
Autonomous Docking for Marine Vessels
Using a Lidar and Proximity Sensors.

Joachim Spange

Marine Technology

Supervisor: Roger Skjetne, IMT

Department of Marine Technology

Submission date: December 2016

Norwegian University of Science and Technology

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton, 1676.

 NTNU Trondheim

 Norwegian University of Science and Technology

 Department of Marine Technology

MSC Thesis DESCRIPTION SHEET

Name of the candidate: Joachim Spange

Field of study: Marine control engineering

Thesis title (Norwegian): Autonom dokking av marine fartøy ved bruk av en Lidar og avstandsfølere.

Thesis title (English): Autonomous docking for marine vessels using a Lidar and proximity sensors.

Background

A highly maneuverable and robust multi-purpose marine model platform, called the “C/S Saucer”, has been

developed for laboratory experiments the NTNU Marine Cybernetics Laboratory (MC-Lab). The intended use of

this multi-purpose vehicle is for students to design, implement, and test a variety of nonlinear guidance, control,

and estimation algorithms for specified experimental case studies.

This thesis will continue the work on autonomous exploration using a Lidar, by Einar Ueland, augmenting the

platform with sensors detecting obstacles outside the scanned plane, to perform autonomous docking and take-off.

Also updating the thrust allocation (TA) to account for rotatable azimuth angles, with constrained, in a fashion that

is similar to a leisure boat with one or two stern thruster and the possibility of a bow thruster.

Work description

1. Perform a background and literature review to provide information and relevant references on:

 Unmanned surface vessels and autonomous functions.

 Autonomous marine control systems.

 Optimal thrust allocation (TA) methods applied on a leisure boat.

 Lidar and proximity sensors, and SLAM algorithm.

 MC-Lab and the C/S Saucer model.

Write a list with abbreviations and definitions of terms and concepts, explaining relevant concepts related to

the literature and the project assignment.

2. Modify the TA on the C/S Saucer to perform optimally based on rotatable azimuth angles in the stern and a

fixed azimuth angle in the bow. Study four different configurations:

 2 rotatable azimuth in the stern outputting equal thrust and angle, thus emulating one thruster/rudder.

 Same as above but with a bow thruster outputting a limited thrust at a fixed angle.

 2 rotatable, independent, azimuth in the stern.

 Same as above but with a bow thruster outputting a limited thrust at a fixed angle.

Simulate the behavior of the vessel with the four different configurations. Present all the four configurations as

different “maneuverability modes” for C/S Saucer.

3. Modify the online visualization of the exploration process to include vessel heading. Include a function for

clicking on a docking spot, to enable autonomous docking at that spot.

4. Integrate ultrasonic range detection, enabling obstacle detection outside the scanned plane by the Lidar, when

performing docking and take-off.

5. Develop control algorithms for the automatic docking and take-off function. Simulate system responses and

present and discuss results.

6. Test the implemented system in the MC-Lab to verify that the system is working. Present and discuss the

results.

Acknowledgment

I would like to thank Professor Roger Skjetne for agreeing to supervise my own proposal for a

Master’s Thesis and being helpful along the way. I have been allowed to pursue my idea with

feedback once I had any questions.

I would like to thank Einar Ueland, my first co-supervisor, for continuous supervision during

this semester. He has been available all the time, on a short time notice, helping me resolve

numerous problems. Since I am continuing his work on the CS Saucer, it was natural that he

became my go-to guy.

I would like to thank Jon Bjørnø and Hans-Marin Heyn which whom I have shared an office

with; there has allays been an atmosphere for asking questions.

Thanks to Dong T. Nguyen, my second co-supervisor, for help with finalizing my thesis. Together

with Einar Ueland and Håkon Mork you have helped me produce my Master’s thesis.

J.S.

v

vi

Abstract

This thesis reviews the development of an autonomous docking feature for a marine vessel in

a small-scale, sheltered, environment. Proximity sensors are added to aid the autonomous ex-

ploration by detecting obstacles outside the lidars scan-plane, an assessment of different thrust

allocations to emulate leisure boats are addressed.

The Cyber Ship Saucer, a model-scale vessel built for testing in the Marine Cybernetics Labo-

ratory at NTNU, have been serving the platform for testing the docking scheme. The model

and the lab, together with autonomous systems, optimal thrust allocation, sensors and SLAM is

presented as a background for the experimental work performed in this thesis.

In addition to the fixed thrusters, four new configurations which considering rotation, emulat-

ing a leisure boat, have been studied. The ”constrained control allocation for azimuth thruster”

were applied to find an optimal solution for each of the modes.

The online visualization process has been altered such that obstacles detected by the proximity

sensors become apparent for the operator, along with the heading of the vessel.

Through modifying the existing system, influencing both the path planning strategy and opera-

tor interaction, autonomous docking and take-off arose.

Simulations, and later experiments, verified the autonomous docking by utilizing the proximity

sensors using a fixed thruster configuration. Through the user interface, the user is able to select

a spot and then inputting the desired heading there. The results are presented, and discussed, in

a separate chapter. The electronic attachment contains, among other, photos and videos from

the experimental trials.

vii

viii

Sammendrag

Denne avhandlingen gjennomgår utviklingen av autonom docking for et marint fartøy, i et av-

grenset, skjermet, miljø. Avstandsfølere har blitt lagt til for å bistå med å søke der lidaren ikke

ser. En vurdering av ulike trøstallokeringer for å emulere en fritidsbåt blir presentert.

Cyber Ship Saucer, et modellskala fartøy bygd for testing i barin kybernetikk-laboratoriet ved

NTNU, har blitt brukt som plattform til å teste docking-algoritmen. Modellen og laben, sam-

men med autonome systemer, optimal trøstallokering, sensorer og SLAM blir presentert som

bakgrunnsstoff for eksperimentene sol ble utført.

I tillegg til et oppsett av fikserte trøstere har fire nye konfigurasjoner, basert på roterende trøstere,

blitt vurdert, dette fordi oppsettet bedre emulerer en fritidsbåt. En optimal løsning, for hver av

de fire modusene, har blitt funnet ved hjelp av metoden ”constrained control allocation for az-

imuth thruster”.

Sanntidsprosessen som visualiserer prosessen har blitt endret slik at hindringer sett av avstands-

følerne dukker opp, sammen med retningen til fartøyet.

Det eksisterende systemet ble endret ved å modifisere strategien for å planlegge banen, samt

brukergrensesnittet for å utvikle autonom docking og avgang.

Simuleringer, og senere eksperimenter, verifiserte autonom docking ved å bruke avstandsfølere

og et fiksert trøsteroppsett. Via brukergrensesnittet vil brukeren kunne velge en plass, også angi

en ønsket retning. Resultatene er presentert, og diskutert, i et eget kapittel. Det elektroniske

vedlegget inneholder, blant annet, bilder og videoer fra de eksperimentelle forsøkene.

ix

x

Contents

MSc thesis description sheet . iii

Preface . v

Acknowledgment . v

Abstract . vii

Sammendrag . ix

Nomenclature . xix

Abbreviations . xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Optimal thrust allocation . 2

1.2.2 Proximity sensors . 3

1.2.3 Lidars . 4

1.2.4 Autonomous systems . 7

1.2.5 Unmanned Surface Vessels . 9

1.3 Thesis contribution . 12

1.4 Outline of the thesis . 13

1.4.1 Scope and delimitation . 13

1.4.2 Notation . 14

2 Experimental setup 15

2.1 CS Saucer . 15

2.1.1 Previous works . 15

2.1.2 The Robot Operating System . 16

2.1.3 Software architecture . 17

2.1.4 Hardware architecture . 18

2.2 Marine Cybernetic Laboratory . 23

2.2.1 Obstacles . 23

3 Mathematical model 25

xi

3.1 Kinematics . 25

3.1.1 The Basin-fixed and Basin-relative reference frames 25

3.1.2 Body-fixed reference frame . 26

3.1.3 Transformation between reference frames . 27

3.2 Kinetics . 28

4 Control allocation 31

4.1 Fixed angles . 33

4.2 Constrained rotatable thrusters . 34

4.2.1 Configuration 1 . 35

4.2.2 Configuration 2 . 36

4.2.3 Configuration 3 . 36

4.2.4 Configuration 4 . 37

4.2.5 Simulink implementation . 37

4.3 Simulations . 38

5 Autonomous docking 41

5.1 Problem statement . 41

5.2 Motion control system . 42

5.2.1 Steering law . 42

5.2.2 Docking and take-off . 43

5.2.3 PD-controller . 43

5.3 Map processing . 44

5.3.1 Draw test environment . 44

5.3.2 Including the proximity sensors . 45

5.3.3 Inflating the map . 46

5.3.4 Feasibility correction of the cost-map . 46

5.3.5 Path planner . 47

5.3.6 Map layers . 47

5.3.7 Operator interaction . 48

5.4 Sequence of docking and take-off . 48

6 Results 51

6.1 Simulations . 51

6.1.1 Adding proximity sensors to the mapping environment 51

6.1.2 Autonomous docking . 52

6.2 Experiments . 53

6.2.1 Testing of modules . 53

6.2.2 Proximity sensors . 54

6.2.3 Autonomous docking . 56

xii

6.3 Discussion . 57

7 Concluding remarks 59

7.1 Conclusion . 59

7.2 Further work . 61

A MATLAB scripts A1

A.1 Create map for simulation . A1

A.2 Angular dependent cost-map . A2

B Electronic attachments B1

B.1 Parameter generations files . B1

B.2 Path_exploration node . B2

B.2.1 Exploration_Pathplanner node . B2

B.2.2 Path2SetPoint node . B3

B.2.3 Scan2SetPointDist . B3

B.2.4 Hector2VesselPos . B3

B.2.5 Motion_Controller . B3

B.2.6 Arduino code . B4

B.2.7 Hector-Slam nodes . B4

B.2.8 RPLidar node . B4

B.2.9 ROS serial node . B4

B.3 Simulator nodes . B5

B.3.1 Vessel simulator node . B5

B.3.2 Mapping fimulator node . B5

B.4 Launch files . B5

B.5 Other . B6

B.5.1 Real-Time Pacer . B6

B.5.2 Marine Systems Simulator . B6

B.5.3 Photo and video documentation . B6

B.5.4 Thesis files . B6

C Software set up and installation C1

C.1 Installing ROS and UBUNTU . C3

C.1.1 Ubuntu and ROS on your personal computer C3

C.1.2 Ubuntu and ROS on your single board computer (RP2) C3

C.2 Getting started with ROS . C4

C.3 Communicating between Raspberry Pi 2 and computer C5

C.3.1 Arduino on ROS . C6

C.4 RP lidar and Hector-SLAM in ROS . C7

xiii

D Tutorials: ROS D1

E Launch manual E1

E.1 Deploy vessel for autonomous exploration . E1

E.2 Perform simulations . E4

E.2.1 Launching . E4

E.2.2 Run Simulink nodes independently . E4

F ROS architecture overview F1

xiv

Figures

1.1 Constol system structure. 2

1.2 Concept of an ultrasonic proximity sensor. 3

1.3 2D lidar, illustraded with the RPLidar. 4

1.4 Vacuum cleaner XV-11 from Neato Robotics. 5

1.5 The driverless shuttle from EasyMile . 6

1.6 10 levels autonomous control and how autonomy will improve over time. 7

1.7 Control architecture for unmanned underwater vehicles. 8

1.8 Mariner USV. 9

1.9 An unmanned ferry is planned to cross the a canal in Trondheim. 10

1.10 The autonomous vessel Hrönn will be tested in the Trondheimsfjord. 11

2.1 ROS publisher/subscriber architecture. 16

2.2 Signal flow between components. 17

2.3 A 170 point breadboard. 18

2.4 The HC-SR04 acoustic sensor. 20

2.5 Modules for increasing sway and yaw resistance. 22

2.6 Marine Cybernetics Laboratory, along with obstacles used in this thesis. 24

3.1 Basin-relative and Body-fixed reference frame. 26

4.1 CS Saucer thruster setup . 32

4.2 The four modes, showing dead zones for the stern azimuth thrusters. 34

4.3 Top level of simulink model. 38

4.4 Mode 1-4 trying to produce the desired thrust. 39

4.5 The ”MotionControl” Node . 40

5.1 LOS steering law . 43

5.2 Test environment for the simulator . 45

5.3 Heading dependent weighting introduced to the system 47

5.4 Heading dependent weighting introduced to the system 48

6.1 The reference map, drawn in Paint, and the result after an autonomous exploration. 52

xv

6.2 Docking of the CS Saucer. 53

6.3 Two modules tested on the CS Saucer, in the basin. 54

6.4 Test environment in the basin along with a figure illustrating the setup. 55

6.5 Scan of the basin showing obstacles detected by the lidar and the acoustic sensors. 56

6.6 Vessel behaviour before docking. See the jump in ψr el around sample 500. 57

7.1 Suggestions for future work. 62

F.1 Overview over topics and nodes in the system, when running in the MCLab. F3

F.2 Overview over topics and nodes in the system, when running as a simulation. . . . F4

xvi

Tables

2.1 Pin connection overview . 19

2.2 Datasheet, HC-SR04 . 20

3.1 Parameters used in the maneuvering equation . 29

7.1 TRL in the European Commission (European Commision, 2014) 60

F.1 Overview over nodes in the system in MCLab, see Figure F.1 F1

F.2 Topics in the system explained . F2

xvii

xviii

Nomenclature

C A(νr) Hydrodynamic Coriolis matrix. 28

CRB (ν) Rigid body Coriolis matrix. 28

D Linear damping matrix. 28

Dn(νr) Non-linear damping matrix (includes linear components). 28

Iz Moment of inertia about the z-axis. 29

MA Added mass matrix. 28

MRB Rigid body mass and inertia matrix. 28

Nṙ Added mass in yaw. 29

Nr |v | Nonlinear damping in yaw. 29

Nr Linear damping in yaw. 29

T (α) Thrust configuration matrix. 31, 35

Te Extended thrust configuration matrix. 35, 36

Xu̇ Added mass in surge. 29

Xu|u| Nonlinear damping in surge. 29

Xu Linear damping in surge. 29

Yv̇ Added mass in sway. 29

Yv |v | Nonlinear damping in sway. 29

Yv Linear damping in sway. 29

∆ψrel Angle between Basin-relative and Basin-fixed reference frame. 25

α1 Fixed angle of bow thruster. 33, 38

xix

α2 Angle of port stern thruster. 33, 37, 38

α3 Angle of starboard stern thruster. 33, 37, 38

α23 The equal angle of port and starboard stern thruster. 37, 38

η Position and attitude in the Basin-relative reference frame. 52

ηd Desired position and attitude in the Basin-relative reference frame. 43, 52

η̂ Observer estimated position and attitude in the Basin-relative reference frame. 43

ν̂ Linear velocities. 43

ν Linear velocities. 27, 28

νr Linear velocities relative to local current. 28

ψdocking Desired docking angle. 43

τ Force [N] is the Body-frame. 28, 31, 33, 35, 43

τc Commanded force [N] from the thrust allocation. 38

τd Desired force [N] is the Body-frame. 38

f Force vector [N] for each thruster. 31, 33, 38

fe Extended force vector [N], decomposed forces for each thruster. 35, 36

g (η) Vector of gravitational/buoyancy forces and moments. 28

g0 Vector used for pretrimming. 28

m Total mass of the system. 29

me Mass of the module attached to the vessel. 29

mv Mass of the vessel. 29

rt Radius from center of origin to thrusters. 31

R Rotation matrix. 27, 43

xx

Abbreviations

AUV Autonomous Underwater Vessel. 11

BPA Boat Parking Assistance. 11

DOF Degree of Freedom. 2, 27, 28

HMI Human Machine Interface. 21

IMU Inertial Measurement Unit. 62

LOS Line-of-Sight. 42, 62

MCLab Marine Cybernetics Laboratory. 15, 19, 23, 39, 44, 51, 53, 55, 57, E2

PWM Pulse Width Modulation. 18, 20

ROS Robot Operating System. 14–17, 21, 26, 39, 58, 59, 62, E5

RP2 Raspberry Pi 2. 15, 17, 18, 21, E1

SLAM Simultaneous Localization and Mapping. 2, 5, 15, 25, 26, 47, 48, 52, 61, 62

TA Thrust Allocation. 2, 34, 38, 39, 61

TRL Technology Readiness Level. 60–62

USV Unmanned Surface Vehicle. 9

xxi

xxii

Chapter 1

Introduction

1.1 Motivation

In October 2016 Tesla Motors wrote the blog post ”All Tesla Cars Being Produced Now Have Full

Self-Driving Hardware”. The hardware package is described as:

Eight surround cameras provide 360 degree visibility around the car at up to 250 meters of range.

