
solution of the boundary equations,

1 import numpy as np

2 from scipy import misc, ndimage,sparse

3 from scipy.sparse.linalg import spsolve

4 from PIL import Image

5
6 def assemble_system_LS(levelSet,flow_vec,m,n,delt,gamma,eps,eta):

7
8 # Buillds the system for evolving level set function

9 # The first order derivatives are approximated by forward difference

10
11 # Forward difference matrices in x- and y-direction

12 Lx = sparse.diags([-np.ones(m*n),np.ones((n-1)*m)],[0,m],format = ’lil’)

13 Lx[0:m,:] = np.zeros((m,m*n))

14 Lx[m*(n-1):m*n,:] = np.zeros((m,m*n))

15 Ly1 = sparse.diags([-np.ones(m), np.ones(m-1)],[0,1],format = ’lil’)

16 Ly1[0,:] = np.zeros((1,m))

17 Ly1[m-1,:] = np.zeros((1,m))

18 Ly = sparse.kron(sparse.eye(n),Ly1,format = ’csr’)

19
20
21 # The flow componens in x- and y-direction

22 flow_x = flow_vec[0:m*n]

23 flow_y = flow_vec[m*n:2*m*n]

24
25 # Flow derivatives

26 flow_x_dx = Lx.dot(flow_x)

27 flow_y_dx = Lx.dot(flow_y)

28 flow_x_dy = Ly.dot(flow_x)

29 flow_y_dy = Ly.dot(flow_y)

30
31 # Derivatives of level set function

32 levelSetx = Lx.dot(levelSet)

33 levelSety = Ly.dot(levelSet)

34
35 # Edge detector for flow boundaries

36 R = np.sqrt(np.power(flow_y_dx,2) + np.power(flow_y_dy,2)) + np.sqrt(np.power(flow_x_dx,2) +

np.power(flow_x_dy,2))↪→
37 g = np.divide(1.0,(1.0+eta*(R)))

38
39 # Derivative operator

40 L = sparse.vstack((Lx,Ly))

41
42 # Norm of gradient of level set function

43 grad_levelSet_norm = np.sqrt(np.power(levelSetx,2) + np.power(levelSety,2)+eps)

44 # Diffusion matrix for the evolution

45 diffusion_matrix = sparse.kron(sparse.eye(2),sparse.diags(np.divide(g,grad_levelSet_norm),0))

46 grad_levelSet_norm_mat = sparse.diags(grad_levelSet_norm,0,format =’csr’)

47
48 # Matrix on the left side

49 A = sparse.eye(m*n) + delt*grad_levelSet_norm_mat.dot(L.T.dot(diffusion_matrix.dot(L)))

50 # Right hand side

51 b = delt*gamma*grad_levelSet_norm_mat.dot(g) + levelSet

52
53 return A,b

54
55 def intializeLevelSet(center,r,m,n,scaling,ls_type):

56 # Initializes the level set

57 # ls_type = ’Signed Distance’ gives the normal signed distance function

58 # to a circle with a given center and radius

59

Level set function evolution 130

60 sigma = r*1.0/20

61 # Level Set initialization

62 levelSet = np.zeros((m,n))

63 if ls_type == ’Signed Distance’:

64 for i in range(m):

65 for j in range(n):

66 levelSet[i,j] = scaling*(-np.sqrt(np.power(i-center[0],2) + np.power(j-center[1],2)) +

r)↪→
67 return levelSet.flatten(’F’)

68 if ls_type == ’Circle Hat’:

69 for i in range(m):

70 for j in range(n):

71 if np.sqrt(np.power(i-center[0],2) + np.power(j-center[1],2)) < np.linalg.norm(r):

72 levelSet[i,j] = scaling

73 levelSet = ndimage.filters.gaussian_filter(levelSet,sigma)

74 return levelSet.flatten(’F’)

75 if ls_type == ’Square Hat’:

