
Problem description 

3D Ultrasound is often generated by reconstruction of freehand input, generating 3D volumes from 2D 
ultrasound images with tracked positions. Ultrasound imaging is a fast and flexible modality, allowing it 
to be used in settings where other imaging modalities would be inadequate. 
 
The FAST framework is designed to make cross-platform and heterogeneous implementation easy and 
efficient. There are no previous implementations of 3D Ultrasound reconstruction in FAST. 
 
Development of reconstruction algorithms have been performed for decades, and speed performance 
always increasing with faster hardware and more parallel development, for instance on GPUs. 
 
The goal of this thesis is to implement a reconstruction algorithm which: 

● Is the first to integrate into FAST, discovering and trespassing its caveats 
● Is previously unpublished, and will be well-described in this thesis. 
● Creates reconstructions of good quality 
● Performs at top-end reconstruction speeds 
● Can be extended to fit in a real-time setting 

 
With the GPU implementation, we hope to see good quality at top-end reconstruction speeds. 
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Abstract 

Ultrasound imaging is a versatile, portable, and low cost medical imaging modality. It produces real-time 
data from a local area in the scanned person, or object, useful in use cases such as intra-operative imaging. 
Freehand 3D ultrasound reconstruction is a technique used to convert sets of 2D ultrasound images into a 
3D volume. It is prefered over direct 3D acquisition due to increased resolution and flexibility, and lower 
cost. However, freehand 3D ultrasound reconstruction requires tracking, which will contain inaccuracies. 
 
Reconstruction algorithms are supposed to approximate the volume, given the overlap and gaps between 
input data, while taking position uncertainties into account. There are many existing solutions, from basic 
one-to-one solutions like Pixel Nearest Neighbor (PNN) and Voxel Nearest Neighbour (VNN), to 
compounding distance weighted solutions like Varying Gaussian Distance Weighting (VGDW). With the 
increasing power of Graphical Processing Unit (GPU) calculations, reconstruction can run faster, 
allowing more powerful methods to reach demands for new situations. In this thesis we propose a 
previously unpublished hybrid  approach based on pixel-based methods. For each input frame it finds the 
voxels within relevant distance, and for each of these voxels it accumulates the most relevant data from 
the current input frame. Voxel focus in accumulation, allows for a highly parallel, and computationally 
efficient method that can run at high performance. Variations in input distance are easily adjusted for by a 
flexible distance weighting function. 
 
Multiple configurations were tested, to improve the visual quality or performance properties of the 
algorithm. Visual evaluation by a group of ultrasound technologists proved that the hybrid approach can 
score at least as good as the VGDW, as the evaluators consensually scored both hybrid  configurations 
ahead of VGDW. Running on a Nvidia GTX 970 GPU high-end runtime performance was achieved, with 
sub-second reconstruction time on volumes with 32 million voxels, and very good scaling with bigger 
volumes. An alpha-blending compounding method has been implemented, accumulating frames at a rate 
of 2000 frames per second, with no need for normalization. Hybrid accumulation performance is on line 
with PNN accumulation, yet without the need for a hole-filling step it severely outperforms PNN on 
overall performance. The hybrid algorithm scales particularly well with volume size, and is able to adapt 
well to varying distance between input frames. Additional improvements have been looked into for 
further work, as well as exploring the real-time solutions for this algorithm, or others. 
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Chapter 1: Introduction 

3D Ultrasound reconstruction computes a 3D volume representing all the data available with a set of 2D 
ultrasound images, including the pixel position, and intensity value. This reconstruction allows further 
segmentation and generating slices in arbitrary planes, empowering ultrasound to do task otherwise 
reserved for CT and MR imaging. 2D ultrasound imaging offer advantages over these two with real-time 
acquisition, and no radiation. To preserve the real-time speed in 3D a reconstruction implementation has 
to be efficient, and utilize the incremental nature of the input efficiently. This would allow the operator to 
continue using the ultrasound machine as when scanning normal 2D ultrasound, keeping the flexibility of 
3D ultrasound at its prime. Rapid, or real-time, reconstruction enables the operator to evaluate the results 
right after, or during, scanning, to quickly decide if acquisition was appropriate, or if rescanning is 
necessary. Many times bad acquisition can produce more mistakes than any reconstruction can adjust for. 
 
Reconstruction quality is also important, and algorithms will need to handle inaccuracies and overlapping 
data while preserving detail. 3D ultrasound reconstructions have no definite gold standard as they are 
created by approximations of the input, through smoothing and compounding effects, as complete 
accuracy is impossible. In the end it will matter more what differences the operator can perceive. A 
balance between visual quality and reconstruction swiftness should be found, to produce results good 
enough for the application yet swift enough to reach its constraints.  
 
This thesis will use the massively parallel nature of GPU processing, to leverage the constraints to get a 
solution more on the quick side without losing much quality. The algorithm will hasten reconstruction 
with highly parallel and numerically simple calculations, while preserving quality with weight based 
accumulation methods. Flexibility will be ensured with adaptable maximum distances depending on input 
local densities. 

1.1 Goals 
The goals of this thesis are to:  

1. Implement the previously unpublished algorithm in FAST, as the first 3D ultrasound 
reconstruction integrated into the framework. 

2. Implement a reconstruction algorithm with quality result, while reaching for top-end 
performance. 

3. Evaluate algorithm options to increase quality, or achieving performance capable of real-time 
results. 

1.2 Contributions 
The contributions of this thesis consist of: 

● A thorough description of an previously unpublished hybrid algorithm, exploring what 
improvements this offer over other algorithms. 
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● Implementation of the first reconstruction algorithm in FAST, making it easier to implement new 
algorithms. Implementing a simple pipeline that allows both pixel-, and voxel-based methods. 

● A quick accumulation technique capable of real-time accumulation. Ideas for how accumulation 
with real-time visualization can be implemented. 

1.3 Thesis outline 
The thesis chapters will be outlined below. 
 
Chapter 2: Background presents the underlying information necessary to implement, or fully understand 
the reconstruction concept, as a background for the remainder of the thesis. It will introduce Ultrasound 
imaging, and 3D Ultrasound reconstructions, explaining the basics of the modality, and explaining 
existing methods of reconstruction. Basic mathematical formulas are explained, and the FAST and 
OpenCL are introduced. 
 
Chapter 3: Method introduces the previously unpublished hybrid approach, and the implementations that 
have been done with this thesis. The algorithm is described in detail, to avoid confusion with existing 
methods. Parameters and OpenCL GPU implementation choices are described. Finally the evaluation 
processes are described. 
 
Chapter 4: Results presents the results of the visual quality and speed performance evaluations. It 
includes score results from the visual evaluation, together with the evaluated images. Performance results 
are displayed with tables and graphs for multiple parts of the runtime and adjustments for image count 
and volume size. 
 
Chapter 5: Discussion looks at the findings of Chapter 4, discussing the results of the visual evaluation, 
as well as the performance evaluation. 
 
Chapter 6: Conclusions summarizes this thesis, comparing the end results to the initial goals. 
 
Chapter 7: Further Work presents some ideas that have been discovered during the work on this thesis. 
These ideas are found hopeful for further work. 
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Chapter 2: Background 

This chapter will introduce some of the background theory that serves as a basis for this thesis. Section 
2.1 will introduce medical ultrasound imaging, and explain how it is created. Section 2.2 will elaborate on 
the topic of Freehand 3D ultrasound reconstruction, which is the main focus in this thesis. The FAST 
framework will be presented in Section 2.3, while in Section 2.4 the theory behind OpenCL computation 
will be explained. Finally, Section 2.5 describes the mathematical theory used for in this thesis, from 
geometry, to interpolation and weighting. 

2.1 Ultrasound Imaging 
This section will introduce the ultrasound imaging modality, and explain how ultrasound images are used 
and created. Section 2.1.1 will introduce ultrasound and compare it to CT and MRI scans. Section 2.1.2 
explains how ultrasound imaging works and how the image is built up. Section 2.1.3 will talk about 
artefacts and problem areas that may arise, while Section 2.1.4 will introduce the concept of 3D 
ultrasound. The work of Sverre Holm[6] have been a great base for understanding ultrasound physics and 
providing reasonable numbers to describe medical ultrasound imaging.  

2.1.1 Ultrasound Intro 

Ultrasound (US) is one of the three major medical imaging modalities. Commonly known as a tool to 
check the fetus in the womb of the mother, it also has a lot of other use cases, for instance cardiology and 
imaging organs in the abdominal region. It can sometimes replace the use of a Computed tomography 
(CT) scan or Magnetic resonance imaging (MRI). Ultrasound imaging might not be as accurate as these 
other two, but it is a lot more versatile. With its low cost and portable size it is a lot more accessible than 
the other two. Fast results make it easy to use, and the lack of radiation makes it a safe choice. However it 
is dependant on fluid contact for the sound waves to pass though, and certain artefacts may occur if air 
bubbles or bone exists. US imaging also have to make a trade-off between spatial resolution and 
penetration depth, something that often leaves the modality best at portraying objects relatively close to 
the surface. 

2.1.2 Ultrasound image creation 

The ultrasound probe is built up from multiple piezo-elements, small crystals that change size and shape 
depending on the applied voltage. The voltage is alternated by a AC current, which in turn creates sound 
waves into neighbouring materials. If the voltage is alternated at a frequency above 20 kHz, it is 
technically a ultrasound wave. In practice a frequency between 2 and 10 MHz is commonly used in 
medical ultrasound. 
 
The ultrasound sound waves are reflected in the target material, returning the waves back to the piezo 
crystal. The crystal has the ability to receive this wave and turn it back into an AC current, allowing us to 
essentially receive feedback in the pulse-echo format. Whenever the sound wave transitions from one 
tissue to the next the wave is refracted, and some of the signal is reflected. The bigger the difference 

20/102 



between the tissues, the higher the reflection. Moving into bone or air causes almost total reflection, 
strongly diminishing the results behind it. The delay and power of the returned reflections are used to 
calculate the distance and intensity. 
 
Multiple piezo-elements are lined up to create an array of elements, making a 2D ultrasound transducer or 
2D probe. Each piezo-element reads a 1D scan line of data, and together they can form a 2D image. These 
2D images, B-scans, are captured in B-mode, brightness mode, and these images will be the input data of 
this thesis. 

2.1.3 3D ultrasound 

Ultrasound imaging can create 3D volumes, and for doing so there exist multiple approaches. For 
instance, transducers with a 2D array of piezo-elements can directly capture a 3D volume. However the 
probe footprint can be large, and the resolution is subpar to its 1D array counterparts. Another approach is 
to use a 1D array of piezo-elements mounted on a motorized unit, that will move the array in a simple, 
repetitive translation, tilt, or rotation. This will allow the 1D array to cover a 3D volume over a limited 
time period. As this volume is not acquired in an instant, the scans at each timeframe still need to be run 
through some kind of reconstruction algorithm to adjust for any movement. Both of these approaches 
suffer due to the fact that they require new specialized equipment, and the size of the probe might limit its 
use cases. 
 
Freehand 3D ultrasound reconstruction uses any 1D array transducer and uses tracking data to position the 
B-scans in world space and calculate values for each output voxel depending on the position of each input 
image. Freehand 3D ultrasound has the advantage of using existing probes, with a tracking device, 
allowing for a cost efficient, diverse, and flexible execution. Freehand 3D ultrasound will be discussed 
more in Section 2.2. 

2.2 Freehand 3D Ultrasound reconstruction 
This section will follow up on Section 2.1 and dive into the topic of freehand 3D ultrasound. In Section 
2.2.1 the topic of freehand 3D ultrasound will be introduced, requiring the tracking described in Section 
2.2.2. Section 2.2.3 will showcase common reconstruction algorithms with their most important traits. 
Section 2.2.4 explains some of the general optimization- and parallelization-traits of the main 
reconstruction types. Section 2.2.5 talks about existing real-time solutions, and discusses why it matters. 
Section 2.2 is based on the work of Solberg et al.[13], as well as a few other sources[4][9][10]. 

2.2.1 Freehand 3D ultrasound reconstruction intro 

Freehand 3D Ultrasound reconstruction uses a series of 2D B-scan images to construct a 3D volume. The 
probe is tracked to determine the position of the images. Tracking will be discussed in Section 2.2.2. A 
freehand approach can utilize any existing 2D ultrasound probes, making it adaptable to any clinical 
situation. 
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With current computation power available in desktop computers there has opened for new opportunities 
in 3D ultrasound reconstruction. New complex algorithms are becoming usable[10], and efficient, 
parallelizable algorithms are available in real-time[2][4]. 

2.2.2 Freehand tracking 

Tracking is done to determine the spatial position of an object over time. In 3D ultrasound, tracking is 
used to find the position of the probe and its data, relative to the patient. This is commonly achieved by 
visual tracking system, tracking markers placed on, or next to, the patient, and on the ultrasound probe.  
 
The probe data position has to be spatially calibrated relative to the probe markers, while the probe output 
B-scan timestamps has to be temporally calibrated to the timestamps of the tracking system. When 
properly calibrated the tracking system will be able to relate a spatial position to each B-scan image, 
giving us a transformation from image space to world space for each pixel. Getting the calibration perfect 
is difficult, and the tracking system may introduce small errors. 

2.2.3 Algorithms for 3D reconstruction 

There are numerous ways to approach the 3D reconstruction problem, each with a different advantage and 
complexity. Selecting an algorithm with the right accuracy, while maintaining an appropriate computation 
time, is essential for making the best out of the use of 3D ultrasound. A thorough summary has been done 
by a team at SINTEF and NTNU here in Trondheim[13]. They define three groups of reconstruction 
algorithms: Voxel-based methods (VBM), Pixel-based methods (PBM), and Function-based methods 
(FBM). Their classification of algorithms are used throughout this thesis. I will present some of the key 
algorithms presented by Solberg et al. in addition to some newer approaches.  

2.2.3.1 VBM: Voxel Nearest Neighbour (VNN) and interpolation (VBMI)  
A voxel-based method like the VNN, iterates over output voxels and fetches data from image planes 
nearby. The VNN, which is the most basic of the voxel-based methods, uses the value of the closest pixel 
in the input planes within a certain distance. Other implementations use 1D interpolation of beam data or 
2D interpolation of the B-Scan image, to decide a more accurate representation of the voxel value. More 
advanced interpolations, using data from multiple input frames, are common. 

2.2.3.2 VBM: Varying Gaussian Distance Weighted (VGDW) 
VGDW[9] is a distance weighted (DW) method, based on the Adaptive Gaussian Distance Weighted 
(AGDW) method[7]. It is a voxel-based method, averaging one pixel from each image plane within a given 
radius, with weights depending primarily on the distance. VGDW is different in that it adjusts for local 
variance between input images, giving a higher smoothing at low variance than at high variance. High 
variance usually reflects details, such as edges, which VGDW attempts to leave intact. VGDW produces 
high quality reconstructions in a reasonable reconstruction time, and has been used as a reference volume 
in this thesis. 

2.2.3.3 PBM: Pixel Nearest Neighbour (PNN) 
The PNN algorithm consists of two steps: distribution step (DS), and hole-filling step (HFS). The PNN is 
the most basic of the pixel-based methods, filling the closest voxel from each input pixel. This process is 
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very fast and efficient, but unless the voxel size is significantly larger than the pixel size holes will occur. 
A hole-filling step is performed to fill the gap voxels between the distributed slices, to ensure a 
continuous volume. HFS usually calculate an average of neighbours in a 3x3x3 neighbourhood, that can 
possibly progress to larger sizes when necessary. 

