
Monitoring and Detecting Failures in
Wide Area IoT Networks

Hans Henrik Grønsleth

Master of Science in Communication Technology

Supervisor: Frank Alexander Krämer, ITEM

Department of Telematics

Submission date: December 2016

Norwegian University of Science and Technology

Problem Description

Title Monitoring and Detecting Failures in Wide Area IoT
Networks

Student Hans Henrik Grønsleth
Responsible professor

& supervisor Frank Alexander Kraemer, ITEM

Background Low Power Wide Area Networks (LPWANs) offer inexpensive infras-
tructure and long range communication, making it easier than before to develop
systems consisting of connected devices spread over large areas. The Carbon Track
and Trace project (CTT)1 develops an Internet of Things (IoT) system that monitors
greenhouse gas (GHG) levels in cities. When data from a newly deployed sensor stops
arriving, you know that something is wrong, but where do you start looking? Has
the sensor run out of battery? Has the gateway lost its connection? Or is perhaps
the third party provider of the core network down? Knowing what is wrong and
where to look has the potential to add value to wide area IoT applications by easing
the development process and making maintenance more responsive through quick
failure detecting.

Problem Area How can failures in IoT applications be detected?

Objectives The thesis will investigate how data and meta data from an IoT
application can be used to discover and identify failures in the application without
or with minimal extra instrumentation. Based on the findings, a system that uses
the data (or the lack of data) to increase the overall dependability of the application
will be developed. For the system to be a reliable network monitor, it must in itself
be dependable. The implementation will therefore be done using the Akka toolkit2

to create a robust design (through the Actor model) with the possibility of scaling
up (to handle multiple and larger applications) and scaling out (to avoid single point
of failure) without re-writing the code.

Criteria for Goal Achievements A working prototype of a system that discovers,
identifies and alerts failures in the applications it monitors has been developed. The
dependability and scalability of the system are assessed. Examples of how the system
handles different failures in the monitored applications are described clearly.

1 www.carbontrackandtrace.com
2 www.akka.io

www.carbontrackandtrace.com
www.akka.io

Solutions nearly always come
from the direction you least expect,

which means there’s no point trying to look in that direction
because it won’t be coming from there.

— DOUGLAS ADAMS

Abstract

Low Power Wide Area Network technologies provide an infrastructure
that facilitates development of wide area IoT applications. This brings
with it a need for a better understanding of how components in such
applications should be monitored.

Through a design science research process, an IT artifact has been
developed. The artifact was released into the environment at an early
stage to start giving value to the application from the beginning, allow
potential improvements to be discovered more easily and increase the
probability of discovering unforeseen failures produces by the environment.
The thesis shows how monitoring can be done without adding extra
instrumentation at the monitored components, but by using the data
(or lack of such) produced by the components to detect failures. The
system also enables easy comparison of the collected data with weather
forecast data, to investigate possible impacts weather might have on the
application.

The developed system has successfully detected, identified and notified
supervisors about failures in the monitored network—and other external
resources that it interacts with—for 2 and a half months, and has proved
itself to be dependable even during unexpected failures.

Sammendrag

LPWAN-teknologier tilbyr en infrastruktur som gjør det lettere å utvikle
IoT-applikasjoner i større områder enn tidligere mulig. Dette bringer med
seg et behov for å bedre forstå hvordan komponenter i slike applikasjoner
bør monitoreres.

Gjennom en design science forskningsprosess har et IT-artefakt blitt
utviklet. Artefaktet ble tidlig introdusert i miljøet for å gi verdi til
applikasjonen fra begynnelsen, for å lettere kunne identifisere mulige
forbedringer og for å øke sannsynligheten for å oppdage uventede feil
skapt av miljøet. Avhandlingen viser hvordan monitorering kan utføres
uten å ekstra instrumentering på de overvåkede komponentene, men ved
å bruke data (eller mangel på data) produsert av komponentene, til å
oppdage feil. Systemet gjør det også mulig å enkelt sammenligne den
innsamlede dataen med værprognoser, for å kunne undersøke mulige
påvirkninger vær kan ha på applikasjonen

Det utviklede systemet har oppdaget, identifisert og varslet mennesker
om feil i det monitorerte nettverket—og andre eksterne kilder som det
interagerer med—i 2 og en halv måned, og har vist seg som et pålitelig
system selv under uventede feil.

Preface

This thesis is submitted for the degree of Master of Science in Communi-
cation Technology at the Norwegian University of Science and Technology.
The research presented was conducted during the fall of 2016 by Hans
Henrik Grønsleth.

I would like to thank my supervisor, Frank Alexander Kraemer, for
his guidance, motivation and rapid feedback whenever questions needed
answers.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Limitations . 1
1.3 Thesis Outline . 2

2 Background 3
2.1 The Carbon Track and Trace project 3

2.1.1 The Things Network . 3
2.1.2 LoRaWAN . 4

2.2 The Actor Model . 5
2.3 What is Dependability? . 6

2.3.1 System Times . 9
2.4 Design Science . 11
2.5 Related Work . 14

3 The Watchdog 17
3.1 Detection . 17
3.2 Notification . 21
3.3 Manual Monitoring . 21

4 The Forecaster 25
4.1 Data Collection . 25
4.2 Data Visualisation . 26

5 Dataport Design 29
5.1 Akka . 30

5.1.1 Design Choices When Using External Libraries 31
5.1.2 External Resource Failures vs. Gateway/Sensor Failures . . . 32

5.2 System Overview . 33
5.3 Publish-Subscribe Topic Structure 33
5.4 The Site Actor . 33

vii

5.5 The Database Actor . 34
5.6 The MQTT Actors . 36
5.7 The Forecast Actors . 37
5.8 The Sensor Actor . 37
5.9 The Gateway Actor . 38
5.10 AppBeat . 38
5.11 Logging . 39
5.12 Scaling . 39

6 Failure Experiments 41
6.1 Device Timeouts . 41

6.1.1 Gateway Status Not Received in Expected Time 41
6.1.2 Sensor Measurement Not Received in Expected Time 42

6.2 Application MQTT Broker . 42
6.2.1 Unavailable on Startup . 42
6.2.2 Becomes Unavailable . 43
6.2.3 Becomes Available . 43

6.3 Gateway Status MQTT Broker . 45
6.3.1 Unavailable on Startup . 45
6.3.2 Becomes Unavailable . 46
6.3.3 Becomes Available . 47

6.4 Dataport MQTT Broker . 47
6.4.1 Unavailable on Startup . 48
6.4.2 Becomes Available . 48
6.4.3 Becomes Unavailable . 49

6.5 Device List Source . 50
6.5.1 Unavailable on Startup . 50
6.5.2 Becomes Unavailable . 51
6.5.3 Device is Lacking Position . 51

6.6 The Dataport Machine Stops . 52
6.7 The Forecast API is Unavailable . 53
6.8 Unplanned Real-Life Failures . 54

6.8.1 The Forecast API Version is Outdated 54
6.8.2 Sensor Sends Malformed Point to Database Actor 55
6.8.3 Internet Connection Lost at Server Site 56

7 Discussion 59
7.1 Evaluation of the Dataport . 59
7.2 Design Science Checklist . 60
7.3 Future Work . 62

7.3.1 Next Design Cycles . 62

References 65

List of Acronyms 69

List of Figures 71

List of Tables 73

Ch
ap

te
r1

1

Introduction

1.1 Motivation

CTT aims at giving municipalities rapid feedback on how well climate policies work
by developing an automated system for monitoring GHG levels in cities. In order for
this system for this system to work, they need to know what is wrong when it stops
working.

By understanding how monitoring of IoT applications in wide area network can
be done without adding extra instrumentation on already deployed devices, we can
help the continued development of such application.

In the bigger picture, contributing to a better understanding of greenhouse gas
emissions feels meaningful from an ethical perspective. New technology can be used
for good or for bad. I would argue this use of IoT definitely falls under the former.

1.2 Limitations

There are many characteristics that might be of interest when designing a system.
Even though the system in the future might deal with time and privacy critical data
like eHealth, delay and security are not addressed in this thesis. The use case looked
at in this thesis is data from IoT devices reporting environmental characteristics like
CO2, temperature, humidity and Particulate matter (PM).

Other dependability characteristics that are normally discussed together with
availability and reliability are setup time and data loss. The setup time is not of

1

2 1. INTRODUCTION

interest, since the current use case is not time critical. As we are using a framework,
the data loss. The data loss prevention techniques used in the framework will be briefly
introduced, but custom data loss prevention techniques will not be implemented.

1.3 Thesis Outline

The remainder of the thesis is structured as follows:

Chapter 2 gives background information in the domain of IoT, dependability
and the Carbon Track and Trace project that the work is tightly coupled with.

Chapter 3 describes a watchdog system that can monitor a system through the
use of timeouts.

Chapter 4 extends the system described in the previous chapter to include
forecast data and visualisations of data trends.

Chapter 5 gives an overview of the implementation of the features described in
Chapters 3 and 4

Chapter 6 documents conducted failure experiments and the system’s handling
of these failures

Chapter 7 evaluated the developed system

Ch
ap

te
r2

2

Background

2.1 The Carbon Track and Trace project

Trondheim municipality has a goal of reducing the total GHG emissions by 25%
by 2020 and 70–90% by 2050, compared to 1991 levels [Kom10]. Traditionally,
Norwegian municipalities have relied on Statistisk Sentralbyrå [Statistics Norway]
(SSB) to provide data regarding GHG emissions. This data was available as yearly
reports, both nationally and divided by municipality. However, due to quality
concerns regarding the data, the reports for municipalities were discontinued in 2012
[Mun12]. The lack of data makes it harder for policy makers in the municipalities
to justify their actions towards the ambitious GHG emission reduction goals. CTT
aims to fill this knowledge gap by developing an IoT system that collects GHG
data in cities and makes this data available for policy makers in the municipalities
[ADK+16].

2.1.1 The Things Network

CTT use The Things Network (TTN) as the backbone of the application, meaning all
data flows through this network. When a sensor sends a measurement, this is received
at one or more gateways. These gateways have been configured to forward the data
to TTN, which in turn makes it available for retrieval. The goal of TTN is to make
it easier to create IoT applications. Their hypothesis is that if the infrastructure is
already present, innovation will thrive, just like it has done on the Internet [Net16].

3

4 2. BACKGROUND

Figure 2.1: LoRaWAN Gateways Connected to The Things Network. Figure from
[Net16]

The Internet was created by people that connected their networks to
allow traffic from, to and over their servers and cables to pass for free.
As a result, there was abundant data communication and exponential
innovation. The Things Network is doing the same for the Internet of
Things by creating abundant data connectivity. So applications and
businesses can flourish.

This is their vision. And being only approximately 1.5 years old, it is remarkable
how fast the network and community around TTN has grown. Figure 2.1 shows an
overview of gateways connected to TTN worldwide.

2.1.2 LoRaWAN

The protocol used for transmission between sensors and gateways is LoRaWAN. This
is an alternative to 2G/3G/4G and WiFi, suitable for battery driven devices that
needs long range, low bandwidth communication. In my project report, written
during the spring of 2015, I investigated the suitability of the LoRaWAN protocol
for the purpose of measuring GHG in urban areas. The results of the research gave
insights into the limitations of frequency given the size of the data with respect to
national and EU regulations, but also with respect to TTNs fair access policy. For
the packet size used by the sensors at the time1, sensors were restricted to sending
at most approximately every 7 minutes. The work was cited in a paper co-authored
by CTT and my supervisor [ADK+16].