76 for i in range(int(center[0])-int(np.linalg.norm(r)),int(center[0])+int(np.linalg.norm(r))):

77 for j in

range(int(center[1])-int(np.linalg.norm(r)),int(center[1])+int(np.linalg.norm(r))):↪→
78 levelSet[i,j] = scaling

79 levelSet = ndimage.filters.gaussian_filter(levelSet,sigma)

80 return levelSet.flatten(’F’)

81 if ls_type == ’Signed Distance Exterior Zero’:

82 for i in range(m):

83 for j in range(n):

84 if np.sqrt(np.power(i-center[0],2) + np.power(j-center[1],2)) < np.linalg.norm(r):

85 levelSet[i,j] = scaling*(-np.sqrt(np.power(i-center[0],2) +

np.power(j-center[1],2)) + np.linalg.norm(r))↪→
86 return levelSet.flatten(’F’)

87
88 def neumann_boundary(m,n):

89 # Matrices for solving the boundary equations

90
91 neumann_x = sparse.hstack((sparse.diags(-np.ones(m),0),sparse.diags(np.ones(m),0)))

92 neumann_y = sparse.eye(m,format=’lil’)

93 neumann_y[0,:2] = [-1,1]

94 neumann_y[m-1,m-2:m] = [-1,1]

95 neumann = sparse.kron(sparse.eye(n),neumann_y,format = ’lil’)

96 neumann[0:m,0:2*m] = neumann_x

97 neumann[m*(n-1):m*n,m*(n-2):m*n] = neumann_x

98 elim_y = np.ones(m)

99 elim_y[0] = 0

100 elim_y[m-1] = 0

101 elimination_vector =

np.hstack((np.hstack((np.zeros(m),np.kron(np.ones((n-2)),elim_y))),np.zeros(m)))↪→
102
103 return neumann, elimination_vector

131 Bibliography

Bibliography
[1] L. Alvarez, P.-L. Lions, and J.-M. Morel. “Image Selective Smoothing

and Edge Detection by Nonlinear Diffusion. II”.
In: SIAM Journal on Numerical Analysis 29.3 (1992), pp. 845–866.
doi: 10.1137/072905210.1137/0729052.
eprint: http://dx.doi.org/10.1137/0729052http://dx.doi.org/10.1137/0729052 (cit. on pp. 3232, 4646).

[2] G. Aubert and P. Kornprobst. Mathematical Problems in Image
Processing: Partial Differential Equations and the Calculus of Variations.
2nd. Springer Publishing Company, Incorporated, 2010.
isbn: 1441921826, 9781441921826 (cit. on pp. 2727, 3636, 4747, 8585).

[3] M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor.
“Constructing reparameterization invariant metrics on spaces of
plane curves”.
In: Differential Geometry and its Applications 34 (2014), pp. 139–165.
issn: 0926-2245. doi: 10.1016/j.difgeo.2014.04.00810.1016/j.difgeo.2014.04.008

(cit. on p. 103103).

[4] M. J. Black and P. Anandan. “The Robust Estimation of Multiple
Motions: Parametric and Piecewise-Smooth Flow Fields”.
In: Computer Vision and Image Understanding 63.1 (1996), pp. 75–104.
issn: 1077-3142. doi: 10.1006/cviu.1996.000610.1006/cviu.1996.0006 (cit. on p. 1616).

[5] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. “High Accuracy
Optical Flow Estimation Based on a Theory for Warping”. In:
Computer Vision - ECCV 2004: 8th European Conference on Computer
Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV.
Ed. by T. Pajdla and J. Matas.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 25–36.
isbn: 978-3-540-24673-2. doi: 10.1007/978-3-540-24673-2_310.1007/978-3-540-24673-2_3

(cit. on pp. 1212, 1313).