2.2.3.4 PBM: Pixel trilinear interpolation (PTL) 
As one way of applying a 3D kernel in the distribution step, PTL applies a 2x2x2 kernel on voxel points 
around the pixel location, effectively interpolating it in three directions. Being applied to two voxels in 
thickness, the need for a hole-filling step is highly reduced as long as the volume resolution is not set too 
high and the operator manage to move the probe slowly and evenly[4]. 

2.2.3.5 PBM: Using a 3D kernel in the distribution step 
3D kernels can be applied in many shapes and sizes for the distribution of pixel-based methods. A square 
kernel can be increased, up from the 2x2x2 of the PTL, to increase accuracy at the cost of highly 
escalating computational cost. Where a 2x2x2 kernel operates on 8 voxels a 5x5x5 kernel will operate on 
125 voxels, for each input pixel. Circular or elliptical kernels can also be applied for greater accuracy. 
These methods weigh the input by a distance weighted (DW) scheme, decreasing its influence the further 
away it gets. These weights, be it inverse distance or gaussian, will be discussed in Section 2.5.5. 

2.2.3.6 FBM: Radial basis function interpolation (RBF) 
Function-based methods, like the RBF, determine multiple functions so that each input pixel is 
represented at least once. RBF can interpolate and approximate, and can work at different tension levels, 
allowing it to easily scale with increased volume sizes. RBF is known to create high quality 
reconstructions. Function-based methods are extremely computationally expensive, but work have been 
done by Rohling et al.[10] to make it a little bit faster. The runtime is however still in the order of hours, as 
opposed to seconds for many other methods[13]. 

2.2.4 Optimizations and parallelization 

Optimization of the algorithms are important to ensure efficient execution. While RBF ensure efficiency 
by splitting up the problem size to more manageable blocks, the VBMs try to split up the amount of input 
images it has to search through in order to find the closest frame[9]. Optimizing for smaller work groups 
and quicker search can make a huge difference in how fast these problems are solved, as they have bad 
computation scaling properties. 
 
Parallelization is also substantial for achieving a quick running time, as run times can be divided by up 
towards the number of parallel units, essential to reach the next level of performance. Nowadays with 
GPU processing, parallel computation is more available than ever before. Voxel-based methods can often 
separate the work on each voxel, allowing it to queue millions of parallel tasks at once. An overlapping 
calculation is finding the closest frames, which can be shared within a neighbourhood cube[9]. Pixel-based 
methods can also be parallelized, first of all each input image can be processed separately. Also, each 
pixel in each input image can also be processed independently. 
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2.2.5 Real-time 3D ultrasound reconstruction 

Real-time 3D reconstruction is the process of incrementally acquiring input, reconstructing, and 
visualizing the volume, for each input frame as they are captured. This is quite useful as it allows the 
operator to get visual feedback during acquisition, guiding position and displaying artefacts, allowing him 
to rescan where needed. 
 
Gobbi & Peters[4], and Dai. et al.[2] described PNN- and PTL-based real-time reconstruction and 
visualization, with 3-slices view, and volume visualization, respectively. Their work gave inspiration for 
much of the real-time reconstruction work in this thesis. 
 
Real-time reconstruction requires multiple steps to be executed in fast succession. In addition to 
minimizing the runtime of each step, the latency delay from the time of acquisition to rendering should be 
minimized to ensure a real-time response in visualization. To ensure this, storage is prepared on device 
before starting incremental reconstruction and visualization described below. 
 
Firstly, the digital images and tracking data should be acquired and matched on a stack, ready to be 
processed. 
 
Secondly, the image is accumulated into the reconstruction volume by the reconstruction algorithm. This 
is called incremental reconstruction. The input-based methods pixel nearest neighbor (PNN) and pixel 
trilinear interpolation (PTL), are popular methods for real-time reconstruction. They utilize some form of 
blending to require no normalization, while achieving very low runtimes. An algorithm that requires no 
hole-filling is prefered, as this can be a difficult step to include incrementally. 
 
Finally, the reconstruction volume is incrementally rendered and visualized. Normally a relatively 
time-consuming process, but it can be optimized to avoid processing the full volume. Gobbi & Peters[4] 
implemented an adjustable 3-slice view, requiring only processing of the voxels in each plane. Dai et al.[2] 
rendered, projected and visualized the volume incrementally, by only updating the sub-sections affected 
by the incremental reconstruction. 
 
With 3-slice view, a reconstruction was achieved at up towards 30 frames/s[4], while the newer 
reconstruction with incremental volume rendering was performed up towards 58 frames/s[2]. Dai et al. 
performed incremental reconstruction at a rate of 90 frames/s, and at half of that rate with a fan scan. 
 
In both of these papers, the volume was seemingly statically predefined, requiring no further adjustments 
of the volume as input is acquired. To maximize the view compared to the accumulated data, an 
incrementally adjusting step should be added, that can extend or resize the volume. They can also require 
a hole-filling step at 16M volume, that further adds to the runtime, although it can be performed as a final 
postprocessing step, after all incremental reconstruction. In practice, any algorithm can be run to create a 
final reconstruction after acquisition. 
 

24/102 



With some restrictions and simplifications, it is already possible to achieve real-time reconstruction and 
visualization. The next step will be to remove these restrictions, creating implementations that can run 
with any type of probe movement, bigger volumes, and creating superior results. This thesis presents a 
reconstruction that can form the basis to such a solution. 

2.3 FAST background 
This section will introduce FAST (Framework for Heterogeneous Medical Image Computing and 
Visualization)[11], with the framework design and pipeline. FAST was developed by Erik Smistad as part 
of his doctoral degree and is available as an open-source project available online[12]. 
 
Section 2.3.1 gives a intro to FAST, while Section 2.3.2 explains its framework design. Section 2.3.3 
introduces the FAST pipeline. Finally, Section 2.3.4 specifies some points that can affect implementation 
of 3D ultrasound algorithms. 

2.3.1 FAST intro 

FAST is a cross-platform framework with a goal of easy and efficient processing and visualization of 
medical images. It is developed with heterogeneous systems in mind, systems with multi-core CPUs as 
well as GPUs. With increasing number of processing units the need for parallelizable code increases, to 
utilize the computational power available. This is important because many algorithms are striving to 
achieve real-time results. Good parallelization can give speedups of an order of magnitude or more, which 
can be the difference between an algorithm which is usable in a practical setting and one that is not. 

2.3.2 FAST Framework Design 

Programming directly on hardware is a daunting task, one that would require a lot of work for even 
simple problems. On top of that it will have to be reimplemented if trying to use another piece of 
hardware. To get around this problem we use drivers, libraries and frameworks, generalizing the 
underlying opportunities into simpler commands that works across different configurations. Drivers 
provides the functionality of the hardware to the computer in a standardized way, while frameworks and 
libraries further simplifying the situation of the programmer by bringing increasingly stronger and 
versatile tools available through simple commands, giving us high-level programming. FAST is such a 
framework, and it is built up from many frameworks and libraries to make its development easier and 
more versatile.  
 
The FAST framework is built up of many layers, each providing operations to the layers above it. These 
are shown in the image below. Roughly these can be divided into 5 layers, listed from bottom up : 

● Hardware 
● Drivers 
● Libraries 
● FAST Framework Core 
● Applications 
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Figure 2.1: FAST framework layers. Applications run on the top of the framework core, with multiple 

submodules. The framework utilizes many libraries to simplify underlying processes. Finally this runs on the 
physical hardware with their drivers. 

2.3.2.1 Libraries 
The OpenCL and and OpenGL are the fundamental libraries for cross-platform programming, for parallel 
programming and visualization respectively. OpenCL will be talked about more in detail in Section 2.4, 
while visualization and OpenGL have not been central in this project. Other libraries include Qt, GLEW, 
Eigen, Boost and OpenIGTLink. 

2.3.2.2 FAST Framework Core 
The core defines the FAST framework. The basis for all processing are the Data objects, enabling 
synchronized processing of images and meshes, static and dynamic on many heterogeneous devices. 
Streamers are objects that allow streaming of data. Importers and Exporters enable us to move objects in 
and out of the framework. The algorithms, like the reconstruction in this thesis, process data objects from 
importers, or streamers, to produce results for the next algorithm, visualization, or exporters.  
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2.3.2.3 Applications 
On top of this are the applications, which are very simple to implement, given the high-level functionality 
provided by the FAST algorithms and its other tools. The user just has to initialize the algorithms and 
importers and link them together to form a execution pipeline. 

2.3.3 FAST Execution Pipeline 

The structure of FAST forces applications to apply the pipes and filters design pattern, where for instance 
Algorithms and Importers/Exporters are filters and the user sets the connections, named pipes, between 
these filters. This allows for simple reuse and reordering of filters. Pipes and filters is in general a highly 
parallelizable design pattern, where each filter can be run in parallel if updating regularly. FAST uses a 
demand-driven execution pipeline, inspired by the frameworks ITK and VTK. 

2.3.4 FAST Image loading and volume rendering 

When loading input images into a FAST pipeline on a device with a GPU unit available FAST will 
automatically load these images onto the GPU, so it does not have to be performed during execution. This 
might increase loading times significantly, but will allow further processing to execute smoothly. 
 
FAST was during the implementation time of this thesis without a volume renderer working with the 
loading methods required by 3D ultrasound reconstruction methods. 

2.4 OpenCL background 
This section will introduce the OpenCL standard[8] and how it is built up through kernels and memory 
layout, with a focus towards GPU layouts. The videos of David Gohara[5] have been a big help for 
understanding this topic. His foils and example code are available at his website[3]. These videos are 
strongly recommend, especially episode 2 through 6, for those new to OpenCL. 
 
Section 2.4.1 gives an intro to OpenCL, while Section 2.4.2 discuss kernels and work items. Section 2.4.3 
takes a deep dive into OpenCL memory, how it is grouped, and optimized. Finally, Section 2.4.4 how 
OpenCL kernels can read, and write, to the same image with different OpenCL versions. 

2.4.1 OpenCL Intro 

OpenCL allows writing programs that will execute on heterogeneous systems consisting of compute 
devices like CPUs and GPUs. It is made for parallel computing using task-based and data-based 
parallelism. OpenCL specifies a programing language and API to execute programs on compute devices. 
It is based on the C99 version of the C programming language, meaning OpenCL code is built up similar 
to C code, with native OpenCL methods as additions.  
 
It is up for the hardware-providers to implement these specifications for their hardware. Extensions of 
OpenCL functionality also needs to be implemented by the providers for these to be available for their 
hardware. All the big providers, like AMD, Intel and Nvidia, have implemented OpenCL on their devices, 
meaning that they should all have the basic OpenCL functionality. This distinguishes OpenCL from for 
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instance CUDA, allowing it to run on all hardware and not just Nvidia CUDA GPUs. The same OpenCL 
code can be set to run on a CPU, a Nvidia GPU or an AMD GPU. 
 
The OpenCL host APIs are defined for C and C++, but third-party APIs for Python, Java and .NET are 
also available. In addition to the C/C++ API library, a OpenCL C compiler is necessary for the compute 
devices. 

2.4.2 OpenCL kernels and work items 

OpenCL kernels are the programmed functions destined to run on the compute device. Kernels are 
functions written in a .cl file, and the kernel can be run in multiple instances in parallel.  

 

 
Figure 2.2: OpenCL - Compute Units. The compute device consists of multiple compute units, each of which 

contains multiple processing elements (PE). PEs runs each work thread, and the PEs within the same Compute 
Unit can cooperate. 

Figure 2.2 shows a typical compute device unit breakdown: 
● Compute Device: The device consists of multiple compute units. 
● Compute Unit: This is the cores that consists of multiple Processing Elements. 
● Processing Element (PE): This is the threads that execute the OpenCL work items. 

 
It is however important to note that the concept of cores are very different for CPUs and GPUs. The 
kernel is run on each processing element(PEs) with each their own work item. A work item is usually a 
single element in the data set, like one element in an array or a pixel in an image. In the simplest programs 
the kernel will load one input element, process it and store the corresponding output element. This allows 
for massive parallelization, potentially letting all elements being processed simultaneously by different 
PEs. 
 
OpenCL kernels uses work item focused programming. It might seem like a lot of overhead doing this 
work for each pixel, but with smart loading and writing this can lead to big speedups due to the massive 
parallelization, especially in GPU devices. In the next subsection I will talk about how this can be 
achieved. 
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2.4.3 OpenCL Memory 

OpenCL defines multiple types of memory, with each their different benefits and limitations. This section 
focus on the GPU. 
  

 
Figure 2.3: OpenCL - memory structure. There are multiple levels of memory, from the global memory shared 
across the whole device to multiple compute device specific levels of memory, where the later is much smaller, 

but also significantly faster. 

We have 4 types of memory on GPUs as shown in the image above: 
● Global: The main memory of the GPU. Slow access, but capacity order of MBs or more. 
● Constant: Constant memory available for all units on the compute device or thread cluster. 

Typically 64KB, shared among all units. Slightly faster than global memory. 
● Local: The most important kind of memory for OpenCL optimization. Order of 16KB size. 

Shared among all PEs, or work item, in a Compute Unit, allowing for access close to registry 
speed if used properly. 

● Private: Small and fast memory private for each work item. 
 
The key to OpenCL optimization is to load data that is to be reused within the work items of a Compute 
Unit into local memory, instead of taking the costly trip to global memory and back. To specify the work 
items sharing the same local memory we define a work group. These consist of a set of work items that 
will share data. A work group can for instance be neighbouring elements in an array, or pixels of a region 
of an image. The maximum number of work items per work group is however limited, usually to the order 
of 512 or 1024 elements, which limits our work groups to the likes of 16x16 or 32x32 in a 2D setting. 
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So we have two main limiting numbers:  

1. The maximum number of work items that a work group can consist of. 
2. The local memory storage capacity.  

 
Another important factor to account for is how the memory is accessed. The key concepts here are 
memory banks, warps and half-warps. At the end I will also talk about the concept of efficient coalesced 
loading of data into local memory.  
 
Local memory is divided into memory banks, typically 16 of them. Each bank can access one element at 
the time, otherwise it will spark a bank conflict and the access has to be serialized. So we want all the 
simultaneously running elements to access different banks. This is where warps come in, or more 
specifically half-warps. A half-warp is the number of work items that are executed at the same atomic 
time. It is usually of a size of 16 or half of the total warp size.  
 
One element is typically at the size 32 bit, which equals to 4 Byte. All of the 16 memory banks store 4 
Byte, until 64 Byte is reached, then it starts over from the first bank again. This means that the first bank 
will store among other Byte 0, Byte 64, Byte 128 and so on. So what we have to avoid is that work items 
in the same half-warp will access the Bytes corresponding to the same memory bank. If this is a problem, 
the solution is usually to add padding of one between each row or groups of memory. This padding will 
change the indexes and might fix this issue. There is one exception that will not cause a bank conflict, and 
that is if we have a broadcast. A broadcast occurs when all work items in a half-warp access the same 
address. Then the value will only be read once and broadcasted to all work items. 
 