Twelve updated ultrasonic sensors complement this vision, allowing for detection of both hard

and soft objects at nearly twice the distance of the prior system. A forward-facing radar with en-

hanced processing provides additional data about the world on a redundant wavelength, capable

of seeing through heavy rain, fog, dust and even the car ahead.(Tesla Motors, 2016)

In the blog post, there is a video of a man entering his car and being driven to work without any

interaction with the car. He exits the car in front of the main entrance leaving the car to find a

valid spot to park. Technology on land have always been leading on marine technology, for the

consumer market, thus in a few years the same advanced ”Self-Driving” technology might be

available on leisure boats.

In this thesis a lidar is used instead of a radar, while four acoustic sensors complement the vi-

sion by detecting obstacles outside the plane scanned by the lidar. The lidar is often placed high

up to get an overview. Due to its placement, it will have a blind spot as a perimeter around the

vessel. Adding sensors to look in the blind spot is essential, a low-cost acoustic sensor is good

at close range detection and thus well suited. The establishment of using a marine vessel with

inexpensive sensors to operate and dock autonomously in a controlled laboratory environment

is a step automation of smaller, recreational, boats. Other indications that leisure boats will be-

come more autonomous is the industrial initiative toward creating autonomous vessels. Several

examples follow in the next section.

1

Figure 1.1: Constol system structure, the first three systems referred to as the tree levels of con-
trol algorithm hierarchy. τc denotes the commanded, virtual, control effort, and τ is the actual,
allocated, control effort. Courtesy Johansen and Fossen (2013)

1.2 Background

This section aims at providing a basic understanding on the topics of thrust allocation, au-

tonomous systems, unmanned surface vessels and the sensors used; lidar; proximity sensor.

The background of this thesis overlaps with some of the works presented by Ueland (2016).

Hence an introduction to the topics autonomous mapping, map representation, Simultaneous

Localization and Mapping (SLAM), path planning and exploration strategies, this thesis refers

to Ueland (2016, Sec 1.2.1-1.2.5). The background topics presented here, which may still be

overlapping, are aimed to be explained through other examples.

1.2.1 Optimal thrust allocation

Johansen and Fossen (2013) divided the control hierarchy of over-actuated systems commonly

includes three levels, see Figure 1.2.1. First, a high-level motion controller, such as a PD-controller,

is responsible for generating a vector of virtual control efforts, τc , to meet the overall motion

control objective. Second, a control allocation coordinates the effectors such that they com-

bined produce τc . Third, a low-level control algorithm may be used to control each individual

effector via its actuators. This section focuses on the second layer.

When discussing Thrust Allocation (TA) it is important to distinguish between an underactuated

and a fully actuated marine craft. According to Fossen (2011, Sec. 1.2.2), marine crafts with less

control inputs than generalized coordinates (r < n), are underactuated. Equal or more control

inputs results in a fully actuated marine craft. If r > n, it will be referred to as over-actuated.

Throughout this thesis only surge, sway and yaw are studied, hence n = 3 which means that the

system is 3 Degree of Freedom (DOF), where DOF is defined by Fossen (2011) as:

For a marine craft, DOF is the set of independent displacements and rotations that completely

specify the displaced position and orientation of the craft. A craft that can move freely in the 3-D

space has a maximum of 6 DOFs, three translational and three rotational components.

In the case of an over-actuated system, there are often many, or infinitely many, solutions to allo-

cate the desired thrust. A solution, as suggested by Sørdalen (1997), is to use the Moore-Penrose

2

pseudoinverse, which minimizes the square of the control input. If the problem is augmented,

including properties such as input saturation, rate constraints, and forbidden zones an optimal

solution can be found relative to the importance of each constraint.

One such solution is the ”constrained control allocation for Azimuth thruster” presented by

Fossen (2011, Sec. 12.3.4), based on the works by Johansen et al. (2004), which is an iterative

solution using quadratic programming.

For further background information, see Johansen and Fossen (2013), and Frederich (2016, Sec. 1.2).

1.2.2 Proximity sensors

A proximity sensor is a sensor able to detect the presence of nearby objects without any physical

contact. The methods to accomplish this span over a variety of concepts. In this thesis the

proximity sensor uses ultrasonic waves measuring the time, t , it takes from the signal is sent

to received. Usually, the frequency is around 40kH z, well above human hearing. The speed of

sound is around vs = 340 m/s, hence the distance to the object becomes

d = t ∗ vs

2
. (1.1)

It is important to divide by 2 since the sound travels the distance twice, see Figure 1.2. If the

sensor had a time step is 1µs the resolution becomes 0.3mm. The biggest advantage using an

ultrasonic sensor is that it detects many materials, and can be very cheap. A drawback is how

the speed of sound varies with, among other, temperature, leading to a error. Another drawback

is that if the target is inclined the sound might reflect in another direction and may not hit the

receiver, hence the object is not detected.

Figure 1.2: Concept of an ultrasonic proximity sensor. Courtesy S. Vyasasamudra

3

1.2.3 Lidars

A lidar is a remote sensing device that measures the distance to nearby targets by illuminating

its environment with a laser, and analyzing the reflected light. The lidar emits a laser pulse

that is reflected by the object it reaches. The returning signal is sampled by vision acquisition

embedded in the lidar. By measuring the time that the light uses to return, a point cloud is

generated, which can be utilized for mapping and localization.

Lidars are recognized for high accuracy, allowing for fast data acquisition and for being inde-

pendent of ambient light. Figure 1.3 illustrates how the 2D lidar installed on the vessel emits a

laser pulse that is reflected by a wall and sampled by vision acquisition in the lidar. This allows

the system to sense its environment in the 2D horizontal plane. Lidars have a more detailed

description by Ueland (2016).

In the following two examples are presented, one using a similar 2D lidar, the other a 3D lidar

with a narrow vertical field of view.

Figure 1.3: 2D lidar, illustraded with the RPLidar. Courtesy Robotshop

4

1.2.3.1 Example 1, the XV-11 from Neato Robotics

Neato describes their autonomous vacuum cleaner as:

Patented laser-guided technology scans and maps the room, plans, and methodically cleans—instead

of just bumping around.(Neato XV Series, 2016)

Figure 1.4 displays the vacuum cleaner with its lid opened, where the lidar is clearly visible. Janez

Cimerman (2015) published a tutorial on how to use the lidar from the XV-11 together with the

Hector SLAM ROS packaged, from Kohlbrecher S, M. J. (2014). Therefore, it appears as the lidar

from the XV-11 could be used instead of the RPLidar to perform SLAM and path planning as was

done by Ueland (2016).

This looks similar to the . The similarity has been confirmed by Janez Cimerman (2015), which

published a tutorial on how to use the lidar from the XV-11 together with the Hector SLAM ROS

packaged, from Kohlbrecher S, M. J. (2014).

Figure 1.4: Lid opened on the vacuum cleaner XV-11 from Neato Robotics.
The 2D lidar is clearly visible, illustraded with the RPLidar. Courtesy SparkFun Electronics

5

1.2.3.2 Example 2, the EZ10, the driverless shuttle

EasyMile describes their shuttle bus, the EZ10, as:

[...] an electric shuttle dedicated to smart mobility designed to cover short distances and prede-

fined routes in multi-use environments.(EasyMile, 2016)

The bus was traveling a short predefined path around the west side of the main building at

NTNU, see Figure 1.5a. A lidar is clearly visible in the front; there was also another in the back.

It is believed by the author that it is the VLP-16, Figure 1.5b from Velodyne LiDAR (2016a). It has

a vertical field of view of ±15◦, making it a 3D lidar.

(a) Ez-10 from EasyMile pictured in front of
the main building at NTNU (b) The VLP-16. Courtecy Velodyne LiDAR

Figure 1.5: The driverless shuttle from EasyMile, which may be using on PUCK from Velodyne
LiDAR in the front and back.

6

1.2.4 Autonomous systems

When discussing autonomy, it is important to distinguish between an automatic and an au-

tonomous system. Automatic systems can perform pre-defined task, without any human in-

tervention, such as path following. An example of this is how the EZ10 shuttle bus had been

programmed to follow a pre-defined path, its path was in between prohibitory line, to keep hu-

man away. The same bus, in an open world environment, would be considered as autonomous.

Autonomous systems are more intelligent when unexpected events occur; they are designed to

model and plan their actions to make choices.

To distinction two autonomous systems from each other it is common to classify systems ac-

cording to their level of autonomy. Figure 1.6 shows a 10 level distinction, while four levels are

presented by Ludvigsen and Sørensen (2016), both systems are ranging from remote control to

fully autonomous.

For a detailed description of each of the ten levels, see National Research Council (2005). Three

of the levels will now be presented.

Figure 1.6: 10 levels autonomous control and how autonomy will improve over time. Corutecy
National Research Council (2005)

7

Autonomy level 1 is the same as an automatic operation, there is no decision-making ability, a

remote operator controls the vessel through high-level mission planning. The level of autonomy

is increasing, level by level, until level 10, which defines ”Full autonomy”. The system indepen-

dently plans the mission to meet the defined objectives, possibly through collaboration with

other vessels. The human may monitor the process without any supervision, i.e. human-out-

of-the-loop.

Level 7 is defined as ”Local sensor fusion” with robust planning and negotiation of complex

terrain, environmental conditions, hazards, and objects. Operator interaction is at a minimum,

typically to intervene with certain decisions. Level 7 is specifically mentioned, the CS Saucer

performing autonomous exploration (Ueland, 2016), would be placed here.

In Ludvigsen and Sørensen (2016) a ”bottom-up” approach toward autonomy was presented,

the architecture is shown in Figure 1.7, consisting of three layers. The top layer concerns the

mission objectives and planning. Contingency handling, from the guidance system or payload

sensor, may result in a re-planning. The guidance and optimization layer concerns reference

signals from the controller along with waypoint management and generation to be used in the

mission layer. The lowest layer is where the control execution takes place, in the controller, there

Figure 1.7: Control architecture for unmanned underwater vehicles. Ludvigsen and Sørensen
(2016)

8

is a process plant to perform actuator control.

For topics on, among other field campaigns, see Ludvigsen and Sørensen (2016), for reading on

plant and actuator control, see Sørensen (2005).

1.2.5 Unmanned Surface Vessels

An Unmanned Surface Vehicle (USV) is a vessel that operates on the water surface without the

use of an operator on the vessel. In this chapter several examples will be presented.

1.2.5.1 Maritime Robotics

Maritime Robotics has a USV called ”Mariner”, see Figure 1.8. It is described as a multipurpose,

stable, unsinkable and near maintenance-free (Maritime Robotics, 2016). It can be built to fit

into a 20 feet container, for cargo shipping, and is equipped with a payload room of more than

one cubic meter. It has a 300mm moon-pool to mount any sub-surface sensors.

Maritime Robotics also offers a ”USV Conversion System”, they have, e.g., converted a military

patrol boat to a vessel that can be used in unmanned operations. They have also converted

leisure crafts, such as a Viknes 830. The latter was studied by Kjerstad (2010). The conversion is

described to take 1-2 work days.

In Breivik (2010) formation control is presented where the Mariner USV and the Viknes 830 are

recording the position of NTNU’s research vessel RV Gunnerus (2016), a 30m long displacement

vessel capable of 13 knots. The formation position were defined relative to Gunnerus’ Body-

fixed frame.

Figure 1.8: Mariner USV. Courtesy Maritime Robotics

9

1.2.5.2 Milliampere

A NTNU project started earlier in 2016, developed a model of an autonomous ferry to carry

people across a canal in Trondheim, see Figure 1.9a, it is an alternative proposition to the NOK

60M concept of building a bridge (adressa, 2016). The model is in scale 1:2 and is a collabora-

tive project between the Faculty of Engineering Science and Technology (IVT Faculty (2016)),

the Faculty of Information Technology, Mathematics and Electrical Engineering (IME Faculty

(2016)) and Centre for Autonomous Marine Operations and Systems (AMOS (2016)). The project

was covered by the local and national press, among other by Teknisk ukeblad (2016a) which is

a Norwegian technical magazine. The full-scale vessel will be 10 meters long and a width of 3,5

meters, with a capacity of 12 passengers. In the article lidar and IR-camera are mentioned as

possible sensors. The vessel must also be able to dock and take-off, autonomously, and charge

its batteries while it is docked. The author recommended the HDL-32E (Velodyne LiDAR, 2016b)

prior to the publishing of the magazine article, which was bought and will be studied. See Figure

1.9b.

(a) Milliampere. Courtesy Aanondsen, S. A. (b) HDL-32E lidar. Courtecy Velodyne LiDAR

Figure 1.9: An unmanned ferry is planned to cross the a canal in Trondheim. The HDL-32E lidar
is considered to be used as part of the sensor suite.

10

1.2.5.3 Hrönn

Another autonomous vessel is the ”Hrönn”, also described in Teknisk ukeblad (2016b) (see Fig-

ure 1.10). Kongsberg and Automated Ships Ltd will build the 35 m by 10 m vessel. According

to the article, the design process is still at an early state, the range of application are listed as

ROV-operations, being a mother vessel for Autonomous Underwater Vessel (AUV), e.g. Hugin.

The vessel will be tested in the Trondheimsfjord in 2018, and will, in the beginning, be remotely

operated before becoming autonomous.

1.2.5.4 Astra yacht

This section is also described by Spange (2016). ASTRA Yacht delivers a custom system Boat

Parking Assistance (BPA) which can be installed in any engine, such that the yacht autonomously

orient itself relative to the sea floor, and can this way it counteracts wind and currents. The cap-

tain can maneuver the boat relative to the sea floor, making the yacht more agile than a car

since it can rotate without any translation. ASTRA Yacht delivers, installs and calibrates the BPA

no price is presented on their web page; however, since this is a product for yachts, it can be

assumed that it is in the upper price range, and likely therefore also likely too expensive to im-

plement in any leisure boat. Berretta et al. (2013) fitted a ”Seacode Cabi 28” with BPA, the vessel

had two stern thrusters, one side thruster in the bow and another in the stern.

Figure 1.10: The autonomous vessel Hrönn will be tested in the Trondheimsfjord.
Courtesy Kongsberg

11

1.3 Thesis contribution

The main contributions of this thesis are as follows:

• Suggestions on constrained optimal control along with thrust configuration matrices for

four different thruster configurations, ranging from over actuated to underactuated emu-

lating the configuration of a leisure boat.

• Presenting a method for deploying the CS Saucer any environment. As long as the primary

colors and resolution match anything can be drawn and converted to the occupancy grid.

• Interfacing proximity sensors into the hardware and software architecture aiding the lidar

in avoiding hazardous situations.

• Creating, and testing, two physical modules for the CS Saucer, they are attached to the

exterior. Their purpose is to change the vessel dynamics.

• Developing a steering law which combines line-of-sight equations with setpoint genera-

tion from the velocity control law by Ueland (2016).

• Modifying the existing path planner, mathematical model, and control system to perform

autonomous docking. The docking becomes an option for the operator.

• List of recommended tutorials for beginners with Robot Operating System are given in

Appendix D.

12

1.4 Outline of the thesis

1.4.1 Scope and delimitation

This thesis is built up around the Cyber Ship Saucer, studying thrust allocation and implemen-

tation of proximity sensors to perform autonomous docking.

Chapter 1 introduces the thesis to the reader. It provides background on thrust allocation, prox-

imity sensors, lidars and autonomous vessels.

Chapter 2 presents the previous work on the CS Saucer along with its operating system, software-

and hardware architecture. Together with the Marine Cybernetic Laboratory this make up the

experimental setup

Chapter 3 covers the mathematical model, through explaining the kinematics and the kinet-

ics.

Chapter 4 presents, and concludes, control allocation based on fixed or rotatable thrusters.

Chapter 5 presents how the motion control system and the map processing was altered to

achieve the autonomous docking feature. It also gives an account of how the operator should

interact with the map to perform docking and take-off.

