
Problem description

3D Ultrasound is often generated by reconstruction of freehand input, generating 3D volumes from 2D
ultrasound images with tracked positions. Ultrasound imaging is a fast and flexible modality, allowing it
to be used in settings where other imaging modalities would be inadequate.

The FAST framework is designed to make cross-platform and heterogeneous implementation easy and
efficient. There are no previous implementations of 3D Ultrasound reconstruction in FAST.

Development of reconstruction algorithms have been performed for decades, and speed performance
always increasing with faster hardware and more parallel development, for instance on GPUs.

The goal of this thesis is to implement a reconstruction algorithm which:

● Is the first to integrate into FAST, discovering and trespassing its caveats
● Is previously unpublished, and will be well-described in this thesis.
● Creates reconstructions of good quality
● Performs at top-end reconstruction speeds
● Can be extended to fit in a real-time setting

With the GPU implementation, we hope to see good quality at top-end reconstruction speeds.

1/102

Abstract

Ultrasound imaging is a versatile, portable, and low cost medical imaging modality. It produces real-time
data from a local area in the scanned person, or object, useful in use cases such as intra-operative imaging.
Freehand 3D ultrasound reconstruction is a technique used to convert sets of 2D ultrasound images into a
3D volume. It is prefered over direct 3D acquisition due to increased resolution and flexibility, and lower
cost. However, freehand 3D ultrasound reconstruction requires tracking, which will contain inaccuracies.

Reconstruction algorithms are supposed to approximate the volume, given the overlap and gaps between
input data, while taking position uncertainties into account. There are many existing solutions, from basic
one-to-one solutions like Pixel Nearest Neighbor (PNN) and Voxel Nearest Neighbour (VNN), to
compounding distance weighted solutions like Varying Gaussian Distance Weighting (VGDW). With the
increasing power of Graphical Processing Unit (GPU) calculations, reconstruction can run faster,
allowing more powerful methods to reach demands for new situations. In this thesis we propose a
previously unpublished hybrid approach based on pixel-based methods. For each input frame it finds the
voxels within relevant distance, and for each of these voxels it accumulates the most relevant data from
the current input frame. Voxel focus in accumulation, allows for a highly parallel, and computationally
efficient method that can run at high performance. Variations in input distance are easily adjusted for by a
flexible distance weighting function.

Multiple configurations were tested, to improve the visual quality or performance properties of the
algorithm. Visual evaluation by a group of ultrasound technologists proved that the hybrid approach can
score at least as good as the VGDW, as the evaluators consensually scored both hybrid configurations
ahead of VGDW. Running on a Nvidia GTX 970 GPU high-end runtime performance was achieved, with
sub-second reconstruction time on volumes with 32 million voxels, and very good scaling with bigger
volumes. An alpha-blending compounding method has been implemented, accumulating frames at a rate
of 2000 frames per second, with no need for normalization. Hybrid accumulation performance is on line
with PNN accumulation, yet without the need for a hole-filling step it severely outperforms PNN on
overall performance. The hybrid algorithm scales particularly well with volume size, and is able to adapt
well to varying distance between input frames. Additional improvements have been looked into for
further work, as well as exploring the real-time solutions for this algorithm, or others.

2/102

3/102

Acknowledgements

A thesis can be a big task to get into, and many people have contributed to make it happen. The work has
been done at the Department of Computer and Information Science (IDI) at the Norwegian University of
Science and Technology (NTNU) in Trondheim, Norway. Multiple people connected to the SINTEF
Department of Medical Technology have also been involved. I would like to thank these two groups for
all the tools and assistance available for me during my thesis.

I would like to thank my supervisor, Dr. Frank Lindseth (IDI, SINTEF), for invaluable feedback. He
provided lots of knowledge that helped me understand the ultrasound imaging modality, and its relations
to intra-operative use. The lead developer of the FAST framework, Erik Smistad (SINTEF), has done a
big contribution to this work, primarily by helping me setting up FAST, and making good implementation
choices for the framework, but also by assisting me with valuable insight on my thesis and 3D Ultrasound
reconstruction, together with Daniel Høyer Iversen (SINTEF).

Also, I would like to thank Torgrim Lie (SINTEF) for assisting with his important knowledge of the
algorithm, and its previous implementation. He provided essential feedback for the new implementation.

Finally, I would like to thank my friends, and family, who stood by as moral support until the very end.

Trondheim, Oktober 2016

Ruben Håskjold Fagerli

4/102

5/102

Problem description 0

Abstract 2

Acknowledgements 4

List of Figures 10

List of Tables 12

List of Algorithms 14

List of Abbreviations 16

Chapter 1: Introduction 18
1.1 Goals 18
1.2 Contributions 18
1.3 Thesis outline 19

Chapter 2: Background 20
2.1 Ultrasound Imaging 20

2.1.1 Ultrasound Intro 20
2.1.2 Ultrasound image creation 20
2.1.3 3D ultrasound 21

2.2 Freehand 3D Ultrasound reconstruction 21
2.2.1 Freehand 3D ultrasound reconstruction intro 21
2.2.2 Freehand tracking 22
2.2.3 Algorithms for 3D reconstruction 22

2.2.3.1 VBM: Voxel Nearest Neighbour (VNN) and interpolation (VBMI) 22
2.2.3.2 VBM: Varying Gaussian Distance Weighted (VGDW) 22
2.2.3.3 PBM: Pixel Nearest Neighbour (PNN) 22
2.2.3.4 PBM: Pixel trilinear interpolation (PTL) 23
2.2.3.5 PBM: Using a 3D kernel in the distribution step 23
2.2.3.6 FBM: Radial basis function interpolation (RBF) 23

2.2.4 Optimizations and parallelization 23
2.2.5 Real-time 3D ultrasound reconstruction 24

2.3 FAST background 25
2.3.1 FAST intro 25
2.3.2 FAST Framework Design 25

2.3.2.1 Libraries 26
2.3.2.2 FAST Framework Core 26
2.3.2.3 Applications 27

2.3.3 FAST Execution Pipeline 27

6/102

2.3.4 FAST Image loading and volume rendering 27
2.4 OpenCL background 27

2.4.1 OpenCL Intro 27
2.4.2 OpenCL kernels and work items 28
2.4.3 OpenCL Memory 29
2.4.4 OpenCL Image Read-Writes and atomic operations 30

2.5 Mathematical theory 31
2.5.1 Geometry: Describing a plane in 3D space 31
2.5.2 Geometry: Point-to-point along vector 31
2.5.3 Geometry: Point-to-plane distance and intersection along vector 32
2.5.4 Acquisition: Bilinear Interpolation 34
2.5.5 Accumulation: Weighting 35

2.5.5.1 Inverse linear distance weighting 35
2.5.5.2 Gaussian weighting 36

2.5.6 Accumulation: Accumulation methods 37
2.5.6.1 General compounding 37
2.5.6.2 Alpha-blending approach 37
2.5.6.3 Compounding alpha-blending 38

Chapter 3: Method 40
3.1 Algorithm Overview 40
3.2 Algorithm pipeline 45
3.3 Volume initialization and pre-calculations 46
3.4 Extended information on problematic functions 48

3.4.1 Calculating the A and B ranges and their relation to the X, Y and Z axes 48
3.4.2 Finding the basePoint given two coordinates a and b 49
3.4.3 Calculating the distances d1 and d2 from plane-to-plane along normal 50
3.4.4 Calculating and traversing the C-direction range 51
3.4.5 Finding the frame intersection point through distance along normal 52
3.4.6 Assuring intersection is within actual frame 53
3.4.7 Calculating pixel value with bilinear interpolation 53

3.5 Hybrid reconstruction parameters 53
3.5.1 Parameter DV 53
3.5.2 Parameter Rmax 53
3.5.3 Parameter volSizeMill 54

3.6 Parallelization and OpenCL implementation 54
3.6.1 OpenCL implementation introduction 54
3.6.2 OpenCL accumulation volume and atomic operations 54

3.7 Alternative 3D Ultrasound Reconstruction Methods 55

7/102

3.7.1 PNN 3D US Reconstruction and Hole Filling 55
3.7.2 VNN 3D US Reconstruction 56
3.7.3 Hybrid with Alpha-blending compounding 57

3.8 Evaluation 57
3.8.1 Data sets 58

3.8.1.1 General traits 58
3.8.1.2 Set 1: Patient A 59
3.8.1.3 Set 2: Patient B 59
3.8.1.4 Set 3: Patient C - Before resection 59
3.8.1.5 Set 4: Patient C - During resection 59
3.8.1.6 Set 5: Patient C - After resection 59

3.8.2 Evaluation of visual quality 59
3.8.3 Evaluation of performance 60

Chapter 4: Results 64
4.1 Evaluation of visual quality 64

4.1.1 Results 64
4.1.2 Evaluated Images 66

4.2 Evaluation of performance 73
4.2.1 Performance: Result processing 73
4.2.2 Performance: Algorithm inner accumulation loop 74
4.2.3 Performance: Normalization 76
4.2.4 Performance: Initialization-to-Normalization 80

Chapter 5: Discussion 84
5.1 Visual quality 84
5.2 Performance 85

Chapter 6: Conclusions 88
6.1 Conclusions 88

Chapter 7: Further work 90
7.1 Correction of errors from tracking and motion 90
7.2 Raw scan line input 90
7.3 Alternative weight functions 90
7.4 Research of improved algorithm visual quality 91
7.5 Implementing complete real-time solution 92

8 Bibliography 94

9 Appendix 96
Appendix A - Weighting updates with updated results 96

8/102

9/102

List of Figures

2.1 FAST framework layers p. 26

2.2 OpenCL - Compute units p. 28

2.3 OpenCL - Memory structure p. 29

2.4 Point-to-plane distance along plane normal p. 32

2.5 Point-to-plane distance along non-normal vector p. 33

2.6 Bilinear interpolation p. 35

2.7 Inverse distance weighting p. 36

2.8 Gaussian weight curve p. 37

3.1 Calculation of half width in dominating direction p. 42

3.2 FAST and algorithm pipelines p. 45

3.3 Input data traversing ranges, A and B p. 49

3.4 Iterations over the C axis p. 51

4.1 Evaluation scores grouped by evaluator p. 66

4.2 Evaluation score ranking grouped by configuration p. 66

4.3 Set 1 - View 1: Coronal p. 67

4.4 Set 1 - View 2: Axial p. 67

4.5 Set 2 - View 1: Coronal p. 68

4.6 Set 2 - View 2: Axial p. 68

4.7 Set 2 - View 3: Sagittal p. 69

4.8 Set 3 - View 1: Coronal p. 69

4.9 Set 3 - View 2: Axial p. 70

4.10 Set 3 - View 3: Sagittal p. 70

4.11 Set 4 - View 1: Axial p. 71

4.12 Set 4 - View 2: Sagittal p. 71

10/102

4.13 Set 5 - View 1: Coronal p. 72

4.14 Set 5 - View 2: Axial p. 72

4.15 Set 5 - View 3: Sagittal p. 73

4.16 Runtime timing - Algorithm accumulation loop p. 75

4.17 Time per frame - Algorithm accumulation loop p. 76

4.18 Runtime timing - Normalization p. 78

4.19 Time per million voxel - Normalization p. 79

4.20 Runtime timing - Init-to-normalization p. 80

4.21 Time per frame - Init-to-normalization p. 81

4.22 Time per million voxel - Init-to-normalization p. 82

A.1 Old Gaussian Weights p. 97

A.2 New Gaussian Weights p. 97

A.3 Linear Weights p. 98

A.4 Visual results - Overview cut p. 99

A.5 Visual results - Detail cut p. 100

A.6 Visual results - Tumor edge cut p. 101

11/102

List of Tables

3.1 Relations between virtual axes, A and B, and real axes, X, Y, and Z p. 48

3.2 Performance evaluation - Algorithm setting descriptions p. 60

3.3 Performance evaluation - Timing span descriptions p. 61

3.4 Performance evaluation - Procedure p. 61

3.5 Performance evaluation - Computer specifications p. 62

4.1 Evaluation of visual quality - Results p. 65

4.2 Runtime timing (ms) - Algorithm accumulation loop p. 75

4.3 Time per frame (ms) - Algorithm accumulation loop p. 76

4.4 Runtime timing (ms) - Normalization p. 77

4.5 Time per million voxel (ms) - Normalization p. 77

4.6 Runtime timing (ms) - Init-to-normalization p. 81

4.7 Time per frame (ms) - Init-to-normalization p. 81

4.8 Time per million voxel (ms) - Init-to-normalization p. 82

12/102

13/102

List of Algorithms

1 Hybrid: Accumulating input frames to volume p. 43

2 PNN: Accumulating input frames to volume p. 55

3 VNN: Adding the closest data to each voxel p. 56

14/102

15/102

List of Abbreviations

Hybrid Hybrid reconstruction method, a hybrid-focus 3D ultrasound reconstruction method
introduced in this thesis

dv Parameter: voxel-distance. Used to represent the wanted spacing between neighbouring
voxels in the output volume of the hybrid approach

df Half width. Used to represent the current impact distance of the input pixel

Rmax Parameter: max distance. Used to represent the maximum possible value of df, and
thereby the maximum possible impact distance of the input pixel

PNN Pixel Nearest Neighbour, a pixel-focused 3D ultrasound reconstruction method

VNN Voxel Nearest Neighbour, a voxel-focused 3D ultrasound reconstruction method

VGDW Varying Gaussian Distance Weighting, a voxel-focused 3D ultrasound reconstruction
method with varying weighting by local variance

B-Scan 2D ultrasound image

US Ultrasound

CT Computed Tomography

MRI Magnetic Resonance Imaging

FAST Framework for Heterogeneous Medical Image Computing and Visualization, a framework
for heterogeneous computing used in this thesis

CPU Central Processing Unit

GPU Graphics Processing Unit

OpenCL Open Computing Language, a framework for parallel computing on heterogeneous
systems maintained by the Khronos Group

PBM Pixel-based method. Type of 3D ultrasound reconstruction focused on input pixels.

VBM Voxel-based method. Type of 3D ultrasound reconstruction focused on output voxels.

FBM Function-based method. Type of 3D ultrasound reconstruction with functions.

16/102

17/102

Chapter 1: Introduction

3D Ultrasound reconstruction computes a 3D volume representing all the data available with a set of 2D
ultrasound images, including the pixel position, and intensity value. This reconstruction allows further
segmentation and generating slices in arbitrary planes, empowering ultrasound to do task otherwise
reserved for CT and MR imaging. 2D ultrasound imaging offer advantages over these two with real-time
acquisition, and no radiation. To preserve the real-time speed in 3D a reconstruction implementation has
to be efficient, and utilize the incremental nature of the input efficiently. This would allow the operator to
continue using the ultrasound machine as when scanning normal 2D ultrasound, keeping the flexibility of
3D ultrasound at its prime. Rapid, or real-time, reconstruction enables the operator to evaluate the results
right after, or during, scanning, to quickly decide if acquisition was appropriate, or if rescanning is
necessary. Many times bad acquisition can produce more mistakes than any reconstruction can adjust for.

Reconstruction quality is also important, and algorithms will need to handle inaccuracies and overlapping
data while preserving detail. 3D ultrasound reconstructions have no definite gold standard as they are
created by approximations of the input, through smoothing and compounding effects, as complete
accuracy is impossible. In the end it will matter more what differences the operator can perceive. A
balance between visual quality and reconstruction swiftness should be found, to produce results good
enough for the application yet swift enough to reach its constraints.

This thesis will use the massively parallel nature of GPU processing, to leverage the constraints to get a
solution more on the quick side without losing much quality. The algorithm will hasten reconstruction
with highly parallel and numerically simple calculations, while preserving quality with weight based
accumulation methods. Flexibility will be ensured with adaptable maximum distances depending on input
local densities.

1.1 Goals
The goals of this thesis are to:

1. Implement the previously unpublished algorithm in FAST, as the first 3D ultrasound
reconstruction integrated into the framework.

2. Implement a reconstruction algorithm with quality result, while reaching for top-end
performance.

3. Evaluate algorithm options to increase quality, or achieving performance capable of real-time
results.

1.2 Contributions
The contributions of this thesis consist of:

● A thorough description of an previously unpublished hybrid algorithm, exploring what
improvements this offer over other algorithms.

18/102

● Implementation of the first reconstruction algorithm in FAST, making it easier to implement new
algorithms. Implementing a simple pipeline that allows both pixel-, and voxel-based methods.

● A quick accumulation technique capable of real-time accumulation. Ideas for how accumulation
with real-time visualization can be implemented.

1.3 Thesis outline
The thesis chapters will be outlined below.

Chapter 2: Background presents the underlying information necessary to implement, or fully understand
the reconstruction concept, as a background for the remainder of the thesis. It will introduce Ultrasound
imaging, and 3D Ultrasound reconstructions, explaining the basics of the modality, and explaining
existing methods of reconstruction. Basic mathematical formulas are explained, and the FAST and
OpenCL are introduced.

Chapter 3: Method introduces the previously unpublished hybrid approach, and the implementations that
have been done with this thesis. The algorithm is described in detail, to avoid confusion with existing
methods. Parameters and OpenCL GPU implementation choices are described. Finally the evaluation
processes are described.

Chapter 4: Results presents the results of the visual quality and speed performance evaluations. It
includes score results from the visual evaluation, together with the evaluated images. Performance results
are displayed with tables and graphs for multiple parts of the runtime and adjustments for image count
and volume size.

Chapter 5: Discussion looks at the findings of Chapter 4, discussing the results of the visual evaluation,
as well as the performance evaluation.