It is also important how memory is loaded into local memory from global memory. We can do one call to 
global memory for each element we load into local memory. This is the case when we do: 

● Misaligned load: the 16 work items of the half-warp does not fetch the elements of a 64 Byte 
block, but starts somewhere in the middle of one and crosses over to the next one. 

● Permuted load: Work items will not load elements of the block in order, but work item 1 will load 
element 3, while work items 2 and 3 will load element 1 and 2 for instance. 

● Sparse load: When not all work items participate in loading. 
● Sequential load: One work item is set to load all elements into local memory. 

 
All of these load the data just fine, but will not utilize optimized loading from global memory. Coalesced 
loading occurs when all work items of a half-warp simultaneously load data aligned with a 64 Byte block 
in a non permuted way. This greatly reduces the overhead of loading data into local memory.  

2.4.4 OpenCL Image Read-Writes and atomic operations 

When reading and writing data to the same image array, it is necessary to have both reading and writing 
rights to the image. OpenCL does not acquire this until OpenCL version 2.0, and Nvidia graphics cards 
are limited to OpenCL version 1.2. This requires finding some workarounds to be able to read and write 
to the same buffer at the same time, from multiple sources. One workaround is to use a buffer of integer 
types, and accumulate them by atomic operations. Another is to use a separate semaphore array, and lock 
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the indexes currently in use. Both methods are used in this thesis, where semaphores are required by the 
alpha-blending approach, and other solutions use the simpler atomic operations. 

2.5 Mathematical theory 
This section will present some of the mathematical theories that work at the core of a 3D Ultrasound 
Reconstruction algorithm. These are grouped in three main types: geometry, acquisition, and 
accumulation.  
 
The geometry sections will explain the basic geometrical mathematics required for point and plane 
representation and distance. Section 2.5.1 starts off explaining how planes can be represented in 3D space, 
Section 2.5.2 introduces the general point-to-point distance along a vector, which can be used to find the 
point-to-plane distance on certain conditions. Section 2.5.3 explains how to calculate the point-to-plane 
distance with less restrictions. 
 
The acquisition Section 2.5.4 demonstrates how data can be approximated at any given point in the input 
frame, by using bilinear interpolation to fetch data from neighbouring pixels. 
 
The accumulation sections will explain how to handle multiple pixel values that affect the same output 
voxel. Section 2.5.5 introduces weighting, as a method of giving emphasis to more relevant acquisitions 
data, and presents a couple of weighting schemes. Section 2.5.6 shows how these weights can be added 
together to create an accurate representation of all input. 

2.5.1 Geometry: Describing a plane in 3D space 

It is crucial to have an appropriate description of the plane when calculating its position relative to other 
objects of interest. In mathematical terms a plane is described as follows: 

 

Where x , y , and z  are variable 3D space coordinates, and a , b , c , and d  are constants defining the plane. 
Any set of variables that make the left side of the equation zero, fulfills the equation, and will reside in the 
plane. To calculate the constants in practice it is possible to use the plane normal for the values of the a , b , 
and c  constants, where the normal vector equals (a, b, c ). The d  value of the plane can be calculated from 
the normal vector, and a point residing in the plane. In this case the plane can be described as: 

 

2.5.2 Geometry: Point-to-point along vector 

The distance between two points, P A  and P B , along a vector, N , can be expressed as: 
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Where movement BA   is the distance moved from P B  to P A  in positive or negative direction along the vector, 
and abs  a function to find absolute value. 
 
If the vector, N , is the normal vector to a plane in which P A   resides, the abovementioned equation will 
find the distance from P B  to the plane of P A , as shown in Figure 2.4. 
 

 
Figure 2.4: Point-to-plane distance along plane normal. Given two points, A and B, where A is residing in a 
plane whose normal vector is N. The point-to-point distance formula can be used to find the point-to-plane 

distance between B and the plane of A, as the normal is by definition perpendicular to the plane. 

2.5.3 Geometry: Point-to-plane distance and intersection along vector 

This method can unlike the method in Section 2.5.2 utilize any relation between the vector and the plane 
normal, and does not require them to be equal, as seen in Figure 2.5 below. 
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Figure 2.5: Point-to-plane distance along non-normal vector. Displaying the calculation of the distance from 
point B to the plane of point A. Distance is measured along the horizontal vector along which distance, dist, is 

shown. The dotted line and red cross indicates the intersection point that would have been found with the 
standard point-to-plane equation of Section 2.5.2, assuming the vector to be the plane normal. The green cross 

indicates the actual intersection point, to which the distance is measured.  

 
The problem can be reformed to the problem of finding the intersection between a line and a plane. The 
formula for a line is described below, where P  is any point on the line, L  is the directional vector of the 
line, and L 0  is an arbitrary point on the line:  

 

The directional vector can be set as the vector along which the distance is measured. The point on the line 
is the point where the distance is measure from, here B. 
 
The plane formula, like defined in Section 2.5.1, can also be written as below, where P  is any point in the 
plane, P 0  is a reference point in the plane, and N  is the normal vector: 

 

As the reference point A is used, while N is the normal vector. The plane is defined by a point, A, and the 
plane normal, N. By putting the right side of the line formula into the plane formula, in place of P, we get; 

 

Which can be reevaluated to solve for distance, d , giving us the equation: 

 

To resemble Figure 2.5, where L is the vector along which distance is measured, it can be simplified to: 
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The intersecting point between the line and plane can then be found by the line equation, at the top of this 
section, with the newfound distance, d . 

2.5.4 Acquisition: Bilinear Interpolation 

When acquiring data from the input frames, the data will often be requested outside of the exact integer 
locations of the actual input data. A popular method for acquiring these datasets is bilinear 
interpolation[14]. It will take the values of the 4 pixels around the intersection point and interpolate them 
for an efficient estimation of the value that would take place in the exact place of the point.  
 
The 4 pixels around the point are found by taking the floor and ceil values of the x and y coordinates. 

 

The distance internally in this quadrant, u  in x direction and v  in y direction, is given by: 

 

These distances, and the rest of the setup, are illustrated in Figure 2.6 below. In the X axis interpolation 
the two top and the two bottom corners are interpolated each pair on their own: 

 

Which is further interpolated again on the Y axis to find the final pixel value P value : 
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Figure 2.6: Bilinear interpolation. Around the point (x, y) with coordinates with floating point precision, are 4 

pixels at integer locations with the actual pixel values. To approximate these their values are interpolated for the 
output result of the interpolation. The surrounding pixels are found by taking the floor and ceil values of the x 

and y coordinates. The distances u and v are accounted for when calculating the resulting pixel value. 

2.5.5 Accumulation: Weighting 

Weighting of the input data collected decides the importance of this data, and can heavily influence the 
resulting output volume. Many parameters can be used to decide the weight of the input data[9]. In this 
thesis the focus has been on distance based. 

2.5.5.1 Inverse linear distance weighting 
Sometimes called linear weighting for short in this thesis, it is a weighting system deriving its score from 
the distance and a maximum distance, as shown below: 

 

MaxDist  is the maximum value the distance, dist , can have, and a higher distance will give a false 
sub-zero weight, see Figure 2.7. This formula is simple, computationally efficient, and as the weight will 
scale inverse linearly with the distance, fair. 
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Figure 2.7: Inverse Distance Weighting - Giving a weight score for distances between 0 and maxDist, where 0 
gives a weight of 1, and it scales down linearly towards a weight of 0 at maxDist. Any distance further away will 

receive a negative weight, which should be avoided at all cost in most situations. 

2.5.5.2 Gaussian weighting 
An alternative is using the gaussian curve as the basis for the weighting scheme. With its inverse S shape 
it gives a higher weight to points close by, and a lower weight to those further away, compared to inverse 
linear distance weighting. The gaussian weight is given by: 

 

But as the scaling of k  is not necessary we can leave that constant out. The replacement for the standard 
deviation, distFactor , is a value related to maxDistance. To get the appropriate scaling distFactor  is set 
as: 

 

Where scaleFactor  is 1 by default, but can be used to scale how broad the curve will be. 
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Figure 2.8: Gaussian Weight curve estimation. The curve will resemble a inverted S-curve, leaving a small 

plateau at the top and slowing down the change as the weight approaches 0. This puts a stronger emphasis on 
values relatively close to the starting point, while quickly de-escalate down towards zero, but never reaching 

zero. 

2.5.6 Accumulation: Accumulation methods 

Accumulation methods will have an effect on how the input data will be added together, and is highly 
correlated to the weights. They can also affect the performance, as each method will require different 
processing steps. Here P will reflect the pixel value buffer, W the weight value buffer, p the current pixel 
value, and w its corresponding weight. 

2.5.6.1 General compounding 
Accumulation by compounding is done by utilizing a accumulation buffer, for both pixel values and 
weights. In its simplest form it can be written as: 

 
 

Which is very efficient in writing, but will require a final normalization step, normalizing all voxels by: 

 

2.5.6.2 Alpha-blending approach 
An alternative method is to take inspiration from the concept of alpha-blending. Mathematically it is 
described as: 
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With  being the alpha-blending factor, which is generally a static predefined value. The side-effect of 
this is that it will be putting more emphasis on more recent values, as earlier values will diminish as more 
values are added. Attempt to make this more useable for 3D Ultrasound has been performed by Gobbi & 
Peters[4] and resulted in the formula below, rewritten for this setting: 

 

Despite utilizing the weight as an alpha value for individual importance, more recent additions will still 
have more value. The big advantages with this method is however that it will always have the scaled pixel 
value available, and that it requires no weight buffer, and more importantly no normalization step. 

2.5.6.3 Compounding alpha-blending 
To draw from the advantages of both these methods of accumulation, a middle-way can be created. As 
mention as ‘compounding’ by Gobbi & Peters[4], it is actually a blending method using accumulation 
buffers and historically accurate weighting, as defined below: 

 

 

 

This way P will always reflect the scaled value of the voxel value, thereby avoiding the need for a final 
normalization step. Yet the values of P will reflect those from the normalized results of Section 2.5.6.1. 
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Chapter 3: Method  

In this chapter I will describe in detail the method for freehand 3D ultrasound reconstruction that has been 
implemented. The method is based on previously unpublished work done at SINTEF many years ago. No 
proper description of the method existed. 
 
Section 3.1 will present the main implementation steps of the algorithm. Section 3.2 will introduce the 
pipeline that is run both on the overlying level of the FAST framework and the underlying level of the 
reconstruction steps. Section 3.3 will present the initialization steps to prepare the frames, volume and 
transformations. Section 3.4 will present detailed discussion for the implementation some of the more 
troublesome parts, while Section 3.5 explains the parameters of the algorithm, and other steps that can 
affect the output results. 
 
The algorithm has previously been implemented just for a serial CPU execution, while our goal has been 
to speed it up as much as possible using a parallelized OpenCL implementation running on GPU. Section 
3.6 will explain how this algorithm can be parallelized and what measures are taken for making an 
efficient OpenCL implementation. 
 
Furthermore I have implemented some alternative 3D ultrasound reconstruction algorithms that will be 
explained in Section 3.7, including a serial and a OpenCL PNN implementation and a simple serial VNN 
implementation, as well as a brief description of the alpha-blending compounding implementation with 
the hybrid algorithm. 
 
Finally, Section 3.8 describes the evaluation methods used to gauge visual quality and runtime 
performance.  

3.1 Algorithm Overview 
The hybrid approach is based on each input frame, then finds the voxels that are within relevant distance 
to it by traversing a dominating direction. These voxels are then filled with the most relevant data from 
the current input frame. These features gives it hybrid qualities, with both incremental computing and 
high parallelization capabilities. 
 
After the initial volume initialization and preprocessing, as described in Section 3.3, the algorithm runs 
the accumulation loop, adding data to the volume from each input frame. This loop is described in 
Algorithm 1 after the textual description below. 
 
For each frame the series of steps described below are performed. The dominating direction domDir ,  and 
its value domVal ,  is found  by selecting the major component of the normalized normal vector for this 
frame in volume space. Since the algorithm operate over the X , Y  and Z  axes differently depending on the 
dominating direction we have chosen to use the artificial axes A , B , and C  to iterate over. The C  axis 
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corresponds to the axis of dominating direction, i.e. Z , while A  and B  correspond to the two other axes, i.e. 
X  and Y .  
 
After acquiring the dominating direction of the frame, we calculate the ranges to iterate over on the A and 
B axes, see Section 3.4.1. For each combination of values in these two ranges, a  and b , we calculate the 
basePoint . This is a volume space location residing on the image plane, explained in Section 3.4.2. From 
this point the distances, d1  and d2 , are calculated to the previous and the next image planes respectively in 
the temporal stack of frames. This distance is calculated along the image plane normal of the current 
frame, and is described in Section 3.4.3. Two parameters are used to limit the distances, the 
voxel-distance, dv , and the maximum distance, Rmax . Voxel-distance is the spacing between 
neighbouring voxels, and it is the lower distance limit, and it will be described in Section 3.5.1. Maximum 
distance is the upper distance limit, and will be described in Section 3.5.2. We calculate the half width, df , 
from the two distances, d1  and d2 , dv  and Rmax  by the formula: 

 

The furthest of the two temporal neighbours, between the lower limit dv  and upper limit Rmax . The 
equivalent half width in the dominating direction, dfDom , is calculated by: 

 

The simplification to dfDom is necessary to allow us to do calculations on the dominating direction, 
instead of along the image plane normal, which counts for significant improvement in speed in discrete 
volumes. We use dfDom  to determine how far away from the basePoint  we are to go in either direction 
from the plane as shown in Figure 3.1. From the value of basePoint  on the dominating direction axis, 
baseDom , and dfDom  we calculate the range to iterate over on the C axis: 

 

For each value in the range cDirRange the integer (x, y, z)-coordinate point volumePoint  is calculated 
from a , b , c  and domDir . The cDirRange and its traversal is further explained and illustrated in Section 
3.4.4. The distance d  from the volumePoint  to the image plane is calculated along the image plane normal. 
This is to be used for weighting. The intersection point, intersectionPointVolume , is calculated where the 
image plane normal intersects the image plane in volume location. Further this is transformed into local 
frame space, intersectionPointFrame , to find its location among the pixels of the current image. The 
calculation of distance and the intersections are interrelated, and explained further in Section 3.4.5. 
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Figure 3.1: Calculation of half width in dominating direction. The thick red line is the current image plane, the 

thick black line on the left is the previous image plane, and the thick black line on the right is the next image 
plane. From each a and b coordinate on the current plane we find a basePoint, shown with cross mark, and 

calculate the distance to the previous and next image planes. If these distances are both within the voxel-distance, 
dv, its value is used instead. If one plane is further than the value of the max distance, Rmax, its value is used 

instead. Dv and Rmax are described further in Section 3.5. If distances stay between these two values the bigger 
distance will be chosen, as shown with red circles. The final value shows how far the algorithm will travel in both 

directions along the dominating direction axis, as shown with yellow arrows. 
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A check is performed to ensure that intersectionPointFrame  is within the limits of the input frame and not 
just in the infinite plane in which it resides. If this volumePoint  has successfully passed all the tests until 
now it will be added to the accumulation volume. The pixel value p  is acquired by bilinear interpolation at 
frame position intersectionPointFrame , and the weight w  is calculated by inverse distance function or 
gaussian distance, as discussed in Section 2.5.5. Bilinear interpolation is explained in Section 2.5.4.  
 