Chapter 6 presents the results from simulations and experiments.

Chapter 7 covers the concluding remarks summarizing the thesis and presenting suggestions

for further work.

Appendix A presents two MATLAB scripts which are specifically referred to in the thesis.

Appendix B presents an overview of the electronic attachment provided with this thesis.

Appendix C shows how to install the necessary software.

Appendix D presents tutorials for beginners in ROS.

Appendix E is a launch manual for deploying the vessel on water but also performing simula-

tions.

Appendix F contains two figures of the ROS architecture, as the system is deployed on water and

when running as a simulation, respective.

13

As recognized by Ueland (2016), the following address some of the limitations of the resulting

system:

• Experiments have to be performed in a controlled environment with the following prop-

erties

– There are no waves or current present during testing.

– Walls and hinders are vertical and not transparent. These requirements are neces-

sary for both the lidar and the proximity sensors.

– The performed operations is small-scale, meaning that there are always some objects

within the range of the lidar.

– To steer the heading a divinycell module needs to be attached to the vessel.

• An external computer, connected tho the system through WiFi, is needed to run the ex-

ploration node.

• Obstacles needs to be fixed. It is expected that the system will experience problems in a

dynamic environment.

1.4.2 Notation

Throughout the thesis regular style font is used for all math notation. Scalar, vector or matrix

should be clear from context. Text written in cursive, is a definition or a direct copy from the

reference. Text written in quotation marks refers to a specific name, such as a MATLAB-file or a

Robot Operating System (ROS) node

14

Chapter 2

Experimental setup

2.1 CS Saucer

The vessel used in this thesis is the model-scale, surface vessel, CS Saucer. It has a circular water-

plane area and was designed to be omnidirectional. Its top and bottom diameter are 548mm

and 398mm, respectively. The mass is about 3.4kg. This chapter presents the CS Saucer, both by

reviewing previous works and by presenting new developments.

2.1.1 Previous works

CS Saucer was designed and built by Idland (2015). Idland also designed a control system im-

plementing it in LabVIEW from National Instruments.

Ueland (2016) redesigned the control system to ROS, introducing Arduino and Raspberry Pi 2

(RP2). Ueland implemented a lidar sensor and developed an autonomous guidance algorithm

that performed SLAM to autonomously explore a test environment set up in the Marine Cyber-

netics Laboratory (MCLab).

15

2.1.2 The Robot Operating System

The programming platform utilized on the vessel is the The Robot Operating System (ROS),

which was released in 2007. It provides services that resemble that of operating systems, such as

message parsing between processes, and package management. A ROS system consist of one or

several independent processes, called nodes, which perform computations. To enable commu-

nication between nodes, each node subscribes any number of needed topics, i.e. inputs, and

may publish any number of topics, i.e. outputs.

Figure 2.1 illustrates a system consisting of two nodes and a single topic. ”NodeA” subscribes

to nothing, but publishes a single topic. ”NodeB” subscribes to the same topic, but does not

publish any new topic. Other than the shared content of the topic, the nodes are ignorant of

each other.

In general, a topic might subscribe and publish several topics. Figure F.1 and F.2 displays the

node/topic structures for the system designed in this thesis running during experimental results

and in the simulator, respectively.

Tutorials for beginners in ROS are presented in Appendix D

Topic

NodeA
NodeB

Publication Subscription

Figure 2.1: ROS publisher/subscriber architecture. Courtesy Ueland (2016)

16

2.1.3 Software architecture

Figure 2.2 gives a general overview of the signal flow between components. In general, it applies

to the system flow of the CS Saucer, and other vessels set up in a similar manner.

A RP2 serves as the onboard computer running Linux as operating system with ROS installed.

The Arduino has a Flash memory and runs an uploaded code, often called the Arduino sketch,

it is run a separate ROS node, ”/serial_node” in Figure F.2. It is responsible for controlling the

actuators, both angle, and thrust, but also the proximity sensors.

Figure 2.2: Signal flow between components on a system with the suggested architecture, set up
in the MCLab. Courtesy Ueland

17

2.1.4 Hardware architecture

2.1.4.1 Breadboard

A 170 point breadboard with 17 rows and 10 columns, typically called the ”mini breadboard”,

is used where column A-E and F-J are electrically connected. The breadboard is used with the

acoustic sensors to supply 5V and connect them to ground. See Figure 2.3

2.1.4.2 Arduino Mega

The Arduino Mega is a microcontroller board based on the ATmega1280 (Arduino Webpage,

2016). It is a worldwide popular low-cost embedded circuit where open source code and drivers

are easily available. The board has 54 digital pins, where 14 may be used as Pulse Width Modu-

lation (PWM) outputs.

In the implemented system the four digital pins are responsible for triggering the acoustic sen-

sors, while four PWM outputs register the response from each sensor. Another six PWM outputs

control the angle and revolution of each servo and motor, respectively. Transmitted signals have

a frequency of 50Hz. For a full overview of the setup see Table 2.1.

2.1.4.3 Raspberry Pi 2

The Raspberry Pi 2 (RP2) is a single-board computer. It is installed with Ubuntu, and is running

multiple ROS nodes during experiments. The RP2 is connected via USB to the Arduino and lidar,

Figure 2.3: A 170 point breadboard.

18

it is also connected to the WiFi through a wireless USB adapter.

2.1.4.4 Motors and servos

Three azimuth thruster are installed, each of which is driven by a separate Torpedo 800 motor.

The azimuth thrusters can all be rotated by the motion from a servo; each motor has its corre-

sponding servo of the type Graupner Schottel drive unit II. The arrangement is unaltered from

the original setup, designed by Idland (2015).

2.1.4.5 RPlidar

The lidar installed on the vessel is of the type PRlidar, which is among the cheapest on the mar-

ket, under $400 at Robotshop (2016). Commercially it has been replaced by its successor, the

RPlidar A2 ($450). The rotational speed can be set 2-10Hz, but the sampling frequency is fixed

2 kHz. The range of the scan is 6 meters, which is almost the same as the width of the MCLab,

see Section 2.2. The lidar is responsible for generating a point cloud of the horizontal plane,

corresponding to different attack angles. This data is subsequently processed and utilized by

the implemented software system.

The lidar is placed on top of a small pasteboard box elevating it 10 cm above the lid, this was

Table 2.1: Pin connection overview

Pin Description Type

3 Angle Servo-1 PWM (Output)
5 Angle Servo-2 PWM (Output)
6 Angle Servo-3 PWM (Output)
7 Acoustic sensor-1 PWM (Output)
8 Acoustic sensor-2 PWM (Output)
9 Revolution Speed Motor 1 PWM (Output)

10 Revolution Speed Motor 2 PWM (Output)
11 Revolution Speed Motor 3 PWM (Output)
12 Acoustic sensor-3 PWM (Output)
13 Acoustic sensor-4 PWM (Output)
5V Supply for acoustic sensors Power

DGND Ground Servos and motors Ground
GND Ground Battery/Acoustic Sensors Ground
D50 Trigger Acoustic sensor-1 Digital
D51 Trigger Acoustic sensor-2 Digital
D52 Trigger Acoustic sensor-3 Digital
D53 Trigger Acoustic sensor-4 Digital

19

Figure 2.4: The HC-SR04 acoustic sensor. Courtesy DealExtreme

done since many cables are drawn from the ship interior to the proximity sensors placed on

the hull (see Figure 2.5b), but also to ensure some obstacles was only detectable by the acoustic

sensors. The elevation creates a horizontal plane where the lidar scans, approximately 20 cm

above the water surface. The lidar is connected to the Rasberry Pi 2 over USB and is interfaced

to the ROS framework through a separate node, ”/rplidarNode” in Figure F.2.

2.1.4.6 The ultrasonic ranging module HC-SR04

The proximity sensor used in this thesis is the ultrasonic ranging module ”HC-SR04”, see Figure

2.4. The sensor contains 4 pins labeled ”Vcc”, ”Trig”, ”Echo” and ”Gnd”. ”Vcc” is the 5V DC

power input pin. ”Trig” is the pin to trigger the acoustic beam, it receives high or low and can be

triggered by a regular digital port from the Arduino Mega. ”Echo” is the output port, it outputs

a PWM signal and hence needs to be connected to a unique PWM port on the Arduino. ”Gnd”

refers to ground. Other important data is listed in Table 2.2.

Four low-cost ($2) acoustic sensors were implemented. The Arduino code, in Appendix B.5.4, is

set up such that it outputs a vector of six elements. The last two are zero, hence two additional

Table 2.2: Datasheet, HC-SR04

Voltage (Vcc) DC 5V
Current 15mA
Frequency 40kHz
Range 2cm-4m
Measuring angle ±15◦

Resolution 3mm
LWD 45x20x15mm

20

sensors could easily be implemented. The sensors are allowed to have a varying pitch and yaw

angle; however, this was not utilized, see Section 7.2.

2.1.4.7 Battery

Two 6400mAh, 11.1V, Lithium polymer (LiPo) batteries were utilized during the experimental

period. A battery supplies the Raspberry Pi for about 12h, running the thrusters reduces the

duration to about 4 hours; however, charging takes less than an hour so batteries can be changed

often. Fully charged the voltage is 12.5V, it is recommended to check the voltage frequently and

charge it when the voltage is close to 11.1V. The new batteries have the balance wires integrated

with the connector, hence it is not possible to monitor the voltage as previously done by Ueland

(2016).

2.1.4.8 Laptop

A laptop also running ROS is connected through WiFi to the system. The laptops purpose is

to establish a Human Machine Interface (HMI) where the operator may select desired areas to

investigate, but also monitor the process. Due to limited process power on the RP2 it runs a ROS

node responsible for generating paths for the system to follow.

During exploration a second computer, connected to the ROS network, runs the motion con-

troller node, see Figure F.1, this is beneficial since it lightens the RP2 workload, but also adds

safety in case of unexpected behavior.

A stronger machine than the RP2 could run the entire, C++ compiled, this requires to modify

and generate C++ code of the exploration node.

2.1.4.9 Modules for increasing yaw resistance

Ueland (2016) wrote:

The ability of the vessel to efficiently maneuver in both surge and sway is an advantage for this

project, as it means that the vessel’s heading does not need to be considered as a parameter in the

path-planning process.

However, when considering auto-docking, heading needs to be considered, and a steering law

is described in Chapter 5.2.1. To achieve this two different, physical, modules have been devel-

oped with the purpose of altering the behavior in sway and yaw for CS Saucer through altering

the mass, waterplane area and resistance. Figure 2.5a and 2.5b shows the first suggestion where

blocks of divinycell H60 have been fitted to the front and stern of the vessel. Since the density

21

(a) Sketch, module 1 (b) Result, module 1

(c) Sketch, module 2 (d) Result, module 2

Figure 2.5: Two different approaches to making the vessel behave more like a leisure boat, in-
creasing sway and yaw resistance as a goal.

is very low (60 kg/m3) the front and stern piece need to be loaded with 2.5 kg each, to get a

sufficient draught.

Figure 2.5c and 2.5d shows the second suggestion. Its mass is 2.54 kg, and a weight of 1 kg

needs to be placed in the bow to counteract the moment. The plate is designed with constrained

Thrust Allocation in mind. It covers the stern half of the vessel such that the wake from the

bow thruster, which is in a 90◦ degree position, is unaffected. The stern thrusters may rotate

from pointing backward, with constraints; however, the plate will not interfere with their wake.

Thrust allocation is further described in Chapter 4.2.

22

2.2 Marine Cybernetic Laboratory

The Marine Cybernetics Laboratory (MCLab) basin, installed with varying obstacles, constitutes

the environment of operation for the CS Saucer. The lab is suited for testing of small marine

vessels, equipped with a wave maker, a towing cart and a positioning system, Qualisys. Figure

2.6 shows a picture of the basin. The MCLab dimensions (LxWxD) are 40 m x 6.45 m x 1.5 m

(IMT, NTNU, 2016).

2.2.1 Obstacles

Figure 2.6 shows the MCLab with the objects present. In the far end plastic and pasteboard bags

create a wall, this is to reduce the available area of the basin, but also enables other experiments

to be run on the other side. The author often shared the lab with others, hence compromises

were made. The red boat on the left side served as another obstacle, but also to make the basin

more narrow, such a large object are quickly recognizable on the generated map, see Section

6.2.2, which makes it easier to orient in. The small model boat on the right side is one of four

used during testing. Two of the boats have led weights in them, this is to keep the entire model

below the plane scanned by the lidar, hence only detectable by the proximity sensors. The last

two was stacked on top of each other to be clearly viable for the lidar

23

Figure 2.6: Marine Cybernetics Laboratory, along with obstacles used in this thesis.

24

Chapter 3

Mathematical model

The mathematical modeling of the system will be separated into two, kinematics and kinetics.

The former describes the geometrical aspect of a dynamic system, how to describe motion in

different frames. The latter handles forces on the system, both external, environmental, forces

and forces generated by the thrusters.

3.1 Kinematics

There are four different reference frames used in this thesis:

• Basin-fixed reference frame, Figure 3.1a

• Basin-relative reference frame, Figure 3.1a

• Body-fixed reference frame, Figure 3.1b

• Hector-SLAM generated frame.

3.1.1 The Basin-fixed and Basin-relative reference frames

The Basin-relative reference frame is realigned relative to the basin for each new trial. This is

caused by how Hector-SLAM initializes the coordinate system it represents the map in. The

angular rotation between the Basin-relative and the Basin-fixed reference frame is denoted by

∆ψrel, see Figure 3.1a. When the Hector-SLAM is initialized, the positive x-axis of the Basin-

relative reference frame is aligned with the x-axis of the lidat, i.e. the Hector-SLAM generated

frame. Their origin is also equal at initialization; however, in the Hector-SLAM frame, the z-

axis is pointing upwards, whereas it is pointing downwards in the Basin-relative frame. This

25

difference causes that positive y-coordinates and a positive yaw angle in the Basin-relative frame

becomes negative in the Hector-SLAM frame. The transformation to align the two frames was

solved by Ueland (2016) through the ROS-node ”Hector2VesselPos-node”.

Since the vessel is round, no clear bow can be identified, the heading of the vessel have thus

been defined as zero when thruster 1 is pointing along the x-axis relative to the center of origin

of the vessel. It is crucial that the modules, which have a distinct bow, are in alignment with

the definition. The z-axis is pointing downwards, while the heading is defined as positive in

the clockwise direction. The positions x and y and heading ψ in the Basin-relative frame in a

vectorial format is given as follows:

η= [x y ψ]T (3.1)

In Figure 3.1a the vessel is illustrated in the Basin-relative frame. The edges mark the basin

edges, which are parallel to the x-axis of the Basin-fixed reference frame. In the example, the ves-

sel has moved from the origin, i.e. where it was initialized, to the position ηp = [xp yp ψp]T

3.1.2 Body-fixed reference frame

When describing local behavior of the vessel, it is convenient to have a frame fixed to the vessel

body, which is the Body-fixed reference frame, see Figure 3.1b. The axes in the Body-fixed ref-

erence frame are denoted x ′ and y ′, while the velocities are denoted u along the x ′ axis, v along

the y ′ axis, and r for the angular velocity about the z ′-axis.

(a) Basin-relative reference frame. Borders
illustrate basin edges (the Basin-fixed frame).
Courtesy Ueland

(b) Body-fixed reference frame. It is important to
align the lidar with the x-axis.
Courtesy Ueland

Figure 3.1: Basin-relative and Body-fixed reference frame are the most used throughout this
thesis.

26

Linear velocities u and v , and angular velocity r in a vectorial format for the Body-fixed reference

are given as follows

ν= [u v r]T (3.2)

3.1.3 Transformation between reference frames

To establish a relationship between the above-mentioned reference frames, one needs to be able

to transform from one coordinate system to another. The transformation frequently used in

this thesis is between the Body-fixed reference frame and the initialized Basin-relative reference

frame. The system is considered in surge, sway and yaw are described, while heave, roll, and

pitch are neglected, i.e., the 3DOF where it is assumed that the CS Saucer is self-stabilizing in

heave, roll and pitch, due to hydrostatic forces. This leads to a transformation from one frame

to another to only be dependent on the yaw angle. The relationship can be expressed as:

η̇= νs = R(ψ)νb (3.3)

where νb is the velocity in the Body-fixed Frame, νs is the corresponding velocity in the Basin-

relative frame, and the transformation matrix R(ψ) is given by,

R(ψ) =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (3.4)

To transform the other way, the inverse R−1 =RT is used.