1The implementation has later changed from using pure text to using binary representation,
which has greatly reduced the packet size, allowing even more frequent transmissions

Ch
ap

te
r2

2.2. THE ACTOR MODEL 5

Figure 2.2: Actor Lifecycle. Figure from [Lig16].

2.2 The Actor Model

The actor model was introduced by Carl Hewitt in 1973 [HBS73]. Figure 2.2 shows
the lifecycle of an actor as it is defined in Akka.

We will use the actor model through the use of Akka as a toolkit in the imple-
mentation of the system. The advantage of constructing a system with actors, is that
the transition from one machine to multiple machines is greatly simplified, compared
to system with a lot of shared state. Actors have their local state, and don’t need to
know much about the other actors, other than how to contact them. This makes
systems created with Akka scalable by default.

6 2. BACKGROUND

2.3 What is Dependability?

In the introduction we say the goal of this thesis is to create a dependable system.
What does it mean for a system to be dependable, exactly? In everyday language, the
terms dependable and reliable are used interchangeably. Whether you say something
has an error or a failure, doesn’t make much difference—the people around you
understand that the thing isn’t working. In technical terms, there are however
differences. In this section, key terms regarding dependability will be defined to
clarify their use throughout this thesis, and how they are generally used throughout
the literature on the field. The definitions used here are based on those given in
[ALRL04] and [EHHP13].

From [EHHP13, p. 24] we have the following definition of dependability:

Dependability The trustworthiness of a system such that reliance can be
placed on the service it delivers.

Reliability is defined as:

Reliability The ability of a system to provide uninterrupted service.

And availability is defined as:

Availability The ability of a system to provide a service at a given instant
of time or at any instant within a given time frame.

Availability and reliability are dependability attributes. This means, the depend-
ability of a system is determined by the availability and reliability of the system,
among other things. Availability has to do with whether or not the system is available
when we need it: Is my supervisor in his office when I visit it? Reliability has to
do with whether the system is we expected to keep working during operation: If I
am talking to my supervisor, can I expect him to finish our conversation, or will he
suddenly interrupt the conversation and leave the room?

The relationship between the terms define above can be best expressed through
the use of a tree. As we can see from Figure 2.3, the dependability of a system
has attributes (e.g. availability and reliability), it has threats and means to deal
with these threats. We will revisit this dependability tree in the evaluation of the
developed system to identify which means are emphasised in different parts of the
system.

There are many other characteristics of systems, such as performance, capacity,
throughput and delay, to mention some. Even though these aspects are undoubtedly

Ch
ap

te
r2

2.3. WHAT IS DEPENDABILITY? 7

Figure 2.3: The Dependability Tree. Adapted from Figure 1.11 in [EHHP13, p. 25].

important to take into consideration when trying to create systems that are depend-
able and pleasant to interact with, I have chosen not to look specifically at these in
this thesis. [EHHP13] gives a good introduction to the concepts that are not covered
here.

Assume we have a system S that is made up of a set of subsystems (system
components) S1, S2 and so on. Formally, S = {S1, S2, ..., Sn}. Let us simplify the
state of a system to be one of two possible states: i) the system is working and
ii) the system has failed. Since the subsystems are also systems, they share this
characteristic—they either work or they don’t. This is what we call a boolean value.
True or false, 1 or 0. Let us call the state of a system X ∈ {Working, Failed} =
{W, F}. Since there might be multiple working and failing states, instead of simply
using W and F to represent the state of a system, we use ΩW and ΩF to denote the

8 2. BACKGROUND

Figure 2.4: Reliability Block Diagram for General Systems

set of all working and failing states, respectively.

How the system is designed, impacts the availability and reliability of the system
as a whole (even though the availabilities and reliabilities of the subsystems are the
same).[EHHP13, p. 208-215]

The structure function

Φ(X) =
{

True, if X ∈ ΩW

False, if X ∈ ΩF

(2.1)

In the same way a driver of a car does not care whether it is the X or the X that
causes the car not to start, the user of a system in general should not need to care for
the “why” when it comes to the dependability of a system. The user should simply
care whether the system (i) works or (ii) doesn’t work. See Figure 2.4

Series Systems The structure function of a series system is given as

Φseries(X) = X1 ·X2 · ... ·Xn =
n∏

i=1
Xi (2.2)

The asymptotic availability of a series system is given as

Aseries =
n∏

i=1
Ai (2.3)

The reliability of a series system is given as

Rseries(t) =
n∏

i=1
Ri(t) (2.4)

Ch
ap

te
r2

2.3. WHAT IS DEPENDABILITY? 9

Figure 2.5: Reliability Block Diagram for Series Systems

Parallel Systems The structure function of a parallel system is given as

Φparallel(X) = X1 + X2 + ... + Xn =
n∑

i=1
Xi (2.5)

The asymptotic availability of a parallel system is given as

Aparallel = 1−
n∏

i=1
(1−Ai) (2.6)

The reliability of a parallel system is given as

Rseries(t) = 1−
n∏

i=1

(
1−Ri(t)

)
(2.7)

From Equations 2.4 and 2.7 and Figures 2.5 and 2.6, we can see that the probability
of a system working is higher if we have components in parallell, than if they are
placed in series.

The Akka framework, the Actor model and dependability are all nice things, but
why is it interesting to apply them to a system that ports data from IoT devices? In
order to understand this, let us look at how the Dataport is composed today.

2.3.1 System Times

The most relevant characteristic of dependable system for this thesis is system times.

The goal when dealing with failures is of course to reduce the down time of the
system as much as possible. In Figure 2.7 I have tried to map the events in a failure
process to the more general domain of medical treatment in order to shed some light
on what we want to accomplish when handling failures in systems.

Let us look at the case of falling down a staircase. In the examples, the person
represents a component in the system, and the hospital represents the supervisor
of the system, responsible for keeping the system in a working state. If the person
was lucky, he might just get some bruises, but nothing more. In this case he won’t

10 2. BACKGROUND

Figure 2.6: Reliability Block Diagram for Parallel Systems

Figure 2.7: Illustration of System Times. Adapted from Figure 1.13 in [EHHP13,
p. 28].

Ch
ap

te
r2

2.4. DESIGN SCIENCE 11

notify anyone and keep functioning as normal. This would represent self-healing in a
system—the fault is removed without users of the system being aware it was present.

If the person was a bit more unlucky, he might have broken his arm. Unless he
was knocked out, he would be able to feel the pain in his arm and call the ambulance.
The person is now unable to function properly, since his arm is broken. Then a doctor
would identify the cause of the failure to be a broken arm—this is the fault—and
hopefully be able to remove the fault by plastering the arm. In this case, identification
was fairly simple and quick.

If the person is extremely unlucky, he might hurt his head when he falls down the
stairs. Perhaps he is knocked unconscious, and the incident is not detected before
his wife comes home and calls the hospital. At the hospital the might have to do a
number of tests to figure out what is wrong, and operate in order to heal the patient.
This would represent a catastrophic failure in a system, where it is hard to identify
the fault causing the failure. In Section 6.8 we look at some unplanned failures that
happened. Fixing some of these involved reading through long logs on the server and
having to recreating the failure locally.

Notice that the person actively notifies about the failure. As stated in the intro-
duction, we are looking at how we can detect failures without extra instrumentation.
The equivalent of the person having a phone in our system would be to give all
components in the network some piece software that could issue specific commands
to let the supervisor know something was wrong.

2.4 Design Science

The process used to develop the system in this thesis has followed a research paradigm
called design science, conceptualized by Herbert Simon in [Sim96] and further devel-
oped by Hevner et. al. in [HMPR04], [Hev07] and [HC10], among others. The goal
of design science is to improve the connection between developed IT artifacts that
lives in the application domain and the knowledge base, that consists of e.g. scientific
theories. Instead of just solving the problem, design science wants the problem solver
to also justify why the solution worked, and how this can be used to help solving
similar problems in the future. Or as Hevner puts it in [Hev07, p. 91]:

However, practical utility alone does not define good design science research. It
is the synergy between relevance and rigor and the contributions along both the
relevance cycle and the rigor cycle that define good design science research

This brings us to the three cycles involved in design science research. Figure 2.8
shows how these relates to the environment, the process of conducting the research
and the knowledge base. Requirements are taken from the real world and used

12 2. BACKGROUND

Figure 2.8: Design Science Research Cycles. Adapted from Figure 1 in [Hev07,
p. 88] and Figure 2 in [HMPR04, p. 80]

as basis for what should be developed in the design process. The relevance cycle
evaluates the developed artifact as it is being improved through an iterative design
process. The knowledge base is used to make design decisions during the development
of the artifact. In the end, the artifact and the process is documented and added to
the knowledge base.

In [HMPR04]—revisited in [HC10, p. 12]—Hevner gives a detailed outline of
how design science should be conducted through 7 guidelines. These guidelines are
presented in Table 2.1.

[HC10, p. 20] also proposes a checklist for design science research:

1. What is the research question (design requirements)?

2. What is the artifact? How is the artifact represented?

3. What design processes (search heuristics) will be used to build the artifact?

Ch
ap

te
r2

2.4. DESIGN SCIENCE 13

1 Design as an Artifact
Design science research must produce a viable
artifact in the form of a construct, a model, a
method, or an instantiation

2 Problem relevance
The objective of design science research is to
develop technology-based solutions to important
and relevant business problems

3 Design evaluation
The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods

4 Research
contributions

Effective design science research must provide
clear and verifiable contributions in the areas of
the design artifact, design foundations, and/or
design methodologies

5 Research rigor
Design science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artifact

6 Design as a search
process

The search for an effective artifact requires
utilizing available means to reach desired ends
while satisfying laws in the problem environment

7 Communication of
research

Design science research must be presented
effectively to both technology-oriented and
management-oriented audiences

Table 2.1: Design Science Research Guidelines [HC10, p. 12]

4. How are the artifact and the design processes grounded by the knowledge base?
What, if any, theories support the artifact design and the design process?

5. What evaluations are performed during the internal design cycles? What design
improvements are identified during each design cycle?

6. How is the artifact introduced into the application environment and how is
it field tested? What metrics are used to demonstrate artifact utility and
improvement over previous artifacts?

7. What new knowledge is added to the knowledge base and in what form (e.g.,
peer-reviewed literature, meta-artifacts, new theory, new method)?

8. Has the research question been satisfactorily addressed?

Each question in the 8-point list is mapped to one of the three research cycles
presented in Figure 2.9. See Figure 2.9. We will revisit this list in the final Chapter
of the thesis.

14 2. BACKGROUND

Figure 2.9: Mapping of Design Science Checklist to Research Cycles. Adapted
from Figure 2.3 in [HC10, p. 20]

2.5 Related Work

In [AHS07], Aberer et. al. focus on the challenge of connecting heterogeneous sensor
networks. It proposes a middleware called GSN (Global Sensor Networks) that will
ease integration with existing sensor networks and adding new ones. This is achieved
through the an abstraction for all components that produce data—a "virtual sensor".
This virtual sensor can have any number of input data streams and it can process
this input data locally. The key thing is that it will produce exactly one output
stream. The format of this stream, along with e.g. identification of the sensor, is
specified in the virtual sensor definition, allowing other sources to query the sensor
for data. The focus is not on dependability of the system or monitoring of the sensor
networks, but the concept of a virtual sensor is very similar to our digital twin.