The pixel value p and weight w is then accumulated into the accumulation volume by: 

 

 

Which will ensure fair contribution from all pixel values affecting this voxel. Each voxel will just be 
affected once from each frame, but might be affected multiple times from different frames. 
 
Finally, after the accumulation loop is finished, the output volume V can be generated by normalizing 
every voxel using the relations: 

 

Which effectively averages all the contributions to the voxels while taking weight into account as well, 
leaving us with a value within the same range as the input pixels. This is general compounding as 
described in Section 2.5.6.1. 
 

Algorithm 1  Hybrid: Accumulating input frames to volume 

runHybrid3dReconstruction(FRAMES, dv, Rmax, volume) 

Input: 

FRAMES The set of input images  

dv The distance between voxels in the relevant space  

Rmax The maximum distance to apply each frame  

volume Initialized volume  
 

Output: 

volume The volume with accumulated values  
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function  runHybrid3dReconstruction(FRAMES, dv, Rmax, volume){ 
   for  frameNr from 0 to totNrOfFrames: 
    frame = FRAMES[frameNr] 
    frameSize = getSize(frame)  
    frameInverseTransform = getInverseTransform(frameNr) 
    frameRoot, frameNormal, framePlaneD = getPlane(frame) 
    lastRoot, lastNormal, _ = getPlane(frameNr-1) 
    nextRoot, nextNormal, _ = getPlane(frameNr+1) 
 
    domDir, domVal = getDomDir(frameNormal) 
    aDirStart, aDirEnd = getFrameRangeInVolume(frameNr, domDir, 0) 
    bDirStart, bDirEnd = getFrameRangeInVolume(frameNr, domDir, 1) 
     for  a from aDirStart to aDirEnd: 
       for  b from bDirStart to bDirEnd: 
        basePoint = getBasePointInPlane(frameNormal, frameRoot, 
          framePlaneD, a, b, domDir) 
        d1 = getDistanceAlongNormal(basePoint, frameNormal,  
          lastRoot, lastNormal) 
        d2 = getDistanceAlongNormal(basePoint, frameNormal,  
          nextRoot, nextNormal) 
        df = min( max(d1, d2, dv), Rmax) 
        dfDom = df / domVal 
        cDirStart, cDirEnd = getDomDirRange(basePoint, domDir,  
          dfDom, volumeSize) 
         for  c from cDirStart to cDirEnd: 
          volumePoint = getVolumePointLocation(a, b, c, domDir) 
           if  volumePointOutsideVolume(volumePoint, volumeSize): 
            continue 
          dist = getPointDistanceAlongNormal(volumePoint,  
            frameRoot, frameNormal) 
           if  abs(dist) > df: 
            continue 
          intersectionPointWorld =  
            getIntersectionOfPlane(volumePoint, dist, frameNormal); 
          intersectionPointLocal =  
            getLocalIntersectionOfPlane(intersectionPointWorld,  
            frameInverseTransform);  
           if  isWithinFrame(intersectionPointLocal, thisFrameSize:  
            float p = getPixelValueData(intersectionPointLocal); 
            float w = 1 - (abs(dist) / df); 
            accumulateValuesInVolumeData(volumePoint, p, w) 
} //end runHybrid3dReconstruction 
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3.2 Algorithm pipeline 
Implementation of a 3D Ultrasound Reconstruction algorithm requires more than just main algorithm 
steps. Multiple steps are performed in a series of events called a pipeline. The utilized FAST framework, 
as described in Section 2.3, links multiple processing objects together in a pipeline where the output of 
one step is input in the next. Here a ImageFileStreamer  is used to import a series of ultrasound images to 
the reconstruction algorithm, US3DReconstructor , that will store all the images before processing them. 
The resulting volume, which can be seen as a 3D image, is exported using MetaImageExporter  to export 
it in mhd format with volume data and spatial transformation of their locations. The reconstruction 
algorithm performs 3 main steps:  

1. Initialization . Initializing the volume and doing pre calculations. See Section 3.3. 
2. Accumulation . The main algorithm loop. See Section 3.1 
3. Normalization . Normalizing the volume according to weights as described in Section 2.5.6.1, 

creating the final output volume. 
The steps are all displayed in Figure 3.2. For this thesis the input and output data are static, but it can 
stream directly from an input source and to an output visualization if necessary. This will be necessary 
with real-time reconstruction in which case the pipeline would have to be optimized slightly. Real-time 
reconstruction will be discussed further in Section 3.7.3. 

 
Figure 3.2: FAST and algorithm pipelines. Image Streamer streams input images that are stored by 3D 

Ultrasound Reconstruction algorithm. Once all images are acquired the 3 parts of the algorithm are performed. 
The volume is initialized from the input images, each input image is accumulated to the volume, and the volume is 

normalized to create the final output volume. The resulting volume is exported to a static file. 

45/102 



3.3 Volume initialization and pre-calculations 
To reconstruct ultrasound images to a 3D volume, the volume needs to be defined in world space. It is 
defined by a target area, volume orientation, and spatial resolution for each axis inside the volume. These 
steps are a lot easier to acquire when processing all input images in bulk. 
 
Volume orientation is decided by a reference frame plane that is set as a XY-plane in the volume and 
thereby deciding the initial frame-to-volume transformation.  

The target area is set to the boundary in which all the image pixels of all input frames can be put, 
with axes decided by the volume orientation. In the case of square input images, a check on each of the 
corners is sufficient. A limitation on this area can also be set by letting a certain percent of the image 
corners be outliers, allowing for greater resolution in the final volume. 

Spatial resolution is deducted from the desired output volume size, by comparing the intermediate 
volume size to the desired volume size and calculating a scaling factor that is applied to all three axes.  
 
This algorithm part is responsible for finding the volume size, the volume-to-world transformation, and a 
frame-to-volume transformation for each input frame. In addition some variables are calculated and stored 
for use in the accumulation loop. The volume initialization steps are described below: 
 
First, the image spacing is applied to all the transformations of the input images, as this is not 
automatically applied in the FAST framework. This ensures that the transformation connected to each 
input image corresponds to the frame-to-world transformation. 
 
Second, the frame-to-world transformation of the reference frame is stored as , and itsT world

refFrame  

corresponding inverse transformation,  , is added to each input frame transformation by left sideT world
refFrame  

matrix multiplication to find their positions in space relative to the reference frame. The minimum and 
maximum coordinate of each axis is derived from the frame corners to find the area required relative to 
the reference frame. 
 
Third, the minimum coordinates are used to find the transform that will ensure that the minimum 
coordinate will lie at point (0, 0, 0)  in the volume. This transform is found by doing a negative translation 
of the minimum coordinates, i.e. the minimum coordinates (-17.5, -25.2, -3.8)  would translate all frames 
by (17.5, 25.2, 3.8) , with translation matrix .T translate  
 
Fourth, the scaling is calculated. The size of the current volume, currentVolSize , is found by multiplying 
the size of each axis, derived from the difference between its minimum and maximum value. Given the 
wanted amount of voxels, volSizeMill , in millions, as described in Section 3.5.3, and currentVolSize , the 
scaling factor is derived using the cube root as in the equation below: 
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The volume is scaled by scaleFactor  on all three axes, and a scaling transformation,  , is created.T scale  
The final transformation, , is derived by adding   to .T f inal T scale T translate  
 
Fifth,  is added to each input frame to achieve their final frame-to-volume transforms, . InT f inal T framei

volume  

this process 6 things are also calculated and stored for use in the accumulation loop: 
● minCoordsFrame, the  minimum coordinates on each axis of the frame corners. Used to limit A 

and B ranges. 
● maxCoordsFrame, the  maximum coordinates on each axis of the frame corners. Used to limit A 

and B ranges. 
● baseCorner , the position of the plane (0, 0) point in volume space. Used as point in plane to 

represent the plane for calculating the distance to a plane. 
● normal , the image plane normal. Used to represent the plane and calculate distances. 
● planeDvalue , a calculated value d from the plane equation. Calculated from baseCorner  and 

normal . Used to calculate the basePoint  from the plane equation. 
● , the volume-to-frame transformation, derived from the inverse of the transformationT framei

volume  

currently applied to the image. Used to transform the volume location into frame space to find the 
local intersection point. 

 
Then, the world-to-volume transform, , is created by adding  to  and setting theT world

volume T  
translate T world

refFrame  
volume voxel spacing, voxelSpacing , to: 

 

The volume-to-world transform, , is set as the inverse of its counterpart transform .T world
volume T world

volume   
 
Finally, the volume is initialized. The algorithm uses two volumes: the accumulation volume; and the 
output volume. The accumulation volume is a two-channel volume used by the accumulation loop to store 
accumulated pixel values and weights, while the output volume is a one-channel volume used to store the 
normalized pixel values and it is the output of the reconstruction. The accumulation volume is referred to 
as volume, while the output volume is explicitly referenced. It is important that the volume-to-world 
transformation and the volume voxel spacing is set correctly in the output volume, in order for it to be 
displayed correctly in volume viewing tools. 
 
The reconstruction could alternatively have been done with one volume of pixel values used for both 
accumulation and output, and one volume of weights. However, the two accumulation volume approach 
can allow a separate unit type to be used for the intermediate step, to allow speed-ups or specific features, 
like the integer requirement for atomic operations, described in Section 3.6.2.  
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3.4 Extended information on problematic functions 
This section will present some of the more difficult functions introduced in the overview in Section 3.1. 
Section 3.4.1 will introduce the virtual axes A and B and show how they relate to the X, Y and Z axes, 
while also explaining how we can calculate the ranges to traverse on the A and B axes. Section 3.4.2 
shows how to find the point  residing in the image plane by values a  and b .  
 
Section 3.4.3 explains how the distance to neighbouring planes are calculated, so that the half width in 
dominating direction, dfDom , can be calculated. Section 3.4.4 uses dfDom  and introduces some details to 
how it is used to calculate the range to be traversed on the C axis.  
 
Section 3.4.5 explains how to find the intersection point from which the pixel value is derived. Section 
3.4.6 introduces the check that is performed to ensure that the intersection point is within the actual image 
area. Section 3.4.7 shows how the pixel value is calculated by bilinear interpolation, and some exception 
cases. 

3.4.1 Calculating the A and B ranges and their relation to the X, Y and Z axes 

To calculate the ranges the minimum and maximum volume space locations of the current input frame is 
used on each axis. For a square frame, like the output from a linear array ultrasound probe, a simple check 
of the 4 corners of the input frame can be performed to find a volume space minimum and maximum on 
each axis. For other frame shapes a more advanced or thorough check will be necessary. The algorithm 
calculates these values in the initialization steps, as they are already needed to find the volume size. 
 
The minimum and maximum is acquired from the real axis corresponding to our required A or B virtual 
axis. The axes are defined in Table 3.1. 

Table 3.1: Relations between virtual axes, A and B, and real axes X, Y, and Z. 

Virtual axis: A B 

domDir  axis: X Y Z X Y Z 

Real axis: Y X X Z Z Y 

Given a virtual axis and dominating direction axis the real axis can be found. 

The final range is the integer values from the minimum to maximum on the real axis, so that in 
conjunction aDirRange  and bdirRange  traverses a square on the AB-plane. This is a naive approach, 
seeing that the AB-plane projected input frame might be tilted up to 45 degrees inside of the traversation 
square, putting half of the traversation square outside of the actual projected input frame, and thereby 
contributing nothing for the work it performs. A similar situation to this is shown in Figure 3.3. 
 
It is possible to counter this by checking the basePoint  for each a  and b  value and using the same 
isWithinFrame  function which is used in the innermost loop of the algorithm. The basePoint  is described 
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more in Section 3.4.2, but for this section it is enough to know that on the A and B axis it would have the 
values of a  and b . 

Figure 3.3: Input frame traversing ranges, A and B. Showing a 2D projection of a square image frame (red) over 
the volume grid (yellow) in the plane of the AB-axes. The grey region in the volume grid corresponds to the 

coordinate values of a and b that will be traversed. These are calculated from the 4 corners of the squared image 
frame. The grids are just to show that the scales of the frame grid and the volume grid can have different density, 

most volumes will have more than 100 voxels in each direction. 

Due to the nature of the scans, very few input frames will be tilted 45 degrees. In most cases they will 
barely be tilted at all, as we align the volume to a root frame, and every 90 degree tilt is effectively 0 tilt. 
The abovementioned check on basePoint  has been tested, but appeared to give a slight performance 
penalty and has therefore been left out. It can be implemented in the case where response guarantees are 
important and in scenarios that would create a lot of tilt relative to the root frame, which in general is put 
to the first acquired frame. 

3.4.2 Finding the basePoint given two coordinates a and b 

With the values of the two coordinates, a  and b , giving the position on two of the axes in the volume, it is 
necessary to find the position on the third axis before further calculations can be done. This results in a (x, 
y, z) volume location that we name basePoint , representing a location residing in the current image plane. 
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To calculate this location the a  and b  coordinates, the dominating direction, domDir , and the plane 
equation are necessary. The a  and b  coordinates will give two of the real axis coordinates in accordance 
with domDir  and Table 3.1. The algorithm represents a plane with an image plane normal, normal , and a 
pre-calculated constant d  value, planeDvalue , for each image plane. The three values of normal  can in 
conjunction with planeDvalue  replace the constant values of the planar equation as described in Section 
2.5.1. The new equation is: 

 

Then we have all four constants of the equation as well of two out of three coordinates, where the 
dominating direction is missing. 
 
Taken the example where dominating direction is on the X axis, the formula above can be restructured to 
calculate the value of x  as shown in the formulas below: 

 

 

The equation can be restructured similarly to calculate y  or z  if either of those are the dominating 
direction. Due to the fact that the image plane normal in dominating direction, domVal , can never be zero, 
and there will always be just one point suitable for this solution.  

3.4.3 Calculating the distances d1 and d2 from plane-to-plane along normal 

This step requires the algorithm to find the distance from the current image plane to another, with some 
specifications. In the current plane it starts from a specified point of origin, basePoint , and the distance is 
measured along its normal, normalA . The other plane, planeB , is defined by its normal, normalB , and a 
point in the plane, pointB . 
 
These specifications makes it the same as the point-to-plane distance as explained in Section 2.5.3. Here 
basePoint  corresponds to L 0 , normalA  corresponds to L , pointB  corresponds to P 0 , and normalB 
corresponds to N , giving the new equation: 

 

If the normals are orthogonal to each other, the divisor will be zero, which gives two possible situations: 
1. The dividend is also zero, implying that the basePoint  and normalA  is residing in planeB . The 

distance is zero. 
2. Otherwise the line will be parallel to the plane. The distance is set to infinite, or in practice a 

value higher than any possible Rmax . 
This distance is calculated to both the previous, and the next, image planes. The distance d1  marks the 
distance to the previous, and the distance d2  marks the distance to the next. 
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3.4.4 Calculating and traversing the C-direction range 

The simple theoretical equation for finding the C-direction range from the basePoint  value in dominant 
direction, baseDom , and half width in dominant direction, dfDom , is given in the equation below: 

 

Figure 3.4: Iterations over the C axis. The central point at C axis location 5.4 is the basePoint on the C axis. This 
is also the intersection point between the image plane and the C axis as calculated in Section 3.4.2. This figure is 
for simplicity projected to a 2D view where the up-down axis can be any arbitrary direction perpendicular to the 

C axis. We can see the half width in dominating direction, df, is 5.0, and the cut-offs in positive and negative 
direction is marked by blue vertical lines at approximately 0.4 and 10.4. Each integer point between these 

boundaries are calculated by following the image plane vector to find a corresponding point on the image plane. 
These point-to-plane connections are displayed with red arrows. At the image plane location of these connections 

the pixel value is calculated by bilinear interpolation. 