[6] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr.
“Real-Time Optic Flow Computation with Variational Methods”. In:
Computer Analysis of Images and Patterns: 10th International
Conference, CAIP 2003, Groningen, The Netherlands, August 25-27,
2003. Proceedings. Ed. by N. Petkov and M. A. Westenberg.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 222–229.
isbn: 978-3-540-45179-2. doi: 10.1007/978-3-540-45179-2_2810.1007/978-3-540-45179-2_28

(cit. on p. 8686).

[7] V. Caselles, R. Kimmel, and G. Sapiro. “Geodesic Active Contours”.
In: International Journal of Computer Vision 22.1 (1997), pp. 61–79.
issn: 1573-1405. doi: 10.1023/A:100797982704310.1023/A:1007979827043

(cit. on pp. 22, 88, 2525–2727, 3131, 3232, 4646, 4848).

http://dx.doi.org/10.1137/0729052
http://dx.doi.org/10.1137/0729052
http://dx.doi.org/10.1016/j.difgeo.2014.04.008
http://dx.doi.org/10.1006/cviu.1996.0006
http://dx.doi.org/10.1007/978-3-540-24673-2_3
http://dx.doi.org/10.1007/978-3-540-45179-2_28
http://dx.doi.org/10.1023/A:1007979827043

Bibliography 132

[8] V. Caselles, F. Catté, T. Coll, and F. Dibos.
“A geometric model for active contours in image processing”.
In: Numerische Mathematik 66.1 (1993), pp. 1–31. issn: 0945-3245.
doi: 10.1007/BF0138568510.1007/BF01385685 (cit. on p. 4848).

[9] T. F. Chan and L. A. Vese. “Active Contours Without Edges”.
In: Trans. Img. Proc. 10.2 (Feb. 2001), pp. 266–277. issn: 1057-7149.
doi: 10.1109/83.90229110.1109/83.902291 (cit. on pp. 3535, 5454).

[10] I. Cohen.
“Nonlinear Variational Method for Optical Flow Computation”.
In: Proceedings of the 8th Scandinavian Conference on Image Analysis.
IAPR. Tromso, Norway, Norway, 1993, pp. 523–530 (cit. on p. 2020).

[11] M. Crandall, H. Ishii, P. Lions, and A. M. Society. User’s Guide to
Viscosity Solutions of Second Order Partial Differential Equations.
American Mathematical Society, 1992 (cit. on p. 3232).

[12] M. Fuchs, B. Jüttler, O. Scherzer, and H. Yang.
“Combined evolution of level sets and B-spline curves for imaging”.
In: Computing and Visualization in Science 12.6 (2009), pp. 287–295.
issn: 1433-0369. doi: 10.1007/s00791-008-0110-410.1007/s00791-008-0110-4

(cit. on pp. 22, 3232, 3535, 4545–4747, 9191).

[13] B. K. Horn and B. G. Schunck. “Determining optical flow”.
In: Artificial Intelligence 17.1 (1981), pp. 185–203. issn: 0004-3702.
doi: 10.1016/0004-3702(81)90024-210.1016/0004-3702(81)90024-2

(cit. on pp. 33, 77, 1111, 1212, 1616, 9191, 115115).

[14] S. H. Joshi. “Inferences in Shape Spaces with Applications to Image
Analysis and Computer Vision”.
PhD thesis. Florida State University, 2007 (cit. on pp. 104104, 107107).

[15] M. Kass, A. Witkin, and D. Terzopoulos.
“Snakes: Active contour models”.
In: International Journal of Computer Vision 1.4 (1988), pp. 321–331.
issn: 1573-1405. doi: 10.1007/BF0013357010.1007/BF00133570 (cit. on pp. 22, 77, 2525).

[16] D. G. Kendall. “Shape manifolds, Procrustean metrics, and complex
projective spaces”.
In: Bulletin of the London Mathematical Society (1984) (cit. on p. 101101).

