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Sammendrag

En grundig forståelse av fiskens svømmeteknikk kan utnyttes til design av innovative

propulsjonsenheter med høyere effektivitet enn konvensjonelle skruepropeller. I søken

etter en slik forståelse kan Computational Fluid Dynamics (CFD) være til god hjelp.

En svømmende fisk er karakterisert ved materialdeformasjon, fluidkrefter og interak-

sjon mellom disse. Å formulere denne interaksjonen numerisk er ingen enkel sak, og i

konvensjonelle fluid-struktur-løsere må problemets domene diskretiseres på nytt ved

hvert tidssteg. Dette kalles re-meshing og er komputasjonelt kostbart. I Immersed-

Boundary-metoder, først foreslått av Peskin (1972), behøves ikke re-meshing, og slike

metoder er derfor gode kandidater for numerisk løsning av svømmende fisk-problemet.

Denne oppgaven presenterer grunnlegende bakgrunnsteori innenfor CFD, med fokus

på immersed boundary-metoder og fluid-struktur-interaksjon. En CFD-løser som drar

nytte av en immersed-boundary-metode er utviklet og validert for problemer med sta-

sjonære strukturer av villkårlig form nedsenket i inkompressibel og viskøs 2D-strømning.

Koden er også designet for å håndtere strukturer med bevegelse og deformasjoner, men

er ennå ikke validert for dette.

Til slutt dekker oppgaven en diskusjon vedrørende videre utvikling av koden til en full

fluid-struktur-løser, med et spesielt fokus på applikasjoner for svømmende fisk. Det blir

konkludert med at en slik fluid-fisk-løser vil svært utsatt for numerisk instabilitet, men

at dette kan håndteres ved bruk av iterativ kalkulering av fluidens krefter på fisken.
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Summary

A profound understanding of how a fish swims may be used to design innovative pro-

pulsion units with higher efficiency than the conventional screw propellers. The gain of

such understanding may be aided by the use of Computational Fluid Dynamics (CFD).

The swimming fish problem is characterized by deforming solids, fluid forces and the

interaction between these. To capture this interaction numerically is no simple task, and

in conventional fluid-structure interaction approaches, the discretized domain must be

re-generated at each time step. This is called re-meshing, and it is computationally cos-

tly. The immersed boundary methods, first proposed by Peskin (1972), do not pose the

need for re-meshing, and are therefore good candidates for solving the swimming fish

problem.

This thesis presents a review of basic theory within CFD, with focus on immersed boun-

dary methods and fluid-structure interaction. A CFD-code, including an immersed

boundary method, is developed and validated for problems involving stationary objects

of arbitrary shape submerged in 2D incompressible viscous flow. The code is also de-

signed to handle structures with motion and deformation, but is yet to be validated for

this purpose.

Lastly, the further development of the code into a full 2D fluid-structure interaction sol-

ver is discussed with special focus on applications on swimming fish. It is concluded

that such a fluid-fish-solver will be severely prone to numerical instabilities, but that

this can be handled by using iterative solution strategies for the calculation of the fluid

force on the fish.
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Chapter 1

Introduction

1.1 Background

The study of swimming fish and other aquatic animals may provide valuable knowledge

for engineering applications. In naval engineering, both maneuverability and propul-

sive efficiency is of great concern, and conventional strategies for optimizing such are

often far less sophisticated than the ones we can find in the nature. The maximum ef-

ficiency of a conventional naval screw propeller is about 0.7 (Carlton (2012)). For com-

parison, Fish and Rohr (1999) present a selection of cetaceans1 that have propulsive

efficiencies spanning from 0.77 to 0.99.

The idea of flapping tail propulsion has been around for ages, but a viable design for

ship propulsion such as the Flapping Foil concept developed by Ph.D-candidate John

Martin Godø at NTNU (see Stenvold (2016)) is yet to be realized for conventional use.

Figure 1.1 presents the old technology side by side with the Flapping Foil-concept.

In order to utilize aquatic locomotion strategies, extensive research must be done on

the area, both experimentally and computationally. An experimental approach is cru-

cial in order to gain knowledge about the principles of swimming and motion strategies,

but the setup of such experiments is time consuming and complicated. The fish must

be doing the exact maneuver of interest, and instruments cannot provide information

about the whole problem domain. In addition, the very presence of instruments may

pollute the observations. With these challenges in mind, it is clear that Computational

1Cetacea is the scientific classification containing all types of whales

1
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(a) Old technology: Single-oar
sculling. (Figure adopted and

modified from Manning (1991))

(b) New technology: Flapping foils
for propulsion and lift. (Modified,

with permission from Godø (2017))

Figure 1.1: Old and new technology within flapping foil propulsion.
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Fluid Dynamics (CFD) may become a powerful supplemental tool. In CFD, the observer

may design the motion of the specimen as wished, and the results from CFD simulati-

ons consist of data from the whole flow domain, and may be stored easily in a computer

register for later analysis and comparison. This opens for parametric studies, which can

not only provide answers about the principles of swimming, but also about how to opti-

mize propulsion strategies.

The swimming fish may be classified as a Fluid-Structure Interaction problem (FSI), with

a coupled response of fish and fluid. A great challenge within CFD is to capture this cou-

pling numerically: Both the fluid and the fish must be discretized in some way, and the

relative motion between fluid and fish require a strategy for co-location of computati-

onal points. A common solution is to transform the fluid mesh to have nodes fitted to

the body of the fish, but this method requires re-meshing at each time step, since the

fish has a relative motion to the fluid grid. Such re-meshing is time consuming and the

quality of the generated mesh is often not optimal due to grid-deformation.

Immersed Boundary Methods (IBMs), first proposed by Peskin (1972), avoids the pro-

blems related to re-meshing. Instead of requiring a co-location of computational points

for the fluid and the boundary, the presence of the body is accounted for by adding a

boundary force to the fluid equations, thus leaving the mesh untouched. Peskin (2002)

states that the IBM in general is a useful method for FSI-problems, and "especially for

biological fluid dynamics".
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1.2 Objectives

The main objective of this Master’s thesis is to develop a CFD-code implementing the

Immersed Boundary Method, and clarify its use in 2-dimensional swimming fish pro-

blems. This objective is further subdivided into:

1. Provide background information about CFD related to fluid-structure interaction

problems and the use of immersed boundary methods.

2. Develop a computer program that numerically solves the incompressible Navier-

Stokes equations on a 2-dimensional domain.

3. Develop an IBM-module and implement it into the 2-dimensional Navier-Stokes

solver.

4. Validate the program performance by comparing results to known numerical and/or

experimental data.

5. Discuss how the code may be further developed into a program that can simulate

a swimming fish.

1.3 Limitations

Only a personal laptop is available to develop the code. This severely limits the maxi-

mum domain resolution of the simulations, and thereby also the accuracy of the results.
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1.4 About the report

Governing equations for a swimming fish problem are presented and simplified in Chap-

ter 2. Chapter 3 provides an introduction to basic concepts within CFD and FSI that are

of interest in this thesis, before Chapter 4 narrows in to a more profound description

of the immersed boundary methods. Chapter 5 is devoted to numerical methods. The

development of the computer code is described in Chapter 6, and validation of the code

follows in Chapter 7 and 8. A discussion about the further development of the code is

described in Chapter 9, before the thesis as a whole is concluded in Chapter 10. Lastly,

Chapter 11 lists a selection of recommendations for further work within the topic of this

thesis.

A postface, devoted to reflexions around personal experiences gained through the work,

is included in the last page of the document.

Notation

Tensor notation, including the Einstein summation convention, will be extensively used

throughout this document. For a brief introduction, see Appendix A.

Combination of tensor notation and discrete notation may cause misunderstandings.

In equations where this represents an issue, care will be taken to warn the reader. In ad-

dition, matrix notation may in some cases substitute tensor notation in chapters where

computer algorithms are described.





Chapter 2

Governing Equations

The governing equations form the mathematical model of a physical problem, and they

reflect the applicable fundamental laws of physics. When considering swimming fish,

which involves both fluid- and boundary motions, the mathematical model must con-

sist of governing equations from both fluid- and solid mechanics. This coupling bet-

ween a fluid-domain and a solid-domain is called fluid-structure interaction.

2.1 Governing fluid equations

Newtons second law of motion applied on a fluid cell yields the Navier-Stokes equations

(N-S), and adding a mass conservation constraint on the cell gives rise to the Continuity

equation. In marine applications, flows are mostly incompressible, and the two equati-

ons may be written as Equation 2.1 and 2.2, respectively.

∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j
=− 1

ρ

∂p̂

∂x̂i
+ν ∂2ûi

∂x̂ j∂x̂ j
(2.1)

∂ûi

∂x̂i
= 0 (2.2)

7
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Here, the circumflex (ˆ) represents a quantity with a dimensional unit (e.g. x̂i [m]). p̂

represents the pressure, and ûi represents the velocity component in the x̂i -direction.

ν and ρ are the kinematic viscosity and the density, respectively.

The different acceleration terms of the N-S equation arise from the different physical

forces1 that the fluid cell is subject to. It is common to name the terms as shown in Ta-

ble 2.1.

Table 2.1: Name of the terms in the N-S equation (Eq. 2.1).

Term Name

∂ûi
∂t̂

Local acceleration

û j
∂ûi
∂x̂ j

Advective acceleration

− 1
ρ
∂p̂
∂x̂i

Pressure gradient acceleration

ν
∂2ûi
∂x̂ j∂x̂ j

Viscous acceleration

The Navier-Stokes equations is a set of three coupled non-linear second order Partial

Differential Equations (PDEs) forming a combined Boundary- and Initial Value Problem

(BVP and IVP respectively) for the field variables ûi and p̂. In a 2D flow problem, the

equations may be reduced to two directions (i = 1,2).

1It should be noted that the advective acceleration is not due to an actual force. It arises as a conse-
quence of treating the fluid cell as a control volume (Eulerian approach) and not as a particle (Lagrangian
approach) when applying Newtons second law.
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2.1.1 Non-dimensional form

In qualitative research, it is convenient to use dimensionless variables. By substitu-

ting the non-dimensional quantities presented in Table 2.2 into the N-S and Continuity

equations (2.7 and 2.2, respectively), we get the following non-dimensional expressions:

∂ui

∂t
+u j

∂ui

∂x j
=− ∂p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
(2.3)

∂ui

∂xi
= 0 (2.4)

As seen, the importance of the viscous term is determined by the Reynolds number, Re,

which is a measure of the ratio between the advective term and the viscous term of the

equation. Estimation of this ratio by use of the characteristic values from Table 2.2 gives

the well-known formula:

Re = U L

ν
(2.5)

Table 2.2: Non-dimensional quantities in fluid mechanics.

Quantity Non-dimensional symbol Characteristic scale

Velocity ui = ûi
U U

Position xi = x̂i
L L

Time t = t̂i
T T ∼ L

U

Pressure p = p̂i
pd yn

pd yn ∼ ρU 2
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2.1.2 Conservation forms

Equation 2.3 is written in its non-conservative form. Use of a mathematically equivalent

conservation form2 yields numerical advantages (Ferziger and Péric (2002)).

The conservative form of Equation 2.3 can be obtained by using the product rule of

calculus:

∂(ui u j )

∂x j
= ui

∂u j

∂x j
+u j

∂ui

∂x j
(2.6)

The first term of the Right Hand Side (RHS) of Equation 2.6 is zero according to the con-

tinuity equation (Equation 2.4). The advective term of the N-S equation (Equation 2.3)

may therefore be written as
∂(ui u j )
∂x j

, leading to the conservation form:

∂ui

∂t
+ ∂(ui u j )

∂x j
=− ∂p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
(2.7)

2A differential equation is in conservation form if none of the field variables are outside a derivative
(Anderson Jr. (2009)).
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2.2 Governing equations for solid mechanics

A solid body in a fluid-structure interaction system will be subject to both rigid body

motion and material deformations. The following subsections shows how these may be

split in order to simplify the problem.

2.2.1 Rigid body motion

The rigid-body response of the swimming fish is determined by the fluid force. For a

fully submerged fish, Newton’s second law in all Degrees of Freedom (DoF) yields:

mi j
∂2X j

∂t 2
= Fi ,

i = 1, ...,6

j = 1, ...,6

(2.8)

where mi j is the inertia in the i -direction due to acceleration in the j -direction, X j is

the rigid-body position of the fish’s Center of Mass (CoM) in the j -direction, and Fi is the

total fluid force in the i -direction. Equation 2.8 is defined both for the translational DoFs

(X1, X2, X3) and the rotational dofs (X4, X5, X6), and the unit for the inertial coefficient(
mi j

)
differs accordingly.

2.2.2 Deformation

The governing equations for solid deformations depend on the material properties of

the solid, such as elasticity and flexibility. For the analysis of fish swimming, the defor-

mation equations need to include terms to account for muscle activation. This may be

of importance when studying e.g. the fish’s response to a certain muscle energy input,

as the flap amplitude and velocity will be dependent of the fluid force on the fish. Such

profound studies, however, fall outside the scope of this thesis. A simplified approach

will be described in the next subsection.
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2.2.3 Simplifications: A quasi-rigid approach

A simplified fish model may be obtained by treating the fish as a quasi-rigid solid, which

does not deform from outer forces such as fluid-forces, but is free to change shape due

to internal forces. By internal force is meant a force that does not apply any acceleration

on or about the fish’s CoM.

A quasi-rigid fish-model with a prescribed internal flapping motion may be interpreted

as a fish with unlimited muscle power to counteract the effects of the fluid on the fish

boundary.

The fish may be viewed as a closed system, so that during a flapping motion, the fish

mass should be conserved. This means that the translational inertia of the fish is con-

stant with time. The rotational inertia, on the other hand, is dependent of the fish’s

flapping configuration, and thereby of time.

The time-dependency of the rotational inertia must be taken into consideration when

solving the rigid-body equation for rotational motion (Equation 2.8, for j = 4,5,6).

Newtons second law of motion for rotation:

∂
(
θ̇I (t )

)
∂t

= T (t ) (2.9)

becomes
∂θ̇

∂t
I (t )+ θ̇ ∂I

∂t
(t ) = T (t ) (2.10)

where I (t ) represents time-dependent moment of inertia, θ̇ the angular velocity and

T (t ) the net torque, all quantities about the same axis. Thus the term
∂mi j

∂t
∂X j

∂t must be

added to the rotational versions of the rigid-body equation:

mi j
∂2X j

∂t 2
+βi

∂mi j

∂t

∂X j

∂t
= Fi ,

i = 1, ...,6

j = 1, ...,6

βi =


0, i = 1,2,3

1, i = 4,5,6

(2.11)
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Equation 2.11 represents the governing equation for the response of a quasi-rigid fish

swimming with some prescribed internal motion that does not accelerate the any of the

rigid-body degrees of freedom.
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2.3 Boundary conditions

The behavior of a given quantity on a boundary is governed by its Boundary Condition

(BC). There are two main types of BCs, depending on how the quantity is prescribed on

the boundary:

• Dirichlet: The value of the quantity itself is prescribed.

• Neumann: The value of some derivative of the quantity is prescribed.

Table 2.3 shows some examples of Dirichlet and Neumann type boundary conditions.

2.3.1 Domain boundary condition

To model the domain within which the analysis is to take place, BCs must be specified

along the domain boundaries. Different kinds of BCs may be chosen, depending on

which physical behavior the BC should replicate. Some physical boundary behaviors

and their mathematical model are presented in table 2.4. A slip-wall is often used to

model the boundaries parallel to a the flow in flow problems with a highly defined flow

direction.

Care should always be taken when modeling boundary equations. Extensive use of Neu-

mann conditions may result in numerical systems that are indefinite, thereby unsolva-

ble.

Table 2.3: Boundary condition types. u and V are the velocities of the fluid and the boundary
respectively, and p denotes the pressure. The subscript (·)n denotes the direction normal to the
boundary, and the subscript (·)t denotes the direction tangential to the boundary.