In practice it is actually calculated as a cutoff integer range limited by the volume size in dominant 
direction, sizeDom : 
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The range is traversed for each integer value between the minimum and maximum limits, ends inclusive. 
This effect can be seen in Figure 3.4, where all steps between the cutoffs at half width distance are 
iterated. The choice of this cut-off can affect how many voxels are traversed, especially when the half 
width, df , is set to the minimum, dv . 

3.4.5 Finding the frame intersection point through distance along normal 

Before accumulating values to a given volumePoint  a pixel value and weight needs to be calculated. To 
calculate the pixel value the frame space location to interpolate from is required, and a distance is used to 
calculate the weight. For each volumePoint  in the cDirRange  the pixel value is taken from the closest 
point in the image plane. This point is found from the intersection point between a line, following the 
image plane normal from volumePoint , and the image plane. Calculating the distance to the intersection 
and finding the intersection point can be done in conjunction, as will be explained in this section. See 
Figure 3.4 for spatial reference. 
 
When defining a plane by a rootPoint  and a normal  the distance from volumePoint  to the plane can be 
calculated from the function in Section 2.5.2. If this calculation is performed without taking the absolute 
value, the distance moved, movement ,  from volumePoint  to the plane is found instead as shown in the 
equation below: 

 

The intersection point in world space, intersectionWorld , can then be found by traveling movement 
distance along the normal. It is calculated by the following equation equation: 

 

Where all variables are vectors of size 3, except for the scalar movement  which is elementwise multiplied 
with normal . 
 
A local intersection point in frame space will decide which the pixels will be used to calculated the pixel 
value. The local intersection, intersectionLocal , is calculated by transforming intersectionWorld  into 
frame space: 

 

Where the first two coordinates of intersectionLocal  are the local 2D coordinates and the thirds coordinate 
will be approximately zero. 
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http://api.gmath.guru/cgi-bin/gmath?intersectionLocal%3DT_%7Bframe%7D%5E%7Bworld%7D(%20intersectionWorld)


3.4.6 Assuring intersection is within actual frame 

A intersection point residing in the plane of a image, as calculated in Section 3.4.5, can still occure 
outside the area in which the actual image extends. To check if the intersection point is within the actual 
image area intersectionLocal  is used. The location on the X and Y axis is checked to be between zero and 
the input image axis size, while the Z axis is checked to be zero.  
 
Due to floating point inaccuracies in the process of calculating intersectionLocal  a zero value can be 
slightly negative. A small buffer value can be added to ensure that these points are included.  

3.4.7 Calculating pixel value with bilinear interpolation 

The pixel is calculated by bilinear interpolation, as described in Section 2.5.4, acquiring data from 4 
surrounding pixels. Due to the inaccuracy of floating point calculations and the added buffer allowing 
acquisition slightly outside of the frame, a special case using only the neighbouring pixels that are 
actually within the frame will only use the corners residing inside of frame. 
 
If it is necessary to minimize the number of image accesses it is possible to use the value of just the 
nearest pixel, requiring 1 access instead of 4. This speedup will be at the cost of reconstruction accuracy, 
and artefacts can occur. 

3.5 Hybrid reconstruction parameters 
There are mainly three parameters to this reconstruction: dv , Rmax , and volSizeMill . Section 3.5.1 will 
introduce the voxel-distance dv  and discuss its effects. Section 3.5.2 will introduce Rmax  and discuss its 
effects. Section 3.5.3 will present volSizeMill . 

3.5.1 Parameter DV 

The parameter dv  works as a lower limit for the half width, which decide the size of the range on the 
dominating axis. dv  is the distance between voxels, such that if the distance between frames are shorter 
than this, they will at least affect one voxel. It can alternatively be related to the slice thickness, implying 
that dv  is the limit on how far the pixel value has to affect. How many voxels it affects is strongly 
influenced by the cut-off described in Section 3.4.4. 
 
In this implementation the half width is calculated in volume space, which per definition implies that the 
distance between voxels is 1, and  in this thesis accordingly. The value of dv  can still be variedv .0d = 1  
with minor implications, will usually affect only one voxel when df is limited by, which canv .5d = 0  
make the appearance look more jagged, and less smooth, due to sampling theory. 

3.5.2 Parameter Rmax 

The parameter Rmax  is the upper limit for the half width. It influences how distant a pixel can have 
influence, giving it a similar effect to the size of the hole-filling grid. Too low value can leave gaps in the 
volume, while a too high value can create invalid data and smoothen the volume too much. 
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Rmax  should be set in relation to the volume size, as a higher resolution will create bigger gaps in voxel 
space. 

3.5.3 Parameter volSizeMill 

The parameter volSizeMill  is the requested output volume size, given in million voxels. It is used for both 
the accumulating volume and the final output volume. The value can range from 1 to 256, where 32 is the 
default value, annotated as 32M. Bigger value will create more voxels to process and thereby increase 
runtime. 

3.6 Parallelization and OpenCL implementation 
An OpenCL implementation of the hybrid reconstruction algorithm has also been created, allowing major 
speedups when running on GPU. OpenCL is previously described in Section 2.4.  
 
Section 3.6.1 will introduce how the algorithm can be parallelized for OpenCL. Section 3.6.2 will explain 
how each kernel is run and the steps necessary to make it work in OpenCL 1.2, and also show the atomic 
operations necessary to allow accumulating data to the voxels while ensuring consistency. 

3.6.1 OpenCL implementation introduction 

Implementing an algorithm in OpenCL can lead to significant speed gains, especially when running on 
GPU. To achieve speed improvements it is necessary to parallelize tasks, to utilize all computational 
power and avoid bottlenecks. All input images are accumulated to the volume without any dependencies 
to each other, much like the PNN, and this makes the input images a good starting point for 
parallelization. Unlike a PNN reconstruction, the hybrid reconstruction iterates over voxels, avoiding 
unnecessary calculations. Unlike the VNN, it acquires data only from a single input image, and requires 
no costly search. PNN and VNN reconstructions are described in Section 2.2.3. 
 
For a OpenCL implementation there are two levels of parallelization: kernels, and work items, as 
described in Section 2.4.2. Input images can be parallelized in kernels, while the aDirRange  and 
bDirRange  can be parallelized to work items in each kernel. Each work item is assigned one combination 
of a  and b  as the workload for each coordinate (a , b)  can be significant. Processing multiple (a , b ) 
coordinates per work item has not been attempted, but in theory it has been shown to increase 
performance in multiple occasions. If such an approach is attempted, it is recommended to assure an even 
distribution of the workload of each work item by utilizing the distribution of distances to neighbouring 
planes across the image plane, which can be done by mirroring across the centre of the image to group the 
shortest and longest distances together in one work item. 

3.6.2 OpenCL accumulation volume and atomic operations 

Many variables may need to take a different form when running in an OpenCL kernel, but in the hybrid 
reconstruction algorithm the most notable is the accumulation volume. As OpenCL does not come with 
image read-writes before OpenCL 2.0, and the test system is using OpenCL 1.2, accumulation has to be 
done in an basic type array.  
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The accumulation volume will be updated from multiple units working in parallel, which is not 
automatically going to be thread safe. To work around this it is possible to use a lock or to provide 
accumulation only by atomic operations, but it should be noted that atomic operations are available only 
for int types in OpenCL 1.2. The OpenCL implementation of reconstruction algorithms in this thesis use a 
32-bit unsigned integer (uint) array for accumulation and the atomic addition function, atomic_add, to 
ensure consistency. To be able to simulate a possible floating point input and the correct weighting 
accuracy the numbers are scaled up with a predefined granularity . Both the pixel value, p , and the weight, 
w , are multiplied with the granularity  when accumulating values, and divided by the same amount again 
when normalizing. 1000 has worked out as a good value, ensuring accuracy without causing overflow, 
which would severely corrupt results. 

3.7 Alternative 3D Ultrasound Reconstruction Methods 
In addition to the hybrid reconstruction algorithm, two standard reconstructions have been implemented, 
as well as a variation of the hybrid method. A PNN reconstruction with hole-filling which will be used for 
comparison, and a trail of a VNN reconstruction. Both solutions use the same pipeline as the hybrid 
algorithm, with the exception of the VNN, where no normalization step is necessary. The PNN solution is 
implemented for both serial CPU, and OpenCL parallel GPU execution, and will be presented in Section 
3.7.1. The VNN solution is implemented for serial CPU execution, and is kept at its simplest form for 
simple testing. Section 3.7.2 introduces the VNN solution. 
 
Additionally, the alternative hybrid implementations is described in Section 3.7.3, utilizing a different 
accumulation method to avoid the need for normalization. 

3.7.1 PNN 3D US Reconstruction and Hole Filling 

The PNN reconstruction algorithm is very related to the hybrid reconstruction algorithm as both iterate 
over each input image and gather data. It can run as an option in the main hybrid accumulation loop. The 
implemented PNN algorithm affects one voxel per input pixel, and compounds these together with 
compounding with  for all pixels, as shown in Algorithm 2. The OpenCL implementation of the.0w = 1  
accumulation has no further changes other than those discussed in Section 3.6.2. 
 

Algorithm 2  PNN: Accumulating input frames to volume 

accumulatePNN(FRAMES, volume) 

Input: 

FRAMES The set of input frames  

volume Initialized volume  
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Output: 

volume The volume with accumulated values  
 

function  accumulatePNN(FRAMES, volume) { 
   for  frameNr from 0 to totNrOfFrames: 
    frame = FRAMES[frameNr] 
    frameTransform = getTransform(frame) 
    frameSize = getSize(frame) 
          for  x from 0 to frameSize.x: 
       for  x from 0 to frameSize.y: 
        pixelPos = (x, y, 0) 
        volumePos = transformPoint(frameTransform, pixelPos) 
         if  !volumePointOutsideVolume(volumePos, volumeSize): 
          p = getPixelValue(frame, pixelPos) 
          accumulateValuesInVolumeData(volumePos, p, 1.0) 

 
Hole-filling can be performed as part of the normalization step. Hole-filling has been implemented where 
the pixel is set to the average of all the actual values in the hole-filling grid. In the OpenCL case was 
implemented with local memory, in three dimensions this severely limits the local work group size in 
each direction with increasing grid size. Due to the small local work group size compare to the allocated 
local memory size, it might be necessary for each work item in the work group to load many values to 
local memory. 

3.7.2 VNN 3D US Reconstruction 

The VNN reconstruction algorithm operates in very different ways from the other two reconstruction 
algorithms, and has been implemented mostly as an alternative to check accuracy. Finally it is simply 
implemented as shown in Algorithm 3, with a naive solution for finding closest plane. It will not be used 
for results in this algorithm, due to a slow running time. 
 

Algorithm 3  VNN: Adding the closest data to each voxel 

reconstructVNN(FRAMES, Rmax, volume) 

Input: 

FRAMES The set of input frames  

Rmax The maximum distance to closest frame before  
value is defaulted to zero  

volume Initialized volume  
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Output: 

volume Reconstructed volume  
 

function  reconstructVNN(FRAMES, Rmax ,volume) { 
   for  voxel in volume: 
    closestFrame = findClosestFrame(FRAMES, Rmax) 
    closestFramePoint, dist = findClosestPoint(voxel, closestFrame) 
     if  dist < Rmax: 
      volume[voxel] = getPixelValue(frame, closestFramePoint) 

 

3.7.3 Hybrid with Alpha-blending compounding 

To make an attempt to gauge the real-time capabilities of the hybrid reconstruction, an alpha-blending 
approach was attempted. This normalizes the pixel value with each addition, making the total 
normalization step unnecessary, which is essential to make the work required between frames as small as 
possible. So instead of accumulating one frame to the volume, and then normalizing all of it, the volume 
is always ready to be displayed after accumulation. 
 
The compounding alpha-blending approach was used, as described in Section 2.5.6.3. The 
implementation builds on the same hybrid algorithm explained in this thesis, with the same steps as 
described in Section 3.1, but the accumulation step was changed. The blending approach requires us to 
perform multiplication, and between the old and the new value, putting one more requirement on the 
OpenCL kernel accumulation, as described in Section 3.6.2. OpenCL 1.2, as used in this implementation 
has no support for atomic read-and-multiplication, but it is possible to use a semaphore array, as discussed 
in Section 2.4.4. This puts a spinlock on a section of code which can only be accessed, with read or write, 
by one processing unit for each voxel position. This allows us to perform more steps than previously in 
the locked section, and allows us to use float data for higher accuracy calculations. 
 
No real-time capable pipeline was implemented in this thesis, but finally some ideas are discussed in 
Section 7.5 for Further Work. 

3.8 Evaluation 
As this reconstruction algorithm is previously unpublished, tests have been performed to evaluate both 
visual quality as well as performance. We have focused on evaluating the visual  results to be on line with 
other good algorithms, while speed performance  has been evaluated to see how fast such a reconstruction 
can be done, and look at possibilities for a real-time solution. Valuing top-end performance at decent 
quality. 
 
Section 3.8.1 will introduce the sets of input data that have been used in this evaluation, and introduce 
general traits of input data that will affect performance. Section 3.8.2 describes the visual quality 
evaluation comparing two hybrid configurations, a PNN configuration, and an existing reconstruction. 
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Section 3.8.3 describes how runtime performance was tested, to reflect the strengths of different 
reconstruction algorithms and differentiate their configurations. 

3.8.1 Data sets 

Input data will affect the results that can be expected from the reconstructions. This section aims at 
describing these effects, and introducing the data sets that have been used for this thesis. Section 3.8.1.1 
introduces general traits of input data, and common aspects of all data sets used. Sections 3.8.1.2 trough 
3.8.1.6 introduces the specific traits of each data set. 

3.8.1.1 General traits 
Different data sets will challenge the reconstruction algorithms in different ways, allowing us to not only 
compare their performance on optimal condition inputs, but find weaknesses and determine how well the 
algorithms can handle them. There are mainly three properties that will be considered: distance of data, 
detail of data, and overlapping data. Different situations will affect different properties, and some of the 
most pronounced situations will be explained below. 
 
A change in scan distance  determines the spread between each scan image. This is highly influential to 
how much gap filling has to be done by the algorithms, increasing the uncertainty it has to work with. 
With some training an operator should be able to get even scans with a evenly distributed distance of 
maximum 1 or 2 pixels[4], on a fair sized volume. In algorithms adjusting the volume to a specified voxel 
count rather than a static voxel-distance, this will increase the voxel-distance and thereby the resolution of 
the final volume. Low scan distance will increase the amount of overlapping data. 
 
Scan movement , the motion over which the probe is moved. Straight scans  will keep the slices parallel to 
each other. Fan scans  are sometimes used, for instance to capture an object behind bone or other 
shadow-inducing objects. Fan scan are created by tilting the probe, so that distant parts of the scan is 
moving more than adjacent parts, from frame to frame. This creates an uneven distribution of distance 
across the frames, where remote areas will have more spacing to neighbouring frames than middle or near 
areas. Remote areas are then more suspicable of leaving gaps, while adjacent areas have to be heavily 
compounded. 
 