27

3.2 Kinetics

In Ueland (2015) the CS Saucer was modeled to find an adequate equation of motion. The model

is essential for the simulation model developed in Ueland (2016), but also in the observer that is

implemented into the motion control system. The 3DOF maneuvering equation of motion for a

general vessel can be represented by the following equation: (Fossen, 2011, Eq. 6.2)

MRB ν̇+CRB (ν)ν+MAν̇r +C A(νr)νr +D(νr)νr + g (η)+ g0 = τexternal (3.5)

where,

ν is the Body-fixed velocities in surge, sway and yaw.

νr is the Body-fixed velocities relative to local current in surge, sway and yaw. (ν=νr since the

current is set to zero)

MRB and MA are the inertia matrices for the rigid body and the added mass

CRB (ν) and C A(νr) are the Coriolis centripetal matrices for the rigid body and the added mass

D(νr) = D + Dn(νr) (Fossen, 2011, Eq. 6.57) is the damping matrix, consisting of the linear and

nonlinear damping matrices.

g (η) is a vector of gravitational/buoyancy forces and moments

g0 is a vector used for pretrimming (here g0= 03x1)

τexternal = τ = [X Y Z]T is the external forces acting on the vessel excluding those mentioned

above, in this thesis is will be the thrust vector generated from the three thruster, which will be

discussed in Chapter 4.

Since there are no restoring forces in surge, sway and yaw g (η)= 03x1. This results in the follow-

28

ing system matrices (Ueland, 2015):

M = MRB +MA =

m −Xu̇ 0 0

0 m −Yv̇ 0

0 0 I z −Nṙ

 (3.6a)

C (ν) =CRB (ν)+C A(ν) =

 0 −1.5mr 0

1.5mr 0 0

0 0 0

 (3.6b)

D =−

Xu 0 0

0 Yv 0

0 0 Nr

 (3.6c)

D(ν) =−

Xu|u||u| 0 0

0 Yv |v ||v | 0

0 0 Nr |r ||r |

 (3.6d)

For the resulting numerical values of the CS Saucer see Ueland (2016). In Section 2.1.4.9 mod-

ules for altering the resistance in yaw was proposed, to ease the development of a steering law,

but also to increase the resistance in sway. Specifically the following parameters have been al-

tered: m, Iz , Yv̇ , Nṙ , Yv ,Nr , Yv |v |, Nr |v |, while Xu̇ , Xu , Xu|u| was unaltered. The mass was altered

to m=mv +me , i.e. the mass of the module was added to the vessels mass. Table 3.1 sums up all

parameters.

Note that the added mass and damping matrix, in general, will depend on frequency. However,

in this thesis, it is assumed constant for all frequencies.

It is emphasized by the author that the new values have not been found through any methods

of identification, e.g. towing, as was done in Idland (2015). They were chosen such that the

simulation model behaved as expected when a steering law was under development.

Table 3.1: Parameters used in the maneuvering equation

Mass and inertia related Drag related

mv 6.34 Xu -1.96
me 5/3.5kg Yv -4
Iz 0.2 Nr -1.4
Xu̇ -3.5 Xu|u| -7.095
Yv̇ -6.5 Yv |v | -14
Nṙ -0.1 Nr |v | -5

29

30

Chapter 4

Control allocation

In this chapter thrust allocation using fixed and rotatable angles is studied. In the first case the

goal is to find the force for the thrusters, f , from the desired τ given by (3.5). In the latter case, the

constrained control allocation for azimuth thrusters will be applied to the two aft thrusters to

find thrust and angle. The thrust configuration matrix, T (α), relates the forces from the thrusters

through the generalized force relationship τ= T (α) f .

Figure 4.1 will be used throughout this chapter; it illustrates the thruster configuration on the

CS Saucer. The shaft of the thrusters are all located on the circumference of a circle with radius

rt= 0.138m, and they are placed with 120◦ between them, i.e. symmetrically. In the general

case:

τ= c(α1) c(α2) c(α3)

s(α1) s(α2) s(α3)

rt (c(χ1)s(α1)− s(χ1)c(α1)) rt (c(χ2)s(α2)− s(χ2)c(α2)) rt (c(χ3)s(α3)− s(χ3)c(α3))


 f1

f2

f3


(4.1)

where χi is the position of each thruster, i.e. [χ1,χ2,χ3] = [0,−120◦,120◦], fi and αi is the force

and its angle, respectively, c(·) and s(·) represent cos(·) and sin(·), respectively.

In the introduction, Section 1.2.1, the definition of under-, fully- and overactuated was pre-

sented. If the thrusters on CS Saucer are fixed, with singularity avoidance in mind, the vessel

becomes fully actuated with r = n = 3. When an actuator can be rotated, without constraints, it

is analogous to an additional control variable; r becomes r +p where p denotes the number of

rotatable actuators. If the three thrusters could rotate it would result in an overactuated system

with r = 6; however, in this thesis, the bow thruster (thruster 1) is fixed, and the stern thrusters

31

Figure 4.1: CS Saucer setup. α1 = 90◦, α2 and α3 are fixed in Section 4.1, and rotatable in 4.2

(thruster 2 and 3) may rotate 45◦ to either side. Since both negative and positive thrust can be

applied, the thruster are constrained from producing a force vector in 180 out of 360 degrees. In

these cases, p is therefore defined as 1/2. Later four configurations will be presented, following

the definition of p, which is overactuated, fully-actuated, and the last two underactuated with

an r-value of 4, 3, 2.5 and 1.5, respectively.

32

4.1 Fixed angles

According to Ueland (2016) the thrust angles where fixed to maximize the yaw moment of each

thruster, i.e. max(rt (c(χi)s(αi)− s(χi)c(αi))). This is achieved by selecting αi = χi +90◦, which

is to align them tangentially to a circle with center in origin. Resulting in:

α1 = 90◦

α2 =−30◦

α3 =−150◦
(4.2)

The thrust in the body-frame, τ, of the vessel becomes:

τ= T f

=

 0 cos(−30◦) cos(−150◦)

1 sin(−30◦) sin(−150◦)

rt rt rt


 f1

f2

f3

 (4.3)

Since T is square f if found from taking the inverse:

f = T −1τ (4.4)

33

4.2 Constrained rotatable thrusters

The research done in this thesis on TA is inspired by Frederich (2016). This section uses Fred-

erich (2016) results, on a vessel with 6 azimuth thrusters, fitting it to the CS Saucer. The aim is to

study four different thrust configurations to resemble an underactuated leisure boats. A typical

leisure boat has one or two main thruster, and possibly a bow thruster, see Figure 4.2.

Four configurations will be studied:

1. Two main thrusters and one bow thruster

2. Two main thrusters

3. One main thruster and one bow thruster

4. One main thruster (thruster 2 and 3 aligned)

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 4.2: The four modes, showing dead zones for the stern azimuth thrusters. Note that f3 in
Mode 1 and 2 is negative, α3 ≈ 145◦

34

An outboard motor could be modeled as a turntable, constrained, azimuth thruster. Typical

maximal deflection is 45◦; hence its dead zones would be from −135◦ to 135◦. The bow thruster

is modeled as a fixed thruster. To solve the problem with a fixed step size in Simulink one could

use an iterative solution of quadratic programming, as suggested in Fossen (2011) and Johansen

et al. (2004). The problem can be solved by using the inbuilt, Mathworks, function quadprog.m.

The function attempts to solve the quadratic problem :

min
x

0.5xT H x +qT x

subject to Ax = b

xmi n < x < xmax

(4.5)

Where A = [Te − I3x3], b =τ, x = [fe s]T , H is a weighting matrix and q is a zero vector. Te is the

extended thrust configuration matrix to avoid the nonlinearities in the control of α in T (α). fe

= [f1 f2x f2y f3x f3y] is the extended force vector where
√

f 2
i x + f 2

i y = fi and αi = at an2(fi y , fi x).

From (4.5):

Ax = b

[Te − I3x3][fe s]T = τ

Te fe = τ+ s

(4.6)

, where s is a slack variable to allow Te fe to differ from τ, the cost of using s is weighted through

H. Typically, the weighting of s versus fe is of order 1000, represented as k in (4.7) - (4.11) be-

low.

4.2.1 Configuration 1

The first configuration presented above yields the highest controllability of the four considered

configurations. It is common for leisure boat that the angle of two aft thrusters is controlled

identically. Usually, the motors are mounted on the same shaft, thus given the same deflected,

and outputting the same thrust. If they could be controlled independently, the distance between

them should be as large as possible to minimize thruster thruster interaction and maximizing

yaw moment. In most cases, though not in the CS Saucers case, they are very close to each

other.

35

With configuration 1 in mind and looking at Figure 4.2a above, Equation 4.1 becomes:

τ=

 0 1 0 1 0

1 0 1 0 1

lx1 −ly2 lx2 −ly3 lx3




f1

f2x

f2y

f3x

f3y


H =

[
I5x5 0

0 kI3x3

]
q = 08x1

(4.7)

where the extended notation Te and fe is used and:

lx1 = rt = 0.138m

lx2 = rt cos(−120◦) =−0.069m

ly2 = rt sin(−120◦) =−0.1195m

lx3 = rt cos(−120◦) =−0.069m

ly3 = rt sin(−120◦) = 0.1195m

(4.8)

4.2.2 Configuration 2

Without the bow thruster f1 is removed from the equation, resulting in:

τ=

 1 0 1 0

0 1 0 1

−ly2 lx2 −ly3 lx3




f2x

f2y

f3x

f3y


H =

[
I4x4 0

0 kI3x3

]
q = 07x1

(4.9)

4.2.3 Configuration 3

To achieve the behaviour of one stern thrusters the two aft thruster could be superposed to one,

given that their deflection and output is equal. The superposed thruster will be on the x-axis

36

since ly2 =−ly3. The extended notation becomes:

τ=

 0 1 0

1 0 1

lx1 0 lx23


 f1

f23x

f23y


H =

[
I3x3 0

0 kI3x3

]
q = 06x1

(4.10)

Where f2x = f3x = 0.5 f23x , f2y = f3y = 0.5 f23y and α2=α3=α23

4.2.4 Configuration 4

Analogous as with configuration 2, f 1 is removed, yielding the least controllability of the ves-

sel.

τ=

1 0

0 1

0 lx23

[
f23x

f23y

]

H =
[

I2x2 0

0 kI3x3

]
q = 05x1

(4.11)

4.2.5 Simulink implementation

The quadratic optimization from Frederich (2016) was altered to four versions complying with

4.7 - 4.11 above. Creating a subsystem of each configuration, a simple scripts enables the correct

subsystem corresponding to the selected mode.

37

Figure 4.3: Top level of simulink model. Mode 1-4 enables the correct subsystem.

4.3 Simulations

The four different constrained rotatable thruster configurations were implemented in Simulink

(Figure 4.3). The system was initialized with the thrusters at rest with α1= −90◦ (fixed), α2= 8◦

and α3= 5◦, see Figure 4.1. In the case of mode 3 and 4, α23= 5◦. The desired thrust was set

to τd= [1,0,0], i.e. a pure surge force. The result of mode 1-4 can be seen in Figure 4.4a-4.4d,

respectively. The Figures have a y-axis on the right related to the angles of the thrusters. In all

the cases one sees that thruster 1, if present, is fixed at −90◦ while thruster 2 and 3 turns toward

0◦. The left axis is related to the desired thrust, τd , the commanded thrust from the TA, τc and

the produced thrust from each motor, f . In all the modes thruster 1, if present, is not used

since it only produces coupled sway and yaw forces. In mode 1 and 2, Figure 4.4a and 4.4b,

the force of f2 and f3 both converges to 0.5 with an overshoot, superposed they produce the

desired surge force. In mode 3 and 4, Figure 4.4c and 4.4d, f23 converges 1, this also fits well

with what was described in Section 4.2.3-4.2.4 since f23 is the superposed thruster of 2 and 3,

i.e. f2 = f3 = 0.5 f23. As the motors produce their thrust, the angles have not converged to zero

yet, this results in a sway force, and a hardly noticeable yaw-moment, these goes to zero along

with the angles. See the dashed blue lines.

38

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h

ru
s
t

[N
]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n

g
le

s
 [
°
]

f
1

f
2

f
3

τ
comx

τ
comy

τ
comz

τ
desx

τ
desy

τ
desz

α
1

α
2

α
3

(a) Mode 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h
ru

s
t
[N

]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n
g
le

s
 [
°
]

f
2

f
3

τ
comx

τ
comy

τ
comz

τ
desx

τ
desy

τ
desz

α
2

α
3

(b) Mode 2.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h
ru

s
t
[N

]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n
g
le

s
 [
°
]

f
1

f
23

τ
comx

τ
comy

τ
comz

τ
desx

τ
desy

τ
desz

α
1

α
23

(c) Mode 3.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
h

ru
s
t

[N
]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

A
n

g
le

s
 [
°
]

f
23

f
x

τ
comy

τ
comz

τ
desx

τ
desy

τ
desz

α
23

(d) Mode 4.

Figure 4.4: Mode 1-4 trying to produce τd = [1,0,0]. Left y-axis is thrust [N], right are angles
[degree] and the x-axis is in seconds.

It is possible to run a model as a node directly from Simulink; hence it was possible to test the

quadratic solver in the simulator, bypassing the obstacles of creating a C++ code, as mentioned

by (Frederich, 2016). The control scheme was implemented into the motion control node in

the ROS environment. It would also be possible to test it online (from a laptop) in the MCLab.

Figure 4.5 shows how the model from Figure 4.3 is fitted into the ”MotionControl” Node, the

gray box, in the lower right, is the original TA made in Ueland (2016). The control scheme was

tested; however, it proved to be too unreliable. If the quadratic solver could not find a solution,

which happened in many cases, the output became zero, i.e. no thrust. In practice. it was shown

that the implemented Quadratic Controller was not robust enough in to handle more complex

operation where the commanded thrusts were changing rapidly. For this reason, it was chosen

to continue utilizing the fixed thruster setup, as presented in Section 4.1

From now on the setup with fixed angles developed in Ueland (2016), presented in Section 4.1

will be used, both in simulation and experimental results.

39

Figure 4.5: The ”MotionControl” Node by Ueland (2016), where the Thrust Allocation is replaced
with the constrained rotatable optimization.

40

Chapter 5

Autonomous docking

This chapter will discuss how the autonomous docking scheme was created through altering the

works by Ueland (2016)

5.1 Problem statement

The problem of autonomous docking is stated as:

• Given the CS Saucer which has the capabilities of simultaneous localization and mapping

(SLAM) and autonomous exploration by using a 2D lidar, perform autonomous docking.

The autonomous docking should emulate that of leisure boats, such that the thrust alloca-

tion and shape of the vessel need to be considered. In order to improve the autonomous

capabilities of the CS Saucer proximity sensors, supporting the lidar sensor should be im-

plemented.

The problem includes getting a detailed understanding of work done by Ueland (2016), alter-

ing the software and hardware architecture. In order to provide an answer, the following items

should also be performed::

• Modify the online visualization of the exploration process to include obstacles found by

the proximity sensors, also include vessel heading.

• Modifying the existing path planner and setpoint generator to perform docking and take-

off

At the top of this thesis is description sheet formulated in cooperation with the supervisor, it

introduces sub-objectives to accomplish the main objective, above.

41

5.2 Motion control system

This section presents the steering law added to the motion control system, made by Ueland

(2016), it also presents how the PD-controller had to be altered as a consequence.

5.2.1 Steering law

In this section a steering law will be presented, which is essential for performing docking. In

Ueland (2016) heading of the vessel was not an important factor, the vessel was circular and

fully actuated, i.e., there was no difference moving in surge or sway; hence the heading was set

to 0 for all time.

To achieve path following, a Line-of-Sight (LOS) steering law will be implemented. The algo-

rithm limits the system to only see a certain radius around itself, following the path it sees. In

Spange (2016) and Fossen (2011) the desired heading of the vessel was to always aim at a point

in front the vessel, (xlos , ylos),

χd (e) =αk +ar ct an(
−e

∆
), (5.1)

where ∆ is the lookahead distance from the intersection between e and the path to (xl os , ylos).