Physical Mathematical Type

Impermeability un =Vn Dirichlet on velocity

No-slip ut =Vt Dirichlet on velocity

Slip (No-shear) ∂ut
∂xn

= 0 Neumann on velocity

Dynamic equilibrium ∂p
∂xn

= 0 Neumann on pressure
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Table 2.4: Relation between physical boundary behavior and the related mathematical model. u
and V are the velocities of the fluid and the boundary respectively. U and P stands for some spe-
cified value. The subscript (·)n denotes the direction normal to the boundary, and the subscript
(·)t denotes the direction tangential to the boundary, thus Einstein’s summation convention is
not to be applied.

Physical Normal velocity Tangential velocity Pressure

Wall un =Vn ut =Vt
∂p
∂xn

= 0

Slip-wall un =Vn
∂ut
∂un

= 0 ∂p
∂xn

= 0

Inlet un =U ut = 0 ∂p
∂xn

= 0

Outlet ∂ut
∂xn

= 0 ∂un
∂xn

= 0 p = P

2.3.2 Fluid-Structure boundary conditions

The fluid domain and the solid domain are coupled through the BCs for the fluid-structure-

interface. In the swimming fish problem, the fluid-structure boundary conditions are:

• impermeability

• no-slip3

• dynamic equilibrium

which may be modeled by the wall-condition described in Table 2.4.

3Using a no-slip condition for a fish is actually a simplification. The fish surface is slippery, and a slip-
condition, which sets a value on the wall shear stress τw instead of on the velocity itself, could be used.





Chapter 3

Computational Fluid Dynamics

The general idea of CFD is to approximate the solution of a mathematically stated fluid

problem by use of numerics. If the problem is well posed1, the approximate solution

will approach the exact solution in the limit where the discretization resolution goes to

infinity. The numerical result will never become the exact solution, but it may approach

the exact solution by acceptable errors.

Figure 3.1: A typical CFD-result from simulation of uniform 2D flow past a circular cylinder.

1Well posed problem: A problem where a unique solution exist, and the solution depends continuously
on the problem parameters (Tannehill et al. (1997))

17
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3.1 General approach

In general, a CFD procedure may be divided into the following tasks

1. Mathematical modeling of the physical problem that is to be studied, including:

• Governing equations

• Initial- and boundary conditions

• Acceptable simplifications

2. Discretization of the mathematical model

• Choice of discretization method

• Choice of computational grid type

3. Solving the discrete equations

4. Post processing of calculated data (Illustrated in Figure 3.1)

The following sections will discuss this approach applied on the governing equations

given in Section 2.1.
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3.2 Discretization

The mathematical operators in the N-S equation (Equation 2.7) may be approximated

by discrete operators through a discretization method. Many different approaches exist,

such as the Finite Volume Methods (FVM) and the Finite Difference Methods (FDM), and

each of them contains various numerical schemes designed to handle different types

of problems. The formulation of the discrete operator depends on the method used, as

well as on the grid chosen for the discretization method, and due to the large amount of

different schemes, it is handy to use a general notation for the discretized equations.

By use of the notation presented in Table 3.1, a general discretized version of the N-S

equation (2.7) and the Continuity equation (2.4) may be written:

T (ui ) =−Gi (p)+ 1

Re
L(ui )− A(ui ) (3.1)

Gi (ui ) = 0 (3.2)

Note that Equation 3.1 has been rearranged so that all spatial derivatives lies on the

RHS of the equation and the temporal derivative lies on the Left Hand Side (LHS). This

is done as it, numerically speaking, may be beneficial to treat the temporal and spatial

derivatives differently, as shall be seen in Section 3.5
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Table 3.1: General notation for the discrete difference operators used on the different terms of
the NS-equations (Eq. 2.7).

Description Discrete operator Continuous equivalent

Time derivative T (·) ∂(·)
∂t

Advection A(·) u j
∂(·)
∂x j

or
∂(u j (·))
∂x j

Gradient Gi (·) ∂(·)
∂xi

Laplacian L(·) ∂2(·)
∂x j∂x j

3.3 Grids

A mesh or grid consist of spatially discrete locations where the field variables of the dis-

cretized equations are represented. Each such location is called a node, and it is com-

mon to represent a grid by drawing a mesh of lines that interconnect each node to its

nearest neighbors. A fluid cell may be defined as the area spanned by a group of nodes,

or as the area enclosing certain nodes as seen in Figure 3.2.

The succeeding subsections will describe important concepts regarding meshing.

Figure 3.2: Two types of fluid cell definition in a grid.
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3.3.1 Grid quality

The quality of a mesh is measured from the numerical results of the analysis. A good

mesh quality may support accuracy, stability and effectiveness of the solution process.

©Fluent (2006) lists the following measures for good mesh quality:

Smoothness

The difference in size of neighboring mesh-cells is affecting accuracy due to an increa-

sed truncation error. A smooth transition between smaller and larger cells is therefore

preferable.

Skewness

The optimal shape for a cell is the one that maximizes the vertex angles for all vertexes

simultaneously. This means that the optimal vertex angle is 90 degrees for a quadrilate-

ral cell, and 60 degrees for a triangular cell. Skewness is defined as the deviation from

this optimal shape, and high skewness may result in a significant decrease in accuracy,

and even instabilities.

Aspect ratio

For flows with an isotropic behavior, an extreme aspect ratio on the grid entails a lower

resolution of, and thereby accuracy of, the flow in the longitudinal cell direction. This

causes the order of magnitude of the overall solution error to increase.

High quality grids

With the quality measures described above in mind, it is clear that a Cartesian grid,

where all cells are uniformly sized, the aspect ratio is equal to one, and the cell angles are

all 90 degrees, is a high quality grid. A regular rectilinear grid have the same attributes as

the Cartesian grid, apart from the aspect ratio which may be different from one. These

grids are also of high quality, given that they represent the flow system with sufficient

resolution in each direction.
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Figure 3.3: Structured (top) and unstructured (bottom) grids. (Modified, from Ferziger and Péric
(2002)).

3.3.2 Structured vs. unstructured grid

A grid where each node may be defined uniquely by an integer address index (i , j ,k in

three dimensions), is called a structured grid, while any grid that does not pose this cha-

racteristic are called unstructured grids. The strength of a structured grid is that it is easy

to program, as the address system cooperates well with the architecture of a computer.

This is not the truth for an unstructured grid, which requires a lot more care during

implementation. On the other hand, an unstructured grid proves to be much more ver-

satile in use (Ferziger and Péric (2002)), as it is easily wrapped around irregular domain

boundaries without a large decrease in cell quality (see Figure 3.3).
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3.3.3 Staggered vs. co-located grid

The difference between the staggered and co-located grid configurations lies in where

the field variables are represented. If all field variables are represented at the same set of

nodes, the grid is said to be co-located. A staggered arrangement is achieved by shifting

the location of the nodes so that the different field variables are represented at diffe-

rent locations (see Figure 3.4). The latter configuration was first shown by Harlow and

Welch (1965), and has an advantage when it comes to pressure calculations. This is

because the co-located arrangement in some cases allows for a decoupling of the nu-

merical pressure solving scheme, such that a checkerboard pattern may develop in the

solutions. A staggered grid imposes a numerical coupling between the pressure nodes,

so that this is avoided.

Figure 3.4: Co-located (left) and staggered (right) grid cells. In the co-located version, all field
variables related to cell

(
i , j

)
are represented at the middle of the cell. For the staggered version,

the pressure is represented at the cell center, while the velocities are represented at the cell faces.
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3.3.4 Adaptive mesh refinement

Flow fields are rarely uniform, in that there are certain locations of the domain that have

higher gradients and rates of change than others. This is especially true for flow past

structures. To provide an accurate solution of the flow field, the grid resolution must be

high enough to represent the parts with the highest velocity and pressure gradients. In

the case of a Cartesian grid (which has a uniform cell size), this results in unnecessarily

high resolution also in the remote domain, where the flow field is nearly uniform. This

to an inefficiency, since a lot of equations that give little increase in accuracy for the

solution must be solved. Another problem is for flow-simulation past non-stationary

structures, where it is not known a priori where the high gradient areas will be located,

and how high resolution they will be needing in order to be represented properly.

A solution to these issues is Adaptive Mesh Refinement-techniques (AMR). In short, these

methods detect areas close to a structure, or other areas that have a high gradient flow

field, and refine the mesh accordingly. This allows for an overall solution on a coarse

mesh, with only specific parts refined (see Figure 3.5).
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Figure 3.5: Adaptive mesh refinement on a Cartesian mesh around a sphere. (Modified, from
Mark et al. (2011)).
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3.4 Application of boundary conditions

Application of boundary conditions on staggered grids requires the use of so-called

ghost cells, which are computational cells situated outside the fluid boundary (see Fi-

gure 3.6). A Dirichlet condition may be assigned directly onto a node, given that the

node is situated on the domain boundary. Where this is not the case, the Dirichlet Boun-

dary condition must be applied in the nearest ghost cell. Ghost cells are also needed

when applying Neumann conditions.

Following the method by Harlow and Welch (1965), which is using a 2nd order FDM-

scheme for the spatial derivatives, the Dirichlet conditions may be applied by assigning

the ghost node with the reversed value of the fluid node closest to the wall (see Figure

3.7). The Neumann pressure condition is applied by mirroring the fluid velocity in the

ghost node, so that the gradient of the linear extension between the nodes become zero.



3.4. APPLICATION OF BOUNDARY CONDITIONS 27

Figure 3.6: Application of boundary conditions on a staggered grid. The wide gray line delimits
the fluid domain, while dashed lines represents the ghost cells situated outside the fluid. As an
example, a Dirichlet condition on the vertical velocity, v , at the leftmost vertical wall would be
assigned with v0, j =−v1, j . The Neumann pressure condition at the same wall would be assigned
by p0, j = p1, j .
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Figure 3.7: Dirichlet boundary condition on the velocities, applied on a vertical domain boun-
dary. (From Harlow and Welch (1965)).
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3.5 Semi-discrete approach

In CFD, a common solution strategy is to discretize the spatial operators first, leaving the

time-derivative continuously defined (Lomax et al. (1999)). This means that all spatial

derivatives are approximated by numerical values, and the original PDE is reduced to a

semi-discrete Ordinary Differential Equation (ODE):

∂ui

∂t
= RHS(ui , p) (3.3)

RHS(ui , p) =−Gi (p)+ 1

Re
L(ui )− A(ui ) (3.4)

where the RHS may be solved as a pure boundary value problem at some chosen time-

step. The solution of this BVP represent the slope of the solution, ui , at that time step,

and numerical integration methods such as the Euler-method and the Runge-Kutta met-

hods (see Section 5.2) may be used to propagate the solution of ui in time, thus solving

the initial value problem. Note that this section only describe how to integrate the velo-

cities. The process of solving for the pressure, p, is quite different, as is described in

Section 3.6.
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3.6 Pressure-Velocity coupling

The governing equations for incompressible flow (Equation 2.7 and 2.4) do not include

any time-derivative of the pressure, meaning that the pressure cannot be time-integrated

in the same way as the velocity. In addition, the semi-discrete approach may fail to sa-

tisfy the continuity equation for the integrated velocity field. This problem may be by-

passed by taking advantage of the interdependencies between the velocity and pressure.

The Fractional Step Method (FSM) is a widely used algorithm for this purpose.

3.6.1 The Fractional Step Method

FSM is also known by names such as the Projection Method and the Time Splitting Met-

hod, and was first proposed by Chorin (1967). The following explanation of the method

follows the one given in Ferziger and Péric (2002), and is valid for explicit schemes.

Using an explicit Euler method (see Section 5.2) for the time derivative (T ) of equation

3.1, and keeping the RHS un-discretized, the following equation arise:

un+1
i −un

i

∆t
=−∂pn

∂xi
+ 1

Re

∂2un
i

∂x j∂x j
− ∂(ui u j )n

∂x j
(3.5)

The solution for un+1
i of this equation is not assured to satisfied the continuity equation,

and there is no direct solution of the pressure for the next time step (n+1). These issues

are turned into advantages as shown in the further explanation of the method.

Let Equation 3.5 be valid for some temporary velocity field, ũi , that is not constrained

by the continuity equation:

ũi −un
i

∆t
=−∂pn

∂xi
+ 1

Re

∂2un
i

∂x j∂x j
− ∂(ui u j )n

∂x j
(3.6)

It is now assumed that the pressure at time step n +1 may support continuity of un+1
i ,

such that the following equation provides a solution that satisfies continuity:

un+1
i −un

i

∆t
=−∂pn+1

∂xi
+ 1

Re

∂2un
i

∂x j∂x j
− ∂(ui u j )n

∂x j
(3.7)
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The pressure field at n +1 may be defined as:

pn+1 = pn +δp (3.8)

Where δp is the correction in pressure needed to achieve that pn+1 supports continuity

of un+1
i . Subtraction of Equation 3.6 from Equation 3.7 yields:

un+1
i − ũi

∆t
=−∂(pn+1 −pn)

∂xi

=−∂(δp)

∂xi

(3.9)

By taking the divergence of Equation 3.9 , the continuity constraint comes into play. As

the flow field un+1
i is required to satisfy continuity, it vanishes from the equation and we

are left with the following Poisson equation for the pressure correction:

1

∆t

∂ũi

∂xi
= ∂2(δp)

∂xi∂xi
(3.10)

The Poisson equation is a linear PDE, and may readily be solved numerically as a set of

linear equations on the form

Ai j x j = bi (3.11)

as will be discussed in Section 5.3. Using the general discrete notation of Table 3.1, a

discrete version of the Poisson equation may be written:

L(δp) = 1

∆t
Gi (ũi ) (3.12)

Once the Poisson equation (3.10) is solved, both ũi and δp are known, so that un+1
i may

be found directly from Equation 3.9. This velocity field is assured to satisfy the con-

tinuity constraint.

In brief, the FSM uses the possibly divergent flow field ũi to find a correction δp to the
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pressure pn that results in a pressure pn+1 = pn+δp that supports continuity of the flow

field un+1
i .

It should be noted that the value of pn+1 is independent of the value of pn , as the pres-

sure correction is calculated from the continuity constraint. Equation 3.6 may therefore

be evaluated with an arbitrarily chosen pressure field, yielding a different correction

term so that the pressure at time step n +1 still holds for continuity. This feature may

be used to simplify the algorithm: Choose a uniform pressure field at time step n, (e.g.

p = 0 , everywhere) so that the pressure gradient term equals zero. Now, from the de-

finition of the corrected pressure (Equation 3.8), we get pn+1 = δp, so that the Poisson

equation (Equation 3.10) gives the value of pn+1 directly. This approach is clearly easier

to implement into a computer code, but care should be taken because the omittance of

the pressure field at time step n may cause issues, for example when it comes to force

calculations.
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3.7 Solution quality tests

As stated in the introduction of this chapter, the numerical solution will never become

the exact solution. As such, it is important to check the quality of the numerical re-

sults, both during and after calculations. The indications from such tests may both

warn about large errors in the solution, and ease the process of finding the source of

such errors.

3.7.1 Cell Courant-number

The Courant-Friedrich-Lewy-number (CFL) (also covered in Section 5.5) is related to the

stability of the method used. For a fluid cell defined by the mesh size ∆xi , the number

can be written as

C F Lcel l =
ui

∆xi
∆t (3.13)

On this form, the number may be interpreted as the number of cells a particle will pass

through in one time step given that the particle holds the velocity of that cell, and for

explicit methods the number should be less than 1 (Ferziger and Péric (2002)). Calcu-

lation of the CFL-number in every cell may reveal which area of the discretized domain

that is the source of an eventual instability. This is of good use for non-uniform grids,

where certain domain regions may have too small cells, a problem that can be resolved

with local mesh-rearrangement, or by decreasing the time step ∆t .