Chapter 6: Conclusions summarizes this thesis, comparing the end results to the initial goals.

Chapter 7: Further Work presents some ideas that have been discovered during the work on this thesis.
These ideas are found hopeful for further work.

19/102

Chapter 2: Background

This chapter will introduce some of the background theory that serves as a basis for this thesis. Section
2.1 will introduce medical ultrasound imaging, and explain how it is created. Section 2.2 will elaborate on
the topic of Freehand 3D ultrasound reconstruction, which is the main focus in this thesis. The FAST
framework will be presented in Section 2.3, while in Section 2.4 the theory behind OpenCL computation
will be explained. Finally, Section 2.5 describes the mathematical theory used for in this thesis, from
geometry, to interpolation and weighting.

2.1 Ultrasound Imaging
This section will introduce the ultrasound imaging modality, and explain how ultrasound images are used
and created. Section 2.1.1 will introduce ultrasound and compare it to CT and MRI scans. Section 2.1.2
explains how ultrasound imaging works and how the image is built up. Section 2.1.3 will talk about
artefacts and problem areas that may arise, while Section 2.1.4 will introduce the concept of 3D
ultrasound. The work of Sverre Holm[6] have been a great base for understanding ultrasound physics and
providing reasonable numbers to describe medical ultrasound imaging.

2.1.1 Ultrasound Intro

Ultrasound (US) is one of the three major medical imaging modalities. Commonly known as a tool to
check the fetus in the womb of the mother, it also has a lot of other use cases, for instance cardiology and
imaging organs in the abdominal region. It can sometimes replace the use of a Computed tomography
(CT) scan or Magnetic resonance imaging (MRI). Ultrasound imaging might not be as accurate as these
other two, but it is a lot more versatile. With its low cost and portable size it is a lot more accessible than
the other two. Fast results make it easy to use, and the lack of radiation makes it a safe choice. However it
is dependant on fluid contact for the sound waves to pass though, and certain artefacts may occur if air
bubbles or bone exists. US imaging also have to make a trade-off between spatial resolution and
penetration depth, something that often leaves the modality best at portraying objects relatively close to
the surface.

2.1.2 Ultrasound image creation

The ultrasound probe is built up from multiple piezo-elements, small crystals that change size and shape
depending on the applied voltage. The voltage is alternated by a AC current, which in turn creates sound
waves into neighbouring materials. If the voltage is alternated at a frequency above 20 kHz, it is
technically a ultrasound wave. In practice a frequency between 2 and 10 MHz is commonly used in
medical ultrasound.

The ultrasound sound waves are reflected in the target material, returning the waves back to the piezo
crystal. The crystal has the ability to receive this wave and turn it back into an AC current, allowing us to
essentially receive feedback in the pulse-echo format. Whenever the sound wave transitions from one
tissue to the next the wave is refracted, and some of the signal is reflected. The bigger the difference

20/102

between the tissues, the higher the reflection. Moving into bone or air causes almost total reflection,
strongly diminishing the results behind it. The delay and power of the returned reflections are used to
calculate the distance and intensity.

Multiple piezo-elements are lined up to create an array of elements, making a 2D ultrasound transducer or
2D probe. Each piezo-element reads a 1D scan line of data, and together they can form a 2D image. These
2D images, B-scans, are captured in B-mode, brightness mode, and these images will be the input data of
this thesis.

2.1.3 3D ultrasound

Ultrasound imaging can create 3D volumes, and for doing so there exist multiple approaches. For
instance, transducers with a 2D array of piezo-elements can directly capture a 3D volume. However the
probe footprint can be large, and the resolution is subpar to its 1D array counterparts. Another approach is
to use a 1D array of piezo-elements mounted on a motorized unit, that will move the array in a simple,
repetitive translation, tilt, or rotation. This will allow the 1D array to cover a 3D volume over a limited
time period. As this volume is not acquired in an instant, the scans at each timeframe still need to be run
through some kind of reconstruction algorithm to adjust for any movement. Both of these approaches
suffer due to the fact that they require new specialized equipment, and the size of the probe might limit its
use cases.

Freehand 3D ultrasound reconstruction uses any 1D array transducer and uses tracking data to position the
B-scans in world space and calculate values for each output voxel depending on the position of each input
image. Freehand 3D ultrasound has the advantage of using existing probes, with a tracking device,
allowing for a cost efficient, diverse, and flexible execution. Freehand 3D ultrasound will be discussed
more in Section 2.2.

2.2 Freehand 3D Ultrasound reconstruction
This section will follow up on Section 2.1 and dive into the topic of freehand 3D ultrasound. In Section
2.2.1 the topic of freehand 3D ultrasound will be introduced, requiring the tracking described in Section
2.2.2. Section 2.2.3 will showcase common reconstruction algorithms with their most important traits.
Section 2.2.4 explains some of the general optimization- and parallelization-traits of the main
reconstruction types. Section 2.2.5 talks about existing real-time solutions, and discusses why it matters.
Section 2.2 is based on the work of Solberg et al.[13], as well as a few other sources[4][9][10].

2.2.1 Freehand 3D ultrasound reconstruction intro

Freehand 3D Ultrasound reconstruction uses a series of 2D B-scan images to construct a 3D volume. The
probe is tracked to determine the position of the images. Tracking will be discussed in Section 2.2.2. A
freehand approach can utilize any existing 2D ultrasound probes, making it adaptable to any clinical
situation.

21/102

With current computation power available in desktop computers there has opened for new opportunities
in 3D ultrasound reconstruction. New complex algorithms are becoming usable[10], and efficient,
parallelizable algorithms are available in real-time[2][4].

2.2.2 Freehand tracking

Tracking is done to determine the spatial position of an object over time. In 3D ultrasound, tracking is
used to find the position of the probe and its data, relative to the patient. This is commonly achieved by
visual tracking system, tracking markers placed on, or next to, the patient, and on the ultrasound probe.

The probe data position has to be spatially calibrated relative to the probe markers, while the probe output
B-scan timestamps has to be temporally calibrated to the timestamps of the tracking system. When
properly calibrated the tracking system will be able to relate a spatial position to each B-scan image,
giving us a transformation from image space to world space for each pixel. Getting the calibration perfect
is difficult, and the tracking system may introduce small errors.

2.2.3 Algorithms for 3D reconstruction

There are numerous ways to approach the 3D reconstruction problem, each with a different advantage and
complexity. Selecting an algorithm with the right accuracy, while maintaining an appropriate computation
time, is essential for making the best out of the use of 3D ultrasound. A thorough summary has been done
by a team at SINTEF and NTNU here in Trondheim[13]. They define three groups of reconstruction
algorithms: Voxel-based methods (VBM), Pixel-based methods (PBM), and Function-based methods
(FBM). Their classification of algorithms are used throughout this thesis. I will present some of the key
algorithms presented by Solberg et al. in addition to some newer approaches.

2.2.3.1 VBM: Voxel Nearest Neighbour (VNN) and interpolation (VBMI)
A voxel-based method like the VNN, iterates over output voxels and fetches data from image planes
nearby. The VNN, which is the most basic of the voxel-based methods, uses the value of the closest pixel
in the input planes within a certain distance. Other implementations use 1D interpolation of beam data or
2D interpolation of the B-Scan image, to decide a more accurate representation of the voxel value. More
advanced interpolations, using data from multiple input frames, are common.

2.2.3.2 VBM: Varying Gaussian Distance Weighted (VGDW)
VGDW[9] is a distance weighted (DW) method, based on the Adaptive Gaussian Distance Weighted
(AGDW) method[7]. It is a voxel-based method, averaging one pixel from each image plane within a given
radius, with weights depending primarily on the distance. VGDW is different in that it adjusts for local
variance between input images, giving a higher smoothing at low variance than at high variance. High
variance usually reflects details, such as edges, which VGDW attempts to leave intact. VGDW produces
high quality reconstructions in a reasonable reconstruction time, and has been used as a reference volume
in this thesis.

2.2.3.3 PBM: Pixel Nearest Neighbour (PNN)
The PNN algorithm consists of two steps: distribution step (DS), and hole-filling step (HFS). The PNN is
the most basic of the pixel-based methods, filling the closest voxel from each input pixel. This process is

22/102

very fast and efficient, but unless the voxel size is significantly larger than the pixel size holes will occur.
A hole-filling step is performed to fill the gap voxels between the distributed slices, to ensure a
continuous volume. HFS usually calculate an average of neighbours in a 3x3x3 neighbourhood, that can
possibly progress to larger sizes when necessary.

2.2.3.4 PBM: Pixel trilinear interpolation (PTL)
As one way of applying a 3D kernel in the distribution step, PTL applies a 2x2x2 kernel on voxel points
around the pixel location, effectively interpolating it in three directions. Being applied to two voxels in
thickness, the need for a hole-filling step is highly reduced as long as the volume resolution is not set too
high and the operator manage to move the probe slowly and evenly[4].

2.2.3.5 PBM: Using a 3D kernel in the distribution step
3D kernels can be applied in many shapes and sizes for the distribution of pixel-based methods. A square
kernel can be increased, up from the 2x2x2 of the PTL, to increase accuracy at the cost of highly
escalating computational cost. Where a 2x2x2 kernel operates on 8 voxels a 5x5x5 kernel will operate on
125 voxels, for each input pixel. Circular or elliptical kernels can also be applied for greater accuracy.
These methods weigh the input by a distance weighted (DW) scheme, decreasing its influence the further
away it gets. These weights, be it inverse distance or gaussian, will be discussed in Section 2.5.5.

2.2.3.6 FBM: Radial basis function interpolation (RBF)
Function-based methods, like the RBF, determine multiple functions so that each input pixel is
represented at least once. RBF can interpolate and approximate, and can work at different tension levels,
allowing it to easily scale with increased volume sizes. RBF is known to create high quality
reconstructions. Function-based methods are extremely computationally expensive, but work have been
done by Rohling et al.[10] to make it a little bit faster. The runtime is however still in the order of hours, as
opposed to seconds for many other methods[13].

2.2.4 Optimizations and parallelization

Optimization of the algorithms are important to ensure efficient execution. While RBF ensure efficiency
by splitting up the problem size to more manageable blocks, the VBMs try to split up the amount of input
images it has to search through in order to find the closest frame[9]. Optimizing for smaller work groups
and quicker search can make a huge difference in how fast these problems are solved, as they have bad
computation scaling properties.

Parallelization is also substantial for achieving a quick running time, as run times can be divided by up
towards the number of parallel units, essential to reach the next level of performance. Nowadays with
GPU processing, parallel computation is more available than ever before. Voxel-based methods can often
separate the work on each voxel, allowing it to queue millions of parallel tasks at once. An overlapping
calculation is finding the closest frames, which can be shared within a neighbourhood cube[9]. Pixel-based
methods can also be parallelized, first of all each input image can be processed separately. Also, each
pixel in each input image can also be processed independently.

23/102

2.2.5 Real-time 3D ultrasound reconstruction

Real-time 3D reconstruction is the process of incrementally acquiring input, reconstructing, and
visualizing the volume, for each input frame as they are captured. This is quite useful as it allows the
operator to get visual feedback during acquisition, guiding position and displaying artefacts, allowing him
to rescan where needed.

Gobbi & Peters[4], and Dai. et al.[2] described PNN- and PTL-based real-time reconstruction and
visualization, with 3-slices view, and volume visualization, respectively. Their work gave inspiration for
much of the real-time reconstruction work in this thesis.

Real-time reconstruction requires multiple steps to be executed in fast succession. In addition to
minimizing the runtime of each step, the latency delay from the time of acquisition to rendering should be
minimized to ensure a real-time response in visualization. To ensure this, storage is prepared on device
before starting incremental reconstruction and visualization described below.

Firstly, the digital images and tracking data should be acquired and matched on a stack, ready to be
processed.

Secondly, the image is accumulated into the reconstruction volume by the reconstruction algorithm. This
is called incremental reconstruction. The input-based methods pixel nearest neighbor (PNN) and pixel
trilinear interpolation (PTL), are popular methods for real-time reconstruction. They utilize some form of
blending to require no normalization, while achieving very low runtimes. An algorithm that requires no
hole-filling is prefered, as this can be a difficult step to include incrementally.

Finally, the reconstruction volume is incrementally rendered and visualized. Normally a relatively
time-consuming process, but it can be optimized to avoid processing the full volume. Gobbi & Peters[4]
implemented an adjustable 3-slice view, requiring only processing of the voxels in each plane. Dai et al.[2]
rendered, projected and visualized the volume incrementally, by only updating the sub-sections affected
by the incremental reconstruction.

With 3-slice view, a reconstruction was achieved at up towards 30 frames/s[4], while the newer
reconstruction with incremental volume rendering was performed up towards 58 frames/s[2]. Dai et al.
performed incremental reconstruction at a rate of 90 frames/s, and at half of that rate with a fan scan.

In both of these papers, the volume was seemingly statically predefined, requiring no further adjustments
of the volume as input is acquired. To maximize the view compared to the accumulated data, an
incrementally adjusting step should be added, that can extend or resize the volume. They can also require
a hole-filling step at 16M volume, that further adds to the runtime, although it can be performed as a final
postprocessing step, after all incremental reconstruction. In practice, any algorithm can be run to create a
final reconstruction after acquisition.

24/102

With some restrictions and simplifications, it is already possible to achieve real-time reconstruction and
visualization. The next step will be to remove these restrictions, creating implementations that can run
with any type of probe movement, bigger volumes, and creating superior results. This thesis presents a
reconstruction that can form the basis to such a solution.

2.3 FAST background
This section will introduce FAST (Framework for Heterogeneous Medical Image Computing and
Visualization)[11], with the framework design and pipeline. FAST was developed by Erik Smistad as part
of his doctoral degree and is available as an open-source project available online[12].

Section 2.3.1 gives a intro to FAST, while Section 2.3.2 explains its framework design. Section 2.3.3
introduces the FAST pipeline. Finally, Section 2.3.4 specifies some points that can affect implementation
of 3D ultrasound algorithms.

2.3.1 FAST intro

FAST is a cross-platform framework with a goal of easy and efficient processing and visualization of
medical images. It is developed with heterogeneous systems in mind, systems with multi-core CPUs as
well as GPUs. With increasing number of processing units the need for parallelizable code increases, to
utilize the computational power available. This is important because many algorithms are striving to
achieve real-time results. Good parallelization can give speedups of an order of magnitude or more, which
can be the difference between an algorithm which is usable in a practical setting and one that is not.

2.3.2 FAST Framework Design

Programming directly on hardware is a daunting task, one that would require a lot of work for even
simple problems. On top of that it will have to be reimplemented if trying to use another piece of
hardware. To get around this problem we use drivers, libraries and frameworks, generalizing the
underlying opportunities into simpler commands that works across different configurations. Drivers
provides the functionality of the hardware to the computer in a standardized way, while frameworks and
libraries further simplifying the situation of the programmer by bringing increasingly stronger and
versatile tools available through simple commands, giving us high-level programming. FAST is such a
framework, and it is built up from many frameworks and libraries to make its development easier and
more versatile.

The FAST framework is built up of many layers, each providing operations to the layers above it. These
are shown in the image below. Roughly these can be divided into 5 layers, listed from bottom up :

● Hardware
● Drivers
● Libraries
● FAST Framework Core
● Applications

25/102

Figure 2.1: FAST framework layers. Applications run on the top of the framework core, with multiple

submodules. The framework utilizes many libraries to simplify underlying processes. Finally this runs on the
physical hardware with their drivers.

2.3.2.1 Libraries
The OpenCL and and OpenGL are the fundamental libraries for cross-platform programming, for parallel
programming and visualization respectively. OpenCL will be talked about more in detail in Section 2.4,
while visualization and OpenGL have not been central in this project. Other libraries include Qt, GLEW,
Eigen, Boost and OpenIGTLink.

2.3.2.2 FAST Framework Core
The core defines the FAST framework. The basis for all processing are the Data objects, enabling
synchronized processing of images and meshes, static and dynamic on many heterogeneous devices.
Streamers are objects that allow streaming of data. Importers and Exporters enable us to move objects in
and out of the framework. The algorithms, like the reconstruction in this thesis, process data objects from
importers, or streamers, to produce results for the next algorithm, visualization, or exporters.

26/102

2.3.2.3 Applications
On top of this are the applications, which are very simple to implement, given the high-level functionality
provided by the FAST algorithms and its other tools. The user just has to initialize the algorithms and
importers and link them together to form a execution pipeline.

2.3.3 FAST Execution Pipeline

The structure of FAST forces applications to apply the pipes and filters design pattern, where for instance
Algorithms and Importers/Exporters are filters and the user sets the connections, named pipes, between
these filters. This allows for simple reuse and reordering of filters. Pipes and filters is in general a highly
parallelizable design pattern, where each filter can be run in parallel if updating regularly. FAST uses a
demand-driven execution pipeline, inspired by the frameworks ITK and VTK.

2.3.4 FAST Image loading and volume rendering

When loading input images into a FAST pipeline on a device with a GPU unit available FAST will
automatically load these images onto the GPU, so it does not have to be performed during execution. This
might increase loading times significantly, but will allow further processing to execute smoothly.

FAST was during the implementation time of this thesis without a volume renderer working with the
loading methods required by 3D ultrasound reconstruction methods.

2.4 OpenCL background
This section will introduce the OpenCL standard[8] and how it is built up through kernels and memory
layout, with a focus towards GPU layouts. The videos of David Gohara[5] have been a big help for
understanding this topic. His foils and example code are available at his website[3]. These videos are
strongly recommend, especially episode 2 through 6, for those new to OpenCL.