Blackstock and Lea have done a lot of research on the domain of IoT hubs, i.e.
creating platforms to ease integration with the “things” producing data. They have
published a number of papers addressing this issue [BL12], [BL13], [BL14b], [BL14a],

Ch
ap

te
r2

2.5. RELATED WORK 15

[LB14]. In the latter of these, they introduce a cloud based IoT platform for Smart
Cities. The focus is on the data and how access to it be made easier, not so much
on monitoring of the IoT networks producing the data. Today, Lea and Blackstock
run the company sensetecnic2, providing a cloud hosted Node-RED service to ease
development of IoT applications.

Most of the major companies on the technology scene offer IoT services. Even
though they do not necessarily provide unbiased research, it is still valuable to
examine how they solve problems. The monitoring approach in Google’s Internet
of Things Solutions is to explicitly send metrics from the devices to a service in the
cloud [Goo16]. This is done either by installing a so-called agent on the device, or
by sending data to their monitoring API manually. I.e., extra instrumentation is
needed on the devices that needs monitoring. This is probably because the focus
is on developing new systems, and one therefore has the possibility to add the
instrumentation.

Without jumping into the design of the system, described in Chapter 5, it is
nice to see the wide use of the same concepts we have chosen to use in order to
represent physical objects digitally. In [Ama16, p. 177], Amazon use the term thing
shadow—a document that stores information about the thing’s state. Similarly,
Microsoft’s Azure IoT Hub use the term device twin for describing the software entity
that represents the physical object [dom16]. The electronics company Bosch is also
entering the IoT market, and they also use the same pattern for representing devices
in software [Den16]. They use the term digital twin, which they share with GE
[Gar16], who use the pattern to design and test virtual objects in order to achieve
the wanted performance before beginning production of physical objects.

2http://sensetecnic.com/

http://sensetecnic.com/

Ch
ap

te
r3

3

The Watchdog

As a first step to get a better overview of the network, we need something that tells
us when a component in our network isn’t working as it should. We will call this The
Watchdog, as it serves much of the same function as watchdog timers do in computer
systems. A watchdog timer makes sure a process is running properly by counting
down towards zero and restart the process if the counter reaches zero. To avoid being
restarted, the monitored process will check in with the watchdog regularly and say
“Hello, I’m working fine—no need to worry.” This “heartbeat” will reset the timer
and let the process live on. [SA00, p. 2]

The first iteration of design will implement a system with watchdog-like properties.
For components that are expected to publish data regularly, it will use timers to
know when they have not given life signs in expected time. Other components are
of a different nature. Some components held a connection to an external resource.
These will not use timers, but make sure the connection is restored if it was lost.

Since we rely on the watchdog system to monitor our IoT network, we will also
need a third party supervising our system. Otherwise we could find ourselves in the
situation where we are not notified about any failures in the IoT network, because
the watchdog system is not working properly, not because there are none.

3.1 Detection

We have two main components in the IoT network: Gateways and sensors. These
both send out messages with a given frequency. The messages are available through
TTNs MQTT brokers. We will use the knowledge about how often devices are

17

18 3. THE WATCHDOG

supposed to send out messages to detect anomalies in the system. This let us add
value to the system without having to add any extra instrumentation at the devices
or modify the code that runs on the devices.

We will achieve this by representing the physical devices digitally, and adding
the instrumentation there. We call this a digital twin. Figures 3.1 and 3.2 shows the
state diagrams of the digital twins of the gateways and sensors. We have defined
three possible states for these:

1. Uninitialized,

2. Unknown and,

3. OK

The digital twins will start out as Uninitialized and stay in this state until it knows
it is subscribing to the topic where messages received from TTN are published. This
is the task of the components handling the connections to TTNs Application MQTT
Broker and Gateway Status Broker. The former publishes all messages sent from the
sensors, the latter publishes periodic status messages from all gateways connected
to TTN. The details on the implementation of forwarding the received messages
internally in the system is left to Section 5.3

When they have successfully subscribed to the topic where their respective
messages will be published, they make a transition to the state Unknown. For the
sensors, once an observation is made, it will jump to the OK state. If the sensor stays
in the state OK without receiving Observations, a predefined timer will eventually
reach zero and the sensor will go back to Unknown until another Observation is
received. When an Observation is received in the OK state, the timer is reset. In
case of the gateway, the timer is also reset when status messages are received. These
will also trigger a transition from state Unknown to OK.

The components holding the connections to different MQTT brokers are built a
bit different. Here, we are concerned with whether or not the connection exists or
not. The states are there defined to be:

1. Uninitialized,

2. Connecting and

3. Connected

Ch
ap

te
r3

3.1. DETECTION 19

Figure 3.1: Sensor Actor State Diagram

20 3. THE WATCHDOG

Figure 3.2: Gateway Actor State Diagram

Ch
ap

te
r3

3.2. NOTIFICATION 21

Before the first connect is attempted, the component will stay in the state Uninitial-
ized. When the function for connecting to the MQTT broker is called, the component
will make a transition to the Connecting state. If the first connection attempt fails,
the component will be restarted according to an exponential backoff algorithm. If
the connection is successful, the component will go to the Connected state.

3.2 Notification

For the first design cycle, we will only notify about a few basic failures:

Sensor timeout,

Gateway timeout,

Sensor has low battery,

Lost connection to MQTT broker

The main goal of notifying about failures is to reduce the time it takes to fix the
failure. Sometimes, the system can handle the failure itself, and in this case it might
not be necessary to notify any humans supervisor about the failure. However, we
would like to notify one time too many than one too few in the beginning, and then
refine the system to not shouting “wolf, wolf” too often in future design cycles.

We have chosen to use Slack as the notification medium. This could also have
been more traditional mediums, such as SMS or e-mail. Slack is very flexible, in that
we create a channel where all notifications are posted. Workers that are on duty
will receive push notifications on their phones, while worker off duty can mute the
channel tot avoid receiving messages. Figure 3.4 shows the message sent for notifying
about low battery level at a sensor. In Chapter 6 the result of different failures are
presented, including sensor and gateway timeouts, and connection issues with MQTT
brokers.

3.3 Manual Monitoring

During the spring of 2016, I developed a map [Han16]1 for The Department of
Telematics (ITEM) as part of the development of the Dataport prototype. The
map is meant to give the opportunity to get an instant overview of the state of the
network, but also to do manual monitoring to see if messages are sent as expected.
It shows the location of components in the IoT network, their status and real-time
messages being sent from sensors to gateways.

1The map was featured in a case study of applications using sensors from Libelium [Lib16].

22 3. THE WATCHDOG

Figure 3.3: MQTT Actor State Diagram

Ch
ap

te
r3

3.3. MANUAL MONITORING 23

Figure 3.4: Slack Notification on Low Battery

When the Dataport prototype was replaced by the Akka implementation described
in Chapter 5, some changes were needed in the map as well. These changes have
been made by the author as part of this thesis. Additions include making the map
handle sensors sending different measurements and showing this nicely. Figure 3.5a
shows a sensors measuring PM, Figure 3.5b a sensor without these measurements
and Figure 3.5c shows information about the transmission between the sensor and
the gateway.

The messages are received by subscribing to the Dataport MQTT broker, described
in Section 5.6.

24 3. THE WATCHDOG

(a) Sensor With PM Measurements (b) Sensor Without PM Measurements

(c) Transmission Data (d) Network State

Figure 3.5: Map Showing Network State and Data

Ch
ap

te
r4

4

The Forecaster

In the previous chapter we saw how—without any extra instrumentation in the
network—the time until failures were discovered could be reduced by representing
the components of the network with digital twins and use timeouts. This is all well
and good: We are notified when something has gone wrong, and we can fix. But
wouldn’t if we didn’t have to fix it? If we could somehow predict that a component
is likely to fail at some point in the future, and take precautionary steps to prevent
this from happening?

Since we are dealing with battery driven sensors in our network, one important
concern is to make sure the sensors don’t run out of battery. And given that it
might take some time to replace the battery, it would be nice if we were able to
discover this before the battery level is too low. In the previous chapter we saw that
the system could notify us about low battery levels. In this chapter we touch on
the surface of data analysis to see how the network can be made smarter without
extra instrumentation. This way we can predict likely failures. Data analysis is a
comprehensive field, and doing advanced analysis is beyond the scope of this thesis.
A data collector is introduced to get a manual overview of trends in the measured
data. In addition, data from external data sources is collected to allow trends in
measured data to be compared to other types of data in the search for correlations.

4.1 Data Collection

Chapter 3 describes a system that lets data flow through itself and use e.g. timers
on the frequency of the incoming data to say something about the state of the

25

26 4. THE FORECASTER

component producing the data. This means we already have data flowing in our
system, we just need to collect it somewhere. In order to collect it though, we need
some new components are introduced into the system

A database for storing the data,

A component in the system that is responsible for pushing data to the database,

Components for collecting data from other sources than our IoT network.

The data measured by the sensors is published by the sensor’s digital twin to an
internal topic, available for any component in the system to subscribe to.

Being deployed outside, the IoT network is susceptible to weather changes.
Looking at how weather can affect radio transmission and performance of electrical
is perhaps especially interesting in rough climates such as the Norwegian climate.
Research indicate that there is an effect from clouds on the effectiveness of solar
panels [Shu14] and that Received Signal Strength Indicator (RSSI) is effected by
environmental conditions like temperature, fog, rain [BBH+10]. We will therefore
collect data from the Norwegian Meteorological Institute through their open APIs1.
To begin with we collect weather forecasts, UV forecasts and sunrise/sunset data.

4.2 Data Visualisation

We can visualise the data and compare it in order to predict possible future failures
in the network. For example, by comparing the battery levels and the duration
of sunlight, we can see a the likely connection between the two. Figure 4.1 shows
the battery level of the sensors in Trondheim against the (normalized) duration of
sunlight (almost linear line). If we take the average of the battery level, this becomes
clearer. See Figure 4.2. Given the trends we can predict that the sensors will have a
hard time being charged during the winter, unless steps are taken to deal with this.

Another way to use the forecast data, is to verify our data. The forecast data is
produced with instruments many times as accurate as the sensors being used in our
network. However, from Figure 4.3, we see that if we take the average of all sensors
in Trondheim, the measured temperature aligns pretty well with the forecast data
from the Norwegian Meteorological Institute. The blue line represents our networks
measurements, the green is the forecasted temperature.

We also have the possibility to create dashboards that automatically refreshes for
manual monitoring. See Figure 4.4

1api.met.no

api.met.no

Ch
ap

te
r4

4.2. DATA VISUALISATION 27

Figure 4.1: Battery Level Against Sunlight Duration

Figure 4.2: Mean of Battery Level Against Sunlight Duration

Figure 4.3: Mean of Measured Temperature Against Forecasted Temperature

CTT has deployed IoT networks in Trondheim, Norway and Vejle, Denmark.
Both are being monitored by the developed system, and hence we also collect weather
data for both cities.

28 4. THE FORECASTER

Figure 4.4: Data Visualisation Dashboard

Ch
ap

te
r5

5

Dataport Design

Based on the features described in Chapters 3 and 4, we will in this chapter go
through the design and implementation of the features and shed some light on why
the implementation is robust? The project is open source and can be found at
GitHub, see Figure 5.1.