An increasing number of scan passes  across the volume will increase the amount of overlapping data. 
Multiple passes are usually used to cover a bigger area in multiple directions, but the old and the new data 
should overlap to create a continuous volume. Such an overlap can create a challenge, when data from 
different time points and points of origin has to account for inaccuracies in calibration and acquisition, as 
well as patient movement. Creating a representable merge will be a much harder task than merging 
neighbouring slices. Representing the images be done with a balance between displaying inaccuracies, 
and over smoothing edges. 
 
The importance of detail  will vary with each set and use case. Ultrasound is generally not the best 
modality for capturing details, but the level of detail will still change from one situation to the next. An 
analysis requiring clear edges will put a higher demand on the algorithm to preserve edges rather than 
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smoothing. Operators can also make the details more clear by aligning the scan slices with the plane in 
which the detail is most important. 
 
All the sets described below are neurology scans , acquired intra-operatively in a tumor resection. The sets 
are from three different patients, where set 3, 4, and 5, are acquired in three different stages of an 
resection. The specifics of each set will be described below, and unless otherwise mentioned they are 
single pass acquisitions. 

3.8.1.2 Set 1: Patient A 
Set 1 is a fan scan, with almost all movement done by tilting the probe. The scan is depicting a small 
tumor. The scan is acquired in a top-bottom direction, roughly aligning its middle slices with the axial 
plane. 

3.8.1.3 Set 2: Patient B 
Set 2 is a quite straight set, but with a bit of fanning, especially at the ends. The scan covers a large, 
gradual tumor, covering most of the input slice at its centre. This set is acquired by two parallel passes, 
with approximately 50% overlap. Edges at the overlapping parts are clearly visible, especially in the 
tumor. The scan is acquired in a top-bottom direction, roughly aligning it with the axial plane. This is the 
first set used for performance evaluation and contains a total of 660 frames, with a resolution of 330 x 
552. 

3.8.1.4 Set 3: Patient C - Before resection 
Set 3 is also rather straight, but with a steep fan curb at one end. The scan contains a tumor infecting some 
tissue in between some liquid. The scan is acquired in horizontal direction, roughly aligning it with the 
coronal plane. This is the second set used for performance evaluation and contains a total of 573 frames, 
with a resolution of 229 x 552. 

3.8.1.5 Set 4: Patient C - During resection 
Set 4 is acquired by straight scans, but it consists of two passes resembling a V-shape. The two scans only 
overlap in part of the passes, and are entirely separate in the remainder. The tumor has been partially 
removed.  The scan is acquired across the sagittal plane, slightly aligning it with the axial and coronal 
planes. 

3.8.1.6 Set 5: Patient C - After resection 
Set 5 is like set 4 acquired by two straight scans in a V-shape. In this set they are overlapping in all of the 
frames. Resection is complete and the tumor should be removed. The scan is acquired across the sagittal 
plane, slightly aligning it with the axial and coronal planes. 

3.8.2 Evaluation of visual quality 

A visual evaluation was done by a comparative review done by ultrasound technicians. Four 
reconstructions were put side-by-side from all of the abovementioned data sets, with multiple view 
angles, taken from axis-aligned planes in the world coordinate system. Planes were acquired from 
Slicer[1], by aligning the the slices with the tumor and switching between reconstructed volumes without 
changing the position. 
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The query was given as a PDF-document with background info, evaluation info, and five sets with 2-3 
planes each. All sets were displayed with min/max values set to 1-255 for consistency, and it was pointed 
out that this might cause lower contrast than optimal scaling. The total score for each reconstruction 
method was the only desired variable. Respondents were allowed to score each set or image, but these 
were finally averaged to one total score. A score between 0.0 and 10.0 was given, evaluating the quality 
and usefulness of the reconstruction. 10.0 being the best score, and 5.0 indicating a just usable result 
without perfection. The evaluation was done with four reconstruction volumes: 

A. PNN  with hole-filling 5x5x5 
B. Hybrid  approach with Rmax 8.0 and gaussian  weighting 
C. Existing volume from the VGDW  algorithm[9] 

D. Hybrid  approach with Rmax 8.0 and linear  weighting 
Where volume C is used as a gold standard of a good evaluation. It is used as we had access to the same 
input data as used in this reconstruction. 
 
Six technicians responded to the query, four responded with a single number for each reconstruction, and 
two responded with scores given to each single image. Some written feedback was also acquired by some 
of the respondents. 

3.8.3 Evaluation of performance 

A performance evaluation was performed to get an accurate look at the runtime of the implementation, 
and to compare different settings. Two sets were used, Set 2 with straight overlapping scans, and Set 3 
with a steep fan scan curve at one end. Eight configurations, of algorithm and settings, were compared, as 
listed in Table 3.2. 

Table 3.2: Performance evaluation - Algorithm setting descriptions 

Short: Algorithm: Vol. 
size: 

Extra: 

Gauss8 Hybrid 32M Gaussian weighting, Rmax = 8.0 

Lin8 Hybrid 32M Linear weighting, Rmax = 8.0 

Lin8-256 Hybrid 256M Linear weighting, Rmax = 8.0 

Lin16 Hybrid 32M Linear weighting, Rmax = 16.0 

AlphaLin8 Hybrid 32M Alpha-blending*, linear weighting, Rmax = 8.0 

PNN5 PNN 32M 5x5x5 Hole-Filling 

PNN7 PNN 32M 7x7x7 Hole-Filling 

PNN7-25
6 

PNN 256M 7x7x7 Hole-Filling 
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*Alpha-blending here refers to alpha-blending compounding as described in Section 2.5.6.3.  

All configurations were run with a OpenCL GPU implementation. DV, as described in Section 2.5.1, was 
set to 1.0. 
 
Time was recorded across three different spans to compare the different algorithms and settings, and give 
a basis for comparison to other algorithms. Each span reflects a different qualities of the algorithms. The 
spans are described in Table 3.3 

Table 3.3: Performance evaluation - Timing span descriptions 

Short name: Full name: 

Inner loop Algorithm inner accumulation loop 

Measures the time used to accumulate input data, by measuring the time used in accumulating each 
frame into the volume. Ignores any initializing steps and normalization. Good for checking how 

much time is used to add a single frame, and to measure the time of the actual work of the algorithm. 

Norm Normalization step (incl. Hole-filling) 

Measures the time used to normalize the accumulated volume to a ready-to-display scaled volume. 
For PNN algorithms the Hole-filling step is also performed as part of this step. Good for checking 

how much time is used to finalize the volume for display, an attribute that strongly varies with 
different approaches. Also valuable information in regards to real-time opportunities. 

Init-to-norm Initialization-to-normalization (“total time ”) 

Measures the “total time ” used by the algorithms, starting from initialization and finishing after 
normalization. Loading of images is omitted as the loading process in FAST is currently nonoptimal. 

Good for measuring total performance of the algorithms, as well as expected total runtime. 
 

Only the inner loop and normalization is optimized for speed, while initialization and general steps are 
focused on modifiability, and can run all the used algorithms. Accumulation process and normalization 
might also have room for improvement in working groups, balancing the work item work load with 
kernels.  

Table 3.4: Performance evaluation - Procedure 

1. Restart the computer 
2. Stop any unnecessary programs running in the background 
3. Run .exe file running a set of tests and displaying runtimes 

3.1. Disabling OpenCL kernel cache (‘CUDA_CACHE_DISABLE=1’) 
3.2. Running for each of the two input set 

3.2.1. Running with each algorithm configuration 
3.2.1.1. A new instance is set up and run, reconstructing the volume 
3.2.1.2. Reconstruction times are recorded, as described in Table 3.3 

3.2.2. Repeat step 3.2.1 a total of 3 times per algorithm 
3.3. All run times are gathered and stored, the program is closed 
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4. Repeat step 3 a total of 3 times per restart 
5. Repeat one more time from step 1 to 4, for a total of two clean runs 

 

To acquire the timing data, the steps of Table 3.4 were taken. All the data was stored in a spreadsheet and 
evaluated by averaging the results for each timing in each algorithm specification in each set. Timing is 
performed by high_performance_clock  of boost::chrono , wall time measurement that acted consistently 
even on the smallest values. All timings are surrounded by cl_finish commands, to capture the exact 
workload done within these section. The computer specifications used in this evaluation are listed in 
Table 3.5. 

Table 3.5: Performance evaluation - Computer specifications 

Property: Specification: 

Form factor Full size stationary desktop computer with fan-based air cooling 

Operating system (OS) Windows 8.1 64-bit, x64-based processor 

CPU Intel(R) Core(™) i5-4460 CPU @ 3.20GHz 

Memory (RAM) 16 GB 

GPU #1 NVIDIA GeForce GTX 970 w/ 4GB GDDR5 memory 

GPU #2 NVIDIA GeForce GTX 970 w/ 4GB GDDR5 memory 

GPU stats Cores 1664 - TMUs: 104 - ROPs: 56 

GPU Driver version R368.39 (r368_35-3) / 10.18.13.6839 

OpenCL version OpenCL 1.2 

OpenCL stats GeForce GTX 970 compute units: 13@1177MHz 
Work Item Sizes: 1024x1024x64 
Work group size: 1024 

OpenCL memory Global mem. 4GB 
Constant buffer 64KB 
Local mem. 48KB  

OpenCL SDK version NVIDIA GPU Computing Toolkit (CUDA) v.7.5 
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Chapter 4: Results 

In this chapter the results of the image quality evaluation and the performance evaluation will be 
presented. Section 4.1 presents the results of the visual quality evaluation together with the images used 
for this evaluation. Results are presented numerically and in graphs. Section 4.2 will thoroughly display 
the results of the performance evaluation, with the initial measurements, time per frame and time per 
million voxel. Numerical data is presented, side-by-side of graphs.  

4.1 Evaluation of visual quality 
Here we will present the results of the evaluation of visual quality, as described in Section 3.8.2. Section 
4.1.1 introduces the results, while Section 4.1.2 display the images used for evaluation. 

4.1.1 Results 

The results are presented in Table 4.1. Evaluators are numbered #1 to #6 and each of their scores are 
listed on the row with their number, under the four options. The average value of all scores are calculated, 
as well as an average ranking and the mean. Evaluator #2 stated he could have stretched the scale out 
more. Evaluators #4 and #5 rated each individual image, so the results are averaged into one score for 
each reconstruction method. 
 
Hybrid linear weighting got the best score from all evaluators, right in front of hybrid gaussian weighting, 
as seen in Table 4.1 and Figure 4.1. PNN reconstruction is the outlier, with much lower scores than the 
other three methods. Looking at Figure 4.2 there is an obvious consistency in how the evaluators have 
ranked the methods with their scores. 
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Table 4.1: Evaluation of visual quality - Results 

Option: A B C D 

Algorithm: PNN 5x5x5 Hybrid Gauss8 VGDW Hybrid Lin8 

#1 4.00 7.00 6.00 8.00 

#2* 4.50 5.20 5.00 5.30 

#3 6.00 8.00 7.50 8.50 

#4** 3.46 4.69 4.23 5.15 

#5** 6.31 6.92 6.77 7.15 

#6 3.00 7.00 5.00 7.00 

Average: 4.54 6.47 5.75 6.85 

Ranking***: 4.00 1.92 3.00 1.08 
The table shows the scores ranking from 0.0 to 10.0, where 10.0 is the best. Hybrid 'Lin8' is scored highest by all 
evaluators, and the hybrid 'gauss8' and reference reconstruction VGDW both score satisfactory for use. The PNN 

implementation is scored a bit worse, which will be discussed in Section 5.1. 
 

* Evaluator #2 stated he could have stretched the scale out more. 
** Evaluator #4 and #5 rated each image individually, and it is not sure the average is representable regarding 

the score of 5.00+ for usable results overall. 
*** Ranking is the average of the rankings of each individual evaluator. Best is 1, second is 2 and so on. In the 

case of a tie, like two first places, both are given 1.5, the average of the rankings they would otherwise represent. 
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Figure 4.1: Evaluation scores grouped by evaluator. 

 Higher score is better. More details in Table 4.1. 

 

 
Figure 4.2: Score ranking grouped by configuration.  

Lower ranking is better. Hybrid 'lin8' is scored best by all evaluators, and the ranking order of the four 
reconstructions are strikingly similar. See Table 4.1 for details. 

4.1.2 Evaluated Images 

Below the images presented to the evaluators are shown. Each image represents a full page, and were 
probably bigger than presented here. Set 1 used two views, set 2 three, set 3 three, set 4 two, and set 5 
used three views. 

66/102 



 

 
Figure 4.3: Set 1 - View 1: Coronal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.4: Set 1 - View 2: Axial 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.5: Set 2 - View 1: Coronal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.6: Set 2 - View 2: Axial 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.7: Set 2 - View 3: Sagittal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.8: Set 3 - View 1: Coronal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.9: Set 3 - View 2: Axial 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.10: Set 3 - View 3: Sagittal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.11: Set 4 - View 1: Axial 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.12: Set 4 - View 2: Sagittal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.13: Set 5 - View 1: Coronal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

 
Figure 4.14: Set 5 - View 2: Axial 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 
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Figure 4.15: Set 5 - View 3: Sagittal 

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D) 

 

4.2 Evaluation of performance 
In this section we will present the results of the evaluation of performance, as described in Section 3.8.3. 
Results are divided into three sections, one for each timing described in Table 3.3. The processing of the 
results are described in Section 4.2.1, from the relative comparison to the baseline method, to two timing 
adjustments. 
 
Section 4.2.2 introduces results of the algorithm accumulation loop, depicting the time spent on just 
accumulation. Section 4.2.3 display the results of the normalization step, performing the finalizing steps 
of normalization of pixel values according to weights, and hole-filling where necessary. Section 4.2.4 
shows the performance results of the total time, initialization-to-normalization, with loading times 
omitted. 

4.2.1 Performance: Result processing 

The results were grouped for each combination of input set and algorithm configuration, and the 
measured runtimes were averaged over each group. This average is called Runtime timing  later in Section 
4.2, and is used as a baseline for the other calculations. 
 
Accumulation loop, and initialization-to-normalization results were adjusted for number of frames of each 
set. Set 2, as described in Section 3.8.1.3, contained 660 frames, while set 3, as described in Section 
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3.8.1.4, contained 573 frames. Runtimes were divided by these numbers to align the runtimes of the two 
sets. In addition this number shows the work done by accumulating a single frame. 
 
Normalization, and initialization-to-normalization results were adjusted for number of voxels in the 
volume. Most configurations ran at 32M, while two ran at 256M. Runtimes were divided by millions of 
voxels in the volumes to compare how they scale. 
 
Each set of results is displayed with a figure and a table. The table contains a row for the timings of both 
set 2 and 3, as well as two rows comparing the timings relatively to the baseline configuration, ‘lin8 ’. 
‘Rel2 ’ is set 2 performance relative to the baseline set 2 performance, and the same for ‘Rel3 ’ and set 3. 
All runtimes are in milliseconds, and the numbers used for calculation are more accurate than displayed in 
the tables. 