Section 2.4.1 gives an intro to OpenCL, while Section 2.4.2 discuss kernels and work items. Section 2.4.3
takes a deep dive into OpenCL memory, how it is grouped, and optimized. Finally, Section 2.4.4 how
OpenCL kernels can read, and write, to the same image with different OpenCL versions.

2.4.1 OpenCL Intro

OpenCL allows writing programs that will execute on heterogeneous systems consisting of compute
devices like CPUs and GPUs. It is made for parallel computing using task-based and data-based
parallelism. OpenCL specifies a programing language and API to execute programs on compute devices.
It is based on the C99 version of the C programming language, meaning OpenCL code is built up similar
to C code, with native OpenCL methods as additions.

It is up for the hardware-providers to implement these specifications for their hardware. Extensions of
OpenCL functionality also needs to be implemented by the providers for these to be available for their
hardware. All the big providers, like AMD, Intel and Nvidia, have implemented OpenCL on their devices,
meaning that they should all have the basic OpenCL functionality. This distinguishes OpenCL from for

27/102

instance CUDA, allowing it to run on all hardware and not just Nvidia CUDA GPUs. The same OpenCL
code can be set to run on a CPU, a Nvidia GPU or an AMD GPU.

The OpenCL host APIs are defined for C and C++, but third-party APIs for Python, Java and .NET are
also available. In addition to the C/C++ API library, a OpenCL C compiler is necessary for the compute
devices.

2.4.2 OpenCL kernels and work items

OpenCL kernels are the programmed functions destined to run on the compute device. Kernels are
functions written in a .cl file, and the kernel can be run in multiple instances in parallel.

Figure 2.2: OpenCL - Compute Units. The compute device consists of multiple compute units, each of which

contains multiple processing elements (PE). PEs runs each work thread, and the PEs within the same Compute
Unit can cooperate.

Figure 2.2 shows a typical compute device unit breakdown:
● Compute Device: The device consists of multiple compute units.
● Compute Unit: This is the cores that consists of multiple Processing Elements.
● Processing Element (PE): This is the threads that execute the OpenCL work items.

It is however important to note that the concept of cores are very different for CPUs and GPUs. The
kernel is run on each processing element(PEs) with each their own work item. A work item is usually a
single element in the data set, like one element in an array or a pixel in an image. In the simplest programs
the kernel will load one input element, process it and store the corresponding output element. This allows
for massive parallelization, potentially letting all elements being processed simultaneously by different
PEs.

OpenCL kernels uses work item focused programming. It might seem like a lot of overhead doing this
work for each pixel, but with smart loading and writing this can lead to big speedups due to the massive
parallelization, especially in GPU devices. In the next subsection I will talk about how this can be
achieved.

28/102

2.4.3 OpenCL Memory

OpenCL defines multiple types of memory, with each their different benefits and limitations. This section
focus on the GPU.

Figure 2.3: OpenCL - memory structure. There are multiple levels of memory, from the global memory shared
across the whole device to multiple compute device specific levels of memory, where the later is much smaller,

but also significantly faster.

We have 4 types of memory on GPUs as shown in the image above:
● Global: The main memory of the GPU. Slow access, but capacity order of MBs or more.
● Constant: Constant memory available for all units on the compute device or thread cluster.

Typically 64KB, shared among all units. Slightly faster than global memory.
● Local: The most important kind of memory for OpenCL optimization. Order of 16KB size.

Shared among all PEs, or work item, in a Compute Unit, allowing for access close to registry
speed if used properly.

● Private: Small and fast memory private for each work item.

The key to OpenCL optimization is to load data that is to be reused within the work items of a Compute
Unit into local memory, instead of taking the costly trip to global memory and back. To specify the work
items sharing the same local memory we define a work group. These consist of a set of work items that
will share data. A work group can for instance be neighbouring elements in an array, or pixels of a region
of an image. The maximum number of work items per work group is however limited, usually to the order
of 512 or 1024 elements, which limits our work groups to the likes of 16x16 or 32x32 in a 2D setting.

29/102

So we have two main limiting numbers:

1. The maximum number of work items that a work group can consist of.
2. The local memory storage capacity.

Another important factor to account for is how the memory is accessed. The key concepts here are
memory banks, warps and half-warps. At the end I will also talk about the concept of efficient coalesced
loading of data into local memory.

Local memory is divided into memory banks, typically 16 of them. Each bank can access one element at
the time, otherwise it will spark a bank conflict and the access has to be serialized. So we want all the
simultaneously running elements to access different banks. This is where warps come in, or more
specifically half-warps. A half-warp is the number of work items that are executed at the same atomic
time. It is usually of a size of 16 or half of the total warp size.

One element is typically at the size 32 bit, which equals to 4 Byte. All of the 16 memory banks store 4
Byte, until 64 Byte is reached, then it starts over from the first bank again. This means that the first bank
will store among other Byte 0, Byte 64, Byte 128 and so on. So what we have to avoid is that work items
in the same half-warp will access the Bytes corresponding to the same memory bank. If this is a problem,
the solution is usually to add padding of one between each row or groups of memory. This padding will
change the indexes and might fix this issue. There is one exception that will not cause a bank conflict, and
that is if we have a broadcast. A broadcast occurs when all work items in a half-warp access the same
address. Then the value will only be read once and broadcasted to all work items.

It is also important how memory is loaded into local memory from global memory. We can do one call to
global memory for each element we load into local memory. This is the case when we do:

● Misaligned load: the 16 work items of the half-warp does not fetch the elements of a 64 Byte
block, but starts somewhere in the middle of one and crosses over to the next one.

● Permuted load: Work items will not load elements of the block in order, but work item 1 will load
element 3, while work items 2 and 3 will load element 1 and 2 for instance.

● Sparse load: When not all work items participate in loading.
● Sequential load: One work item is set to load all elements into local memory.

All of these load the data just fine, but will not utilize optimized loading from global memory. Coalesced
loading occurs when all work items of a half-warp simultaneously load data aligned with a 64 Byte block
in a non permuted way. This greatly reduces the overhead of loading data into local memory.

2.4.4 OpenCL Image Read-Writes and atomic operations

When reading and writing data to the same image array, it is necessary to have both reading and writing
rights to the image. OpenCL does not acquire this until OpenCL version 2.0, and Nvidia graphics cards
are limited to OpenCL version 1.2. This requires finding some workarounds to be able to read and write
to the same buffer at the same time, from multiple sources. One workaround is to use a buffer of integer
types, and accumulate them by atomic operations. Another is to use a separate semaphore array, and lock

30/102

the indexes currently in use. Both methods are used in this thesis, where semaphores are required by the
alpha-blending approach, and other solutions use the simpler atomic operations.

2.5 Mathematical theory
This section will present some of the mathematical theories that work at the core of a 3D Ultrasound
Reconstruction algorithm. These are grouped in three main types: geometry, acquisition, and
accumulation.

The geometry sections will explain the basic geometrical mathematics required for point and plane
representation and distance. Section 2.5.1 starts off explaining how planes can be represented in 3D space,
Section 2.5.2 introduces the general point-to-point distance along a vector, which can be used to find the
point-to-plane distance on certain conditions. Section 2.5.3 explains how to calculate the point-to-plane
distance with less restrictions.

The acquisition Section 2.5.4 demonstrates how data can be approximated at any given point in the input
frame, by using bilinear interpolation to fetch data from neighbouring pixels.

The accumulation sections will explain how to handle multiple pixel values that affect the same output
voxel. Section 2.5.5 introduces weighting, as a method of giving emphasis to more relevant acquisitions
data, and presents a couple of weighting schemes. Section 2.5.6 shows how these weights can be added
together to create an accurate representation of all input.

2.5.1 Geometry: Describing a plane in 3D space

It is crucial to have an appropriate description of the plane when calculating its position relative to other
objects of interest. In mathematical terms a plane is described as follows:

Where x , y , and z are variable 3D space coordinates, and a , b , c , and d are constants defining the plane.
Any set of variables that make the left side of the equation zero, fulfills the equation, and will reside in the
plane. To calculate the constants in practice it is possible to use the plane normal for the values of the a , b ,
and c constants, where the normal vector equals (a, b, c). The d value of the plane can be calculated from
the normal vector, and a point residing in the plane. In this case the plane can be described as:

2.5.2 Geometry: Point-to-point along vector

The distance between two points, P A and P B , along a vector, N , can be expressed as:

31/102

http://api.gmath.guru/cgi-bin/gmath?ax%2Bby%2Bcz%2Bd%3D0
http://api.gmath.guru/cgi-bin/gmath?normal_%7Bx%7D%5Ccdot%20x%2Bnormal_%7By%7D%5Ccdot%20y%2Bnormal_%7Bz%7D%5Ccdot%20z%2Bd%3D0

Where movement BA is the distance moved from P B to P A in positive or negative direction along the vector,
and abs a function to find absolute value.

If the vector, N , is the normal vector to a plane in which P A resides, the abovementioned equation will
find the distance from P B to the plane of P A , as shown in Figure 2.4.

Figure 2.4: Point-to-plane distance along plane normal. Given two points, A and B, where A is residing in a
plane whose normal vector is N. The point-to-point distance formula can be used to find the point-to-plane

distance between B and the plane of A, as the normal is by definition perpendicular to the plane.

2.5.3 Geometry: Point-to-plane distance and intersection along vector

This method can unlike the method in Section 2.5.2 utilize any relation between the vector and the plane
normal, and does not require them to be equal, as seen in Figure 2.5 below.

32/102

http://api.gmath.guru/cgi-bin/gmath?movement_%7BBA%7D%20%3D%20(%5Cvec%7BP_%7BA%7D%7D-%5Cvec%7BP_%7BB%7D%7D)%5C%20dot%5C%20%5Cvec%7BN%7D
http://api.gmath.guru/cgi-bin/gmath?distance%20%3D%20abs(movement_%7BBA%7D)

Figure 2.5: Point-to-plane distance along non-normal vector. Displaying the calculation of the distance from
point B to the plane of point A. Distance is measured along the horizontal vector along which distance, dist, is

shown. The dotted line and red cross indicates the intersection point that would have been found with the
standard point-to-plane equation of Section 2.5.2, assuming the vector to be the plane normal. The green cross

indicates the actual intersection point, to which the distance is measured.

The problem can be reformed to the problem of finding the intersection between a line and a plane. The
formula for a line is described below, where P is any point on the line, L is the directional vector of the
line, and L 0 is an arbitrary point on the line:

The directional vector can be set as the vector along which the distance is measured. The point on the line
is the point where the distance is measure from, here B.

The plane formula, like defined in Section 2.5.1, can also be written as below, where P is any point in the
plane, P 0 is a reference point in the plane, and N is the normal vector:

As the reference point A is used, while N is the normal vector. The plane is defined by a point, A, and the
plane normal, N. By putting the right side of the line formula into the plane formula, in place of P, we get;

Which can be reevaluated to solve for distance, d , giving us the equation:

To resemble Figure 2.5, where L is the vector along which distance is measured, it can be simplified to:

33/102

http://api.gmath.guru/cgi-bin/gmath?P%3Dd%5Cstackrel%7B%5Crightarrow%7D%7BL%7D%2B%5Cstackrel%7B%5Crightarrow%7D%7BL_%7B0%7D%7D
http://api.gmath.guru/cgi-bin/gmath?(%5Cstackrel%7B%5Crightarrow%7D%7BP%7D-%5Cstackrel%7B%5Crightarrow%7D%7BP_%7B0%7D%7D)%5C%20dot%20%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%3D%200
http://api.gmath.guru/cgi-bin/gmath?((d%5Cstackrel%7B%5Crightarrow%7D%7BL%7D%2B%5Cstackrel%7B%5Crightarrow%7D%7BL_%7B0%7D%7D)-%5Cstackrel%7B%5Crightarrow%7D%7BP_%7B0%7D%7D)%5C%20dot%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%20%3D%200
http://api.gmath.guru/cgi-bin/gmath?d%20%3D%20%5Cfrac%7B((%5Cstackrel%7B%5Crightarrow%7D%7BL_%7B0%7D%7D-%5Cstackrel%7B%5Crightarrow%7D%7BP_%7B0%7D%7D)%5C%20dot%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%20)%20%7D%7B(%5Cstackrel%7B%5Crightarrow%7D%7BL%7D%5C%20dot%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%20)%20%7D%0A

The intersecting point between the line and plane can then be found by the line equation, at the top of this
section, with the newfound distance, d .

2.5.4 Acquisition: Bilinear Interpolation

When acquiring data from the input frames, the data will often be requested outside of the exact integer
locations of the actual input data. A popular method for acquiring these datasets is bilinear
interpolation[14]. It will take the values of the 4 pixels around the intersection point and interpolate them
for an efficient estimation of the value that would take place in the exact place of the point.

The 4 pixels around the point are found by taking the floor and ceil values of the x and y coordinates.

The distance internally in this quadrant, u in x direction and v in y direction, is given by:

These distances, and the rest of the setup, are illustrated in Figure 2.6 below. In the X axis interpolation
the two top and the two bottom corners are interpolated each pair on their own:

Which is further interpolated again on the Y axis to find the final pixel value P value :

34/102

http://api.gmath.guru/cgi-bin/gmath?d%20%3D%20%5Cfrac%7B((%5Cstackrel%7B%5Crightarrow%7D%7BB%7D-%5Cstackrel%7B%5Crightarrow%7D%7BA%7D)%5C%20dot%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%20)%20%7D%7B(%5Cstackrel%7B%5Crightarrow%7D%7BL%7D%5C%20dot%5Cstackrel%7B%5Crightarrow%7D%7BN%7D%20)%20%7D%0A
http://api.gmath.guru/cgi-bin/gmath?P_%7Bmin%2Cmin%7D%20%3DP_%7BfloorX%2C%20floorY%7D%20%5C%5C%0AP_%7Bmin%2Cmax%7D%20%3DP_%7BfloorX%2C%20ceilY%7D%20%5C%5C%0AP_%7Bmax%2Cmin%7D%20%3DP_%7BceilX%2C%20floorY%7D%20%5C%5C%0AP_%7Bmax%2Cmax%7D%20%3DP_%7BceilX%2C%20ceilY%7D
http://api.gmath.guru/cgi-bin/gmath?u%20%3D%20x%20-%20floorX%20%5C%5C%0Av%20%3D%20y%20-%20floorY
http://api.gmath.guru/cgi-bin/gmath?P_%7Btop%7D%20%3D%20P_%7Bmin%2Cmin%7D%5Ccdot%20(1-u)%20%2B%20P_%7Bmax%2Cmin%7D%5Ccdot%20u%20%5C%5C%0AP_%7Bbot%7D%20%3D%20P_%7Bmin%2Cmax%7D%5Ccdot%20(1-u)%20%2B%20P_%7Bmax%2Cmax%7D%5Ccdot%20u%20%5C%5C
http://api.gmath.guru/cgi-bin/gmath?P_%7Bvalue%7D%20%3D%20P_%7Btop%7D%5Ccdot%20(1-v)%20%2B%20P_%7Bbot%7D%5Ccdot%20v

Figure 2.6: Bilinear interpolation. Around the point (x, y) with coordinates with floating point precision, are 4

pixels at integer locations with the actual pixel values. To approximate these their values are interpolated for the
output result of the interpolation. The surrounding pixels are found by taking the floor and ceil values of the x

and y coordinates. The distances u and v are accounted for when calculating the resulting pixel value.

2.5.5 Accumulation: Weighting

Weighting of the input data collected decides the importance of this data, and can heavily influence the
resulting output volume. Many parameters can be used to decide the weight of the input data[9]. In this
thesis the focus has been on distance based.

2.5.5.1 Inverse linear distance weighting
Sometimes called linear weighting for short in this thesis, it is a weighting system deriving its score from
the distance and a maximum distance, as shown below:

MaxDist is the maximum value the distance, dist , can have, and a higher distance will give a false
sub-zero weight, see Figure 2.7. This formula is simple, computationally efficient, and as the weight will
scale inverse linearly with the distance, fair.

35/102

http://api.gmath.guru/cgi-bin/gmath?W%3D1-%5Cfrac%7Bdist%7D%7BmaxDist%7D

Figure 2.7: Inverse Distance Weighting - Giving a weight score for distances between 0 and maxDist, where 0
gives a weight of 1, and it scales down linearly towards a weight of 0 at maxDist. Any distance further away will

receive a negative weight, which should be avoided at all cost in most situations.

2.5.5.2 Gaussian weighting
An alternative is using the gaussian curve as the basis for the weighting scheme. With its inverse S shape
it gives a higher weight to points close by, and a lower weight to those further away, compared to inverse
linear distance weighting. The gaussian weight is given by:

But as the scaling of k is not necessary we can leave that constant out. The replacement for the standard
deviation, distFactor , is a value related to maxDistance. To get the appropriate scaling distFactor is set
as:

Where scaleFactor is 1 by default, but can be used to scale how broad the curve will be.

36/102

http://api.gmath.guru/cgi-bin/gmath?W%20%3D%20k%5Ccdot%5Cexp(-%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot(%5Cfrac%7Bdist%7D%7BdistFactor%7D)%5E%7B2%7D)
http://api.gmath.guru/cgi-bin/gmath?distFactor%3DscaleFactor%5Ccdot%5Cfrac%7B%5Cmax%20Dist%7D%7B%5Cpi%7D

Figure 2.8: Gaussian Weight curve estimation. The curve will resemble a inverted S-curve, leaving a small

plateau at the top and slowing down the change as the weight approaches 0. This puts a stronger emphasis on
values relatively close to the starting point, while quickly de-escalate down towards zero, but never reaching

zero.