Figure 5.1: Source Code at https://github.com/NTNU-ITEM/dataport-akka

29

https://github.com/NTNU-ITEM/dataport-akka

30 5. DATAPORT DESIGN

5.1 Akka

Akka describes itself as a framework that is resilient through self-healing [Lig16, p. 1].
A resilient system is a system that can keep operating even when faults exist, i.e. it
is fault-tolerant. If we consider a football team as a system, we can say that a fault
arises when a player is injured. Usually, the team will keep playing, i.e. the system
keeps operating even in the presence of a fault. The fault can be removed either by
giving the player some medical treatment or by substituting the player for a new, fit
player. This is called fault-removal, and is essential for the Akka framework.

Akka is built on the actor model, briefly described in Section 2.2. This makes
applications made with Akka inherently dependable and scalable. It is used in appli-
cation ranging from analysis of stock trends, telecommunication systems providing
99.99999% uptime to 3d simulation engines.

The power of Akka is that it allows you to write code that is designed to run
locally, but can be deploy as distributed in the cloud without code change. From
[Lig16] we have the following quote:

The key for enabling this is to go from remote to local by way of optimiza-
tion instead of trying to go from local to remote by way of generalization.

Meaning, we need to write generalized code from the beginning, which we are
somewhat forced to do through the actor model.

Figure 5.2 shows the actors at the top of the hierarchy in an Akka system. At
the very top we have the root guardian. This has two children: a system guardian
and a user guardian. Everything we create will reside under the user guardian.

When creating our system, we want components to be as independent as possible.
If something fails in one place, this should only notify the parts that needs to know
that it has failed, and leave the rest of the system unaffected. If an exception in one
actor makes the whole system crash, we have failed miserably in creating a robust
system.

We keep this in mind when choosing a supervision strategy, i.e. how supervisors
are going to handle failures in their children. Even though all actors can act as
supervisors, we choose the natural hierarchical approach where parents supervise
their children. The Akka framework provides two supervising strategies: (i) the
One-For-One Strategy and (ii) the All-For-One Strategy. This means we can either
apply an action to the child that failed, and this child only, or we can apply the

Ch
ap

te
r5

5.1. AKKA 31

Figure 5.2: Actor System Architecture in Akka. Figure adopted from [Lig16].

same action to all children if one child fails. We have chosen to use a One-For-One
Strategy since sensors might cause failures in their digital twins independently.

A supervisor has four choices when dealing with a failing child

1. Keep the child running, keeping the internal state,

2. Restart the child, giving it a fresh start (clean state),

3. Permanently stop the child or,

4. Escalate the failure by failing yourself

5.1.1 Design Choices When Using External Libraries

For the MqttActor we consider three design approaches, each with increasing ab-
straction of fault handling:

1. Let the MQTT framework used (Paho) handle all MQTT related faults

2. Let the actor implement the fault handling of MQTT related faults

3. Let the supervisor of the actor handle all faults.

32 5. DATAPORT DESIGN

Option 1 Since we are using the Paho Java client library to create and maintain
the MQTT connection, we have the opportunity to use Paho’s built in fault handling,
e.g. one can specify that the client should automatically try to reconnect when the
connection is lost using a back-off algorithm. The advantage of this approach is that
we do not need to write the implementation of the fault handling ourselves. The
disadvantage is that we have little information on the state of the connection. We
know whether we are connected or not, but we do not know at which stage of a
“trying to reconnect” session the client is. Exposure of desired information through
the Paho MQTT Client API could however be implemented, since Paho is open
source (https://github.com/eclipse/paho.mqtt.java). Other MQTT clients for Java
exists1, but we consider Paho to be the most comprehensive and well-maintained.

Option 2 To have more control over this, we could give the MQTT framework
as little possibility to handle faults as possible, and try to handle as many errors
as possible inside our actor. This would involve a number of try/catch statements
to handle exceptions that might be thrown by the MQTT client and using some
timer/scheduler to know when we can try to reconnect again if the connection is lost.
This way, we have more information about the state of the MQTT connection that
we can expose (if we want) to other parts of the system.

Option 3 The first two approaches is usually how fault handling is done in object
oriented programming; either use an external library that handles everything (and
don’t care that we have little information about why something might not work)
or implement your own handling where you use the external library. The third
approach is more in line with Akka best practices. With this approach, any time an
exception occurs, we simply throw it to let our supervisor know what went wrong.
The supervisor will implement different strategies to handle different exceptions and
will have complete knowledge of why its child might not act as it should, i.e. once
an error occurs in the child, the supervisor is immediately notified, instead of the
child trying to solve the problem itself first and then notifying its supervisor if it was
unable to handle it on its own.

5.1.2 External Resource Failures vs. Gateway/Sensor Failures

The actors that communicate with external resources do not hold any data, they
only relay data from outside the system to other actors within the system. We can
therefore be “rough” when dealing with failures in these, i.e. clear out its accumulated
internal state every time it fails.

For the actors representing gateways and sensors however, we will often have
some data we would like to keep, e.g. what the latest measurement was, when it was

1https://github.com/mqtt/mqtt.github.io/wiki/libraries

https://github.com/eclipse/paho.mqtt.java
https://github.com/mqtt/mqtt.github.io/wiki/libraries

Ch
ap

te
r5

5.2. SYSTEM OVERVIEW 33

Figure 5.3: Dataport Interaction with External Services

last seen and where it was last seen (in case of mobile devices). Hence, we might
want to be more careful when dealing with failures in these actors. Preferably we
want to resume the failing actor and keep its internal state whenever possible.

5.2 System Overview

Figure 5.3 shows how the system interacts with external resources. Figure 5.4 shows
the supervision hierarchy of the actors.

5.3 Publish-Subscribe Topic Structure

The system’s publish-subscribe topic structure is presented in Figure 5.5. This also
shows how different actors in the system interact with the different topics.

5.4 The Site Actor

The site actor is responsible for creating all sensors and gateways belonging to a site
on start up. It retrieves a list of devices from Airtable. Figure 5.6 shows the list of
devices with their respective location and timeout limits.

Figure 5.7 shows an overview of the site actor’s children. Our system monitors
two applications: one in Trondheim and one in Vejle.

34 5. DATAPORT DESIGN

Figure 5.4: Dataport supervision overview

The site actor is also responsible for publishing a network graph message periodi-
cally to the /dataport/site/graphs topic. This allows other actors to know the
state of the network.

See the SiteActor class for the full implementation.

5.5 The Database Actor

The Database Actor was added as part of the Forecast iteration. It maintains a
connection to an InfluxDB database that runs on a remote machine. On start up it
will subscribe to the /dataport/site/graphs topic in order to know which sensors
exists. Based on this, it will subscribe to all topics for reception messages. Whenever
an observation is published, the actor sends this to the database.

It will also subscribe to the forecast topics. Regarding forecast data, it will receive
many points at the same time. To handle this, we use a built in batching function to
avoid clogging up the connection to the database.

Ch
ap

te
r5

5.5. THE DATABASE ACTOR 35

Figure 5.5: Dataport Internal Topic Structure

Figure 5.6: Airtable Device List

36 5. DATAPORT DESIGN

Figure 5.7: Dataport Site Overview

See the DBActor class for the full implementation.

5.6 The MQTT Actors

We have two MQTT brokers that we receive data from, and one MQTT broker that
we publish data to. The actors the communicate with these brokers are very similar.

In an early design version, these actors were sent the list of devices they should
subscribe to only on start up. The trouble with this was that if they were restarted
because of a lost connection or some other failure, they did not know which de-
vices they should subscribe to. This was solved by having them subscribe to the
/dataport/site/graphs topic, that periodically publishes which devices exits in
the network.

See the ApplicationMqttActor, GatewayStatusActor and PublishingMqttActor
classes for the full implementation.

Ch
ap

te
r5

5.7. THE FORECAST ACTORS 37

5.7 The Forecast Actors

We collect data for three different forecasts: weather, UV and sunlight. This is done
in three separate actors to minimize the risk of an exception in one affecting others.
There is always a risk of failure when parsing data, as discussed in Section 6.8.1.

Data is retrieved periodically. If the endpoint at which data is retrieved from is
unavailable, the actor will simply try again later. Since data is retrieved relatively
often, this will not affect the data set being stored.

See the SunForecastActor, UVForecastActor and WeatherForecastActor classes
for the full implementation.

5.8 The Sensor Actor

The sensor actor is responsible representing the state of its physical twin. It will
publish observations and status messages on the topics as showed in Figure 5.5. It
will also interact with Slack if a timeout occurs. The code excerpt below shows the
code for handling timeouts.

1 when(DeviceState.OK, null, // timeout duration is set in the constructor
2 matchEventEquals(StateTimeout(),
3 (event, data) -> {
4 // Update my state
5 stateData().setStatus(DeviceState.UNKNOWN);
6

7 // Send alert to Slack
8 slackAPI.call(new SlackMessage("").addAttachments(new SlackAttachment()
9 .setFallback("Sensor timeout! Sensor " + data.getEui() +

" in "+data.getCity() + " has been inactive for " + stateData().getTimeout())↪→

10 .setTitle("Sensor timeout!")
11 .setText("Sensor " + data.getEui() + " in " + data.getCity() +

" has been inactive for " + stateData().getTimeout())↪→

12 .setColor("warning")));
13

14 // Publish my status to all interested to show I timed out
15 mediator.tell(new

DistributedPubSubMediator.Publish(internalStatusPublishTopic, stateData()),
self());

↪→

↪→

16

17 return goTo(DeviceState.UNKNOWN).using(stateData());
18 })
19)
20);

38 5. DATAPORT DESIGN

This means if the actor is in state OK and a timeout occurs, it will send a notification
to Slack.

In Figure 5.5 we can also notice that there is one connection directly between two
actors, namely sensors and gateways. This is done because we want to calculate the ob-
served maximum range of the gateways. Therefore, we make the sensor send a message
containing the sensor’s position directly to the gateway. If we wanted all communica-
tion to go through the distributed publish-subscribe, we could have had the Gateway
actors subscribe to all /dataport/site/{site}/sensor/{deviceEui}/up topics
for the site it resides. Unfortunately, the Akka publish-subscribe topics does not sup-
port the use of wildcards, so this would require a similar approach as for the Database
actor: The Gateway actor would need to subscribe to the /dataport/site/graphs
topic to get an overview of all sensors in the network and use this to subscribe to the
topic for each sensor at its site. This approach will however become a problem if the
system is run in a cluster. One of the reasons for using the publish-subscribe feature
of Akka is that its

See the SensorActor class for the full implementation.

5.9 The Gateway Actor

The gateway actor subscribes to status messages from its physical twin and publish
these on the internal topic.

It also calculates the distance to sensors it receives messages from by using the
Haversine formula.

See the GatewayActor class for the full implementation.

5.10 AppBeat

In order to know when something is wrong with the system supervising the IoT
network, we use a third party service that supervises the supervisor. AppBeat will
PING the machine that the system is running on every 5 minutes from different
locations in the world. If it does not get an answer in 15 secods, it will send a Slack
notification. See Section 6.8.3.

Ch
ap

te
r5

5.11. LOGGING 39

5.11 Logging

To see what’s been going on, we need to log. This is enabled through the use of
slf4jlogger and logback. Having a well structured log can greatly reduce the time
it takes to identify a failure during a debugging process. This is achieved by only
logging events that are of interest. Events only needed during development should
not be logged when the system is running in production. Here are a few examples.