3.7.2 Discrete continuity equation

Though it is used for the analytical derivation of the pressure Poisson equation (Equa-

tion 3.10), the continuity equation (Equation 2.4) need not be solved numerically for

incompressible flows. The discrete version of the continuity equation (Equation 3.2)

may however be used as a test for the quality of the numerically solved flow field, as this

should satisfy continuity. Such tests may be carried out for single or grouped fluid cells,

or for the domain as a whole.
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3.8 Fluid-Structure Interaction

The previous sections have described some important steps in solving the governing

equations for a fluid alone. The mathematical model for flows around a structure turns

out more complicated. The simultaneous exertion of forces between structure and fluid

entails a need for a coupled model (as discussed in Chapter 2).

3.8.1 Modeling approaches

There are two main approaches to mathematically model the coupling between fluid

and structure. The monolithic approach aims at modeling the problem as a whole, whe-

reas the partitioned approach models the two problems in separate solution domains,

linked by some interface conditions (e.g. the boundary conditions presented in Section

2.3). A schematic of the two approaches is represented in Figure 3.8.

According to Sotiropoulos and Yang (2014), solution algorithms from monolithic ap-

proaches are unconditionally stable. Hou et al. (2012) states that they also lead to more

accurate numerical schemes. The downside of such models is that every specific pro-

blem needs its own specific model, leaving little room for versatility in the design of a

solution algorithm. Partitioned approaches on the other hand, enables for a high grade

of modularity for the solution algorithms. Well tested and established solvers for both

the fluid and the structural models may thus be combined to form a package of inter-

connected software that is highly versatile. This is of great value when studying e.g. a

large range of different aquatic propulsion strategies.
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Figure 3.8: Schematic of the monolithic approach (a) and the partitioned approach (b) for fluid-
structure interactions, where S f and Ss denote the fluid and structure solutions, respectively.
(From Hou et al. (2012)).

3.8.2 Solution algorithms

As presented in Subsection 3.8.1, the mathematical model of a fluid-structure interaction

problem may be either monolithic or partitioned. Due to the lack of versatility, monoli-

thic approaches will not be further investigated in this thesis. Instead, the focus will be

on the numerical implementation of partitioned approaches.

The separate domains of a partitioned model will be discretized by separate grids, and

some form of conformity is needed between these. The interface between the two dom-

ains is mathematically governed by the boundary conditions (see Section 2.3), and con-

formity may be achieved through use of a conforming mesh method, where the nodes

from each domain conforms along the domain interface (see Figure 3.9). This allows for

satisfaction of the boundary conditions directly on the interface, which is good regar-

ding accuracy. However, this strict conformity requires that the fluid mesh is regenera-

ted for every time step when the structure is moving. Such re-meshing is computatio-

nally costly, and the grid quality (see Section 3.3) of the re-meshed fluid domain may be

significantly lowered.

The non-conforming mesh methods allows for fixed fluid grids, and therefore avoids the

problems connected to re-meshing. It is among these methods we find the Immersed

Boundary Methods (IBMs), which will be described in more detail in Chapter 4.
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Figure 3.9: Conforming (top) and non-comforming (bottom) mesh following a cylinder with
time. (Modified, from Hou et al. (2012)).

Another important aspect of the partitioned FSI methods is the degree of coupling be-

tween the solid and fluid domain. Sotiropoulos and Yang (2014) distinguish between

loose and strong coupling, and state that the loosely coupled schemes are prone to nu-

merical instabilities. The strongly coupled schemes overcomes this by solving the struc-

tural and fluid parts iteratively for each time step, thus ending up with a stable, but also

more costly solving process.
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Immersed boundary methods

The foundation for the IBM was laid by Peskin (1972), as he described a way to use a

fixed rectangular domain to simulate blood flowing through a moving heart-valve (see

Figure 4.1). The great innovation of the method was to replace the mesh-conforming

boundary description with a field force replicating the presence of the boundary. This

force might be distributed onto the fixed grid without need for grid-deformation and re-

meshing, that is: The governing equations could be discretized onto an Eulerian mesh

(see Appendix B) of high quality.

Equation 4.1 and 4.2 shows how the boundary force is applied into the fluid equations

in a general IBM approach.

∂ui

∂t
+ ∂(ui u j )

∂x j
=− ∂p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
+ fi (4.1)

T (ui ) =−Gi (p)+ 1

Re
L(ui )− A(ui )+ fi (4.2)

A Lagrangian representation of the position of the immersed boundary relatively to the

Eulerian mesh points is needed in order to calculate the strength and distribution of the

Eulerian body-force ( fi ) in Equation (4.1).

37



38 CHAPTER 4. IMMERSED BOUNDARY METHODS

On the immersed boundary (Γb), an Immersed Boundary Condition (IBC) is applied (e.g

a wall BC as discussed in Section 2.3):

ui =Vi and

∂p

∂xn
= 0 on the immersed boundary (Γb)

(4.3)

where subscript (·)n denotes the direction normal to the boundary.

When put into Equation 4.1, the velocity condition of 4.3 yields a solution for a boundary

force (Fi ) that is valid on Γb . Fi may further be represented as a set of singular forces F k
i

at discrete points (k) along the boundary.

The next operation is to distribute the effect of the singular boundary forces F k
i onto

the underlying Eulerian mesh ending up with a distributed body field force fi that is

defined on the underlying Eulerian mesh. The process of finding and distributing this

field force, fi , varies among the different types of IBM, which will be discussed in the

next section.
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Figure 4.1: Simulation of blood flowing through a heart valve. The valve leaflets are allowed to
move with the flow, but they are also governed by material laws for deformation so that the valve
seals when flow is going from right to left. (Modified, from Peskin (1972)).
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4.1 Different IBM approaches

Since Peskin (1972), the IBM concept has been developed into several new methods.

Mittal and Iaccarino (2005) divide the family of IBMs into two groups, based on their

different approach to finding the immersed boundary force:

• Continuous forcing methods

• Direct forcing methods

The different IBMs are broadly discussed in Mark et al. (2011), Mittal and Iaccarino

(2005), Sotiropoulos and Yang (2014) and Peskin (2002). This section contains a brief

summary of the two groups of methods.

4.1.1 Continuous forcing methods

In most continuous forcing approaches, the immersed boundary is discretized by La-

grangian points, k, and F k
i is calculated at these points, before being smeared out to the

underlying grid by some sort of distribution function (see Figure 4.2).

The original method by Peskin (1972) modeled the immersed boundary as a chain of

elastic filaments, so that the force from the boundary on the fluid could be calculated

from Hooke’s law. The elongation of the filaments was derived from the immersed boun-

dary condition: ui = Vi on Γb . To distribute the force to the underlying mesh, he made

use of a discrete Dirac delta function, and that is still the most common approach for

the distribution.

There are some issues with the continuous forcing approach: They are for example

unsuited for simulations of rigid body boundaries, due to mis-behavior of the consti-

tutive laws in the rigid limit (Mittal and Iaccarino (2005) and Sotiropoulos and Yang

(2014)). In addition, it is hard to obtain a high order of accuracy, as mentioned by e.g.

Guy and Hartenstine (2009): "the use of delta functions limits the order of accuracy near

the boundary to first order in space".
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Figure 4.2: Left: The boundary force F k is found at the specified Lagrangian points of the im-
mersed boundary, before being distributed out to the surrounding fluid. The shaded region re-
presents the area onto which F k is distributed. Right: Different possible distribution functions.
(From Mittal and Iaccarino (2005)).
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4.1.2 Direct forcing methods

The direct forcing approach was first presented by Mohd-Yusof (1997), and its name

reflects that the forcing term, fi , is imposed directly onto the Eulerian grid without being

calculated from material constitutive laws.

Consider Equation 4.2 with an explicit Euler method used for T .

un+1
i −un

i

∆t
=−Gi (p)+ 1

Re
L(ui )− A(ui )+ fi

= RHS + fi

(4.4)

Mohd-Yusof’s formulation for the boundary force Fi springs directly out from the equa-

tion when the IBC (ui =Vi on Γb) is applied:

Fi =


V n+1

i −un
i

∆t −RHS directly on Γb

0 elsewhere
(4.5)

A direct transfer of this force to the Eulerian fluid points, that is: Fi = fi , is only valid

when the Eulerian points coincide with the immersed boundary. This is rarely the si-

tuation, and therefore some kind of interpolation must be done to find a suitable value

for fi at the Eulerian mesh points. If the numerical schemes are chosen so that un
i and

RHS are known, then the boundary forcing Fi is determined solely by the immersed

boundary velocity. This means that an interpolation of the fluid velocity that mimics a

typical behavior of a wall-near velocity profile on the Eulerian nodes will yield a good

numerical estimate for the forcing term fi .

A modified version of Mohd-Yusof’s formulation (Equation 4.5) may be written:

fi =


Ui−un

i
∆t −RHS near Γb

0 elsewhere
(4.6)

where Ui represents the interpolated velocity that accounts for the boundary presence.
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Interpolation schemes

Fadlun et al. (2000) presents three velocity-interpolation approaches for the direct for-

cing approach (each illustrated in Figure 4.3):

• No interpolation

• Weighting by cell-volume fraction

• Linear interpolation between the immersed boundary-velocity and nearby fluid

velocities

By no interpolation is meant that the forcing is determined by imposing the immersed

boundary condition on the Eulerian nodes that are closest to the boundary. This way,

the IBC is explicitly satisfied, but the representation of the body becomes razterized as

shown in Figure 4.3 (a). This method is simple to implement, but requires a high grid-

resolution in order to represent the immersed boundary acceptably.

The cell-fraction interpolation is done by weighting the forcing term by a measure of

the cell volume that is occupied by the solid. The weighted version of fi is applied on

the nearest fluid node.

The reasoning for the linear interpolation is that a velocity-profile near a submerged

wall will have an approximately linear region, following the inner law of the wall (see

White (2006)). Thus, as long as the grid-cells are small enough, the linear approximation

holds. The longest interpolation-step for linear interpolation on the grid is 2∆xi , and the

following requirement should be satisfied.

2∆xi ≤∆li (4.7)

where ∆li is the linear region which may be estimated by using the law of the wall. Fad-

lun et al. (2000) concluded that the linear approximation was the most efficient appro-

ach.
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Figure 4.3: The three interpolation procedures discussed in Fadlun et al. (2000). No interpola-
tion (a) gives a rasterized representation of the boundary. Cell-fraction weighting (b) where Ψb

represent the ratio between fluid and solid in the cell. Linear interpolation (c), here shown as
interpolation in the direction normal to the flow velocity. (From Fadlun et al. (2000)).
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When to interpolate

A question arises when a direct forcing IBM is combined with a Fractional Step method

for pressure-velocity-coupling: When in the algorithm should the interpolation be done?

The earlier discrete forcing methods (such as the ones described by Mohd-Yusof (1997)

and Fadlun et al. (2000)) interpolates on the divergence-free velocity at time step n +1,

thus the interpolated cells will not satisfy continuity. Fadlun et al. (2000) also discuss

the possibility of performing the interpolation of velocity on the non-solenoidal velo-

city field (ũi ) instead of on un+1
i . This is supported by Balaras (2004) that states that it

may be done "without compromising the temporal accuracy of the method"1. This way,

the pressure correction
(
δp

)
is calculated with the information from the interpolated

velocity field, and thereby carry over information about the immersed boundary.

From the definition of the direct forcing (Equation 4.6), with interpolation performed

on ũi :

ũi −un
i

∆t
= RHS everywhere, and

Ui −un
i

∆t
= RHS + fi near Γb

(4.8)

From this it is be derived that

Ui = un
i +∆t ·RHS +∆t · fi

= ũi +∆t · fi

(4.9)

which means that the forcing term may be written as:

fi = Ui − ũi

∆t
(4.10)

Figure 4.4 shows that the procedure of interpolation of Ui on the non-solenoidal field

1This is only true if the difference between ũi and un+1
i is small, which is the case for fractional step

methods using the pressure field pn to find ũi . If a zero-gradient pressure field is used instead, then the
difference between ũi and un+1

i may be large, so that the force calculated from the interpolation on ũi

becomes highly inaccurate.
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(ũi ) is the same as adding the forcing term in the equation for the node near the immer-

sed boundary.

Figure 4.4: Interpolation on the non-solenoidal velocity field. The updated velocity in the inter-
polation node has the value of Ui , which is an acceleration of Ui−ũi

∆t = fi over the time step.

Pressure condition

As stated in Section 2.3, the immersed boundary condition also requires the normal gra-

dient of the pressure to be zero on the boundary. Through the fractional step method,

this requirement modifies to be necessary for the pressure correction:

∂(δp)

∂xn
= 0 on Γb (4.11)

Fadlun et al. (2000) observed that, for all their calculations, the pressure correction of

the non-solenoidal field (ũi ) was very small compared to the velocity magnitude itself.

Their discussion about this is as follows:

The interpolated velocity field mimics the velocity boundary conditions on Γb , that is,

the numerical velocity at the node near the boundary should be close to zero. In the

following representation of the governing equation (where subscript (·)t and (·)n stands

for the tangential and normal direction,respectively)

∂un

∂t
=− ∂p

∂xn
+ 1

Re

(
∂2un

∂xn∂xn
+ ∂2un

∂xt∂xt

)
− ∂u2

n

∂xn
− ∂(unut )

∂xt
(4.12)
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it then follows that all terms but the pressure gradient term and the viscous terms are

very small. Further, if the velocity interpolation scheme is chosen linear, also the viscous

terms will be small, so that eventually the pressure gradient is small:

∂p

∂xn
<< 1 (4.13)

Treatment of the body-internal field

The application of the immersed boundary force
(

fi
)

yields a velocity field that satisfies

the governing problem requirements outside the immersed boundary. Since the immer-

sed boundary is defined as a hollow shape, a flow system will develop on the nodes that

are situated inside the boundary as well. Fadlun et al. (2000) discussed three approaches

on how to treat this:

• Apply a reverse forcing into the internal flow field

• Do nothing, and let the internal flow field develop unrestrictedly

• Extend the velocity interpolation onto the first body-internal node in addition to

the external fluid nodes.

Their conclusion was that the difference was negligible as far as the direct forcing met-

hod was used. This is later supported by Guy and Hartenstine (2009), who argues that

"as discrete time and space are refined, the velocity on the extension will converge to the

velocity of the solid body, and so it is not surprising that these approaches gave similar

results."
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4.2 IBM in swimming fish problems

The immersed boundary methods are indeed designed to be used in fluid-structure pro-

blems, and according to Peskin (2002), they are especially useful in biological fluid dyn-

amics. This section discuss the applicability of IBMs in swimming fish problems.

The main advantages of IBMs may be listed as:

• No re-meshing of fluid domain - low computational cost when describing arbitra-

rily moving objects

• Allows for use of high-quality grids

• Versatility when it comes to boundary shape and complexity

• Object modularity - multiple boundaries may easily be put into the same fluid

problem

• Program modularity - an IBM-solver may be developed by adding an IBM-module

to an already existing NS-solver

Since the swimming fish problem is characterized by complex boundary shapes and

propagating motion, an IBM should be a good choice for treating the problem numeri-

cally. The downsides of the IBMs should though be assessed:

• Issues with continuity in the cells near the immersed boundary

• High grid resolution in remote domain parts

• Numerical instabilities of the fluid-structure-interaction system

The last point in the list above is of especial concern. Uhlmann (2005) states that the

direct forcing methods, when applied to arbitrarily moving boundaries, are prone to

numerical oscillations. This may be overcome by the use of a strong coupling between

the fluid solver and structure solver, as discussed in Section 3.8.
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4.2.1 Examples of studies

Mittal et al. (2008) developed an FSI-solver with an IBM using ghost-cells for the inter-

polation. The solver was validated on 2D- and 3D flow problems for Reynolds numbers

in the range O(100) - O(103). For fluid discretization they used a stretched regular recti-

linear grid, while, for the discretization of the immersed boundary surface, they used an

unstructured grid (illustrated in Figure 4.5).