2.5.6 Accumulation: Accumulation methods

Accumulation methods will have an effect on how the input data will be added together, and is highly
correlated to the weights. They can also affect the performance, as each method will require different
processing steps. Here P will reflect the pixel value buffer, W the weight value buffer, p the current pixel
value, and w its corresponding weight.

2.5.6.1 General compounding
Accumulation by compounding is done by utilizing a accumulation buffer, for both pixel values and
weights. In its simplest form it can be written as:

Which is very efficient in writing, but will require a final normalization step, normalizing all voxels by:

2.5.6.2 Alpha-blending approach
An alternative method is to take inspiration from the concept of alpha-blending. Mathematically it is
described as:

37/102

http://api.gmath.guru/cgi-bin/gmath?P%3DP%2Bp%5Ccdot%20w
http://api.gmath.guru/cgi-bin/gmath?W%3DW%2Bw
http://api.gmath.guru/cgi-bin/gmath?P%3D%5Cfrac%7BP%7D%7BW%7D

With being the alpha-blending factor, which is generally a static predefined value. The side-effect of
this is that it will be putting more emphasis on more recent values, as earlier values will diminish as more
values are added. Attempt to make this more useable for 3D Ultrasound has been performed by Gobbi &
Peters[4] and resulted in the formula below, rewritten for this setting:

Despite utilizing the weight as an alpha value for individual importance, more recent additions will still
have more value. The big advantages with this method is however that it will always have the scaled pixel
value available, and that it requires no weight buffer, and more importantly no normalization step.

2.5.6.3 Compounding alpha-blending
To draw from the advantages of both these methods of accumulation, a middle-way can be created. As
mention as ‘compounding’ by Gobbi & Peters[4], it is actually a blending method using accumulation
buffers and historically accurate weighting, as defined below:

This way P will always reflect the scaled value of the voxel value, thereby avoiding the need for a final
normalization step. Yet the values of P will reflect those from the normalized results of Section 2.5.6.1.

38/102

http://api.gmath.guru/cgi-bin/gmath?value%3Dvalue%5Ccdot%5Cleft(1-%5Calpha%5Cright)%2BaddedValue%5Ccdot%5Calpha
http://api.gmath.guru/cgi-bin/gmath?%5Calpha
http://api.gmath.guru/cgi-bin/gmath?%5Calpha
http://api.gmath.guru/cgi-bin/gmath?P%3D%5Cleft(1-w%5Cright)%5Ccdot%20P%2Bw%5Ccdot%20p
http://api.gmath.guru/cgi-bin/gmath?alpha%3D%5Cfrac%7Bw%7D%7BW%2Bw%7D
http://api.gmath.guru/cgi-bin/gmath?P%3DP%5Ccdot%5Cleft(1-alpha%5Cright)%2Bp%5Ccdot%20alpha
http://api.gmath.guru/cgi-bin/gmath?W%3DW%2Bw

39/102

Chapter 3: Method

In this chapter I will describe in detail the method for freehand 3D ultrasound reconstruction that has been
implemented. The method is based on previously unpublished work done at SINTEF many years ago. No
proper description of the method existed.

Section 3.1 will present the main implementation steps of the algorithm. Section 3.2 will introduce the
pipeline that is run both on the overlying level of the FAST framework and the underlying level of the
reconstruction steps. Section 3.3 will present the initialization steps to prepare the frames, volume and
transformations. Section 3.4 will present detailed discussion for the implementation some of the more
troublesome parts, while Section 3.5 explains the parameters of the algorithm, and other steps that can
affect the output results.

The algorithm has previously been implemented just for a serial CPU execution, while our goal has been
to speed it up as much as possible using a parallelized OpenCL implementation running on GPU. Section
3.6 will explain how this algorithm can be parallelized and what measures are taken for making an
efficient OpenCL implementation.

Furthermore I have implemented some alternative 3D ultrasound reconstruction algorithms that will be
explained in Section 3.7, including a serial and a OpenCL PNN implementation and a simple serial VNN
implementation, as well as a brief description of the alpha-blending compounding implementation with
the hybrid algorithm.

Finally, Section 3.8 describes the evaluation methods used to gauge visual quality and runtime
performance.

3.1 Algorithm Overview
The hybrid approach is based on each input frame, then finds the voxels that are within relevant distance
to it by traversing a dominating direction. These voxels are then filled with the most relevant data from
the current input frame. These features gives it hybrid qualities, with both incremental computing and
high parallelization capabilities.

After the initial volume initialization and preprocessing, as described in Section 3.3, the algorithm runs
the accumulation loop, adding data to the volume from each input frame. This loop is described in
Algorithm 1 after the textual description below.

For each frame the series of steps described below are performed. The dominating direction domDir , and
its value domVal , is found by selecting the major component of the normalized normal vector for this
frame in volume space. Since the algorithm operate over the X , Y and Z axes differently depending on the
dominating direction we have chosen to use the artificial axes A , B , and C to iterate over. The C axis

40/102

corresponds to the axis of dominating direction, i.e. Z , while A and B correspond to the two other axes, i.e.
X and Y .

After acquiring the dominating direction of the frame, we calculate the ranges to iterate over on the A and
B axes, see Section 3.4.1. For each combination of values in these two ranges, a and b , we calculate the
basePoint . This is a volume space location residing on the image plane, explained in Section 3.4.2. From
this point the distances, d1 and d2 , are calculated to the previous and the next image planes respectively in
the temporal stack of frames. This distance is calculated along the image plane normal of the current
frame, and is described in Section 3.4.3. Two parameters are used to limit the distances, the
voxel-distance, dv , and the maximum distance, Rmax . Voxel-distance is the spacing between
neighbouring voxels, and it is the lower distance limit, and it will be described in Section 3.5.1. Maximum
distance is the upper distance limit, and will be described in Section 3.5.2. We calculate the half width, df ,
from the two distances, d1 and d2 , dv and Rmax by the formula:

The furthest of the two temporal neighbours, between the lower limit dv and upper limit Rmax . The
equivalent half width in the dominating direction, dfDom , is calculated by:

The simplification to dfDom is necessary to allow us to do calculations on the dominating direction,
instead of along the image plane normal, which counts for significant improvement in speed in discrete
volumes. We use dfDom to determine how far away from the basePoint we are to go in either direction
from the plane as shown in Figure 3.1. From the value of basePoint on the dominating direction axis,
baseDom , and dfDom we calculate the range to iterate over on the C axis:

For each value in the range cDirRange the integer (x, y, z)-coordinate point volumePoint is calculated
from a , b , c and domDir . The cDirRange and its traversal is further explained and illustrated in Section
3.4.4. The distance d from the volumePoint to the image plane is calculated along the image plane normal.
This is to be used for weighting. The intersection point, intersectionPointVolume , is calculated where the
image plane normal intersects the image plane in volume location. Further this is transformed into local
frame space, intersectionPointFrame , to find its location among the pixels of the current image. The
calculation of distance and the intersections are interrelated, and explained further in Section 3.4.5.

41/102

http://api.gmath.guru/cgi-bin/gmath?df%3D%5Cmin%5Cleft(%5Cmax%5Cleft(d1%2Cd2%2Cdv%5Cright)%2CR_%7BMax%7D%5Cright)
http://api.gmath.guru/cgi-bin/gmath?dfDom%3D%5Cfrac%7Bdf%7D%7BdomVal%7D
http://api.gmath.guru/cgi-bin/gmath?cDirRange%3DbaseDom%5Cpm%20dfDom

Figure 3.1: Calculation of half width in dominating direction. The thick red line is the current image plane, the

thick black line on the left is the previous image plane, and the thick black line on the right is the next image
plane. From each a and b coordinate on the current plane we find a basePoint, shown with cross mark, and

calculate the distance to the previous and next image planes. If these distances are both within the voxel-distance,
dv, its value is used instead. If one plane is further than the value of the max distance, Rmax, its value is used

instead. Dv and Rmax are described further in Section 3.5. If distances stay between these two values the bigger
distance will be chosen, as shown with red circles. The final value shows how far the algorithm will travel in both

directions along the dominating direction axis, as shown with yellow arrows.

42/102

A check is performed to ensure that intersectionPointFrame is within the limits of the input frame and not
just in the infinite plane in which it resides. If this volumePoint has successfully passed all the tests until
now it will be added to the accumulation volume. The pixel value p is acquired by bilinear interpolation at
frame position intersectionPointFrame , and the weight w is calculated by inverse distance function or
gaussian distance, as discussed in Section 2.5.5. Bilinear interpolation is explained in Section 2.5.4.

The pixel value p and weight w is then accumulated into the accumulation volume by:

Which will ensure fair contribution from all pixel values affecting this voxel. Each voxel will just be
affected once from each frame, but might be affected multiple times from different frames.

Finally, after the accumulation loop is finished, the output volume V can be generated by normalizing
every voxel using the relations:

Which effectively averages all the contributions to the voxels while taking weight into account as well,
leaving us with a value within the same range as the input pixels. This is general compounding as
described in Section 2.5.6.1.

Algorithm 1 Hybrid: Accumulating input frames to volume

runHybrid3dReconstruction(FRAMES, dv, Rmax, volume)

Input:

FRAMES The set of input images

dv The distance between voxels in the relevant space

Rmax The maximum distance to apply each frame

volume Initialized volume

Output:

volume The volume with accumulated values

43/102

http://api.gmath.guru/cgi-bin/gmath?P_%7Bx%2Cy%2Cz%7D%3DP_%7Bx%2Cy%2Cz%7D%2Bp%5Ccdot%20w
http://api.gmath.guru/cgi-bin/gmath?W_%7Bx%2Cy%2Cz%7D%3DW_%7Bx%2Cy%2Cz%7D%2Bw
http://api.gmath.guru/cgi-bin/gmath?V_%7Bx%2Cy%2Cz%7D%3D%5Cfrac%7BP_%7Bx%2Cy%2Cz%7D%7D%7BW_%7Bx%2Cy%2Cz%7D%7D

function runHybrid3dReconstruction(FRAMES, dv, Rmax, volume){
 for frameNr from 0 to totNrOfFrames:
 frame = FRAMES[frameNr]
 frameSize = getSize(frame)
 frameInverseTransform = getInverseTransform(frameNr)
 frameRoot, frameNormal, framePlaneD = getPlane(frame)
 lastRoot, lastNormal, _ = getPlane(frameNr-1)
 nextRoot, nextNormal, _ = getPlane(frameNr+1)

 domDir, domVal = getDomDir(frameNormal)
 aDirStart, aDirEnd = getFrameRangeInVolume(frameNr, domDir, 0)
 bDirStart, bDirEnd = getFrameRangeInVolume(frameNr, domDir, 1)
 for a from aDirStart to aDirEnd:
 for b from bDirStart to bDirEnd:
 basePoint = getBasePointInPlane(frameNormal, frameRoot,
 framePlaneD, a, b, domDir)
 d1 = getDistanceAlongNormal(basePoint, frameNormal,
 lastRoot, lastNormal)
 d2 = getDistanceAlongNormal(basePoint, frameNormal,
 nextRoot, nextNormal)
 df = min(max(d1, d2, dv), Rmax)
 dfDom = df / domVal
 cDirStart, cDirEnd = getDomDirRange(basePoint, domDir,
 dfDom, volumeSize)
 for c from cDirStart to cDirEnd:
 volumePoint = getVolumePointLocation(a, b, c, domDir)
 if volumePointOutsideVolume(volumePoint, volumeSize):
 continue
 dist = getPointDistanceAlongNormal(volumePoint,
 frameRoot, frameNormal)
 if abs(dist) > df:
 continue
 intersectionPointWorld =
 getIntersectionOfPlane(volumePoint, dist, frameNormal);
 intersectionPointLocal =
 getLocalIntersectionOfPlane(intersectionPointWorld,
 frameInverseTransform);
 if isWithinFrame(intersectionPointLocal, thisFrameSize:
 float p = getPixelValueData(intersectionPointLocal);
 float w = 1 - (abs(dist) / df);
 accumulateValuesInVolumeData(volumePoint, p, w)
} //end runHybrid3dReconstruction

44/102

3.2 Algorithm pipeline
Implementation of a 3D Ultrasound Reconstruction algorithm requires more than just main algorithm
steps. Multiple steps are performed in a series of events called a pipeline. The utilized FAST framework,
as described in Section 2.3, links multiple processing objects together in a pipeline where the output of
one step is input in the next. Here a ImageFileStreamer is used to import a series of ultrasound images to
the reconstruction algorithm, US3DReconstructor , that will store all the images before processing them.
The resulting volume, which can be seen as a 3D image, is exported using MetaImageExporter to export
it in mhd format with volume data and spatial transformation of their locations. The reconstruction
algorithm performs 3 main steps:

1. Initialization . Initializing the volume and doing pre calculations. See Section 3.3.
2. Accumulation . The main algorithm loop. See Section 3.1
3. Normalization . Normalizing the volume according to weights as described in Section 2.5.6.1,

creating the final output volume.
The steps are all displayed in Figure 3.2. For this thesis the input and output data are static, but it can
stream directly from an input source and to an output visualization if necessary. This will be necessary
with real-time reconstruction in which case the pipeline would have to be optimized slightly. Real-time
reconstruction will be discussed further in Section 3.7.3.

Figure 3.2: FAST and algorithm pipelines. Image Streamer streams input images that are stored by 3D

Ultrasound Reconstruction algorithm. Once all images are acquired the 3 parts of the algorithm are performed.
The volume is initialized from the input images, each input image is accumulated to the volume, and the volume is

normalized to create the final output volume. The resulting volume is exported to a static file.

45/102

3.3 Volume initialization and pre-calculations
To reconstruct ultrasound images to a 3D volume, the volume needs to be defined in world space. It is
defined by a target area, volume orientation, and spatial resolution for each axis inside the volume. These
steps are a lot easier to acquire when processing all input images in bulk.

Volume orientation is decided by a reference frame plane that is set as a XY-plane in the volume and
thereby deciding the initial frame-to-volume transformation.

The target area is set to the boundary in which all the image pixels of all input frames can be put,
with axes decided by the volume orientation. In the case of square input images, a check on each of the
corners is sufficient. A limitation on this area can also be set by letting a certain percent of the image
corners be outliers, allowing for greater resolution in the final volume.

Spatial resolution is deducted from the desired output volume size, by comparing the intermediate
volume size to the desired volume size and calculating a scaling factor that is applied to all three axes.

This algorithm part is responsible for finding the volume size, the volume-to-world transformation, and a
frame-to-volume transformation for each input frame. In addition some variables are calculated and stored
for use in the accumulation loop. The volume initialization steps are described below:

First, the image spacing is applied to all the transformations of the input images, as this is not
automatically applied in the FAST framework. This ensures that the transformation connected to each
input image corresponds to the frame-to-world transformation.

Second, the frame-to-world transformation of the reference frame is stored as , and itsT world

refFrame

corresponding inverse transformation, , is added to each input frame transformation by left sideT world
refFrame

matrix multiplication to find their positions in space relative to the reference frame. The minimum and
maximum coordinate of each axis is derived from the frame corners to find the area required relative to
the reference frame.

Third, the minimum coordinates are used to find the transform that will ensure that the minimum
coordinate will lie at point (0, 0, 0) in the volume. This transform is found by doing a negative translation
of the minimum coordinates, i.e. the minimum coordinates (-17.5, -25.2, -3.8) would translate all frames
by (17.5, 25.2, 3.8) , with translation matrix .T translate

Fourth, the scaling is calculated. The size of the current volume, currentVolSize , is found by multiplying
the size of each axis, derived from the difference between its minimum and maximum value. Given the
wanted amount of voxels, volSizeMill , in millions, as described in Section 3.5.3, and currentVolSize , the
scaling factor is derived using the cube root as in the equation below:

46/102

The volume is scaled by scaleFactor on all three axes, and a scaling transformation, , is created.T scale
The final transformation, , is derived by adding to .T f inal T scale T translate

Fifth, is added to each input frame to achieve their final frame-to-volume transforms, . InT f inal T framei

volume

this process 6 things are also calculated and stored for use in the accumulation loop:
● minCoordsFrame, the minimum coordinates on each axis of the frame corners. Used to limit A

and B ranges.
● maxCoordsFrame, the maximum coordinates on each axis of the frame corners. Used to limit A

and B ranges.
● baseCorner , the position of the plane (0, 0) point in volume space. Used as point in plane to

represent the plane for calculating the distance to a plane.
● normal , the image plane normal. Used to represent the plane and calculate distances.
● planeDvalue , a calculated value d from the plane equation. Calculated from baseCorner and

normal . Used to calculate the basePoint from the plane equation.
● , the volume-to-frame transformation, derived from the inverse of the transformationT framei

volume

currently applied to the image. Used to transform the volume location into frame space to find the
local intersection point.

Then, the world-to-volume transform, , is created by adding to and setting theT world

volume T
translate T world

refFrame
volume voxel spacing, voxelSpacing , to:

The volume-to-world transform, , is set as the inverse of its counterpart transform .T world
volume T world

volume

Finally, the volume is initialized. The algorithm uses two volumes: the accumulation volume; and the
output volume. The accumulation volume is a two-channel volume used by the accumulation loop to store
accumulated pixel values and weights, while the output volume is a one-channel volume used to store the
normalized pixel values and it is the output of the reconstruction. The accumulation volume is referred to
as volume, while the output volume is explicitly referenced. It is important that the volume-to-world
transformation and the volume voxel spacing is set correctly in the output volume, in order for it to be
displayed correctly in volume viewing tools.