See Figure 5.1a. Ueland (2016) developed a velocity control law where he rediscretized the opti-

mal path, identified the closest point on that path, but also found a setpoint for that the vessel

should go to, see Figure 5.1b. The steering law uses the same setpoint as if it were (xlos , yl os), see

Figure 5.1a. Simplifying the LOS algorithm with the the desired heading becoming:

χd = at an2(Pd (2)−Pv (2),Pd (1)−Pv (1)) ∈S, [−π,π] (5.2)

Where atan2(x,y) is the four-quadrant version of arctan(y/x) defined as:

atan2(y, x),



ar ct an(y
x) if x > 0,

ar ct an(y
x)+π if x < 0 and y ≥ 0,

ar ct an(y
x)−π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0,

(5.3)

Pd and Pv are the chosen setpoint and the vessel position, in the basin relative reference frame,

respectively.

42

5.2.2 Docking and take-off

When the vessel is instructed to dock it follows the steering law, traveling along the planned

path, until it is ”sufficiently” close (an adjustable parameter) to its goal. The desired heading

is changed to ψdocking, as a step. The vessel will then rotate and glide the last distance into the

dock.

Take-off is when the vessel leaves the dock, the operator selects any spot and the path planner

ensures the vessel leaves the dock in a safe manner.

5.2.3 PD-controller

The control law that determines the forces in the Body-frame,τ, is a PD-controller:

τ= R(ψ)T KP (ηd − η̂)−Kd ν̂ (5.4)

where ηd and η̂ is the desired and the observer estimated position in the Basin-relative refer-

ence frame, respectively; hence they need to be rotated with R(ψ). ν̂ is the observer estimated

velocity, in the Body-frame. The control gains were altered too, with a heavier weighting on the

heading. The surge and sway components were increased and decreased in the derivative and

(a) LOS guidance where the desired course angle χd is
chosen to point toward the LOS intersection point
(xlos , ylos). Fossen (2011)

Path

Vessel Position

Chosen setpoint

Closest point on path

Discretized path

(b) The rediscretized path where the
closest point and the chosen setpoint
one the path are used in the steering law.
Ueland (2016)

Figure 5.1: A LOS steering law is implemented, utilizing existing parameters from the path plan-
ner.

43

proportional gains, respectively. Resulting in

Kp = 1.5I3x3

Kd = 4I3x3

(5.5)

5.3 Map processing

To achieve autonomous docking, the online map displaying the progress has to be altered. To

visualize the heading, the vessel is plotted a patch with a distinguishable bow. In this section

map processing will be presented, which includes a method for drawing an arbitrary environ-

ment for the simulator, interfacing the proximity sensors into the system, putting a cost on large

heading changes and a new operator interaction where the user is asked if the vessel should

dock or not when a location is selected.

5.3.1 Draw test environment

In the simulations performed by Ueland (2016) a reference map, created by scanning the MCLab

is deployed as a reference map for the simulator, see Figure 5.2a. The map is a 256x256 matrix

consisting of three entries:

• 0: Unexplored region

• 1: Investigated and free cell

• 2: Investigated and occupied cell.

Moreover, each pixel represents an area, i.e., the resolution of the picture. In Figure 5.2b below

the x range from −25.6 to 25.6, hence the resolution is 0.2, meaning that one pixel represents

0.2m2 in the real world.

In the simulations to be performed in this thesis, it is desirable to deploy the vessel in a harbor

like environment. For this reason a tool, allowing for arbitrarily design of the reference map, by

the use of MS paint was created. A picture of resolution nxm could be represented as a matrix

[P] = [n,m,3], where the third dimension represents the amount of red, green and blue, respec-

tively, ranging from 0−255. Figure 5.2c is drawn in Paint, where red represent an occupied cell

and blue a free cell. It is easiest to draw in the primary colors since a pixel would be represented

as a vector of two zero entries and one 255, e.g. the red pixel(i , j) would be P (i , j , :) = [255,0,0].

A script was made in MATLAB to transform a the drawn map in Paint from a PNG file to a corre-

sponding map matrix in MATLAB, see Appendix A.1.

44

50 100 150 200 250

50

100

150

200

250

(a) The map scanned by the CS Saucer through
lab experiments by Ueland (2016).

(b) For each simulation the CS Saucer is deployed in
the origin and begins exploring.

(c) A figure drawn in Paint

-25.6 -19.2 -12.8 -6.4 0 6.4 12.8 19.2 25.6

24
22.4
20.8
19.2
17.6
16
14.4
12.8
11.2
9.6
8

6.4
4.8
3.2
1.6
0

-1.6
-3.2
-4.8
-6.4
-8

-9.6
-11.2
-12.8
-14.4
-16
-17.6
-19.2
-20.8
-22.4
-24
-25.6

Occupied cell

Free cell

Unexplored cell

(d) Resulting scan from simulation

Figure 5.2: White, gray/blue and black/red represent an unexplored, free and occupied cell,
respectively.

5.3.2 Including the proximity sensors

In Section 2.1.4.6 the acoustic proximity sensor was presented. If all the obstacles where visible

for the lidar there would be no need for any additional proximity sensors; however, installing a

3D-lidar or making several 2D-lidars cooperate are more expensive than adding to cheap acous-

tic sensors warning the system if they detect an obstacle. The analogy with autonomous docking

is that the lidar is typically placed on top of the vessel to be able to get a 360◦ view, anything be-

low it, e.g. smaller vessels or the quay, would not be detected, by a 2D-lidar. The proximity

sensors will be placed on the outside of the vessel, above the water, to detect that the lidar is

not able to identify. See Figure 2.5d, 6.3a, and 6.3b for pictures where the acoustic sensors are

45

mounted on the vessel.

As described above the map used is a visualization had three entries to describe the cell. An

obstacle detected by the proximity sensor have been implemented as fourth entry. The logic

implemented follows the following step:

1. if the measured distance is below 1m and greater than 15cm

2. locate the cell in the map, if it is free or unexplored

3. set the value of that cell to 3, which will be interpreted as occupied.

Since the live map, e.g. Figure 5.2b, is just a visualization of the matrix, the new obstacle pops up

by itself, the author only had to add an extra legend entry. For numerous examples see Chapter

6 and 6.2.

5.3.3 Inflating the map

The online map processing presented by Ueland (2016, Sec 4.2.2) includes a step where the

map is inflated. The inflation is to ensure that the vessel had room to maneuver, with some

safety distance. The cells closer than a defined inflation radius will be labeled as occupied. This

process was repeated for the occupied cells occurring from the proximity sensors.

5.3.4 Feasibility correction of the cost-map

A weighting of the cells in the map was done by Ueland (2016, Sec 4.3.2.4), such that cells close

to an obstacle were costly to travel through, this resulted in a behavior where the optimal path

tried to stay away from obstacles. The weight w(s) on node s was:

w(s) = 1+ 5

0.1+dobj
(5.6)

where dobj is the Euclidean distance from the node to the closest occupied cell.

A natural consequence of introducing the steering law, earlier in this chapter, is to modify the

cost-map such that the optimal path takes heading into consideration. When the vessel was

round and heading was disregarded, the course angle could be changed with 180◦ without caus-

ing any problems. This 180◦ turn was typical in the exploration mode; when a closed area was

mapped the optimal path would be to go back and discover a new area. Equation 5.6 was up-

dated to also include a cost of nodes with a large angular difference relative to the heading of the

vessel, where the nodes with a 180◦ difference where the most expensive. The method is shown

in Appendix A.2 (it is too comprehensive to expressed as an equation), there a second cost-map

46

80 90 100 110 120 130 140 150 160 170

50

60

70

80

90

100

110

120

130

140

150

(a) Cost-map where the heading of the
vessel is considered.

-6.4 0

1.6

0

-1.6

-3.2

-4.8

-6.4

-8

(b) Result of adding a heading cost on the path
planner.

Figure 5.3: Heading dependent weighting introduced to the system

is created and added to the map described above. The result can be seen in Figure 5.3a, where

the new cost-map is shown. In the Figure a sector in front of the vessel, 60◦ to either side, are not

penalized, while the rest are. The nodes behind the vessel are the most expensive. This causes

the optimal path to becoming an arc, see Figure 5.3b.

5.3.5 Path planner

The A* search algorithm described in Ueland (2016, Sec 4.3.2) produced an optimal path for the

vessel to follow, with respect to the cost-map discussed above. The algorithm, implemented as a

MATLAB-function, searched for elements that are unexplored, 0, or occupied, 2, and adds them

to a closed-matrix such that the path cannot be laid through these cells. Including the occupied

cells from the proximity sensors, 3, ensured that only free cells were planned through.

Ueland (2016) searched entries equal to 2, to find accounted cells, to include the new type of

occupied cells was merely a manner of changing to ≥ 2. This change also enables even new

types of occupied cells, defined as 4 or larger.

5.3.6 Map layers

In conclusion, the online map consists of three layers, where information is stacked upon each

other. The first layer is map generated from SLAM along with the vessel position. The second

layer consist of the obstacles detected by the proximity sensors, the sensors are not part of the

47

SLAM, they are added after, but before the path planner begins. The third layer is the path

computed to reach the goal and avoid the obstacles.

5.3.7 Operator interaction

The operator interaction has been altered to confirm docking. By clicking on a pixel, in the win-

dow that monitor the exploration process, a box is pops up displaying the x- and y coordinates,

along with a question if the vessel should dock there, see Figure 5.4a.

Selecting ”Yes” yields a new box where the desired docking angle can be entered, see Figure

5.4b. Selecting 0 yields be the same as the initialization heading of the vessel, which is along the

positive x-axis or towards right, with increasing ψ counterclockwise. The path planner would

then do the exact same thing, but if the vessel came sufficiently close to the desired spot, the

desired heading would change from the course angle, to the desired heading given in Figure

5.4b.

5.4 Sequence of docking and take-off

This Section aims at presenting a short and precise order of action for how to perform docking,

and then take-off.

In order to perform docking at the desired spot (cell in the occupancy grid) it has to be explored

by the lidar and defined as free, note that an undetected acoustic obstacle (not detectable by the

lidar) could be there. If so the vessel would try to go there, but the acoustic sensors would detect

the obstacle and soon after it would be inaccessible. The operator selects a cell, answers ”Yes” to

docking and inputs the desired heading. The path planner then designs an optimal, safe, path

(a) Displaying position of cell along with a question
if the the vessel should try to dock here or not.

(b) The desired heading of the vessel where it
should dock needs to be entered.

Figure 5.4: Heading dependent weighting introduced to the system

48

towards the dock. When the vessel is close, the desired heading shifts from that of the steering

law to the constant, user input, heading.

Take-off is when the vessel is leaving the dock. The operator selects any cell in the occupancy

grid (does not have to be explored) and the path planner constructs a path towards that goal.

The weighting of the cost map ensures no collision with the dock, since its defined as an obsta-

cle.

49

50

Chapter 6

Results

This Chapter present results from the simulator and the experiments in the MCLab. In both

cases, results on interfacing the proximity sensors are presented along with autonomous dock-

ing trials.

6.1 Simulations

6.1.1 Adding proximity sensors to the mapping environment

The reference map (Figure 5.2c) was altered to including obstacles only seen by the proximity

sensors, green objects in 6.1a. A proximity sensor emulator was added to the ”mappingsimu-

lator_node” in a similar fashion as the lidar was added by Ueland (2016). It searched as four

sensors placed normal to the vessels surface with no pitch, in the bow, port, stern and starboard

on the vessel. The same assumptions were used such that there are no imperfections in the mea-

surement. Similar to the physical trials, four sensors have been added to the vessel; they were

placed normal to the vessels surface with no pitch, their locations were the bow, port, stern and

starboard on the vessel.

In the system by Ueland (2016) the node in charge of creating the occupancy grid applied two

mapping arrays during simulation. Both of them represented the occupancy grid; however, one

was the pre-generated reference-map, i.e. the environment that the vessel was deployed in. The

other was the explored-map array, which was dynamically explored, that represents how much

of the eeference-map that the vessel has explored.

To include proximity sensors into the system with minimal impact on the existing system a third

mapping array was introduced, it contained the map-matrix generated by running Figure 6.1a

51

(a) Map to explore, green is only
detectable by proximity sensors.

-25.6 -19.2 -12.8 -6.4 0 6.4 12.8 19.2 25.6

24

22.4

20.8

19.2

17.6

16

14.4

12.8

11.2

9.6

8

6.4

4.8

3.2

1.6

0

-1.6

-3.2

-4.8

-6.4

-8

-9.6

-11.2

-12.8

-14.4

-16

-17.6

-19.2

-20.8

-22.4

-24

-25.6

Occupied cell Acu

Occupied cell

Free cell

Unexplored cell

Traversed path

Exploration Goal

Vessel Position

Lidar Range

(b) Result of completed scan in autonomous mode,
the vessel have returned to its initial position.

Figure 6.1: The reference map, drawn in Paint, prior to exporting to MATLAB, and the result after
an autonomous exploration. Notice how the proximity sensors detect only 4 out of 7 vessels.
This is because the Lidars range is larger than the proximity sensor.

through the script in Appendix A.1. The acoustic obstacles (green) were removed and defined as

free in the reference-map for the lidar.

As can be seen by comparing Figure 6.1a and 6.1b the green areas are defined as free cells by the

lidar and SLAM; however, they become black if the vessel was close and the proximity sensors

detected them. Some objects are not detected simply because the vessel was not close enough.

A comparison results in the fact that 4 out of 7 vessels where detected, because the lidar has a

larger range than the proximity sensors. This is not a problem, nor a fault in the system, since

the proximity sensors should prevent collision. Looking at the two rightmost, green, vessels they

where endangering the exploration; however the proximity sensors detected them, and the path

was replanned.

6.1.2 Autonomous docking

After the environment had been mapped (Figure 6.1b) a desired location was selected, docking

was chosen and the docking angle was set to 90◦, i.e. pointing up in the map. The navigation

in the map can be seen sin Figure 6.2a-6.2c. The convergence of η to ηd can be seen in Figure

6.2d and 6.2e. Notice howψset jumps to 90◦ according to the selected docking angle from Figure

5.4b.

52

-19.2 -12.8 -6.4

12.8

11.2

9.6

8

6.4

4.8

3.2

1.6

0

(a)

-25.6 -19.2 -12.8

8

6.4

4.8

3.2

1.6

0

-1.6

-3.2

Occupied cell Acu

Occupied cell

Free cell

Unexplored cell

Traversed path

Exploration Goal

Vessel Position

Lidar Range

Goal

Path

(b)

-25.6 -19.2 -12.8

11.2

9.6

8

6.4

4.8

3.2

1.6

0

-1.6

-3.2

(c)

1650 1700 1750 1800 1850 1900 1950 2000 2050

-25

-20

-15

-10

-5

0

5

10

X

Y

X
set

Y
set

(d) X and Y coordinate

1650 1700 1750 1800 1850 1900 1950 2000 2050
-200

-150

-100

-50

0

50

100

150

200

D
e

g
re

e
s

ψ

ψ
set

ψ
d

(e) Actual, desired and error in heading.

Figure 6.2: Docking of the CS Saucer, desired docking angle was set to 90◦.
Notice the jump in ψset , this is when the vessel is close enough and docking is initiated.

6.2 Experiments

In the following Section the experimental results from the MCLab will be presented. In the first

experiment only the heading controller was implemented and the two modules where com-

pared. In the second the proximity sensors where tested, obstacles below the scan plane of the

lidar was used. The last experiment tested the autonomous docking. Note that video and pic-

tures of the CS Saucer in the MCLab is appended to the electronic attachment.

6.2.1 Testing of modules

In the description of the experimental setup, Section 2.1.4.9, two modules for increasing the yaw

resistance was introduced. The first was two pieces of Divinycell H60 which where fitted of the

bow and stern of the CS Saucer, see Figure 6.3a.

53

(a) First Module (b) Second module.

Figure 6.3: Both of the modules where tested in the basin, the first proved to be the best. Notice
that the proximity are installed.

The first module turned out to be cumbersome to attach to the vessel, a substantial amount of

duct tape was needed. When placed on water the vessel exhibited the desired behaviour where

both sway and yaw resistance where increased, i.e. the vessels preferred direction became surge.