1 log.debug("Got: {} from {}", message, getSender());
2

3 log.debug("MQTT Received on topic {} message: {}. Publishing on internal topic {}",
topic, message, internalTopic);↪→

4

5 log.info("Now subscribing to topic {}", applicationDevicesUpTopic);
6 log.error("Damn! I lost my MQTT connection. Paho’s automatic reconnect with" +

"exponential backoff kicking in because of: {}", cause.getStackTrace());↪→

5.12 Scaling

By using the Distributed Publish Subscribe feature of Akka, we have already prepared
the system somewhat for clustering.

1 akka {
2 actor {
3 provider = "akka.cluster.ClusterActorRefProvider"
4 }
5 remote {
6 netty.tcp {
7 hostname = "127.0.0.1"
8 port = 0
9 }

10 }
11 cluster {
12 seed-nodes = [
13 "akka.tcp://ClusterSystem@127.0.0.1:2551",
14 "akka.tcp://ClusterSystem@127.0.0.1:2552"
15]
16 }
17 }

Ch
ap

te
r6

6

Failure Experiments

In this chapter we test how the system described in Chapter 5 copes with various
failures. For components we have control over, like the Dataport MQTT Broker
and the Dataport itself, manual failures are triggered. For components we don’t
have control over, like TTN and the forecast API, we had to wait for failures to
arise while the system was running. Several unexpected failures also occurred, where
the system’s handling of the failure was documented and if needed, the system was
refined.

6.1 Device Timeouts

6.1.1 Gateway Status Not Received in Expected Time

Hypothesis The gateway’s digital twin will timeout, go to state UNKNOWN,
update the gateway’s status field in the Airtable and send a Slack alert.

Method Define the timeout in the Airtable to be shorter than the sending frequency
of the gateway status messages.

Figure 6.1: Slack Alert on Gateway Timeout

41

42 6. FAILURE EXPERIMENTS

Figure 6.2: Airtable Status Updated on Gateway Timeout

Result Figure 6.1 shows the Slack message that was generated. Figure 6.2 shows
that the status field in Airtable is updated.

6.1.2 Sensor Measurement Not Received in Expected Time

Hypothesis The sensor’s digital twin will timeout, go to state UNKNOWN, update
the sensor’s status field in the Airtable and send a Slack alert.

Method Same procedure as for gateway: Define the timeout in the Airtable to be
shorter than the actual sending frequency of the sensor measurement messages in
order to trigger a timeout.

Result Figure 6.3 and 6.4 show the Slack message and Airtable status update,
respectively.

Figure 6.3: Slack Alert on Sensor Timeout

Figure 6.4: Airtable Status Updated on Sensor Timeout

6.2 Application MQTT Broker

6.2.1 Unavailable on Startup

Hypothesis Each sensor’s digital twin will stay in state UNKNOWN.

Method Define a malformed broker address.

Result The results were the sa as for the Dataport MQTT Broker

Ch
ap

te
r6

6.2. APPLICATION MQTT BROKER 43

6.2.2 Becomes Unavailable

Hypothesis Paho begins its exponential backoff strategy to reconnect to the broker.
A Slack notification will be sent saying the connection was lost and that it is trying
to reconnect.

Method Since we have no control over TTN, we have to wait for it to happen in
real life.

Result A Slack notification was sent regarding the lost connection for the broker.
However, since the connection was lost for a long period of time, all sensors timed
out and also sent Slack notifications. This was an unforeseen side effect. Figure 6.5
shows the Slack messages that were sent.

Since the system knows it is not connected to the source of life signs from sensors,
it should also know that sensors will timeout even though they work just fine. A
better implementation would be to freeze the timeout for sensors when the connection
to the broker providing life signs is lost. This also allows for separation of concerns
in maintenance: A person responsible for changing sensor batteries when sensors
timeout shouldn’t be notified that the connection to TTN is lost.

6.2.3 Becomes Available

In an early design iteration of the Dataport, the Actor responsible for the connection
to TTN was only told which sensors it should listen to once: When the SiteActor for
a city started. This meant that even though the supervisor of a failing MqttActor
handled restarting it OK, the MqttActor was now in a state where everything seemed
OK, even though that was not the case. It was connected to the external broker,
but it did not subscribe to any sensor topics at the external broker, because the list
of sensors it should subscribe to was only sent when the SiteActor started. To deal
with this, instead of subscribing to each sensor individually, we use the wildcard
+ to subscribe to all sensors sending messages to the application. I.e., instead of
subscribing to topics

{appEui}/devices/{deviceEui1}/up,
{appEui}/devices/{deviceEui2}/up,
[...]
{appEui}/devices/{deviceEuiN}/up}

we only subscribe to:

{appEui}/devices/+/up

44 6. FAILURE EXPERIMENTS

Figure 6.5: Application MQTT Broker Becomes Unavailable

Hypothesis A Slack notification is sent when the Actor is reconnected to the
broker, the Actor is subscribing to the general topic and starts receiving messages
from the sensors again.

Method Since we have no control over TTN, we have to wait for it to happen in
real life.

Result The corresponding log to Figure 6.6 shows the order of events, the state
changes of the MqttActors, a confirmation of the subscription and an example of a
received message.

1 [INFO] [ttn-vejle-broker] Going from CONNECTED to CONNECTING
2 [INFO] [ttn-trondheim-broker] Going from CONNECTED to CONNECTING
3 [INFO] [ttn-trondheim-broker] Damn! I lost my MQTT connection. Paho automatic

reconnect with backoff kicking in↪→

Ch
ap

te
r6

6.3. GATEWAY STATUS MQTT BROKER 45

Figure 6.6: Application MQTT Broker Self Healing

4 [INFO] [ttn-vejle-broker] Damn! I lost my MQTT connection. Paho automatic reconnect
with backoff kicking in↪→

5 [INFO] [ttn-vejle-broker] Going from CONNECTING to CONNECTED
6 [INFO] [ttn-vejle-broker] Phew! I reconnected to my MQTT broker
7 [INFO] [ttn-trondheim-broker] Going from CONNECTING to CONNECTED
8 [INFO] [ttn-trondheim-broker] Phew! I reconnected to my MQTT broker
9 [INFO] [ttn-trondheim-broker] Now subscribing to topic 70B3D57ED0000AD8/devices/+/up

10 [INFO] [ttn-vejle-broker] Now subscribing to topic 70B3D57ED00006CE/devices/+/up
11 [INFO] [ttn-vejle-broker] MQTT Received on topic

70B3D57ED00006CE/devices/000000000E77EE00/up. Publishing on internal topic
external/70B3D57ED00006CE/devices/000000000E77EE00/up

↪→

↪→

6.3 Gateway Status MQTT Broker

6.3.1 Unavailable on Startup

Hypothesis Each gateway’s digital twin will stay in state UNKNOWN until it
receives a reception message from a sensor.

Method Define a malformed broker address.

46 6. FAILURE EXPERIMENTS

Result All gateways stayed in state UNKNOWN until a reception message from a
sensor was received. From the log excerpt we see that once gateway 0000024B080E06B3
receives a message from sensor 00000000902FBDD2 it transitions into state OK.

1 [ERROR] [2016-11-04 23:49:55] [dataportBroker] Unable to connect to server
2 akka.actor.ActorInitializationException: dataportBroker: exception during
3 [INFO] [2016-11-04 23:49:55] [Trondheim/AA555A0008060353] - Going from UNINITIALIZED

to UNKNOWN↪→

4 [INFO] [2016-11-04 23:49:55] [Trondheim/AA555A0008060252] - Going from UNINITIALIZED
to UNKNOWN↪→

5 [INFO] [2016-11-04 23:49:56] [Vejle/0000024B080E06B3] - Going from UNINITIALIZED to
UNKNOWN↪→

6 [INFO] [2016-11-04 23:49:56] [Vejle/00000000902FBDD2] - Going from UNINITIALIZED to
UNKNOWN↪→

7 [ERROR] [2016-11-04 23:50:29] [dataportBroker] Unable to connect to server
8 akka.actor.ActorInitializationException: dataportBroker: exception during
9 [INFO] [2016-11-04 23:51:28] [Vejle/00000000902FBDD2] - Going from UNKNOWN to OK

10 [INFO] [2016-11-04 23:51:28] [influxDBActor] - Writing to InfluxDB, observation point:
{device_eui=00000000902FBDD2, gateway_eui=0000024B080E06B3, ...}↪→

11 [INFO] [2016-11-04 23:51:28] [Vejle/0000024B080E06B3] - Going from UNKNOWN to OK

6.3.2 Becomes Unavailable

Hypothesis Paho begins its exponential backoff strategy to reconnect to the broker.
A Slack notification will be sent saying the connection was lost and that it is trying
to reconnect.

Method Since we have no control over TTN, we have to wait for it to happen in
real life.

Result Figure 6.7 shows a real life example where the connection to the broker
was lost for a short period of time. The Dataport handled the failure and messages
from the Gateway Status Broker reappeared once the connection was reestablished.

Figure 6.7: Gateway Status MQTT Broker Self Healing

Ch
ap

te
r6

6.4. DATAPORT MQTT BROKER 47

6.3.3 Becomes Available

Hypothesis A Slack notification will be sent saying the broker reconnected.

Method Since we have no control over TTN, we have to wait for it to happen in
real life.

Result See Figure 6.7. Gateway messages are received again.

Because we can’t control TTN, we were not able to conduct an experiment
where the broker was unavailable when the Dataport started and became available
without becoming unavailable first. This case would not trigger only the last Slack
notification, but we would be able to see in the logs that the Actor is being restarted
according to the defined exponential backoff algorithm, in the same way as described
in Section 6.4.2.

Similarly to the experiment in Section 6.2.3, an early version of the Dataport
did not support recovery for the Gateway Status Actor. When restarted, it would
not know which gateways it should subscribe to, as this was only given once during
Dataport startup. For the Application Actor we simply used the topic wildcard
in order to subscribe to all sensors connected to the application. However, the
gateway status messages can only be retrieved from a global topic where all gateways
connected to TTN send status messages. Therefore, we can’t use the wildcard, as
this would give us status messages from all TTN gateways. Instead, we make the
Gateway MQTT Actor subscribe to the graph topic where each site publishes its
network graph periodically, and subscribe to all gateways present in this.

6.4 Dataport MQTT Broker

The task of the Dataport MQTT broker is make status and reception messages from
the gateways and sensors available as a stream for external sources in a nice format.
This is used to update the map showing the network at dataport.item.ntnu.no in
real-time. We consider three different ways a failure or recovery from failure at the
broker affects the Dataport.

The experiments will be performed by manually stopping and starting the broker.
This is done by issuing the following commands on the server where the broker is
running:

1 $ sudo service mosquitto stop
2 $ sudo service mosquitto start

dataport.item.ntnu.no

48 6. FAILURE EXPERIMENTS

6.4.1 Unavailable on Startup

Hypothesis Monitoring of the network is unavailable through the map, but gateway
and sensor status and reception messages are still logged on the server and pushed
to the database. The Actor responsible for the connection to the MQTT broker will
try to reconnect.

Method Stop the Dataport MQTT Broker manually before starting the Dataport.

Result As shown in the excerpt from the log below, the Actor fails to start, is
attempted restarted by its supervisor and this does not affect the other parts of the
system. This log excerpt only includes a few selected events.