Their conclusion was that the solver was "highly versatile" for simulations of moving

complex boundaries, and they demonstrated this versatility by simulating both the stroke

of a pectoral fin on a fish, and the flight of a dragonfly.

Gilmanov and Sotiropoulos (2005) developed an IBM that used a hybrid staggered/co-

located grid. The solver was validated on example flows with Reynolds numbers span-

ning from O(100) to O(102), before being applied to to simulate two aquatic swimmers

in a 3D domain:

• a streamlined mackerel (see Figure 4.6)

• a planktonic copepod

Both studies showed realistic results, and demonstrated the solvers ability to handle

problems involving completely different types of aquatic swimmers. The overall con-

clusion of the paper was that the method was " a powerful numerical simulation tool

for a broad range of biofluids applications".
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Figure 4.5: Demonstration of the grids used by Mittal et al. (2008). An unstructured grid is used
to represent a harbor porpoise (top), for which the geometry is fetched from a CT scan. The
immersed boundary represented in the Eulerian fluid grid (bottom). (Modified, from Mittal et al.
(2008)).
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Figure 4.6: Post-processed results from the mackerel study performed by Gilmanov and Soti-
ropoulos (2005), showing the formation of a reverse Karman street behind the fish for different
slip-ratios (the ratio between fish propagation speed and wave speed of the fish undulations)
(From Gilmanov and Sotiropoulos (2005)).





Chapter 5

Numerics

As described in Chapter 3, discrete equation sets must be solved in order to solve the

governing equations for fluid flow:

The RHS-boundary value problem of the semi-discrete approach:

RHS(ur , p) =−Gr (p)+ 1

Re
L(ur )− A(ur ) (3.4)

The semi-Discrete ODE:
∂ur

∂t
= RHS(ur , p) (3.3)

The Poisson equation for the pressure correction δp:

L(δp) = 1

∆t
Gr (ũr ) (3.12)

This chapter presents some numerical methods used to solve these equation sets. The

descriptions are limited to equations sets discretized onto a 2-dimensional structured

rectangular grid. The discrete nodal addresses will be shown as |i , j . To avoid confusion

with the tensor notation, tensor subscripts will be written by the letters r and s, or they

will be omitted.
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5.1 Approximation of spatial derivatives

A nodal version of Equation 3.4 (tensor notation omitted for readability) may be written

as:

RHS|i , j = G|i , j + A|i , j + V |i , j (5.1)

where

• G|i , j is the pressure gradient term

• V |i , j is the viscous term

• A|i , j is the advective term

each approximated by an arbitrary FDM-scheme at node address i , j . Equation 5.1

yields a value for RHS in every nodal point, which may again be used to solve the semi-

discrete ODE (Equation 3.3) in all nodal points.

Along the boundary, the nodal values are determined directly from the boundary con-

ditions for the problem model (see Section 3.3).
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5.2 Time integration

The previous section shows how RHS(ur , p) is represented in each node of the mesh. As

RHS(ur , p) represents the time-gradient of the velocity, a solution of equation 3.3 may

be found on each node as well, that is: The field at the next time step is found by inte-

grating the velocity node-wise.

Numerical integration of an ODE as the one in Equation 3.3 or 5.2, is done by approxi-

mating the solution some step, h, forward in time.

d f

d t
= RHS( f (t ), t ) for an arbitrary function, f (t ) (5.2)

The methods for solving such equations may be divided into the groups of explicit met-

hods, where the solution for the integrated value springs directly from the equation,

and implicit methods where the solution has to be found through iterations. Of the two

groups, the latter one is unconditionally stable, while the first is clearly easier to imple-

ment in a code. This section will describe two basic explicit time-integration schemes

for ODEs: The Forward Euler method and the Explicit two stage Runge-Kutta method

(RK2).

5.2.1 Forward Euler method

The forward Euler method arises from the simplest explicit time discretization for an

ODE:
f (t +h)− f (t )

h
≈ RHS( f (t ), t ) (5.3)

Leading to the numerical integration-scheme:

f (t +h) ≈ f (t ) + h ·RHS( f (t ), t ) (5.4)

where h represents the step taken along the dimension t . Performing an Euler integra-

tion over a step h, is called "performing an Euler-step of h".
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5.2.2 Explicit Runge-Kutta 2 method

The two stage explicit Runge-Kutta method is performed by executing two forward Euler

steps consecutively. The first step is a half-step (h/2) made to find information about the

slope of the solution at t +h/2. This information is then used for the second Euler step,

which is taken from the same initiation point t , but with the slope estimated at t +h/2

by use of the field values predicted by the first step.

Prediction of field values at h/2:

f (t +h/2) ≈ f (t ) + h

2
RHS( f (t ), t ) (5.5)

Integration of the field variables from t to t +h by using a slope estimated from the field

values at t +h/2

f (t +h) ≈ f (t ) + h ·RHS( f (t +h/2), t +h/2) (5.6)

The method of using the slope estimated at h/2 increases stability (see Figure 5.1), though

it does not enhance the accuracy of the scheme (as shown in Section 5.4).
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5.3 Linear solvers

As opposed to Equation 3.4, which contains the non-linear advective term, the Poisson

equation for the pressure correction (Equation 3.12) contains only linear terms. It may

therefore, by use of an appropriate discrete mapping, be written on the form:

Ar s xs = br (5.7)

For this problem, several solution algorithms exist, and they are separated into two

groups: Direct solvers and iterative solvers. The direct solvers are different algorithms

for simply solving the equation exactly, by arriving at the equation:

xs = br A−1
r s (5.8)

The problem with the direct solvers is that they are computer costly for large meshes. As

an example, consider a 2-dimensional quadratic domain discretized by a Cartesian grid

with M points in each direction. When this mesh is mapped onto a 1-dimensional array,

xs , the length of this array is readily M ×M . This means that the number of elements in

Ar s is (M ×M)×(M ×M), so the growth of Ar s with M is M 4 for a 2-dimensional system.

For a 3-dimensional domain, the growth is M 6. This means that a direct method on a

3-dimensional grid of 100×100×100 points would have to solve a linear system where

Ar s contains 1012 points. Due to this limitation regarding size, direct solvers will not be

covered more in this thesis.

Iterative solvers are more versatile when it comes to mesh size, but they do not arrive

at an exact solution of Equation 5.7. Instead, they are iterated until some specified cri-

terion is satisfied. A typical criterion is that the difference between the solution of two

successive iterations is less than some specified value.

There exist many fast, clever and complex methods for iteratively solving linear equa-

tion systems. Examples, such as the Multigrid method and CGstab are discussed in Fer-

ziger and Péric (2002), but will not be covered here as they fall outside the scope of this

thesis.

Due to its simplicity and ease of implementation, the Gauss-Seidel method (GS) is cho-
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sen to describe an example of an iterative solver. It should be noted, however, that the

convergence rate of this solver is poor compared to the ones mentioned above.

5.3.1 Gauss-Seidel method

Consider Equation 3.12 discretized by a 2nd order FDM-scheme. For generality, Φ is

chosen to represent the field variable, and the RHS is described by g :

Φ|i+1, j −2Φ|i , j + Φ|i−1, j

∆x2
+ Φ|i , j+1 −2Φ|i , j + Φ|i , j−1

∆y2
= g

∣∣
i , j (5.9)

A rearrangement of this equation may be done to arrive at an expression for Φ|i , j

Φ|i , j =
(
Φ|i+1, j + Φ|i−1, j

∆x2
+ Φ|i , j+1 + Φ|i , j−1

∆y2
− g

∣∣
i , j

)
/

(
2

∆x2
+ 2

∆y2

)
(5.10)

The value of Φ|i , j is now implicitly given, and the Gauss-Seidel method propagates to-

wards the exact solution by successively iterating over the grid, storing the newly calcu-

lated values in the same grid as the one the calculation values are fetched from. This

way, the terms at nodal address (i −1, j ) and (i , j −1) are evaluated using the value up-

dated in the ongoing iteration step, while terms at nodal address (i +1, j ) and (i , j +1)

are evaluated using the value from the previous iteration step.

The iteration keeps going until a convergence criterion is reached, typically based on a

norm applied on the difference between two successive iterations ofΦ:

||Φn+1 − Φn || ≤ εmax (5.11)

where εmax is the largest allowed value of the norm.
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5.4 Numerical Error

The mathematical definition of a derivative of a function f is given by Equation 5.12:

d f

d t
, lim

h→0

f (t +h)− f (t )

h
(5.12)

Provided that f is a smooth function over the interval (t , t +h), and h << 1, the value of

f (t +h) may be approximated by a Taylor expansion around f (t ):

f (t +h) ≈ f (t )+ h
d f

d t

∣∣∣∣
t
+ ...+ hn−1

(n −1)!

d n−1 f

d t n−1

∣∣∣∣
t

(5.13)

where n −1 is the finite length of the Taylor-expansion.

Since h is assumed small, the error of the approximation must have the same order of

magnitude as the first term that is omitted, that is O( hn

n! ). In numerics it is common to

speak of a method as accurate to the nth order or as an nth-order method, where nth

reflects the power of h to which the error is proportional. Further, it is common to just

write O(hn) for the order of the accuracy.

As an example, the explicit Euler method and the explicit two-stage Runge-Kutta met-

hod (see Section 5.2) are both second-order accurate:

Explicit Euler:

f (t +h) = f (t )+h ·RHS( f (t ), t )+O(h2) (5.14)

Explicit RK2:

f (t +h) = f (t )+h ·RHS( f (t +h/2), t +h/2)+O(h2) (5.15)
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5.5 Numerical stability

Ferziger and Péric (2002) defines a numerical solution as stable if it "does not magnify

the errors that appears in the course of numerical solution process".

5.5.1 Linear stability

The stability of non-linear equations such as the NS-equation (Equation 2.7), is difficult

to investigate (Ferziger and Péric (2002)), but an analysis of a linearized version of the

method may in many cases provide usable information about the stability limits (Lomax

et al. (1999)).

If the advective operator A(·) is linearized, a linear version of the semi-discrete NS-

equation (Equation 3.3) may be written as

∂ur

∂t
= Mr sus − fr (5.16)

where Msr represents a linear operator that combines the linearized advective term and

the viscous term, and fr represents the pressure term. The stability of a such equation

is represented by the complex eigenvalues λ of the operator Mr s (Lomax et al. (1999)).

Further, application of a numerical time-integration method on the equation may be

written on the form

un+1
r =Cr sun

s − g n
r (5.17)

where Cr s is the operator that arise from the application of a time-integration method

on Equation 5.16 and similarily, gr is the term resulting from fr . The stability of the

method is according to Lomax et al. (1999) depending on the criterion

|σ| ≤ 1 (5.18)

where σ represents the complex eigenvalue of Cr s with the largest absolute value. Furt-

her stated in Lomax et al. (1999) is that, if a semi-discrete approach is used, there exist

a relation between σ and λ. For the explicit Euler and the RK2-method, these relations
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Figure 5.1: The linear stability regions of different explicit Runge-Kutta methods. As seen, the
RK2 method has an added stability compared to the Euler explicit method (shown in the figure
as RK1). (From Lomax et al. (1999)).

are:

σ= 1+λh for the explicit Euler method

σ= 1+λh + 1

2
λ2h2 for the explicit RK2 method

(5.19)

Figure 5.1 shows how the linear stability criterion (Equation 5.18) may be represented

in the complex λh-plane. The definition of linear stability may often serve as guidance

when time step and mesh size is to be chosen for a numerical problem, as it indicates

how the relation between the system (represented by the system eigenvalues λ) and the

method (represented by the method eigenvalues σ) will affect stability.
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5.5.2 The Courant number

The Courant number, also called the CFL-number1 is often used as a stability condition

for explicit methods applied on PDEs Ferziger and Péric (2002). The number is defined

as:

C F L = cr
∆t

∆xr
(5.20)

Where∆t and∆xr represents the characteristic size of the discrete time step and spatial

step, respectively. cr is the velocity of which information travels in the solution.

The CFL-condition for stability is that the value of the CFL number is smaller than some

limiting value C F Lmax that depends on the method used. For explicit schemes it is of-

ten taken as C F Lmax = 1 Ferziger and Péric (2002)

The CFL-condition is what’s called a necessary condition for stability, meaning that sta-

bility cannot occur without the condition being satisfied, though stability is not assured

by the satisfaction of the condition either.

1From the name of all of its inventors: Courant, Friedrich and Lewy.
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Development of code

The computer code is developed to solve the incompressible Navier-Stokes equations

for 2-dimensional flow (Equation 2.7) on a rectangular domain meshed with a regu-

lar rectilinear grid. Further, it can simulate the flow behavior past arbitrary immersed

boundaries defined as simple polygons within the domain limits. The polygons may

have prescribed motions defined as velocities at each polygon vertex.

Figure 6.1: Excerpt from the code: FDM gradient function.
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6.1 Development tools

The present code was developed and written in Fortran 90, with Code::Blocks, an open-

source Integrated Development Environment (IDE), and an excerpt from the code is pre-

sented in Figure 6.1. The program has only been tested and compiled with the gfortran

compiler, with the following flags and linkers:

• -fcray-pointer

• -static-libgcc

The finished program has only been run on a windows 10 computer with MinGW (Mi-

nimalist GNU for Windows) installed.

The calculation results are stored to an output file that is compatible with the Tecplot®360 EX™

post-processing software.

6.2 Notation

As this chapter is devoted to describe the computational implementation of theory, ten-

sor notation may induce more confusion than good. Table 6.1 and 6.2 present the nota-

tion used in the following sections.
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Table 6.1: Notation used for description of the N-S solver.

Symbol Meaning

Nx Number of discrete points in x-direction

Ny Number of discrete points in y-direction

i , j Horizontal and vertical nodal address, respectively

(·)|i , j Quantity (·) evaluated at node
(
i , j

)
pos

(
(·)|i , j

)
Position of nodal address

(
i , j

)
for quantity (·) in the staggered configuration

d Direction (x: d = 1, y : d = 2)

d x(d) Mesh cell size in d-direction

u, v Fluid horizontal and vertical velocity, respectively

RKstep Indicating the propagation length of the respective Runge-Kutta integration step

RKd t Length of th time step for the respective Runge-Kutta call

ΦD Difference between two successive iterations onΦ

L∞(·) The infinity norm applied on (·)
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Table 6.2: Notation used for description of the IBM-module.

Symbol Meaning

d(·)e Ceiling-function - rounds (·) up to nearest integer

b(·)c Floor-function - rounds (·) down to nearest integer

b Array containing information of the polygon constituting the immersed boundary

bcomp Polygon coordinates of b mapped to the computational domain

bdi r Array describing the directional vectors of each polygon segment of b

bnor m Array describing the normal vectors of each polygon segment of b

b× Array carrying information about number of intersections on each polygon segment

Nb Number of vertexes contained in b

c Denotes the vertex or segment number of interest

X (c,d) Position in direction d of vertex c

V (c,d) Immersed boundary velocity at vertex c in d-direction

x× x-coordinate of intersection, ×
y× y-coordinate of intersection, ×
¯ Denotes the body-internal node

× Denotes the intersection number of interest

⊗ Denotes the integer address of the interpolation node

◦ Denotes the integer address of the fluid node next to the interpolation node

N×d Number of intersections in d-direction

Vd Immersed boundary velocity in d-direction at intersection

Ud Interpolated fluid velocity in d-direction

fd Immersed boundary forcing term in d-direction

Fd Total force in d-direction from fluid to immersed boundary
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6.3 The Navier-Stokes solver

The Navier-Stokes solver was constructed by use of:

• a staggered grid equipped with the Finite Difference stencils described in Harlow

and Welch (1965) for the spatial discretization (see Section 3.2 and 3.3)

• the explicit two stage Runge Kutta method (RK2) for the time integration (descri-

bed in Section 5.2).