This module increased the mass of the system with 5kg increasing the inertia, it also increased

the waterplane area.

The second module is easily mounted on the vessel, a 1kg weight was needed in the bow to

counteract the trim. The module increased the sway resistance, but did not contribute signifi-

cantly to increase the yaw resistance. The total additional mass became 3.5kg, but in contrast to

the first module the waterplane area did not change significantly, the thickness of the plate was

1mm.

Both modules where tested in a exploration mode toward a userdefined exploration goal. Through

visual inspection the first module was deemed to increase the controllability of the vessel the

most, hence only the Divinycell module was used in the last two experiments.

6.2.2 Proximity sensors

To test the acoustic sensors an environment in the basin was cut off by a wall (Figure 2.6), such

that roughly 1/3 of the basin was used. Four obstacles where used, where two are below the

lidars scan plane and hence only detectable by the proximity sensors.

The result of a scan can be seen in Figure 6.5. Two distinct groups of black cells can be seen

around [0,0] and [6.4,0], which are the objects only seen by the proximity sensors. Other cells are

darker gray, they represent are occupied cells defined through the lidar scan. In the figure some

black cells are seen next to gray cells, the proximity sensor rounds the distance down to find a

valid cell, hence it may identify an object as one cell closer than what the lidar did. Also seen in

54

the figure are two pair of black cells, surrounded by water, they represent faulty measurements,

they could lead to errors.

Two other dark dark spots are in the middle of the water, they are false readings due to an un-

known error in the measurement from the proximity sensor.

The shattered dark gray are around the basin are obstacles detected by the lidar, they are the

walls of the MCLab (and not the basin). A laser beam might hit outside the basin walls if the

vessel is vibrating a little. This was known and was discussed in Ueland (2016, Sec. 6.3)

(a) (b)

Figure 6.4: Test environment in the basin. i-ii are only detectable by the acoustic sensors,
while the lidar is able to detect iii and iiii. The constructed below the picture to section off the
basin. The right picture illustrates the setup, schematically, drawn in Paint.

55

Figure 6.5: Scan of the basin showing obstacles detected by the lidar and the acoustic sensors.
Numbers relate to Figure 6.4

6.2.3 Autonomous docking

The last experiment done in the basin was to test the autonomous docking. The vessel was

initialized parallel to the basin wall, and started by mapping the area of operation. Since the

used section was only 1/3 of the basin, the exploring was done quickly. A spot in the right side

of the basin was selected and the docking angle was set to 0, i.e. the same as the initialization

heading, which was along the wall. The x and y coordinate is plotted in Figure 6.6a below, while

the heading can be seen next to it. Note than in Figure 6.6b the angles goes outside the regime

−180◦−180◦, this is only for readability.

56

0 100 200 300 400 500 600 700 800 900 1000

-12

-10

-8

-6

-4

-2

0

2

4

6

X

Y

X
set

Y
set

(a) X and Y coordinate

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

200

300

400

500

D
e

g
re

e
s

ψ

ψ
set

(b) Actual and desired heading.

Figure 6.6: Vessel behaviour before docking. See the jump in ψr el around sample 500.

6.3 Discussion

In this Section the results from the previous two sections will be discussed. The focus of discus-

sion will be on how well the simulator represents the real life scenario and how the CS Saucer

behaved.

In Table 3.1 the parameters used in the maneuvering equation was presented, where the vari-

ables related to sway and yaw had been altered. They where changed such that the vessel would

exhibit a behaviour more similar to a conventional boat. The vessel with the new parameters

along with the heading controller behaves satisfactory in the simulations; however, the simula-

tor cannot be expected to replicate the physical system in every detail.

The Divinycell module proved to improve the stability and performance of the vessel one it was

tested in the MCLab, yet improvements can still easily be seen. By the author’s opinion the

source to the lack of stability are small imperfections in the thruster mapping for low RPM. The

lowest produced thrust is is too high, and the vessel is not capable of coming to a complete

stop, it will always glide in the water before jerking back. This again causes problems during

exploration and docking. In the first case the vessel could crash with the obstacles unseen by

the lidar, if they are detected late by the proximity sensors, in the latter case it meant that the

vessel either bumped the wall or came to a stop a before the wall, and then had a drive off.

The implementation of the acoustic sensors was a success. It was actually implemented and

tested in the MCLab prior to its implementation in the simulator. This had the benefit that it

was easy to create the proximity sensor emulator in the simulator. It was only to replace the the

57

ROS-subscription block from the node used in the lab. A problem was that the proximity sensors

produce a lot of noise, so a lower limit of 15cm had to be set since anything closer that that was

not registered. The sensors have a timeout after 12ms which is equivalent to a distance of 4m,

hence objects further away than 2m will not be detected. Nevertheless, the sensor frequently

responded with a nonzero output when it should not have; however, these numbers would often

stay around 10cm, they where excluded since a lower truncation limit of 15 cm was utilized.

Further works needs to be done on signal processing of the acoustic sensors. The emulator is

perfect with no noise; however the investigation logic is the same such that distances less than

15cm will be disregarded in the simulator too.

The autonomous docking, and take-off, was successful in both the simulator and the lab exper-

iment, it is believed that the logic behind switching to a constant docking angle when the vessel

is ”sufficiently” close is a valid scheme. Since the vessel with its constrained thrusters is fully

actuated, it glides and rotates into the spot, perfectly, in the simulator. Although, admittedly the

vessel was not able to dock perfectly in all experimental trials (it bumped into a wall, or stopped

to far way), the trials that went without any incidents can be viewed as a proof of concept.

58

Chapter 7

Concluding remarks

7.1 Conclusion

The previously implemented ROS-based platform made it possible to augment the CS Saucers

hardware and software in an efficient manner. The acoustic sensors were designed to be used

with an Arduino. Through inbuilt Arduino-functions the measured distance could be published

as a ROS topic (Figure F.1).

This thesis has presented work on Thrust Allocation inspired by Frederich (2016) and how it

could be implemented on the CS Saucer. It presents works on interfacing acoustic sensors with

the developed system by Ueland (2016) to detect obstacles outside the plane of the laser scan

from the lidar. A steering law has been implemented with the ultimate goal of docking the ves-

sel at a specific location with a corresponding heading. To achieve this two different, physical,

modules have been creating which can be attached to the CS Saucer.

The control allocation presented focused on four configurations, were a fixed bow thruster and

two rotatable stern thrusters were combined. The two first modes assumed independent con-

trollable stern thrusters, which few twin-engine leisure boats have since the engines are mounted

on a common shaft. Regardless of how many stern thrusters a vessel may have if they are

mounted on a common shaft, they can be combined into one thruster in the control allocation.

The two least controllable modes, configuration 3 and 4, are the most realistic with respect to

the fleet of leisure boats. The four modes were implemented into the control scheme of the CS

Saucer; however it proved to unreliable. Thoughts on how to solve this are presented in chapter

7.2.

Four HC-SR04 acoustic sensors were successfully installed and integrated with the system. If

they detected an obstacle in a cell, which was defined as free, it would be redefined as an oc-

cupied cell. For the sake of clarity they appear in the online map as black cells, while obstacles

59

detected by the lidar are dark gray. For the system it is treated as an occupied cell in the same

manner as if it was the lidar that detected it, i.e. the cells get inflated, avoided by the path plan-

ner, etc.

Autonomous docking was developed by the use of the simulator; the physical parameters was

altered and then a steering law was designed along with altering the cost-map to favor nodes in

front of the bow. In the simulator, the docking was executed smoothly since the vessel is fully

actuated. In the lab, a proof of concept has been proven.

The reader should be aware that the results from the controlled laboratory experiments cannot

be expected to function well in a non-ideal environment. Roll and pitch will affect the lidar scan,

the sensors need to be environmentally protected without reducing their ability and object at a

skew angle might not be detected by the lidar, nor the acoustic sensors.

Summarized, new technology has been presented, if it was to be assigned to a Technology Readi-

ness Level (TRL), according to the definition from the European Commission, it would be level

3, see Table 7.1. By the author’s opinion further work has to be done to claim TRL4.

Table 7.1: TRL in the European Commission (European Commision, 2014)

TRL Description

TRL 1. basic principles observed

TRL 2. technology concept formulated

TRL 3. experimental proof of concept

TRL 4. technology validated in lab

TRL 5.
technology validated in relevant environment

(industrially relevant environment in the case of key enabling technologies)

TRL 6.
technology demonstrated in relevant environment

(industrially relevant environment in the case of key enabling technologies)

TRL 7. system prototype demonstration in operational environment

TRL 8. system complete and qualified

TRL 9.
actual system proven in operational environment

(competitive manufacturing in the case of key enabling technologies; or in space)

60

7.2 Further work

This section will present all the aspects of this thesis that need to be improved. It will also give

account, by the authors’ opinion, on how the vessel could enhance its TRL for deployment in a

more harsh and dynamic environment.

The primary objective of this thesis is to perform autonomous docking and integrating proxim-

ity sensors into the sensor suite for better performance; however, the real life application was

always aimed for leisure boats, which are underacted. Hence an effort was made to study TA for

constrained rotatable thrusters. Further work on implementing the system needs to done. in or-

der to improve the optimal control, the author recommends looking into how the thruster angles

are defined, according to the body frame. In Frederich (2016, Figure 3.2.2), the thruster angles

have an offset of 180◦ with respect to heading, i.e. a thruster angle of 0 points backward. Other

work could be to make a feasibility study of the maneuvering of the vessel in the four modes and

create a more accurate cost map with inaccessible cells in the infeasible region.

The acoustic sensor had the problem of sending faulty messages detecting obstacles very close.

So all readings below 15cm had to be neglected an observer is recommended to handle this

issue.

If future work would like to use physical modules with the CS Saucer, the author recommends

creating a 3D model, in a drafting software, for print. The recommended module in this thesis

was hand drawn and made by on a band saw. It did not fit perfectly around the curvature of the

CS Saucer; it also had a constant area such that a gap arise on the underside, see Figure 7.1a.

After making a suitable model, the vessel should be remodeled.

The author bought a kit for mounting the acoustic sensor on a servo, see Figure 7.1b; however,

this was never tried. The idea was that the proximity sensor could look around, either in the

horizontal plane, or the vertical. A logic could be implemented such that the acoustic sensor

tracked an object, once found, to continuously measure the distance. The author has already

made software implementations where each proximity sensor is assigned a yaw and a pitch

angle, together with a position. Controlling the servo from the Arduino, developing a logic and

testing needs to be done.

The thesis title reads ”Autonomous docking for marine vessels using a lidar and proximity sen-

sors”. By the author’s opinion further work could be done on improving the autonomy regard-

ing the docking. Instead of depending on the user inputting the correct docking angle the user

should, for instance, select among four choices which read ”Bow”,”Stern”,”Port” and ”Starboard”,

depending on where the quay should be.

As written by Ueland (2016), it is a future goal that the system should handle dynamic object.

The SLAM algorithm assumes fixed obstacles when creating the map. The author recommends

61

developing a second, independent, positioning system in cascade with an Inertial Measurement

Unit (IMU), thus measuring its own movements, the system would be able to deduce how much

the obstacle is moving. Further the dynamic objects should be removed from the positioning par

of SLAM and analyses by a separate ROS node would be in charge of collision avoidance.

If an unknown current would be introduces the author recommends updating the steering law

to an integral-LOS, according to Caharija et al. (2014).

Another feature needed, to increase the TRL level, is to handle pitch and roll. One solution could

be to mount the lidar on a gimbal to keep it level at all times. Another solution could be to use a

3D-lidar, such as the HDL-32E presented in Figure 1.9b. It can use SLAM and produce a 3D map

of its environment even; however, its price of almost $30 000, according to Hizook (2016), may

prove too expensive.

(a) Gap between hull and module. (b) Acoustic sensor mounted in a Servo.

Figure 7.1: Suggestions for future work, the module needs to fit the vessel better and the acoustic
sensors is suggested to be mounted on a servo.

62

Bibliography

adressa (2016). [Accessed 18 Dec. 2016].

URL: http://www.adressa.no/nyheter/trondheim/article6640757.ece

AMOS (2016). [Accessed 15 Dec. 2016].

URL: http://www.ntnu.edu/amos

Arduino Webpage (2016). [Accessed 30 Nov. 2016].

URL: https://www.arduino.cc/en/Main/arduinoBoardMega

Berretta, D., Urbano, N., Formentin, S., Boniolo, I., Filippi, P. D. and Savaresi, S. M. (2013), Mod-

eling, identification and control of a boat parking assistance system, in ‘Control Conference

(ECC), 2013 European’, pp. 3012–3017.

Breivik, M. (2010), Topics in guided motion control of marine vehicles, PhD thesis, Norwegian

University of Science and Technology.

Caharija, W., Pettersen, K. Y., Sørensen, A. J., Candeloro, M. and Gravdahl, J. T. (2014), ‘Relative

velocity control and integral line of sight for path following of autonomous surface vessels:

Merging intuition with theory’, Proceedings of the Institution of Mechanical Engineers Part M:

Journal of Engineering for the Maritime Environment 228(2), 180–191.

URL: www.scopus.com

EasyMile (2016). [Accessed 29 Nov. 2016].

URL: http://easymile.com/

European Commision (2014). [Accessed 13 Dec 2016].

URL: http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-

wp1415-annex-g-trl_en.pdf

Ferguson, M. (2016), ‘Rplidar source code.’. [Accessed 17 Dec. 2016].

URL: http://wiki.ros.org/rplidar.

Fossen, T. I. (2011), Handbook of marine craft hydrodynamics and motion control, John Wiley &

Sons, Ltd.

63

Frederich, P. (2016), Constrained Optimal Thrust Allocation for C/S Inocean Cat I Drillship, Mas-

ter thesis, Norwegian University of Science and Technology.

Hizook (2016). [Accessed 14 Dec. 2016].

URL: http://www.hizook.com/blog/2010/08/24/velodyne-hdl-32e-new-high-end-laser-

rangefinder

Idland, T. K. (2015), Marine Cybernetics Vessel CS Saucer: Design, construction and control,

Master thesis, Norwegian University of Science and Technology.

IME Faculty (2016). [Accessed 15 Dec. 2016].

URL: http://www.ntnu.edu/ime

IMT, NTNU (2016). [Accessed 30 Nov. 2016].

URL: https://www.ntnu.edu/imt/lab/cybernetics

IVT Faculty (2016). [Accessed 15 Dec. 2016].

URL: http://www.ntnu.edu/ivt

Janez Cimerman (2015). [Accessed 29 Nov. 2016].

URL: http://meetjanez.splet.arnes.si/2015/08/22/neato-xv-11-to-ros-slam/

Johansen, T. A. and Fossen, T. I. (2013), ‘Control allocation—a survey’, Automatica 49(5), 1087 –

1103.

URL: http://www.sciencedirect.com/science/article/pii/S0005109813000368

Johansen, T. A., Fossen, T. I. and Berge, S. P. (2004), ‘Constrained nonlinear control allocation

with singularity avoidance using sequential quadratic programming’, IEEE Transactions on

Control Systems Technology 12(1), 211–216.

Kjerstad, O. K. (2010), Weather-optimal positioning control for underactuated USVs, Master the-

sis, Norwegian University of Technology and Science.

Kohlbrecher S, M. J. (2014). [Accessed 29 Nov. 2016].

URL: http://wiki.ros.org/hector_slam

Ludvigsen, M. and Sørensen, A. J. (2016), ‘Towards integrated autonomous underwater opera-

tions for ocean mapping and monitoring’, Annual Reviews in Control 42, 145 – 157.

URL: http://www.sciencedirect.com/science/article/pii/S1367578816300256

Maritime Robotics (2016). [Accessed 28 Nov. 2016].

URL: http://www.maritimerobotics.com/

64

National Research Council (2005), Autonomous Vehicles in Support of Naval Operations, The

National Academies Press, Washington, DC.

URL: https://www.nap.edu/catalog/11379/autonomous-vehicles-in-support-of-naval-

operations

Neato XV Series (2016). [Accessed 05 Nov. 2016].

URL: https://www.neatorobotics.com/robot-vacuum/xv/

Robotshop (2016). [Accessed 30 Nov. 2016].