The reconstruction could alternatively have been done with one volume of pixel values used for both
accumulation and output, and one volume of weights. However, the two accumulation volume approach
can allow a separate unit type to be used for the intermediate step, to allow speed-ups or specific features,
like the integer requirement for atomic operations, described in Section 3.6.2.

47/102

http://api.gmath.guru/cgi-bin/gmath?scaleFactor%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BvolSizeMill%5Ccdot1000000%7D%7BcurrentVolSize%7D%7D
http://api.gmath.guru/cgi-bin/gmath?voxelSpacing%20%3D%20%5Cfrac%7B1%7D%7BscaleFactor%7D

3.4 Extended information on problematic functions
This section will present some of the more difficult functions introduced in the overview in Section 3.1.
Section 3.4.1 will introduce the virtual axes A and B and show how they relate to the X, Y and Z axes,
while also explaining how we can calculate the ranges to traverse on the A and B axes. Section 3.4.2
shows how to find the point residing in the image plane by values a and b .

Section 3.4.3 explains how the distance to neighbouring planes are calculated, so that the half width in
dominating direction, dfDom , can be calculated. Section 3.4.4 uses dfDom and introduces some details to
how it is used to calculate the range to be traversed on the C axis.

Section 3.4.5 explains how to find the intersection point from which the pixel value is derived. Section
3.4.6 introduces the check that is performed to ensure that the intersection point is within the actual image
area. Section 3.4.7 shows how the pixel value is calculated by bilinear interpolation, and some exception
cases.

3.4.1 Calculating the A and B ranges and their relation to the X, Y and Z axes

To calculate the ranges the minimum and maximum volume space locations of the current input frame is
used on each axis. For a square frame, like the output from a linear array ultrasound probe, a simple check
of the 4 corners of the input frame can be performed to find a volume space minimum and maximum on
each axis. For other frame shapes a more advanced or thorough check will be necessary. The algorithm
calculates these values in the initialization steps, as they are already needed to find the volume size.

The minimum and maximum is acquired from the real axis corresponding to our required A or B virtual
axis. The axes are defined in Table 3.1.

Table 3.1: Relations between virtual axes, A and B, and real axes X, Y, and Z.

Virtual axis: A B

domDir axis: X Y Z X Y Z

Real axis: Y X X Z Z Y

Given a virtual axis and dominating direction axis the real axis can be found.

The final range is the integer values from the minimum to maximum on the real axis, so that in
conjunction aDirRange and bdirRange traverses a square on the AB-plane. This is a naive approach,
seeing that the AB-plane projected input frame might be tilted up to 45 degrees inside of the traversation
square, putting half of the traversation square outside of the actual projected input frame, and thereby
contributing nothing for the work it performs. A similar situation to this is shown in Figure 3.3.

It is possible to counter this by checking the basePoint for each a and b value and using the same
isWithinFrame function which is used in the innermost loop of the algorithm. The basePoint is described

48/102

more in Section 3.4.2, but for this section it is enough to know that on the A and B axis it would have the
values of a and b .

Figure 3.3: Input frame traversing ranges, A and B. Showing a 2D projection of a square image frame (red) over
the volume grid (yellow) in the plane of the AB-axes. The grey region in the volume grid corresponds to the

coordinate values of a and b that will be traversed. These are calculated from the 4 corners of the squared image
frame. The grids are just to show that the scales of the frame grid and the volume grid can have different density,

most volumes will have more than 100 voxels in each direction.

Due to the nature of the scans, very few input frames will be tilted 45 degrees. In most cases they will
barely be tilted at all, as we align the volume to a root frame, and every 90 degree tilt is effectively 0 tilt.
The abovementioned check on basePoint has been tested, but appeared to give a slight performance
penalty and has therefore been left out. It can be implemented in the case where response guarantees are
important and in scenarios that would create a lot of tilt relative to the root frame, which in general is put
to the first acquired frame.

3.4.2 Finding the basePoint given two coordinates a and b

With the values of the two coordinates, a and b , giving the position on two of the axes in the volume, it is
necessary to find the position on the third axis before further calculations can be done. This results in a (x,
y, z) volume location that we name basePoint , representing a location residing in the current image plane.

49/102

To calculate this location the a and b coordinates, the dominating direction, domDir , and the plane
equation are necessary. The a and b coordinates will give two of the real axis coordinates in accordance
with domDir and Table 3.1. The algorithm represents a plane with an image plane normal, normal , and a
pre-calculated constant d value, planeDvalue , for each image plane. The three values of normal can in
conjunction with planeDvalue replace the constant values of the planar equation as described in Section
2.5.1. The new equation is:

Then we have all four constants of the equation as well of two out of three coordinates, where the
dominating direction is missing.

Taken the example where dominating direction is on the X axis, the formula above can be restructured to
calculate the value of x as shown in the formulas below:

The equation can be restructured similarly to calculate y or z if either of those are the dominating
direction. Due to the fact that the image plane normal in dominating direction, domVal , can never be zero,
and there will always be just one point suitable for this solution.

3.4.3 Calculating the distances d1 and d2 from plane-to-plane along normal

This step requires the algorithm to find the distance from the current image plane to another, with some
specifications. In the current plane it starts from a specified point of origin, basePoint , and the distance is
measured along its normal, normalA . The other plane, planeB , is defined by its normal, normalB , and a
point in the plane, pointB .

These specifications makes it the same as the point-to-plane distance as explained in Section 2.5.3. Here
basePoint corresponds to L 0 , normalA corresponds to L , pointB corresponds to P 0 , and normalB
corresponds to N , giving the new equation:

If the normals are orthogonal to each other, the divisor will be zero, which gives two possible situations:
1. The dividend is also zero, implying that the basePoint and normalA is residing in planeB . The

distance is zero.
2. Otherwise the line will be parallel to the plane. The distance is set to infinite, or in practice a

value higher than any possible Rmax .
This distance is calculated to both the previous, and the next, image planes. The distance d1 marks the
distance to the previous, and the distance d2 marks the distance to the next.

50/102

http://api.gmath.guru/cgi-bin/gmath?normal_%7Bx%7D%5Ccdot%20x%2Bnormal_%7By%7D%5Ccdot%20y%2Bnormal_%7Bz%7D%5Ccdot%20z%2BplaneDvalue%20%3D0
http://api.gmath.guru/cgi-bin/gmath?normal_%7Bx%7D%5Ccdot%20x%3D-(normal_%7By%7D%5Ccdot%20y%2Bnormal_%7Bz%7D%5Ccdot%20z%2BplaneDvalue)
http://api.gmath.guru/cgi-bin/gmath?x%3D%5Cfrac%7B-(normal_y%5Ccdot%20y%2Bnormal_z%5Ccdot%20z%2BplaneDvalue)%7D%7Bnormal_%7Bx%7D%20%7D
http://api.gmath.guru/cgi-bin/gmath?distance%20%3D%20abs(%5Cfrac%7B(pointB-basePoint)%5C%20dot%5C%20normalB%7D%7BnormalA%5C%20dot%5C%20normalB%7D)

3.4.4 Calculating and traversing the C-direction range

The simple theoretical equation for finding the C-direction range from the basePoint value in dominant
direction, baseDom , and half width in dominant direction, dfDom , is given in the equation below:

Figure 3.4: Iterations over the C axis. The central point at C axis location 5.4 is the basePoint on the C axis. This
is also the intersection point between the image plane and the C axis as calculated in Section 3.4.2. This figure is
for simplicity projected to a 2D view where the up-down axis can be any arbitrary direction perpendicular to the

C axis. We can see the half width in dominating direction, df, is 5.0, and the cut-offs in positive and negative
direction is marked by blue vertical lines at approximately 0.4 and 10.4. Each integer point between these

boundaries are calculated by following the image plane vector to find a corresponding point on the image plane.
These point-to-plane connections are displayed with red arrows. At the image plane location of these connections

the pixel value is calculated by bilinear interpolation.

In practice it is actually calculated as a cutoff integer range limited by the volume size in dominant
direction, sizeDom :

51/102

http://api.gmath.guru/cgi-bin/gmath?cDirRange%3DbaseDom%5Cpm%20dfDom

The range is traversed for each integer value between the minimum and maximum limits, ends inclusive.
This effect can be seen in Figure 3.4, where all steps between the cutoffs at half width distance are
iterated. The choice of this cut-off can affect how many voxels are traversed, especially when the half
width, df , is set to the minimum, dv .

3.4.5 Finding the frame intersection point through distance along normal

Before accumulating values to a given volumePoint a pixel value and weight needs to be calculated. To
calculate the pixel value the frame space location to interpolate from is required, and a distance is used to
calculate the weight. For each volumePoint in the cDirRange the pixel value is taken from the closest
point in the image plane. This point is found from the intersection point between a line, following the
image plane normal from volumePoint , and the image plane. Calculating the distance to the intersection
and finding the intersection point can be done in conjunction, as will be explained in this section. See
Figure 3.4 for spatial reference.

When defining a plane by a rootPoint and a normal the distance from volumePoint to the plane can be
calculated from the function in Section 2.5.2. If this calculation is performed without taking the absolute
value, the distance moved, movement , from volumePoint to the plane is found instead as shown in the
equation below:

The intersection point in world space, intersectionWorld , can then be found by traveling movement
distance along the normal. It is calculated by the following equation equation:

Where all variables are vectors of size 3, except for the scalar movement which is elementwise multiplied
with normal .

A local intersection point in frame space will decide which the pixels will be used to calculated the pixel
value. The local intersection, intersectionLocal , is calculated by transforming intersectionWorld into
frame space:

Where the first two coordinates of intersectionLocal are the local 2D coordinates and the thirds coordinate
will be approximately zero.

52/102

http://api.gmath.guru/cgi-bin/gmath?cDirRange%20%3D%20%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bccc%7Dmax(0%2C%20ceil(baseDom%20-%20dfDom))%20%20%5C%5Cmin(floor(baseDom%2BdfDom)%2C%20(sizeDom-1))%20%5C%5C%20%5Cend%7Barray%7D%20%5Cright)
http://api.gmath.guru/cgi-bin/gmath?movement%3D(rootPoint-volumePoint)%5C%20dot%5C%20normal
http://api.gmath.guru/cgi-bin/gmath?intersectionWorld%3DvolumePoint%2Bnormal*movement
http://api.gmath.guru/cgi-bin/gmath?intersectionLocal%3DT_%7Bframe%7D%5E%7Bworld%7D(%20intersectionWorld)

3.4.6 Assuring intersection is within actual frame

A intersection point residing in the plane of a image, as calculated in Section 3.4.5, can still occure
outside the area in which the actual image extends. To check if the intersection point is within the actual
image area intersectionLocal is used. The location on the X and Y axis is checked to be between zero and
the input image axis size, while the Z axis is checked to be zero.

Due to floating point inaccuracies in the process of calculating intersectionLocal a zero value can be
slightly negative. A small buffer value can be added to ensure that these points are included.

3.4.7 Calculating pixel value with bilinear interpolation

The pixel is calculated by bilinear interpolation, as described in Section 2.5.4, acquiring data from 4
surrounding pixels. Due to the inaccuracy of floating point calculations and the added buffer allowing
acquisition slightly outside of the frame, a special case using only the neighbouring pixels that are
actually within the frame will only use the corners residing inside of frame.

If it is necessary to minimize the number of image accesses it is possible to use the value of just the
nearest pixel, requiring 1 access instead of 4. This speedup will be at the cost of reconstruction accuracy,
and artefacts can occur.

3.5 Hybrid reconstruction parameters
There are mainly three parameters to this reconstruction: dv , Rmax , and volSizeMill . Section 3.5.1 will
introduce the voxel-distance dv and discuss its effects. Section 3.5.2 will introduce Rmax and discuss its
effects. Section 3.5.3 will present volSizeMill .

3.5.1 Parameter DV

The parameter dv works as a lower limit for the half width, which decide the size of the range on the
dominating axis. dv is the distance between voxels, such that if the distance between frames are shorter
than this, they will at least affect one voxel. It can alternatively be related to the slice thickness, implying
that dv is the limit on how far the pixel value has to affect. How many voxels it affects is strongly
influenced by the cut-off described in Section 3.4.4.

In this implementation the half width is calculated in volume space, which per definition implies that the
distance between voxels is 1, and in this thesis accordingly. The value of dv can still be variedv .0d = 1
with minor implications, will usually affect only one voxel when df is limited by, which canv .5d = 0
make the appearance look more jagged, and less smooth, due to sampling theory.

3.5.2 Parameter Rmax

The parameter Rmax is the upper limit for the half width. It influences how distant a pixel can have
influence, giving it a similar effect to the size of the hole-filling grid. Too low value can leave gaps in the
volume, while a too high value can create invalid data and smoothen the volume too much.

53/102

Rmax should be set in relation to the volume size, as a higher resolution will create bigger gaps in voxel
space.

3.5.3 Parameter volSizeMill

The parameter volSizeMill is the requested output volume size, given in million voxels. It is used for both
the accumulating volume and the final output volume. The value can range from 1 to 256, where 32 is the
default value, annotated as 32M. Bigger value will create more voxels to process and thereby increase
runtime.

3.6 Parallelization and OpenCL implementation
An OpenCL implementation of the hybrid reconstruction algorithm has also been created, allowing major
speedups when running on GPU. OpenCL is previously described in Section 2.4.

Section 3.6.1 will introduce how the algorithm can be parallelized for OpenCL. Section 3.6.2 will explain
how each kernel is run and the steps necessary to make it work in OpenCL 1.2, and also show the atomic
operations necessary to allow accumulating data to the voxels while ensuring consistency.

3.6.1 OpenCL implementation introduction

Implementing an algorithm in OpenCL can lead to significant speed gains, especially when running on
GPU. To achieve speed improvements it is necessary to parallelize tasks, to utilize all computational
power and avoid bottlenecks. All input images are accumulated to the volume without any dependencies
to each other, much like the PNN, and this makes the input images a good starting point for
parallelization. Unlike a PNN reconstruction, the hybrid reconstruction iterates over voxels, avoiding
unnecessary calculations. Unlike the VNN, it acquires data only from a single input image, and requires
no costly search. PNN and VNN reconstructions are described in Section 2.2.3.

For a OpenCL implementation there are two levels of parallelization: kernels, and work items, as
described in Section 2.4.2. Input images can be parallelized in kernels, while the aDirRange and
bDirRange can be parallelized to work items in each kernel. Each work item is assigned one combination
of a and b as the workload for each coordinate (a , b) can be significant. Processing multiple (a , b)
coordinates per work item has not been attempted, but in theory it has been shown to increase
performance in multiple occasions. If such an approach is attempted, it is recommended to assure an even
distribution of the workload of each work item by utilizing the distribution of distances to neighbouring
planes across the image plane, which can be done by mirroring across the centre of the image to group the
shortest and longest distances together in one work item.

3.6.2 OpenCL accumulation volume and atomic operations

Many variables may need to take a different form when running in an OpenCL kernel, but in the hybrid
reconstruction algorithm the most notable is the accumulation volume. As OpenCL does not come with
image read-writes before OpenCL 2.0, and the test system is using OpenCL 1.2, accumulation has to be
done in an basic type array.

54/102

The accumulation volume will be updated from multiple units working in parallel, which is not
automatically going to be thread safe. To work around this it is possible to use a lock or to provide
accumulation only by atomic operations, but it should be noted that atomic operations are available only
for int types in OpenCL 1.2. The OpenCL implementation of reconstruction algorithms in this thesis use a
32-bit unsigned integer (uint) array for accumulation and the atomic addition function, atomic_add, to
ensure consistency. To be able to simulate a possible floating point input and the correct weighting
accuracy the numbers are scaled up with a predefined granularity . Both the pixel value, p , and the weight,
w , are multiplied with the granularity when accumulating values, and divided by the same amount again
when normalizing. 1000 has worked out as a good value, ensuring accuracy without causing overflow,
which would severely corrupt results.

3.7 Alternative 3D Ultrasound Reconstruction Methods
In addition to the hybrid reconstruction algorithm, two standard reconstructions have been implemented,
as well as a variation of the hybrid method. A PNN reconstruction with hole-filling which will be used for
comparison, and a trail of a VNN reconstruction. Both solutions use the same pipeline as the hybrid
algorithm, with the exception of the VNN, where no normalization step is necessary. The PNN solution is
implemented for both serial CPU, and OpenCL parallel GPU execution, and will be presented in Section
3.7.1. The VNN solution is implemented for serial CPU execution, and is kept at its simplest form for
simple testing. Section 3.7.2 introduces the VNN solution.

Additionally, the alternative hybrid implementations is described in Section 3.7.3, utilizing a different
accumulation method to avoid the need for normalization.

3.7.1 PNN 3D US Reconstruction and Hole Filling

The PNN reconstruction algorithm is very related to the hybrid reconstruction algorithm as both iterate
over each input image and gather data. It can run as an option in the main hybrid accumulation loop. The
implemented PNN algorithm affects one voxel per input pixel, and compounds these together with
compounding with for all pixels, as shown in Algorithm 2. The OpenCL implementation of the.0w = 1
accumulation has no further changes other than those discussed in Section 3.6.2.