1 [ERROR] [11/04/2016 22:28:23] [dataportBroker] Unable to connect to server
2 akka.actor.ActorInitializationException: dataportBroker: exception during
3 [ERROR] [11/04/2016 22:28:31] [dataportBroker] Unable to connect to server
4 akka.actor.ActorInitializationException: dataportBroker: exception during
5 [INFO] [11/04/2016 22:28:46] [Vejle/0000024B080E06B3] Going from UNKNOWN to OK
6 [ERROR] [11/04/2016 22:28:44] [dataportBroker] Unable to connect to server
7 [INFO] [11/04/2016 22:28:48] [Trondheim/AA555A0008060353] Going from UNKNOWN to OK
8 [INFO] [11/04/2016 22:29:07] [influxDBActor] Writing to InfluxDB, point {...}

6.4.2 Becomes Available

Hypothesis Monitoring becomes available through the map on refresh.

Method Make sure the Dataport MQTT Broker is not running before starting the
Dataport and start it manually after starting the Dataport.

Result From the log excerpt below we see that the Actor responsible for the
connection to the MQTT broker is failing to start because the it is unable to connect
to the broker, but once the broker is started it connects. Figure 6.8 and Figure 6.9
shows the map indicating whether its connected to the broker or not. No other parts
of the system was affected by this.

1 [ERROR] [11/04/2016 22:29:09] [dataportBroker] Unable to connect to server
2 akka.actor.ActorInitializationException: dataportBroker: exception during
3 [ERROR] [11/04/2016 22:30:04] [dataportBroker] Unable to connect to server
4 akka.actor.ActorInitializationException: dataportBroker: exception during
5 [INFO] [11/04/2016 22:31:59] [dataportBroker] Going from DISCONNECTED to CONNECTING

Ch
ap

te
r6

6.4. DATAPORT MQTT BROKER 49

Figure 6.8: Map Disconnected

Figure 6.9: Map Connected

6 [INFO] [11/04/2016 22:31:59] [dataportBroker] Connecting to broker:
tcp://dataport.item.ntnu.no:1883↪→

7 [INFO] [11/04/2016 22:31:59] [dataportBroker] Going from CONNECTING to CONNECTED
8 [INFO] [11/04/2016 22:31:59] [dataportBroker] Yeah! I connected to my MQTT broker for

the first time↪→

6.4.3 Becomes Unavailable

Hypothesis Paho begins its exponential backoff strategy to reconnect to the broker.
Monitoring becomes unavailable through the map, but gateway and sensor status
and reception messages are logged on the server.

Method Make sure the Dataport MQTT Broker is running before starting the
Dataport and stop it manually after starting the Dataport.

Result Figure 6.10 shows how the notification appears on the desktop. Figure 6.11
shows the Slack notifications with some added plausible comments from the person
receiving the notifications.

50 6. FAILURE EXPERIMENTS

Figure 6.10: Slack Desktop Notification

Figure 6.11: Slack Notification Leads to Manual Fix

6.5 Device List Source

As mentioned in Section 5.4, the Dataport retrieves the list of devices it will supervise
from an Airtable on startup. This source can fail independently from the other
components of the system.

6.5.1 Unavailable on Startup

Hypothesis The Dataport does not know which gateways and sensors exist. Hence,
it does not know which gateways and sensors to subscribe to from TTN. No digital
twins are created, the Dataport will throw an exception and not start.

Method Define a malformed Airtable address INVALID.AIRTABLE.ADDRESS .

Result All SiteActors threw an exception on Dataport startup. This because it is
crucial for the application to have this information in order to function. An excerpt
from the log shows the result:

1 [ERROR] [Trondheim] FATAL! Could not get list of devices. Sending shut down signal!
2 UnirestException: java.net.UnknownHostException: INVALID.AIRTABLE.ADDRESS

Ch
ap

te
r6

6.5. DEVICE LIST SOURCE 51

3 [INFO] Shutting down remote daemon.
4 [INFO] Remote daemon shut down; proceeding with flushing remote transports.
5 [INFO] Remoting shut down
6 [INFO] Cluster Node - Shutting down...
7 [INFO] Cluster Node - Successfully shut down
8 Process finished with exit code 0

The decision to terminate the program on this kind of error—instead of keeping
it running and trying to connect to the devices source—was made because this is
considered a severe error and it should be reflected in a non-running program, as the
program has no real value if it does not know which devices exists.

6.5.2 Becomes Unavailable

In this case, since the Airtable was available on startup, the Dataport has the initial
network graph (all gateways and sensors). The Airtable becoming unavailable should
therefore only lead to the Airtable not being updated.

1 try {
2 // Try to update the Airtable row
3 Unirest.patch(airtableRecordURL)
4 .header("Authorization", "Bearer " + airtableAPIKey)
5 .header("Content-Type", "application/json")
6 .header("accept", "application/json")
7 .body(new JsonNode("{fields: {status: " + to + "}}"))
8 .asJson();
9 } catch (UnirestException ue) {

10 log().warning("Unable to update status in Airtable because of: " +
ue.getMessage());↪→

11 }

Hypothesis The Airtable will not be updated on gateway and sensor state changes,
but the rest of the system will run as normal.

Method This experiment was not done.

Result No result.

6.5.3 Device is Lacking Position

Hypothesis No digital twin will be created for the device. It’s state will therefore
not be monitored and no measured data will be saved.

52 6. FAILURE EXPERIMENTS

Figure 6.12: Device Missing Position in Airtable

Method Create a device without position in Airtable. This is shown in Figure 6.12.

Result Excerpt from the server log shows that the Dataport handles it as expected:

1 [INFO] [Vejle/000000008DEC044C] - Going from UNINITIALIZED to UNKNOWN
2 [ERROR] [Vejle] - Device 0000000031F5B033 did not have position in Aritable, it will

not be created!↪→

3 [INFO] [Trondheim/0000000048524DD8] - Going from UNINITIALIZED to UNKNOWN

The reason for conducting this experiment is that missing fields often lead to
exceptions. If the Actor responsible for creating the digital twins of devices doesn’t
handle this exception correctly, it might crash. The choice of simply ignoring the
device if its lacking position, is because at the time of the decision we were not
storing the measurements. The first iteration of handling this was to ignore it. The
next could be to give it a random position and start storing data. However, this
could be confusing for people using the map, so we would also need to hide it from
the map. It will also muddle the stored data with a non-real position, which could
potentially influence any real-time analysis done. The best solution would probably
be to allow position to be stored as null, hide any devices without position from the
map, but still create a digital twin the monitors the device. This way the we can
gather the data and add position at a later point in time.

6.6 The Dataport Machine Stops

Hypothesis AppBeat health check will fail and a Slack message will be sent, saying
it is unable to reach dataport.item.ntnu.no.

Method Turn off the machine running the Dataport and leave it off for more than
the specified timeout in AppBeat.

Result A Slack notification saying the PING operation failed was sent approxi-
mately 3 minutes after the machine was turned off. Another notification saying the

Ch
ap

te
r6

6.7. THE FORECAST API IS UNAVAILABLE 53

Figure 6.13: Slack Notification When Host Machine is Off

PING operation worked again was sent approximately 5 minutes after it was turned
on again. The notifications are shown in Figure 6.13.

It is important to point at that AppBeat only does a PING operation against the
host machine. When the PING operation fails, a number of things can be wrong, e.g

The machine is off (this case),

The machine is offline (discussed in Section 6.8.3),

The process responsible for handling TCP requests isn’t working properly

So we don’t really know exactly what is wrong, but we know we need to check the
machine.

6.7 The Forecast API is Unavailable

Hypothesis An error is logged, the data will not be stored in the database and
the Actor will try again at the next scheduled time.

Method Use a malformed URL, increase the frequency at which forecasts should
be retrieved and verify that it retries after a failed attempt.

54 6. FAILURE EXPERIMENTS

Result Error was logged, as shown below. A Slack notification was not sent
(this is expected, it should only occur if the API version is outdated, discussed in
Section 6.8.1).

1 [ERROR] [12/14/2016 21:58:55] [weatherForecast] ikkenoeher.no
2 java.net.UnknownHostException: ikkenoeher.no
3 [ERROR] [12/14/2016 21:59:05] [weatherForecast] ikkenoeher.no
4 java.net.UnknownHostException: ikkenoeher.no

6.8 Unplanned Real-Life Failures

The Dataport has been running more or less continuously since October 4th. In
addition to the manual failure experiments documented in this chapter, a few
unforeseen failures also occurred.

6.8.1 The Forecast API Version is Outdated

When checking an unrelated error in the log, an exception from the actor responsible
for retrieving sunlight forecasts was discovered. The endpoint it was trying to get
data from stated that

The specified version number is end-of-lifed for this product

No mechanism for notifying about this type of failure had been implemented at the
time. However, the system is resilient to this kind of failures, which means the actor
was terminated and restarted without affecting any other parts of the system. The
result of the failure was some lost forecast data for approximately one month into
the future. This data was re-collected when the error was detected. Forecasts with a
shorter time frame into the future would have caused more severe loss of data. As a
countermeasure, a Slack notification is now sent if the forecast APIs does not answer
in the expected way.

Hypothesis A Slack notification is sent when the forecast API gives unexpected
response.

Method Specify an outdated version of the forecast API.

Result As seen in Figure 6.14, the Slack notification works as intended.

Ch
ap

te
r6

6.8. UNPLANNED REAL-LIFE FAILURES 55

Figure 6.14: Slack Notification Forecast API Version is Outdated

6.8.2 Sensor Sends Malformed Point to Database Actor

On October 21st an old sensor only measuring CO2 (not NO2, temperature, humidity
and pressure) as included in the monitored application. When the Actor responsible
for the database connection tried to send this measurement, something went wrong.
Unfortunately, nothing got written to the log. So when trying to figure out why
suddenly no data got written to the database, it was hard figuring out that this was
the cause. When debugging locally, it turns out an exception gets thrown to the
standard output (stdout):

1 org.influxdb.impl.BatchProcessor write
2 SEVERE: Batch could not be sent. Data will be lost
3 java.lang.RuntimeException: {error:unable to parse ... : invalid field format}

This is probably because the point attempted inserted into the database was
sending some null fields, since the sensor did not measure them. However, since
this caused the database client to fail without the actor failing, everything looked
OK from the outside. The actor was receiving measurements, but was not able to
write them to the database. This error actually led to a loss of 5 days worth of data
from the sensors, shown in Figure 6.15 where there are no data points in the period
October 21st to October 26th.

The solution to this was to have the sensor measuring fewer things write to a
separate time series in the database:

56 6. FAILURE EXPERIMENTS

Figure 6.15: Lost Data as Result of Lost Internet Connection at Server Site

1 [INFO] [Trondheim/000000001B1A8C66] - Going from UNKNOWN to OK
2 [WARN] [influxDBActor] - Getting point from sensor sending too few measurements,

store in separate time series↪→

3 [INFO] [Trondheim/00000000CD3BE279] - Going from UNKNOWN to OK
4 [INFO] [influxDBActor] - Writing to InfluxDB, observation point: {...}

6.8.3 Internet Connection Lost at Server Site

On October 27th, the Internet connection was lost for approximately 2 hours at the
Institute of Telematics at NTNU, where the server the Dataport runs at. This gave
a few interesting results.