• the Fractional Step Method (FSM) for the pressure-velocity coupling (described in

Section 3.6).

• the Gauss-Seidel method (described in Section 5.3) for solving the Poisson Equa-

tion resulting from the fractional step method.

A flow chart describing the N-S solver is presented in Figure 6.2.

6.3.1 Grid generation

Figure 6.3a shows how the relation between the physical and computational node ad-

dresses is defined in the code, and Figure 6.3b shows how the computational cell is rela-

ted to the field quantities. Defined this way, all equations may be described without the

need of half-integer addresses, so that the equations presented are directly applicable

to a computer code.
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Figure 6.2: Flow chart describing the outline of the N-S solver. See Figure 6.7 for further details
about the RK2-subroutine.
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(a) The relation between physical (x, y) and computational (i , j ) nodal addresses.

(b) The computational cell and the related cell quantities.

Figure 6.3: The definition of the computational grid used for the program. The cell address is
defined by its rightmost and uppermost boundary.
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6.3.2 Finite difference scheme

The semi-discrete approach is done by first solving for the spatially differentiated terms

of equation 5.1. For this purpose, a subroutine called FDM was made. It calculates the

values of the difference operators at all positions in the discrete domain, and stores the

field of RHS-values in a temporary array.

Together with the address-definition showed in Figure 6.3b, and with the subscript (|pos(·))

denoting "evaluated at the position where the quantity (·) is stored", the FDM-stencils

from Harlow and Welch (1965) may be described as follows (see also Figure 6.4, 6.5 and

6.6):

Gradient

Gx(p)|pos(ui , j ) =
p|i+1, j −p|i , j

∆x
(6.1)

Gy (p)|pos(vi , j ) =
p|i , j+1 −p|i , j

∆y
(6.2)

Laplacian

L(u)|pos(ui , j ) =
u|i+1, j +u|i−1, j −2u|i , j

∆x2
+ u|i , j+1 +u|i , j−1 −2u|i , j

∆y2
(6.3)

L(v)|pos(vi , j ) =
v |i+1, j + v |i−1, j −2v |i , j

∆x2
+ v |i , j+1 + v |i , j−1 −2v |i , j

∆y2
(6.4)
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Advection

A(u)|pos(ui , j ) = 0.25

((
u|i−1, j +u|i , j

)2 − (
u|i , j +u|i+1, j

)2

∆x

+
(
u|i , j−1 +u|i , j

)(
v |i , j−1 + v |i+1, j−1

)− (
u|i , j +u|i , j+1

)(
v |i , j + v |i+1, j

)
∆y

)
(6.5)

A(v)|pos(vi , j ) = 0.25

((
u|i−1, j +u|i−1, j+1

)(
v |i−1, j + v |i , j

)− (
u|i , j +u|i , j+1

)(
v |i , j + v |i+1, j

)
∆x

+
(
v |i , j−1 + v |i , j

)2 − (
v |i , j + v |i , j+1

)2

∆y

)
(6.6)

Node of evaluation

Pressure node

Horizontal velocity node

Vertical velocity node

Figure 6.4: The finite difference stencil for the gradient difference operator on the pressure eva-
luated at pos(u|i , j ). Black nodes are the ones used in the corresponding equation (Equation
6.1).
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Node of evaluation

Pressure node

Horizontal velocity node

Vertical velocity node

Figure 6.5: The finite difference stencil for the Laplacian difference operator evaluated at
pos(u|i , j ). Black nodes are the ones used in the corresponding equation (Equation 6.3).

Node of evaluation

Pressure node

Horizontal velocity node

Vertical velocity node

Figure 6.6: The finite difference stencil for the advective difference operator evaluated at
pos(u|i , j ). Black nodes are the ones used in the corresponding equation (Equation 6.5).
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6.3.3 Time integration and pressure-velocity coupling

As seen in Figure 6.2 the RK-routine is called twice every time step. First with the step-

parameter RKstep = 0.5, then with RKstep = 1.0. The time step used within the routine

is defined as: RKd t = RKstep ·∆t .

In first call to the subroutine the flow fields (u, v)n and are used both as initiation point

and as estimation point for the integration (see Section 5.2). The second iteration, uses

(u, v)n only for initiation, and uses the flow field (u, v)n+0.5 for estimation of the slope.

Following the semi-discrete approach described in Section 3.5, the RK2-routine serves

as an outer shell for the solution algorithm, integrating the value of the discretized RHS

of the semi-discrete equation (Equation 3.3). As discussed in Section 3.6, the incom-

pressibility of the fluid poses a need for a pressure-velocity coupling scheme, which has

to be combined with the time integration scheme.

Figure 6.7 shows schematically how the time integration method (RK2) and the pressure-

velocity coupling method (FSM) are woven together.

First, the FSM-predictor routine solves for the non-solenoidal velocity fields ũ and ṽ . In

the Poisson solver, these fields are used to find the RHS of the Poisson equation (Equa-

tion 3.12), before the pressure correction
(
δp

)
is found by a Gauss Seidel iteration over

the domain. From the pressure correction, the updated pressure pn+RKstep is found.

Lastly, the pressure correction is used to update ũ and ṽ to hold for continuity, thereby

finding un+RKstep and vn+RKstep .

Below follows a description of the operations carried out by each step of the RK2-FSM-

integrator.
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FSM predictor

This subroutine solves the equations

ũ = un +RKd t ·F DM(un+r , vn+r , pn+r )

ṽ = vn +RKd t ·F DM(un+r , vn+r , pn+r )
(6.7)

where r = RKstep −0.5 is the step for which the slope estimation finds place.

Poisson solver

After the two non-solenoidal fields (ũ) and (ṽ) are found, the Poisson equation is solved

iteratively by the following algorithm

1. find the RHS of the Poisson equation (Equation 3.10) at all nodes (i , j ):

g |i j = 1

RKd t

(
ũ|i , j − ũ|i−1, j

∆x
+ ṽ |i , j − ṽ |i , j−1

∆y

)
(6.8)

2. Iterate Equation 5.10 (described in Section 5.3) with Φ = δp over the domain i =
1, ..., Nx and j = 1, ..., Ny until the convergence criterion is reached.

The chosen convergence criterion is that the L∞-norm of the differenceΦD between the

Φ-fields of two successive iterations is less than some said value, e.g. L∞ (ΦD ) ≤ 10−6.

The L∞-norm of the field (ΦD )) is defined as:

L∞(ΦD ) = max(|ΦD |) (6.9)

FSM corrector

The fractional step correction is done by simply updating the non-solenoidal velocity

with the pressure-correction gradient (see Equation 3.9):

un+RKstep = ũ +RKd t
δp|i+1, j −δp|i , j

∆x

vn+RKstep = ṽ +RKd t
δp|i , j+1 −δp|i , j

∆y

(6.10)
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Figure 6.7: Flow chart describing an RK2 subroutine with the fractional step method implemen-
ted.
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6.4 The IBM module

The general task of any IBM-module is to calculate the immersed boundary forcing term(
fi

)
of Equation 4.2. To do so, the module need information about

• the underlying grid points and the field values represented there

• the position of the immersed boundary relative to the underlying grid

Due to the shortage of time available for this thesis, ease of implementation was of high

priority when designing the method. It was therefore decided to implement a direct

forcing method such as the one described in Fadlun et al. (2000), with

• linear interpolation of the velocity field near the immersed boundary

• Interpolation performed on the non-solenoidal velocity fields ũ and ṽ

• no explicitly imposed pressure condition on the immersed boundary

• unrestricted internal flow field development

See Subsection 4.1.2 for details about the list above.

To apply the velocity boundary conditions and find the forcing term, the following algo-

rithm was used:

1. take in the velocity fields and the immersed boundary coordinates

2. detect the intersection between the immersed boundary and the computational

grid lines related to the velocity field of consideration

3. modify the velocity field by linearly interpolate the velocities such that the IBC is

satisfied in the intersection point

4. calculate the magnitude of the forcing term

Figure 6.8 shows the notation used for the fluid nodes that are involved in the interpo-

lation schemes of the IBM-module.
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Figure 6.8: Notation and terminology for the nodes used in the IBM-module. The cell between
the fluid node and the interpolation node is denoted the outer cell, while the cell that is divided
by the immersed boundary is denoted is inner cell. The figure legend shows which quantities
that are connected to which nodes.

6.4.1 Defining the immersed boundary

The immersed boundary is defined as a simple polygon1, with both position
(
xc , yc

)
and

velocities
(
Vx,c ,Vy,c

)
defined at each vertex (c). The velocity at some intersection point

between two vertexes may thereby be found through linear interpolation onto the inter-

section point. The vertex positions are counterclockwise defined in terms of the physi-

cal domain coordinates. Equation 6.11 shows how the polygon vertexes are represented

by an array in the computer code.

b =



x1 · · · xc · · · xNb

y1 · · · yc · · · yNb

Vx,1 · · · Vx,c · · · Vx,Nb

Vy,1 · · · Vy,c · · · Vy,Nb

 (6.11)

1Polygon with no crossing lines
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From this array, the position of vertex c in direction d may be fetched as

X (c,d) = b(c,d) (6.12)

while the vertex velocities in the same direction are found as

V (c,d) = b(c,d +2) (6.13)

where d represents the direction.

6.4.2 Detection of intersections

The detection of intersection is initiated by mapping the body-coordinates of the im-

mersed boundary onto a grid where each line is represented by integers. This allows for

the use of integer functions such as nint(·), floor(·) and ceiling(·), which can be used to

find the nearest grid-lines to any vertex.

Computational arrays in integer grid domain

The following transformation represents the immersed boundary in a coordinate sy-

stem where each grid-line is represented by an integer

bcomp (c,d) = X (c,d)−xmi n(d)

d x(d)
(6.14)

An array containing the directional vector for all polygon segments may be constructed

as

bdi r (c,d) = bcomp (c +1,d) − bcomp (c,d) (6.15)

and since the polygon is defined counterclockwise, a normal vector pointing out to the

fluid may be defined in all segments as:

bnor m =
0 −1

1 0

bdi r (6.16)
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The direction of each successive intersection on a single segment in the d-direction is

given by

dir(c,d) = sg n (bdi r (c,d)) (6.17)

With the representation of Equation 6.14, the following array (where d·e denotes the cei-

ling function)

b×(c,d) = d bcomp (c +1,d) e − d bcomp (c,d) e (6.18)

will contain information about how many integer lines that are situated between vertex

c and c +1 along direction d . Since the polygon is represented by linear segments, the

slope between the segments may thereby be used to find the intersection of the polygon

on each of the integer lines between vertex c and c +1. As an example the intersections

(x×, y×) between the boundary and the vertical lines in Figure 6.9 can be found as:

x× = nint
(

bcomp (c,1) + dir(c,1)((×−1)+0.5))
)

y× = bcomp (c,2) + bdi r (c,2)

bdi r (c,1)
|x×−bcomp (c,1)|

(6.19)

for ×= 1,2,3,4.
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Figure 6.9: In this case, the intersection array will be b×(c, :) =
[−4

2

]
, meaning that, from vertex

c to c +1, there are 4 intersections along the negative x-direction and 2 intersections along the
positive y-direction. Since both the position of vertex c and the length of the segment in both
directions are known, the position of the intersections at each integer line may be found.
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Interpolation direction and grid-shifting

Due to the staggered grid configuration, the detection of intersections is dependent of

the choice of interpolation direction. There are two possibilities:

1. interpolate in direction normal to the direction of the velocity field (see Figure

6.13)

2. interpolate in direction parallel to the direction of the velocity field (see Figure

6.12)

As shown in Figure 6.10 and 6.11, the intersections found at the grid faces will be usable

for the normal interpolation scheme, while the parallel interpolation must be done al-

ong the cell center lines. To detect the intersections of the latter kind, bcomp may simply

be shifted by a value of 0.5 upwards and rightwards prior to establishment of b×.
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Figure 6.10: Intersection detection for normal interpolation.
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Figure 6.11: Intersection detection for parallel interpolation.
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6.4.3 Finding the immersed boundary velocity

Once the intersection points are found, the velocity of the immersed boundary at the

intersection point is evaluated from linear interpolation between the two vertexes of

the boundary segment. The immersed boundary velocity in the d-direction at the inter-

section may thereby be found as:

Vd |× =V (c,d)+ V (c +1,d)−V (c,d)

lseg
l× (6.20)

where lseg is the segment length, and l× is the distance between vertex c and the inter-

section point.

6.4.4 Imposing the immersed boundary conditions on the fluid grid

The imposing of the immersed boundary condition is done by manipulating the velocity

at the nearest fluid node (⊗) by linear interpolation between the intersection point (×)

and the second nearest fluid node (◦). The updated velocity in ⊗ becomes:

Ud |⊗ =Vd |×+
(·)d |◦ −Vd |×

δ(◦,×)
δ(⊗,×) (6.21)

Where δ represents the Eucledian distance and

(·)d =


ũ if d = 1

ṽ if d = 2
(6.22)

The interpolation updates the velocity over the time step RKstep , and results in the acce-

leration along the velocity direction that in earlier chapters was named the forcing term:

fd |⊗ = Ud |⊗− (·)d |⊗
RKd t

(6.23)

Figure 6.13 and 6.12 shows normal and parallel interpolation, respectively, done on a
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stationary immersed boundary.

(a) Before parallel interpolation.

(b) After parallel interpolation.

Figure 6.12: Application of a Dirichlet boundary condition with ui = 0 on Γb done by interpola-
tion in the direction parallel to the velocity components.
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(a) Before normal interpolation.

(b) After normal interpolation.

Figure 6.13: Application of a Dirichlet boundary condition with ui = 0 on Γb done by interpola-
tion in the direction normal to the velocity components.
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6.4.5 Force calculation

The force experienced by the immersed boundary should by Newton’s third law be equal,

but oppositely directed, to the net force applied to the fluid by the boundary. This me-

ans that the drag and lift forces may be found directly from the forcing term, fi , and the

mass of the fluid affected by the acceleration.

Force contribution from each intersection

For a given direction, d , the force contribution from each intersection may be found as

dFd |× =− fd |⊗d M |⊗ (6.24)

where d M |⊗ is the mass of the fluid that is accelerated due to the acceleration in the

interpolation node, ⊗. In the present code, the force is approximated by using the mass

of the fluid in the two cells connected by the velocity node, and using the cell centered

velocity in the cells as shown in Figure 6.14. The cell centered acceleration is half the

magnitude of the acceleration of the interpolation node, while there are two affected

cells, so that the force estimate may be simply be written as:

dFd |× =− fd |⊗ ρ d x d y (6.25)

where the mass, d Md |⊗ is approximated by the area of the two cells connected by ⊗.

It should be noted that the present approximation is rather coarse, as it assumes that

the immersed boundary only changes the velocity in the discrete location of the inter-

polation node. A more accurate force approximation will be discussed in Section 9.1.
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Figure 6.14: Visualization of the accelerated fluid node, and the connected fluid volumes used
to estimate the force (Fi ) on the boundary.

Total force from fluid

The total force from the fluid, Fd on the boundary, in the given direction, d , may there-

after be taken as the sum of the contributions from each intersection:

Fd = ∑
×d=1

N×d dFd |× (6.26)
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6.5 The combined IBM-N-S solver

Figure 6.15 shows how the IBM-module was implemented into the NS-solver. The over-

all structure of the NS-solver remains as presented in Figure 6.2, while the time inte-

grator is modified to take into account the immersed boundary. It should be noted that

this implementation is not yet a fluid-structure-interaction-solver, as there is no module

for treating the structural response of the system. Further development of the code is

covered in Chapter 9.
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Figure 6.15: Flow chart showing the implementation of the IBM module into the original RK2
subroutine.
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6.6 Limitations

The IBM-module that is presented in this chapter is limited to solve 2D flow problems

of closed polygons in fully submerged domains. The use of linear interpolation induces

some trouble when it comes to nodal ambiguity and grid resolution.