Algorithm 2 PNN: Accumulating input frames to volume

accumulatePNN(FRAMES, volume)

Input:

FRAMES The set of input frames

volume Initialized volume

55/102

Output:

volume The volume with accumulated values

function accumulatePNN(FRAMES, volume) {
 for frameNr from 0 to totNrOfFrames:
 frame = FRAMES[frameNr]
 frameTransform = getTransform(frame)
 frameSize = getSize(frame)
 for x from 0 to frameSize.x:
 for x from 0 to frameSize.y:
 pixelPos = (x, y, 0)
 volumePos = transformPoint(frameTransform, pixelPos)
 if !volumePointOutsideVolume(volumePos, volumeSize):
 p = getPixelValue(frame, pixelPos)
 accumulateValuesInVolumeData(volumePos, p, 1.0)

Hole-filling can be performed as part of the normalization step. Hole-filling has been implemented where
the pixel is set to the average of all the actual values in the hole-filling grid. In the OpenCL case was
implemented with local memory, in three dimensions this severely limits the local work group size in
each direction with increasing grid size. Due to the small local work group size compare to the allocated
local memory size, it might be necessary for each work item in the work group to load many values to
local memory.

3.7.2 VNN 3D US Reconstruction

The VNN reconstruction algorithm operates in very different ways from the other two reconstruction
algorithms, and has been implemented mostly as an alternative to check accuracy. Finally it is simply
implemented as shown in Algorithm 3, with a naive solution for finding closest plane. It will not be used
for results in this algorithm, due to a slow running time.

Algorithm 3 VNN: Adding the closest data to each voxel

reconstructVNN(FRAMES, Rmax, volume)

Input:

FRAMES The set of input frames

Rmax The maximum distance to closest frame before
value is defaulted to zero

volume Initialized volume

56/102

Output:

volume Reconstructed volume

function reconstructVNN(FRAMES, Rmax ,volume) {
 for voxel in volume:
 closestFrame = findClosestFrame(FRAMES, Rmax)
 closestFramePoint, dist = findClosestPoint(voxel, closestFrame)
 if dist < Rmax:
 volume[voxel] = getPixelValue(frame, closestFramePoint)

3.7.3 Hybrid with Alpha-blending compounding

To make an attempt to gauge the real-time capabilities of the hybrid reconstruction, an alpha-blending
approach was attempted. This normalizes the pixel value with each addition, making the total
normalization step unnecessary, which is essential to make the work required between frames as small as
possible. So instead of accumulating one frame to the volume, and then normalizing all of it, the volume
is always ready to be displayed after accumulation.

The compounding alpha-blending approach was used, as described in Section 2.5.6.3. The
implementation builds on the same hybrid algorithm explained in this thesis, with the same steps as
described in Section 3.1, but the accumulation step was changed. The blending approach requires us to
perform multiplication, and between the old and the new value, putting one more requirement on the
OpenCL kernel accumulation, as described in Section 3.6.2. OpenCL 1.2, as used in this implementation
has no support for atomic read-and-multiplication, but it is possible to use a semaphore array, as discussed
in Section 2.4.4. This puts a spinlock on a section of code which can only be accessed, with read or write,
by one processing unit for each voxel position. This allows us to perform more steps than previously in
the locked section, and allows us to use float data for higher accuracy calculations.

No real-time capable pipeline was implemented in this thesis, but finally some ideas are discussed in
Section 7.5 for Further Work.

3.8 Evaluation
As this reconstruction algorithm is previously unpublished, tests have been performed to evaluate both
visual quality as well as performance. We have focused on evaluating the visual results to be on line with
other good algorithms, while speed performance has been evaluated to see how fast such a reconstruction
can be done, and look at possibilities for a real-time solution. Valuing top-end performance at decent
quality.

Section 3.8.1 will introduce the sets of input data that have been used in this evaluation, and introduce
general traits of input data that will affect performance. Section 3.8.2 describes the visual quality
evaluation comparing two hybrid configurations, a PNN configuration, and an existing reconstruction.

57/102

Section 3.8.3 describes how runtime performance was tested, to reflect the strengths of different
reconstruction algorithms and differentiate their configurations.

3.8.1 Data sets

Input data will affect the results that can be expected from the reconstructions. This section aims at
describing these effects, and introducing the data sets that have been used for this thesis. Section 3.8.1.1
introduces general traits of input data, and common aspects of all data sets used. Sections 3.8.1.2 trough
3.8.1.6 introduces the specific traits of each data set.

3.8.1.1 General traits
Different data sets will challenge the reconstruction algorithms in different ways, allowing us to not only
compare their performance on optimal condition inputs, but find weaknesses and determine how well the
algorithms can handle them. There are mainly three properties that will be considered: distance of data,
detail of data, and overlapping data. Different situations will affect different properties, and some of the
most pronounced situations will be explained below.

A change in scan distance determines the spread between each scan image. This is highly influential to
how much gap filling has to be done by the algorithms, increasing the uncertainty it has to work with.
With some training an operator should be able to get even scans with a evenly distributed distance of
maximum 1 or 2 pixels[4], on a fair sized volume. In algorithms adjusting the volume to a specified voxel
count rather than a static voxel-distance, this will increase the voxel-distance and thereby the resolution of
the final volume. Low scan distance will increase the amount of overlapping data.

Scan movement , the motion over which the probe is moved. Straight scans will keep the slices parallel to
each other. Fan scans are sometimes used, for instance to capture an object behind bone or other
shadow-inducing objects. Fan scan are created by tilting the probe, so that distant parts of the scan is
moving more than adjacent parts, from frame to frame. This creates an uneven distribution of distance
across the frames, where remote areas will have more spacing to neighbouring frames than middle or near
areas. Remote areas are then more suspicable of leaving gaps, while adjacent areas have to be heavily
compounded.

An increasing number of scan passes across the volume will increase the amount of overlapping data.
Multiple passes are usually used to cover a bigger area in multiple directions, but the old and the new data
should overlap to create a continuous volume. Such an overlap can create a challenge, when data from
different time points and points of origin has to account for inaccuracies in calibration and acquisition, as
well as patient movement. Creating a representable merge will be a much harder task than merging
neighbouring slices. Representing the images be done with a balance between displaying inaccuracies,
and over smoothing edges.

The importance of detail will vary with each set and use case. Ultrasound is generally not the best
modality for capturing details, but the level of detail will still change from one situation to the next. An
analysis requiring clear edges will put a higher demand on the algorithm to preserve edges rather than

58/102

smoothing. Operators can also make the details more clear by aligning the scan slices with the plane in
which the detail is most important.

All the sets described below are neurology scans , acquired intra-operatively in a tumor resection. The sets
are from three different patients, where set 3, 4, and 5, are acquired in three different stages of an
resection. The specifics of each set will be described below, and unless otherwise mentioned they are
single pass acquisitions.

3.8.1.2 Set 1: Patient A
Set 1 is a fan scan, with almost all movement done by tilting the probe. The scan is depicting a small
tumor. The scan is acquired in a top-bottom direction, roughly aligning its middle slices with the axial
plane.

3.8.1.3 Set 2: Patient B
Set 2 is a quite straight set, but with a bit of fanning, especially at the ends. The scan covers a large,
gradual tumor, covering most of the input slice at its centre. This set is acquired by two parallel passes,
with approximately 50% overlap. Edges at the overlapping parts are clearly visible, especially in the
tumor. The scan is acquired in a top-bottom direction, roughly aligning it with the axial plane. This is the
first set used for performance evaluation and contains a total of 660 frames, with a resolution of 330 x
552.

3.8.1.4 Set 3: Patient C - Before resection
Set 3 is also rather straight, but with a steep fan curb at one end. The scan contains a tumor infecting some
tissue in between some liquid. The scan is acquired in horizontal direction, roughly aligning it with the
coronal plane. This is the second set used for performance evaluation and contains a total of 573 frames,
with a resolution of 229 x 552.

3.8.1.5 Set 4: Patient C - During resection
Set 4 is acquired by straight scans, but it consists of two passes resembling a V-shape. The two scans only
overlap in part of the passes, and are entirely separate in the remainder. The tumor has been partially
removed. The scan is acquired across the sagittal plane, slightly aligning it with the axial and coronal
planes.

3.8.1.6 Set 5: Patient C - After resection
Set 5 is like set 4 acquired by two straight scans in a V-shape. In this set they are overlapping in all of the
frames. Resection is complete and the tumor should be removed. The scan is acquired across the sagittal
plane, slightly aligning it with the axial and coronal planes.

3.8.2 Evaluation of visual quality

A visual evaluation was done by a comparative review done by ultrasound technicians. Four
reconstructions were put side-by-side from all of the abovementioned data sets, with multiple view
angles, taken from axis-aligned planes in the world coordinate system. Planes were acquired from
Slicer[1], by aligning the the slices with the tumor and switching between reconstructed volumes without
changing the position.

59/102

The query was given as a PDF-document with background info, evaluation info, and five sets with 2-3
planes each. All sets were displayed with min/max values set to 1-255 for consistency, and it was pointed
out that this might cause lower contrast than optimal scaling. The total score for each reconstruction
method was the only desired variable. Respondents were allowed to score each set or image, but these
were finally averaged to one total score. A score between 0.0 and 10.0 was given, evaluating the quality
and usefulness of the reconstruction. 10.0 being the best score, and 5.0 indicating a just usable result
without perfection. The evaluation was done with four reconstruction volumes:

A. PNN with hole-filling 5x5x5
B. Hybrid approach with Rmax 8.0 and gaussian weighting
C. Existing volume from the VGDW algorithm[9]

D. Hybrid approach with Rmax 8.0 and linear weighting
Where volume C is used as a gold standard of a good evaluation. It is used as we had access to the same
input data as used in this reconstruction.

Six technicians responded to the query, four responded with a single number for each reconstruction, and
two responded with scores given to each single image. Some written feedback was also acquired by some
of the respondents.

3.8.3 Evaluation of performance

A performance evaluation was performed to get an accurate look at the runtime of the implementation,
and to compare different settings. Two sets were used, Set 2 with straight overlapping scans, and Set 3
with a steep fan scan curve at one end. Eight configurations, of algorithm and settings, were compared, as
listed in Table 3.2.

Table 3.2: Performance evaluation - Algorithm setting descriptions

Short: Algorithm: Vol.
size:

Extra:

Gauss8 Hybrid 32M Gaussian weighting, Rmax = 8.0

Lin8 Hybrid 32M Linear weighting, Rmax = 8.0

Lin8-256 Hybrid 256M Linear weighting, Rmax = 8.0

Lin16 Hybrid 32M Linear weighting, Rmax = 16.0

AlphaLin8 Hybrid 32M Alpha-blending*, linear weighting, Rmax = 8.0

PNN5 PNN 32M 5x5x5 Hole-Filling

PNN7 PNN 32M 7x7x7 Hole-Filling

PNN7-25
6

PNN 256M 7x7x7 Hole-Filling

60/102

*Alpha-blending here refers to alpha-blending compounding as described in Section 2.5.6.3.

All configurations were run with a OpenCL GPU implementation. DV, as described in Section 2.5.1, was
set to 1.0.

Time was recorded across three different spans to compare the different algorithms and settings, and give
a basis for comparison to other algorithms. Each span reflects a different qualities of the algorithms. The
spans are described in Table 3.3

Table 3.3: Performance evaluation - Timing span descriptions

Short name: Full name:

Inner loop Algorithm inner accumulation loop

Measures the time used to accumulate input data, by measuring the time used in accumulating each
frame into the volume. Ignores any initializing steps and normalization. Good for checking how

much time is used to add a single frame, and to measure the time of the actual work of the algorithm.

Norm Normalization step (incl. Hole-filling)

Measures the time used to normalize the accumulated volume to a ready-to-display scaled volume.
For PNN algorithms the Hole-filling step is also performed as part of this step. Good for checking

how much time is used to finalize the volume for display, an attribute that strongly varies with
different approaches. Also valuable information in regards to real-time opportunities.

Init-to-norm Initialization-to-normalization (“total time ”)

Measures the “total time ” used by the algorithms, starting from initialization and finishing after
normalization. Loading of images is omitted as the loading process in FAST is currently nonoptimal.

Good for measuring total performance of the algorithms, as well as expected total runtime.

Only the inner loop and normalization is optimized for speed, while initialization and general steps are
focused on modifiability, and can run all the used algorithms. Accumulation process and normalization
might also have room for improvement in working groups, balancing the work item work load with
kernels.

Table 3.4: Performance evaluation - Procedure

1. Restart the computer
2. Stop any unnecessary programs running in the background
3. Run .exe file running a set of tests and displaying runtimes

3.1. Disabling OpenCL kernel cache (‘CUDA_CACHE_DISABLE=1’)
3.2. Running for each of the two input set

3.2.1. Running with each algorithm configuration
3.2.1.1. A new instance is set up and run, reconstructing the volume
3.2.1.2. Reconstruction times are recorded, as described in Table 3.3

3.2.2. Repeat step 3.2.1 a total of 3 times per algorithm
3.3. All run times are gathered and stored, the program is closed

61/102

4. Repeat step 3 a total of 3 times per restart
5. Repeat one more time from step 1 to 4, for a total of two clean runs

To acquire the timing data, the steps of Table 3.4 were taken. All the data was stored in a spreadsheet and
evaluated by averaging the results for each timing in each algorithm specification in each set. Timing is
performed by high_performance_clock of boost::chrono , wall time measurement that acted consistently
even on the smallest values. All timings are surrounded by cl_finish commands, to capture the exact
workload done within these section. The computer specifications used in this evaluation are listed in
Table 3.5.

Table 3.5: Performance evaluation - Computer specifications

Property: Specification:

Form factor Full size stationary desktop computer with fan-based air cooling

Operating system (OS) Windows 8.1 64-bit, x64-based processor

CPU Intel(R) Core(™) i5-4460 CPU @ 3.20GHz

Memory (RAM) 16 GB

GPU #1 NVIDIA GeForce GTX 970 w/ 4GB GDDR5 memory

GPU #2 NVIDIA GeForce GTX 970 w/ 4GB GDDR5 memory

GPU stats Cores 1664 - TMUs: 104 - ROPs: 56

GPU Driver version R368.39 (r368_35-3) / 10.18.13.6839

OpenCL version OpenCL 1.2

OpenCL stats GeForce GTX 970 compute units: 13@1177MHz
Work Item Sizes: 1024x1024x64
Work group size: 1024

OpenCL memory Global mem. 4GB
Constant buffer 64KB
Local mem. 48KB

OpenCL SDK version NVIDIA GPU Computing Toolkit (CUDA) v.7.5

62/102

63/102

Chapter 4: Results

In this chapter the results of the image quality evaluation and the performance evaluation will be
presented. Section 4.1 presents the results of the visual quality evaluation together with the images used
for this evaluation. Results are presented numerically and in graphs. Section 4.2 will thoroughly display
the results of the performance evaluation, with the initial measurements, time per frame and time per
million voxel. Numerical data is presented, side-by-side of graphs.

4.1 Evaluation of visual quality
Here we will present the results of the evaluation of visual quality, as described in Section 3.8.2. Section
4.1.1 introduces the results, while Section 4.1.2 display the images used for evaluation.

4.1.1 Results

The results are presented in Table 4.1. Evaluators are numbered #1 to #6 and each of their scores are
listed on the row with their number, under the four options. The average value of all scores are calculated,
as well as an average ranking and the mean. Evaluator #2 stated he could have stretched the scale out
more. Evaluators #4 and #5 rated each individual image, so the results are averaged into one score for
each reconstruction method.

Hybrid linear weighting got the best score from all evaluators, right in front of hybrid gaussian weighting,
as seen in Table 4.1 and Figure 4.1. PNN reconstruction is the outlier, with much lower scores than the
other three methods. Looking at Figure 4.2 there is an obvious consistency in how the evaluators have
ranked the methods with their scores.

64/102

Table 4.1: Evaluation of visual quality - Results

Option: A B C D

Algorithm: PNN 5x5x5 Hybrid Gauss8 VGDW Hybrid Lin8

#1 4.00 7.00 6.00 8.00

#2* 4.50 5.20 5.00 5.30

#3 6.00 8.00 7.50 8.50

#4** 3.46 4.69 4.23 5.15

#5** 6.31 6.92 6.77 7.15

#6 3.00 7.00 5.00 7.00

Average: 4.54 6.47 5.75 6.85

Ranking***: 4.00 1.92 3.00 1.08
The table shows the scores ranking from 0.0 to 10.0, where 10.0 is the best. Hybrid 'Lin8' is scored highest by all
evaluators, and the hybrid 'gauss8' and reference reconstruction VGDW both score satisfactory for use. The PNN

implementation is scored a bit worse, which will be discussed in Section 5.1.

* Evaluator #2 stated he could have stretched the scale out more.
** Evaluator #4 and #5 rated each image individually, and it is not sure the average is representable regarding

the score of 5.00+ for usable results overall.
*** Ranking is the average of the rankings of each individual evaluator. Best is 1, second is 2 and so on. In the

case of a tie, like two first places, both are given 1.5, the average of the rankings they would otherwise represent.

65/102

Figure 4.1: Evaluation scores grouped by evaluator.

 Higher score is better. More details in Table 4.1.

Figure 4.2: Score ranking grouped by configuration.

Lower ranking is better. Hybrid 'lin8' is scored best by all evaluators, and the ranking order of the four
reconstructions are strikingly similar. See Table 4.1 for details.

4.1.2 Evaluated Images

Below the images presented to the evaluators are shown. Each image represents a full page, and were
probably bigger than presented here. Set 1 used two views, set 2 three, set 3 three, set 4 two, and set 5
used three views.