URL: http://www.robotshop.com/en/rplidar-360-laser-scanner.html

ROS-community (2016). [Accessed 17 Dec. 2016].

URL: http://wiki.ros.org/navigation/Tutorials/RobotSetup/TF

RV Gunnerus (2016). [Accessed 15 Dec. 2016].

URL: https://www.ntnu.edu/oceans/gunnerus

Spange, J. (2016), A Study in Concept Development of Dynamic Positioning Functionality for

Leisure Boats, Project thesis, Norwegian University of Science and Technology.

Sørdalen, O. (1997), ‘Optimal thrust allocation for marine vessels’, Control Engineering Practice

5(9), 1223 – 1231.

URL: http://www.sciencedirect.com/science/article/pii/S0967066197843614

Sørensen, A. J. (2005), ‘Structural issues in the design and operation of marine control systems’,

Annual Reviews in Control 29(1), 125 – 149.

URL: http://www.sciencedirect.com/science/article/pii/S136757880500012X

Teknisk ukeblad (2016a). [Accessed 05 Nov. 2016].

URL: http://www.tu.no/artikler/verdens-forste-forerlose-passasjerferge-kan-ga-over-en-kanal-

i-trondheim/363790

Teknisk ukeblad (2016b). [Accessed 05 Nov. 2016].

URL: http://www.tu.no/artikler/norsk-selskap-bak-verdens-forste-autonome-skip-til-

kommersiell-drift/363811

Tesla Motors (2016). [Accessed 28 Nov. 2016].

URL: https://www.tesla.com/no_NO/blog/all-tesla-cars-being-produced-now-have-full-self-

driving-hardware

Ueland, E. (2015), Preparing the thruster and control systems on the CS Saucer for autonomous

tasks., Project thesis, Norwegian University of Science and Technology.

Ueland, E. (2016), Marine Autonomous Exploration using a Lidar, Master thesis, Norwegian Uni-

versity of Science and Technology.

65

Valhalla, G. (2010). [Accessed 17 Dec. 2016].

URL: http://se.mathworks.com/matlabcentral/fileexchange/29107-real-time-pacer-for-

simulink

Velodyne LiDAR (2016a). [Accessed 29 Nov. 2016].

URL: http://velodynelidar.com/products.html

Velodyne LiDAR (2016b). [Accessed 16 Sep. 2016].

URL: http://velodynelidar.com/hdl-32e.html

66

Appendix A

MATLAB scripts

A.1 Create map for simulation

1 imdata = imread('Picture_to_load.png'); %Must be size 256*256

2 [a,b,c] = size(imdata);

3 if (a ~= 256 || b~= 256)

4 error('Picture size in %ix%i, must be 256x256',a,b)

5 end

6 MAP = 66*ones(256,256); %Initiate

7 for i = 1:256

8 for j = 1:256

9 if (imdata(i,j,1) > 250) %Red

10 MAP(i,j) = 2; %Occupied, visible for all.

11 elseif (imdata(i,j,2) > 250) %Green

12 MAP(i,j) = 3; %Occupied, outside the Lidar 2D-...

pane.

13 elseif (imdata(i,j,3) > 250) %Blue

14 MAP(i,j) = 1; %Free

15 else

16 error('Elementary color not found at (%i, %i) RGB = [%i,%i,%i]\...

n'...

17 ,i,j,imdata(i,j,1),imdata(i,j,2),imdata(i,j,3))

18 end

19 end

20 end

21 save MAP.mat MAP

A1

A.2 Angular dependent cost-map

1 Anlge2Cell=zeros(Xlength,Ylength); %Angle to each cell

2 for Degangle=-180:1:180

3 Radangle=Degangle*pi/180;

4 for r=0:.1:6.5/resolution;

5 XPOS=PosX+round(r*cos(Radangle-Psi));

6 YPOS=PosY+round(r*sin(Radangle-Psi));

7 if (XPOS == PosX && YPOS == PosY)

8 1;

9 elseif map(YPOS,XPOS) > 1

10 break

11 elseif (Anlge2Cell(YPOS,XPOS) == 0 && XPOS<256 && XPOS > 0 && YPOS...

<256 && XPOS > 0)

12 if 2*abs(Radangle) < 3

13 Anlge2Cell(YPOS,XPOS)=0;

14 else

15 Anlge2Cell(YPOS,XPOS)=2*abs(Radangle);

16 end

17 end

18 end

19

20 end

A2

Appendix B

Electronic attachments

Files listed in this appendix are included in the electronic attachment. They will also be available

through https://github.com/NTNU-MCS/CS_Saucer_ROS. Most of the files are from Ueland

(2016); however, alterations by the author is clearly commented in the code.

B.1 Parameter generations files

VesselParameterSet.m

MATLAB script for setting parameters for both the ”motioncontroller.slx” Simulink model and

the ”Vessel_simulator.slx” Simulink model.

ParameterSet256.m

MATLAB script for setting parameters prior to running simulations.

Map256.mat

Files containing stored MATLAB workpaces. For simple setting the dimensions of the Simulink

nodes.

Quay256.mat/Quay_acu256.mat

Matrices of the maps shown in Figure 5.2c and 6.1a, respectively, after conversion through the

script in Appendix A.1.

Posedata.mat

Files containing stored MATLAB workpaces. For initializing of simulations.

B1

https://github.com/NTNU-MCS/CS_Saucer_ROS

B.2 Path_exploration node

B.2.1 Exploration_Pathplanner node

Exploration_pathplanner.slx

Responsible for running the exploration node. Subscribes to position and map, and publish a

path to the ROS architecture. To be run on operator computer. Depends on the following sub-

scripts

• ExplorationMain.m

Main script for exploration and pathplanning. Responsible for generating path according

to implemented guidance and exploration strategy

• addAcousticSignals.m

Responsible for adding the acoustic obstacles to the occupancy grid

• InflateMap.m

Responsible for inflating (expanding) objects according to the preset inflation radius

• Poppout.m

Responsible for reducing the map to reachable cells

• LidarUpdate.m

Assumes that the vessel can see ahead in section where the lidar has not recieved a signal.

Assumes that there is no objects in these directions

• PathAstar.m

Generates a path in the occupancy grid to goal nodes according to the implemented A*

search algorithm

• AtarFindCost.m

Find the cost of travelling between two connected nodes. Only used when all nodes in a

connection are weighted

• LidarFindGap.m

Identifies Gaps in the map. Only used if the Gap Based Exploration strategy is applied

• InvestigateGap.m

Examine whether a Gap can be checked as explored or not. Only used if the Gap Based

Exploration strategy is applied

B2

B.2.2 Path2SetPoint node

Path2SetPoint node folder

To be run as a regular ROS node.

Path2SetPoint.slx

Simulink model used to generate the node in C++. Generates appropriate setpoint on the planned

path.

B.2.3 Scan2SetPointDist

Scan2SetPointDist node folder

To be run in as regular ROS node.

Scan2SetPointDist.slx

Simulink model used to generate the node in C++

Find the closest object based on lidar scan. Contains logic for finding setpoint distance.

B.2.4 Hector2VesselPos

Hector2VesselPos node folder

To be run in as regular ROS node.

Hector2VesselPos.slx

Simulink model used to generate the node in C++

Transforming position vector from lidar coordinate system to that of the vessel.

Includes a quaternion transformation

B.2.5 Motion_Controller

Motion_Controller node folder

to be run as regular ROS node.

Motion_Controller.slx

The control system of the vessel, responsible for controlling the vessel to the desired setpoint.

This is perform this by publishing appropriate signals to the actuators. It is adviced to use the

Simulink motion controller rather than the C++ compiled version of this node.

Motion_Controllercompile.slx

Simulink model used to generate the node in C++

B3

B.2.6 Arduino code

CS SaucerThrustRPMVoltage.inu

Arduino code responsible for outputting the PWM signals to actuators, publishing the Acoustic

signals (in cm) and for monitoring the voltage of battery. Code is written in C++ and utilizes

Arduino/ROS libraries.

CS SaucerSimple.inu

Simpler version that only publish to signals to actuators. Does not monitor RPM signals nor,

voltage of battery.

B.2.7 Hector-Slam nodes

Open source nodes that are used for SLAM

See http://wiki.ros.org/hector_slam

B.2.8 RPLidar node

Open source nodes that are used as driver for the RP-lidar

See http://wiki.ros.org/rplidar

B.2.9 ROS serial node

Open source packadge got the Arduino

See http://wiki.ros.org/rosserial

B4

http://wiki.ros.org/hector_slam
http://wiki.ros.org/rplidar
http://wiki.ros.org/rosserial

B.3 Simulator nodes

B.3.1 Vessel simulator node

Vessel Simulator node folder

To be run in as regular ROS node.

VesselSimulator.slx

Simulink model used to generate the node

in C++. Node that simulate the vessel dynamics

B.3.2 Mapping fimulator node

Mapping Simulator node folder

To be run in as regular ROS node

MappingSimulator.slx

Simulink model used to generate the node in C++.

Node that simulates map generation. Sections where lidar rays are not reflected is not updated

in this version. The reference map and grid size needs to be defined in Simulink before code

generation.

B.4 Launch files

Res01.launch

Launch RPLidar and Hector Slam for mapping with resolution 0.1, and a gridsize (256x256)

Res02.launch

Launch RPLidar and Hector Slam for mapping with resolution 0.2, and a gridsize (256x256)

Simulator.launch

Launches simulator nodes. Launched with the ”roslaunch” command.

LaunchNoLidar.launch

Launches nodes for deployment of vessel, excluding the RPLidar and Hector-SLAM nodes

B5

B.5 Other

B.5.1 Real-Time Pacer

Open source Simulink block for slowing simulations down to real-time. (Valhalla, G., 2010)

B.5.2 Marine Systems Simulator

The Marine Systems Simulator (MSS) is a MATLAB/Simulink library and simulator for marine

systems. It includes models for ships, underwater vehicles, and floating structures. The library

also contains guidance, navigation, and control (GNC) blocks for real-time simulation. (Val-

halla, G., 2010)

B.5.3 Photo and video documentation

Pictures and some video from the experiments are presented.

B.5.4 Thesis files

This thesis along with all figures etc.

B6

Appendix C

Software set up and installation

This manual is also presented in Ueland (2016), minor changes are done, to help the reader. It

is intended for use at NTNU, and especially for students that wants to use ROS as their soft-

ware framework for projects in the Marine Cybernetics laboratory at NTNU. Though specifi-

cally intended for students at NTNU though it is hoped that it might also be useful for other

readers.

The goal of the manual is to provide the necessary steps such that users with as little effort as

possible can set up their ROS-framework for use in the MC Lab. This is particularly relevant for

future master’s students at NTNU, which by utilizing this manual will get more time to focus on

their own thesis.

The manual is split into two parts. The first part explains how to set up the system architecture

with ROS on an with Raspberry Pi 2, computer and an Arduino. This part is not specific for the

CS-Saucer platform and is intended for persons wishing set up similar ROS-frameworks on their

own systems.

The second part goes into detail on the interfacing of ROS for this particular project and explain

step by step how the codes have been generated and how to apply, edit and reuse the generated

software.

The manual is written for inexperienced users, meaning that the process is explained step by

step. The manual will not go in depth on how to use ROS beyond what’s needed in order to

achieve the desired setup, and a more thorough investigation is needed in order for the reader

to obtain the full understanding of how to utilize ROS.

The author of this manual has used countless hours to implement the software system. Issues

that in retrospect has simple solutions have often taken a lot of time to solve. It is hoped that the

next user do not use the same amount of time in the same issues.

C1

Note that due to the high level of development of ROS and robotics the manual will probably

need to be adapted to future versions. For example, Raspberry Pi 3 had just arrived in March

2016, while ROS 2.0 is under development.

Please note the following:

• In the manual, the dollar sign $ indicate a line of text that should be written in the Ubuntu-

terminal window.

• In the manual Gedit is used as the text editor. This can be replaced with the readers

favourite text editor.

• The manual is written and tested for ROS-Indigo.

C2

C.1 Installing ROS and UBUNTU

For this section you will need the following:

• Single Board Computer (Tested in this manual: RaspberryPi-2)

• Laptop/computer for installment of Ubuntu

• Micro-SD card (recommended storage of 16 GB) and means of connecting it to computer

(Micro-SD/SD adapter or Micro-SD/usb adapter

• Hardware for interfacing with the RP2 (monitor, ethernet-cable or WiFi adapter, HDMI-

cable, mouse and keyboard).

C.1.1 Ubuntu and ROS on your personal computer

Use your favorite method to install UBUNTU 14.04-lts on your personal computer. This might

be installed through via Oracle Virtual Box, or as its own partition.

Now install ROS indigo. [http://wiki.ros.org/indigo/Installation/Ubuntu]

C.1.2 Ubuntu and ROS on your single board computer (RP2)

Follow the instructions given in the link , which in detail explain how to install Ubuntu 14.04 on

Raspberry Pi 2. [https://wiki.ubuntu.com/ARM/RaspberryPi]

The key steps for performing this operation will be summarized below:

• Download the Ubuntu 14.04 Trusty image on your personal computer.

• Install image on microSD-card through this manual (Windows):

[www.raspberrypi.org/documentation/installation/installing-images/windows.md]

• Insert micro-SD card to RP2 and connect the RP2 to internet, monitor, mouse and key-

board.

• Now install Ubuntu according to manual given in the link above. For reference this video

is good: [https://www.youtube.com/watch?v=UGSQ7nzVCs4]

You now want to install ROS-Indigo on RP2. Use the on the following instructions: [http://wiki.ros.org/indigo/Installation/UbuntuARM]

C3

C.2 Getting started with ROS

The following commands generate a personal workspace on ROS. (Do this both on RP2 and the

laptop)

Create the workspace:

1 $mkdir -p ~/catkin_ws/src
2 $cd ~/catkin_ws/src$
3 $catkin_init_workspace

Now you want to source the worskspace each time you open a new terminal. Therefore open

the bashrc-file through the following command:

1 $sudo gedit ~/.bashrc

And add the following line at the bottom of the bashrc-file:

1 source ~/catkin_ws/devel/setup.bash

Now ROS should be installed. To learn more on ROS, check out the following tutorials;

• http://wiki.ros.org/ROS/Tutorials
• https://cse.sc.edu/~jokane/agitr

C4

http://wiki.ros.org/ROS/Tutorials
https://cse.sc.edu/~jokane/agitr

C.3 Communicating between Raspberry Pi 2 and computer

Getting WiFi on RP2

You need a WiFi USB adapter in order to communicate to the RP2 over WiFi. (Raspberry 3 will

have WiFi built in). In this project, the following adapter was used: (TP-LINK TL-WN725N).

The wifi driver was installed on the RP2 using the following manual. [http://askubuntu.com/

questions/381574/drivers-for-tp-link-tl-wn725n-nano-usb-wireless-n-adapter].

Note:If you are using Virtual Box on the laptop, then use bridged wifi network sharing in the

settings of Virtual Box.

Now you should note the IP addresses for the Raspberry Pi 2 and Laptop. You can find the IPs by

the command:

1 $ ifconfig

In the following example the IP and username of the laptop and RP2 is as follows:

Unit Username IP

RP2 ubuntu 192.168.0.232

Laptop einar 192.168.0.107

Now edit the hosts file

1 $ sudo gedit /etc/hosts

Add the following line on the hosts file on both the laptop and RP2 host file:

1 192.168.0.232 ubuntu
2 192.168.0.107 einar

Now edit the bashrc file

1 $ sudo gedit ~/.bashrc

Add the following lines on the hosts file on both the laptop and RP2 host file:

1 export ROS_MASTER_URI=http://ubuntu:11311

C5

Where "ubuntu" refer to the username of the computer that will be the rosmaster. You need to

comment out this line again if no longer which to have RP2 as the ROS master.

You should now check that you can both SSH and send ROS messages back and fourth between

RP2 and laptop over internet. This can be checked this by doing step 1 in the following manual

http://wiki.ros.org/ROS/NetworkSetup

In this particular setup, the RP2 did not receive enough when powering other units such as the

the lidar and the Arduino . For this reason, the following current limit was changed on the RP2.