[17] X. S. Li. “An Overview of SuperLU: Algorithms, Implementation, and
User Interface”. In: ACM Transactions on Mathematical Software 31.3
(Sept. 2005), pp. 302–325 (cit. on p. 8686).

[18] B. D. Lucas and T. Kanade. “An Iterative Image Registration
Technique with an Application to Stereo Vision”. In: Proceedings of the
7th International Joint Conference on Artificial Intelligence - Volume 2.
IJCAI’81. Morgan Kaufmann Publishers Inc., 1981, pp. 674–679
(cit. on p. 8686).

http://dx.doi.org/10.1007/BF01385685
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1007/s00791-008-0110-4
http://dx.doi.org/10.1016/0004-3702(81)90024-2
http://dx.doi.org/10.1007/BF00133570

133 Bibliography

[19] W. Mio, A. Srivastava, and S. Joshi.
“On Shape of Plane Elastic Curves”.
In: International Journal of Computer Vision 73.3 (2007), pp. 307–324.
issn: 1573-1405. doi: 10.1007/s11263-006-9968-010.1007/s11263-006-9968-0 (cit. on p. 105105).

[20] J. M. Morel and S. Solimini.
Variational Methods in Image Segmentation.
Cambridge, MA, USA: Birkhauser Boston Inc., 1995.
isbn: 0-8176-3720-6 (cit. on p. 3636).

[21] D. Mumford. “Optimal approximation by piecewise smooth
functions and associated variational problems”.
In: Commun. Pure Applied Mathematics (1989), pp. 577–685
(cit. on pp. 3535, 3636).

[22] H. H. Nagel and W Enkelmann.
“An Investigation of Smoothness Constraints for the Estimation of
Displacement Vector Fields from Image Sequences”.
In: IEEE Trans. Pattern Anal. Mach. Intell. 8.5 (May 1986), pp. 565–593.
issn: 0162-8828. doi: 10.1109/TPAMI.1986.476783310.1109/TPAMI.1986.4767833

(cit. on pp. 33, 1818, 9191, 116116).

[23] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd.
New York: Springer, 2006 (cit. on p. 5656).

[24] S. Osher and J. A. Sethian.
“Fronts Propagating with Curvature-dependent Speed: Algorithms
Based on Hamilton-Jacobi Formulations”.
In: J. Comput. Phys. 79.1 (Nov. 1988), pp. 12–49. issn: 0021-9991.
doi: 10.1016/0021-9991(88)90002-210.1016/0021-9991(88)90002-2 (cit. on pp. 22, 3131).

[25] L. I. Rudin, S. Osher, and E. Fatemi.
“Nonlinear total variation based noise removal algorithms”.
In: Physica D: Nonlinear Phenomena 60.1 (1992), pp. 259–268.
issn: 0167-2789. doi: 10.1016/0167-2789(92)90242-F10.1016/0167-2789(92)90242-F

(cit. on p. 2020).

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2003.
isbn: 0898715342 (cit. on p. 4545).

[27] J. A. Sethian. “Numerical Methods for Propagating Fronts”. In:
Variational Methods for Free Surface Interfaces: Proceedings of a
Conference Held at Vallombrosa Center, Menlo Park, California,
September 7–12, 1985. Ed. by P. Concus and R. Finn.
New York, NY: Springer New York, 1987, pp. 155–164.
isbn: 978-1-4612-4656-5. doi: 10.1007/978-1-4612-4656-5_1810.1007/978-1-4612-4656-5_18

(cit. on p. 7676).

http://dx.doi.org/10.1007/s11263-006-9968-0
http://dx.doi.org/10.1109/TPAMI.1986.4767833
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1007/978-1-4612-4656-5_18

Bibliography 134

[28] J. A. Sethian. “Theory, algorithms, and applications of level set
methods for propagating interfaces”.
In: Acta Numerica 5 (1996), pp. 309–395.
issn: 0962-4929 (print), 1474-0508 (electronic).
doi: http://dx.doi.org/10.1017/S0962492900002671http://dx.doi.org/10.1017/S0962492900002671

(cit. on pp. 22, 3131, 7676).