Hypothesis The application will keep running, but loose all its connections. It will
not be able to notify about these lost connections as there are no Internet connection.
AppBeat will trigger an alert as it will not get a response from dataport.item.ntnu.no.
It will also send an alert when it is able to reach the server again. When the
application is able to connect to the Internet again, everything should work as
normal.

Result The AppBeat component worked as planned: A Slack alert was sent as
shown in Figure 6.16. Figure 6.17 shows the notification meeting us when logging
into the AppBeat application. It says everything is OK now, but something was not
OK earlier, and reminds us to check that everything is actually OK.

The choice of using Paho’s internal handling of lost connections affected the
results of this failure. In the log excerpt below we can see that the Actor holding the
connection to the Gateway Status Mqtt Broker (ttnGatewayStatusBroker) gets a
timeout exception when trying to reconnect to the broker. This causes the Actor
to fail and the supervisor strategy of restarting the Actor to kick in. However, the
two Actors holding the connections to the Application MQTT Broker (ttn-Vejle-
broker and ttn-Trondheim-broker) did not get a timeout exception. The log does not

dataport.item.ntnu.no

Ch
ap

te
r6

6.8. UNPLANNED REAL-LIFE FAILURES 57

Figure 6.16: Slack Notification from AppBeat

Figure 6.17: Status Alert in AppBeat Dashboard

58 6. FAILURE EXPERIMENTS

give any information as to what went wrong. This is what needs to be considered
when choosing whether to use an external library’s implementation over doing the
implementation yourself: How much to you trust the external library to have done a
proper implementation? How much detailed information do you need if something
goes wrong? It seems something went wrong with Paho’s built-in reconnecting
without it throwing an exception.

The fact that the Application MQTT Broker Actors did not fail properly led to
some loss of data from the sensors. Figure 6.15 shows a small gap of data points on
October 27th.

So to conclude: Parts of the Dataport handled the failure, other parts didn’t.

1 2016-10-27 07:39:48 INFO [ttn-Vejle-broker] - Going from CONNECTED to CONNECTING
2 2016-10-27 07:39:48 ERROR [ttn-Vejle-broker] - Damn! I lost my MQTT connection. Paho

automatic reconnect with backoff kicking in↪→

3 2016-10-27 07:40:38 INFO [ttn-Trondheim-broker] - Going from CONNECTED to CONNECTING
4 2016-10-27 07:40:38 ERROR [ttn-Trondheim-broker] - Damn! I lost my MQTT connection.

Paho automatic reconnect with backoff kicking in↪→

5 2016-10-27 07:40:46 INFO [ttnGatewayStatusBroker] - Going from CONNECTED to
CONNECTING↪→

6 2016-10-27 07:40:46 ERROR [ttnGatewayStatusBroker] - Damn! I lost my MQTT connection.
Paho automatic reconnect with backoff kicking in↪→

7 2016-10-27 07:40:46 ERROR [ttnGatewayStatusBroker] - MqttException: Timed out waiting
for a response from the server↪→

8 [...]
9 2016-10-27 07:41:45 ERROR [ttnGatewayStatusBroker] - MqttException

10 akka.actor.ActorInitializationException: ttnGatewayStatusBroker: exception during
creation↪→

11 Caused by: org.eclipse.paho.client.mqttv3.MqttException: MqttException
12 Caused by: java.net.UnknownHostException: croft.thethings.girovito.nl
13 [...]
14 2016-10-27 08:42:45 ERROR [Vejle/00000000902FBDD2] - java.net.UnknownHostException:

hooks.slack.com↪→

Ch
ap

te
r7

7

Discussion

7.1 Evaluation of the Dataport

Two incidents occurred where external Java client code did not work as expected.

InfluxDB driver One malformed point made the InfluxDB driver fail without
throwing exception. This was solved by adding a special case handling the sensor
sending too few fields.

Paho client Only 1/3 Actors got a timeout exception from Paho after its backoff
algorithm kicked in. This resulted in that only the one that failed correctly recon-
nected when things were back OK (Internet connection was lost for 2 hours on site
where server is located). The two others did not throw exception, hence the actors
didn’t die and get restarted, and were therefore in a locked state without a working
MqttConnection and without trying to reconnect.

Sends out too many notifications, can bloat the channel and reduce the importance
of the notification. These are not false positives, but we could perhaps have a timeout
if a resource is reconnected immediately. However, this means we introduce a delay
before notifying. The optimal duration of this delay is hard to determine.

The feedback from CTT is that the system har proven itself very valuable,
especially in a deployment process which there has been several of.

59

60 7. DISCUSSION

Have been running for 2 and a half months, collecting data and notifying about real
failures. It has proved itself useful to CTT, especially during the latest deployment
of new sensors mid-December 2016.

Since some of the data is overlapping with the data measured by the network, we
can use this to compare data measured by the network with high precision forecast
data. How many sensors is needed for the average to match the forecast?

Hevner states that “Good design science research often begins by identifying
and representing opportunities and problems in an actual application environment”
[Hev07, p. 89]. The developed artifact does solve an actual problem. It has proven to
be resilient to failures by running more or less continuously for 2 and a half months.
The design is resilient through the use of actors.

We will not go into detail on how Akka handles clustering. For this, the reader
is referred to Chapter 6 Networking in [Lig16, p. 320]. Due to the nature of the
actor pattern used in the implementation, we saw in Section 5.12 that only a small
addition to a configuration file would make the same source code run on a cluster.

It is also worth noting the difference between scaling up and scaling out. Moving
an Akka application from a singel machine into a cluster is to scale out. The
application becomes more dependable as if one machine fails, another can take over.
Scaling up means giving the application more computational power. If the IoT
application we monitor is of a different nature than the one we are monitoring now,
i.e. each sensor sends many measurements per second or the number of sensors is
multiplied many times, we might need to scale up.

When it comes to the possibility of data analysis, this can either be outsourced
to a single powerful computer, or distributed to many workers. We already have a
distributed architecture, in that each sensor has its own digital twin. For applications
where sensors only send data every few minutes, the digital twin is a good candidate
for doing data analysis regarding itself. If one wants to look at data from the whole
network, this has to be orchestrated somehow.

7.2 Design Science Checklist

In Section 2.4 I introduced Hevner’s “checklist” for design science research projects.
Answering these questions gives a nice summary of the process.

What is the research question?

How can data and meta data from an IoT application can be used to discover and
identify failures in the application without or with minimal extra instrumentation?

Ch
ap

te
r7

7.2. DESIGN SCIENCE CHECKLIST 61

What is the artifact? How is the artifact represented?

The artifact is a piece of software that gathers data and meta data sent from
the network and uses this to build a virtual representation of the network. The
digital twins representing the physical objects in the network are given the extra
instrumentation we need to monitor that they perform as expected. The artifact also
gathers data from other data sources, allowing this to be compared with the data
measured by the network.

What design processes will be used to build the artifact?

The artifact was be built through an iterative process, where a Minimal Viable Product
(MVP) was quickly deployed into the field and refined based on its performance,
discovered weaknesses and new requirements from the application environment.

How are the artifact and the design processes grounded by the
knowledge base? What, if any, theories support the artifact
design and the design process?

The artifact is built using the well tested actor model. The choice of quickly
introducing the artifact into the environment and iteratively make improvements
aligns with the guidelines of design science research.

What evaluations are performed during the internal design
cycles? What design improvements are identified during each
design cycle?

Features were added to handle more failures and extend the functionality of the
Dataport in every design cycle.

How is the artifact introduced into the application environment
and how is it field tested? What metrics are used to demonstrate
artifact utility and improvement over previous artifacts?

The artifact was connected to the application from the very beginning of the devel-
opment. It was fed real data throughout the process and had to handle new data
formats while supporting legacy formats. The continued notification of timeouts and
self-healing, combined with the duration of which the artifact keeps running without
failure, demonstrate the usefulness of it.

62 7. DISCUSSION

What new knowledge is added to the knowledge base and in what
form?

How IoT applications can be monitored without adding instrumentation to the
possibly already deployed devices.

Has the research question been satisfactorily addressed?

Initially, scalability was a big concern. However, due to the size and nature of the
application being monitored (only 19 devices in total sending data at a highest
frequency of every 5 minutes), this has not been a pressing issue. Because of this, a
thorough assessment of the systems scalability has not been prioritized. This does
not mean the system is not scalable. Section 5.12 discuss the potential of scaling
with Akka.

7.3 Future Work

7.3.1 Next Design Cycles

Due to the iterative development approach, new functionality demands was discovered
throughout the whole design process. Not all of these were implemented, due to
time needed to also evaluate the developed system. In this subsection I’ll present
a few thoughts on some of these, which will be used by me—and possibly other
contributors—as inspiration for the continued development of the Dataport.

Dynamic creation of digital twins

Today, the Dataport reads a list of sensor IDs, positions and expected sending
frequency on startup. If a new sensor is added to the application, the Dataport needs
a restart to be aware that this sensor exists. It is possible to use wildcards when
subscribing to topics from the TTN MQTT broker. By doing this, the Dataport can
become aware of sensors that are added to the application without needing a restart.
The Site Actor will be responsible for creating new Sensor Actors when a new sensor
is deployed. However, we will still need to know (i) the position of the sensors—as
this is not provided by TTN yet—and (ii) how often we should expect the sensors to
send data in order to know when we should notify someone about lacking data. For
existing sensors, the Airtable used today can be used to look this up. If the sensor
is missing from the table, a default expected sending frequency can be given and a
Slack notification can request the Airtable to be updated with this information.

Adaptable timeout for sensors with variable sending frequency

Early December, CTT made an update to their sensors. This update made the
sensors change how often they made measurements based on their battery level. In

Ch
ap

te
r7

7.3. FUTURE WORK 63

order to still be able to know when a sensor has actually timed out—not just changed
its sending frequency—we would need to have the “sending frequency rules” and
change the timeout when a battery threshold is crossed.

Send instructions to the nodes based on central analysis

TTN supports sending messages in the other direction as well. This opens the
possibility of making individual sensor nodes adapt not only based on local knowledge
(e.g. its battery level and measurements), but also on global knowledge from the
whole network, analysed centrally together with data from other sources, e.g. weather
forecast data. The LoRaWAN protocol requires devices to listen for responses for
a short time after doing a transmission, but how to react to the possibly received
message must of course be implemented.

Analyse forecast data and measured data

The institute has already planned to use the Dataport in order to learn more about
the sensors and try to make components in the network more autonomous.

References

[ADK+16] Dirk Ahlers, Patric Arthur Driscoll, Frank Alexander Kraemer,
Fredrik Valde Anthonisen, and John Krogstie. A Measurement-Driven
Approach to Understand Urban Greenhouse Gas Emissions in Nordic
Cities. https://brage.bibsys.no/xmlui/handle/11250/2423962, December
2016. Accessed: 2016-12-04.

[AHS07] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data process-
ing in large-scale interconnected sensor networks. In 2007 International
Conference on Mobile Data Management, pages 198–205, May 2007.

[ALRL04] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, Jan 2004.

[Ama16] Amazon Web Services. AWS IoT Developer Guide. http://docs.aws.
amazon.com/iot/latest/developerguide/iot-dg.pdf, 2016. Accessed: 2016-
12-11.

[BBH+10] Carlo Alberto Boano, James Brown, Zhitao He, Utz Roedig, and Thiemo
Voigt. Low-Power Radio Communication in Industrial Outdoor Deploy-
ments: The Impact of Weather Conditions and ATEX-Compliance, pages
159–176. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[BL12] M. Blackstock and R. Lea. Iot mashups with the wotkit. In 2012 3rd
IEEE International Conference on the Internet of Things, pages 159–166,
Oct 2012.