6.6.1 Nodal ambiguity

The IBM-module is supposed to perform calculations on arbitrarily shaped simple po-

lygons, but since the interpolation procedure uses more than one node at each calcula-

tion, nodal ambiguity may occur:

• interpolation carried out twice on same node (Type 1, see Figure 6.16a)

• interpolation done by information from already interpolated node (Type 2, see

Figure 6.16b)

Nodal ambiguity may corrupt the calculations, and should be warned about. The code

is therefore equipped with a subroutine that checks for and warns about ambiguous

nodes during calculation, so that the user may stop the calculations and adjust the mesh

and/or the number of nodes in the immersed boundary accordingly.

6.6.2 Interpolation on coarse grids

The code uses linear interpolation to mimic the velocity field near the immersed boun-

dary. This is based on the assumption that the velocity field is is approximately linear

close to the boundary. The mesh resolution is therefor limited by Equation 4.7:

2∆xi ≤∆li

Apart from undermining the accuracy, use of a too coarse mesh may result in surpri-

sing trends for mesh refinement. Figure 6.17 shows how the placement of the immersed

boundary on the grid is affecting the interpolation error if the grid is too coarse. Since

the placement of the grid-lines is important, a slight change of the resolution on a coarse
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(a) Type 1

(b) Type 2

Figure 6.16: Ambiguous node types. Type 1 nodes (a) will be interpolated twice, while type 2
nodes (b) will use information from nodes that are interpolated earlier. Interpolation ranges are
represented by lines with dots on the ends. The ambiguous nodes are marked with a circle.

grid may change the results unpredictably. Mesh resolution studies that shows signifi-

cant jumps in the results may indicate that order of magnitude for the grid resolution is

too low.
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(a) Intersection is close to the interpolation node.

(b) Intersection is far from the interpolation node.

Figure 6.17: A schematic representation of a velocity profile near the immersed boundary.
On coarse grids, (∆xi is larger than the linear approximation region), the linear interpolation
scheme is sensitive to the distance between the outer interpolation node and the linear region.
This issue is overcome by refining the mesh.





Chapter 7

Validation of fluid solver

The validation of the code was done stepwise, as the code grew in complexity, and before

each new major development step, a valid code version was branched out.

7.1 Validation of Poisson solver (Gauss Seidel-iterator)

The Gauss Seidel iterator was validated by solving the example problem

∂2Φ

∂xi∂xi
= cos(nπx1)cos(nπx2) (7.1)

where n is an integer defining the spatial wave-number of the solution. This problem

has the analytical solution

Φ= 1

(nπ)2
cos(nπx1)cos(nπx2) (7.2)

Setup

The test problem was solved on a domain spanned by x1 = [−1,1] and x2 = [−1,1]. The

mesh resolution was set to M ×M , and M was varied in order to analyze the behavior of

the solver and the numerical solution, φ. Tests were done for n = 1, n = 2 and n = 3.

The convergence criterion was chosen to be:

L∞
(
φn+1 −φn)≤ 10−6 (7.3)

95
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Figure 7.1: Average field error εave compared to mesh resolution M for the Gauss-Seidel iterator.

Error analysis

Figure 7.2a displays the numerical and the analytical value of the solution along the line(
x, y = 0

)
for n = 2 and M = 152. It is clear that the characteristics of the analytical solu-

tion are well captured by the numerical result. The error distribution given by ε=Φ−φ,

along the same line, is shown in Figure 7.2b, and it turns out that the error magnitude

varies correspondingly to the curvature of the solution.

The average field error is defined as

εave = 1

M 2

M∑
i=1

M∑
j=1

|Φi , j −φi , j | (7.4)

Figure 7.1 shows a converging behavior for εφ as the mesh resolution is increasing.

The magnitude of the convergence limit for all three values of n, seems to be of order

O
(
10−4

)
, given the convergence criterion of L∞ ≤ 10−6.
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Figure 7.2: Comparison between numerical and analytical solutions for the reference problem
for φ (a), and error between the two solutions (b).
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Efficiency analysis

As seen in Figure 7.3a, the number of iterations needed in order to find a satisfactory

solution, increases with the mesh size. Further, the number of discrete points in the

mesh increases with M 2, and it may be seen from Figure 7.3b that the number of cal-

culations increases rapidly with the mesh size. This is especially true for the case where

n = 1, which has the solution with the lowest wavenumber, and thereby the smallest

curvatures and gradients.
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(a) Number of iterations through domain compared to mesh resolution M for the Gauss-Seidel
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Figure 7.3: Gauss-Seidel iterator: Efficiency analysis.
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7.2 Validation of the Navier-Stokes solver

The NS-solver was validated on a lid-driven cavity flow problem such as the one ana-

lyzed and discussed by Ghia et al. (1982). The present code was used to perform an

analysis of the problem setup given in Tab.7.1. The results are presented and compared

to those of Ghia et al. (1982) in Fig.7.4 and 7.5. Apart from a single mis-matching point1

in the vertical velocity profile, the results show a good concordance.

Table 7.1: Setup of numerical analysis for a lid-driven cavity flow problem.

Parameter Value

Re 400[−]

Domain [0,1]× [0,1] [−]

Mesh 101×101 [−]

Time step 0.001[−]

Time range Until stationary flow

BC North Moving wall, Uw = 1[−]

BC East Stationary wall

BC South Stationary wall

BC West Stationary wall

1This point is assumed to be a misprint in the work of Ghia et al. (1982), as it is only found in the result
table and not in the result figures given in the same source.
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Figure 7.4: Comparison of present work to that of Ghia et al. (1982): Horizontal and vertical
velocity profiles along the vertical and horizontal mid-line, respectively. Notice the single mis-
matching point on the vertical velocity profile that is assumed to be a misprint in Ghia et al.
(1982) (see footnote 1) of this Section.
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Figure 7.5: Contour lines of the stream functionΨ for the lid-driven cavity at t = 25[−]. The "+"
signs marks the vortex centers found by Ghia et al. (1982), which seem to be in agreement with
the present work.



Chapter 8

Validation of the immersed boundary

solver

Since the implemented IBM-module is meant to solve intricate problems with moving

arbitrary polygons, the validation procedure must consist of several steps:

1. Validate for stationary objects

2. Validate for objects with a prescribed translational motion

3. Validate for objects with a prescribed rotational motion

The validation process was severely limited by the combination of little available com-

putational power (see Section 1.3) and the inefficiency of the Gauss-Seidel algorithm

when applied on fine meshes (see Section 7.1). This section is therefore only devoted

to describe the validation for stationary objects. It must also be emphasized that only

the IBM-version with parallel interpolation is tested in this section. Plans for further

validation are described in Section 9.1.

103
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8.1 Reference problem

Validation for flow past stationary objects was done by comparing force coefficients

obtained by various studies on 2D uniform flow past circular cylinders. It was decided to

stick with low Reynolds numbers, since the available computational power was limited.

Table 8.1 shows the calculated drag coefficients from several studies of the problem, for

Reynolds numbers of 20 and 100.

For Re = 20, the vortex formation behind the cylinder is symmetric, so the lift coeffi-

cient should be zero. Reference studies on the lift coefficients for Re = 100 is presented

in Table 8.2.

Table 8.1: Existing studies of drag coefficients, CD , for 2-dimensional flow past a circular cylin-
der.

Source Re = 20 Re = 100

Tritton (1959) 2.22 -

Dennis and Chang (1970) 2.05 -

Sucker and Brauer (1975) 2.08 1.45

Clift et al. (1978) - 1.24

Park et al. (1998) 2.01 1.33

Ye et al. (1999) 2.03 -

Calhoun (2002) 2.19 1.33

Russel and Wang (2003) 2.22 1.34

Silva et al. (2003) 2.04 1.39

Xu and Wang (2006) 2.23 1.423

Wang and Cen (2009) 2.25 1.379

Average 2.13 1.36
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Table 8.2: Existing studies of the lift coefficient, CL , for 2-dimensional flow past a circular cylin-
der at Re = 100.

Source Re = 100

Braza et al. (1986) 0.25

Calhoun (2002) 0.298

Xu and Wang (2006) 0.34

Khoo et al. (2008) 0.346

Wang and Cen (2009) 0.357

Average 0.3182
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8.2 Method and setup

The validation was conducted as follows:

1. Check that solver captures general flow characteristics

2. Check that solver trends to calculate reasonable force coefficients by

• time refinement analysis

• mesh refinement analysis

• domain size analysis

The domain parameters a, b, c and D (see Figure 8.1) will in the further analyses be

varied in order to see the trends of the results. Other parameters of interest are:

• Mesh resolution in x-direction - D
∆x

• Mesh resolution in y-direction - D
∆y

• End time for calculations - T

• Time resolution - ∆t

• Reynolds number - Re

Setup

Figure 8.1 shows the setup of the problem domain, while Table 8.3 presents the applied

boundary conditions.
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Figure 8.1: Domain setup for the circular cylinder problem where a is the upstream clearance,
b is the downstream clearance and c is the clearance between the origin and the stream-parallel
walls.

Table 8.3: Boundary- and initial conditions applied on the domain for the circular cylinder pro-
blem. N means that a zero-normal-gradient Neumann condition is applied, while a number
signifies the value of an applied Dirichlet condition.

BCs and ICs u v p

North wall N 0.0 N

South wall N 0.0 N

East wall N N 0.0

West wall 1.0 N N

Initial condition 1.0 0.0 0.0
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8.3 Flow characteristics

The very first validation step was done by checking that the solver represented the flow

characteristics as anticipated. By flow characteristics is meant features such as vortex

formation, stagnation and impermeability. Two tests were run on a relatively small and

coarse domain, with parameters as presented in Table 8.4. To obtain vortex shedding

at an early stage for the run on Re = 100, the cylinder was initially oscillated for two

periods, with a dimensionless frequency of f = 0.2 and a dimensionless amplitude of

0.01. Figure 8.2 shows that the solver is capable of representing all the expected flow

features, so that more profound validation may be commenced.
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Table 8.4: Domain setup for initial testing of solver, done to see that typical flow behavior is
contained in the analysis. a, b, c and D as defined in Figure 8.1.

Parameter Value

a 5D

b 10D

c 7.5D

D 1.0

D
∆x 8

D
∆y 8

T 25

∆t 0.01

Re 20 and 100
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(a) Streak-lines (white) and pressure contours for Re = 20.

(b) Streak-lines (white) and vorticity contours for Re = 100.

Figure 8.2: Post-processed results from the analyses presented in Table 8.4 for Re = 20 (a) and
Re = 100 (b). The results show that vortex formation, flow stagnation and vortex shedding is
captured by the solver.



8.4. TIME REFINEMENT TESTS 111

8.4 Time refinement tests

To check the dependency between accuracy and time resolution, three tests were run

on the domain given by Table 8.5a. The results are presented in Table 8.5b, and shows

that the time resolution is not affecting the accuracy very much. Time refinement is ho-

wever very important when it comes to stability. The highest time resolution (∆t = 0.1)

yields an inflow Courant-number nearly equal to one, and the unstable integration for

this time step was expected.

The value obtained for the lift coefficient is, as expected, approximately equal to zero.

The drag-coefficient, on the other hand, is a bit overestimated in comparison to the refe-

rence results. This may be because the mesh is too coarse, or that the domain is defined

to tightly around the cylinder, so that the boundary conditions pollute the solution near

the cylinder. Both causes will be investigated in the next two subsections.

Table 8.5: Domain setup (a), and results (b) from the time refinement tests.

(a) Domain setup for time refinement tests.
a, b, c and D as defined in Figure 8.1.

Parameter Value

a 5D

b 10D

c 5D

D 1.0

D
∆x 8

D
∆y 8

T 25

∆t Was varied

Re 20

(b) Drag-coefficients obtained with diffe-
rent time resolutions.

∆t Cd (t = 25) Cl (t = 25)

0.1 unstable unstable

0.01 2.38986858 O(10−12)

0.001 2.38986874 O(10−12)
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8.5 Mesh refinement tests

The dependency between mesh resolution and accuracy was analyzed by varying the

mesh resolution for the problem domain described in Table 8.6a. The resolution was

varied equally in both directions to keep the grid Cartesian. The results from the cal-

culations are presented in Table 8.6b. The results from the calculations, which are pre-

Table 8.6: Domain setup (a), and results (b) from the mesh refinement tests.

(a) Domain setup for mesh refinement
tests. a, b, c and D as defined in Figure 8.1.

Parameter Value

a 5D

b 10D

c 5D

D 1.0

D
∆x Was varied

D
∆y Was varied

T 25

∆t 0.01

Re 20

(b) Drag-coefficients obtained with diffe-
rent mesh resolutions.

D
∆xi

Cd (t = 25)

8 2.38987

10 2.36221

12 2.34202

sented in Table 8.6b, show that results are far more sensitive to mesh resolution changes

than for time resolution changes. The drag coefficient is still overestimated compared to

the results found in literature, though an increase of resolution seems to pull the results

in the right direction. The next subsection will investigate whether the overestimation

may be due to the domain size.
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8.6 Domain size tests

To find the dependency between the domain size and the drag coefficients, As seen in

Table 8.7: Domain setup (a), and results (b) from the domain size tests.

(a) Domain setup for domain size tests. a,
b, c and D as defined in Figure 8.1.

Parameter Value

a Was varied

b Was varied

c Was varied

D 1.0

D
∆x 8

D
∆y 8

T 25

∆t 0.01

Re 20

(b) Drag-coefficients obtained with diffe-
rent domain size.

a b c Cd (t = 25)

5D 10D 5D 2.38987

5D 10D 7.5D 2.23220

5D 10D 10D 2.16690

5D 10D 12.5D 2.13413

5D 10D 15D 2.11312

5D 10D 5D 2.38987

5D 15D 5D 2.38267

5D 20D 5D 2.37247

5D 10D 5D 2.38987

10D 10D 5D 2.37685

Table 8.7b and Figure 8.3, the effect of the domain parameters on the drag coefficient is

by far dominated by the domain width. The domain that provided the best results for CD

was a lot wider than it was long, with an aspect ratio of (a+b)
2c = 1

2 . This was surprising, as

the "typical" domain for studies on flow past cylinders has an aspect ratio much larger

than 1 (see Figure 3.3). An explanation for this could be founded on that the analyses

were run for Re = 20, which means that no vortexes were shed:

In a vortex-free wake the velocity gradient ∂v
∂x vanishes just a short distance downstream

of the cylinder, so that the Neumann condition for v does not enforce large changes in

the vertical velocity field. The horizontal gradient of u also diminishes relatively fast be-

hind the cylinder. This means that a long downstream domain is unnecessary. A vortex

is recognized by its large velocity gradients, ∂u
∂y and ∂v

∂x . If a vortex is not sufficiently we-

akened before it hits a boundary with Neumann velocity conditions, then the velocity
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Figure 8.3: Effect on the drag coefficient from varying the domain size parameters for Re = 20.
The drag coefficient is clearly most sensitive to the widthwise span (parameter c) of the domain.
Increasing the domain size shows results that are trending towards the reference results.

field is significantly manipulated by the velocity condition, and the solution becomes

contaminated as shown in Figure 8.4. This leads to a requirement for a long downstream

domain. Since most studies on circular cylinders are concerned with vortex shedding,

the "typical" domain is the one with a high aspect ratio.

For Re = 20, and probably for higher Reynolds numbers as well, the width of 2c ≥ 30D

should be used to avoid contamination from boundary conditions on the stream-parallel

walls. Analyses of higher Reynolds numbers will also require a new study of the effects

of the upstream and downstream domain length (parameter a,and b, respectively).
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(a) Vortex formed at upper edge of cylinder.