4.2.2 Performance: Algorithm inner accumulation loop 

The performance results of the algorithm inner accumulation loop are displayed in this section, which is 
the frame accumulation without any overhead, as described in Table 3.3. Total accumulation time for the 
configurations are shown in Figure 4.16, and Table 4.2, which gives a good picture of accumulation 
workload of the reconstructions. Timing per frame is shown in Figure 4.17 and Table 4.3, giving a picture 
of the workload for the average incremental reconstruction step. 
 
Total runtime of accumulation appears to stay under 300 ms for all configurations except ‘lin8_256 ’, 
which is scaled up with a multiplier of less than x2 , which is not bad for the size. ‘Lin16 ’ is as fast as 
‘lin8 ’, and these are the fastest configurations. Adjusted for number of frames, the accumulation stay 
under 0.40 ms for the faster configurations. This corresponds to an accumulation speed of 2500 frames/s. 
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Figure 4.16: Runtime timing - Algorithm accumulation loop. 

 

Table 4.2: Runtime timing (ms) - Algorithm accumulation loop.  

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 
Pnn7_25

6 

Set 2 270.97 262.57 465.79 262.72 274.61 284.94 278.89 274.67 

Set 3 209.22 205.89 392.33 204.00 263.33 208.67 210.89 241.06 

Rel 2 103% 100% 177% 100% 105% 109% 106% 105% 

Rel 3 102% 100% 191% 99% 128% 101% 102% 117% 
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 

background. 
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Figure 4.17: Time per frame - Algorithm accumulation loop 

 

Table 4.3: Time per frame (ms) - Algorithm accumulation loop.  
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256 

Set 2 0.41 0.40 0.71 0.40 0.42 0.43 0.42 0.42 

Set 3 0.37 0.36 0.68 0.36 0.46 0.36 0.37 0.42 

Rel 2 103% 100% 177% 100% 105% 109% 106% 105% 

Rel 3 102% 100% 191% 99% 128% 101% 102% 117% 
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 

background. 

4.2.3 Performance: Normalization 

The performance results of the normalization step is displayed in this section. Gives a good understanding 
of the work each configuration needs to do to be ready-to-display. Figure 4.18 and Table 4.4 show total 
normalization times, while Figure 4.19 and Table 4.5 present the normalization times, adjusted for 
volume size. 
 
The normalization times range from 3 to 1432 ms. Hybrid configurations are significantly faster than their 
PNN counterparts, with no need for hole-filling. Due to this difference, hybrid configurations are 
displayed with their own figures below, in addition to the total ones. The three 32M hybrid approaches 
clock in just around 3.3 ms, while the ‘Pnn7_256 ’ uses 434 times as much at approximately 1450 ms. 
Adjusted for volume sizes it is clear the similar configurations like ‘lin8 ’ and ‘lin8_256 ’, and ‘Pnn7 ’ and 
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‘Pnn7_256 ’ are close in timing. The hole-filling of the PNN appear to scale significantly with increased 
neighbourhood. The hybrid configuration ‘alpLin8 ’ is ready normalized by accumulation, and needs no 
normalization. It is therefore omitted when calculating the best runtime below. 

Table 4.4: Runtime timing (ms) - Normalization. 

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 
Pnn7_25

6 

Set 2 3.32 3.30 21.47 3.28 - 72.02 188.93 1,431.55 

Set 3 3.23 3.24 20.85 3.25 - 76.16 205.02 1,469.13 

Rel 2 101% 100% 651% 99% - 2183% 5726% 43388% 

Rel 3 100% 100% 644% 100% - 2353% 6333% 45382% 
‘Lin8’ is the baseline for relative(Rel) performance.The fastest measurements are shown with a light background. 

Configuration ‘algLin8’ requires no normalization. 

 

Table 4.5: Time per million voxel (ms) - Normalization.  
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256 

Set 2 0.10 0.10 0.08 0.10 - 2.25 5.90 5.59 

Set 3 0.10 0.10 0.08 0.10 - 2.38 6.41 5.74 

Rel 2 101% 100% 81% 99% - 2183% 5726% 5423% 

Rel 3 100% 100% 81% 100% - 2353% 6333% 5673% 
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 

background.  Configuration ‘algLin8’ requires no normalization.  
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Figure 4.18: Runtime timing - Normalization. Top: All normalization methods compared stretches the scale, so 

hybrid methods are almost invisible. Bottom: Hybrid-only chart to distinguish between configurations. 
Configuration ‘alpLin8’ has no need to perform any normalization and uses zero time. 
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Figure 4.19: Time per million voxel - Normalization. Top: all normalization. Bellow: Only hybrid configurations. 

Notice how 256M reconstruction volumes now come on line with the corresponding 32M volumes. 
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4.2.4 Performance: Initialization-to-Normalization 

The performance results of the initialization-to-normalization timing is displayed in this section, giving a 
total timing to rate the overall runtime of the algorithms. Figure 4.20 and Table 4.6 present the actual 
timings. Figure 4.21 and Table 4.7 adjusts for frames, giving us a rough estimate of the runtime of each 
frame. Figure 4.22 and Table 4.8 adjusts for volume voxels, giving a good basis for scaling and 
throughput. 
 
Total runtime of initialization-to-normalization stay under 1 second for most algorithms. ‘Pnn7_256 ’ is 
far behind after bad normalization results, while ‘lin8_256 ’ hovers around 1 second. ‘Lin8 ’ and ‘lin16 ’ are 
fastest, but among the 32M reconstructions the timing increase is roughly just 30% from best to worst. 
The 32M timings are just above 1 ms/frame, and the frame count adjustment seems to even out the 
differences between the two sets with the exception of configuration ‘Pnn7_256 ’. Adjusted for voxel 
count the 256M volumes perform a lot better than the 32M volumes, implying that the initialization-to- 
normalization timing does not scale much with increasing volume. The scaling for both Hybrid and PNN 
approaches turn out at x1.5  and x3.6  for the x8  volume size increase from 32M to 256M. 

 
Figure 4.20: Runtime timing - Init-to-normalization 
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Table 4.6: Runtime timing (ms) - Init-to-normalization 

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 
Pnn7_25

6 

Set 2 739.62 721.82 1,088.94 723.44 829.28 807.72 921.33 2,302.94 

Set 3 629.00 615.67 961.44 614.56 768.44 682.44 813.50 2,249.17 

Rel 2 102% 100% 151% 100% 115% 112% 128% 319% 

Rel 3 102% 100% 156% 100% 125% 111% 132% 365% 
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 

background. 

 

 
Figure 4.21: Time per frame - Total time. Even results between the two sets, but notice the offset with 

configuration ‘Pnn7_256’. 

 

Table 4.7: Time per frame (ms) - Total time 
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256 

Set 2 1.12 1.09 1.65 1.10 1.26 1.22 1.40 3.49 

Set 3 1.10 1.07 1.68 1.07 1.34 1.19 1.42 3.93 

Rel 2 102% 100% 151% 100% 115% 112% 128% 319% 

Rel 3 102% 100% 156% 100% 125% 111% 132% 365% 
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‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 
background. Even results between the two sets, but notice the outlier configuration ‘Pnn7_256’. 

 

 
Figure 4.22: Time per million voxel - Total time. Relative to volume size the bigger volumes a lot faster on the 

total process. Only a few parts relate directly with volume size however. 

 

Table 4.8: Time per million voxel (ms) - Total time 
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256 

Set 2 23.11 22.56 4.25 22.61 25.91 25.24 28.79 9.00 

Set 3 19.66 19.24 3.76 19.20 24.01 21.33 25.42 8.79 

Rel 2 102% 100% 19% 100% 115% 112% 128% 40% 

Rel 3 102% 100% 20% 100% 125% 111% 132% 46% 
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light 

background. Relative to volume size the bigger volumes a lot faster on the total process. Only a few parts relate 
directly with volume size however. 
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Chapter 5: Discussion 

This chapter will discuss the the findings of the results presented in chapter 4. Section 5.1 will review the 
results of the evaluation of visual quality, and Section 5.2 will discuss the results of the performance 
evaluation. 

5.1 Visual quality 
The visual evaluation used tumor input data to let the evaluators score the reconstruction quality in a real 
world setting. This evaluation was performed to test the achieval of the visual quality goals described in 
Section 1.1, looking for quality reconstruction, with options for further improvement. Each of the five 
input sets presented different properties to test multiple effects of reconstruction configuration, from 
compounding dense, overlapping data, to filling in sparse areas. In input sets 2, 4, and 5, there are two 
passes of overlapping data, creating an obvious edge where the two slices meet. As with other artefacts in 
ultrasound imaging there is no single best way to handle this. Some algorithms can in effect smooth them 
out by applying a wide influence from each pixel, while others will make a reconstruction more directly 
representing the input images, even if it has less of an visual appeal. This visual appeal of a smoother look 
seems to have impacted the evaluation results, as both of the two top ranked reconstruction configurations 
produced this effect.  
 
Many of the images appeared difficult to distinguish, and the general appearance becomes paramount, 
overshadowing the importance of details. However, none of the images represent details particularly bad, 
and the strong scores of the two smoother  algorithms proves that the level of detail is sufficient. Another 
effect of the importance of general appearance is that images with unfilled gaps appear very faulty, and 
produce the worst individual image scores in this evaluation. The PNN configuration have very noticeable 
gaps in the reconstruction of set 4, despite using a 5x5x5 neighbourhood for hole-filling step in a 32M 
volume, and judging by the single scores of the two evaluators rating each image, this is where they really 
fall behind the other approaches. The scores of the single ratings also reveal that some images score lower 
in general, and have a bigger spread between the best and the worst reconstruction. These images tend to 
see input frames from the side, making all the tracking inaccuracies visible as staggered lines through the 
volume, as seen in Figure 4.13, and Figure 4.5, as well as in the aforementioned Set 4, in Figures 
4.11-.12. 
 
The evaluation scores given in Table 4.1, show that the score ranges and centers, of each evaluator vary. 
This is understandable, as there is no universally defined way to rank the image quality of 3D 
reconstructions. Making it score-based rather than rank-based extends this problem. On the other hand, 
the score-based approach displays that some of the algorithms are very similar in quality, just as expected. 
Especially the two hybrid-based configurations tend to be rated closely, and the VGDW configuration is 
never too far away. The two evaluators scoring images individually also have a smaller final range 
between evaluations, a natural effect of averaging numbers. Evaluator #2 stated that he could have used a 
wider range, but found input positioning errors to be too significant. It is unclear if all evaluators have 
related their scores to our proposed minimum rating of 5.0 for usable results, or how they define usable 
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results. In particular it is uncertain if the averaging individual image ratings fairly represent these scores 
to this minimum rating. 
 
While all results point to satisfactory evaluations for the hybrid algorithm, it should also be noted that the 
scores could have been higher with a different method of presentation. Slices are acquired from world 
space planes rather than volume planes or directly aligning the slice with the input frames, which would 
significantly improve quality. In this evaluation, the slices are taken from as many planes as possible for 
each set, to show that it can represent all of them. 
 
If we evaluate how the scores of each evaluator ranks the algorithm configurations, there is evidently a 
high order of consistency, as seen in Figure 4.2. Undoubtedly there is some means of randomness making 
it this coherent.  
 
It is a delight to see that the two hybrid configurations are ranked first, and second, of the four 
configurations. I think it is too soon to thereby suggest that they are universally better than the VGDW 
approach, but we can assume that it performs in line with this approach on overall visual quality. This is 
surprising, and makes it more than sufficient to cover the goal of this implementation, to acquire decent 
visual quality at top-end performance, as described in Section 1.1. 
 
It is also surprising to see the linear weighting perform better than the gaussian weighting. This can be 
caused by an mistakenly high value of the standard deviation, causing the gaussian weight to blur more 
than it is designed to do. This mistake was discovered after evaluation, and later fixed. As we had no time 
to reevaluate visual quality, the results of this fix have been added in Appendix A, with a simple weight 
distribution comparison and visual comparison. 

5.2 Performance 
Performance evaluation was performed to test the achieval of the goals described in Section 1.1, seeking 
top-end performance, and work towards real-time capable performance. In short, the evaluation compared 
all the configurations up against a baseline configuration, hybrid ‘lin8 ’. This configuration was seen as an 
optimal configuration, Rmax = 8.0 , of the default hybrid reconstruction with linear weighting , and general 
compounding. This baseline allows us to compare how changes to different variables affect performance, 
without exhaustively testing all combination of variables. Both reconstruction algorithms, hybrid and Pnn, 
are pixel-based approaches, implemented with OpenCL for GPU execution. Working on a similar basis is 
crucial for making comparable results. 
 
Pixel-based approaches have the advantage that the runtime of each frame is totally independant of how 
many other frames are to be added, giving them a big advantage over voxel-based approaches that are 
required to search through input images to find the closest input image.  
 
The first timing is the accumulation loop , described with other timings in Table 3.4. The runtime timing, 
described in Table 4.2, measures the timing of adding the input data to the accumulation buffer. Initially, 
it is very noticeable how steady the results are in this section, especially after adjusting for input image 
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count. Figure 4.17 and Table 4.3 show the latter results, which makes it clear that all the results revolve 
around 0.4 ms per frame, with the exception of ‘lin8-256 ’ in a 256M volume at approximately 0.7 ms per 
frame. The PNN 256M reconstruction however, does exactly the same amount of work as the two PNN 
32M in this phase, as just a single datapoint is added for each input pixel, no matter how big the volume 
is. For something that should be an order of magnitude less workload, the PNN is timed surprisingly close 
to the Hybrid approaches. Maybe at this rate of processing, the creation and initialization of kernels are 
significantly more costly than the algorithm, and run times are thereby normalized in this fashion. This 
can be addressed by increasing the workload of each work item, processing more pixels each, like 
implemented by Gobbi & Peters[4]. 
 
The second timing is normalization , measuring the time used to adjust all accumulated pixel values with 
their respective weights. Timings are found in Tables 4.4-5. This is a purely voxel-based step, and as 
expected it scales highly with the increased volume sizes. The x8  increase in volume size from 32M to 
256M increases normalization time with a multiplier of x6.5,  and x7.2,  for hybrid, and PNN respectively. 
PNNs are a lot slower in this step due to the fact that they also process hole-filling in the normalization 
process. Utilizing local memory as an intermediate step between the two improved run time, but this 
effect is strongly diminished due to local memory restrictments above a neighbourhood of 5x5x5. Hybrid 
volumes normalize in roughly 3.3ms, with a x6.5  increase with a 256M volume, and between a x22  and a 
x434  multiplier for PNN solutions relative to the baseline hybrid configuration. Most notably the 
alpha-blending compounding approach requires no normalization, giving it a big advantage over the other 
algorithms. Adjusted for number of voxels in the volume, the normalization comes down to estimately 0.1 
ms per million voxel for the baseline, slightly faster for the 256M hybrid approach, and between 2, and 6 
ms, per million voxel for the PNN approaches. 
 
The final timing is total timing , from initialization-to-normalization . The baseline configuration initializes 
the volume, does pre-calculations, accumulates values, and normalizes the volume to a ready-to-display 
3D volume in 0.72 sec, and 0.62 sec, for set 2 and set 3 respectively, as seen in Table 4.6. These contain 
660 and 573 input images each, which brings it to roughly 1 ms per frame, as seen in Table 4.7. Adjusted 
for voxels it is performed at approximately 21ms per million voxels, as seen in Table 4.8. Total 
reconstruction time is shorter than the time used for input acquisition. Again, other reconstruction times 
are quite similar to the baseline, with the exception of the 256M volumes which seem to increase by 
roughly the extra time they used in the normalization process, plus some time most likely spent on 
initializing these volumes. As the 'Pnn7_256 ' configuration used approximately 1.45 sec in normalization, 
it is already far behind the others in the total timing, ending up between x3.2  and x3.7  the time used by the 
baseline. Adjusted for voxels in the volume the 256M reconstructions are however a lot faster per million 
voxels, implying that the total workload does not scale as fast as the volume size. 
 