[BL13] Michael Blackstock and Rodger Lea. Toward interoperability in a web of
things. In Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication, UbiComp ’13 Adjunct, pages
1565–1574, New York, NY, USA, 2013. ACM.

65

https://brage.bibsys.no/xmlui/handle/11250/2423962
http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
http://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf

66 REFERENCES

[BL14a] M. Blackstock and R. Lea. IoT interoperability: A hub-based approach.
In International Conference on the Internet of Things (IOT), pages 79–84,
Oct 2014.

[BL14b] Michael Blackstock and Rodger Lea. Toward a distributed data flow
platform for the web of things (distributed node-red). In Proceedings of
the 5th International Workshop on Web of Things, WoT ’14, pages 34–39,
New York, NY, USA, 2014. ACM.

[Den16] Volkmar Denner. Why a Bosch IoT Cloud? http://blog.bosch-si.com/
categories/internetofthings/2016/03/why-a-bosch-iot-cloud/, March
2016. Accessed: 2016-12-11.

[dom16] ellenfosborne v-anpasi kiwhit v-cmans tysonn dominicbetts, bzurcher.
Overview of device management with IoT Hub. https://docs.microsoft.
com/en-us/azure/iot-hub/iot-hub-device-management-overview, Octo-
ber 2016. Accessed: 2016-12-11.

[EHHP13] Peder J. Emstad, Poul E. Heegaard, Bjarne E. Helvik, and Laurent Pa-
quereau. Dependability and Performance with Discrete Event Simulation.
Kompendieforlaget, June 2013. This edition is a draft.

[Gar16] Ginger Gardiner. Digital twin, digital thread and com-
posites. http://www.compositesworld.com/blog/post/
digital-twin-digital-thread-and-composites, April 2016. Accessed:
2016-12-11.

[Goo16] Google. Overview of Internet of Things. https://cloud.google.com/
solutions/iot-overview#operations, October 2016. Accessed: 2016-12-11.

[Han16] Hans Henrik Grønsleth. Dataport Map. https://github.com/
NTNU-ITEM/ctt-dataport-web, http://dataport.item.ntnu.no, 2016. Ac-
cessed: 2016-12-18.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular
ACTOR Formalism for Artificial Intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers
Inc.

[HC10] Alan Hevner and Samir Chatterjee. Design Science Research in Infor-
mation Systems, pages 9–22. Springer US, Boston, MA, 2010.

[Hev07] Alan R. Hevner. A Three Cycle View of Design Science Research. Scan-
dinavian Journal of Information Systems, 19(2):87–92, 2007.

http://blog.bosch-si.com/categories/internetofthings/2016/03/why-a-bosch-iot-cloud/
http://blog.bosch-si.com/categories/internetofthings/2016/03/why-a-bosch-iot-cloud/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-device-management-overview
http://www.compositesworld.com/blog/post/digital-twin-digital-thread-and-composites
http://www.compositesworld.com/blog/post/digital-twin-digital-thread-and-composites
https://cloud.google.com/solutions/iot-overview#operations
https://cloud.google.com/solutions/iot-overview#operations
https://github.com/NTNU-ITEM/ctt-dataport-web
https://github.com/NTNU-ITEM/ctt-dataport-web
http://dataport.item.ntnu.no

REFERENCES 67

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
Design Science in Information Systems Research. MIS Q., 28(1):75–105,
March 2004.

[Kom10] Trondheim Kommune. Energi- og klimahandlingsplan for Trondheim
kommune. Mål og tiltak for perioden 2010-2020. https://www.trondheim.
kommune.no/klimahandlingsplan/, 2010. Accessed: 2016-12-18.

[LB14] R. Lea and M. Blackstock. City hub: A cloud-based iot platform for smart
cities. In 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science, pages 799–804, Dec 2014.

[Lib16] Libelium. Enhancing environmental control and reducing
emissions in Nordic Smart Cities. http://www.libelium.com/
enhancing-environmental-control-and-reducing-emissions-in-nordic-smart-cities/,
November 2016. Accessed: 2016-12-04.

[Lig16] Lightbend Inc. Akka Java Documentation. http://doc.akka.io/docs/
akka/2.4.8/AkkaJava.pdf, July 2016. Accessed: 2016-07-20.

[Mun12] Trondheim Municipality. Kommunal energi- og utslippsstatistikk op-
pdateres ikke. www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/
kommunal-energi-og-utslippsstatistikk-oppdateres-ikke, February 2012.
Accessed: 2016-02-21.

[Net16] The Things Network. The Things Network. https://www.
thethingsnetwork.org/, December 2016. Accessed: 2016-12-12.

[SA00] Frank Stajano and Ross Anderson. The grenade timer: Fortifying the
watchdog timer against malicious mobile code. In in Proceedings of 7th
International Workshop on Mobile Multimedia Communications (MoMuC
2000), Waseda, 2000.

[Shu14] Shubham Khandelwal and Hari Singh and P. Chaurasia. Experimental
Study on the Effect of Cloud on Solar Photovoltaic Panel in Jaipur
(Rajasthan). https://www.ijsr.net/archive/v3i10/T0NUMTQ1NA==.
pdf, October 2014. Accessed: 2016-12-18.

[Sim96] Herbert A. Simon. The Sciences of the Artificial (3rd Ed.). MIT Press,
Cambridge, MA, USA, 1996.

https://www.trondheim.kommune.no/klimahandlingsplan/
https://www.trondheim.kommune.no/klimahandlingsplan/
http://www.libelium.com/enhancing-environmental-control-and-reducing-emissions-in-nordic-smart-cities/
http://www.libelium.com/enhancing-environmental-control-and-reducing-emissions-in-nordic-smart-cities/
http://doc.akka.io/docs/akka/2.4.8/AkkaJava.pdf
http://doc.akka.io/docs/akka/2.4.8/AkkaJava.pdf
www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/kommunal-energi-og-utslippsstatistikk-oppdateres-ikke
www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/kommunal-energi-og-utslippsstatistikk-oppdateres-ikke
https://www.thethingsnetwork.org/
https://www.thethingsnetwork.org/
https://www.ijsr.net/archive/v3i10/T0NUMTQ1NA==.pdf
https://www.ijsr.net/archive/v3i10/T0NUMTQ1NA==.pdf

List of Acronyms

List of Acronyms

CTT The Carbon Track and Trace project.

GHG greenhouse gas.

IoT Internet of Things.

ITEM The Department of Telematics.

LPWAN Low Power Wide Area Network.

MVP Minimal Viable Product.

NTNU Norwegian University of Science and Technology.

PM Particulate matter.

QA Quality assurance.

RSSI Received Signal Strength Indicator.

SSB Statistisk Sentralbyrå [Statistics Norway].

TTN The Things Network.

69

List of Figures

2.1 LoRaWAN Gateways Connected to The Things Network. Figure from
[Net16] . 4

2.2 Actor Lifecycle. Figure from [Lig16]. 5
2.3 The Dependability Tree. Adapted from Figure 1.11 in [EHHP13, p. 25]. 7
2.4 Reliability Block Diagram for General Systems 8
2.5 Reliability Block Diagram for Series Systems 9
2.6 Reliability Block Diagram for Parallel Systems 10
2.7 Illustration of System Times. Adapted from Figure 1.13 in [EHHP13,

p. 28]. 10
2.8 Design Science Research Cycles. Adapted from Figure 1 in [Hev07, p. 88]

and Figure 2 in [HMPR04, p. 80] . 12
2.9 Mapping of Design Science Checklist to Research Cycles. Adapted from

Figure 2.3 in [HC10, p. 20] . 14

3.1 Sensor Actor State Diagram . 19
3.2 Gateway Actor State Diagram . 20
3.3 MQTT Actor State Diagram . 22
3.4 Slack Notification on Low Battery . 23
3.5 Map Showing Network State and Data 24

4.1 Battery Level Against Sunlight Duration 27
4.2 Mean of Battery Level Against Sunlight Duration 27
4.3 Mean of Measured Temperature Against Forecasted Temperature 27
4.4 Data Visualisation Dashboard . 28

5.1 Source Code at https://github.com/NTNU-ITEM/dataport-akka 29
5.2 Actor System Architecture in Akka. Figure adopted from [Lig16]. . . . 31
5.3 Dataport Interaction with External Services 33
5.4 Dataport supervision overview . 34
5.5 Dataport Internal Topic Structure . 35
5.6 Airtable Device List . 35

71

https://github.com/NTNU-ITEM/dataport-akka

72 LIST OF FIGURES

5.7 Dataport Site Overview . 36

6.1 Slack Alert on Gateway Timeout . 41
6.2 Airtable Status Updated on Gateway Timeout 42
6.3 Slack Alert on Sensor Timeout . 42
6.4 Airtable Status Updated on Sensor Timeout 42
6.5 Application MQTT Broker Becomes Unavailable 44
6.6 Application MQTT Broker Self Healing 45
6.7 Gateway Status MQTT Broker Self Healing 46
6.8 Map Disconnected . 49
6.9 Map Connected . 49
6.10 Slack Desktop Notification . 50
6.11 Slack Notification Leads to Manual Fix 50
6.12 Device Missing Position in Airtable . 52
6.13 Slack Notification When Host Machine is Off 53
6.14 Slack Notification Forecast API Version is Outdated 55
6.15 Lost Data as Result of Lost Internet Connection at Server Site 56
6.16 Slack Notification from AppBeat . 57
6.17 Status Alert in AppBeat Dashboard . 57

List of Tables

2.1 Design Science Research Guidelines [HC10, p. 12] 13

73

	Introduction
	Motivation
	Limitations
	Thesis Outline

	Background
	The Carbon Track and Trace project
	The Things Network
	LoRaWAN

	The Actor Model
	What is Dependability?
	System Times

	Design Science
	Related Work

	The Watchdog
	Detection
	Notification
	Manual Monitoring

	The Forecaster
	Data Collection
	Data Visualisation

	Dataport Design
	Akka
	Design Choices When Using External Libraries
	External Resource Failures vs. Gateway/Sensor Failures

	System Overview
	Publish-Subscribe Topic Structure
	The Site Actor
	The Database Actor
	The MQTT Actors
	The Forecast Actors
	The Sensor Actor
	The Gateway Actor
	AppBeat
	Logging
	Scaling

	Failure Experiments
	Device Timeouts
	Gateway Status Not Received in Expected Time
	Sensor Measurement Not Received in Expected Time

	Application MQTT Broker
	Unavailable on Startup
	Becomes Unavailable
	Becomes Available

	Gateway Status MQTT Broker
	Unavailable on Startup
	Becomes Unavailable
	Becomes Available

	Dataport MQTT Broker
	Unavailable on Startup
	Becomes Available
	Becomes Unavailable

	Device List Source
	Unavailable on Startup
	Becomes Unavailable
	Device is Lacking Position

	The Dataport Machine Stops
	The Forecast API is Unavailable
	Unplanned Real-Life Failures
	The Forecast API Version is Outdated
	Sensor Sends Malformed Point to Database Actor
	Internet Connection Lost at Server Site

	Discussion
	Evaluation of the Dataport
	Design Science Checklist
	Future Work
	Next Design Cycles

	References
	List of Acronyms
	List of Figures
	List of Tables