[29] D. Shulman and J. Y. Herve.
“Regularization of discontinuous flow fields”.
In: Visual Motion, 1989.,Proceedings. Workshop on. Mar. 1989,
pp. 81–86. doi: 10.1109/WVM.1989.4709710.1109/WVM.1989.47097 (cit. on pp. 33, 2020, 9191).

[30] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn.
“Shape Analysis of Elastic Curves in Euclidean Spaces”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.7
(2011), pp. 1415–1428. issn: 0162-8828.
doi: 10.1109/TPAMI.2010.18410.1109/TPAMI.2010.184 (cit. on pp. 101101–104104, 107107).

[31] D. Sun. Flow code - MATLAB.
http://vision.middlebury.edu/flow/data/http://vision.middlebury.edu/flow/data/. 2016 (cit. on p. 5757).

[32] D. Sun, S. Roth, J. P. Lewis, and M. J. Black. “Computer Vision –
ECCV 2008: 10th European Conference on Computer Vision,
Marseille, France, October 12-18, 2008, Proceedings, Part III”. In:
ed. by D. Forsyth, P. Torr, and A. Zisserman.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
Chap. Learning Optical Flow, pp. 83–97. isbn: 978-3-540-88690-7.
doi: 10.1007/978-3-540-88690-7_710.1007/978-3-540-88690-7_7 (cit. on p. 8989).

[33] E. J. Velsvik. “Estimating Optical Flow by Variational Methods”.
Unpublished Manuscript. 2016 (cit. on p. 8989).

[34] C. R. Vogel and M. E. Oman. “Fast, robust total variation-based
reconstruction of noisy, blurred images”.
In: IEEE Transactions on Image Processing 7.6 (June 1998), pp. 813–824.
issn: 1057-7149. doi: 10.1109/83.67942310.1109/83.679423 (cit. on p. 2222).

[35] H. Zimmer, A. Bruhn, and J. Weickert. “Optic flow in harmony”.
In: Int. J. Comput. Vis. 93.3 (2011), pp. 368–388. issn: 0920-5691.
doi: 10.1007/s11263-011-0422-610.1007/s11263-011-0422-6 (cit. on pp. 1414, 1818, 8989).

http://dx.doi.org/http://dx.doi.org/10.1017/S0962492900002671
http://dx.doi.org/10.1109/WVM.1989.47097
http://dx.doi.org/10.1109/TPAMI.2010.184
http://vision.middlebury.edu/flow/data/
http://dx.doi.org/10.1007/978-3-540-88690-7_7
http://dx.doi.org/10.1109/83.679423
http://dx.doi.org/10.1007/s11263-011-0422-6

	Abstract
	Preface
	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Optical flow
	Motion segmentation
	Thesis outline

	Segmentation of optical flow
	The optical flow equation
	Segmentation

	Motion detection by optical flow
	Variational optical flow
	The data term
	The smoothness term
	Optical flow summary

	Active contours
	Energy based active contours
	Level set formulation

	A modified Mumford-Shah segmentation
	Segmenting the level set function
	Using splines for representing the segmentation boundary

	Implementation
	Solving the optical flow system
	Solving the segmentation system
	The Python implementation

	Numerical results and discussion
	Optical flow results
	Segmentation results for the Hamburg taxi sequence

	Segmentation results using real-world data
	Segmenting concave regions
	Segmenting multiple objects
	Tracking movement
	Tracking movement with a moving camera
	General discussion and future work

	Conclusion
	Appendices
	The Euler-Lagrange equation
	The elements of the circulant matrix
	Shape analysis and statistical shape priors
	Shape representation
	Bayesian active contours

	Python code
	Optical flow code
	Spline curve evolution
	Level set function evolution

	Bibliography