In the end, performance evaluation comes down to comparing the methods. This is quite convenient and 
simple with the baseline, though more configuration points could give a much better overview of the 
situation. With 'lin8 ' as a baseline, 'gauss8 ', and 'lin16 ' runs at approximately the same time both in 
accumulation, normalization, and total time. 'Lin16 ' has doubled the maximum half width distance, which 
should result in some modifier up towards 2, but rather it runs at the same run time as the baseline, and 
sometimes faster. We see that as a sign that the algorithm will not collect any more data point due to this 
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increase, and can be considered exhausted . Further, the 'alpLin8 ' configuration runs approximately 20% 
slower than baseline, which puts it right between the two 32M PNN configurations in total run time. 
Finally, the 256M Hybrid reconstruction is approximately 53% behind baseline, while the 256M PNN 
7x7x7 is between a 219% and 265% behind baseline, and between 150% and 177% behind its 32M 
counterpart PNN. 
 
The hybrid scales at x1.5  run time from an x8  increase in volume size, compared to to the PNNs x2.5 . 
Gaussian weight runs at the same time as linear weight, and PNNs are together with alpha-blending 
slightly behind. The only significant outlier is the 'Pnn7_256 ' configuration, which  runs more than twice 
as slow as the other 256M reconstruction. 
 
With complete reconstructions in less than a second, and sub-millisecond accumulation of frames, the 
implementation can definitely satisfy the goals put up for the top-end performance. Alpha blend 
compounding, which can easily adapt to a real-time use case, impresses with an approximate 0.44 ms per 
frame for accumulation. This is over 2000 frames/s, far above the 30 frames/s of Gobbi & Peters[4], and 
the 166 frames/s incremental reconstruction of Dai et al.[2]. With a good incremental visualization, like 
introduced by Dai et al., our algorithm would easily achieve real-time reconstruction and visualization. 
On top of this it has lots of room to experiment with quality improving steps, as it is over 10 times as fast 
as the Dai et al. solution. 
 
Tests were run on a Nvidia GeForce GTX 970, a high-end graphics card. A new graphic card generation 
is already out, and graphics cards will continue to increase in performance. This will bring us even more 
opportunities for further implementations, be it real-time, or high quality, solutions. 
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Chapter 6: Conclusions 

Freehand 3D ultrasound reconstruction is an exciting extension to the ultrasound imaging modality. With 
low cost and high versatility it can be a real challenger to CT and MR imaging, increasing speed and 
portability at the cost of image quality. The practical value of the reconstruction will improve as better 
algorithms produce better results. The purpose of this thesis was to implement an reconstruction in FAST, 
and utilize GPU processing to ensure a quick solution. A not previously published algorithm was used, 
and it has shown to perform greatly in terms of both performance and quality.  

6.1 Conclusions 
This thesis introduced a new approach, hybrid, combining the advantages of pixel-based and voxel-based 
methods, making it highly parallel and incremental. Working with the basis of input frames, but using the 
volume voxels to insert data allows us to avoid computationally expensive interpolation. It will efficiently 
fill gaps of varying sizes. This is the first implementation in FAST, testing the capabilities of the 
framework. A parallel GPU solution was implemented for both PNN and hybrid approaches, and 
compared in speed and quality. Two weighting schemes, inverse linear and gaussian, and two methods of 
accumulation, compounding with and without blending, were tested with good results. 
 
A high level of performance was achieved with the GPU implementation, reconstructing a full volume in 
less than a second. When given an alpha-blending inspired compounding, the algorithm can accumulate 
input frames at a rate of 2000 frames/s to a ready-scaled output volume, leaving more than enough time 
for incremental visualization for a real-time result. The hybrid approach scaled significantly better than a 
PNN with hole-filling with increasing volume sizes, but otherwise no significant performance deviations 
were found. Alpha-blending compounding performed only slightly slower than corresponding 
compounding reconstructions, fast enough to make it optimal for real-time solutions with no need for 
normalization. 
 
It can be difficult to evaluate 3D reconstructions in terms of quality, as it is impossible to define one gold 
standard, and it can be inaccurate to calculate quality metrics directly from the volume. We tested the 
algorithms with a visual evaluation performed by ultrasound technicians. The evaluation proved great 
results for the two hybrid configurations, placing both in front of the reference volume. The simple 
inverse linear weighting was rated slightly ahead of the gaussian weighting, but might perform better after 
recent implementation updates. 
 
We can conclude that the hybrid reconstruction algorithm achieves high quality with top-end 
performance. 
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Chapter 7: Further work 

Throughout this thesis a lot of ideas were thought of, many of which had to be left out for later. We have 
kept some of the ideas that we find particularly interesting, and will share them in this chapter as thoughts 
for further work or general inspiration for similar projects. 
 
Section 7.1 explains the importance of mitigating errors of tracking and motion, Section 7.2 addresses the 
possibility to use raw scan line input, and Section 7.3 explores alternatives for improving weighting 
functions. Section 7.4 gives some ideas for making the optimal base algorithm, while Section 7.5 rounds 
it off by discussing further steps in the direction of a proper real-time solution, which this algorithm is 
more than capable of. 

7.1 Correction of errors from tracking and motion 
Tracking positions will introduce errors induced both by tracking inaccuracies and motion of the patient. 
Handling these problems can be a deal-breaker, as the resulting reconstructions are only as good as their 
input. The fix can be performed either as a pre-processing step on the input data, or maybe as an internal 
part in the reconstruction algorithm. 
 
Tracking can be smoothed by comparing neighbouring images to each other, and aligning them such that 
the images overlap more accurately. This will work well when sets are dense, and scan movement 
directional. 
 
To correct for motion occurring internally in the patient, there are different features one can address. 
Motion caused by the cardiovascular system can be gated  to ensure it is in the same phase. Varying 
pressure from the probe can also cause inaccuracies, but should mostly be handled by the operator. 

7.2 Raw scan line input 
The hybrid approach is able to use raw scan line input instead of B-scan input images, but the 
implementation was left out due to limited time. It is possible that this would improve visual quality or 
performance. 

7.3 Alternative weight functions 
All weight based approaches are heavily influenced by their weighting functions. Improvements could be 
done to the simple inverse linear, or gaussian, weighting to improve their reconstruction results.  
 
Primarily, the general weighting scheme should be decided by experimenting with both inverse linear, 
and gaussian weighting. Discovering how they can best relate to the properties of the input, and 
reconstruction variables like half width and Rmax , should represent the possibility that a voxel is 
influenced at this distance from the input pixel. Calculating the optimal standard deviation for gaussian 
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weighting, will find a balance between smoothing and detail. The standard deviation might be based on 
Rmax , df , dv , be static, or be mixed and limited by multiple of these. 
 
Otherwise, weighting options should be researched to handle specific problems. Tord Øygård worked on 
some of these problems in his thesis[9]. Valuing a higher brightness appears to give good results in 
maintaining brightness, but a more continuous scalar weighting could be used, weighting the brightest 
pixels double of the darkest ones by a formula such as: 

  

A formula to value contrastive pixels, both bright and dark, or simply a higher differentiation than above, 
could also be used. VGDW also tested lateness, on the basis that the operator could pass over the area 
again if errors occurred. With a fast reconstruction as described in this paper, it would be better to restart 
the scan, as overlapping scan passes creates more inaccurate results than a single clean scan. The input 
variance adaptation of the VGDW is also very interesting, switching how smoothly the input is weighted 
depending on how detailed the area is. This can remove noise, while preserving edges. 
 
It would be interesting to see if a pixel weight, based on computer vision techniques, could further 
enhance detail or diminish artefact impact in the reconstruction. Traditional methods like edge detection 
or segmentation could be used, or the modern approach of convolutional neural nets used to learn 
strengths and weaknesses of the input. Knowing the origin point of the scan lines could give a reasonable 
basis for understanding the artefacts of the input. 
 
Researching optimal weighting functions, and experimenting with new weighting options will be essential 
to create optimal reconstructions. Once discovered, these weighting systems can be used by most weight 
based reconstruction algorithms, to acquire a similar improvement. 

7.4 Research of improved algorithm visual quality 
The visual quality of the hybrid approach can be improved, even if it would go at the cost of performance. 
It would be interesting to research possible variations, and see how they compare visually. Drawing ideas 
from algorithms that can give the implementation higher quality output, or simply testing how fast 
reconstruction algorithms with high visual performance could perform on a modern GPU. The current 
level of GPU processing can make a lot of approaches applicable, allowing us to sacrifice performance for 
improved quality. 
 
The hybrid approach is simplified to traverse voxels along a dominant axis from a pixel point. It can be 
reimplemented to traverse from each input pixel, along the image normal. It can trilinearly interpolate 
points along the normal, making it a discrete approach to the DW method with ellipsoid shaped 
neighbourhood. This allows it to increase the level of detail while maintaining a lower complexity than 
the DW method. 
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Generally, multiple methods should be looked into, finding the best visual performance within a 
reasonable reconstruction time.  

7.5 Implementing complete real-time solution 

This thesis has shown that it is possible to achieve a very high rate of frame accumulation. However, a 
real-time implementation will require multiple steps to be performed, in a total of max 40 milliseconds. 
Implementing a framework that can incrementally adjust, accumulate, and visualize the volume would be 
the basis for real-time tests. Incremental visualization should be able to guarantee under 40 milliseconds 
even for difficult scanning patterns. Incremental accumulation was performed in under 1 millisecond in 
this thesis. Incremental volume adjustments will either require the volume to be expanded as the probe 
approaches the edges of the volume, or start with a big volume and change visualization to present the 
relevant subregion. A fast method for loading of images should also be considered. 
 
This incremental re-initialization of the volume can be time-consuming, as it will require initializing a 
new volume, copying data into the new volume, and doing a complete new visualisation of the volume. 
Simplifications should be made where viable, to make the transition as smooth as possible. It can be 
possible for the volume adjustment step to do some of the work in between the previous images, and spin 
over the accumulation of some frames while visualization is performed. 
 
If we adjust the volume every 30 frames, after frame 28 the new volume is calculated and initialized, after 
frame 29 the volume is copied over from the old volume, with frame 30 the last data is copied over and a 
0.2s complete visualization is started in the time frame 6 incremental visualizations normally would be 
performed. Finally after visualization, the 6 input frames are accumulated with the new frame almost 
instantly before a new incremental visualization with all of them, and the incremental steps are resumed. 
Now this is just an example with stipulated times, and the final workings should be figured out with 
comprehensive testing. 
 
Allowing for a good frame around the accumulation could make it possible to achieve real-time solutions, 
and with the reconstruction presented in this thesis it would be quite durable during different 
circumstances. 
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9 Appendix 

Appendix A - Weighting updates with updated results 
In the discussion in Section 5.1 the gaussian weighting was found to be weaker than expected, compared 
to the linear weighting, based on the evaluation scores of Section 4.1.1. Gaussian weighting was looked 
into, and the calculation function found faulty. A too high standard deviation created a small weight 
differentiation, creating a weight spread, more resembling a constant weight, and a box filter, than 
traditional gaussian functions. A new weight calculation was created to closer reflect the demands to the 
weight distribution, and compared in this Appendix with the existing solutions. The new gaussian 
weighting is implemented as described in background Section 2.5.5.2, with a constant k  at 1.0, and a 
minimum standard deviation of 0.5.  
 
For clarity the weighting functions are graphed below, comparing weight to distance at different half 
width values, from 1.0 to 8.0. Weights are limited to the areas in which each respective half width limits 
them to. Figure A.1 display the original gaussian weighting, while Figure A.2 show the suggested new 
gaussian weighting. They have a different amplitude scaling through k , but more importantly the standard 
deviation is made smaller than the old version, allowing it to use more of the gaussian characteristic 
curve. For comparison the inverse linear weighting is included in Figure A.3. 
 
With the variability of both a local, and a global max distance, it is difficult to set a universal weighting 
function that respectfully represents all distances. A gaussian function with a static global standard 
deviation is possible, but a too small value will give little differentiation to bigger values, and a too big 
value will give little differentiation to smaller values. The goal would be to make sure overlapping 
accumulations have similar weight at the same distance, while respectfully differentiating different 
distances. 
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Figure A.1: Old Gaussian Weights - The legend on the right represents different half widths, where a half width 
of 1.0 implies a local maximum distance of  1.0, and this is where the minimum weight will be produced for this 
half width. It can be seen that this minimum value is still ~60% of maximum weight, giving a smaller contrast 

than intended. 

 

 
Figure A.2: New Gaussian Weights - The legend on the right represent different half widths. Weights are now 

scaled for width to use the full slope of the gaussian curve. No amplitude scaling. Half width 1.0 is affected by the 
minimum standard deviation of 0.5, and is therefore closer to half width 2.0 than otherwise expected. 
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Figure A.3: Linear Weights - The legend on the right represent different half widths. Inverse linear scaling 

between the zero-point and the given half width, crossing the zero weight at the half width. 

 
Further follows some side-by-side visual comparisons of the old, and the new gaussian weighting 
schemes, as well as linear for reference. Figure A.4 display a overview cut of the visual results, while 
Figures A.5 and Figure A.6 zoom in on certain details from this cut, for a side-by-side comparison. 

98/102 



 

 
 

Figure A.4: Visual results - 
Overview cut. Multiple input 
frame can be seen in the slice, 
but more or less jagged lines.  
 
(Top) The results of the new 
gaussian weight scheme; 
 
(Bot) The results of the old 
gaussian weight scheme; 
 
(Next page) The results of the 
linear weight scheme; 
 
The gaussian results appear to 
contain more detail, but the old 
results create some quite jagged 
edges. The linear results appear 
smooth, but make the darker 
areas brighter than the other 
two. 
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Linear weight scheme. 
See description on the previous 
page. 
 

 
 
 

 
Figure A.5: Visual results - Detail cut. Focused on the detail in the left side of the slice.  

(Left) The results of the new gaussian weight scheme; (Middle) The results of the old gaussian weight scheme; 
(Right) The results of the linear weight scheme; The bright detail is clearer, and brighter in the two gaussian 

reconstructions, especially the old weighting is brighter. The new weighting appears to be in the middle ground 
between the other two, with good smoothing and good dark detail. 
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Figure A.6: Visual results - 
Tumor edge cut. Focused on 
the bottom right section of the 
big white tumor in the middle 
of the main cut. 
 
(Top) The results of the new 
gaussian weight scheme; 
 
(Middle) The results of the old 
gaussian weight scheme; 
 
(Bottom) The results of the 
linear weight scheme; 
 
The two gaussian functions 
appear to keep more dark 
detail in the bottom left corner, 
and on the diagonal towards 
the top right corner. However 
they have a bigger slice gap, in 
the middle of the cut. The new 
gaussian weight seems to 
handle this cut, and others, 
slightly better than the old 
gaussian. This effect can also 
be seen in parts other parts of 
Figure A.4. 
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