(b) Vortex formed at lower edge of cylinder.

Figure 8.4: Vortex shedding at Re = 100 in a too small domain. Extreme pressure gradients are
formed towards the downstream corners of the domain, and the sign of the pressure oscillates
with the vortex shedding frequency. These pressure artifacts may be a result of enforcing of
Neumann velocity conditions on a velocity field with strong vortexes. It is clearly seen on the
figure that the solution becomes contaminated, since the pressure gradient pulls the upstream
flow in the transverse direction so that the angle of attack on the cylinder alters. This will affect
results for both CD and CL .
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8.7 Transients at flow start-up

At the startup of the simulations, the flow field is fully uniform, before the immersed

boundary suddenly is placed into the fluid. The abrupt velocity change results in tran-

sient oscillations of the flow and fluid forces at early stages of the flow development. As

seen in Figure 8.5a, both the amplitude and damping of the transient effects are highly

dependent of the time step, ∆t .

The transient force oscillations are of serious concern when considering further deve-

lopment of the code into an FSI-solver. A force coefficient overestimated by magnitudes

as seen in Figure 8.5a will result in extreme accelerations for the response of the immer-

sed boundary.

When the immersed boundary moves in the fluid, it will occupy new fluid space at each

time step. This is anticipated to cause effects similar to those seen at startup flow. To

check the significance of transients related to body motions a test were run on a cylinder

oscillating in an initially stationary fluid. Table 8.8 shows the test domain setup, and the

results are presented in Figure 8.6 and 8.7. Figure 8.6 shows that the flow is represented

with similar characteristics as the work by Dütsch et al. (1998), while Figure 8.7 displays

that transient effects for immersed boundaries moving in stationary indeed are highly

significant.
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(a) Transient effects on the force coefficients at startup for Re = 20, with
∆t = 0.01. The maximum force coefficient is about 45 times larger than the
stationary result.
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(b) Transient effects on the force coefficients at startup for Re = 20, with
∆t = 0.001. The maximum force coefficient is about 450 times larger than
the stationary result.

Figure 8.5: Transient effects on force coefficients at startup flow past a stationary circular cylin-
der: ∆t = 0.01 (a), and ∆t = 0.001 (b). A time step refinement results in an increase of force, but
also shortens the die-out-time for the oscillations.
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Table 8.8: Test specifications for cylinder moving in stationary fluid.

(a) Domain setup for analysis of oscillating
cylinder in stationary fluid. a, b, c and D as
defined in Figure 8.1.

Parameter Value

a 7.5D

b 7.5D

c 5D

D 1.0

D
∆x 8

D
∆y 8

T 5

∆t 0.001

Re 100

(b) Specifications for the cylinder motion.

Parameter Value

Frequency 1.0[−]

Amplitude 0.5[−]
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(a)

(b)

Figure 8.6: Vortex formation around a cylinder oscillating in an initially stationary fluid. (a)
shows the cylinder near its leftmost position, while (b) shows the cylinder near its rightmost po-
sition. In both cases, the freshly formed vortex is visible close to y-axis, while the vortex formed
at the previous period has propagated vertically outwards.



120 CHAPTER 8. VALIDATION OF THE IMMERSED BOUNDARY SOLVER

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

t [-]

-1500

-1000

-500

0

500

1000

1500

C
L
, 
C

D
 [
-]

C
D

C
L

Figure 8.7: Force coefficients calculated for the oscillating cylinder test given by Table 8.8. The
results are severely affected by transient numerical oscillations.
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8.8 Force coefficients at Re = 100

Time did not suffice to perform profound validation analyses for higher Reynolds num-

bers, but one analysis with a reasonable domain length was conducted. Table 8.9a

shows the domain specifications, and the results are presented in Figure 8.8 and 8.8b.

Table 8.9: Test at Re = 100: Domain setup and results.

(a) Domain setup for flow past cylinder at
Re = 100. a, b, c and D as defined in Figure
8.1.

Parameter Value

a 5D

b 5D

c 20D

D 1.0

D
∆x 8

D
∆y 8

T 50

∆t 0.01

Re 100

(b) Drag and lift coefficients obtained from
the analysis.

Parameter Value

CD 1.475 [−]

max(CL) 0.27 [−]

It is seen from Figure 8.8a that the domain still is too short to avoid the pressure oscilla-

tions at the downstream corners, but that the inflow is less affected by the high artificial

pressure gradients. The lift coefficient amplitude and the mean drag coefficient were

calculated over the last four vortex shedding period (see Figure 8.8b), and they are pre-

sented in Table 8.9b. The results are surprisingly within the reference range, but further

analyses must be done for a range of mesh and domain sizes before concluding the va-

lidation for Re = 100.
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Figure 8.8: Results from analysis presented in Table 8.9a: Pressure contours and streak-lines
(a) and force coefficients (b). High pressure gradients are still seen in the downstream corners,
which may indicate that the downstream length of the domain is still too short. The effect of the
high pressure gradients on the upstream flow is reduced due to the increased distance.



8.9. CONCLUDING REMARKS 123

8.9 Concluding remarks

Based on the different testing that has been covered in the previous subsections, it is

concluded that:

• The Navier-Stokes-IBM-solver is capable of resembling typical flow phenomena

that are anticipated for low Reynolds numbers

• Time resolution is important regarding numerical stability, but has no large effect

on the overall accuracy of the results, compared to mesh resolution.

• Domain size is significantly affecting the numerical results

• The results trends towards matching the reference reference studies for a suffi-

ciently spaced domains

• Large transient oscillations are excited during flow startup

• Motion of immersed boundary also produces significant transient oscillations of

results

• Time step refinement increases the transient force amplitude, and decreases the

transient force persistence.

Based on the list above, the code may be considered valid for stationary cylinders, though

further validation is recommended. It is also emphasized that care must be taken regar-

ding the transient oscillations related to motion and flow startup.





Chapter 9

Further development of code:

Swimming Fish

The code that was presented in Chapter 6, is not fully developed to handle fluid-structure-

interaction problems, as it still lacks a module for handling the structures response to

fluid forces. This chapter will discuss the steps that must be taken in order to make the

code applicable to solve quasi-rigid (see Section 2.2) swimming fish problems.

9.1 Finishing the IBM-module

The IBM-module presented in Section 6.4 needs to be further developed. First of all, it

needs to find not only the translational forces on the immersed boundary, but also the

rotational forces. In addition, though the module is designed to handle arbitrary boun-

dary shapes with prescribed motion, it has only been validated for stationary circular

cylinders at very low Reynolds numbers.

125
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9.1.1 Concluding validation

Before the IBM-module is equipped with a solver for structural response, it is important

to know whether it can replicate the physics of problems involving prescribed motions.

This will reveal if the immersed boundary conditions are satisfied for non-stationary

objects or not. Success in this validation step is an absolute requirement before deve-

loping the structural response solver, since the fluid forces are needed as input when

calculating the response. Validation should be done both for translational and rotatio-

nal motion.

Prescribed translational motion

Oscillating cylinders are broadly studied due to the phenomenon of Vortex Induced Vi-

brations (VIV), and a range of the work is devoted to the study of simplified models,

such as cylinders with prescribed motions, both in 2D and 3D. It should therefore be

an easy task to find reference results for a validation of translational motion. Blackburn

and Henderson (1999) and Dütsch et al. (1998) serve as good examples for this.

Prescribed rotational motion

The Magnus effect has motivated profound studies of rotating bodies immersed in fluid.

A good reference study could be e.g. Kumar and Mittal (2002).

Coupled translational and rotational motion

Since the IBM-module in general is aimed at solving flow problems with arbitrarily

shaped boundaries, and especially fish-like shapes, it is tempting to validate the mo-

dule on a flapping foil system. Also for foils exist a vast amount of work available for

reference. Ashraf et al. (2007) cites a large range of references to studies of coupled hea-

ving and pitching motion on a foil placed in uniform flow.

A successful validation on a flapping foil problem will prove that the IBM-module is able

to replicate both translational and rotational motion, and that the shape of the immer-

sed boundary does not have to be circular. A pitfall to be aware of is that validation on
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Figure 9.1: An enhanced representation of the flow acceleration presented in Figure 6.14, that
may serve as foundation for more accurate force calculations.

such a coupled problem is more likely to fail, and much harder to investigate for errors

when validation is not successful.

Improve the force calculations

The method for calculating the force that is presented in Section 6.4 (see Figure 6.14)

assumes that the acceleration of the fluid is only defined by the fluid velocities surroun-

ding the interpolation node. This is a coarse and somehow wrong assumption, since

the fluid velocity profile between the interpolation node and the immersed boundary

should be independent of the internal node velocity. Figure 9.1 shows a more correct

picture of the accelerated fluids. The internal node, ¯, should only be used to find the

distribution of the velocity difference between fluid and immersed boundary in the in-

ner cell. The acceleration of the fluid in both the inner and outer cell should thereafter

be calculated between the fluid node, ◦, and the intersection point, ×, with their re-

spective fluid velocities. In addition, the mass of the inner cell should be found from the

fraction that is occupied by fluid, and not from the total area of the cell.
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9.2 Development of a structural response solver

The quasi-rigid approach that was discussed in Section 2.2 allows for a separate tre-

atment of the fish’s motion, where the the flapping motion is treated as a prescribed,

internal motion and the rigid body motion is an external response to the forces applied

by the fluid. The fluid forces results from the combined configuration of internal and

external motion of the fish.

The structural solver should therefore be able to

• Track the center of mass of the fish by solving the rigid-body equation (2.8)

• Find the local vertex velocities and positions due to rigid-body rotation and flap-

ping motion

9.2.1 Simplifications

For 2D problems, the governing equation for quasi-rigid body motion (see Section 2.1)

reads out

mi j
∂2X j

∂t 2
+βi

∂mi j

∂t

∂X j

∂t
= Fi

i , j = 1,2,3

βi =


0, i = 1,2

1, i = 3

(9.1)

where i = 3 represents rotation about the x3 axis (which is perpendicular to x1 and x2).

If all motions are defined about the Center of Mass (CoM), there will be no coupled mass

coefficients in the mass tensor:

mi j = 0 for i 6= j (9.2)

and, as the mass is constant, the mass tensor for the 2D quasi-rigid fish becomes:

mi j =


m f 0 0

0 m f 0

0 0 I f (t )

 (9.3)
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where m f is the translational inertia of the fish, and I f (t ) is the moment of inertia about

the x3-axis, which is time-dependent due to the internal flapping deformation of the

fish. The time derivative of the mass tensor is simply

∂(mi j )

∂t
=


0 0 0

0 0 0

0 0
∂(I f )
∂t

 (9.4)

Since both mi j and
∂(mi j )
∂t are diagonal, the governing equation (Equation 9.1) may be

rewritten as:
∂2Xi

∂t 2
= Fi

m f
for i = 1,2 and

∂2θ

∂t 2
= 1

I f

(
T − ∂I f

∂t

∂θ

∂t

) (9.5)

where θ represents the rigid body rotation of the fish, and T is the torque about the

x3-axis.

9.2.2 Numerical solution for the rigid body equations

The purpose of finding the rigid-body solver is to track the location and velocity of the

fish’s center of mass.

For ease of explanation, the tensor subscripts are omitted in the following derivation.

Instead one should read capital letters as vectors. Subscript RB and F L denotes rigid-

body motion and internal deformation (flapping), respectively.

By substituting

VRB = ∂X

∂t
and

θ̇ = ∂θ

∂t

(9.6)

into the Equation 9.5, and discretizing it with a the forward Euler method, the following

equations are obtained:

V n+1
RB =V n

RB + ∆t

m f
F n

θ̇n+1 = θ̇n + ∆t

I f

(
T n − ∂I f

∂t
θ̇n

) (9.7)
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These equations yields the translational and angular rigid-body velocity at time step

(n +1). The position and rotational angle at the same time step, may readily be as:

X n+1
RB = X n

RB +∆tV ∗
RB

θn+1 = θn +∆t θ̇∗
(9.8)

Here, the asterix, (·)∗, is used to show that many estimates of the slope are available at

this step of the calculations, such as:

V ∗
RB =


V n

RB

V n+1
RB

0.5
(
V n

RB +V n+1
RB

) (9.9)

and similar for θ̇.

The equations above could be implemented into a subroutine called RB-solver.

9.2.3 Adding the flap and finding the total motion

The internal flapping motion of the fish is given by a prescribed motion model (discus-

sed in Section 9.3), and may be defined vertex-wise about the CoM of the fish:

XF L =
x1 · · · xc · · · xNver t

y1 · · · yc · · · yNver t


VF L =

U1 · · · Uc · · · UNver t

V1 · · · Vc · · · VNver t


(9.10)

The total motion of the fish is obtained by combining the internal motion with the rigid

body response. Since the results from the RB-solver only are defined in the center of

mass, they must be translated into local position and velocity at each vertex.
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The total position at each vertex, c, may thereby be found by

X |c = XRB +R(θ)XF L|c (9.11)

Where XF L|c is the flapping position of vertex c, and R(·) is the rotation matrix, both

defined about the CoM.

The total velocity at vertex c may be written as

V |c =VRB + θ̇
0 −1

1 0

 XF L +VF L (9.12)

where the second term of the RHS is the local vertex velocity due to the rotational velo-

city of the fish, while the last term is the internal flapping velocity.
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9.3 Development of a swimming fish model

As discussed in the previous section, the quasi-rigid approach allows for a prescribed

internal motion of the fish. The design of this motion is discussed in the next subsecti-

ons.

9.3.1 Physical requirements

An important requirement for the fish model is that it satisfies the constitutive laws of

physics. Recall the discussion in Section 2.2:

• mass should be conserved throughout deformation

• deformation should not directly accelerate the center of mass

For the 2D case with uniform density, the mass conservation criterion reduces to "area

should be conserved". The requirement of no acceleration means that the motion mo-

del should replicate the fish’s motion as if it was flapping in vacuum.

9.3.2 Choice of swimming mode

The fish model should be designed to mimic the natural motion of a fish. Sfakiotakis

et al. (1999) presents a review of the different swimming modes found in aquatic loco-

motion. For fishes, the modes are grouped into Median and/or Paired Fin (MPF) modes,

and Body Caudal Fin (BCF) modes, based on which parts of the body is used for propul-

sion (see Figure 9.2). The BCF modes are the ones best suited for propulsion efficiency,

while MPF propulsion scores higher on low speed maneuverability.

As stated in the introduction (Chapter 1), the motivation for this thesis is moored in

the utilization of flapping foils for effective propulsion. The fish model should therefore

be designed as a BCF-type propulsor. Figure 9.3 shows two of the subgroups of BCF-

type swimming modes. The oscillatory/undulatory motion of the anguilliform swim-

mer should be nicely mimicked by a harmonic function:

X (x, t ) = γ(x)sin(2π f t −kx) (9.13)
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Figure 9.2: Terminology of the fish body. (From Sfakiotakis et al. (1999)).

where X represents the centerline of the fish, f is the flapping frequency in hertz, and

k represents the wave number for the undulatory motion. γ(x) represent a spatially

dependent damping function used to tune the head-amplitude of the fish. Fully anguil-

liform mode is modeled by zero damping, that is γ(x) = 1.

9.3.3 Startup function

A sudden startup of the fish motion will give transient oscillations such as those dis-

cussed in Section 8.7. Such transients may yield an enormous initial force on the fish,

causing it to drift out of the domain in just few time steps. To avoid this, it is convenient

to equip the motion model with some smooth startup function, say s(t ). Munnier and

Pinçon (2008) use the following function and its derivatives to smooth the startup of

their ideal-fluid fish model:

s(t ) =


140(τ4(0.25+τ(−0.6+τ(0.5−τ/7.0)))) for τ≤ 1

1.0 elsewise
(9.14)

where τ= t/t0 and t0 is the time for which full amplitude should be reached.
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(a)

(b)

Figure 9.3: Subgroups of BCF propulsion modes: Anguilliform (a) and subcarangiform (b). (Mo-
dified, from Webb (1971)).