66/102

Figure 4.3: Set 1 - View 1: Coronal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.4: Set 1 - View 2: Axial

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

67/102

Figure 4.5: Set 2 - View 1: Coronal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.6: Set 2 - View 2: Axial

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

68/102

Figure 4.7: Set 2 - View 3: Sagittal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.8: Set 3 - View 1: Coronal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

69/102

Figure 4.9: Set 3 - View 2: Axial

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.10: Set 3 - View 3: Sagittal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

70/102

Figure 4.11: Set 4 - View 1: Axial

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.12: Set 4 - View 2: Sagittal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

71/102

Figure 4.13: Set 5 - View 1: Coronal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

Figure 4.14: Set 5 - View 2: Axial

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

72/102

Figure 4.15: Set 5 - View 3: Sagittal

Top: PNN (A), Hybrid with Gaussian (B); Below: VGDW (C), Hybrid with Linear (D)

4.2 Evaluation of performance
In this section we will present the results of the evaluation of performance, as described in Section 3.8.3.
Results are divided into three sections, one for each timing described in Table 3.3. The processing of the
results are described in Section 4.2.1, from the relative comparison to the baseline method, to two timing
adjustments.

Section 4.2.2 introduces results of the algorithm accumulation loop, depicting the time spent on just
accumulation. Section 4.2.3 display the results of the normalization step, performing the finalizing steps
of normalization of pixel values according to weights, and hole-filling where necessary. Section 4.2.4
shows the performance results of the total time, initialization-to-normalization, with loading times
omitted.

4.2.1 Performance: Result processing

The results were grouped for each combination of input set and algorithm configuration, and the
measured runtimes were averaged over each group. This average is called Runtime timing later in Section
4.2, and is used as a baseline for the other calculations.

Accumulation loop, and initialization-to-normalization results were adjusted for number of frames of each
set. Set 2, as described in Section 3.8.1.3, contained 660 frames, while set 3, as described in Section

73/102

3.8.1.4, contained 573 frames. Runtimes were divided by these numbers to align the runtimes of the two
sets. In addition this number shows the work done by accumulating a single frame.

Normalization, and initialization-to-normalization results were adjusted for number of voxels in the
volume. Most configurations ran at 32M, while two ran at 256M. Runtimes were divided by millions of
voxels in the volumes to compare how they scale.

Each set of results is displayed with a figure and a table. The table contains a row for the timings of both
set 2 and 3, as well as two rows comparing the timings relatively to the baseline configuration, ‘lin8 ’.
‘Rel2 ’ is set 2 performance relative to the baseline set 2 performance, and the same for ‘Rel3 ’ and set 3.
All runtimes are in milliseconds, and the numbers used for calculation are more accurate than displayed in
the tables.

4.2.2 Performance: Algorithm inner accumulation loop

The performance results of the algorithm inner accumulation loop are displayed in this section, which is
the frame accumulation without any overhead, as described in Table 3.3. Total accumulation time for the
configurations are shown in Figure 4.16, and Table 4.2, which gives a good picture of accumulation
workload of the reconstructions. Timing per frame is shown in Figure 4.17 and Table 4.3, giving a picture
of the workload for the average incremental reconstruction step.

Total runtime of accumulation appears to stay under 300 ms for all configurations except ‘lin8_256 ’,
which is scaled up with a multiplier of less than x2 , which is not bad for the size. ‘Lin16 ’ is as fast as
‘lin8 ’, and these are the fastest configurations. Adjusted for number of frames, the accumulation stay
under 0.40 ms for the faster configurations. This corresponds to an accumulation speed of 2500 frames/s.

74/102

Figure 4.16: Runtime timing - Algorithm accumulation loop.

Table 4.2: Runtime timing (ms) - Algorithm accumulation loop.

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7
Pnn7_25

6

Set 2 270.97 262.57 465.79 262.72 274.61 284.94 278.89 274.67

Set 3 209.22 205.89 392.33 204.00 263.33 208.67 210.89 241.06

Rel 2 103% 100% 177% 100% 105% 109% 106% 105%

Rel 3 102% 100% 191% 99% 128% 101% 102% 117%
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light

background.

75/102

Figure 4.17: Time per frame - Algorithm accumulation loop

Table 4.3: Time per frame (ms) - Algorithm accumulation loop.
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256

Set 2 0.41 0.40 0.71 0.40 0.42 0.43 0.42 0.42

Set 3 0.37 0.36 0.68 0.36 0.46 0.36 0.37 0.42

Rel 2 103% 100% 177% 100% 105% 109% 106% 105%

Rel 3 102% 100% 191% 99% 128% 101% 102% 117%
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light

background.

4.2.3 Performance: Normalization

The performance results of the normalization step is displayed in this section. Gives a good understanding
of the work each configuration needs to do to be ready-to-display. Figure 4.18 and Table 4.4 show total
normalization times, while Figure 4.19 and Table 4.5 present the normalization times, adjusted for
volume size.

The normalization times range from 3 to 1432 ms. Hybrid configurations are significantly faster than their
PNN counterparts, with no need for hole-filling. Due to this difference, hybrid configurations are
displayed with their own figures below, in addition to the total ones. The three 32M hybrid approaches
clock in just around 3.3 ms, while the ‘Pnn7_256 ’ uses 434 times as much at approximately 1450 ms.
Adjusted for volume sizes it is clear the similar configurations like ‘lin8 ’ and ‘lin8_256 ’, and ‘Pnn7 ’ and

76/102

‘Pnn7_256 ’ are close in timing. The hole-filling of the PNN appear to scale significantly with increased
neighbourhood. The hybrid configuration ‘alpLin8 ’ is ready normalized by accumulation, and needs no
normalization. It is therefore omitted when calculating the best runtime below.

Table 4.4: Runtime timing (ms) - Normalization.

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7
Pnn7_25

6

Set 2 3.32 3.30 21.47 3.28 - 72.02 188.93 1,431.55

Set 3 3.23 3.24 20.85 3.25 - 76.16 205.02 1,469.13

Rel 2 101% 100% 651% 99% - 2183% 5726% 43388%

Rel 3 100% 100% 644% 100% - 2353% 6333% 45382%
‘Lin8’ is the baseline for relative(Rel) performance.The fastest measurements are shown with a light background.

Configuration ‘algLin8’ requires no normalization.

Table 4.5: Time per million voxel (ms) - Normalization.
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256

Set 2 0.10 0.10 0.08 0.10 - 2.25 5.90 5.59

Set 3 0.10 0.10 0.08 0.10 - 2.38 6.41 5.74

Rel 2 101% 100% 81% 99% - 2183% 5726% 5423%

Rel 3 100% 100% 81% 100% - 2353% 6333% 5673%
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light

background. Configuration ‘algLin8’ requires no normalization.

77/102

Figure 4.18: Runtime timing - Normalization. Top: All normalization methods compared stretches the scale, so

hybrid methods are almost invisible. Bottom: Hybrid-only chart to distinguish between configurations.
Configuration ‘alpLin8’ has no need to perform any normalization and uses zero time.

78/102

Figure 4.19: Time per million voxel - Normalization. Top: all normalization. Bellow: Only hybrid configurations.

Notice how 256M reconstruction volumes now come on line with the corresponding 32M volumes.

79/102

4.2.4 Performance: Initialization-to-Normalization

The performance results of the initialization-to-normalization timing is displayed in this section, giving a
total timing to rate the overall runtime of the algorithms. Figure 4.20 and Table 4.6 present the actual
timings. Figure 4.21 and Table 4.7 adjusts for frames, giving us a rough estimate of the runtime of each
frame. Figure 4.22 and Table 4.8 adjusts for volume voxels, giving a good basis for scaling and
throughput.

Total runtime of initialization-to-normalization stay under 1 second for most algorithms. ‘Pnn7_256 ’ is
far behind after bad normalization results, while ‘lin8_256 ’ hovers around 1 second. ‘Lin8 ’ and ‘lin16 ’ are
fastest, but among the 32M reconstructions the timing increase is roughly just 30% from best to worst.
The 32M timings are just above 1 ms/frame, and the frame count adjustment seems to even out the
differences between the two sets with the exception of configuration ‘Pnn7_256 ’. Adjusted for voxel
count the 256M volumes perform a lot better than the 32M volumes, implying that the initialization-to-
normalization timing does not scale much with increasing volume. The scaling for both Hybrid and PNN
approaches turn out at x1.5 and x3.6 for the x8 volume size increase from 32M to 256M.

Figure 4.20: Runtime timing - Init-to-normalization

80/102

Table 4.6: Runtime timing (ms) - Init-to-normalization

 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7
Pnn7_25

6

Set 2 739.62 721.82 1,088.94 723.44 829.28 807.72 921.33 2,302.94

Set 3 629.00 615.67 961.44 614.56 768.44 682.44 813.50 2,249.17

Rel 2 102% 100% 151% 100% 115% 112% 128% 319%

Rel 3 102% 100% 156% 100% 125% 111% 132% 365%
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light

background.

Figure 4.21: Time per frame - Total time. Even results between the two sets, but notice the offset with

configuration ‘Pnn7_256’.

Table 4.7: Time per frame (ms) - Total time
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256

Set 2 1.12 1.09 1.65 1.10 1.26 1.22 1.40 3.49

Set 3 1.10 1.07 1.68 1.07 1.34 1.19 1.42 3.93

Rel 2 102% 100% 151% 100% 115% 112% 128% 319%

Rel 3 102% 100% 156% 100% 125% 111% 132% 365%

81/102

‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light
background. Even results between the two sets, but notice the outlier configuration ‘Pnn7_256’.

Figure 4.22: Time per million voxel - Total time. Relative to volume size the bigger volumes a lot faster on the

total process. Only a few parts relate directly with volume size however.

Table 4.8: Time per million voxel (ms) - Total time
 gauss8 lin8 lin8_256 lin16 alpLin8 Pnn5 Pnn7 Pnn7_256

Set 2 23.11 22.56 4.25 22.61 25.91 25.24 28.79 9.00

Set 3 19.66 19.24 3.76 19.20 24.01 21.33 25.42 8.79

Rel 2 102% 100% 19% 100% 115% 112% 128% 40%

Rel 3 102% 100% 20% 100% 125% 111% 132% 46%
‘Lin8’ is the baseline for relative(Rel) performance. The fastest measurements are shown with a light

background. Relative to volume size the bigger volumes a lot faster on the total process. Only a few parts relate
directly with volume size however.

82/102

83/102

Chapter 5: Discussion

This chapter will discuss the the findings of the results presented in chapter 4. Section 5.1 will review the
results of the evaluation of visual quality, and Section 5.2 will discuss the results of the performance
evaluation.

5.1 Visual quality
The visual evaluation used tumor input data to let the evaluators score the reconstruction quality in a real
world setting. This evaluation was performed to test the achieval of the visual quality goals described in
Section 1.1, looking for quality reconstruction, with options for further improvement. Each of the five
input sets presented different properties to test multiple effects of reconstruction configuration, from
compounding dense, overlapping data, to filling in sparse areas. In input sets 2, 4, and 5, there are two
passes of overlapping data, creating an obvious edge where the two slices meet. As with other artefacts in
ultrasound imaging there is no single best way to handle this. Some algorithms can in effect smooth them
out by applying a wide influence from each pixel, while others will make a reconstruction more directly
representing the input images, even if it has less of an visual appeal. This visual appeal of a smoother look
seems to have impacted the evaluation results, as both of the two top ranked reconstruction configurations
produced this effect.

Many of the images appeared difficult to distinguish, and the general appearance becomes paramount,
overshadowing the importance of details. However, none of the images represent details particularly bad,
and the strong scores of the two smoother algorithms proves that the level of detail is sufficient. Another
effect of the importance of general appearance is that images with unfilled gaps appear very faulty, and
produce the worst individual image scores in this evaluation. The PNN configuration have very noticeable
gaps in the reconstruction of set 4, despite using a 5x5x5 neighbourhood for hole-filling step in a 32M
volume, and judging by the single scores of the two evaluators rating each image, this is where they really
fall behind the other approaches. The scores of the single ratings also reveal that some images score lower
in general, and have a bigger spread between the best and the worst reconstruction. These images tend to
see input frames from the side, making all the tracking inaccuracies visible as staggered lines through the
volume, as seen in Figure 4.13, and Figure 4.5, as well as in the aforementioned Set 4, in Figures
4.11-.12.

The evaluation scores given in Table 4.1, show that the score ranges and centers, of each evaluator vary.
This is understandable, as there is no universally defined way to rank the image quality of 3D
reconstructions. Making it score-based rather than rank-based extends this problem. On the other hand,
the score-based approach displays that some of the algorithms are very similar in quality, just as expected.
Especially the two hybrid-based configurations tend to be rated closely, and the VGDW configuration is
never too far away. The two evaluators scoring images individually also have a smaller final range
between evaluations, a natural effect of averaging numbers. Evaluator #2 stated that he could have used a
wider range, but found input positioning errors to be too significant. It is unclear if all evaluators have
related their scores to our proposed minimum rating of 5.0 for usable results, or how they define usable

84/102

results. In particular it is uncertain if the averaging individual image ratings fairly represent these scores
to this minimum rating.

While all results point to satisfactory evaluations for the hybrid algorithm, it should also be noted that the
scores could have been higher with a different method of presentation. Slices are acquired from world
space planes rather than volume planes or directly aligning the slice with the input frames, which would
significantly improve quality. In this evaluation, the slices are taken from as many planes as possible for
each set, to show that it can represent all of them.

If we evaluate how the scores of each evaluator ranks the algorithm configurations, there is evidently a
high order of consistency, as seen in Figure 4.2. Undoubtedly there is some means of randomness making
it this coherent.

It is a delight to see that the two hybrid configurations are ranked first, and second, of the four
configurations. I think it is too soon to thereby suggest that they are universally better than the VGDW
approach, but we can assume that it performs in line with this approach on overall visual quality. This is
surprising, and makes it more than sufficient to cover the goal of this implementation, to acquire decent
visual quality at top-end performance, as described in Section 1.1.

It is also surprising to see the linear weighting perform better than the gaussian weighting. This can be
caused by an mistakenly high value of the standard deviation, causing the gaussian weight to blur more
than it is designed to do. This mistake was discovered after evaluation, and later fixed. As we had no time
to reevaluate visual quality, the results of this fix have been added in Appendix A, with a simple weight
distribution comparison and visual comparison.

5.2 Performance
Performance evaluation was performed to test the achieval of the goals described in Section 1.1, seeking
top-end performance, and work towards real-time capable performance. In short, the evaluation compared
all the configurations up against a baseline configuration, hybrid ‘lin8 ’. This configuration was seen as an
optimal configuration, Rmax = 8.0 , of the default hybrid reconstruction with linear weighting , and general
compounding. This baseline allows us to compare how changes to different variables affect performance,
without exhaustively testing all combination of variables. Both reconstruction algorithms, hybrid and Pnn,
are pixel-based approaches, implemented with OpenCL for GPU execution. Working on a similar basis is
crucial for making comparable results.

Pixel-based approaches have the advantage that the runtime of each frame is totally independant of how
many other frames are to be added, giving them a big advantage over voxel-based approaches that are
required to search through input images to find the closest input image.

The first timing is the accumulation loop , described with other timings in Table 3.4. The runtime timing,
described in Table 4.2, measures the timing of adding the input data to the accumulation buffer. Initially,
it is very noticeable how steady the results are in this section, especially after adjusting for input image

85/102

count. Figure 4.17 and Table 4.3 show the latter results, which makes it clear that all the results revolve
around 0.4 ms per frame, with the exception of ‘lin8-256 ’ in a 256M volume at approximately 0.7 ms per
frame. The PNN 256M reconstruction however, does exactly the same amount of work as the two PNN
32M in this phase, as just a single datapoint is added for each input pixel, no matter how big the volume
is. For something that should be an order of magnitude less workload, the PNN is timed surprisingly close
to the Hybrid approaches. Maybe at this rate of processing, the creation and initialization of kernels are
significantly more costly than the algorithm, and run times are thereby normalized in this fashion. This
can be addressed by increasing the workload of each work item, processing more pixels each, like
implemented by Gobbi & Peters[4].

The second timing is normalization , measuring the time used to adjust all accumulated pixel values with
their respective weights. Timings are found in Tables 4.4-5. This is a purely voxel-based step, and as
expected it scales highly with the increased volume sizes. The x8 increase in volume size from 32M to
256M increases normalization time with a multiplier of x6.5, and x7.2, for hybrid, and PNN respectively.
PNNs are a lot slower in this step due to the fact that they also process hole-filling in the normalization
process. Utilizing local memory as an intermediate step between the two improved run time, but this
effect is strongly diminished due to local memory restrictments above a neighbourhood of 5x5x5. Hybrid
volumes normalize in roughly 3.3ms, with a x6.5 increase with a 256M volume, and between a x22 and a
x434 multiplier for PNN solutions relative to the baseline hybrid configuration. Most notably the
alpha-blending compounding approach requires no normalization, giving it a big advantage over the other
algorithms. Adjusted for number of voxels in the volume, the normalization comes down to estimately 0.1
ms per million voxel for the baseline, slightly faster for the 256M hybrid approach, and between 2, and 6
ms, per million voxel for the PNN approaches.

The final timing is total timing , from initialization-to-normalization . The baseline configuration initializes
the volume, does pre-calculations, accumulates values, and normalizes the volume to a ready-to-display
3D volume in 0.72 sec, and 0.62 sec, for set 2 and set 3 respectively, as seen in Table 4.6. These contain
660 and 573 input images each, which brings it to roughly 1 ms per frame, as seen in Table 4.7. Adjusted
for voxels it is performed at approximately 21ms per million voxels, as seen in Table 4.8. Total
reconstruction time is shorter than the time used for input acquisition. Again, other reconstruction times
are quite similar to the baseline, with the exception of the 256M volumes which seem to increase by
roughly the extra time they used in the normalization process, plus some time most likely spent on
initializing these volumes. As the 'Pnn7_256 ' configuration used approximately 1.45 sec in normalization,
it is already far behind the others in the total timing, ending up between x3.2 and x3.7 the time used by the
baseline. Adjusted for voxels in the volume the 256M reconstructions are however a lot faster per million
voxels, implying that the total workload does not scale as fast as the volume size.