The following line was added in /boot/config.txt

1 max_usb_current=1

C.3.1 Arduino on ROS

In order to get the Arduino to ROS you should install Arduino IDE and the Rosserial package on

your RP2 unit. Arduino IDE is a software for writing and uploading code to the Arduino, while

the rosserial package is a protocol for transmitting standard ROS messages over devices such as

network sockets and serial ports.

Run the following commands on the RP2:

1 $ sudo apt-get install arduino
2 $ sudo apt-get install ros-indigo-rosserial

(For convenience, you may want to install these on your laptop as well).

You can now create and upload code to the Arduino. Enter Arduino IDE from the computer by

the following commands:

1 ssh -X ubuntu@ubuntu
2 arduino

For controlling the motor controllers the built in ROS-Servo example is an excellent one. See

tutorial on this source. http://wiki.ros.org/rosserial_arduino/Tutorials/Servo

C6

http://wiki.ros.org/ROS/NetworkSetup
http://wiki.ros.org/rosserial_arduino/Tutorials/Servo

C.4 RP lidar and Hector-SLAM in ROS

Installing RPLidar Install the RPLidar through the following commands:

1 cd ~/catkin_ws/src
2 git clone https://github.com/robopeak/rplidar_ros
3 cd ~/catkin_ws
4 catkin_make

If you are using Virtual-Machine you should at this point make sure that you have forwarded the

USB-port to the virtual Machine.

Now test the RPLidar node.

1 roslaunch rplidar_ros view_rplidar.launch

The rviz visualization tool should now pop up, where red dotted datapoints represents observed

data.

If problems occur you at this stage you might try:

1 sudo gpasswd --add ${USER} dialout

Or check out either of these sources: http://blog.zhaw.ch/icclab/rplidar/ http://wiki
.ros.org/rplidar]

Get the Hector-Slam and TF package

1 $ sudo apt-get install ros-indigo-hector-slam
2 $sudo apt-get install ros-indigo-tf

Now locate the Hector_mapping launch file

1 $ roscd hector_mapping
2 $ cd launch
3 $gedit mapping_default.launch

C7

 http://blog.zhaw.ch/icclab/rplidar/
 http://wiki.ros.org/rplidar]
 http://wiki.ros.org/rplidar]

Add the following line

1 <node pkg="tf" type="static_transform_publisher" name="...
base_to_laser_broadcaster" args="0 0 0 0 0 0 /base_link /laser 100"/>

Also adjust parameters names of the file as explained in http://wiki.ros.org/hector_slam
/Tutorials/SettingUpForYourRobot

Now locate the tutorial launch file

1 $ roscd hector_slam_launch
2 $ cd launch
3 $ gedit tutorial.launch

Add the following line

1 <include file="$(find rplidar_ros)/launch/rplidar.launch"/>

Also, without closing the editor, edit the following line:

1 <param name="/use_sim_time" value="true"/>

to

1 <param name="/use_sim_time" value="false"/>

Now test if Hector_SLAM is able to process the lidar data by running the rp_lidar and Hec-

tor_SLAM nodes.

1 $roslaunch rplidar_ros rplidar.launch
2 $roslaunch hector_slam_launch tutorial.launch

If problems occur it may be that the time between the computer time and RP2 may need to be

synchronized.

Also, copying from the PDF to the terminal/editor may loose some symbols, pay close attention to

symbols like " and _

C8

http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot
http://wiki.ros.org/hector_slam/Tutorials/SettingUpForYourRobot

Appendix D

Tutorials: ROS

The following appendix contains links to recommended tutorials for beginners with ROS. The

focus is on using ROS in Simulink and building models. Tutorials are from the ROS community

or Mathworks, in the latter case they are often related to the Gazebo®.

https://se.mathworks.com/help/robotics/getting-started-with-robotics-system-t
oolbox.html
Contain 5 tutorials about ROS in MATLAB and communicating with a virtual machine.

https://www.youtube.com/watch?v=IictXPCP5M4&t=618s
First introduction with Simulink and ROS.

http://se.mathworks.com/help/robotics/examples.html#d0e172
5 Tutorials specific on Simulink and ROS.

http://wiki.ros.org/
The official wiki from ROS for all usage, not specifically MATLAB.

http://se.mathworks.com/help/robotics/examples.html#d0e19
More advanced use of the Robotics System Toolbox.

https://se.mathworks.com/matlabcentral/fileexchange/56877-a---astar--search-a
lgorithm-easy-to-use
A* search algorithm. Not specifically ROS.

D1

https://se.mathworks.com/help/robotics/getting-started-with-robotics-system-toolbox.html
https://se.mathworks.com/help/robotics/getting-started-with-robotics-system-toolbox.html
https://www.youtube.com/watch?v=IictXPCP5M4&t=618s
http://se.mathworks.com/help/robotics/examples.html#d0e172
http://wiki.ros.org/
http://se.mathworks.com/help/robotics/examples.html#d0e19
https://se.mathworks.com/matlabcentral/fileexchange/56877-a---astar--search-algorithm-easy-to-use
https://se.mathworks.com/matlabcentral/fileexchange/56877-a---astar--search-algorithm-easy-to-use

D2

Appendix E

Launch manual

E.1 Deploy vessel for autonomous exploration

This section describes how to deploy the vessel for the operations seen in this thesis. It will be to

the point, and assumes that components in the system are set up as they were when the project

was terminated.

1. Make sure that the Arduino is connected as instructed in Table 2.1.

2. Connect the battery and the lidar to the Raspberry Pi 2. Subsequently place the lid as

instructed in Section 3.1.1.

3. Connect to the MCLab network on the operator computer.

4. SSH into the RP2 and launch the RP2 nodes.

1 ssh ubuntu@ubuntu
2 cd catkin_ws/src
3 roslaunch LaunchNoLidar.launch

If not already performed, place the vessel on the water.

5. ssh into the RP2 and laucnh the mapping launch file according to desired resolution

1 ssh ubuntu@ubuntu
2 cd catkin_ws/src
3 roslaunch RES02256.launch

E1

6. Launch of MATLAB node. The gridsize that is loaded prior to running this node should

match that of the Hector-SLAM algorithms.

1 rosinit('ubuntu') (workspace commando)
2 load Frontier256.mat (workspace commando)
3 run Exploration_pathplanner.slx

7. Run the motion controller node. The motor should be set in neutral before this node is

launched.

Option a: Connect a second computer to the system. From this the Simulink motion con-

troller will be run. This yield more flexibility and more safety in case of unexpected be-

haviors or errors than the C++ compiled version of the motion controller yields.

1 rosinit('ubuntu')
2 run VesselParametersSet.m
3 run MotionControl.slx

Option b ssh into the RP2 and run the ROS_controller node

1 $ ssh ubuntu@ubuntu
2 $ cd catkin_ws/src
3 $ rosrun motioncontroller compiled motioncontroller compiled node

Of these two options, Option a is by far the advised method and the one that has been

applied the most in this thesis. There should be extra available computers in the MCLab

TroubleShooting

– Check that you can ping the RP2 from the operator computer

– Make sure that you can SSH both back and forth between the RP2 and the operator com-

puter. If not, there might either be a problem with the internet connection or the hosts

file. Also, make sure that open-ssh is installed, and if your using Virtual Box, that you use

Bridged Network.

– The IP addresses can change. Check the hosts file on both RP2 and operator computer is

up to date.

– Check if you can echo on ROS signal sent from RP2 on the operator computer (and the

opposite direction).

E2

– Check that the bashrc file contains the following line: export ROS MASTER URI=http://ubuntu:11311

where ubuntu is the corresponding name to the RP2 IP as set in the hosts files.

– Check the voltage of the battery.

– Check that all pins are connected

– If one of the motors has stopped, check the lights on the motor-controller. They may

signal an error as described in the following: ttp://www.mtroniks.net/download.asp?
ResourceID=1973

Another helpful tool is to check if the ROS architecture is correct ,i.e., topics subscribe and pub-

lish correctly.

To generate the architecture, run:

1 $ rosrun rqt_graph rqt_graph

Compare the map with Figure F.1

NOTE: This will produce an error if ROS have not been initialized.

E3

ttp://www.mtroniks.net/download.asp?ResourceID=1973
ttp://www.mtroniks.net/download.asp?ResourceID=1973

E.2 Perform simulations

E.2.1 Launching

In this manual, it is assumed that all nodes are run on operator computer, but some nodes could

just as easily be run on the RP2. The mapping simulator has only been generated in C++ for a

given Reference-map and a gridsize 256. For other Reference-maps and gridsizes, the Simulink

version of the mapping simulator should be used. In that case, nodes should be launched indi-

vidually and not by the use of a launch file.

– First, make sure that the line in the bashrc file that exports the ROS master is uncom-

mented.

– Now perform the following:

1 rosinit (MATLAB WORKSPACE)
2 $ cd catkin ws/src
3 $ roslaunch Simulation.launch
4 Setstuff256 (running script from MATLAB workspace)
5 run Exploration_pathplanner.slx

E.2.2 Run Simulink nodes independently

In order to edit the simulator one or several nodes needs to be left out of the roslaunch and

launched through Simulink. To do so, follow the procedure:

1 $ cd catkin ws/src
2 $ gedit Simulation.launch

E4

The content is:

1 <?xml version="1.0"?>
2 <launch>
3 <node pkg="vesselsimulator" type="vesselsimulator_node" name="...

vesselsimulator_node"/>
4 <node pkg="motioncontrolcompile" type="motioncontrolcompile_node" ...

name="motioncontrolcompile_node"/>
5 <node pkg="path2setpoint" type="path2setpoint_node" name="...

path2setpoint_node"/>
6 <node pkg="mappingsimulator" type="mappingsimulator_node" name="...

mappingsimulator_node"/>
7 </launch>

Commenting out code, in a launch-file, is through:

1 <!--
2 !-->

Find the node ,e.g. ”VesselSimulator.slx”, edit it and run it as usual, prior to running ”Explo-

ration_pathplanner.slx”. When finished, build the model (CTRL+B), and imlement it intro the

ROS architecture through:

1 $./build_ros_model.sh VesselSimulator.tgz ~/catkin_ws/

E5

E6

Appendix F

ROS architecture overview

Table F.1: Overview over nodes in the system in MCLab, see Figure F.1

Node
name

Node
function

Topics
Subscribed to

Topics
Published to

Described in

base_to_laser_broadcaster Coordinate transformation between baselink
of the robot and lidar position.

- tf ROS-community
(2016)

Exploration_pathplanner Responsible for generating path according to
implemented guidance and exploration strat-
egy

map Position UNFGAPS
MotorOnOff
EtaSetList GAPS

Ueland (2016,
Sec.4.3,4.4)

Hector2VesselPos Transformation of position vector from
Hector-SLAM to vessel coordinates. Includes
a quaternion transformation

Poseupdate Position Ueland (2016,
Sec.3.1.3)

Hector_SLAM nodes Collection of nodes from the Hector-SLAM
package. Responsible for performing SLAM
based on the lidar data stream

scan
tf

pose Kohlbrecher S, M.
J. (2014)

motioncontroller Responsible for controlling the vessel to the
desired setpoint. This is performed by pub-
lishing appropriate signals to the actuators.

Setpoint
Motor_on_off
Position

VesselSpeed
nu
Thrust1,Thrust2,Thrust3
a1,a2,a3

Ueland (2016,
Sec.4.1)

Path2SetPoint Generates an appropriate setpoint on the
planned path

SetPointDist
Path

SetPoint Ueland (2016,
Sec.4.3.3.1)

rplidarNode Driver for the lidar. Generates range data in
the 2D plane as registered by the lidar scann

- scan Ferguson (2016)

Scan2SetPointDist Find the closest object based on lidar scan.
Contains logic for finding setpoint distance

scan SetPointDist
ScanDistance

Ueland (2016,
Sec.4.3.3.2)

serial_node Node providing ROS communication proto-
cols for the Arduino. Responsible for sending
PWM signal to actuators, and for monitoring
voltage level of battery and rotational speed of
motors

Thrust1,
Thrust2, Thrust3
a1 a2 a3

diagnostics
BatterEncoder-
ThrustRPM

ROS-community
(2016)

F1

F2

Table F.2: Topics in the system explained (Excluding topics of open source packages that are not
directly utilized)

Topic Message Explained

a1 a2 a3 Actuator input for angle of thrusters, interpreted and transmitted by the Arduino

Acoustics Measurement vector containing readings from proximity sensors

BatterEncoderThrustRPM Measured revolution signal from each motor and measured voltage of battery.
For recording/monitoring of data

GAPS List containing GAPS that are candidates for investigation. For recording/moni-
toring of data

map Binary occupancy grid represented as a vector. Contains information about the
map as well, with the most important property being the resolution. Represents
the environment that the lidar operates in

Motor_on_off Toggle motor power between on and neutral

nu Speed in surge, sway and yaw, as estimated by the observer

Path List containing coordinates for the vessel path. 1:128 is x positions, 129:256 is y
positions.

PoseUpdate Position/Attitude of lidar as estimated by the Hector SLAM package. In general
valid for 6 DOF

Position Positions of vessel in surge, sway and yaw

scan Data cloud representing intensities and ranges to objects in the vicinity of the
vessel, as scanned by the lidar

ScanDistance The shortest distance registered in the lidar data cloud. For recording/monitor-
ing of data

SetPoint Setpoint of vessel in surge, sway and yaw

SetPointDist Distance to setpoint from the point on the path that is closest to the vessel to the
setpoint forward in the path.

Thrust1, Thrust2, Thrust3 Actuator input for motor revolution. Interpreted and transmitted by arduino

UNFGAPS List containing GAPS that have been examined. For recording/monitoring of
data

VesselSpeed Speed of the vessel in the direction it is travelling , as estimated by the observer

Figure F.1: Overview over topics and nodes in the system, when running in the MCLab, as pre-
sented by the native rqt_graph tool in ROS.

F3

Figure F.2: Overview over topics and nodes in the system, when running as a simulation, as
presented by the native rqt_graph tool in ROS.

F4

	MSc thesis description sheet
	Preface
	Acknowledgment
	Abstract
	Sammendrag
	Nomenclature
	Abbreviations
	Introduction
	Motivation
	Background
	Optimal thrust allocation
	Proximity sensors
	Lidars
	Autonomous systems
	Unmanned Surface Vessels

	Thesis contribution
	Outline of the thesis
	Scope and delimitation
	Notation

	Experimental setup
	CS Saucer
	Previous works
	The Robot Operating System
	Software architecture
	Hardware architecture

	Marine Cybernetic Laboratory
	Obstacles

	Mathematical model
	Kinematics
	The Basin-fixed and Basin-relative reference frames
	Body-fixed reference frame
	Transformation between reference frames

	Kinetics

	Control allocation
	Fixed angles
	Constrained rotatable thrusters
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4
	Simulink implementation

	Simulations

	Autonomous docking
	Problem statement
	Motion control system
	Steering law
	Docking and take-off
	PD-controller

	Map processing
	Draw test environment
	Including the proximity sensors
	Inflating the map
	Feasibility correction of the cost-map
	Path planner
	Map layers
	Operator interaction

	Sequence of docking and take-off

	Results
	Simulations
	Adding proximity sensors to the mapping environment
	Autonomous docking

	Experiments
	Testing of modules
	Proximity sensors
	Autonomous docking

	Discussion

	Concluding remarks
	Conclusion
	Further work

	MATLAB scripts
	Create map for simulation
	Angular dependent cost-map

	Electronic attachments
	Parameter generations files
	Path_exploration node
	Exploration_Pathplanner node
	Path2SetPoint node
	Scan2SetPointDist
	Hector2VesselPos
	Motion_Controller
	Arduino code
	Hector-Slam nodes
	RPLidar node
	ROS serial node

	Simulator nodes
	Vessel simulator node
	Mapping fimulator node

	Launch files
	Other
	Real-Time Pacer
	Marine Systems Simulator
	Photo and video documentation
	Thesis files

	Software set up and installation
	Installing ROS and UBUNTU
	Ubuntu and ROS on your personal computer
	Ubuntu and ROS on your single board computer (RP2)

	Getting started with ROS
	Communicating between Raspberry Pi 2 and computer
	Arduino on ROS

	RP lidar and Hector-SLAM in ROS

	Tutorials: ROS
	Launch manual
	Deploy vessel for autonomous exploration
	Perform simulations
	Launching
	Run Simulink nodes independently

	ROS architecture overview