Another option is to use the sigmoid function, defined by:

s(t ) = 1

1+exp−(t − t0)
(9.15)

9.3.4 General mathematical model

The following, general model is equipped with both a smooth startup function (s(t )) and

a tuning function for spatial distribution of amplitude (γ(x)).

X (x, t ) = γ(x)s(t )sin(2π f t +kx) (9.16)

U (x, t ) = γ(x)

(
2π f s(t )cos(2π f t +kx)+ ∂s(t )

∂t
sin(2π f t +kx)

)
(9.17)

Table 9.1 shows how the different parameters may be used to tune the model into diffe-

rent swimming modes:
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Table 9.1: Tuning of the fish motion model into different body-caudal fin subgroups.

Parameter Anguilliform Subcarangiform

k ≥ 1 ≤ 1

γ(x) ≈ 1 ∝ ex−L

9.3.5 Design of a BCF mode swimming body

A very simplistic model of a fish may be constructed using a semi-circle for the head,

and two harmonic half-waves for the body:

Head

Xh =
rhcos(α)

rh si n(α)

 for α ∈
(π

2
,3
π

2

)
(9.18)

Where rh is the head radius.

Body

Xb =
 x

± rhcos( π
2Lb

x)

 (9.19)

Where Lb is the length of the fish without its head.

A discretized version of the fish may thereafter be described as the closed simplex poly-

gon:

X f =
x1 · · · xNver t x1

y1 · · · Nver t y1

 (9.20)

where x1 and y1 are defined from the tail tip, and the point definition is done counter-

clockwise. This reference fish-model, which is schematically presented in Figure 9.4, is

defined in a coordinate system with the origin in the joint between the fish head and

body.
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Figure 9.4: A simple 2D fish model. A vertex pair is defined at each x-position, also at the tail
where the two last vertexes are in the same position.

Adding the motion model to the polygon

Since the vertexes are pair-wise defined at each x-location, the body element between

two consecutive vertex pairs will be a trapezoid. The area of a trapezoid is conserved as

long as the parallel sides remain parallel and the normal distance between them is con-

stant. A possible motion model could therefore be obtained by, using the mathematical

model from Subsection 9.3.4, shifting all vertex points in the direction perpendicular to

the local x-direction of the fish. This approach is shown in Figure 9.6a.

Another possibility is to rotate the parallel axes by some offset in the x-direction as

shown in Figure 9.5, and let the offset be governed by the mathematical motion model

(Equation 9.17). It may be shown by geometrical deduction that, for a single trapezoid,

such rotation does not alter the area. There is one issue, however: The rotation extends

the width of the trapezoid sides, so that a discontinuity occurs between the trapezoids.

This may be counteracted for by changing the trapezoid length.

The assembly of the rotational deformation modes can in brief be described as:

1. Deform the first trapezoid closest to the head

2. Scale and rotate it so that the widest side matches the width of the head

3. Alter the length of the trapezoid so that area is conserved

4. Assemble trapezoid onto head

5. Deform the next trapezoid

6. Scale and rotate it so that the widest side matches the previous trapezoid

7. Contract the length of the trapezoid so that area is conserved
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8. Assemble trapezoid onto head

9. Repeat item 5-8 until end of fish

Figure 9.6b shows a motion model where the trapezoids are deformed by an offset.

The other requirement for the fish model was that there should be no net acceleration

of the fish’s center of mass. Both of the deformation models described in Figure 9.6 may

induce a change of the center of mass. This is counteracted by shifting the position of

the deformed shape so that the origin lies in the new center of mass. Any net rotation

may be found from torque considerations of the fish, and then be subtracted from the

deformed flapping fish before the deformed fish polygon is passed to the structural sol-

ver.

Figure 9.5: Deformation of trapezoid c by an offset Oc .
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(a)

(b)

Figure 9.6: The parallel shifted trapezoid model (a) and the rotated trapezoid model (b). Both
models proves to conserve area throughout the deformation.
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9.4 Proposal for a fluid-structure-interaction code

Figure 9.7 shows how a structural solver and a motion model may be implemented

into the existing IBM-NS-solver. The subroutine RB-solver needs information about the

rigid-body configuration of the fish at each time step, and this information is stored in

the array

bRB =



xRB

yRB

Vx,RB

Vy,RB

θ

θ̇m f

I f

∂I f

∂t



(9.21)

With this information, it tracks the rigid-body response by solving Equation 9.8 and 9.7.

After rigid-body-tracking, the subroutine FLAP applies the flapping motion, and finds

the total vertex motions from Equation 9.11 and 9.12. The total motion is stored into the

the immersed boundary polygon array which is defined as before (see Equation 6.11).

9.4.1 Anticipated stability issues

The proposed FSI-code is a loosely coupled model (see Section 3.8), which means that

the interaction forces are calculated directly at each time step, and not by iteration. As

seen in Section 8.7, the direct forcing approach creates large transient oscillations du-

ring start-up of flow. Similar effects are seen to arise from the movement of the immer-

sed boundary from one position fo another, even in stationary fluids. If the forces are

calculated only once per time step, this means that the interaction forces may be hea-

vily over-estimated, which again will lead to a major acceleration of the fish, and finally

a large translation of the fish for the following time step. For the next time step, the

same will happen, but with a larger initial value, so the time integration may eventu-

ally become unstable. To counteract for this, one could take the time step very small,

but as seen in Section 8.7, the max amplitude of the transient effect increases with de-

creasing time step. The best way to counteract for instability would be to calculate the
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Figure 9.7: Proposal for an FSI-solver for a quasi-rigid fluid-structure problem. u represents the
velocity field, p the pressure field and F the immersed boundary force. The immersed boundary
configuration, b, is separated into rigid body motion tracking (bRB ), and an internal flapping
motion, following Equation 9.10, 9.11 and 9.12.
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interaction forces by an iterative procedure at each time step, allowing for the transient

oscillations to calm before propagating the time integration. Such an iterative solver

would fall within the group of strong coupled FSI-solvers.





Chapter 10

Conclusions

A motivation for improving ship propulsion by mimicking a fish’s swimming strategy

has led to the work with this thesis. Background theory for the field of fluid-structure-

interaction within computational fluid dynamics has been presented, and the main fo-

cus has been on the immersed boundary methods, since these are capable of handling

arbitrarily complex body shapes without large computational impact.

A 2D direct forcing immersed boundary method, based on the work of Fadlun et al.

(2000), has been developed and implemented into a Navier-Stokes solver. The solver

can take in arbitrarily shaped simple polygons with individual nodal velocities, and

solve for the flow field that will develop in the domain with the polygon present.

Validation of the numerical code has been done for stationary cylinders at Re = 20, and

results from simulations of higher Reynolds numbers shows that the code also is capa-

ble of resembling vortex shedding. The code is yet to be validated for polygons with both

rotational and translational prescribed motion.

From plots of the force coefficients, it is seen that large transient force oscillations occur

at flow startup. The effect of this decays rapidly, but the largest value is of order O(102)

relatively to the stationary value. This is important to be aware of when implementing

the code into a fluid-structure solver, since the forces are used to calculate structural

responses.

Further development of the IBM-NS-solver into a full FSI-solver is discussed. The pro-

posed solver uses a quasi-rigid approach which means that the fish is only deformable
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from internal forces. A simple mathematical fish model is developed based on the prin-

ciples of body-caudal fin propulsion, and a flow-chart for a loosely coupled FSI-solver is

designed. The large force transients connected with the direct forcing approach strongly

suggest that a strong coupling FSI-model be used instead, as a loose coupling fluid-

structure-model will be subject to large numerical inaccuracies and instability.



Chapter 11

Recommendations for further work

This chapter provides recommendations for future research and other activities rela-

ted to the topics of this thesis. The recommendations are based on the experience and

knowledge that is gained through the work.

11.1 Short term recommendations

The code developed in this thesis will not outperform commercial software, but a furt-

her development of the code could serve as a good basis for educational activities. Such

activities could involve experimentation with

• different Poisson solvers

• higher order interpolation schemes for the immersed boundary method

• comparison between normal and parallel interpolation

and the code could be used by students to study flapping foil propulsion in e.g. ship

design projects. Another interesting project could be to expand the code into a full

fluid-structure-interaction solver, which would provide students with programming-

level knowledge about CFD and the problems related to numerical instabilities in fluid-

structure-interaction problems. In such a project, both a strong and loose fluid-structure

coupling scheme should be explored.

Prior to the uses mentioned above, the code should be properly validated, both for sta-

tionary and moving objects.
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11.2 Long term recommendations

Since the IBM-method has proven to be versatile for flows around complex geometries,

an attempt on developing a code for 3D applications should be done.

Many studies has been done on the area in the latest decade, specifically addressing

many of the different issues related to IBMs. A profound study of these recent contribu-

tions should be made prior to the design of a 3D IBM-module, both to avoid re-exploring

old science and to find unresolved issues to address and investigate. For example could

it be interesting to assess the following question: Can IBMs be made applicable to fluid-

structure-interaction problems where the structure is close to, or piercing, a fluid surface?.

Such an IBM could support interesting analyses of fish swimming near the surface, or

foil propulsion with surface piercing foils.

Due to the sizable data sets that are connected with CFD on 3D flows, the development

of a 3D IBM-module should focus on efficiency. The module could be implemented

with an existing high-performance N-S solver, or one could design a new N-S solver

for the purpose. Such solver could for example combine Adaptive Mesh Refinement, a

multigrid-based Poisson solver and parallel processing to optimize the efficiency.
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Appendix A

Tensor notation

In fluid- and solid mechanics, we often consider quantities that are associated with di-

rections. Kinematic quantities like velocity and acceleration, have one direction, and

scalars have none. In the Navier Stokes equation, the advective acceleration term ((~u ·
∇)~u) is associated with two directions simultaneously: Both the direction of advectional

transport (~u ·∇), and the direction of the transported velocity (~u). This is not seen very

clearly from equations written with vector notation, as there is no distinction between

the two velocity vectors in the term. To increase simplicity and readability of the equa-

tions it is convenient to use tensor notation.

General idea

Tensor notation is the general way of representing spatial mathematical objects. A sca-

lar quantity, as it has no specific direction, is a tensor of rank zero. A vector, which is a

quantity represented in one direction, is likewise a tensor of rank one, and a rank two

tensor is equivalent to a N ×N matrix associated with two directions, where (N ) is the

number of dimensions in the space considered.

The general idea is based on that, in an N -dimensional space, one single direction must

be described by N different terms: one term representing the direction’s extension al-

ong each dimension. In this space, a tensor A of rank m, i.e. a tensor that is associated

with m directions simultaneously, will be represented with m indexes. As an example, a
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tensor of rank 2 in a 3-dimensional space will be represented as:

Ai j (A.1)

Where each of the indexes i , j ranges independently over the three dimensions:

i = 1,2,3

j = 1,2,3

(A.2)

The quantity A is related to two directions, and the tensor Ai j contains all the possible

combinations of the three dimensions to describe two directions at the same time:

Ai j =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 (A.3)

Each of the entries in the tensor A.3 represent a combination of two directions, where

each of the directions extends along one of the axes in the system. In 3D, we name the

axes x1, x2, x3, which is equivalent to the conventional x, y, z-representation. Similarily,

the elementary unit vectors are denoted e1,e2e3.

For terms containing two quantities (A,B) associated with independent directionsi , j ,

the tensor representation is:

Ai B j =


A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

 (A.4)

Generally, in an N -dimensional space, a tensor of rank m will contain N m terms, and

represents a mathematical object that is associated with m directions. Some examples

from the physical world can be found in table A.1.
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Table A.1: Physical quantities and their tensor rank

Quantity Tensor rank Associated directions

Pressure 0 not associated with any direction

Velocity 1 direction of action

Stress 2 direction of action,
orientation of the surface acted upon

Advective acceleration 2 direction of advectional transport,
direction of transported velocity

Einstein’s summation convention

When indexes are repeated in different factors of a tensor term, the tensor should be

read as a sum over the whole range of this index. Eq. A.5 first shows a general sum in an

N-dimensional space, and then the advective acceleration in the 3-dimensional space

written on tensor form.

Ai Bi =
∑

i=1,2,..,N
(Ai Bi )

u j
∂ui

∂x j
= ∑

j=1,2,3
(u j

∂ui

∂x j
)

(A.5)

This convention increases the simplicity of equations, still containing the exact same

information, as demonstrated by the incompressible continuity equation:

∂ui

∂xi
= 0 (A.6)

Equivalence to vector- and matrix notation

A perk of the Einstein summation convention is that it provides the following equivalent

expression for a general matrix equation:

A~x =~b

is equivalent to

Ai j x j = bi

(A.7)
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The identity matrix, I, from vector notation is resembled by the Kroenecker delta-symbol:

I = δi j =


1, if i = j

0, otherwise
(A.8)

It should be noted that the two representations are not identical. The tensor notation is

always referring to one scalar value, but in the context of the other values of the tensor.

The identity matrix, on the other hand, is denoting all the values of the matrix simulta-

neously.

The equivalent of the cross product (×) from vector notation makes use of the Levi-

Cevita-symbol:

εi j k =


0, if any two of (i , j ,k) are the same

1, if (i , j ,k) is an even permutation of (1,2,3)

−1, if (i , j ,k) is an odd permutation of (1,2,3)

(A.9)

And the cross product between two variables is thus denoted:

~a ×~b = εi j k ei a j bk (A.10)

In table A.2, all vector operators that are of concern in fluid mechanics are presented

with their associated tensor equivalent.

Table A.2: Common vector operators and their equivalent in tensor notation

Operator Vector notation Tensor notation

Gradient ∇(·) ∂(·)
∂xi

Divergence ∇· (·) ∂(·)i
∂xi

Laplacian ∇2(·) ∂2(·)
∂x j

2

Advection (~u ·∇)(·) u j
∂(·)
∂x j
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Description of motion

In mechanics, it is distinguished between Lagrangian and Eulerian descriptions of mo-

tion. The Lagrangian description displays motion as a function of time, and the position

of a given quantity may be represented by a vector ~p(t ) from which velocity and acce-

leration may be calculated (Lumley (1969)). This is a suitable method to describe the

motion of single particles or solids, but each point must be traced individually, such that

once large amounts of points are considered the representation becomes incomprehen-

sible. Thus, for representation of e.g. fluid fields, there is a need for another description.

The Eulerian description of motion is not linked to specific particles. Instead, it shows

information of the behavior of any particle at some specific location at a specific time.

The representation of velocity from the two descriptions is mathematically written:

• ui (t ) (Lagrangian)

• ui (x, y, z, t ) (Eulerian)

V





Postface

Through the process of program development, I have learned some things the hard way.

Here are some reflexions that I have made in the hindsight of the work with this thesis,

which may provide an advantage for myself or any other student attempting to write a

CFD code in the future.

I feel like I started in the wrong end with the program design process. With my limited

knowledge within CFD, I should of course have started by developing the Navier-Stokes

solver. Then I would rapidly have learned how big a time-thief the iterative Poisson sol-

ver is, compared to other operations performed in a CFD-algorithm. Instead, I started

designing the IBM-module, and I spent lots of hours focusing on creating an efficient

code. I think the IBM-module could have been much easier to program if I had used an

interpolation algorithm that searched for intersections by scanning through the Eule-

rian mesh, instead of through the immersed boundary polygon.

Another experience is regarding the choice of the Poisson solver. The benefit of using

the Gauss-Seidel method was that I could easily construct my own code, and thereby

gain some understanding about the principles of iterative solvers. On the other hand, if

I had used some black-box high performance iterative solver, I would have been able to

validate my code to a greater extent, and maybe even perform simulations on flapping

fish models.

Trondheim, March 1, 2017

Jon Coll Mossige
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