In the end, performance evaluation comes down to comparing the methods. This is quite convenient and
simple with the baseline, though more configuration points could give a much better overview of the
situation. With 'lin8 ' as a baseline, 'gauss8 ', and 'lin16 ' runs at approximately the same time both in
accumulation, normalization, and total time. 'Lin16 ' has doubled the maximum half width distance, which
should result in some modifier up towards 2, but rather it runs at the same run time as the baseline, and
sometimes faster. We see that as a sign that the algorithm will not collect any more data point due to this

86/102

increase, and can be considered exhausted . Further, the 'alpLin8 ' configuration runs approximately 20%
slower than baseline, which puts it right between the two 32M PNN configurations in total run time.
Finally, the 256M Hybrid reconstruction is approximately 53% behind baseline, while the 256M PNN
7x7x7 is between a 219% and 265% behind baseline, and between 150% and 177% behind its 32M
counterpart PNN.

The hybrid scales at x1.5 run time from an x8 increase in volume size, compared to to the PNNs x2.5 .
Gaussian weight runs at the same time as linear weight, and PNNs are together with alpha-blending
slightly behind. The only significant outlier is the 'Pnn7_256 ' configuration, which runs more than twice
as slow as the other 256M reconstruction.

With complete reconstructions in less than a second, and sub-millisecond accumulation of frames, the
implementation can definitely satisfy the goals put up for the top-end performance. Alpha blend
compounding, which can easily adapt to a real-time use case, impresses with an approximate 0.44 ms per
frame for accumulation. This is over 2000 frames/s, far above the 30 frames/s of Gobbi & Peters[4], and
the 166 frames/s incremental reconstruction of Dai et al.[2]. With a good incremental visualization, like
introduced by Dai et al., our algorithm would easily achieve real-time reconstruction and visualization.
On top of this it has lots of room to experiment with quality improving steps, as it is over 10 times as fast
as the Dai et al. solution.

Tests were run on a Nvidia GeForce GTX 970, a high-end graphics card. A new graphic card generation
is already out, and graphics cards will continue to increase in performance. This will bring us even more
opportunities for further implementations, be it real-time, or high quality, solutions.

87/102

Chapter 6: Conclusions

Freehand 3D ultrasound reconstruction is an exciting extension to the ultrasound imaging modality. With
low cost and high versatility it can be a real challenger to CT and MR imaging, increasing speed and
portability at the cost of image quality. The practical value of the reconstruction will improve as better
algorithms produce better results. The purpose of this thesis was to implement an reconstruction in FAST,
and utilize GPU processing to ensure a quick solution. A not previously published algorithm was used,
and it has shown to perform greatly in terms of both performance and quality.

6.1 Conclusions
This thesis introduced a new approach, hybrid, combining the advantages of pixel-based and voxel-based
methods, making it highly parallel and incremental. Working with the basis of input frames, but using the
volume voxels to insert data allows us to avoid computationally expensive interpolation. It will efficiently
fill gaps of varying sizes. This is the first implementation in FAST, testing the capabilities of the
framework. A parallel GPU solution was implemented for both PNN and hybrid approaches, and
compared in speed and quality. Two weighting schemes, inverse linear and gaussian, and two methods of
accumulation, compounding with and without blending, were tested with good results.

A high level of performance was achieved with the GPU implementation, reconstructing a full volume in
less than a second. When given an alpha-blending inspired compounding, the algorithm can accumulate
input frames at a rate of 2000 frames/s to a ready-scaled output volume, leaving more than enough time
for incremental visualization for a real-time result. The hybrid approach scaled significantly better than a
PNN with hole-filling with increasing volume sizes, but otherwise no significant performance deviations
were found. Alpha-blending compounding performed only slightly slower than corresponding
compounding reconstructions, fast enough to make it optimal for real-time solutions with no need for
normalization.

It can be difficult to evaluate 3D reconstructions in terms of quality, as it is impossible to define one gold
standard, and it can be inaccurate to calculate quality metrics directly from the volume. We tested the
algorithms with a visual evaluation performed by ultrasound technicians. The evaluation proved great
results for the two hybrid configurations, placing both in front of the reference volume. The simple
inverse linear weighting was rated slightly ahead of the gaussian weighting, but might perform better after
recent implementation updates.

We can conclude that the hybrid reconstruction algorithm achieves high quality with top-end
performance.

88/102

89/102

Chapter 7: Further work

Throughout this thesis a lot of ideas were thought of, many of which had to be left out for later. We have
kept some of the ideas that we find particularly interesting, and will share them in this chapter as thoughts
for further work or general inspiration for similar projects.

Section 7.1 explains the importance of mitigating errors of tracking and motion, Section 7.2 addresses the
possibility to use raw scan line input, and Section 7.3 explores alternatives for improving weighting
functions. Section 7.4 gives some ideas for making the optimal base algorithm, while Section 7.5 rounds
it off by discussing further steps in the direction of a proper real-time solution, which this algorithm is
more than capable of.

7.1 Correction of errors from tracking and motion
Tracking positions will introduce errors induced both by tracking inaccuracies and motion of the patient.
Handling these problems can be a deal-breaker, as the resulting reconstructions are only as good as their
input. The fix can be performed either as a pre-processing step on the input data, or maybe as an internal
part in the reconstruction algorithm.

Tracking can be smoothed by comparing neighbouring images to each other, and aligning them such that
the images overlap more accurately. This will work well when sets are dense, and scan movement
directional.

To correct for motion occurring internally in the patient, there are different features one can address.
Motion caused by the cardiovascular system can be gated to ensure it is in the same phase. Varying
pressure from the probe can also cause inaccuracies, but should mostly be handled by the operator.

7.2 Raw scan line input
The hybrid approach is able to use raw scan line input instead of B-scan input images, but the
implementation was left out due to limited time. It is possible that this would improve visual quality or
performance.

7.3 Alternative weight functions
All weight based approaches are heavily influenced by their weighting functions. Improvements could be
done to the simple inverse linear, or gaussian, weighting to improve their reconstruction results.

Primarily, the general weighting scheme should be decided by experimenting with both inverse linear,
and gaussian weighting. Discovering how they can best relate to the properties of the input, and
reconstruction variables like half width and Rmax , should represent the possibility that a voxel is
influenced at this distance from the input pixel. Calculating the optimal standard deviation for gaussian

90/102

weighting, will find a balance between smoothing and detail. The standard deviation might be based on
Rmax , df , dv , be static, or be mixed and limited by multiple of these.

Otherwise, weighting options should be researched to handle specific problems. Tord Øygård worked on
some of these problems in his thesis[9]. Valuing a higher brightness appears to give good results in
maintaining brightness, but a more continuous scalar weighting could be used, weighting the brightest
pixels double of the darkest ones by a formula such as:

A formula to value contrastive pixels, both bright and dark, or simply a higher differentiation than above,
could also be used. VGDW also tested lateness, on the basis that the operator could pass over the area
again if errors occurred. With a fast reconstruction as described in this paper, it would be better to restart
the scan, as overlapping scan passes creates more inaccurate results than a single clean scan. The input
variance adaptation of the VGDW is also very interesting, switching how smoothly the input is weighted
depending on how detailed the area is. This can remove noise, while preserving edges.

It would be interesting to see if a pixel weight, based on computer vision techniques, could further
enhance detail or diminish artefact impact in the reconstruction. Traditional methods like edge detection
or segmentation could be used, or the modern approach of convolutional neural nets used to learn
strengths and weaknesses of the input. Knowing the origin point of the scan lines could give a reasonable
basis for understanding the artefacts of the input.

Researching optimal weighting functions, and experimenting with new weighting options will be essential
to create optimal reconstructions. Once discovered, these weighting systems can be used by most weight
based reconstruction algorithms, to acquire a similar improvement.

7.4 Research of improved algorithm visual quality
The visual quality of the hybrid approach can be improved, even if it would go at the cost of performance.
It would be interesting to research possible variations, and see how they compare visually. Drawing ideas
from algorithms that can give the implementation higher quality output, or simply testing how fast
reconstruction algorithms with high visual performance could perform on a modern GPU. The current
level of GPU processing can make a lot of approaches applicable, allowing us to sacrifice performance for
improved quality.

The hybrid approach is simplified to traverse voxels along a dominant axis from a pixel point. It can be
reimplemented to traverse from each input pixel, along the image normal. It can trilinearly interpolate
points along the normal, making it a discrete approach to the DW method with ellipsoid shaped
neighbourhood. This allows it to increase the level of detail while maintaining a lower complexity than
the DW method.

91/102

http://api.gmath.guru/cgi-bin/gmath?w%3Dw_%7Binit%7D%20%5Ccdot%20(1%2B%5Cfrac%7Bp%7D%7Bp_%7Bmax%7D%7D)
http://api.gmath.guru/cgi-bin/gmath?w%3Dw_%7Binit%7D%20%5Ccdot%20(1%2B%5Cfrac%7Bp%7D%7Bp_%7Bmax%7D%7D)

Generally, multiple methods should be looked into, finding the best visual performance within a
reasonable reconstruction time.

7.5 Implementing complete real-time solution

This thesis has shown that it is possible to achieve a very high rate of frame accumulation. However, a
real-time implementation will require multiple steps to be performed, in a total of max 40 milliseconds.
Implementing a framework that can incrementally adjust, accumulate, and visualize the volume would be
the basis for real-time tests. Incremental visualization should be able to guarantee under 40 milliseconds
even for difficult scanning patterns. Incremental accumulation was performed in under 1 millisecond in
this thesis. Incremental volume adjustments will either require the volume to be expanded as the probe
approaches the edges of the volume, or start with a big volume and change visualization to present the
relevant subregion. A fast method for loading of images should also be considered.

This incremental re-initialization of the volume can be time-consuming, as it will require initializing a
new volume, copying data into the new volume, and doing a complete new visualisation of the volume.
Simplifications should be made where viable, to make the transition as smooth as possible. It can be
possible for the volume adjustment step to do some of the work in between the previous images, and spin
over the accumulation of some frames while visualization is performed.

If we adjust the volume every 30 frames, after frame 28 the new volume is calculated and initialized, after
frame 29 the volume is copied over from the old volume, with frame 30 the last data is copied over and a
0.2s complete visualization is started in the time frame 6 incremental visualizations normally would be
performed. Finally after visualization, the 6 input frames are accumulated with the new frame almost
instantly before a new incremental visualization with all of them, and the incremental steps are resumed.
Now this is just an example with stipulated times, and the final workings should be figured out with
comprehensive testing.

Allowing for a good frame around the accumulation could make it possible to achieve real-time solutions,
and with the reconstruction presented in this thesis it would be quite durable during different
circumstances.

92/102

93/102

8 Bibliography

[1] "3D Slicer." 3D Slicer . Web. 12 Oct. 2016.

[2] Dai, Yakang, Jie Tian, Di Dong, Guorui Yan, and Hairong Zheng. "Real-Time Visualized Freehand

3D Ultrasound Reconstruction Based on GPU." IEEE Transactions on Information Technology in

Biomedicine 14.6 (2010): 1338-345. Print.

[3] "David W. Gohara, Ph.D." David W Gohara PhD . Web. 12 Oct. 2016.

[4] Gobbi, David G., and Terry M. Peters. "Interactive Intra-operative 3D Ultrasound Reconstruction and

Visualization." Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002

Lecture Notes in Computer Science (2002): 156-63. Print.

[5] Gohara, David. "Episode 2 - OpenCL Fundamentals." YouTube . YouTube, 18 June 2013. Web. 12

Oct. 2016.

[6] Holm, Sverre, “Ultrasound Imaging” Fysikkens Verden (1999) . Print.

[7] Huang, Qinghua, Yongping Zheng, Minhua Lu, Tianfu Wang, and Siping Chen. "A New Adaptive

Interpolation Algorithm for 3D Ultrasound Imaging with Speckle Reduction and Edge

Preservation." Computerized Medical Imaging and Graphics 33.2 (2009): 100-10. Print.

[8] "OpenCL - The Open Standard for Parallel Programming of Heterogeneous Systems." The Khronos

Group . Web. 12 Oct. 2016.

[9] Oygard, Tord. "Improved Distance Weighted GPU-based 3D Ultrasound Reconstruction Methods."

 (2014).

[10] Rohling, Robert, Andrew Gee, and Laurence Berman. "A Comparison of Freehand

Three-dimensional Ultrasound Reconstruction Techniques." Medical Image Analysis 3.4 (1999):

339-59. Print.

[11] Smistad, Erik, Mohammadmehdi Bozorgi, and Frank Lindseth. "FAST: Framework for

94/102

Heterogeneous Medical Image Computing and Visualization." Int J CARS International Journal of

Computer Assisted Radiology and Surgery 10.11 (2015): 1811-822. Print.

[12] Smistad. "Smistad/FAST." GitHub . 08 June 2016. Web. 12 Oct. 2016.

[13] Solberg, Ole Vegard, Frank Lindseth, Hans Torp, Richard E. Blake, and Toril A. Nagelhus Hernes.

"Freehand 3D Ultrasound Reconstruction Algorithms—A Review." Ultrasound in Medicine &

Biology 33.7 (2007): 991-1009. Print.

[14] Theoharis, T. Graphics & Visualization: Principles & Algorithms . Wellesley, MA: A.K. Peters,

2008. Print.

95/102

9 Appendix

Appendix A - Weighting updates with updated results
In the discussion in Section 5.1 the gaussian weighting was found to be weaker than expected, compared
to the linear weighting, based on the evaluation scores of Section 4.1.1. Gaussian weighting was looked
into, and the calculation function found faulty. A too high standard deviation created a small weight
differentiation, creating a weight spread, more resembling a constant weight, and a box filter, than
traditional gaussian functions. A new weight calculation was created to closer reflect the demands to the
weight distribution, and compared in this Appendix with the existing solutions. The new gaussian
weighting is implemented as described in background Section 2.5.5.2, with a constant k at 1.0, and a
minimum standard deviation of 0.5.

For clarity the weighting functions are graphed below, comparing weight to distance at different half
width values, from 1.0 to 8.0. Weights are limited to the areas in which each respective half width limits
them to. Figure A.1 display the original gaussian weighting, while Figure A.2 show the suggested new
gaussian weighting. They have a different amplitude scaling through k , but more importantly the standard
deviation is made smaller than the old version, allowing it to use more of the gaussian characteristic
curve. For comparison the inverse linear weighting is included in Figure A.3.

With the variability of both a local, and a global max distance, it is difficult to set a universal weighting
function that respectfully represents all distances. A gaussian function with a static global standard
deviation is possible, but a too small value will give little differentiation to bigger values, and a too big
value will give little differentiation to smaller values. The goal would be to make sure overlapping
accumulations have similar weight at the same distance, while respectfully differentiating different
distances.

96/102

Figure A.1: Old Gaussian Weights - The legend on the right represents different half widths, where a half width
of 1.0 implies a local maximum distance of 1.0, and this is where the minimum weight will be produced for this
half width. It can be seen that this minimum value is still ~60% of maximum weight, giving a smaller contrast

than intended.

Figure A.2: New Gaussian Weights - The legend on the right represent different half widths. Weights are now

scaled for width to use the full slope of the gaussian curve. No amplitude scaling. Half width 1.0 is affected by the
minimum standard deviation of 0.5, and is therefore closer to half width 2.0 than otherwise expected.

97/102

Figure A.3: Linear Weights - The legend on the right represent different half widths. Inverse linear scaling

between the zero-point and the given half width, crossing the zero weight at the half width.

Further follows some side-by-side visual comparisons of the old, and the new gaussian weighting
schemes, as well as linear for reference. Figure A.4 display a overview cut of the visual results, while
Figures A.5 and Figure A.6 zoom in on certain details from this cut, for a side-by-side comparison.

98/102

Figure A.4: Visual results -
Overview cut. Multiple input
frame can be seen in the slice,
but more or less jagged lines.

(Top) The results of the new
gaussian weight scheme;

(Bot) The results of the old
gaussian weight scheme;

(Next page) The results of the
linear weight scheme;

The gaussian results appear to
contain more detail, but the old
results create some quite jagged
edges. The linear results appear
smooth, but make the darker
areas brighter than the other
two.

99/102

Linear weight scheme.
See description on the previous
page.

Figure A.5: Visual results - Detail cut. Focused on the detail in the left side of the slice.

(Left) The results of the new gaussian weight scheme; (Middle) The results of the old gaussian weight scheme;
(Right) The results of the linear weight scheme; The bright detail is clearer, and brighter in the two gaussian

reconstructions, especially the old weighting is brighter. The new weighting appears to be in the middle ground
between the other two, with good smoothing and good dark detail.

100/102

Figure A.6: Visual results -
Tumor edge cut. Focused on
the bottom right section of the
big white tumor in the middle
of the main cut.

(Top) The results of the new
gaussian weight scheme;

(Middle) The results of the old
gaussian weight scheme;

(Bottom) The results of the
linear weight scheme;

The two gaussian functions
appear to keep more dark
detail in the bottom left corner,
and on the diagonal towards
the top right corner. However
they have a bigger slice gap, in
the middle of the cut. The new
gaussian weight seems to
handle this cut, and others,
slightly better than the old
gaussian. This effect can also
be seen in parts other parts of
Figure A.4.

101/102

